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Abstract

This paper introduces a uni�ed approach to robustness analysis

with respect to nonlinearities, time-variations and uncertain param-

eters. From an original idea by Yakubovich, the approach has been

developed under a combination of in�uences from the western and

russian traditions of control theory. It is shown how a complex sys-

tem can be described by using certain integral quadratic constraints

(IQC's), derived for its elementary components. A stability theorem

for systems described by IQC's is presented, that covers classical pas-

sivity/dissipativity arguments, but simpli�es the use of multipliers and

the treatment of causality.

The paper is divided into two parts. Part I presents the basic

ideas for stability analysis, refering to a simple example. A systematic

computational approach is described and relations to other methods

of stability analysis are discussed. Last, but not least, it contains a

summarizing list of IQC's for important types of system components,

that exist in various forms in the literature.
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1 Introduction

It is common engineering practice to work with simplest possible mod-

els for design of control systems. In particular, one often uses linear

time-invariant plant models, for which there is a well established the-

ory and commercially available computer tools that help in the design.

To verify that the design also works well in practice one needs real ex-

periments, often preceeded by simulations with more accurate models.

However, there is also a strong need for more formal ways to analyse

the systems. Such analysis can help to identify critical experimental

circumstances or parameter combinations and estimate the power of

the models.

In the 1960-70s, a large body of results was developed in this direc-

tion, often referred to as �absolute stability theory�. The basic idea was

to partition the system into a feedback interconnection of two positive

operators. See [45, 78, 82, 75, 39, 17, 54] and the references therein. To

improve the �exibility of the approach, so-called multipliers were used

to select proper variables for the partitioning. The absolute stability

theory is now considered as a fundamental component of the theory

for nonlinear systems. However, the applicability of many of the re-

sults has been limited by computational problems and by restrictive

causality conditions used in the multiplier theory.

For computation of multipliers, substantial progress has been made

in the last decade, the most evident example being algorithms for com-

putation of structured singular values (� analysis) [19]. As a result,

robustness analysis with respect to uncertain parameters and unmod-

eled dynamics, can be performed with great accuracy. A probably even

more fundamental breakthrough in this direction is the development of

polynomial time algorithms for convex optimization with constraints

de�ned by linear matrix inequalities [40, 7]. Such problems appear

not only in �-analysis, but in almost any analysis method based on

passivity-type concepts.

The purpose of this paper is to adress the second obstacle to ef-

�ceint analysis, by proving that multipliers can be introduced in a

less restrictive manner, without causality restrictions. Not only does

this make the theory more accessible by simpli�cation of proofs, but

also enhances the development of computer tools, that supports the

transformation of assumptions on model structure into a numerically

tractable optimization problem.

The term integral quadratic constraint (IQC) is used for several
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purposes:

� To exploit structural information about a complex or uncertain

system component.

� To characterize properties of an external signal.

� To analyze combinations of several constraints on perturbations

and signals in a system.

Implicitly, integral quadratic constaints have always been present

in stability theory. For example, positivity of an operator F , can be

expressed by the IQCZ 1

�1

d(Fv)(j!)�bv(j!)d! � 0 8v :

In the 1960s, most of the stability theory was devoted to scalar

feedback systems. This led to conveniently visualizable stability crite-

ria based on the Nyquist diagram, which was particularly important

in times when computers were less accessible.

In the 70-s, integral quadratic constaints were explicitly used (and

named so) by Yakubovich to treat the stability problem for systems

with advanced nonlinearities, including amplitude and frequency mod-

ulation systems. Some new IQC:s, unrelated to the passivity or small

gain arguments, were introduced, and the so-called S-procedure was

applied to the case of multiple constraints [79]. Willems also gave an

energy related interpretation of the stability results, in terms of dis-

sipativity, storage functions and supply rates [75]. Later on, Safonov

interpreted the stability results geometrically, in terms of separation

of the graphs of the two operators in the feedback loop.

An important step in the further development, was the introduction

of analysis methods which essentially rely on the use of computers. One

example is the theory for quadratic stabilization [30, 22, 15], another is

the multiloop generalization of the circle criterion based on D-scaling,

[55, 19]. Both the search for a Lyapunov function and the search for D-

scales can be interpreted as optimization of parameters in an integral

quadratic constaint. Another direction was the introduction of H1

optimization for synthesis of robust controllers [83, 61]. Again the

results can be viewed in terms of integral quadratic constraints, since

optimal design with respect to an IQC leads to H1
optimization.

During the last decade, a variety of methods has been developed

within the area of robust control. As was pointed out in [35], many of
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Figure 1: Perturbation in Feedback Form

them can be reformulated to fall within the framework of IQC's. This

will be further demonstrated in the current paper, which is divided in

two parts.

This �rst part presents some minimal framework for the stability

analysis of feedback interconnections described in terms of IQC's. It

is introduced by an extensive example, illustrating the main ideas on

a feedback loop with saturation and an uncertain delay. In section 3,

de�nitions and main theorem are stated in detail. After that follows

sections with discussions and comparisons to well known results. Fi-

nally, we give a summarizing list of integral quadratic constraints for

important types of system components.

The second part of the paper concerns analysis of robust perfor-

mance, and generalizes the stability analysis to cases where the bound-

edness, causality and uniqueness assumptions of part one are violated.

2 Outline of the method

Consider a feedback con�guration illustrated in Figure 1, consisting

of a time-invariant linear operator with transfer matrix G(s), inter-

connected with an operator �, that describes the "troublemaking"

(nonlinear, time-varying or uncertain) components of the system. The

notation G will in the sequel either denote a linear operator or a ra-

tional transfer matrix, depending on the context.

First, we describe � as accurately as possible by integral quadratic

constraints (IQC's)Z 1

�1

" bv(j!)d�(v)(j!)

#�
�(j!)

" bv(j!)d�(v)(j!)

#
d! � 0 (1)

which should hold for any square summable v with Fourier transform

v̂. The class �� of all rational hermitean matrix functions � that

de�ne a valid IQC for a given � is convex, since the sum of two pos-

itive integrals is positive, and it is usually in�nite-dimensional. For
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a large number of simple system components, a corresponding class

�� is readily available in the litterature. In fact, IQC's are implicitly

present in many results on robust/non-linear/time-varying stability.

A list of such IQC's has been appended to this paper in section 7.

When � consists of a combination of several simple blocks, IQC's can

be generated by convex combinations of constraints for the simpler

components.

Next, we search for a matrix function � 2 ��, that satis�es the

criterion�
G(j!)

I

��
�(j!)

�
G(j!)

I

�
< 0 8 ! 2 R [ f1g: (2)

In combination with (1), this essentially proves stability of the inter-

connection. The search for a suitable � can be carried out by numer-

ical optimization, restricted to some �nite-dimensional subset of ��.

Roughly speaking, � is expected to be of the form

�(j!) =

q=q0X
q=1

xq�q(j!);

where xq are real parameters. � and G are proper rational functions

with no poles on the imaginary axis, so there exists n > 0, a Hurwitz

matrix A of size n�n, a matrix B of size n�m, and a set of symmetric

real matrices Mq of size (n+m)� (n+m), such that�
G(j!)

I

��
�q(j!)

�
G(j!)

I

�
=

�
(j!I � A)�1B

I

��
Mq

�
(j!I �A)�1B

I

�
for all q. By application of the Kalman-Yakubovich-Popov Lemma, as

stated by Willems [74], it follows that the inequality in (2) is equivalent

to the existence of a symmetric n � n matrix P = PT
such that�

PA +ATP PB

BTP 0

�
+

q=q0X
q=1

xqMq < 0: (3)

Hence the search for xq that produce a � weight satisfying (2) (i.e.

proving the stability) takes the form of a convex optimization problem

de�ned by a linear matrix inequality (LMI) in the variables xq; P . Such

problems can be solved very e�ciently using the recently developed

numerical algorithms based on interior point methods [40, 7].
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2.1 Example with Saturation and Delay

Consider the following feedback system with control saturation and an

uncertain delay.

_x(t) = Ax(t) + B sat(w(t))

w(t) = �kCx(t � �)
(4)

where r is the reference signal, � 2 [0; �0] is an unknown constant,

P (s) = C(sI �A)�1B =
s2

s3 + 2s2 + 2s+ 1

is the transfer function of the controlled plant (see the Nyquist plot

on Figure 3), and

sat(w) =

�
w ; jwj � 1;

w=jwj ; jwj � 1;

is the function that represents the saturation. The setup is illustrated

in Figure 2.

Let us �rst consider stability analysis for the case of no delay. Then

let� be the saturation, while G(s) = �kP (s). Application of the circle

criterion

�k�1 < min
!

ReP (j!) (5)

gives stability for

k < kcirc � 8:12

(see dashed line in Figure 3). This corresponds to a �� containing

only the matrix �
0 1

1 �2

�
:
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In the Popov criterion, �� consists of all linear combinations�
0 1

1 �2

�
+ �

�
0 j!

�j! 0

�
;

and the resulting inequality (2) gives the minor improvement

�k�1 < max
�

min
!

Re [(1 + j!�)P (j!)] (6)

k < kPopov � 8:90

A Popov plot is shown in Figure 4.

Furthermore, because the saturation is monotone and odd, it is

possible to apply a much stronger result, obtained by Zames and Falb,

[84]. By their statement, a su�cient condition for stability is the

existence of a function H 2 RL1 such that

0 < min
!

Re[(1 +H(j!)�)(P (j!) + k�1)]

H(j!) =

Z 1

�1

e�j!th(t)dt

1 �

Z 1

�1

jh(t)jdt

This extends the class of valid IQC's further, by allowing all matrix

functions of the form

�(j!) =

�
0 1 +H(j!)

1 +H(�j!) �2(1 + ReH(j!))

�
where H has an impulse response of L1 norm no greater than one. For

our problem, the choice H(j!) = �(1 + j!)�1 gives for ! 2 R that

Re[(1 +H(�j!))P (j!)] = j1 +H(�j!)j2Re

�
j!

�!2 + j! + 1

�
� 0
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This shows that the feedback system is indeed stable for all k > 0 and

concludes the stability analysis in the undelayed case.

Considering also the delay uncertainty, the problem is to �nd a

bound on the maximal stabilizing feedback gain for a given delay

bound. A crude bound can be received directly from the small gain

theorem, stating that, because of the gain bound ke��s sat(�)k < 1,

the feedback interconnection of e��s sat(�) and kP (s) is stable pro-

vided that

k < kPk1
�1 � 1:37:

Not surprisingly, this condition is conservative. For example, it does

not utilize any bound on the delay. In order to do that, it is useful

to generate more IQC's for the delay component. However, let us �rst

step back and formulate the stability criterion more carefully. The

example will be continued in section 6.

Notation

Let RL1 be the set of proper (bounded at in�nity) rational functions

with real coe�cients. The subset consisting of functions without poles

in the closed right half plane is denotedRH1. The set ofm�n matri-

ces with elements in RL1 (RH1) will be denoted RL
m�n
1 (RH

m�n
1 ).

L
l
2[0;1) can be thought of as the space of R

l
-valued signals (i.e.

functions f : [0;1)! R
l
) of �nite energy

kf(�)k =

Z 1

0

jf(t)j2dt:

This is a subset of the space L
l
2e[0;1), whose members only need

to be square integrable on �nite intervals. By an operator we mean

8



a function F : La2e[0;1) ! L
b
2e[0;1) from one L2e[0;1) space to

another. The gain of an operator F : La2e[0;1)! L
b
2e[0;1) is given

by

kFk = supfkF (f)k=kfk : f 2 La2[0;1); f 6= 0g

(same notation for the gain as for the energy). An important example

of an operator is given by the past projection (truncation) PT , which

leaves a function unchanged on the interval [0; T ] and gives the value

zero on (T;1]. Causality of an operator F means that PTF = PTFPT
for any T > 0.

3 A Basic Stability Theorem

The following feedback con�guration, illustrated in Figure 1, is the

basic object of the theoretical study in this paper.�
v = Gu+ f

u = �(v) + e;
(7)

Here f 2 Ll2e[0;1); e 2 Lm2e[0;1) represent the �interconnection noise�,

G and � are the two causal operators on L
m
2e[0;1) and Ll2e[0;1) re-

spectively. It is assumed that G is a linear time-invariant operator

with the transfer function G(s) in RHl�m
1 , and � is bounded (but not

necessarily linear or time-invariant).

An important assumption about system (7) will be its well-posedness.

De�nition The feedback system (7) is said to be well-posed, if the

operator

I � G� : Ll2e[0;1)! L
l
2e[0;1);

which maps v to v�G�(v), is causally invertible, i.e. if there exists a

causal operator � such that I = (I �G�) Æ � = � Æ (I �G�):

In most applications, this de�nition of well-posedness (a more gen-

eral de�nition will be introduced in the second part of the paper) is

equivalent to the existence, uniqueness and continuability of solutions

of the underlying di�erential equations, and is therefore easy to verify.

The following kind of input/output stability in the L2-setting, will

be convenient.

De�nition The feedback system (7) is said to be stable if there exists

a C > 0 such thatZ T

0

(jvj2+ juj2)dt � C

Z T

0

(jf j2 + jej2)dt (8)
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for any T � 0 and for any solution of (7).

Indeed, a well-posed system (7) is stable if and only if (I �G�)�1

is a bounded causal operator. In many cases, it is also desirable to

verify some kind of exponential stability. One might expect that this

requires separate analysis. However, for general classes of ordinary

di�erential equations, exponential stability turns out to be equivalent

to the input/output stability introduced above (compare [67], section

6.3).

Proposition 1 Let � be such that

sup
x;t

j�(x; t)j=jx(t)j<1:

Assume that for any g 2 Ln2 [0;1), x0 2 R
n, t0 � 0 the system

_x(t) = �(x(t); t) + g(t); t � t0 (9)

has a solution x(�). Then the following two conditions are equivalent.

(i) There exists a c > 0 such thatZ T

0

jx(t)j2dt � c

Z T

0

jg(t)j2dt 8 T > 0 (10)

for any solution of (9) with x(0) = 0.

(ii) There exist �; d > 0 such that

jx(t1)j
2 � de�(t0�t1)jx(t0)j

2 + d

Z t1

t0

jg(t)j2dt (11)

for any solution x of (9).

Proof. Parts, if not all, of this result can be found in standard ref-

erences on nonlinear systems. However, for easy reference, a complete

proof is given in section 8. 2

Next, we need a formal de�nition of the term IQC.

De�nition Suppose � : jR! C
(l+m)�(l+m)

is a bounded measurable

function taking Hermitean values. Let � be the quadratic form de�ned

on L
l
2[0;1)� Lm2 [0;1) by

�(v; u) =

Z 1

�1

� bv(j!)bu(j!)
��

�(j!)

� bv(j!)bu(j!)
�
d!

10



A bounded operator � : Ll2e[0;1) ! L
m
2e[0;1) is said to satisfy the

IQC de�ned by � if

�(v;�v) � 0 8 v 2 Ll2[0;1): (12)

Theorem 2 Assume that

(i) for any � 2 [0; 1], system (7) with � replaced by �� is well-posed.

(ii) for any � 2 [0; 1], the IQC de�ned by � is satis�ed by ��.

(iii) there exists � > 0 such that�
G(j!)

I

��
�(j!)

�
G(j!)

I

�
� ��I 8 ! 2 R: (13)

Then the feedback system (7) is stable.

Remark 1 Note that �(j!) =

�
I 0

0 �I

�
gives a version of the

small gain theorem, while �(j!) =

�
� I

I ��=k�k2

�
gives a passivity

theorem.

Remark 2 In many applications, (see, for example, Remark 1), the

upper left corner of �(j!) is positive semi-de�nite and the lower right

corner is negative semi-de�nite, so �� satis�es the IQC de�ned by �

for � 2 [0; 1] if and only if � does so. This simpli�es assumption (ii).

Remark 3 It is important to note that if �� with � 2 [0; 1] satis�es

several IQC:s, de�ned by �1; : : : ;�n, then a su�cient condition for

stability is existence of x1; : : : ; xn � 0 such that (13) holds for � =

x1�1 + � � �+ xn�n. Hence, the more IQC:s that can be veri�ed for �,

the better. Moreover, it can be proved along the lines of [60, 36] that

if no such x1; : : : ; xn � 0 exist, then there is a bounded operator that

destabilizes (7), but satis�es all the IQC:s. In this sense, the stability

condition of Theorem 2 is non-conservative.

Proof of Theorem 2.

Step 1. Show that there exists c0 > 0 such that

kvk � c0kv � �G�(v)k 8 v 2 Ll2[0;1): (14)

Introduce m11; m12; m22 as the norms mij = sup! k�ij(j!)k for the

matrix blocks of

�(j!) =

�
�11(j!) �12(j!)

�12(j!)
� �22(j!)

�
:

11



For � > 0, let c(�) = m11 +m2
11=�+m2

12=�. Then

j�(v; u)� �(v + Æ; u)j � m11kÆk
2 + 2kÆk(m11kvk+m12kuk)

� c(�)kÆk2+ �(kuk2 + kvk2)

for all v; Æ 2 Ll2[0;1), u 2 Lm2 [0;1). Note that (13) implies that

�(Gu; u) � ��kuk2 8u 2 Lm2 [0;1)

Let � 2 [0; 1], u = ��(v), v 2 Ll2[0;1), �1 = �=(2+ 2k�k2). Since ��

satis�es the IQC de�ned by �, we have

0 � �(v; u) = �(Gu; u) + �(v; u)� �(Gu; u)

� ��kuk2 + c(�1)kv �Guk
2 + �1(kuk

2 + kvk2)

� �
�

2
kuk2 + c(�1)kv � Guk2

Hence kuk �
p

2c=�kv �Guk and

kvk � kGuk+ kv �Guk

� (1 + kGk
p
2c=�)kv � �G�(v)k:

Step 2. Show that if (I � �G�)�1 is bounded for some � 2 [0; 1] then

(I��G�)�1 is bounded for any � 2 [0; 1]with j���j < (c0kGk�k�k)
�1.

By the well-posedness assumption, the inverse (I � �G�)�1 is well

de�ned on L
l
2e[0;1). Boundedness of the inverse means that

kPT vk � constkPT (v � �G�(v))k 8v 2 Ll2e[0;1)

Furthermore, when this inequality holds for some constant, it follows

from (14) that it holds with the constant c0. Then

kPT vk � c0kPT (v � �G�(v))k

� c0kPT (v � �G�(v)) + (� � �)PTG�(v)k

� c0kPT (v � �G�(v))k+ c0kGk � k�k � j� � �j � kPTvk:

Boundedness of (I � �G�)�1 follows, since c0kGk � k�k � j� � �j < 1.

Step 3. Now, since (I � �G�)�1 is bounded for � = 0, step 2 shows

that (I � �G�)�1 is bounded for � < (c0kGk � k�k)
�1
, then for � <

2(c0kGk � k�k)
�1
, etc. By induction, (I � G�)�1 is bounded as well.

2
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Figure 5: Testing a block � for an IQC.

4 Hard and soft IQC's

As a rule, an integral quadratic constraint is an inequality describing

correlation between the input and output signals of a causal block �.

Verifying an IQC can be viewed as a virtual experiment with the setup

shown on Fig. 5, where � is the block tested for an IQC, f is the test

signal of �nite energy and C(s) is a stable linear transfer matrix with

two vector inputs, two vector outputs and zero initial data. The blocks

with

R
j � j2dt indicate calculation of the energy integral of the signal.

We say that � satis�es the IQC described by the test setup, if the

energy of the second output of C is always at least as large as the

energy of the �rst output. Then the IQC can be represented in the

form (1), where

�(j!) = C(j!)�
�
I 0

0 �I

�
C(j!): (15)

The most commonly used IQC is the one that expresses a gain

bound on the operator �. For example C(s) = I corresponds to the

bound k�k � 1. The energy bounds have the particular property that

the energy di�erence until time T will be non-negative at any moment

T , not just T =1. Such IQC's are called hard IQC's, in contrast to the

more general soft IQC's, which need not hold for �nite time intervals.

Some of the most simple IQC's are hard, but the �generic� ones are

not. In the theory of absolute stability, the use of soft IQC's was

often referred to as allowing �non-causal multipliers�. While for scalar

systems this was usually not a serious problem, the known conditions

for applicability of non-causal multipliers were far too restrictive for

multivariable systems. The formulation of Theorem 2 makes it possible

(and easy) to use soft IQC's in a very general situation. For example,

consider the following corollary.

Corollary 3 (Non-causal multipliers) Assume that condition (i)

of Theorem 2 is satis�ed. If there exist some M 2 RLl�m1 and � > 0

13



such thatR1
�1

Re (bv�M c�v)d! � 0 for v 2 Ll2[0;1)

M�G+ G�M � ��G�G on jR

then the system is input/output stable.

Proof. This is Theorem 2 with

�(j!) =

�
� M(j!)

M(j!)� ��=k�k2

�
2

For multivariable systems, the above conditions on M are much

weaker than factorizability asM =M�M+, withM+;M+
�1;M�

�; (M�
�)�1

all being stable, which is required for example in [84] and [17]. The

price paid for this in Theorem 2 is the very mild assumption that the

feedback loop is well-posed not only for � = 1, but for all � 2 [0; 1].

Another example is provided by the classical Popov criterion.

Corollary 4 (Popov criterion) Assume that � : R ! R is such

that 0 � ��(�) � const � �2 for � 2 R. Let H(s) = C(sI � A)�1B,

where A is Hurwitz. Assume that the system

_x(t) = Ax(t) +B��(Cx(t)) + f(t) (16)

has unique solution on [0;1) for any � 2 [0; 1] and for any square

summable f . If for some q 2 R

inf
!>0

Re [(1 + j!q)H(j!)] > 0 (17)

then the system (16) with � = 1 is exponentially stable.

Remark 5 In fact, the condition of existence and uniqueness, used to

de�ne� as an operator, is not really important in the stability analysis.

In the second part of this paper, a stronger version of Theorem 2 is

given, which allows us to drop the uniqueness assumption.

Proof. For q 2 R and a di�erentiable w 2 Ll2[0;1), we have the soft

IQC Z 1

0

(w+ q _w)�(w)dt � q

"Z w(t)

0

�(�)d�

#1
0

= 0
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Figure 6: Testing a signal f for an IQC.

Application of Corollary 3 with

G(s) = (s+ 1)H(s)

(�v)(t) = �

�Z t

0

e��v(�)d�

�
M(s) = (1 + qs)=(s+ 1)

shows that the conditions of Proposition 1 hold, which ensures the

exponential stability. 2

Integral quadratic constraints can be used to describe an external

signal (noise or a reference) entering the system. The �virtual exper-

iment� setup for a signal f is shown on Fig. 6. The setup clearly

shows the �spectral analysis� nature of IQC's describing the signals.

Mathematically, the resulting IQC has the formZ 1

�1t

f̂(j!)��(j!)f̂(j!)d! � 0;

where � is given by (15). In the second part of this paper, performance

analysis of systems with both interior blocks and external signals de-

scribed in terms of IQC's is considered.

5 IQC's and Quadratic Stability

There is a close relationship between quadratic stability and stability

analysis based on IQC's. As a rule, if a system is quadratically stable

then its stability can also be proved by using a simple IQC. Conversely,

in some generalized sense, a system that can be proved to be stable via

IQC's always has a quadratic Lyapunov function. However, to actually

present this Lyapunov function, one has to extend the state space of

the system (by adding the states of C(s) from Figure 5). Even then,
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in the case of soft IQC's, the Lyapunov function does not need to be

sign-de�nite, and may not decrease monotonically along the system

trajectories. In any case, use of IQC's replaces the �blind� search for a

quadratic Lyapunov function, which is typical for the quadratic stabil-

ity, by a more intelligent search. In general, for example in the case of

so-called �parameter-dependent� Lyapunov functions, the relationship

with the IQC type analysis is yet to be clari�ed.

Below we formulate and prove a result on the relationship between a

simple version of quadratic stability and IQC's. Let D be a polytope of

m�l matrices�, containing the zero matrix� = 0. Let �1; :::;�N be

the extremal points of D. Consider the system of di�erential equations

_x(t) = (A+ B�(t)C)x(t); �(t) 2 D; (18)

whereA;B;C are given matrices of appropriate size, A is a Hurwitz n�

n matrix. (The most often considered case of system (18) is obtained

when m = l and D is the set of all diagonal matrices with the norm

not exceeding 1. Then N = 2m, and �i are the diagonal matrices with

�1 on the diagonal). The system is called stable if x(t) ! 0 for any

solution of (18) where �(�) is a measureable function and �(t) 2 D for

all t. There are no e�cient general conditions, that are both necessary

and su�cient for stability of system (18). Instead, we will be concerned

with stability conditions that are only su�cient.

The system (18) is called quadratically stable if there exists a matrix

P = PT
such that

P (A +B�iC) + (A+B�iC)TP < 0 8 i: (19)

Note that, since 0 2 D and A is a Hurwitz matrix, this condition

implies that P > 0. It follows that V (x) = xTPx is a Lyapunov

function for the system (18), in the sense that V is positive de�nite,

and dV (x(t))=dt is negative de�nite on the trajectories. Quadratic

stability is a su�cient condition for stability of the system and (19)

can be solved e�ciently with respect to P = PT
as a system of linear

matrix ineqalities.

An IQC-based approach to stability analysis of system (18) can

be formulated as follows. Note that stability of (18) is equivalent to

stability of the feedback interconnection (7), where G is the linear

time invariant operator with transfer function G(s) = C(sI �A)�1B,

and � is the operator of multiplication by �(t) 2 D. One can apply

Theorem 2, using the fact that � satis�es the IQC's given by the

16



constant multiplier matrix

�(j!) =

�
Q S

ST R

�
;

where Q = QT ; R = RT ; S are real matrices such that

Q + S�+�TST + �TR� > 0 8 � 2 D: (20)

For a �xed matrix � satisfying (20), a su�cient condition of stability

given by Theorem 2 is�
G(j!)

I

��
�

�
G(j!)

I

�
< 0 8 ! 2 R [ f1g;

which is equivalent (by the Kalman-Yakubovich-Popov Lemma) to the

existence of a matrix P = PT
such that�

PA + ATP + CTQC PB + CTS

BTP + STC R

�
< 0: (21)

For an inde�nite matrix R, condition (20) may be di�cult to verify.

However (21) yields R < 0. In that case, it is su�cient to check (20)

at the vertices � = �i of D only, i.e. (20) can be replaced by

Q+ S�i + �T
i S

T + �T
i R�i > 0 8 i: (22)

It is easy to see that the existence of the matrices P = PT
, Q = QT

, S,

R = RT
, such that (21),(22) hold, is a su�cient condition of stability

of system (18).

Now we have the two seemingly di�erent conditions of stability of

system (18), both expressed in terms of systems of LMI's: quadratic

stability (19), and IQC-stability (21),(22). Condition (19) has n(n +

1)=2 free variables (the components of the matrix P = PT
), while

conditions (21),(22) have n(n + 1)=2 + (n + m)(n + m + 1)=2 free

variables. However, the advantage of using (21),(22) is that the overall

�size� of the corresponding LMI is n+m+Nl while the �size� of (19)

is Nn. If N is a large number and n is signi�cantly larger than l and

m, modest (about 2 times) increase of the number of free variables

in (21),(22) results in a signi�cant (about n=l times) decrease in the

size of the corresponding LMI. The following result shows that the two

su�cient conditions of stability (21),(22) and (19) are equivalent from

the theoretical point of view.
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Theorem 5 Assume that A is a Hurwitz matrix, and that zero belongs

to the convex hull of matrices �1; :::;�N. Then a given symmetric

matrix P solves the system of LMI's (19), if and only if P together

with the matrices Q = QT , R = RT , S solves (21) and (22).

A proof is given in section 8.

6 Example Revisited

In order to apply the results to system (4), we rewrite it as a feedback

interconnection on Fig. 1, with

G(s) =

�
�kP (s) �k

P (s) 0

�
;

and

�(v)(t) =

�
sat(v1(t))

v2(t� �)� v2(t)

�
The equations for the interconnection are then

_x(t) = Ax(t) +Bu1(t)

u1(t) = sat[v1(t)] + e1(t)

u2(t) = v2(t� �) � v2(t) + e2(t)

v1(t) = �kCx(t)� ku2(t) + f1(t)

v2(t) = Cx(t) + f2(t)

(23)

where x(0) = 0 and v2(t � �) = 0 for t < �. One can see that (23) is

equivalent to the equations from (4), disturbed by the �interconnection

noise� e; f .

For the uncertain time delay, several types of IQC's are given in

the list. Here we shall use a simple (and not complete) set of IQC's

for the uncertain delay

û2(j!) = (e�j�! � 1)v̂2(j!); � 2 [0; �0];

based on the bounds

jv̂2(j!)j
2� jv̂2(j!)� û2(j!)j

2 � 0

 0(�0!)jv̂2(j!)j
2� jû2(j!)j

2 � 0
(24)

where

 0(!) =
!2 + 0:08!4

1 + 0:13!2+ 0:02!4
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Figure 7: Comparison of  0(!) and  �(j!)

is chosen as a rational upper bound (see Figure 7) of

 �(j!) = max
�2[0;�0]

je�j!�=�0 � 1j2 =

�
4 sin2(!=2); ! < �

4 ! � �

By integrating the pointwise inequalities (24) with some nonnegative

rational functions, one can obtain a huge set of IQC's valid for the

uncertain delay. Using these in combination with some set of IQC's

for the saturation nonlinearity, one can estimate the region of stability

for the system given in (4). In Figure 8, we have plotted the resulting

stability bound for the case when only one IQCZ 1

�1

�
v̂1
û1

�� �
0 1 +H

1 +H� �2(1 + Re H)

� �
v̂1
û1

�
d! � 0;

with H(s) = �(s + 1)�1, describes the saturation, while (24) utilizes

the information about the delay. The guaranteed instability region

was obtained analytically by considering the behavior of the system in

the linear �unsaturated� region around the origin.

7 A List of IQC's

The collection of IQC:s presented in this section is far from being

complete. However, the authors hope it will support the idea that

many important properties of basic system interconnections used in

stability analysis can be characterized by IQC:s.
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7.1 Uncertain LTI Dynamics

Let � be any linear time-invariant operator with gain (H1 norm) less

than one. Then � satis�es all IQC's of the form�
x(j!)I 0

0 �x(j!)I

�
where x(j!) � 0 is a bounded measurable function.

7.2 Constant Real Scalar

If � is de�ned by multiplication with a real number of absolute value

� 1, then it satis�es all IQC:s de�ned by matrix functions of the form�
X(j!) Y (j!)

Y (j!)� �X(j!)

�
(25)

where X(j!) = X(j!)� � 0 and Y (j!) = �Y (j!)� are bounded and

measurable matrix functions.

This IQC and the previous one are the basis for standard upper

bounds for structured singular values [20, 80].

7.3 Time-varying Real Scalar

Let � be de�ned by multiplication in the time-domain with a scalar

function Æ 2 L1 with kÆk1 � 1. Then � satis�es IQC:s de�ned by a

matrix of the form �
X Y

Y T �X

�
where X = XT � 0 and Y = �Y T

are real matrices.
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7.4 Coe�cients From a Polytope

Let � be de�ned by multiplication in the time-domain with a measur-

able matrix �(�), such that �(t) 2 D for any t, where D is a polytope

of matrices with the extremal points (vertices) �1; :::;�N. � satis�es

the IQC's given by the constant weight matrices

�(j!) =

�
Q F

FT R

�
;

where Q = QT ; F; R = RT
are real matrices such that R � 0, and

Q+ F�i +�T
i F

T +�T
i R�i > 0 8 i:

This IQC corresponds to quadratic stability and was studied in sec-

tion 5.

7.5 Periodic Real Scalar

Let � be de�ned by multiplication in the time-domain with a periodic

scalar function Æ 2 L1 with kÆk1 � 1 and period T . Then � satis�es

IQC:s de�ned by (25) where X and Y are bounded, measurable matrix

functions satisfying

X(j!) = X(j(!+ 2�=T )) = X(j!)� � 0

Y (j!) = Y (j(! + 2�=T )) = �Y (j!)�:

This set of IQC:s gives the result by Willems on stability of systems

with uncertain periodic gains [74].

7.6 Multiplication by a Harmonic Oscillation

If (�v)(t) = v(t) cos(!0t) then � satis�es the IQC's de�ned by

�(j!) =

�
X(j!� j!0) +X(j!+ j!0) 0

0 �2X(j!)

�
;

where X(j!) = X(j!)� � 0 is any bounded matrix-valued rational

function. Multiplication by a more complicated (almost periodic) func-

tion can be represented as a sum of several multiplications by a har-

monic oscillation, with the IQC's derived for each of them separately.

For example,

v(t)fa1 cos(!1t) + a2 cos(!2t)g = a1(�1v)(t) + a2(�2v)(t);

where (�1v)(t) = v(t) cos(!1t), and (�2v)(t) = v(t) cos(!2t).
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7.7 Slowly Time-varying Real Scalar

Here � is the operator of multiplication by a slowly time-varying

scalar, �v = Æ(t)v(t), where jÆ(t)j � 1, j _Æ(t)j � d. Since the 60-s,

various IQC:s have been discovered that hold for such time-variations.

See, for example, [21, 34, 24].

Here we describe a simple but representative family of IQC:s de-

scribing the redistribution of energy among frequencies, caused by the

multiplication by a slowly time-varying coe�cient. For any transfer

matrix

H(s) = H0 +

Z +1

�1

e�tsh(t)dt;

where h(�) 2 Ln�m1 (�1;+1) and H0 is a constant, let �(H; d) be

an upper bound of the norm of the commutator � Æ H �H Æ �, for

example

�(H; d) =

Z +1

�1

kh(t)kminf2; djtjgdt:

The following weighting matrices then de�ne valid IQC:s:

� =

"
(1 + �)fH�H +

�(H;d)2

�
Img 0

0 �H�H

#
(26)

where � > 0 is a parameter, andH is a causal transfer function (h(t) =

0 for t < 0). Another set of IQC:s is given by

� =

�
�(H; d)I H

H� 0

�
(27)

where H is skew-Hermitean along the imaginary axis (i.e. H(j!) =

�H(j!)�), but not necessarily causal. Since

�(H; d) = O(d) as d! 0

whenever kh(t)k = O(t�2��), the constraints used in the ��� case

(multiplication by a constant gain Æ 2 [�1; 1]) can be recovered from

(26) and (27) as d! 0. Similarly, the �time-varying real scalar� IQC's

will be recovered as d!1 by using constant transfer matricesH(s) =

H0.

In [49, 50], IQC's are instead derived for uncertain time-varying

parameters with bounds on the support of the Fourier transform Æ̂.

Slow variation then means that Æ̂(j!) is zero except for ! in some

small interval [�a; a].
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7.8 Delay

The uncertain bounded delay operator (�v)(t) = v(t � �) = u(t),

where � 2 [0; �0], satis�es the �pointwise� quadratic constraints in the

frequency domain:

jû(j!)j2 = jv̂(j!)j2; (28)

 1(!�)(jj!�û(j!) + v̂(j!)j2� (1 + !2
�)jv̂(j!)j

2) �  2(j!�)jv̂(j!)� û(j!)j2;

(29)

where !� = !�0=2, and  1;2 are the functions de�ned by

 1(!) =

�
sin!
!

; j!j � �

0 ; j!j > �:
;

 2(!) =

�
cos! ; j!j � �

0 ; j!j > �:
:

Note that (29) is just a sector inequality for the relation between

v̂(j!)� û(j!) and j(v̂(j!) + û(j!)):

j(v̂(j!) + û(j!)) =
cos(!�=2)

sin(!�=2)
(v̂(j!)� û(j!)):

Multiplying (28) by any rational function and integrating over the

imaginary axis yields a set of IQC's for the delay. Unfortunately,

these IQC's do not utilize the bound on the delay. To improve the IQC-

description, one can multiply (29) by any non-negative weight function

and integrate over the imaginary axis. The resulting IQC's, however,

will have non-rational weight matrices �(�). To �x the problem, one

should use a rational upper bound  1+ of  1 and rational lower bounds

 1� and  2� of  1 and  2 respectively. For example, a reasonably good

approximation is given by

 1+ =
(1� 0:0646!2)2

1 + 0:038!2 + 0:0001!4+ 0:00085!6
;

 1� =
1� !2=�2

1 + (1=6� 1=�2)!2 + (2=�4 � 1=6�2)!4
;

 2� =
1� 0:4073!2

1 + 0:0927!2+ 0:0085!4
:
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Then the pointwise inequality (29) holds with  2 replaced by  2�,

and with  1 replaced by  1� (the upper bound for the jj!�û + ŵj2

multiplier, the lower bound for the jv̂j2 multiplier) respectively, and

can be integrated with a non-negative rational weight function to get

rational IQC's utilizing the upper bound on the delay.

A simpler, but less informative, set of IQC:s is de�ned for (�v)(t) =

v(t� �)� v(t), � � �0, by�
�(j!) 0(!�0=2) 0

0 ��(j!)

�
;

where �(�) is any non-negative rational weighting function, and  0(!)

is any rational upper bound of

 �(j!) = max
�2[0;�0]

je�j!�=�0 � 1j2 =

�
4 sin2(!=2); ! < �

4 ! � �
;

for example,

 0(!) =
!2 + 0:08!4

1 + 0:13!2+ 0:02!4
:

7.9 Memoryless nonlinearity in a sector

If (�v)(t) = �(v(t); t), where � : R�R! R is a function, such that

�v2 � �(v; t)v � �v2 8 v 2 R; t � 0;

then obviously the IQC with

�(j!) =

�
�2�� �+ �

� + � �2

�
holds.

7.10 The �Popov� IQC

If u(t) = (�v)(t) = �(v(t)), where � : R! R is a continuous function,

v(0) = 0, and both u(�) and _v(�) are square summable, thenZ 1

0

_v(t)u(t)dt = 0:

In the frequency domain, this looks like an IQC with

�(j!) = �

�
0 j!

�j! 0

�
:
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However, this is not a �proper� IQC, because �(�) is not bounded on

the imaginary axis. To �x the problem, consider �1 = �Æ 1
s+1

instead

of �, i.e. u(t) = (�1f)(t) = �(v(t)), where _v(t) = �v(t) + f(t),

v(0) = 0. Now, �1 satis�es the IQC with

�(j!) = �

"
0 j!

1+j!

� j!
1�j!

0

#
:

Together with the IQC for a memoryless nonlinearity in a sector, this

IQC yields the well-known Popov criterion.

7.11 Monotonic Odd Nonlinearity

Suppose � operates on scalar signals according to the nonlinear map

(�v)(t) = Æ(v(t)), where Æ is an odd function on R such that _Æ(x) 2

[0; k] for some constant k. Then � satis�es the IQC:s de�ned by�
0 1 +H(j!)

1 +H(�j!) �(2 + 2ReH(j!))=k

�
;

where H 2 RL1 is arbitrary except that the L1-norm of its impulse

response is no larger than one [84].

7.12 IQC:s for Signals

Performance of a linear control system is often measured in terms of

disturbance attenuation. An important issue is then the de�nition

of the set of expected external signals. Here again, integral quadratic

constraints can be used as a �exible tool, for example to specify bounds

on auto correlation, frequency distribution, or even to characterize a

given �nite set of signals. Then, the information given by the IQC:s

can be used in the performance analysis, along the lines discussed in

[33, 44] and further in the second part of this paper.

7.13 IQC's from robust performance

One of the most appealing features of IQC's is their ability to widen the

�eld of application of already existing results. This means that almost

any robustness result derived by some method (possibly unrelated to

the IQC techniques) for a special class of systems can be translated

into an integral quadratic constraint.
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As an example of such "translation", consider the feedback inter-

connection of a particular linear time-invariant system G0 = G0(s)

with an "uncertain" block �:

v = G0u+ f; u = �(v); (30)

where f is the external disturbance. Assume that stability of this in-

terconnection (i.e. the invertibility of the operator I�G0�) is already

proved, and, moreover, an upper bound on the induced L2 gain "from

f to v ("robust performance") is known: kvk2 � dkfk2 for any square

summable f , v satisfying (30). Then, since for any square summable

v there exists a square summable f = v �G0�(v) satisfying (30), the

block � satis�es the IQC given by

�(j!) =

�
d� 1 �dG0(j!)

�dG0(�j!) djG0(j!)j
2

�
: (31)

This IQC implies stability of system (30) via Theorem 2, but can also

be used in the analysis of systems with additional feedback blocks, as

well as with di�erent nominal transfer functions.

For example, consider the uncertain block � which represents mul-

tiplication of a scalar input by a scalar time-varying coe�cient k =

k(t), such that k(t) 2 [�1; 1]. There is one obvious IQC for this block,

stating that the L2-induced norm of � is not greater than 1. Let

us show how additional non-trivial IQC's can be derived based on a

particular robust performance result. Consider the feedback intercon-

nection of � with a given LTI block with a stable transfer function

G0(s) = C(sI � A)�1B. This is the case of a system with one uncer-

tain fast time-varying parameter k = k(t), k(t) 2 [�1; 1]:

_x(t) = Ax(t) + Bk(t)(Cx(t) + f(t)); (32)

where A;B;C are given constant matrices, A is a Hurwitz matrix,

f(�) is the external disturbance. It is known that, for this system,

the norm bound kvk2 � k�(v)k2, yields the circle stability criterion

jG0(j!)j < 1, which gives only su�cient contitions of stability. Never-

theless, for a large class of trasnsfer functions G0(s), not satisfying the

circle criterion, system (32) is robustly stable. A proof of such stability

usually involves using a non-quadratic Lyapunov function V = V (x),

and provides an upper bound d of the worst-caseL2-induced gain "from

v to y = Cx + v". This upper bound, in turn, yields the IQC given

by (31), describing the uncertain block �. The fact that stability of
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system (32) can be proved from this new IQC, but not from the simple

norm bound kvk2 � k�(v)k2, shows that the new IQC indeed carries

additional information about �.

8 Proofs

Proof of Proposition 1

(i))(ii): For t0 � 1 and c0 > c, de�ne the Lyapunov function

V (x0; t0) = sup
g2L2;x(t0)=x0

Z 1

t0

fjx(t)j2 � c0jg(t)j
2gdt

where x; g satisfy (9).

Our �rst objectives are to show convergence of the integral for any

g 2 L2[t0;1) and existence of �; � > 0 such that

�jx0j
2 � V (x0; t0) � �jx0j

2:

Any solution x; g of (9) on [t0;1) with x(t0) = x0 can be extended to

[0;1) with x(0) = 0, by setting�
g(t) = x0=t0 � �(x0t=t0; t)

x(t) = x0t=t0
0 � t � t0:

Let k�k = supx;t j�(x; t)j=jx(t)j and note thatZ t0

0

jgj2dt � 2jx0=t0j
2 + 2

Z t0

0

�(x0t=t0; t)
2dt

� 2jx0=t0j
2(1 + k�k2t0

3=3)

= c2jx0j
2

for some c2 > 0. The inequality (10) implies thatZ 1

t0

jx(t)j2dt � kxk2 � ckgk2 � c

Z 1

t0

jgj2dt+ cc2jx0j
2

This proves convergence of the integral in the de�nition of V and with

� = c2, it shows that V (x0; t0) � �jx0j
2
. To prove the existence of �,

let g � 0 and note that

j _xj � k�k � jxj���� ddt ln jxj
���� � k�k

jx(t)j � jx0je
(t0�t)k�k; t � t0

V (x0; t0) � �jx0j
2:
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for some � > 0.

Now consider a �xed solution x; g of (9). By de�nition of V

V (x(t0); t0) � V (x(t1); t1) +

Z t1

t0

fjx(t)j2 � c0jg(t)j
2gdt

for any t1 � t0 � 1. Hence, with k(t) = V (x(t); t) � 0, the measure

dk(t) is absolutely continuous, and satis�es the inequalities

dk(t) � [c0jg(t)j
2� jx(t)j2]dt � [c0jg(t)j

2� k(t)=�]dt

d[et=�k(t)] � c0e
t=�jg(t)j2dt

k(t1) � e(t0�t1)=�k(t0) + c0

Z t1

t0

jg(t)j2dt

� �e(t0�t1)=�jx(t0)j
2 + c0

Z t1

t0

jg(t)j2dt

This implies (11) for t1 � t0 � 1. The result follows for arbitrary

t1 � t0 � 0, since

j _xj � k�k � jxj+ jgj

jx(1)j2 � c3jx(t0)j
2 + c3

Z 1

t0

jg(t)j2dt;

for some c3 > 0.

(ii))(i): Let T > 0 be such that d1 := de�T < 1 where d is the

constant from (11). Then, by (11)

jx(kT + T )j2 � d1jx(kT )j
2 + d

Z kT+T

kT

jg(t)j2dt

for k = 0; 1; 2; ::: Hence

1X
k=0

jx(kT )j2 � d2

1X
k=0

Z kT+T

kT

jg(t)j2dt = d2kgk
2

for some d2 > 0 if x(0) = 0. Also, the inequality (11) applied for

t0 = kT , t1 2 [kT; kT + T ] yields

jx(t)j2 � d

�
jx(kT )j2 +

Z kT+T

kT

jg(t)j2dt

�
; t 2 [kT; kT + T ]Z kT+T

kT

jx(t)j2dt � dT

�
jx(kT )j2 +

Z kT+T

kT

jg(t)j2dt

�
kxk2 � (d2 + 1)dTkgk2;
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which completes the proof. 2

Proof of Theorem 5 The su�ciency is straightforward: multiplying

(21) by [I CT�T
i ] from the left, and by [I CT�T

i ]
T
from the right

yields

P (A+B�iC)+(A+B�iC)TP+CT (Q+S�i+�T
i S

T+�T
i R�i)C < 0;

which implies (19) because of the inequality in (22).

To prove the necessity, let P = PT
satisfy (19). Let �0 : Rn �

Rm ! R be the quadratic form

�0(x; �) = ��(jxj2 + j�j2)� 2xTP (Ax+B�);

where � > 0 is a small parameter. De�ne � : Rl �Rm ! R by

�(y; �) = inff�0(x; �) : Cx = yg; (33)

where the in�mum is taken over all x 2 Rn
such that Cx = y. Since

the zero matrix belongs to the convex hull of D, (19) implies that

PA + ATP < 0. Hence, for a su�ciently small � > 0, � is strictly

convex in the �rst argument, and a �nite minimum in (33) exists.

Moreover, since �0 is a quadratic form, the same is true for � and the

matrices Q;R; S can be introduced by

�(y; �) = yTQy + 2yTS� + �TR�:

Let us show that the inequalities (21), (22) are satis�ed. First, by (19),

for any y we have

yT (Q+ S�i +�T
i S

T +�T
i R�i)y

= �(y;�iy)

= inff�0(x;�iCx) : Cx = yg

= inff�xT (P (A+B�iC) + (A+B�iC)TP )x

��(jxj2 + j�iCxj
2) : Cx = yg

� �1jyj
2;

(provided that � and �1 are su�ciently small). Hence (22) holds. Sim-

ilarly, for any x; � we have

xTP (Ax+ B�) + �(Cx; �)

= xTP (Ax+ B�) + inff�0(x1; �) : Cx1 = Cxg

� xTP (Ax+ B�)� �(jxj2 + j�j2)� xTP (Ax+ B�)

� ��(jxj2 + j�j2);
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and hence (21) holds, since the matrix in (21) is the matrix of the

quadratic form xTP (Ax +B�) + �(Cx; �). 2
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