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1

Introduction

Control loops that are closed over a communication network get more
and more common as the hardware devices for network and network
nodes become cheaper. A control system communicating with sensors
and actuators over a communication network will be called a dis-
tributed control system. In distributed control systems, see Figure 1.1,
data are sent and received by network nodes of different kind and man-
ufacturer. Network nodes that are of specific interest for distributed
control are sensor nodes, actuator nodes, and controller nodes. Sensor
nodes measure process values and transmit these over the commu-
nication network. Actuator nodes receive new values for the process
inputs over the communication network and apply these on the pro-
cess input. Controller nodes read process values from sensor nodes.
Using a control algorithm control signals are calculated and sent to
the actuator nodes. The system setup with a common communication
network reduces cost of cabling, and offers modularity and flexibility
in system design. The distributed control setup is powerful, but some
caution must be taken. Communication networks inevitably introduce
delays, both due to limited bandwidth, but also due to overhead in the
communicating nodes and in the network. The delays will in many sys-
tems be varying in a random fashion. From a control perspective the
control system with varying delays will no longer be time-invariant.
As an effect of this the standard computer control theory can not be
used in analysis and design of distributed control systems. The thesis
addresses the problem of analysis and design of control systems when
the communication delays are varying in a random fashion. Models

10




Physical process

Actuator node Sensor node
Network

Other user Other user
Control computer

Figure 1.1 Distributed control system with sensor node, controller node, and
actuator node. The communication network is also used for other applications
in the system.

for communication network delays are developed. The most advanced
model has an underlying Markov chain, which generates the probabil-
ity distributions of the time delays. For the different network models
closed loop stability and evaluation of a quadratic cost function are
analyzed. The LQG-optimal controller is derived in a setup where the
time delays are independent from sample to sample. The derived con-
troller uses knowledge of old time delays. This can be achieved by so
called “time-stamping”, all transfered signals are marked with the time
they were generated. By comparing the “time-stamp” with the inter-
nal clock of the controller the time delay can be calculated. It is shown
that the optimal controller is the combination of an LQ-controller and
a Kalman filter, i.e. the separation principle applies.

Outline of the Thesis

The contents of the thesis are as follows:

Chapter 2: Problem Formulation This chapter gives an introduc-
tion to the problem formulation. A short review of clock synchro-
nization and networks for distributed control is also presented.

The chapter is concluded with a summary of work related to this
thesis.

Chapter 3: Modeling of Network Delays Models for the network
induced delays are developed. The models are well suited for

11
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Chapter 1. Introduction

analysis and design of distributed control systems.

Chapter 4: Analysis of Control Laws Results are developed to de-
termine system stability and values of quadratic cost functions
given a proposed controller. The analysis is made for the network
models developed in Chapter 3. Some examples are given.

Chapter 5: Optimal Stochastic Control The LQG-controller is de-
rived for systems with time delays which are modeled to be inde-
pendent from transfer to transfer. A design example comparing
four controller designs is given.

Chapter 6: Conclusions and Future Work In the last chapter fu-
ture work and extensions are discussed.

The thesis is concluded with two appendices, one on Kronecker prod-
ucts, and one containing some results from probability theory.

12




2

Problem Formulation

2.1 Distributed Control

We will study the closed loop system depicted in Figure 2.1. The actu-
ators and sensors are connected to a communication network. These
units receive respectively send control information to the centralized
controller. The centralized controller is connected to the network, and
communicates with sensors and actuators by sending messages over
the network. Sending a message over a network typically takes some
time. Depending on the network and scheduling policy in the system
this transfer time can have different characteristics. The transfer time
can in some setups be nearly constant, but in many cases it is vary-
ing in a random fashion. The length of the transfer delay can, for
instance, depend on the network load, priorities of the other ongoing
communications, and electrical disturbances, Ray (1987). Depending
on how the sensor, actuator, and controller nodes are synchronized
several setups can be found. Several previous authors have suggested
such control schemes with slightly different timing setups. The differ-
ent setups come from whether a node is event-driven or clock-driven.
By event-driven we mean that the node starts its activity when an
event occurs, for instance, when it receives information from another
node over the data network. Clock-driven means that the node starts
its activity at a prespecified time, for instance, the node can run pe-
riodically. There are essentially three kinds of computer delays in the

13




Chapter 2.  Problem Formulation

system, see Figure 2.1:
¢ Communication delay between the sensor and the controller, 75¢.
¢ Computational delay in the controller, 7¢.

¢ Communication delay between the controller and the actuator, 7°¢.

l h
u(?) ()
Acugior o] s [+ Sty
A
Network v
Ea TCG ,Z-SC E%
1
................................. B B
Controller |
node -

Figure 2.1 Distributed digital control system with induced delays, 75 and 7¢¢.
The computational delay in the controller node, ¢, is also indicated.

The control delay for the control system, the time from when a mea-
surement signal is sampled to when it is used in the actuator, equals
the sum of these delays.

One important problem in this control system setup is the de-
lays, which are varying in a random fashion. This makes the system
time-varying and theoretical results for analysis and design for time-
invariant systems can not be used directly. One way to get rid of the
time variations is to introduce clocked buffers on the input in the con-
troller node and the actuator node. If these buffers are chosen large
enough, larger than the worst case delay, the delay for a transfer be-
tween two nodes is deterministic. This scheme was proposed in e.g.
Luck and Ray (1990). Introduction of buffers in the loop means that
we sometimes are using older information than we need to. It is shown
in Chapter 5 that this can lead to a degradation of performance in com-
parison with an event-driven setup.

14
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Figure 2.2 Timing of signals in the control system. The first diagram illus-

trates the process output and the sampling instants, the second diagram il-

lustrates the signal into the controller node, the third diagram illustrates the

signal into the actuator node, and the fourth diagram illustrates the process
input, compare with Figure 2.1.

From a sampled data control perspective it is natural to sample the
process output equidistantly with a sample period of A. It is also nat-
ural to keep the control delay as short as possible. The reason is that
time delays give rise to phase lag, which often degenerate system sta-
bility and performance. This motivation suggests a system setup with
event-driven controller node and event-driven actuator node, which
means that calculation of the new control signal respectively D/A-
conversion of the new control signal takes place as soon as the new
information arrives from the sensor node and the controller node re-
spectively. In Figure 2.2 the timing in such a system is illustrated.
A drawback with this setup is that the system becomes time-varying.
This is seen from Figure 2.2 in that the control signal is changed at
irregular times.

In the subsequent chapters we will analyze and design controllers

15




Chapter 2. Problem Formulation

with equidistantly sampling sensor node and event-driven controller
and actuator node. We will also make the assumption that the control
delay is less than the sampling period. This can be motivated in sev-
eral ways. From a control point of view, a normal design usually has
0.2 £ wh < 0.6, where h is the sampling period and o is the natural
frequency, see Astrém and Wittenmark (1990). With a delay equal to
one sample this design has a phase lag induced by the controller, ¢;., of
11° £ ¢y, £ 34°. An even larger phase lag would make many processes
hazardous to control. If we have a larger control delay than the sam-
pling period, i, samples may arrive in a non-chronological order at the
actuator-node. This would make both implementation of algorithms
and system analysis much harder. The condition that the control de-
lay is less than A can be lighten to that the control delay may not vary
more than /i, which also guarantees that samples arrive in chronolog-
ical order. We will in the following only look at the influences from 7%¢
and 7¢%, The effect of 7¢ can be embedded in 7¢¢. We will also assume
that we have the knowledge of how large the previous transfer-delays
in the loop were. Ways to implement this feature is discussed in the
sequel.

Knowledge of Old Time Delays — Time Stamps

Using synchronized clocks in the nodes, delay information can be ex-
tracted by including the time of generation to every message. Clock
synchronization is further discussed in Section 2.3. In most networks
the extra network load introduced by the time stamp is negligible in
comparison with message and network overhead. The delay informa-
tion is used in the controller node. The controller node can easily cal-
culate 7% by comparing the time stamp of the sensed signal with the
controller node’s internal clock. The controller can also obtain informa-
tion about the last 7. One way to achieve propagation of old 7°° to the
controller is to immediately send a message back from the actuator-
node to the controller containing the transfer time 7¢%. It is however
not certain that the controller will have received this message when
the next control signal is to be calculated. The timing for the control
system between two control signal calculations is shown in Figure 2.3.
We have here introduced the transfer delay 7°¢~? for the transfer-time
to send back information about the length of 7¢% to the controller. In
some setups the controller will immediately know when the control

16
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Figure 2.3 Timing plot showing delays during a clock cycle.

signal arrived to the actuator. In this case 7°¢~% is automatically 0.
The condition that the old 7¢¢ is known when we calculate the control
signal can in the general case be written as

T+ 750 + 78470 < 15 4 B (2.1)

We will assume that the sum of the time delays in one control cycle,
the control delay, is less than the sampling interval 2. As the control
delay is the sum of 7°¢ and 7°¢, it is reasonable to assume that each
of the delays be distributed on [0, @k], where & < 0.5. The problem
of guaranteed knowledge of old time delays will be analyzed for some
special cases of communication network behavior.

Total randomness If the communication network gives time de-
lays that are random and independent it is seen from (2.1) that the
condition on the distribution of the time delays is

1
a<g (2.2)

Total order If we add the requirement that network messages are
transmitted in the order they were generated, the message containing
the length of 7¢¢ will always be sent before the next measurement if

1

An implementation of such a system would require something like a
global queue for messages to be sent in the network.

17
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Priority Some communication networks, for instance CAN, see Sec-
tion 2.2, have the possibility to give messages priorities and guarantee
that waiting messages are sent in priority order. In such a system we
can give the message containing 7¢* a higher priority than the mes-
sage containing the new measurement. This guarantees knowledge of
the old 7¢¢ if

o < 1 (2.4)

Summary of Assumptions

We will make the following assumptions about the control system:

e The sensor node is time-driven. The output of the process is sam-
pled periodically without any scheduling disturbances. The sam-
pling period is A.

e The controller node is event-driven. The control signal is calcu-
lated as soon as the sensor data arrives at the controller node.

e The actuator node is event-driven. The control signal is applied
to the process as soon as the data arrives at the actuator node.

e The communication delays 75¢ and 7¢¢ are randomly varying with
known stochastic properties. The total time delay 7°¢ + 7% have
arbitrary distribution, but is always less than one sampling pe-
riod.

¢ The lengths of the past time delays are known to the controller.

2.2 Networks

Communication networks were introduced in control systems in the 70’s.
At that time the driving force was the car industry. The motives for in-
troducing communication networks were reduced cost for cabling, mod-
ularization of systems, and flexibility in system setup. Since then, sev-
eral types of communication networks have been developed. Communi-
cation protocols can be grouped into fieldbuses (e.g. FIP and PROFIBUS),
automotive buses (e.g. CAN), “other” machine buses (e.g 1553B and
the IEC train communication network), general purpose networks (e.g.

18




2.2 Networks

IEEE LAN’s and ATM-LAN) and a number of research protocols (e.g.
TTP), see Térngren (1995). A short summary is now given of some
of the most used communication protocols, see also Olsson and Pi-
ani (1992) and Tindell and Hansson (1995).

FIP (Factory Instrumentation Protocol)

FIP was developed by a group of French, German, and Italian compa-
nies. FIP uses a twisted pair conductor and the transmission speeds are
from 31.25 kbit/s up to 2.5 Mbit/s, depending on the spatial dimension
of the bus. For a transmission speed of 1 Mbit/s the maximum length
of the bus is 500 m. The maximum number of nodes in a FIP network
is 256.

In a FIP-network one node acts as bus arbitrator. The bus arbi-
trator cyclically polls all nodes in the network to broadcast its data
on the network. The inactive nodes listen to the communication and
recognizes when data of interest to the node is sent. The FIP-network
can be seen as a distributed database, where the database is updated
periodically.

PROFIBUS (Process Fieldbus)

PROFIBUS was developed by a group of German companies and is
now a German standard. A screened twisted pair is used as conductor.
The transfer speed can be from 9.6 kbit/s to 500 kbit/s. The maxi-
mum length of the bus is 1200 m. Up to 127 stations can be connected
to the network. PROFIBUS messages can be up to 256 bytes long.
PROFIBUS is a token-passing network. The nodes are divided into
active and passive nodes. The node which holds the token has the per-
mission to send data on the network. The token is passed around in
the network between the active nodes. Active nodes can transmit when
they hold the token. Passive nodes need to be addressed by an active
node to be allowed to send data on the network.

CAN (Controller Area Network)

CAN was developed by the German company Bosch for the automation
industry. CAN is defined in the ISO standards 11898 and 11519-1. The
transfer speed can be 1 Mbit/s if the bus is no longer than 50 m, and
500 kbit/s if the bus is longer than 50 m. There is no limit on the

19




Chapter 2. Problem Formulation

number of nodes. A node can start transmitting at any time if the bus
is silent. If several nodes are trying to transmit an arbitration starts.
The node trying to send the message with highest priority gets the
right to use the bus. There are 2032 priority levels. The possibility
to give messages different priorities can be used to assure that the
message containing the delay time from controller node to actuator
node, 77¢, reaches the controller node before the next sample value as
discussed in Section 2.1.

2.3 Clock Synchronization

Clock synchronization is a research area in itself. The purpose of clock
synchronization is to make the internal clock of two or more nodes to
have corresponding values. We will only consider software synchroniza-
tion, i.e. the synchronization signals are sent over the communication
network. Hardware synchronization is also a possibility, for instance,
using special wiring just to distribute a global clock signal in the sys-
tem. As all communication between nodes is over the data network,
all messages between nodes will be subject to random delays. Several
schemes for synchronization are available in the literature, see Chris-
tian and Fetzer (1994),van Oorschot (1993).

Most schemes build on the concept of estimating the difference be-
tween the clocks of two nodes by sending clock-requests back and forth
as described in the following. Let S be the node which wants to esti-
mate its clock difference to node R. Let the absolute time be ¢;, let the
local time in node S be ¢¥, and let the local time in node R be ¢F. The
local clocks in S and R have a skew to the absolute time such that

1

tB =t + SE, (2.6)

where §° and 6% are the clock mismatches. We define the clock offset,
d, as

5 =686 (2.7)

20




2.3 Clock Synchronization

ta tf t
Figure 2.4 Clock synchronization sequence. First a request is sent from node
S to node R, then R responds by sending the value of its local clock to S.

From (2.5) and (2.6) it follows that
5 =B -5 (2.8)

The clock offset will have a drift in time due to inaccuracies in the
local clocks. For the moment we assume that § is constant. The syn-
chronization sequence starts with a clock-read request from node S to
node R, this message is sent at time £, see Figure 2.4. As node R re-
ceives the message from node S it immediately sends a message back
containing the local clock value tff. This message arrives at node S at
time ¢5. Introduce Tsk and Trs as the transfer time for the from S to
R, and from R to S respectively. The transfer times can be written as

Tsp =t5 -t =(tF-6) -t (2.9)
Trs =1t -1 =15 - (F-9). (2.10)

Assuming that E(Tsr — Trs) = 0 we find that

R _ 48 _4S
5 = E{gﬁz_?_t} (2.11)

where E denotes the expectation operator. By repeating the clock syn-

chronization experiment we can find an accurate estimate of § by (2.11).

There are other clock synchronization algorithms not depending on the
assumption E(Tsg — Trs) = 0, see van Oorschot (1993). There are also
algorithms addressing fault-tolerant synchronization. These faults can
be failures in the network, in a local clock etc., see Christian and Fet-
zer (1994). If the clock offset, &, is drifting due to inaccuracies in the
local clocks, resynchronization must be done after a while. The drift
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in a clock is often defined as clock drift p. If H(¢) is the value of the
clock at time ¢, the following holds for a time interval [s,#]:

(L-p)(t—s) < H(t)—-H(s) < (1+p)(t-s). (2.12)

It is claimed in Christian and Fetzer (1994) that clocks in modern
computers have p of the order 107° or 107, and high precision quartz
clocks have p of the order 1077 or 1078, With p = 10~% we would over
one hour have

1h - 8.6ms < H(t+ 1h) — H(¢) < 1h + 3.6ms. (2.13)

These drift values have to be compared with the time scales in the
actual system to determine how often resynchronization must be done
to keep an acceptable clock synchronization in the system.

2.4 Related Work

Some work has been done on setups related to the one described in Sec-
tion 2.1. No work by other authors is know on the setup in Section 2.1.
In this section some of the related work is described.

Make the System Time-Invariant

In Luck and Ray (1990} the closed loop system is made time-invariant
by introduction of buffers at the controller and actuator nodes as illus-
trated in Figure 2.5. All nodes are clocked and act synchronized. By
making the buffers longer than the worst case delay the process state
can be written as

Xpe1 = Axp + Bup_y, (2.14)
yr = Caxy, (2.15)

where A; is the length in samples of the buffer at the actuator node.
If the buffer at the controller node is assumed to have the length A,
samples, the process output available for the controller at time k is
Wp = Yp-a,. The design problem is now reformulated as a standard
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Actuator Sensor
— -
node Process

Buffer

Controller | Wk

node

Figure 2.5 In Luck and Ray (1990) buffers are introduced after the varying
communication delays to make the system time-invariant. The buffers must be
longer than the worst case communication delay.

sampled data control problem. The information set available for calcu-
lation of uy, is

Wy, = {wp, wp_1,... }. (2.186)
In Luck and Ray (1990) the LQG-optimal controller,
up = E(W), (2.17)

is derived. An advantage with the method is that it handles control
delays that are longer than the sampling period. As will be shown
in Chapter 5 performance can be increased by having event-driven
controller and actuator node, which makes the control delay smaller.

Stochastic Approaches

In Liou and Ray (1991) a scheme with time-driven sensor, time-driven
controller, and event-driven actuator, is studied. The sensor and the
controller is started with a time skew of A;. The probability that the
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new sensor value has reached the controller when the control signal is
calculated, P(7j° < A;), is known. If 73° > Ay the new control signal
is calculated without knowledge of the new measurement signal. The
actuator node D/A-converts the new control signal as soon as it is
transmitted to the actuator node. A discrete time augmented plant
model is derived by introducing the delayed signals as states in the
augmented plant model. The augmented plant model is

Xpy1 = Akxk + Bkuk, (218)

where A;, and B, are stochastic matrices due to the random communi-
cation delays. The LQ-optimal controller is solved for the stated prob-
lem setup. It is also discussed how to construct a state estimator in the
case when all states are not measured. It is claimed that time-stamping
of signals is important for estimation of process state. For the prob-
lem setup in Liou and Ray (1991) it is not known if the combination
of optimal controller and the proposed state estimator is the optimal
output feedback controller, i.e. if the separation principle applies.

The LQ-controller of Liou and Ray (1991) is used in Ray (1994)
together with a stochastic state estimator. The timing setup is the
same as in Liou and Ray (1991). The estimator is designed to min-
imize the variance of the state prediction errors. The combination of
the LQ-controller and the minimum variance estimator is introduced
as the DCLQG-controller, delay compensated LQG. It is stressed that
the separation principle does not hold for the DCLQG-controller, i.e.
DCLQG-controller is a suboptimal control scheme.

In Krtolica et al. (1994) control systems with random communica-
tion delays are studied. The delays, from sensor to controller and from
controller to actuator, are modeled as being generated from a Markov
chain, see Figure 2.6. Only one of the §; coefficients in Figure 2.6 are
one, all the others are zero. Notice that the delay must be a multiple
of the sampling period, i.e. all nodes are clock driven. It is shown that
the closed loop system can be written as

Zhtl = szk’ (219)

where H) depends on the state of the delay elements depicted in Fig-
ure 2.6. The sequence of 3; is generated by a Markov chain. Necessary
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Figure 2.6 The network model used in Krtolica et al. (1994). The sampled
signal, y;, is delayed a number of samples due to communication delay. The
controller reads the signal w,,. Notice that only one of the j3; coefficients is one,
the others are zero.

and sufficient conditions are found for zero-state mean-square expo-
nential stability. The stability criterion is that the solution of two cou-
pled (Lyapunov-like) equations need to be positive definite for stability
of the closed loop.

In Chan and Ozgiiner (1995) a setup using the Ford SCP Multiplex
Network hardware is studied. The communication delay is modeled as
in Figure 2.7. There is a queue of unsent sensor readings at the sensor
node. A simple form of time-stamping is done by appending the size
of the queue to every message that is sent from the sensor node to
the controller node. It is shown that by this method the controller
node can reduce its uncertainty about which sensor reading it is using
down to two possible. By knowing the probability for the two possible
cases of delay, a state estimator is constructed. The sensor node and
the controller node are both time-driven with a skew of Ay, It is also
shown how pole placement can be done for the described setup.
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Queue

Yr

——— g

Communication link

Single register

Figure 2.7 Block diagram of the transmission from the sensor node to the
controller node in Chan and Ozgiiner (1995). The sampled signal y, is delayed
during the transmission to the controller node. The controller reads the sensor
value @y, from a register in the controller node. A simple form of time-stamping
is done by appended every message with the size of the queue when the message
was sent,

Jump Linear Systems

Jump linear systems can in discrete time be written as
Xpe1 = Arg)xe + B(re)ur, (2.20)

where A(r},) and B(r;) are real-valued matrix functions of the random
process {r;}, see Ji et al. (1991). An interesting special case of {ry}-
process is to let {r;} be a time homogeneous Markov chain taking

values in a finite set {1,...,s}. The Markov chain has the transition
probabilities
P(rysr=jlre =1) = py 20, (2.21)
where
s
> by =1 (2.22)
j=1

If {r,} is generated by a time homogeneous Markov chain the system
is called a discrete-time Markovian jump linear system. As will be dis-
cussed in Chapter 3 this is an attractive model for control systems
with induced network delays.
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2.4 Related Work

Jump systems in continuous time was introduced in the 60’s by
Krasovskii and Lidskii (1961). The LQ-problem was solved with finite
and infinite time horizon by Sworder (1969) and Wonham (1971).

The discrete-time jump LQ-problem was solved for a finite-horizon
by Blair and Sworder (1975). Extensions of this problem, such as con-
trol of jump linear systems with Gaussian input and measurement
noise, has been done in Ji and Chizeck (1990). Different notations of
stability of jump linear systems were compared in Ji et al. (1991).

All the above mentioned work rely on the availability of the value
r, at time k. If this is not the case, r, has to be estimated. Less work
has been done in this area, see Ji et al. (1991) for a discussion.

An interesting extension of jump linear systems is to let the Markov
chain postulate the distribution of the system matrices A, B etc. in-
stead of values for these. As an example the states of the Markov
chain could be “Low network load”, “Medium network load” and “High
network load”. This is further discussed in Chapter 3.
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Modeling of Network Delays

Network delays, or network transfer times, have different character-
istics depending on the network hardware and software. To analyze
control systems with network delays in the loop we have to model
these. The network delay is typically varying due to varying network
load, scheduling policies in the network and the nodes, and due to
network failures. We will use three models of the network delay:

e Constant delay
¢ Random delay, which is independent from transfer to transfer

¢ Random delay, with probability distributions governed by an un-
derlying Markov chain

The control loop usually also contains computational delays. The effect
of these can be embedded in the network delays.

3.1 Network Modeled as Constant Delay

The simplest model of the network delay is to model it as being con-
stant for all transfers in the communication network. This can be a
good model even if the network has varying delays, for instance, if the
time scale in the process is much larger than the delay introduced by
the communication. In this case the mean value or maybe the worst
case delay can be used in the analysis. If this is not the case wrong
conclusions can be drawn regarding system stability and performance.
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3.2  Network Modeled as Consecutive Delays Being Independent

One way to achieve constant delays is by introduction of timed
buffers after each transfer. By making this buffer longer than the worst
case delay time the transfer time can be viewed as being constant. This
method was proposed in Luck and Ray (1990). A drawback with this
method is that the control delay becomes longer than necessary. This
can lead to decreased performance as shown in Chapter 5.

3.2 Network Modeled as Consecutive Delays Being
Independent

To take the randomness of the network delays into account in the
model, the time delays can be modeled as being taken from a proba-
bilistic distribution. To keep the model simple to analyze one can as-
sume the transfer delay to be independent of previous delay times. In
a real communication system the transfer time will however usually be
correlated with the last transfer delay. For example the network load,
which is one of the factors affecting the delay, is typically varying with
a slower time constant than the sampling period in a control system,
i.e. the time between two transfers.

3.3 Network Modeled Using Markov Chain

One way to model dependence between samples is by letting the distri-
bution of the network delays be governed by the state of an underlying
Markov chain. Effects such as varying network load can be modeled
by making the Markov chain do a transition every time a transfer is
done in the communication network. A short discussion of the theory
of Markov chains is given in Appendix B.

EXAMPLE 3.1—SIMPLE NETWORK MODEL

To get a simple network model we can let the network have three
states, one for low network load, one for medium network load, and
one for high network load. In Figure 3.1 the transitions between differ-
ent states in the communication network are modeled with a Markov
chain. Together with every state in the Markov chain we have a corre-
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Chapter 3. Modeling of Network Delays

Figure 3.1 An example of a Markov chain modeling the state in a communi-
cation network. L is the state for low network load, M the state for medium

network load, and H is the state for high network load. The arrows shows
possible transitions in the system.

sponding delay distribution modeling the delay for that network state.

These distributions could typically look like the probabilistic distribu-
tions in Figure 3.2. O

DA
N\

.

Delay

Delay
Figure 3.2 The delay distributions corresponding to the states of the Markov

chain in Figure 3.1. L is the state for low network load, M the state for medium
network load, and H is the state for high network load.
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3.4 Sampling of Systems with Network Delays

-

(E—~1)h kh (k+ )k
Figure 3.8 Timing of signals in the control system. The first diagram illus-
trates the process output and the sampling instants, the second diagram illus-
trates the signal into the controller node, the third diagram illustrates the signal
into the actuator node, and the fourth diagram illustrates the process input.
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3.4 Sampling of Systems with Network Delays

In continuous-time time-delays are infinite dimensional systems. A fi-
nite dimensional description of the control loop can be formulated by
sampling of the continuous-time process. Let the controlled process be

d

d—’; = Ax(t) + Bu(t) + v(t), (3.1)
where x(t) € R", u(t) € R™ and v(t) € R". A and B are matrices of
appropriate sizes. u(¢) is the controlled input and v(#) is white noise
with zero mean and incremental covariance R,. The timing of the sig-
nals in the system is shown in Figure 3.3. Notice that the control signal

segments are active a varying time. Assume that the delay from sen-
sor to actuator is less than the sampling period 2, i.e. T3¢ + 74% < h.
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Chapter 3. Modeling of Network Delays

Integration of (3.1) over a sampling interval gives

Xpy1 = <I>xk + Fo(’l’}ic, Tza)uk + Fl(rzc, T,‘;“)uk_l + Vg, (3.2)
where
® = A (3.3)
h—t¥ -1
To(r,78%) = / e*5dsB (3.4)
0

Ty(z,74)

h
/ e“*dsB. (3.5)
h

_ S __pca
Ty — 7Ty

The state noise v, has zero mean and the variance
h T
Ry = E{vpl} = / eA=9IR oA (=9, (3.6)
0

This is a standard result on sampling of systems with time-delays,
see, for instance, Astrom and Wittenmark (1990). The infinite dimen-
sional continuous-time system has now been reformulated to the time-
varying, finite-dimensional, discrete-time system (3.2). The drawback
is that we do not have direct control over intersample behavior using
the discrete-time model. This is however easy to study if needed. Some
early work on modeling of imperfections in sampled data systems, such
as random sampling and imperfect hold etc., was made in Kalman and
Bertram (1959).
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4

Analysis of Control Laws

In order to design a controller for a distributed digital control system it
is important to know how to analyze such systems. We will assume that
the sensor node is sampled regularly at a constant sampling period A.
The actuator node is assumed to be event driven, i.e. the control signal
will be used as soon as it arrives. We will analyze the different models
for the communication network described in Chapter 3. In Figure 4.1
the control system is illustrated in a block diagram. In this chapter
we will analyze given linear control laws. Optimal control laws are
calculated in Chapter 5. The controlled process is assumed to be

l h
u(t) y(2)
e e
A
"""""""""""" Network 1
- Tca 7se ﬁ;

Controller |
node

Figure 4.1 Distributed digital control system with induced delays, t%¢ and 7¢¢.
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Chapter 4. Analysis of Control Laws

_C.é_’tf = Ax(t) + Bu(t) + v(t), (4.1)
where x(t) € R", u(t) € R™ and v(¢) € R". A and B are matrices of
appropriate sizes. «(¢) is the controlled input and v(£) is white noise
with zero mean and covariance R,. We will assume that the delay from
sensor to actuator is less than the sampling period 2, i.e. 73° + 75 <
h. If this condition is not satisfied control signals may arrive at the
actuator in corrupted order, which makes the analysis much harder.
The influence from the network is collected in the variable 7,. For
instance 7, can be a vector with the delays in the loop, ie. 7, =
[73¢,7¢%]". Discretizing (4.1) in the sampling instants, see Chapter 3,
gives

Xpt1 = <I>pxk + F{)’(Tk)uk + F{(Tk)uk_l + Up. (4.2)
The output equation is
yr = CPap + wy, (4.3)

where y;, € RP. The stochastic processes v, and w; are uncorrelated
white noise with zero mean and covariance matrices R; and Rs re-
spectively.

A linear controller for this system can be written as

X1 = OU(Tr)xg + T(TR) 0 (4.4)
up = C(1x)x}, + D°(Th)yp, (4.5)

where appearance of 7, in ®¢, T, C°¢ or D¢, means that the controller
knows the network delays completely or partly. Examples of such con-
trollers are given in Krtolica et al. (1994), Ray (1994), and Nilsson
et al. (1996).

From (4.2) — (4.5) we see that the closed loop system can be written
as

Zpe1 = Q(7h)2p + T(Th)er, (4.6)
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4.1 Network Modeled as Constant Delay

where
.
Zk = QCICe s (47)
Lip-1
P + TE(74)D(14)CP TH(4)C(tr) Th(74)
O(1y) = () CP O°(7s) 0 , (4.8)
i D (1)CP Ce(z) 0
ey = Uk , (4.9)
LWk
and
I TH(tx)D(1p)
I'(ry) = |0 Te(z3) . (4.10)

0 De(7)

The variance R of ey, is
Ry O
R = E(egel) = :
(ekek ) [ 0 Rgil

The rest of this chapter investigates properties of the closed loop
system (4.6). The analysis is made for the network models described in
Chapter 3. Section 4.1 studies systems with network transfers modeled
as constant delays. Section 4.2 analyses loops with delays modeled as
being independent from transfer to transfer, and Section 4.3 transfer
delays modeled with an underlying Markov chain. Section 4.4 describes
how to analyze these systems using computer simulations.

4.1 Network Modeled as Constant Delay

The simplest model of the communication delay in a data network is
to model it as being constant for all transfers, see Chapter 3. If we
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Chapter 4. Analysis of Control Laws

make the assumption that 7, in (4.6) is constant for all k, the closed
loop system can be written as

Zhel1 = quk + ey, (4.11)

where @ and I" are constant matrices. We can then use the standard
tools from the theory of linear time-invariant discrete time systems
to analyze stability, variances of signals etc., see Astrém and Witten-
mark (1990).

The control scheme with buffers, see Chapter 2, makes the closed
loop system time invariant by introducing buffers at the controller and
actuator node. By adding these buffers as states in the description of
the closed loop system the system can be written on the form (4.11).
This analysis is also straightforward to do in the case when the net-
work delay is longer than the sampling period, i.e. when 7°¢ + 75¢ > B,

4.2 Network Modeled as Consecutive Delays Being
Independent

As described in Chapter 3, communication delays in a data network
usually vary from transfer to transfer. In this situation the standard
methods from linear time-invariant discrete time systems cannot be
applied. There are examples where the closed loop system is stable
for all constant delays, but give instability when the delay is varying.
This section develops some analysis tools for systems where consecu-
tive delays are random and independent. First it is investigated how
to calculate covariances of signals generated by (4.6), this naturally
leads to a stability criterion for systems with random and independent
delays.

Evaluation of Covariance

Let the closed loop system be given by (4.6), where {7} is a random
process uncorrelated with {ez}. The form of ®(7;) and I'(7}) is deter-
mined by the process, the communication network, and the controller
structure. 7, can be a vector consisting of the delay from sensor to
controller, 7;°, and the delay from controller to actuator, 7{*. We as-
sume that 7, has known distribution, and that 7, is independent from
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4.2  Network Modeled as Consecutive Delays Being Independent

sample to sample. This can be an unrealistic assumption and will be
discussed in Section 4.3. To keep track of the noise processes we collect
the random components up to time £ in

Ve = {70 s Tk, €05 s €k }-
Introduce the state covariance Pj as
Py = ygl(zsz), (4.12)
where the expectation is calculated with respect to noise in the process

and randomness in the communication delays. By iterating (4.12) we
get

Il

Pyt ;(Zkuzgﬂ)

k

= B ((@(zr)z + T(r2)er) (@ (ra)zr + T(Tr)er)")

=B (@ (rr)zrzg @(7)" + T(rr)erez T (7h)")

= E ((@(ra)Pe®@(z)" + T(z,)RT(72)").

Here we have used that 74, 2z, and e, are independent, and that e,
has mean zero. This is crucial for the applied technique to work and
indirectly requires that 7, and 7,_; are independent. Using Kronecker
products, see Appendix A, this can be written as

vec(Ppy1) = ?(Cb(fk) ® O(71)) vec(Py) + Vecgl(l“(fk)Rl"(fk)T)
= ﬂklvec(Pk) + G, k (4.13)
where
A=E@@E)OO(r) G = BT(r) @ T(r) vec(R).

From (4.13) we see that stability in the sense of E(zfz;) < oo, i.e.
second moment stability, is guaranteed if p(E(®(71) @ ®(74))) < 1,
where p(A) denotes the spectral radius of the matrix A. This stability
condition appeared in Kalman (1962) in a slightly different setting.
For a discussion of the connection between second moment stability
and other stability concepts such as mean square stability, stochastic
stability and exponential mean square stability see Ji et al. (1991).
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Chapter 4. Analysis of Control Laws

Calculation of Stationary Covariance

If the recursion (4.13) is stable, p (E(® (1) ® @(7;))) < 1, the station-
ary covariance

P® = lim P, (4.14)

k—oo

can be found from the unique solution of the linear equation
vec(P®) = E(®(11) ® ®(13)) vec(P®) + vecE(I' () RT (1) 7). (4.15)

Calculation of Quadratic Cost Function

In LQG-control it is of importance to evaluate quadratic cost functions
like E 2I'S(7})z;. This can be done as

EZ%S(Tk)Zk = tTEZZS(fk)Zk = tI‘(ES(Tk) E zkzg), (416)
by D T k-1

which as k > oo gives

lim E 2FS(1)z = tr(ES(z,)P). (4.17)
—>00 k

This quantity can now be calculated using the previous result.

Normally we want to calculate a cost function of the form E(x,fSnxk +
ugSmuk). As uy, is not an element of the vector z;, see (4.7), this cost
function can not always directly be cast into the formalism of (4.16).
A solution to this problem is to rewrite u; of (4.5) using the output
equation (4.3) as

Up

Ce(tr)ay + D(74) (CPxp + wy)
[Dc(Tk)Cp CC(’Z'k) O]Zk-l-Dc(Tk)wk.

Noting that 7, and w, are independent, and that w; has zero mean,
the cost function can be written as

E(x,fSnxk + ZL£S22uk) = E(z,fS(z‘k)zk) + Jl,
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4.2 Network Modeled as Consecutive Delays Being Independent

where
S 0 0 (De(r)CP)T

S(tp)=| 0 0 0| + Ce(tp)T Soa [D¢(7,)CP  C¢(1;) O]
0 0 0 0

Jl =1r (E{DC(Tk)TSQQDC(Tk)}RQ) s
where the first part again is on the form of (4.16).
ExaMPLE 4.1—CONSTANT VS RANDOM DELAY
Consider the control system in Figure 4.2 with one delay 7, in the

loop. The process output is sampled with the sampling period h. We
will consider two cases for the delay.

e The delay is constant with the value 7, = h/2.
¢ The delay is uniformly distributed on the interval [0, 4].

lh

—*| Process | Sensor

Actuator
node
A

Controller
node

A

Figure 4.2 Digital control system with induced delay.

Let the process be, this can for instance be an inverted pendulum,

Y(s) = -1 U(s).

s2—-1

Discretizing this in the sampling instants and assuming that white
noise vy affects the state gives

Xpt1 = (Dpxk + Fg(fk)uk + F‘;’(Tk)uk_l + \/ﬁlvk, (4.18)
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Chapter 4. Analysis of Control Laws

where vy, is white noise with variance I and zero mean. The vA-factor
comes from sampling of continuous time white noise with the sampling
period i. We will control the process with an LQ-controller which min-
imizes

N

. 1 9 9

J = Alll_{lgo N Z(yk + Uj).
=1

We let the control design take the nominal delay into account by de-

signing the controller for (4.18) with 7, = h/2. This gives a control
law

|
Up-1

where we partition L as L = [l,,],]. Assuming that we can measure

the process state the closed loop system can be written as (4.7), where
® - QP —Th (1))l Ti(tr) — T () lu - I

—l ~ly ’ 0]’

and zp = [x; up-1]’.

In Figure 4.3 the value of the cost function J is plotted for the two
models of the delay for 2 € [0, 1]. It is seen that the controller is most
successful in minimizing o/ when the delay is constant instead of being
spread over an interval. This is not surprising since the controller was
designed assuming a constant delay. From calculations using (4.13) it
is seen that the controller fails to stabilize the process for 2 > 0.785 if
the time delays are randomly varying. O

4.3 Network Modeled Using Markov Chain

As described in Chapter 3 a more realistic model for communication de-
lays in data networks is to model the delays as being random with the
distribution selected from an underlying Markov chain. In this section
gsome analysis tools for these systems are developed. First variances of
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4.3 Network Modeled Using Markov Chain
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Figure 4.3 Values of the cost function J for constant delay (full line) and for
uniformly distributed delay (dashed line) vs sampling period.

signals and stability of the closed loop are studied for a system with
a Markov chain which makes one transition every sample. These re-
sults are then generalized to the case when the Markov chain makes
two transitions every sample, this to allow for the state of the Markov
chain to change both when sending measurement and control signals.

Evaluation of Covariance

Let the closed loop system be described by (4.6), where 7, is a random
variable with probability distribution given by the state of a Markov
chain. The Markov chain has the state r, € {1,...,s} when 7, is gener-
ated. The Markov chain then makes a transition between £ and % + 1.
The transition matrix for the Markov chainis @ = {q;;},4,j € {1,..,s},
where

qij = P(resr = Jj |1 = 0).
The Markov chain is assumed to be stationary and regular, see Ap-
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pendix B. Introduce the Markov state probability
wi(k) = P(ry = i), (4.19)
and the Markov state distribution
(k) = [mu(k) ma(k) ... ms(R)].
The probability distribution for r; is given by the recursion

nlk+1) = #nk)Q
7(0) = "
where 7° is the probability distribution for ro. The state noise e is

assumed to be white with unit variance. The random components up
to time % are collected in

% = {60, s €y T0y ey TRy 70y vons rk}.
Introduce the conditional state covariance as

Pi(k) = 9’E (zkzg |ry = i),

and
Pl(k) = ﬂ,(k)P,(k)

The following relationship now holds for the state covariance P(%):

P(k) = > mi(k)Pi(k) = > _Pi(k). (4.20)
i=1 i=1

In Section 4.2 we obtained a recursive equation for P(%). In this section
we will instead obtain a recursion for P;(k). The following theorem

gives an algorithm to evaluate P; (k). See Appendix A for the Kronecker
and vec notation.
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4.3 Network Modeled Using Markov Chain

THEOREM 4.1 N
The vectorized state covariance matrix P (%) satisfies the recursion

P(k+1) = (Q ® I) diag(4)P(k) + (QT ® I)(diag(m;(k)) ® I)G.
(4.21)

where

a; = E((D(Tk) @V(1y) |1 =1) G = g (T(zR)RTT(23) | g = i)

vec Py (k) vec G1
- vec Py (k) vec Gz
vee ?S(k) vec Gs

O

The proof of Theorem 4.1 is given in the following section.

From (4.21) it is seen that the closed loop will be stable, in the
sense that the covariance is finite, if the matrix (@7 ® I') diag(4;) has
all its eigenvalues in the unit circle.

Proof of Theorem 4.1
We will need the following property of 7, and z;.

LEMMA 4.1—CONDITIONAL INDEPENDENCE LEMMA
The random variables 7, and z; are conditionally independent rela-
tive ry, i.e.

E(f(rr)g(zr) i = 0) = E(f(t4) | re = )E(g(21) | 12 = 0),

% % %

for all measurable functions f(.) and g(.). O

Proof The proof is based on Chapter 9.1 of Chung (1974), espe-
cially Theorem 9.2.1. A short summary of the used results are given
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in Appendix B. Conditional independence follows by Theorem 9.2.1 of
Chung (1974) and from the fact that

P(Tk GE[Zk,FkZi)=P(Tk EEI?‘kZi).

This is a consequence of (4.6) and the fact that z, is measurable with
respect to V. O

Remark: z; and 7, are not independent.
We will also need the following Markov property.

LEMMA 4.2
Under the stated Markov assumptions it holds that

%(f(zk,fk) [rpe1=J, e =1) = éE(f(zk,Tk) |7y = 1),

k

where f(.) is a measurable function. O

Proof From Theorem 9.2.1 of Chung (1974), see Appendix B, it fol-
lows that an equivalent condition is

P(rpci=Jj | f2ntr),re =1) = P(rgsr =J | 1 = 0).

The validity of this condition follows directly from the Markov property.
O

Introduce g;;(%), the state transition probability for the reversed Markov
chain, as

qij(k) = P(rp—y = i|r, = Jj). (4.22)

From (4.19) and (4.22) it follows that

~ o qmi(k—1)
a(k) = 2oi-1qumi(k—1) (4:25)

and
(kY = > qum(k - 1), (4.24)
I=1
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4.8 Network Modeled Using Markov Chain

Combining (4.23) and (4.24) we get
qij(k)mj(k) = qijzi(k — 1)

The iteration of P now becomes

Il

Pi(k+1) = mi(k+ 1)Pi(k+1) = mj(k+ 1)%: (zpa12ho1 | Toe1 = J)

7T (k + 1)9 ((D(Tk)ZkZ}Q;q)T(Tk)

+ F(Tk)eke;{rT(Tk) l Fpe1 = ])

s

mik+ 1) ik + DE (D (75)zp2t @ (71)
i=1

1l

+ F(Tk)eke,{FT(Tk) l rp = i,l‘k+1 = ])

> ami(E (@ (722 7 (7)
i=1

i

1

+ I“(Tk)eke;;FT(rk) l T l) .

The fourth equality follows from that P(A|C) = > P(A|B,C)P(B|C).
In the last equality we have used the Markov property of Lemma 4.2.
By vectorizing P;(k+1) and using the Conditional independence lemma,
Lemma 4.1, we get

s B
VeCﬁj(k-i- 1) = Zqij/qi vecﬁi(k) + Zqijﬂ'i(k) vecg,:,
i=1

i=1

where 4; and G; are as stated in the theorem. Rewriting the sums as
matrix multiplications and using Kronecker products, see Appendix A,
the recursion can be written as the linear recursion

B(k+1) = (@ @) diag(1)P (k) + (@7 ® I)(diag(mi(k)) ® )G,
(4.25)

which completes the proof. O
This result generalize the results in Ji et al. (1991) and Gajic and
Qureshi (1995) in the sense that we let the Markov chain postulate
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the distribution of ®(r};) and T'(r}), while Ji et al. (1991) and Gajic
and Qureshi (1995) let the Markov chain postulate a deterministic
®(1;) and T'(t;) for every Markov state. The results in Gajic and
Qureshi (1995) are for the continuous time case.

Calculation of Stationary Covariance
In the stable case the recursion (4.21) will converge as k£ — oo,

P® = lim P(k).

k—o0

As the Markov chain is regular the stationary distribution 7% of the
Markov chain is given uniquely by

7@ = 1%,

Since (4.21) is a linear difference equation it follows that P will be
the unique solution of the linear equation

P> = (@ ®1I)diag(4)P™ + (@7 ® I)(diag(z{®) ® I)G.

It then follows that the stationary value of E zsz is given by

o _ s Ty — 13 T =DP(r, =1) = Py
P _%L%E(Zkzk) }}g?o;E(zkzk |7 = O)P(rp = 1) ,Z:;P“

where ﬁf" is the corresponding part of P%.

Two Transitions Every Sample

To model the situation in the communication network more closely we
now let the Markov chain make two transitions between successive
samples, one transition for each message being sent in the commu-
nication network. Let the Markov chain be divided into two groups
of states, one group R* which generates the probability distributions
for delays from sensor to controller, and one group R°* of states that
generates the probability distributions for delays from controller to ac-
tuator. The transitions between states are then such that the state of
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_____________________

Figure 4.4 Transitions between the two sets of states

m € R toj € R%¢.

. First a transition is
made from state i € R to state m € R°?, then a transition is made from

the Markov chain will alter between the two groups of states, see Fig-
ure 4.4. When we transmit the data package containing y; the state
of the Markov chain will be ri¢, and when wu; is transmitted the state
will be 7. The probability distribution of 7° is given by ry, and the

distribution of 7¢* by r§®. Let the closed loop system be (4.6) with

Tp = [T T,

To simplify writing we introduce the notation

o, = q)(Tk)
I, = F(Tk),
for the matrices in the closed loop system. Introduce the Markov state
probabilities
wE) = POy =)
mi(k) = P(r3 =J).

Collect the random components up to time & in

2SC " K 3
Y = {eo,...er, 7H ,.,.,;ff,rgc,...,rff,zga,...,r;“,rg",...,rg“}.
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Introduce the conditional state covariance

Pi(k) = B (el | i =)

and
Pi(k) = (k) Py(k).
The following Theorem gives a procedure to evaluate ﬁl(k)

THEOREM 4.2 B
The vectorized state covariance matrix P (k) satisfies the recursion

P(k +1) = (QT ®I) block,;(q;i ;)P (k)
+ (Q" ® I) block;; (q;imi (k) Gji),  (4.26)
where
Aim = E (P @@ |1y =m,1y =1),
79,758
gim = E (FkRFZ‘ | rza = m,ric = i),
79,75°
vec Py (k)
vec Py (k)

vec Py (k)

and block;;(A(Z,/)) means the block matrix with elements A(i,j) in
block position (Z,7) for i,j € {1,..,s}. O

The proof of Theorem 4.2 is given in the following section.

From (4.26) it is seen that the closed loop will be stable, in the
sense that the covariance is finite, if the matrix (T ®I) block;; (¢;iA;i)
has all its eigenvalues inside the unit circle.
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Proof of Theorem 4.2
Introduce the transition probabilities for the reversed Markov chain

Gwi(k) = P =mlry =)
qGn(k) = Py =ilri =m)

It is easily seen that
3 (k + 1) g5k + 1) = gmyy (R)
and
ot (R (k) = qim7* (R).
Using the Markov property lemma, Lemma 4.2, we get

Pi(k+1)

(k + 1)9,(Zk+lzk+1 |73 = J)

ms‘c(le + 1)¥ ((Dkzkzk Cbk + Trerey, Fi{ | rihr = j)

ll

“(k+1) Z g (k + 1 <Dkzkzk oF

m=1

+rkeke,{rk | r;;H =j,r%% = m)

‘(k+1) Zq (k+1) Z&f,‘}l(k)E Opzpzt T

m=1

ll

" — — \SC __ 2
+erkeka llk+1 =j, 5t =mry = i)
= anl] Z%mﬂ (k (Dkzkzk cbk
m=1
AThepel TE | e = jorid = myry = 1)

= anu Z%mﬂ' (Dkzkzkd)k

m=1

+Thepel TF | 180 = m, 1y’ = 1)
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Vectorizing ﬁj(k + 1) and using the conditional independence lemma,
Lemma 4.1, we get

s S
vecPj(k + 1) = Z Qmj Zq:fm-/qim vec P;i(k)
i=1

m=1

s s
+ Z qmj Z Qimﬂ?c(k) vec gim-
i=1

m=1

Using matrix notation and Kronecker products, see Appendix A, this
linear recursion can be written as the Lyapunov recursion (4.26), which
completes the proof. O

EXAMPLE 4.2—VARIABLE DELAY
Consider the closed loop system in Figure 4.5. Assume that the dis-

lh

— Process | Sensor

Actuator
node

A

=P

Controller |
node -

Figure 4.5 Digital control system with induced delay. The time-delay 7, is
determined by the state r;, of the Markov chain in Figure 4.6

tribution of the communication delay 7, from controller to actuator is
given by the state r, of a Markov chain. The Markov chain has two
states, see Figure 4.6, The delay is

0 if T 1,
Ty = (4.27)
rect(d — a,d + a) if ry,

Il
o
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4.3 Network Modeled Using Markov Chain

a1 g2

Figure 4.6 Markov chain with two states. State 1 corresponds to no delay, and
state 2 corresponds to a time-delay in the interval [d — a,d + a], see Equation
(4.27).

where rect(d — a,d + a) denotes a uniform distribution on the interval
[d - a,d + a]. It is also assumed that d —a > 0 and d + @ < k. The

controlled process is
x=x+u+te
y=x

Let the control strategy be given by u;, = —Lx;,. Discretizing the pro-
cess in the sampling instants determined by the sensor we get

Xpy1 = q)xk + ro(’fk)uk + Fl(fk)uk_l + Feek

where
d = eA/L — eh’
h
/ edsB = et — 1, ifr, =1,
Fo(Tk) = Oh_d
/ e“sdsB = "% -1, ifry, = 2.
0
0, if rp = 1,
Fi(rr) = h
) / e*dsB = " el - 1), ifrp =2
h~d

Introduce the closed loop state z;, as

Xp
Zp = .
Up-1
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The closed loop system can then be written as
zpe1 = A(Tr)z + T(Th)en

where

A(ty) =

o) —1:0£fk)L Fli)fk)} I(zy) = E)e} .

Stability of the closed loop system is determined by the spectral radius
of (QF ®I) diag(A;), where

A; = A(0)®A(0),
Ay = E{A(Tk)(@A(Tk)‘rk:Z}

and the transition matrix for the Markov chain is

q1 1-q1
Qz{l }
— g2 qz

Figure 4.7 shows the stability region in the ¢; — g2 space for A = 0.3,
d = 0.8k, a = 0.1k and L = 4. This corresponds to a control close
to deadbeat for the nominal case. In Figure 4.7 the upper left corner
(g1 = 1 and g2 = 0) corresponds to the nominal system, i.e. a system
without delay. The lower right corner (g1 = 0 and g2 = 1) corresponds
to the system with a delay uniformly distributed on [d — a,d + a]. As
seen from Figure 4.7 the controller does not stabilize the process in
this case. When g1 = g3 the stationary distribution of the state in the
Markov chain is 71 = w2 = 0.5. In Figure 4.7 this is a line from the
lower left corner to the upper right corner. Note that if the Markov
chain stays a too long or a too short short time in the states (i.e. if
g1 = g2 = 1lor g1 = g2 = 0) the closed loop is not stable, but for a
region in between the closed loop is stable (i.e. if g1 = g2 = 0.5). If
g1 = 1 and gy < 1 the system is stable. If g1 = 1 and gp = 1 stability
depends on the initial state for the Markov chain. d
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ook
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orr Stable
0.6
g1 osf
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q2

Figure 4.7 Stability region in g1 — ¢g space for the system in Example 4.2.

l h
Actuator Process Sensor
A

Controller

Figure 4.8 Digital control system.

EXAMPLE 4.3—VACANT SAMPLING - TWO HEURISTIC CONTROL STRATEGIES
Consider the digital control system in Figure 4.8. Due to sensor failure
or communication problem samples can be lost. This is called vacant
sampling. Vacant sampling is modeled with a Markov chain, see Figure
4.6. If the Markov chain is in State 2 the sample is lost, and State 1
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corresponds to normal operation. Let the process be

dx +u+

— =x e

dt

y = x.
Discretizing the process in the sampling instants we get

Xpe1 = Pup + Tup + Leep.

We will now compare two heuristic control strategies. The first is given
by u, = —Lx;, if we get a new sample, and u; = u;_1 if the sample is

lost. The closed loop system will be

Zpi1 = A(rk)zk + B(rk)ek,

Xk
Upo1

where

4 =
®-TL O .
_L 0 ifr, =1,
A(rp) = ® T
[ :} ifrk =2
0 I

B(r) = m

The sampling period is chosen to 2 = 0.3, and the noise variance such
that T, = 1. The feedback is designed to minimize the nominal LQ
cost function, i.e. assuming r, = 1,

N
.1 T T
J = 1\171_1)130 N kg_l(xkxk + Uplty, ).

This gives L = 1.776. Using (4.21) we can determine stability and
calculate stationary performance. The stability region and level curves
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Unstable

09 1

L L
07 08

i
1
i
!
i
¥
0 L I’ : 1 1 I
0 0.1 0. 0.3 0.4 0.5 0.6
q2

[ e,

Figure 4.9 Stability region and level curves for J in the g1 — gg space. The
level curves are plotted for J = {10(=),20(—=),50(~.), 100(..), oo(thick)}.

for J in the g1 — gs space are shown in Figure 4.9. Note that we
fail to stabilize the system if we have large periods with lost samples

(large g3).
The second choice of controller is to use state feedback when the sensor
is working, and in case of sensor failure use feedback from an estimated

state £,. An estimate of x; can be formed as

R Xp+1 ifr, = 1,
Xk+1 n .
Oxp + Tuy ifry = 2.

The closed loop system will be

Zpe1 = A(rk)zk + B(rk)ek,
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where
zp = N
X
o-TL 0 .
®-TL 0 it =1,
A(ry) = ® -IL
if Iy = 2
0 &-TL
T,
B(l‘k) = 0 .

The stability region and level curves for J in the g1 — g2 space are
shown in Figure 4.10. In Figure 4.9 and Figure 4.10 the upper left cor-

1 . . .
L’
09t 3
’ H
08} i
, :
B
o7t
1
o6l
7 P
. ! N
q1os ; P Unstable
[
04 HE
! i

03f
/

i
1
!
o2r | j
!
o1t i
! i
|
.

] s . L L
0.2 03 04 05 06 0.7
qz

Figure 4.10 Stability region and level curves for J in the g1 — g9
space with controller using prediction. The level curves are plotted for
J = {10(-),20(—-),50(~.),100(..), co(thick)}. Compare with Figure 4.9. Note
that the stability region is increased using the second control with an estimator.

A

'
08 0.9 1

9 :
[ 0.1

ner corresponds to the nominal case without lost samples. The lower
right corner corresponds a system where all samples are lost, of course
the controllers fail to stabilize the system in this region. It can be seen
from Figure 4.9 and Figure 4.10 that the stability region of the closed
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4.4 Simulation of Systems with Network Delays

loop system is increased using the second control with an estimator.
There are however regions in the g1 — g2 space where the first con-
troller is better. In Figure 4.11 the area where the controller without
prediction outperforms the controller using prediction is shown. This
is not surprising, although the controller using prediction has a larger
stability area it is not an optimal controller. O

1

o.9f

o8} First controller best

07} - /

o6l

os| Secorld controller best
/

oo Unstable

0.2

oir

0 L I L L L s n L L
0 0.1 0.2 0.3 0.4 05 086 07 0.8 03 1

Figure 4.11 Regions in the g1 — g space where the two controllers are per-
forming best. Remember that none of the controllers are optimal.

4.4 Simulation of Systems with Network Delays

An alternative to the algebraic analysis of control systems with net-
work induced delays is to use simulation. This can also be useful in
cases when there are no analytic results available. Typical cases are
time domain responses such as step responses, noise amplification,
response to load disturbances etc. Simulation can also be used when
we want to study effects of nonlinear elements in the control loop,
for example actuator saturation. An alternative way to evaluate a cost
function is to do Monte Carlo simulations and calculate the mean value
of the cost function, one such example is given in Chapter 5. A prob-
lem with this approach is the large number of samples needed to get
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a small confidence interval for the cost function. Although this can be
lowered using variance reduction techniques, see Morgan (1984).
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5

Optimal Stochastic Control

This chapter deals with controller design for the distributed digital
control system in Figure 5.1. The controlled process is assumed to be

Actuator| P .| Sensor
node rocess "1 node
A

............................................................ i

Network

B " oH

3
Controller
node

Figure 5.1 Distributed digital control system with induced delays.

% = Ax(t) + Bu(s) + v(z), (5.1)
where x(¢) € R”, u(t) € R™ and v(t) € R". A and B are matrices of
appropriate sizes, u(t) is the controlled input and v(¢) is white noise
with zero mean and covariance R,. The influence from the network
is collected in the variables 7° and 7}, which is the delay from sen-
sor to controller and from controller to actuator. We will assume that
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the delay from sensor to actuator is less than the sampling period A,
ie T3¢ + 74" < h. We also assume that old time delays are known
when the control signal is calculated, i.e. when we calculate u; the
set {78¢,..., 735 75% ..., 7;%,} of time delays is known. The knowledge
of 0ld time delays can for instance be solved by clock synchronization
and time stamping as described in Chapter 2. Discretizing (5.1) in the
sampling instants determined by the sensor node, see Chapter 2, gives

xpr1 = P + To(735, 73 up + T1(73, 75%) U1 + Vg (5.2)
The output equation is
Ve = Cap + wy, (5.3)

where y;, € RP. The stochastic processes v, and w; are uncorrelated
white noise with zero mean and covariance matrices R; and Rg re-
spectively.

If the network delays can be assumed to be constant, (5.2) degenerates
to the standard process used in sampled data control theory, and thus
the standard design tools can be used for synthesis, see Astrém and
Wittenmark (1990).

In this chapter we will assume that consecutive network delays are
stochastically independent, see Chapter 3. Section 5.1 solves the LQ-
problem for (5.2) with full state information. In Section 5.2 the optimal
state estimator is derived. The LQG-problem with output feedback is
solved in Section 5.3. Through a separation theorem it is seen that the
optimal controller is the combination of the LQ-controller and the op-
timal state estimator. The parameters of the optimal controller can be
precalculated and interpolated from a tabular. The proof of the separa-
tion property follows the lines for the delay-free case in Astrom (1970).
Section 5.4 discusses complexity and implementation of the optimal
controller. A suboptimal scheme is also proposed. Section 5.5 compares
the different control schemes in an example of distributed digital con-
trol.
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5.1 Optimal State Feedback

5.1 Optimal State Feedback

In this section we solve the control problem set up by the cost function

N-1 T
X x
JN:x%QNxN-bEZ[k} Q{ k}, (5.4)
2=0 Up Uup
where @ is symmetric with the structure
Q= [Q? Qm} . (5.5)
Q1 Q22

Here @ is positive semi-definite and Qgs is positive definite. The solu-
tion of this problem follows by the same technique as for the standard
LQG problem. We have the following result:

THEOREM 5.1—OPTIMAL STATE FEEDBACK

Given the plant (5.2), with noise free measurement of the state vec-
tor x3, i.e. y = x;. The control law that minimizes the cost function
(5.4) is given by

i = -1 | 2| (5.6)

Up_1

where

L(7}%) =(Qa2 + SZ%)_I [ sz + Si}d S}%iﬂ
Si1(73) :;Ew {GT(IZC,r;“)Sk+1G(fzc,f,‘j;“)}
k

O To(rs, 759 Ta(ri75%)
G TSC,,Z.CCI = 4
( k k ) [0 I 0

Si =B {F{ (7}") QF1(7}) + Fy (25)Sh (7)) Fa(73) }
k

(Q22 + S.Z-Ze—l)‘[ 0 }

Fmﬁﬂ@ﬂ$m4{ 3 )
¥ —( {2 + Siil _SI%BH

=ﬁw;}
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(Quz + SEI 0
Fy(ty) =(Qaz + SEH)T| (@ + Sy -5
0 (Qu2 + S522)

I 0

~ | -Lep)
0 I
Ry O

Sy = { ; O} .

S;: is block (i, ) of the symmetric matrix S, (7%¢), and Qj; is block (i, /)
of Q. O

X
Proof Introduce a new state variable z;, = { B Using dynamic
Up-1

programming with Sy, the cost to go at time %, and with ¢, the part of
the cost function that cannot be affected by control, gives

T
T . Xk Xk T
21 Spzp + o =min K Q " + 23,1 Sk+12R41 ¢ T k1
!

wp T TE Uk up
T
. Xk Xk T s¢
= E min E Q u +Zk+18k+12k+1 fk + dpit
k

T up TRk Up
T
T Xk Xp
. Xk Xk &
=E min Q + | ug Spe1 | Ur
¢ U Up up
Up-1 Up-1

+ Oper + I S}ﬂlRl.

The second equality follows from the fact that 7;° is known when u,,
is determined. The third equality follows from independence of [xkl
U

and 7§%, and from the definition of Sj,1. The resulting expression is
a quadratic form in u;. Minimizing this with respect to u; gives the
optimal control law (5.6). From the assumption that @ is symmetric it
follows that Sj, and S, are symmetric. O
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Theorem 5.1 states that the optimal controller with full state informa-
tion is a linear 7}°-depending feedback from the state and the previous
control signal

s¢ Xk
up = ——L(Tk ,Sk+1) . .

The equation involved in going from Sj, to S; is a stochastic Riccati
equation evolving backwards in time. Each step in this iteration will
contain expectation calculations with respect to the stochastic vari-
ables 7j° and 7;“. Under reasonable assumptions, that we will not
discuss here, a stationary value Sy, of S} can be found by iterating the
stochastic Riccati equation. In practice a tabular for L(7}, Se) can
then be calculated to get a control law on the form

w =19 |,

Up_

where L(7j°) is interpolated from the tabular values of L(7;%, Ss) in
real-time.

5.2 Optimal State Estimate

It is often impossible to get full state information. A common solution
to this is to construct a state estimate from the available data. In our
setup there is the problem of the random time delays which enter (5.2)
in a nonlinear fashion. The fact that the old time delays up to time
k -1 are known at time &, however, allows the standard Kalman filter
of the process state to be optimal. This is because x; only depend on
delays in the set {7{%, .., 73%,,7§% ..., 75%}, as seen from (5.2).

When we are to calculate an estimate of x, we assume that we
know old values of the process output and process input. These can
simply be stored in the controller for later use. We also assume that
old values of the transfer delays for process output measurements and
control signals are known. One way to achieve this is by time stamping
of signals transferred in the control system, see Chapter 2. Denote the
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information available when the control signal uy is calculated by ;.
This has the structure

Y = {yo,...,yk,uo,...,uk_l,fgc,...,T,i",fﬁ“,...,12‘11}.

Notice that the sensor to controller delay 7°¢ at time & and older are
available, but the controller to actuator delays 7° are only known up
to time &2 — 1.

The state estimator that minimizes the error covariance is given in
the following theorem.

THEOREM 5.2—OPTIMAL STATE ESTIMATE
Given the plant (5.2)—(5.3). The estimator

Zupp = -1 + Kr(yr — Copp-1) (5.7)
with

ca

Rpeape = PRapot + To(r3, 75 up + Ta(r3, 75" -1 + Ki(ye = Cippp-1)
Zop-1 = E(x0)
Py.y = OP,®T + Ry — ®P,CT[CPLCT + Ry 'C P @

Py = Ro = E(xox))

K, = ®P,CT[CP,CT + Ry]™

K, = P,CT[CP,CT + Ry]™

I

minimizes the error variance E{[x; — #x]7 [z — %] | 7%} Note that the
filter gains K and K, do not depend on 7°¢ and 7. Moreover, the
estimation error is Gaussian with zero mean and covariance Py =
Pk—PkCT[CPkCT-l-Rz]_lCPk. O

Proof Note thatthe random matrices in the process (5.2),To(73%, 75%)
and I’y (73, 75%), are known when the estimate %51 18 calculated. This
simply follows from the assumption that old time delays are known
when we make the estimate. By this we know how the control signal
enters xp.1, and the optimality of the estimator can be proved in the
same way as the standard Kalman filter for time-varying, linear sys-
tems, see Anderson and Moore (1979). See also Chen et al (1989). I
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5.3 Optimal Output Feedback

The following theorem justifies use of the estimated state in the opti-
mal controller.

THEOREM 5.3—SEPARATION PROPERTY

Given the plant (5.2)—(5.3), with 9% known when the control signal
is calculated. The controller that minimizes the cost function (5.4) is
given by

wi = ~L(c) [xf""'} (5.8)
ll,’;_l
with
L(t}) = (Qa2 + S231)~1[Q{2 + S}%il 5’231], (5.9)

where S, is calculated as in Theorem 5.1, and £, is the minimum
variance estimate from Theorem 5.2. O

To prove Theorem 5.3 we will need some lemmas. The first lemma is
from Astrém (1970).

LemMA 5.1

Let E[- | y] denote the conditional mean given y. Assume that the
function 7(y,u) = E[l(x,y,u) | y] has a unique minimum with respect
tou e U for all y € . Let u®(y) denote the value of u for which the
minimum is achieved. Then

minB(x,5.1) = Bl(x,y,0°() = Blmin B0 5]}, (510)
u(y u

where E denotes the mean value with respect to the distribution of y.
¥
O

Proof Thisis Lemma 3.2 in Chapter 8 of Astrom (1970). O
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LeMMaA 5.2
With the notation in (5.7) and under the conditions for Theorem 5.2
the following holds.

- T N

Xp+1lk+1 XR+1|k+1
. E Sk+1 I %
T3 Uk Wh+1 up Uy

A T A
Xk Xhlk
- Spar(ri tr(R,CTR,, S Ky C
= | ug pet(T3) | wr | +tr(Ra r+15k 11K r41C)
Up-1 Up-1

+ tr(RoK 11841 K re1) + tr(Pip®” CTK 18311 K1 CO),
where S} is block (1, 1) of the matrix Sy, a

Proof The calculations are similar to those in Theorem 5.1. In Theo-
rem 5.2 the state estimate recursion is written as a recursion in Z;_;.
This can by use of the equations in Theorem 5.2 be rewritten as a
recursion in L.

fpeprr = (= Kp1C)Zpsape + Krv1yien

(I = K1 C) { @&y + To(73, 75 up + To(7, 75 ) up—1}
+Kk+1 {C(‘ka + FQ(TZC, T}i“)uk + Fl(T]‘ZC, T;’;“)uk_l + Uk)
+wpa}. (5.11)

]

By introducing the estimation error %, = x, — £z, which we know is
orthogonal to %3, from Theorem 5.2, (5.11) can be written as

Rprpsr = g + o735, 73 up + Ta(735, T35 U1

+ —K_]ﬁ.lCbek + FkﬂCvk + K}lekﬂ. (5.12)

From this it follows that

2 Xk X
k+1|k+1
AR e A u +H | v , 5.13
17 k k k k
k
Up- Wes1
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where
® To(ris 75" Talry, 74%)
615" = 5.14
orra) = g ] (514
KpC® Kp1C K
o = k+1 k+1 k+1 . (5‘15)
0 0 0
The sought equality can now be written as
Freper]” Xp+1lk
E {[ k] it [ 4 ID’}
T30 Uk Wkl Up
EATR Kk
= | ug E {GT(Tk T )SkﬂG(TZC,TZ“)} Uk
Up_1 Up-1
i 1" X
+ E Up HTS;HIH Up ‘9’}5
Vg atOp s
Weai1 Wet1
~ T N
Xk|k ~ Xklk r
= up S}Hl(fzc) Up +tI‘(Pk]kCI)TCTKk+1S,%ilKk+1C(D)
Up-1 Up-1

+tr(R 2Kk+lsk+1Kk+1) + tr(RICTKk+1Sk+1Kk+IC)7 (5.16)
where

Spar(75) = TEM{GT(T“ 598G, 75} (5.17)
k

The first part of the first equality follows from that &z, uz, and ug-1
are independent of &, 75, v, and wg41. The second part of the first
equality follows from that H is independent of 73* . The second equality
follows from that % is independent of v, and wk+1. O

Proof of Theorem 5.3 By repeated use of Lemma 5.1, and the
knowledge that £, is a sufficient statistic for the conditional distribu-
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tion of x;, given 9%, we find the functional equation

T
W (&, k) = EminE { [x’*] Q [x’} + W(Eerapers b + 1) [%}

[P Uk U

. Xk T Xk A - se
= EmlnE{{ :| Q[ :‘ +W(xk+1|k+1,k+1)‘xk|k, Ty } (5.18)

T8 Uk Up Up

The initial condition for the functional (5.18) is
W(Eny, N) = E{x§@van | v } - (5.19)
In (5.18) E is brought outside the minimization using Lemma 5.1, i.e.
7%

7%° is known when we calculate the control signal. We will now show
that the functional (5.18) has a solution which is a quadratic form

W (Ragpr k) = [ & ]Tsk{ % }-&-Sk, (5.20)

Up_1 Up-1

and that the functional is minimized by the controller of Theorem 5.1
with x; replaced by £ Using Theorem 5.2 we can rewrite the initial
condition (5.19) as

W (Enin, N) = 2y Qnén + tr(Q1Pwiw), (5.21)

which clearly is on the quadratic form (5.20). Proceeding by induction
we assume that (5.20) holds for & + 1 and we will then show that it
also holds for k. We have that

o T o
W (X, k) = ;E min { [xklk} Q {ka@} + tr( P Q1)
k

Uk Up Up

LA Lk ,
| oun | St | wr | +tr(R1CTE 1Sk Kk41C)
Up-1 Up_1

+ tr(RoK oy S K ) + tr(Pp®T CTE 1 S K141 C @) + sk+1} ,

(5.22)
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where we have used Lemma 5.2 to rewrite E W (£, 1441, %2 + 1). Com-
paring (5.22) with the quadratic form in the proof of Theorem 5.1 we
see that it is minimized by the control law

*

5 5 Lrlk
Qo+ 52 [QL + 82 Siil][ H } (5.23)
k-1

where S, is as stated in Theorem 5.1. Using the optimal control in
(5.22) and applying E which can be moved inside [xk,k ul ], we find

that W (&, k) is on the quadratic form (5.20). The induction is thus
completed and the criterion is minimized by the controller stated in
the theorem. 0

5.4 A Suboptimal Scheme

A small drawback with the optimal scheme is the need to form a tabu-
lar for the state feedback matrix L(7}). This is because it is typically
too time-consuming to compute L(7}°) from the Riccati equation in
real-time. A solution to this problem is to precalculate L(7}) for some
values of 7j° and then in real-time interpolate from the precalulated
values. Note that the tabular is one-dimensional and is computed off-
line.

Another approach is to use a suboptimal control schemes. An alterna-
tive to the optimal controller is the suboptimal controller

Up = -L [(Dired I’Zre‘i] l:xklk J s (524)
Up-1

where

e

J T +E T
e = / eAdsB,
0

pred _ A(t¥+E1$®
(‘I)k = (7§ k ),

and L is the optimal state feedback vector in the delay-free setup. Here
E7{* is the mean value of 7{°. The operation CDp Lppe + Fp Up1
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can be seen as a prediction from the state estimate at time kh to
a state estimate when the control signal is applied at the actuator.
This controller requires less real-time computations than the optimal
controller in Section 5.3. In Section 5.5 this controller is compared with
the optimal controller in a numerical example.

5.5 Example

Consider the following plant, both plant and design specifications are
taken from Doyle and Stein (1979),

== MES m u+ [—3651}6 (5.25)

y=[2 1]x+7,

It

where E(£(2)) = E(n(¥) = 0 and E[5(t)€(t2)] = Eln(t)n(t)] =

8(t1 — tg). The control objective is to minimize the cost function

T
J = E lim 1 / (xTHT Hx + u*)dt,
T—-c0 T 0

where H = 4v/5[+/35 1]. The sampling period for the controller is
chosen as i = 0.05. This is in accordance with the rule of thumb that
is given in Astrom and Wittenmark (1990). The time delays, 7;° and
7¢%, are assumed to be uniformly distributed on the interval [0, ah/ 2],
where o is a parameter in [0, 1], the effect of which will be studied in
the sequel.

The stationary cost function will be evaluated and compared for
four different schemes, an LQG-controller neglecting the time delays,
the scheme with buffers proposed in Luck and Ray (1990), the opti-
mal controller derived in Section 5.3, and the suboptimal controller in
Section 5.4.

The first design is done without taking any time delays into account.
The process and the cost function are sampled to get discrete time
equivalents, and the standard LQG-controller is calculated. This gives

70




5.5 Example

the design

3891117 2.690 — 2.927
L= , K= ., K = ‘
8.094 —4.484 ~5.012

This choice of L, K and K gives the following closed loop poles

sp(® — T'L) = {0.700+0.0702i}
sp(® — KC) = {0.743,0.173}.

Fven if these looks reasonable a Nyquist plot of the loop transfer
function reveals a small phase margin, ¢, = 10.9°. The small phase
margin indicates that there could be problems to handle unmodeled
time delays. Numerical evaluation of (4.13) gives the stability limit
Qerie = 0.425 for the controller neglecting the time delays.

The scheme by Luck and Ray, see Luck and Ray (1990), eliminates
the randomness of the time delays by introduction of timed buffers.
This will, however, introduce extra time delay in the loop. The design
for this scheme is done in the same way as in the standard LQG-
problem.

The third scheme we will compare is the optimal controller de-
scribed in Section 5.3. Notice that the optimal state estimator gains K
and K will be the same for the optimal controller as if the time delays
were neglected. The feedback from the estimated state will have the
form

up = —L(15) { K ]
k= k ” :

k-1

The feedback vector L(75°) is precomputed for 21 values of 77, which
then are used for interpolation in the controller implementation. The
used interpolation method is linear interpolation for each element
of L(73°).

The suboptimal controller (5.24) uses L, K, and K from the stan-
dard LQG-controller.

The stationary cost function has been evaluated for the four schemes
by solving (4.15). For comparison the stationary cost has also been
evaluated by Monte Carlo simulation, which is made by calculating
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2 T T T T T T T T T

1.8F Design neglecting time delays

141 .
Scheme by Luck-Ray

1.2F

Loss 1
0.8
0.6} Optimal controller 4
0.4} ]

0.2r J
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o
Figure 5.2 Exact calculated performance (solid lines) of the four schemes,
and simulated performance (dashed lines) of system (5.25) as a function of
the amount of stochastics in the time-delays. The time-delays are uniformly
distributed on [0, @h/2]. Notice the small difference between the suboptimal
controller and the optimal controller. For @ > 0.425 the controller neglecting
the time delays fails to stabilize the process.

the mean cost during 2-10* simulated samples. The results agree very
well, see Figure 5.2. From Figure 5.2 it is seen that the controller ne-
glecting the time delays fails to stabilize the process for & > . The
optimal controller and the proposed suboptimal scheme outperforms
the scheme proposed in Luck and Ray (1990). Note that for this exam-
ple the cost is just slightly higher with the suboptimal controller than
with the optimal controller.
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6

Conclusions and Future
Work

Conclusions

This thesis has presented a control problem that arises when control
loops are closed over a communication network, as is being more and
more common. The communication network introduces time delays in
the control loop. The network induced time delays can have effect on
system stability and performance. As a first step in this work three
models for the communication delays were discussed:

e Constant delay
e Random delay, which is independent from transfer to transfer

e Random delay, with probability distributions governed by an un-
derlying Markov chain

The model including a Markov chain has the attractive property to
make modeling of trends in the network delays possible. These trends
can, for instance, arise due to varying network load. Using a linear
controller it was concluded that the closed loop system can be written
on the form

2per = P(72)2p + T(Th)es, (6.1)

where the stochastic properties of 7, depend on the network model.
For the different network models methods to evaluate a quadratic cost
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function were developed. Through the same analysis we found crite-
ria for mean square stability of (6.1) for the different network models.
The LQG-optimal controller was developed in the case of random de-
lays that are independent from transfer to transfer. The derived con-
troller uses knowledge of old time delays. These can be calculated using
“time-stamping” of messages in the network. The solution was found
by combining the LQ-controller with a Kalman filter. It was shown
that a separation principle holds.

Future Work
Future work will include studies of

74

Optimal controllers when the distributions of the network delays
are generated from a Markov chain. In this work it will also be
natural to study methods to estimate the state of the Markov
chain from the observed time delays.

Experimental verification of the theoretical results for systems
with network delays.

Classification of which system setups that are sensitive to net-
work delays. In the best case such an analysis could result in
a rule of thumb for deciding which setups need special control
schemes.

Analysis and control strategies when the control delay can be
larger than the sampling interval. A problem that occurs in this
case is that there are then no guarantee that the samples arrive
at the controller and the actuator in the order they were sent.

Another interesting problem is how to control when we have one
or several lost samples, so called vacant sampling? What can be
done if we have a network black out, the network malfunctioning
for period of time?
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A

Kronecker Products

This appendix contains the definition of Kronecker product and some
results for calculation with Kronecker products. For a more thorough
discussion, see Halmos (1958) and Lancaster (1969).

A.1 Definitions

Let A € ®™" and B € RP*4. The Kronecker product A® B € R
is defined as

CluB amB ca alnB
a21B a22B N aan
A®B = . ) ‘ i , (A1)
amB ameB ... AmnB
where a;; are the elements of A. Let X € R™" with the structure
X=[X1 X2 ... Xu]. (A.2)

The vectorized form of X, vec{X} € R™™, is defined by stacking the
columns into a vector as

vec{X} = . (A.3)
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A.2 Basic Rules of Calculation

The Kronecker product fulfills the following rules of calculation:

0A®pBB = af(A®B), a,f R (A4)
(A+B)@C = A®C+B&®C (A.5)
A®(B+C) = A®B+A®C (A.6)
A®(B®C) = (A®B)®C (A7)
(A®B)T = AT@BT (A.8)
(A®B)(C®D) = AC®BD (A.9)
(A®B)! = A'e@B (A.10)
The proofs follow directly from the definition of Kronecker products.
LeEmmA A1
vec{AXB} = (BT ® A) vec{X}. (A.11)
O

For a proof see Lancaster (1969).
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B

Some Results from
Probability Theory

B.1 Markov Chains

This section presents some results on Markov chains. See Berman
and Plemmons (1969), and Elliot et al. (1995) for a more thorough
discussion on Markov chains.

The Markov process is characterized by that if its state is given at
a time ¢, its future evolution is independent of the history that gave
the state at time ¢.

DEFINITION B.1—MARKOV PROCESS

A sequence of random variables x(¢) is said to be a Markov process or
to posses the Markov property if the associated probability measure
has the property

P(x(t, + h) | x(t1), x(t2), - - ,x(£)) = P(x(tn + 1) | x(tn)), (B.1)
where t; < t, fori = 1,..,n - 1. |

DEFINITION B.2—MARKOV CHAIN
A finite Markov chain is a Markov process that takes values {r;} in a
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finite set S = {1,2,...,s}, with transition probabilities
P(?'k+1 =j l Iy, = L) = qgij. (B.Q)
The transition probabilities, qij, fulfill g;; > 0 for alli,j € S, and

S
> g =1 (B.3)
Jj=1

O
Introduce the Markov state probability distribution
n(k) = [mi(k) mo(k) ... ms(R)], (B.4)
where 7;(k) is the probability that the Markov chain state at time £
is i. The probability distribution for 7, is given by
w(k+1) 7(k)Q (B.5)
7(0) 7°, (B.6)

I

It

where 70 is the distribution for rq.

A Markov chain is said to be regular if the transition matrix @
is a primitive matrix. A primitive matrix fulfill @* > 0 for a positive
integer k, A > B denotes that the matrix elements satisfies a;; > bjj.
That a Markov chain is regular means that all states will be possible
to reach in the future, there are no “dead ends” in the Markov chain.

If a Markov chain is primitive the stationary probability distribu-
tion 7% = limy_,c 77 (k) is given uniquely by

% = 10, (B.7)

where 7% is a probability distribution.

B.2 Conditional Independence
Stochastic independence of two events X and Y is usually defined by
P(X&Y) = P(X)P(Y), (B.8)

where P(X) is the probability that event X occurs. A weaker condition
on two events is conditional independence.
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DEFINITION B.3—CONDITIONAL INDEPENDENCE
X and Y are said to be conditional independent relative to Z if

P(X&Y | Z) = P(X | Z)P(Y | Z). (B.9)

O

The following theorem is often useful when conditional independence
of two events are to be shown.

THEOREM B.1
The following three conditions for X and Y being conditional indepen-
dent relative to Z are equivalent

1. P(X&Y | Z) = P(X | Z)P(Y | Z)
2. P(X | Y&Z) = P(X | Z)
P(Y | X&Z) = P(Y | Z)

O
Proof We will use the following three equalities in the proof.
P(X&Y&Z) = PX|Y&Z)P(Y&Z)
= PX|Y&Z)P(Y|Z)P(Z) (B.10)
P(X&Y&Z) = P(Y|X&Z)P(X&Z)
= PY|X&Z)P(X|Z)P(Z) (B.11)
P(X&Y&Z) = P(X&Y|Z)P(Z) (B.12)
1 = 2: Use Condition 1in (B.12), and compare with (B.10).
2 = 3: Use Condition 2 in (B.11), and compare with (B.10).
3 = 1: Use Condition 3 in (B.11), and compare with (B.12).
O

Theorem B.1 can also be formulated using random variables and ex-
pected values.

83




Chapter B. Some Results from Probability Theory

THEOREM B.2
Let x and y be random variables which are conditionally independent
relative to z. The following relations hold for all measurable functions

f()and g().
L E(f(x)g(»)|2) = B(f(»)
2. E(f(x) | y.2) = B(f(x) | 2
3. E(f(y) | x.2) = E(f(5)]

|2)B(g(y) | 2)
)
2)

O

Proof This is proven by use of Theorem B.1 and the technique in
Chapter 9.1 of Chung (1974). O
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