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Abstract 

Trisomy 8 as the sole abnormality is the most common karyotypic finding in acute myeloid 

leukemia (AML) and myelodysplastic syndromes (MDS), occurring in approximately 5% and 

10% of the cytogenetically abnormal cases, respectively. However, despite the high frequency 

of +8, much remains to be elucidated as regards its epidemiology, etiology, clinical impact, 

association with other chromosomal abnormalities, cell of origin, and functional and 

pathogenetic consequences. Here, we summarize and review these various aspects of trisomy 

8, focusing on AMLs and MDS harboring this abnormality as a single change. 
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1. Introduction 

Already in the late 1950s and early 1960s, cytogenetic studies of acute myeloid leukemias 

(AMLs) revealed that many of them were aneuploid, often with hyperdiploid modal numbers 

at 47 or 48 [1-3]. Although it was not possible to characterize further the chromosomal 

abnormality patterns in this pre-banding era, one aberration seemed quite common, namely a 

“group C-trisomy” [4,5]. When the various chromosome banding techniques were introduced 

in the 1970s, it was soon realized that the extra C chromosome in AML, as well as in 

myelodysplastic syndromes (MDS), in the vast majority of the cases represented a trisomy 8 

[6-8]. To date, close to 500 AMLs and 400 MDS with this abnormality as the sole 

chromosomal anomaly have been published [9]. 

In spite of the quite substantial number of trisomy 8-positive cases reported, many issues 

regarding the epidemiology, etiology, morphologic, immunophenotypic, and prognostic 

features, association with other genetic abnormalities, cell of origin, and the pathogenetic 

impact of +8 still needs to be clarified, as will be illustrated in the present review of AML and 

MDS with trisomy 8 as the sole chromosomal change. 

 

2. Epidemiology 

A survey of cytogenetically abnormal AML and MDS cases reported in the literature [9] 

shows that trisomy 8 is present in 16 – 17% of these disorders and that it is the sole change in 

6% and 11% of the AMLs and MDS, respectively (Tables 1 and 2); frequencies agreeing well 

with published series of karyotypically characterized AMLs and MDS [10-14]. In fact, +8 is, 

on the whole, the most common chromosomal change in AML and the second, next to 

monosomy 7, in MDS; as the sole aberration, it is the most frequent one in both these 

disorders. Isolated trisomy 8 is also quite common in chronic myeloproliferative disorders, 

such as polycythemia vera and myelofibrosis [15]. Hence, this abnormality is strongly 
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associated with myeloid malignancies. However, it should be stressed that +8 as the single 

change is not specific for such disorders. In fact, trisomy 8 occurs in a wide spectrum of 

different neoplastic disorders. For example, close to 50 cases of acute lymphoblastic 

leukemias (ALL), many of which of T-cell lineage, with +8 as the single anomaly have been 

published, and some solid tumor types/lesions, in particular desmoid tumors and Dupuytren's 

contracture, are also characterized by this abnormality [16-18]. Trisomy 8 is also common 

together with other chromosomal aberrations in a large number of tumor types, such as colon, 

breast, and head and neck cancer [19-21], Wilms tumor [22], and hepatoblastoma [23]. 

Furthermore, +8 is a common secondary change in several neoplastic disorders with 

characteristic primary translocations, e.g., chronic myeloid leukemia (CML) with 

t(9;22)(q34;q11), myxoid liposarcomas with t(12;16)(q13;p11), clear cell sarcomas with 

t(12;22)(q13;q12), synovial sarcomas with t(X;18)(p11;q11), and Ewing tumors with 

t(11;22)(q24;q12) [24-28]. Thus, +8 seems to play an important role neoplasia, seemingly 

irrespective of the histogenetic derivation of the neoplasm. 

We have previously reported that +8 as the sole change does not display any gender-

related frequency differences in AML and MDS [29]. An updated database search [9] on 

isolated trisomy 8 reveals that it is seen in 6.0% and 6.8% of karyotypically abnormal AMLs 

in women and men, respectively. However, a significantly higher frequency in males (12% 

versus 8.9%; P<0.05; chi-square test) is found in MDS, in agreement with a previous study by 

Pedersen [30]. Furthermore, there is a clear-cut impact of age on the incidence of trisomy 8 as 

a sole change in AML, i.e., it increases with age [29,31]. In MDS, on the other hand, the 

frequencies of +8 do not vary significantly among the various age groups (Table 3). The 

incidences of trisomy 8 as the single anomaly in AML also differ significantly among the 

continents, from approximately 4% in Asia to more than 16% in Oceania, whereas there is no 
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significant geographic frequency heterogeneity in MDS, varying from approximately 7% in 

Latin America to 12% in Europe (Table 4).  

Taken together, although some of the observed significant differences mentioned above 

may be fortuitous, the available data – revealing gender-, age-, and geography-related 

frequency differences – have etiological ramifications, suggesting that one or several intrinsic 

and/or extrinsic factors play a role in the origin and formation of +8. 

 

3. Etiology 

Apart from the fact that trisomy 8 most likely arises through nondisjunction, little is known 

about the constitutional/environmental risk factors for, this chromosome abnormality. 

It is generally accepted that +8 in AML and MDS is an acquired abnormality, being 

present in the neoplastic cells only. However, trisomy 8 may also be constitutional, occurring 

as a mosaicism (CT8M) in approximately 0.1% of all recognized pregnancies [32]. Typically, 

CT8M is the consequence of a postzygotic nondisjunction, and as expected for a gain arising 

through this mechanism, there is no preferential parental origin of the extra chromosome 

[33,34]. CT8M is associated with mild to moderate mental retardation, facial dysmorphic 

features, bone and joint abnormalities, and cardiovascular and urogenital malformations; 

however, some present with an apparently normal phenotype, including normal intelligence 

[35]. Individuals with CT8M have an increased risk for developing neoplastic disorders, in 

particular myeloid malignancies which seem to occur in approximately 5% of the patients 

[36-39]. This – together with the fact that CT8M may be associated with a normal phenotype 

– has led several investigators to suggest that +8 in some AMLs and MDS may be 

constitutional [36,38,40,41]. In fact, Maserati et al. [42] reported that two of fourteen trisomy 

8-positive myeloid malignancies were previously undetected CT8M. However, it should be 
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stressed that although isolated +8 in leukemia hence may be constitutional in some instances, 

this rather high frequency remains to be confirmed. 

In contrast to some other abnormalities, such as whole or partial losses of chromosomes 

5 and 7 and rearrangements of 11q23/MLL, trisomy 8 in AML and MDS is not associated 

with prior treatment with radiotherapy, alkylating agents, or drugs targeting DNA 

topoisomerase II. In fact, +8 as the sole change is significantly more frequent in de novo 

AML and MDS than in treatment-related cases [29,43]. In t(9;22)(q34;q11)-positive CML, on 

the other hand, trisomy 8-harboring clones, of unknown clinical and pathogenetic importance 

and without the t(9;22), frequently arise after interferon-alpha and – in particular – imatinib 

treatment [44-46]. It is presently unclear whether interferon-alpha or imatinib merely allow a 

pre-existing clone to expand or whether they have a direct effect the nondisjunction event 

[46]. 

Next to nothing is known about environmental risk factors for trisomy 8-positive AMLs 

and MDS. However, previous occupational exposure to organic solvents, mainly benzene, has 

been suggested to increase the risk for AML with +8 as the sole change [47,48]. Further 

support for an etiologic role of benzene has come from in vitro studies, using interphase 

fluorescence in situ hybridization (FISH), showing that exposing peripheral blood cells or 

CD34+ cells from chord blood to metabolites of benzene, e.g., hydroquinone and 

benzenetriol, results in aneuploidy of chromosome 8 [49-51]. This was, however, not 

confirmed in similar experiments on CD34+ bone marrow cells [52]. In vivo analyses, by the 

use of interphase FISH, of lymphocytes from benzene-exposed workers have also identified 

increased frequencies of trisomy 8, which in one study was associated with polymorphisms in 

genes encoding benzene-metabolizing enzymes [53,54]. Thus, benzene exposure does seem to 

be a bona fide risk factor for +8. Smoking has also been associated with trisomy 8-positive 

AML [55,56], although this could not be confirmed in a more recent study [57]. Further 
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investigations addressing this issue are hence needed before any firm conclusions can be 

drawn. 

 

4. Morphologic, immunophenotypic, and prognostic features 

Although +8 as the sole change may be found in all morphologic subgroups of AML, it has 

been reported that it is particularly frequent in M1, M2, M4, and M5, with a higher incidence 

in M5a than in M5b [12,13,29,58-63]. An updated database search [9] reveals that the 

frequencies of +8 as the sole change vary significantly among the different morphologic 

subtypes, being most common in M5, albeit with identical incidences in the M5a and M5b 

subgroups (Table 1). In MDS, isolated trisomy 8 has been suggested to occur predominantly 

in refractory anemia (RA), chronic myelomonocytic leukemia (CMML), and refractory 

anemia with excess of blasts (RAEB) [14,29,64-66]. However, no statistically significant 

frequency differences among the various MDS morphologic subtypes were observed in the 

present database search (Table 2). 

AMLs with +8 do not seem to display any specific immunophenotypic features [67], 

although it should be stressed that very few investigations have addressed this issue. In fact, 

only two larger studies specifically focusing on immunophenotypic findings in AMLs with 

trisomy 8 have been reported to date; to the best of our knowledge no such investigations 

have been performed on MDS with +8. Casasnovas et al. [68] showed that trisomy 8-positive 

AMLs often express CD13 and CD33 and that this karyotypic subset differs from other 

cytogenetically abnormal AMLs by having a lower frequency of CD34 expression, being 

similar to AMLs with a normal karyotype, and it has been reported that +8 is significantly 

associated with expression of CD36, a monocytic marker [69]. Further studies are definitely 

needed in order to confirm and extend these findings. 
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Surprisingly little is known about the prognostic impact of trisomy 8 as the sole change 

in AML and MDS considering its high frequency in these disorders. This is to a large extent 

due to the fact that many studies have combined cases with isolated +8 with those having 

additional abnormalities, precluding any clear-cut conclusions as regards the importance of 

trisomy 8 as the sole change. In Table 5, the basic clinical characteristics reported in larger 

series of AMLs with +8 as the single anomaly are summarized. As seen, it is quite obvious 

that trisomy 8 does not confer a particularly favorable prognosis in AML. However, it is less 

clear whether it is associated with an intermediate [13,60,71,72,76] or a poor prognosis 

[12,61,62,65,75]. The reasons for the variable clinical outcome in different studies are most 

likely manifold, including differences in patient characteristics and in treatment protocols. 

AMLs with +8 as the sole anomaly are generally included in the “intermediate cytogenetic 

group” in treatment protocols, to a large extent based on the findings of the MRC AML 10 

trial [72]. However, it should be emphasized that it has been reported that trisomy 8-positive 

AMLs are not responsive to cytarabine-based therapy; in fact, it has been suggested that stem 

cell transplantation (SCT) in first remission may have a beneficial effect and that SCT thus 

should be considered, at least in younger patients [12,61,62]. Our knowledge about the impact 

of +8 as the sole change in MDS is even more limited (Table 6). As in AML, it is usually 

included in the intermediate prognosis group [10,79]. However, most studies have reported 

quite a high incidence (38 – 62%) of AML transformation (Table 6). Taken together, although 

+8 as the sole change in AML and MDS often is considered to confer an intermediate 

prognosis, several investigations suggest that these cases may have a worse outcome than 

other cytogenetic subtypes within the clinically very heterogeneous intermediate prognosis 

group. It is in this context noteworthy that a recent review of AML and MDS with tetrasomy, 

pentasomy, or hexasomy 8 revealed that the presence of polysomy 8 constitutes an adverse 

prognostic feature [80].  
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5. Trisomy 8 associated with other chromosomal abnormalities 

In AML, trisomy 8 also occurs in association with other abnormalities in 10% of the 

cytogenetically abnormal cases (Table 1). In fact, trisomy 8 is quite common as a secondary 

change to a large number of primary AML-associated translocations and inversions [81], 

being particularly prevalent in cases with t(7;12), t(9;11), and t(1;11) (Table 7). Furthermore, 

it is the most common secondary change in AMLs with t(9;11)(p21;q23), t(9;22)(q34;q11), 

t(11;19)(q23;p13), and t(15;17)(q22;q21), and the second most frequent in cases with 

t(6;11)(q27;q23), t(7;12)(q36;p13), and inv(16)(p13q22) [82-86]. Even though the presence of 

a secondary trisomy 8 does not seem to have a prognostic impact, at least not in the favorable 

prognosis group comprised of t(8;21)(q22;q22), t(15;17)(q22;q21), and inv(16)(p13q22) 

[12,13,60,72,87-89], its high frequency as an additional change strongly suggests that it does 

provide a selective advantage to the AML clone in which it arises. In fact, it has been reported 

that AMLs and MDS with +8 have a higher proportion of this abnormality in dividing bone 

marrow cells than in non-dividing cells, as ascertained by interphase FISH, indicating that it 

confers a proliferative advantage, at least in vitro [90]; however, such a discrepancy can also 

be due to suboptimal FISH hybridization as well as to admixture of non-diving nonneoplastic 

cells [91]. In MDS, trisomy 8 occurs together with other abnormalities in approximately 5% 

of the cases, being particularly common in association with der(1;7)(q10;p10), +19, and +21 

(Tables 2 and 8). The clinical impact of an additional +8 in MDS is presently unknown. 

 

6. Cell of origin 

During the past decade, cancer stem cells, the existence of which was first proposed more 

than 40 years ago, have received much attention [92-94]. It is now generally accepted, or at 

least widely believed, that hematologic malignancies are sustained by leukemic stem cells, 
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capable of both initiating and maintaining the disease. Apart from functional studies, FISH 

analyses of neoplasia-associated genetic abnormalities in morphologically or phenotypically 

defined cell populations have been instrumental in identifying the cell lineages affected in 

AML and MDS, providing circumstantial evidence for candidate leukemia stem cells [95-

102]. 

Several studies of AMLs with +8 as the sole change have used this abnormality as a 

marker for elucidating which cells are involved in the neoplastic clone. Before the advent of 

FISH, simultaneous karyotypic and phenotypic analyses of the same metaphases revealed that 

the granulocytic-monocytic lineage, occasionally also the erythrocytic lineage, was involved 

in trisomy 8-harboring AMLs irrespective of the morphologic subtype, suggesting that the 

leukemic clone was derived from a multipotent stem cell, although the cell of origin seemed 

to vary depending on the number of lineages involved [103-105]. Subsequently, interphase 

FISH analyses on sorted cells showed that +8 was present not only in CD34+CD38-CD33- 

cells but also in erythroid and megakaryocytic cells as well as in B and T lymphocytes, 

strongly suggesting that AMLs with trisomy 8 arise in an early hematopoietic stem cell 

[98,99,106]. It should be noted that the involvement of the stem cell compartment is not 

specific for +8. In fact, there is evidence that all AMLs, with the exception of acute 

promyelocytic leukemia [107,108], arise in hematopoietic stem cells [94]. 

The cell in which trisomy 8 occurs as the single anomaly in MDS has also been 

analyzed in some detail, but the conclusions drawn have been somewhat disparate. Several 

early FISH studies of MDS cases of all subtypes showed that this abnormality was present in 

the myeloid compartment, often including granulocytes, monocytes, megakaryocytes, and 

erythroblasts, but not in lymphocytes and plasma cells, i.e., it was restricted to the myeloid 

lineage. It was thus concluded that trisomy 8 in MDS does not arise in a multipotent stem cell 

and that, considering variable involvement of the various myeloid subpopulations, it occurred 
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at different levels in the hematopoietic hierarchy [95,96,100,105,109-115]. However, these 

findings did not exclude the possibility of an additional chromosome 8 arising in a 

multipotent stem cell but at the same time suppressing differentiation of the lymphoid lineage. 

In fact, +8 has been identified in a low frequency of lymphoid cells in MDS, and a few 

trisomy 8-harboring MDS cases have been reported to transform to ALL with +8 [116-118], 

indicating involvement of an early pluripotent stem cell. More recently, it was reported that 

the hematopoietic stem cell pool (CD34+CD38-Thy-1+ cells) harbored +8, although a 

sizeable fraction still was disomic for this chromosome [101]. Interestingly, the cells with 

disomy 8 were functionally abnormal, suggesting that they were nevertheless part of the MDS 

clone and that +8 was a secondary event in the MDS development. Further support for this 

was obtained in MDS cases with trisomy 8 in addition to 5q-, in which the latter aberration 

was shown to precede the extra chromosome 8 [101]. 

 

7. Pathogenetic impact of trisomy 8 

Although several attempts to elucidate the pathogenetic impact of +8 have been made, the 

functional and molecular genetic outcome of this abnormality remains elusive. Possible 

mechanisms that may be involved include global gene expression changes, resulting from the 

gene dosage effect generated by the trisomy, deregulation of imprinted loci, and duplication 

of rearranged or mutated genes present in the extra chromosome 8. The pros and cons of these 

various possibilities are reviewed below. 

 

7.1. Gene dosage effect? 

It has been suggested that the effect of trisomy 8 can be reduced to gain, and supposedly 

overexpression, of the MYC gene located at 8q24 [119-121]. However, considering that 

chromosome 8 contains approximately 800 genes [122] we deem it too simplistic to ascribe 
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the functionally essential consequence of +8 to one extra copy of one single gene. The 

perhaps strongest argument against MYC as a target of +8 is the fact that it is down-regulated 

in trisomy 8-positive AMLs as ascertained by microarray analysis [123]. Furthermore, it has 

been shown that MYC is not even up-regulated when it is highly amplified in AMLs and MDS 

with MYC-containing dmin [124]. In addition, Mertens et al [125] cytogenetically mapped the 

chromosome 8 gains present in close to 2,000 cases of myeloid malignant disorders and 

showed that such imbalances almost always occurred in the form of a trisomy and that they 

could not be reduced to a single chromosome band, concluding that the pathogenetic effect of 

trisomy 8 was unlikely to be upregulation of only one gene on this chromosome. Instead, 

duplication of chromosome 8 seems to be associated with global gene expression changes, as 

revealed by microarray analyses of AMLs with isolated trisomy 8. 

To date, four microarray studies of AMLs with +8 as the sole aberration have been 

reported [123,126-128]. Virtaneva et al [123] specifically compared trisomy 8-harboring 

AMLs with cases with a normal karyotype, whereas the other groups included various 

additional cytogenetic subgroups in the investigations. Interestingly, unsupervised analyses 

did not reveal any clustering of AMLs with +8 [123,126,127], suggesting that there is no 

strong gene expression signature associated with gain of chromosome 8. However, 

characteristic expression patterns were identified in two of three supervised analyses, i.e., 

investigations including only pre-selected genes [126-128]. Taken together, the available data 

indicate that the +8 subgroup has a heterogeneous gene expression profile compared with 

AMLs with well-known primary translocations and inversions. In line with this, different 

genes have been shown to be up- or down-regulated in the various investigations. Obviously, 

this discrepancy could be due to the fact that different array platforms were used in the 

different studies, but it could also reflect an underlying heterogeneity of trisomy 8-positive 

AMLs. A general overexpression of genes on chromosome 8 was noted in three of the 
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analyses, corresponding to 1.32 [127], 1.27 [123], and 1.13 [128] times the level in AMLs 

with a normal karyotype. However, it should be noted that a substantial proportion of the 

chromosome 8 genes was not up-regulated, clearly demonstrating that gain of chromosome 8 

does not automatically confer a higher expression of the genes located at this chromosome. 

The biologic function of the differentially expressed genes has not been investigated in most 

studies, but Virtaneva et al [123] found an underexpression of genes involved in apoptosis. 

As regards MDS with isolated +8, only one microarray analysis has been reported. Chen 

et al [129] compared the gene expression profiles of purified CD34-positive cells from MDS 

cases with trisomy 8 with those from monosomy 7 cases. They found a specific expression 

signature, but in contrast to the findings in AML no general up-regulation of genes mapping 

to chromosome 8 was found. 

In conclusion, more expression studies are clearly needed in order to obtain a clear 

picture of which genes are de-regulated as a consequence of trisomy 8 in AML and MDS. 

 

7.2. Imprinting? 

Although no larger studies have specifically addressed the parental origin of the gained 

chromosome 8 in AML and MDS, there is some information available from a handful of 

CT8M patients with these disorders and from a few families with a high incidence of AML 

and MDS. In total, four cases with maternal origin and two with paternal origin of the +8 have 

been reported [38,130-132], indicating that there is no preferential duplication of maternally 

or paternally inherited alleles. Taken together with the facts that no genes on chromosome 8 

have been clearly shown to be imprinted, that no AMLs with acquired segmental uniparental 

disomy (UPD) involving chromosome 8 loci have been reported, and that constitutional UPD 

for chromosome 8 seems to be associated with a normal phenotype [133-138], it does seem 
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highly unlikely that imprinting effects related to the parental origin of the gained chromosome 

is of pathogenetic importance in trisomy 8-positive AMLs and MDS. 

 

7.3. Duplication of mutated/rearranged chromosome 8 genes? 

Some trisomies have been associated with mutations of genes located at the chromosomes 

involved, e.g., duplications of mutated KIT, MET, and JAK2 alleles as a consequence of 

trisomy 4 in t(8;21)(q22;q22)-positive AMLs [139], trisomy 7 in hereditary papillary renal 

carcinoma [140], and trisomy 9 in polycythemia vera [141], respectively. In addition, a 

nonrandom duplication of the mouse chromosome carrying a mutated Hras1 gene has been 

reported in studies of induced mouse squamous cell carcinomas [142]. Furthermore, trisomy 

11 as the sole change in AML has been correlated with a partial tandem duplication of the 

MLL gene [143]; however, only one chromosome 11 contains the mutated allele in these cases 

[144], showing that there is no clear-cut association between trisomies and copies of mutated 

genes. 

As regards trisomy 8, only a few studies have looked for cryptic rearrangements or 

mutations of genes on this chromosome. Diaz et al. [145] investigated, using Southern blot 

analysis, the MYC and MOS genes in six MDS cases with isolated trisomy 8 and four AMLs 

with +8 in addition to other changes. Germline fragments were found in all cases, except in 

one MDS in which a rearranged MYC fragment – not further investigated – was detected. 

They concluded that trisomy 8 generally is not associated with rearrangements of these two 

genes. More recently, Raghavan et al. [138], applying the single nucleotide polymorphism 

(SNP) array technology, found no evidence for segmental UPDs on chromosome 8 in two 

AMLs with trisomy 8. Furthermore, Heller et al. [146], who used multicolor banding 

specifically to study chromosome 8 in eight AML and MDS cases with this trisomy as the 

sole aberration, reported that all three homologues were normal. Finally, we found no cryptic 
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abnormalities using FISH with partial chromosome paint and subtelomeric probes for 8p and 

8q as well as specific probes for the leukemia-associated FGFR1, MYST3 (MOZ), RUNX1T1 

(ETO), and MYC genes in 12 AML and MDS cases with +8 [147]. Thus, the available data, 

albeit limited, do not support that the pathogenetic outcome of trisomy 8 is related to the 

presence, and subsequent duplication, of mutated or rearranged genes on this chromosome. 

This is perhaps not unexpected considering the development of myeloid malignancies in 

patients with CT8M (see above). The fact that the trisomy 8 is present at birth but that the 

leukemia in these patients occurs later in life strongly suggests that additional abnormalities 

would have to occur after the trisomy. 

Another possibility, admittedly a farfetched one, is that all three copies of chromosome 

8 are structurally rearranged in cases with +8, i.e., the seemingly normal homologues are in 

fact a balanced t(8;8) – with cytogenetically identical, but molecularly distinct, breakpoints – 

and an additional der(8)t(8;8). If so, the functional outcome of such a “trisomy 8” could be a 

fusion gene with gain of either the critical or non-critical derivate, the latter being a frequent 

finding in AMLs and other neoplastic disorders characterized by primary translocations [148]. 

There is to date no evidence in favor of this hypothesis, but the cytogenetically cryptic 

t(12;21)(p13;q22) [ETV6/RUNX1 fusion] in childhood ALL may be used as an example of 

this possibility. Trisomy 21 is one of the most common secondary abnormalities in t(12;21)-

positive ALLs, and although all three chromosomes 21 are cytogenetically normal in these 

cases the extra copy is the result of duplication of either the normal chromosome 21 or the 

der(21)t(12;21) [149-151]. If trisomy 8 in fact represents a gain of a der(8)t(8;8) then it is 

clearly a secondary change to a balanced t(8;8). Thus, disomic cells would still be a part of the 

neoplastic clone, something that could explain the findings reported by Nilsson et al. [101] as 

regards the stem cell involvement in MDS (see above). 
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8 Trisomy 8 is not sufficient for leukemogenesis 

Trisomy 8 is an important early event, but several lines of evidence quite strongly indicate 

that it is not sufficient for leukemogenesis. First, although individuals with CT8M have an 

increased risk of myeloid malignancies, only a minority develop AML or MDS, with a 

latency of several years [37,39,42]. Second, several cytogenetic as well as clonality studies of 

trisomy 8-positive MDS cases have indicated that +8 is not the primary event in the malignant 

transformation, i.e., also the disomic cells have been either shown, or strongly suggested, to 

be part of the malignant clone [101,110,113,152,153]. Third, Schoch et al. [128] reported that 

that the discriminating gene expression pattern of AMLs with isolated trisomy 8 did not 

depend on the upregulation of chromosome 8 genes alone, concluding that additional genetic 

changes could be present. Fourth, the fact that +8 is a common secondary aberration in AML 

and MDS (Tables 7 and 8) and often one of the abnormal clones in cytogenetically polyclonal 

hematologic malignancies [9,81,154,155] indicates that it may be involved in the evolution of 

AML/MDS rather than in the initial leukemic transformation. Fifth, there is, as yet, no 

evidence for an increased risk of MDS in CML patients with trisomy 8-positive, t(9;22)-

negative clones emerging after treatment with imatinib [46]. Finally, myeloid malignancies 

with trisomy 8 as the sole cytogenetic aberration differ quite extensively with regard to 

clinical and morphologic features as well as to gene expression patterns [29,127]. This 

heterogeneity may be explained by different underlying, cytogenetically undetectable genetic 

changes in AMLs and MDS with +8 as the sole chromosomal aberration. Their identification 

would be important not only for the understanding of the biology of these disorders, but also 

for clinical purposes with possible diagnostic and prognostic ramifications. 

The cryptic abnormalities may be located at chromosome 8 or involve other 

chromosomes. To date, and as discussed previously, no evidence for any hidden 

rearrangements in chromosome 8, at least as ascertained by Southern blot, FISH, and SNP 
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analyses, has been forthcoming [138,145-147]. However, other methods and investigatory 

approaches in the future may well identify genetic changes on the chromosome 8 

homologues. 

A few multicolor FISH studies, comprising a total of 20 AMLs and MDS with isolated 

+8, have been performed in order to find cryptic chromosome aberrations [147,156-158]. 

Only one of these cases – an AML in which the G-banding morphology was suboptimal – was 

shown to harbor an additional anomaly, a t(7;14)(q3?1;q2?2) which was not further 

characterized [156]. Using subtelomeric multicolor FISH, Brown et al. [159] studied one 

AML with +8; no cryptic abnormality was detected. In fact, various FISH techniques have, as 

yet, not provided any evidence for hidden rearrangements in +8-positive AMLs and MDS, 

with the exception of one AML in which a cryptic insertion of MLL into chromosome 9 was 

reported [160]. Furthermore, Langabeer et al. [161], recognizing that +8 is a common 

secondary change in t(15;17)(q22;q21)-positive AMLs (Table 7), analyzed 54 AMLs with 

trisomy 8 for the presence of cryptic PML/RARA fusions with RT-PCR; no fusion transcripts 

were found. 

Studies of the presence of somatic point mutations of leukemia-associated genes have 

proved somewhat more fruitful. Thus, several AMLs and MDS with +8 as the sole 

cytogenetic aberration have been reported to harbor, e.g., CEBPA, FLT3, KRAS, NRAS, and 

RUNX1 mutations [162-166]. However, none of these mutated genes have proved to be 

specifically associated with AMLs and MDS with +8. 

Very recently, we used high-resolution genome-wide array-based comparative genomic 

hybridization to look for cryptic abnormalities in 10 AMLs and MDS with trisomy 8 as the 

sole cytogenetic aberration [167]. Interestingly, this assay revealed karyotypically previously 

undetected intra-chromosomal imbalances, not corresponding to known genomic copy 

number polymorphisms, in four of the ten cases. These changes, all of which confirmed by 
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FISH, comprised both segmental duplications and hemizygous deletions, involving several 

different chromosomes, although not chromosome 8. Most notably, at least two of the 

identified changes were certainly leukemia-associated: a del(7)(p14p14), shown to have 

occurred before the trisomy 8, and a hemizygous deletion of the region surrounding the ETV6 

gene in 12p13. These results, for the first time, show that cryptic abnormalities are frequent in 

AML/MDS cases with +8 as the seemingly sole change, and also support that trisomy 8 is not 

sufficient for leukemogenesis. 
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Table 1  

Frequencies (%) of trisomy 8 in AML. 

 M0 M1 M2 M3 M4 M5 M5a M5b M6 M7 Spec NOS Total

Sole change 5.8 6.0 5.7 1.9 6.4 10 12 12 6.6 4.7 0 8.1 6.3 

Overall 12 14 13 9.6 14 22 30 24 22 16 11 20 16 

Spec, special type; NOS, not otherwise specified. 

The frequencies are based on cytogenetically abnormal AMLs reported in the literature [9]. 

Only unselected cases were ascertained, i.e., AMLs reported solely because of the presence of 

trisomy 8 were excluded. The frequencies of +8 as a sole change as well as together with 

other aberrations vary significantly among the morphologic subtypes (P<0.001; chi-square 

test). 
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Table 2  

Frequencies (%) of trisomy 8 in MDS. 

 RA RARS RAEB CMML RAEBt Spec NOS Total 

Sole change 11 13 12 15 9.1 0 6.6 11 

Overall 18 24 17 20 19 20 12 17 

RA, refractory anemia; RARS, refractory anemia with ringed sideroblasts; RAEB, refractory 

anemia with excess of blasts; CMML, chronic myelomonocytic leukemia; RAEBt, RAEB in 

transformation; Spec, special type; NOS, not otherwise specified. 

The frequencies are based on cytogenetically abnormal MDS reported in the literature [9]. 

Only unselected cases were ascertained, i.e., MDS reported solely because of the presence of 

trisomy 8 were excluded. The frequencies of +8 as a sole change as well as together with 

other aberrations do not vary significantly among the morphologic subtypes (P>0.20; chi-

square test). 
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Table 3 

Frequencies (%) of trisomy 8 as the sole change in AML and MDS in relation to age. 

 Age (years) 

 0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100 

AML 3.9 6.3 4.2 5.6 7.9 7.7 9.4 8.8 11 50a 

MDS 7.0 6.6 24 4.9 10 8.3 11 9.0 14 0 

aThis group included only 2 patients, one of whom had +8 as the sole change. 

The frequencies are based on cytogenetically abnormal AMLs and MDS reported in the 

literature [9]. Only unselected cases were ascertained, i.e., AMLs and MDS reported solely 

because of the presence of trisomy 8 were excluded. The increasing frequency of +8 by age in 

AML is significant (P<0.001); no such trend is seen for MDS (P>0.30; Cochran-Armitage 

trend test). 
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Table 4 

Frequencies (%) of trisomy 8 as the sole change in AML and MDS in relation to geographic 

origin. 

 Africa Asia Europe Latin 

America 

North 

America 

Oceania 

AML 5.1 4.3 7.5 5.6 5.0 16.5 

MDS 0a 9.9 12 6.8 9.3 -a 

aOnly one MDS (without +8) from Africa and none from Oceania have been reported. 

The frequencies are based on cytogenetically abnormal AMLs and MDS reported in the 

literature [9]. Only unselected cases were ascertained, i.e., AMLs and MDS reported solely 

because of the presence of trisomy 8 were excluded. The frequency distribution of +8 as a 

sole change in AML, but not in MDS, varies significantly among the different continents 

(P<0.001; chi-square test). 
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Table 5 

Clinical characteristics of AML with trisomy 8 as the sole abnormality. 

Reference No. of  

cases 

 

Median age 

(range) 

Median WBC 

(range) 

CR 

(%) 

Median 

survival 

(months) 

Berger et al [70] 10 NR NR 70 16 

Yunis et al [65] 15 64 (NR) NR NR 10 

Dastugue et al [71] 11 NR NR 91 11 

Schoch et al [60] 20 57 (24-76) 9.7 (0.7-127) 70 21 

Byrd et al [61] 42 64 (16-79) 7.3 (NR) 59 13.1 

Grimwade et al [72] 48 NR NR 83 NR 

Raimondi et al [73] 10 15 (NR) 54 (NR) 80 NR 

Grimwade et al [74] 41 NR NR 51 NR 

Byrd et al [75] 41 NR NR 61 12 

Elliott et al. [12] 13 59 (24-72) 9.0 (0.8-66) 85 12 

Farag et al. [62] 63 65 (16-80) 5.4 (0.7-241) 56 11 

Wolman et al [13] 43 61 (21-78) 6.3 (1.1-80) 67 12.5 

WBC, white blood cell count (x109/l); NR, not reported, CR, complete remission.  



 46

Table 6 

Clinical characteristics of MDS with trisomy 8 as the sole abnormality. 

Reference No. of  

cases 

 

Median 

survival 

(months) 

Evolution 

to AML 

(%) 

Yunis et al [65] 9 18 NR 

Nowell and Besa [77] 7 11 57 

Solé et al [78] 8 11 38 

Morel et al [79] 12 25 8 

Solé et al [11] 31 13 42 

Bernasconi et al [14] 16 NR 62 

NR, not reported. 
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Table 7 

Frequencies of +8 as a secondary change to primary inversions and translocations in AMLa. 

Primary change +8 (%) Primary change +8 (%) 

t(1;3)(p36;q21) 0 t(7;12)(q36;p13) 25 

t(1;11)(p32;q23) 18 t(8;16)(p11;p13) 5.2 

t(1;11)(q21;q23) 0 t(8;21)(q22;q22) 4.8 

t(1;22)(p13;q13) 0 t(9;11)(p21;q23) 19 

t(2;11)(p21;q23) 4.3 t(9;22)(q34;q11) 16 

inv(3)(q21q26)b 2.2 t(10;11)(p12;q23) 8.9 

t(3;12)(q26;p13) 0 t(11;17)(q23;q21) 9.4 

t(3;21)(q26;q22) 11 t(11;17)(q23;q25) 11 

t(4;12)(q12;p13) 4.8 t(11;19)(q23;p13) 12 

t(6;9)(p22;q34) 6.8 t(15;17)(q22;q21) 12 

t(6;11)(q27;q23) 4.9 inv(16)(p13q22)c 9.8 

t(7;11)(p15;p15) 5.0 t(16;21)(p11;q22) 7.9 

aBased on Mitelman et al [9]. 

bIncludes cases with t(3;3)(q21;q26). 

cIncludes cases with t(16;16)(p13;q22). 
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Table 8 

Frequencies of +8 together with other anomalies in MDSa. 

Other change +8 (%) Other change +8 (%) 

idic(X)(q12-13) 0 del(12p) 10 

-Y 13 del(13q) 7.1 

der(1;7)(q10;p10) 22 -17 17 

-5 16 del(17p) 20 

del(5q) 12 -18 11 

-7 7.8 +19 36 

del(7q) 11 del(20q) 7.9 

del(11q) 16 +21 28 

aBased on Mitelman et al [9]. 




