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Electrostatics in Macromolecular Solution

Bo Jönsson, Mikael Lund and Fernando L. Barroso daSilva

Theoretical Chemistry, Chemical Center, POB 124, S-221 00 Lund, SWEDEN

Abstract

An overview of the interaction between charged macromolecules in aqueous solution is pre-
sented. The starting point is the dielectric continuum model and the Debye-Hückel equation.
The usefulness of the simple theory is emphasized in particular for biological macromolecules,
whose net charge or surface charge density often is low. With more highly charged macro-
molecules or aggregates it may be necessary to go beyond the simple Debye-Hückel theory and
invoke the non-linear Poisson-Boltzmann equation or even to approach an exact solution us-
ing Monte Carlo simulations or similar techniques. The latter approach becomes indispensable
when studying systems with divalent or multivalent (counter)-ions. The long range character of
the electrostatic interactions means that charged systems of varying geometry - spheres, planes,
cylinders... - often have many properties in common. Another consequence is that the detailed
charge distribution on a macromolecule is less important. Many biological macromolecules con-
tain titratable groups, which means that the net charge will vary as a consequence of solution
conditions. This gives an extra attractive contribution to the interaction between two macro-
molecules, which might be particularly important close to their respective isoelectric points.
The treatment of flexible polyelectrolytes/polyampholytes requires some extra efforts in order
to handle the increasingly complex geometry. A theoretical consequence is that the number of
parameters - chain length, charge density, polydispersity etc - prohibits the presentation of a
simple unified picture. An additional experimental, and theoretical, difficulty in this context
is the slow approach towards equilibrium, in particular with high molecular weight polymers.
A few generic situations where polyelectrolytes can act both as stabilizers and coagulants can,
however, be demonstrated using simulation techniques.

Introduction - The Dielectric Continuum Model

An aqueous solution containing biological molecules can in a general sense be described as an
electrolyte solution. That is, it contains simple ions such as Na+, K+, Cl− etc., but it can
also include macromolecules with a net charge significantly different from unity. DNA, proteins
and polysaccharides are important examples of natural origin but different synthetic additives
can also be described as charged macromolecules, sometimes collectively refered to as polyelec-
trolytes. It is our intention to discuss the interaction/stability of biological polyelectrolytes in
a few generic situations, some of which hopefully are of interest for a food chemist.

Despite the progress in computer technology and numerical algorithms during the last
decades, it is still not feasible to treat a general solution of charged macromolecules in an
atomistic model. This becomes especially clear when we are trying to calculate the interaction
between macromolecules and how the interaction can be modulated by other charged species.



The alternative at hand is to use the dielectric continuum model, crudely refered to as the Prim-
itive Model. The solvent is then described as a structureless medium solely characterized by its
relative dielectric permittivity, εr. This simplification facilitates both the theoretical treatment
and the conceptual understanding of electrostatic interactions in solution. In contrast to its
name, it is a very sophisticated approximation, which allows an almost quantitative description
of widely different phenomena such as sea water and cement paste! In the Primitive Model we
treat all charged species as charged hard spheres and the interaction, between two charges i
and j separated a distance r, can be formally described as,

u(r) =
ZiZje

2

4πε0εrr
r > dhc (1)

u(r) = ∞ r < dhc (2)

where Zi is the ion valency, e the elementary charge, ε0 the dielectric permittivity of vacuum
and dhc is the hard sphere diameter of the ion. For simplicity, we will in this communication
mostly assume it to be the same for all ionic species and equal to 4 Å.

Figure 1: Snapshot from a MC simulation of two proteins. The black and grey spheres illustrate
mobile cations and anions, while amino acids are depicted as a white spheres, clustered to
form the two proteins. In a simulations, the proteins are displaced along a line and rotated
independently. Ions are displaced in all three directions and the whole system is enclosed in
sphere of appropriate radius.

These charges can be the small mobile ions in a salt solution, but they can also be the
charged groups on a protein or some other macromolecule. The model is schematically depicted
in Figure 1 with two macromolecules in a salt solution. We will solve this model exactly using
Monte Carlo (MC) simulations or in an approximate way with either the Poisson-Boltzmann
(PB) equation or its linearized version, the Debye-Hückel (DH) equation. For an introduction
to the DH theory, the reader is recommended to consult the excellent textbook of Hill [1]. En-
gström and Wennerström [2] has solved the PB equation for a charged surface with neutralising
counterions and their paper is a good starting point on this subject. Monte Carlo and other
simulations are well described in the textbooks by Allen and Tildesley [3] and by Frenkel and
Smit [4]. MC simulations allow us to emphasize where the simple theory is applicable and
where a more accurate treatment is needed. The simulations also give an oppurtunity to clarify
certain physical mechanisms, providing a deeper understanding of the system at hand.

The paper is arranged as follows:

• A simple electrolyte solution.

• A charged macromolecule in a salt solution.



• The interaction between two charged macromoleules.

• The addition of polyelectrolytes/polyampholytes.

• Attraction due to charge regulation.

• Protein polyelectrolyte complexes.

A Simple Electrolyte Solution
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Figure 2: Individual activity factors from MC simulations and from the DH theory with the hard core diameter
equal to 4 Å. a) Monovalent ion in a 1:1 and 2:1 salt and b) Divalent ion in a 2:1 salt. The arrows indicate
physiological salt condition.

An important property in an electrolyte solution is the activity factor, γ, or excess chemical
potential, µex, which is a part of the total chemical potential, µ,

µ = µ0 + kT ln c + kT ln γ = µ0 + µid + µex (3)

µ0 is an uninteresting reference chemical potential and c is the concentration. It is straightfor-
ward to calculate γ in a Monte Carlo simulation, but we can also obtain it from the Debye-
Hückel approximation,

kT ln γDH = − Z2e2κ

8πε0εr(1 + κdhc)
(4)

The important quantity in eq.(4) is the inverse screening length, κ,

κ2 =
e2

ε0εrkT

∑
i

ciz
2
i (5)

which is proportinal to the ionic strength. Figure 2 shows how γ varies as a function of salt
concentration for two different salts. The accuracy of the simple DH theory is surprisingly good
and the main discrepancy comes from the too approximate treatment of the excluded volume
effect, i.e. the hard core interaction. A knowledge of γ allows us to calculate a number of
interesting quantities. For example, we can calculate the dissolution of carbon dioxide in the
ocean. The high salt content of the oceans increases the solubility of CO2, which is apparent
from the equilibrium relations,

H2CO3 → HCO−3 + H+ K1 =
cHCO3cH

cH2CO3

γHCO3γH

γH2CO3

= KS
1

γHCO3γH

γH2CO3

(6)



HCO−3 → CO2−
3 + H+ K2 =

cCO3cH

cHCO3

γCO3γH

γHCO3

= KS
2

γCO3γH

γHCO3

(7)

Note that thermodynamic equilibrium constants, K1 and K2, are true constants in contrasts
to the stoichiometric ones, KS

1 and KS
2 . Table 1 presents experimental and simulated activity

factors for some salts relevant for sea water. The departure from ideality (γ = 1) is non-
negligible and as a consequence the dissolution of CO2 in sea water is significantly larger than
in fresh water. The excellent agreement between measured and simulated activity factors in
Table 1 gives a strong support for the Primitive Model.

Salt γExp γSim

Na2SO4 0.37 0.37
K2SO4 0.35 0.36
NaCl 0.67 0.67
KCl 0.66 0.66
CaSO4 0.14 0.15

Table 1: Experimental [5, 6] and simulated [7] mean activity factors in sea water at 298 K. The salinity is 3.5
%.

A Charged Macromolecule in a Salt Solution

We can use the activity factors in order to study how the binding of a charged ligand to a
charged macromolecule is affected by addition of salt or changes in pH - a change in pH means
that the net charge of both ligand and macromolecule can vary. The changes will affect the
electrostatic interactions and are almost quantitatively captured by the activity factors. The
simplest approach would then be to treat the macromolecule as a charged spherical object and
directly apply eq.(4). Let us take the calcium binding to the small chelator 5,5’-Br2BAPTA as
an example [8],

Ch + Ca2+ → ChCa K =
cChCa

cChcCa

γChCa

γChγCa

= Ks
γChCa

γChγCa

(8)

Since K is a true constant we can write a relation between the stoichiometric binding constants
at two different salt concentrations as,

KI
s

γI
ChCa

γI
Chγ

I
Ca

= KII
s

γII
ChCa

γII
Chγ

II
Ca

(9)

The charge of the chelator is −4e at neutral pH and it is assumed to have a radius of 7 Å.
When calcium is bound to the chelator it is simply modeled by a reduction of the chelator
charge from −4e to −2e. This simple model captures the salt dependence from 1 mM to 1 M
salt. Table 2 shows how the stoichiometric binding constant, Ks, varies with salt concentration.
Both simulated and DH results are in excellent agreement with experiment.

A quantitatively more correct alternative is to use the so-called Tanford-Kirkwood (TK)
model [9]. The TK model takes the detailed charge distribution into account and solves the
electrostatic problem using a variant of the DH approximation. The final result is the free
energy for the macromolecule in a salt solution. For not too highly charged macromolecule this
is usually a very efficient and reliable approach and the relevant equations are easily evaluated
numerically. Figure 3 shows how the calcium binding constant to the small protein calbindin
D9k varies with salt concentration [10]. Both simulated and TK results are based on the detailed
charge distribution of the protein with the calbindin structure obtained from an x-ray study [11].



cs (mM) ∆pKExp
s ∆pKSim

s ∆pKDH
s

2 0.00 0.00 0.00
10 0.26 0.32 0.32
25 0.64 0.60 0.59
50 0.89 0.85 0.84
100 1.20 1.12 1.11
300 1.58 1.58 1.59
500 1.77 1.79 1.81
1000 1.97 2.05 2.09

Table 2: Shift in the stoichiometric calcium binding constant for the chelator BAPTA. 2 mM salt has been
taken as a reference point and the shifts are calculated relative this value.

The agreement between the two theoretical approaches is excellent and so is the comparison
with experimental results.
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Figure 3: A comparison of experimental and theoretical binding constant shifts for the calcium binding protein
calbindin D9k. The electrostatic interactions have been modified by adding salt in the range 2-150 mM and by
mutating (neutralizing) charge residues in the protein [10]. The symbols represent different mutations (charge
neutralization of acidic residues) and different salt concentrations. Spheres are simulated data and squares are
calculated using the TK approach. Filled symbols describe the addition of KCl and open symbols the addition
of K2SO4. The dashed line corresponds to perfect agreement. The shifts are calculated relative to the native
protein at 2 mM salt concentration.

It is interesting to investigate the limitations of the TK approach and one should expect
deviations from the simulated values for a really highly charged protein. This is indeed the case
and Figure 4 reveals a typical behaviour for the binding of a charged ligand to an oppositely
charged macromolecule or particle. That is, when the charge reaches a certain niveau, then the
electrostatic response is no longer linear but it approaches an asymptotic value. This means
that the binding becomes ”saturated” and, for example, a further increase of negatively charged
residues in a protein does not lead to an increased binding of calcium.

The electrostatic model in colloid chemistry has always been one with a uniform dielectric
permittivity for the whole system, typically chosen to be equal to that of water. In the calcu-
lations reported above we have followed this tradition. Obviously, the dielectric permittivity
of a protein is different from that of bulk water, but we do not know its exact value and to be
more formal, it is not a well-defined quantity. We also note that charged species prefer the high
dielectric region - ions dissolve in water and not in oil! Another way to express it is to say that
the electric field lines remain in the aqueous phase, hence a small body of low dielectric material
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Figure 4: Binding constant shifts as a function of protein net charge - comparison of DH (line) and MC
simulations (symbols). The protein is modelled as a sphere of radius is 14 Å with two binding sites close to
the surface. The shift refers to a change in salt concentration from 1 to 500 mM. The protein concentration is
20µM and the binding process involves two divalent ions.

has only a marginal effect on the electrostatic interactions. These conclusions are supported
by a wealth of experimental results on colloidal systems.

In biophysics, the opposite paradigm prevails and the low dielectric interior of a protein is
usually assumed to be the clue to many properties of biochemical interest. The electrostatic
approach is based on the PB or DH equation. A technical feature with the ”low dielectric”
assumption is that the calculations contain a divergence, which can cause numerical problems.
Or, it can be used as a ”fitting parameter”. The divergence in electrostatic calculations invoking
a low dielectric region is apparent in many applications. One very clear such example is
the determination of apparent pKa’s in the protein calbindin - see Table 3, which have been
determined experimentally by Kesvatera et al. [12] and theoretically by Spassov and Bashford
[13] using a low dielectric response for the protein. Juffer and Vogel [14] have extended the
Debye-Hückel calculations of Spassov and Bashford and allowed for a high dielectric response
from the protein. The paper by Kesvatera also contains results from MC simulations using
a uniform dielectric response equal to that of water. Obviously the calculations using a low
dielectric interior containing charged groups are unable to describe the electrostatic interactions
in calbindin and the results are unphysical.

Amino Acid Exp. Theory-Spassov Theory-Juffer Theory-Kesvatera

Glu-27 6.5 21.8 5.2 4.7
Asp-54 3.6 16.9 4.8 4.4
Asp-58 4.4 9.1 4.8 4.8
Glu-60 6.2 13.2 5.6 6.0
Glu-65 5.4 12.7 4.6 5.0
Rms. - 10.6 0.93 0.92

Table 3: The apparent pKa of titrating acidic groups in calbindin D9k. Experimental and various theoretical
results. The ”low dielectric” results of Spassov and Bashford have been highlighted. Both Spassov-Bashford and
Juffer-Vogel have used the DH approximation, but the latter authors have assumed a uniformly high dielectric
permittivity in the same way as Kesvatera et al.. The rms deviations are given in units of pKa.
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Figure 5: The interaction between two smMLCK peptides at two different salt concentrations; left=4 mM
and right=100 mM of a monovalent salt. The smMLCK peptide consists of 15 amino acids and its net charge
is +7e. Solid fat lines show the simulated free energy of interaction, while thin solid line is from the screened
Coulomb interaction, eq.(10). The thin line with filled circles is the simulated total energy of interaction and
the line marked with filled squares is the electrostatic interaction between the charges on the two peptides only.

The Electrostatic Interaction Between Two Proteins

The interaction of two peptides

Calmodulin binds to myosin light chain kinase (MLCK) via a small peptide rich in basic
residues. Calmodulin and the peptide forms a complex, which has been isolated and crys-
tallized. We have taken the peptide, smooth muscle MLCK (= smMLCK), from this complex
and studied the interaction between a pair. The net charge of smMLCK at neutral pH is close
to +7e and the two peptides repel each other, see Figure 5a, that is the free energy of interaction
is positive. The unscreened direct electrostatic interaction between the peptides is of course
strongly repulsive, but the total electrostatic energy, including the background electrolyte, is
essentially zero or sligthly attractive for all separations. Thus, the repulsion between the equally
charged peptides is totally dominated by the entropy - the entropy of salt and counterions. An
increase in salt concentration from 4 to 100 mM does not change this picture - Figure 5b.
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Figure 6: The interaction between an smMLCK peptide and a fragment of calmodulin. The net charge of
smMLCK is +7e and the calmodulin fragment has a charge of −8e. Left: The salt concentration is 4 mM.
The solid fat line is the simulated free energy of interaction, while the thin line is the corresponding screened
Coulomb interaction. The thin line with filled circles is the simulated total energy of interaction. Right: The
effect of added salt on the free energy of interaction.

A different picture emerges for the interaction of two oppositely charged peptides. Figure 6



shows the free energy of interaction between smMLCK and a peptide section from calmodulin,
comprising Glu45-Glu67 with a net charge of −8e. The interaction free energy is strongly
attractive and so is the total energy. Thus, the attraction is energy driven and the entropy
change is in this case only marginal.

The interaction between two charged macromolecules in a salt solution is screened by salt
particles and one can derive an expression for their free energy of interaction, A(r), based on
the DH approximation,

A(r)/kT = lBZ1Z2
exp(−κr)

r
(10)

where we for convenience have introduced the Bjerrum length, lB = e2/4πε0εrkT . Note that
A(r) is a free energy. Figure 5 shows that the screened Coulomb potential is a good approxi-
mation and it is semi-quantitatively correct at both salt concentrations.

The results presented here for these peptides is generic and is found in many cases with
charged macromolecules or particles. The geometry is not crucial and the same qualitative
behaviour is found for both interacting planes and interacting spheres. The screened Coulomb
potential captures the change in free energy when the two macromolecules approach each other.
It is, however, questionable to partition the screened Coulomb interaction into energy and
entropy terms. More elaborate forms of the screened Coulomb potential can be derived [15],
where the macromolecular size is taken into account. The comparison in this section has been
limited to a uni-uni valent electrolyte and to situations where κ−1 is of the same order or larger
than the macromolecular dimension. To extend the use of the screened Coulomb potential to
multivalent electrolytes usually leads to qualitatively incorrect results - see next section.

The effect of multivalent ions

Above we have shown how the simple theory, the screened Coulomb potential, is capable
of an almost quantitative description of the interaction between two charged proteins. This
good agreement is limited to systems containing only monovalent counterions. There is a
qualitative difference between the interaction of two charged macromolecules in the presence
of monovalent and in the presence of multivalent counterions. In the latter case the mean field
approximation behind the DH equation breaks down and one has to rely on simulations or
more accurate theories like the hypernetted chain equation [16, 17]. The deviation from the
mean field description due to ion-ion correlations has such a physical origin that the effect
should be independent of the particular geometry of the charged aggregates. Clearly there are
quantitative differences between cylindrical, spherical or irregularly shaped or flexible charged
colloidal species, but the basic mechanism operates in the same way. The importance of ion-ion
correlations can be seen from Fig.7, where the free energy of interaction for two charged spherical
aggregates has been calculated from an MC simulation. For monovalent counterions there is
a monotonic repulsion in accordance with the screened Coulomb equation, eq.(10), but with
multivalent counterions or a solvent with a low dielectric permittivity, the entropic double layer
repulsion decreases and eventually the correlation term starts to dominate. This phenomenon
can be seen as a balance between entropy and energy. For two weakly or moderately charged
macromolecules with monovalent counterions, the dominant contribution to the free energy
of interaction comes, as we have seen in Figure 5, from a reduction in entropy when the
two counterion clouds start to overlap. The energy of interaction is always attractive and is
only weakly dependent on the counterion valency. The important difference between a system
with monovalent or divalent counterions, is the reduced entropy of the latter due to a lower
number density of counterions. Thus, any change that reduces the entropy and/or increases
the electrostatic interactions will eventually lead to a net attractive interaction.

This is for a model system with spheres with net charges, but the same mechanism is
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Figure 7: a) The free energy of interaction between two spherical aggregates of radius 10 Å and net charge
24. The system contains no salt but only counterions of different valency. The dielectric permittivity is 78 and
the temperature 298 K. b)The same as in a) with monovalent counterions and variation of the relative dielectric
permittivity.

also operating between two protein molecules with discrete charge distributions and irregular
form[18] and between two DNA molecules [19].

The effect of titrating groups

All proteins and many other macromolecules contain ionizable residues whose ionization status
depends on the interaction with other molecules. This means that the electrostatic interaction
between two proteins, besides the interaction between their average charges, also will contain
terms originating from induced charges. These interactions can be formalized in a statistical
mechanical perturbation approach [20, 21] and a protein is characterized not only by its average
net charge, but also by its capacitance. The induction interaction is important for the inter-
action of an approximately neutral protein with another charged macromolecule. The protein
capacitance is a function of the number of titrating residues and will display maxima close to
the pKa’s of the titrating amino acids. In this section we will derive a formal expression for
the capacitance. Consider the macromolecules A and B, described by two set of charges [ri, zi]
and [rj, zj], respectively. Their mass centra are separated by R, which means that the distance
between two charges i and j is given by rij = |R + rj − ri|. The average net charge of the
distributions need not be zero, that is 〈ZA〉 6= 0, where 〈ZA〉 = 〈∑ zi〉. The free energy of
interaction can be written as,

A(R)/kT = − ln 〈exp(−U(R)/kT )〉0 ≈ 〈U(R)/kT 〉0
−1

2

〈
(U(R)/kT )2

〉
0
+

1

2
[〈U(R)/kT 〉0 +

1

2

〈
(U(R)/kT )2

〉
0
]2 (11)

where U(R) is the interaction between the two charge distributions and 〈...〉0 denotes an av-
erage over the unperturbed system, which in the present case is the single isolated protein in
solution. The interaction energy is simply the direct Coulomb interaction between the two
charge distributions,

U(R)/kT =
∑

i

∑
j

lBzizj

rij

(12)

We can make a Taylor series expansion of U , assuming that R >> ri. This expansion will
include ion-ion interaction, ion-dipole interaction, dipole-dipole interaction etc. It will also
include charge-induced charge and induced charge-induced charge interactions. Thus, we can



write an approximation to the free energy including all terms of order up to 1/R2. Note that
the ion-dipole interaction disappears in first order and that the first non-vanishing dipole term,
−l2BZ2µ2/6R4 is of order 1/R4.

A(R)/kT ≈ lB 〈ZA〉 〈ZB〉
R

− l2B
2R2

(
〈
Z2

A

〉
− 〈ZA〉2)(

〈
Z2

B

〉
− 〈ZB〉2)

− l2B
2R2

((
〈
Z2

A

〉
− 〈ZA〉2) 〈ZB〉2 + (

〈
Z2

B

〉
− 〈ZB〉2) 〈ZA〉2) (13)

The first term is the direct Coulomb term and the following term is the induced charge-induced
charge and the last terms are the charge-induced charge interactions. Note also that 〈Z2〉 6=
〈Z〉2. If the molecules are identical, that is 〈ZA〉 = 〈ZB〉 = 〈Z〉, then the expression simplifies
to,

A(R)/kT ≈ − lB 〈Z〉2

R
− l2B

2R2
(
〈
Z2

〉
− 〈Z〉2)2 − l2B

R2
(
〈
Z2

〉
− 〈Z〉2) 〈Z〉2 (14)

and if pH = pI, then < Z >= 0 and the induced charge-induced charge interaction becomes
the leading term,

A(R) ≈ − l2B 〈Z2〉2

2R2
(15)

The above equations show that the fluctuating charge of a protein or macromolecule may under
certain circumstances contribute significantly to the net interaction. We can define a ”charge
polarizability” or a capacitance, C, as

C =
〈
Z2

〉
− 〈Z〉2 (16)

With this definition of the capacitance, Eq.(13) can be rewritten in a more compact form,

A(R)/kT ≈ lB 〈ZA〉 〈ZB〉
R

− l2B
2R2

(CACB + CA 〈ZB〉2 + CB 〈ZA〉2) (17)

We can use general electrostatic equations and relate the capacitance to the charge induced
by a potential ∆Φ,

Zind =
C∆Φ

kT
(18)

The capacitance, C, can also be derived from the experimental titration curve. For a single
titrating acid the ionization degree, α, can be found in any elementary physical chemistry
textbook,

log K = −pH + log
α

1− α
(19)

Taking the derivative of α wrt to pH gives,

dα

dpH
= α(1− α) = C ln 10 (20)

where in the second step we have identified the capacitance defined in Eq.(16). We can obtain an
approximate value for the capacitance in a protein assuming that there is no interaction between
the titrating sites. A protein contains several titrating groups like aspartic and glutamic acid,
histidine etc., each with an ideal pK value. Denoting different titrating groups with γ and their
number with nγ, then the total capacitance can be approximated with,

Cideal =
1

ln 10

∑
γ

nγ
10pH−pKγ

(1 + 10pH−pKγ )2
(21)
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Figure 8: Left: The capacitance for calbindin D9k as a function of pH. The thick solid curve is from a MC
simulation of the atomistic model , while the thin solid line is the ideal capacitance calculated from Eq.(21). pI
for calbindin is approximately 4.2. Right: The capacitance for hisactophilin as a function of pH with symbols
as before. pI for hisactophilin is 7.3

We have calculated the capacitance for a number of proteins with different characteristics in
terms of number and type of residues. A MC simulation has to be performed at each pH at given
salt and protein concentrations. Unless otherwise stated we have used a salt concentration of
70 mM and a protein concentration of 0.7 mM. Figure 8a shows the capacitance for calbindin.
The main difference from the ideal capacitance curve is a strong broadening of two peaks
corresponding to the response from acidic and basic residues, respectively. If the protein has
a significant net charge, the true curve will also shift away from the ideal one, as is seen for
calbindin at high pH.

The protein hisactophilin is of the same size as calbindin, but it has a slightly different
capacitance curve, see Figure 8b. The protein contains 31 histidine residues, which is reflected
in a large maximum for Chisacto at pH ≈ 5. The downward shift of the maximum is due to
the high positive charge of hisactophilin at low pH. The net charge is +28 at pH = 3 and +23
at pH = 4. The isoelectric point found from the simulations is pI = 7.3, which is in good
agreement with experimental estimates.

The electrostatic interaction between two proteins will be dominated by the direct Coulomb
interaction provided that the net charge, Z, is sufficiently different from zero. The induced
interactions will only play an important role at pH values close to the isoelectric point of one
of the proteins - this can be seen from Eq.(17). Figure 9a shows the free energy of interaction
between the two proteins calbindin and lysozyme at pH = 4, which is close to the isoelectric
point for calbindin. At contact there is a significant difference in interaction energy between
a model with fixed charges compared to a situation where the proteins are free to adjust their
charges.

The difference in free energy between the two models is mainly due to the interaction
between the induced charge in calbindin and the permanent charge in lysozyme. This is a
typical result and significant effects from charge regulation can be expected when one of the
interacting proteins has a large net charge and the other a large capacitance. Following Eq.(17)
we can approximate the difference as,

(Areg(R)− Afix(R))/kT = ∆A(R)/kT = − l2B
2R2

(CcalbClys + ClysZ
2
calb + CcalbZ

2
lys) (22)

and Figure 10 shows an almost perfect agreement between the simulated free energy difference
and the calculated one according to Eq.(22).

An interesting result is that despite that both calbindin and lysozyme are positively charged
at pH = 4, there is still an attractive electrostatic interaction between the two. Such an
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Figure 9: a) The energy amd free energy of interaction between calbindin and lysozyme at pH = 4 for a
protein model with fixed charges (dashed lines) and one with charge regulation (solid lines). The amino acid
model is used and the salt concentration is b) The variation of net charge of calbindin (solid line) and lysozyme
(dashed line) as a function of their separation. The simulations are based on the amino acid model. pH = 4
and salt concentration is 5 mM.

attraction could of course be due to charge-dipole and/or dipole-dipole interactions, but they
do not seem to be important in the present case: the main contribution to the interaction free
energy comes from the induced charges. This is further demonstrated in Figure 9b, where one
can follow how the net charge of calbindin goes from ≈ 1.4 at infinite separation to ≈ −0.5
at contact between calbindin and lysozyme. We will come back to this issue when discussing
protein polyelectrolyte complexation.
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Figure 10: The difference in free energy of interaction between calbindin and lysozyme at pH = 4 for a
protein model w regulation and one with fixed charges. R is the separation between the mass centra of the two
proteins. Symbols denote the simulated difference (see Figure 9) and the solid line is obtained from Eq.(22)
with Zcalb = 1.16, Ccalb = 2.23, Zlys = 10.2 and Clys = 0.88.

Bridging attraction with polyelectrolytes

Adsorption of a polyelectrolyte to an aggregate is a necessary, but not sufficient condition, in
order to attain a modulation of the free energy. It actually has to adsorb to both aggregates
in order to form bridges, see Figure 11, that can lead to attractive interactions. For highly
charged polyelectrolytes and oppositely charged macromolecules, bridge formation is usually a
very effective way of destabilization. From simulations and mean field theories, we know that



Figure 11: Snapshot from a MC simulation of system containing two charged macromolecules and an oppositely
charged polyelectrolyte.

the attraction is rather short ranged and that it typically only extends over distances of the
order of the monomer-monomer separation [22, 23, 24, 25]. Figure 12a shows what happens if
a polyelectrolyte salt is added to a solution of two charged macromolecules. The double layer
repulsion is replaced with a short range attraction with a minimum at a surface-to-surface
separation of approximately a monomer-monomer distance.
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Figure 12: a) The free energy of interaction between two charged spheres as a function of separation, in the
presence of a polyelectrolyte salt (solid line) and in the presence of a 1:1 salt (dashed line). The charge of the
aggregates is 10e and the radius is 10 Å. The freely jointed polyelectrolyte chain contains 10 charged monomers
separated a distance of 6 Å. b) The free energy of interaction between two negatively charged spheres in the
presence of a single neutral polyampholyte chain with 40 monomers. The charge topology has been varied and
the following notation is used: di-block (solid line with no symbols), tri-block (+10,-20,+10) (circles), tetra-
block (+10,-10,+10,-10) (squares) and ”reversed” tri-block (-10,+20,-10) (diamonds). Each macromolecule has
a charge of +20e and the radius is 10 Å.

A polyelectrolyte adsorbs readily to an oppositely charged macromolecule and in the pres-
ence of several charged spheres it becomes of course entropically favourable for the chain to
adsorb to more than one sphere. This can only be accomplished at short separations, since
the chain tries to avoid placing charges far from the charged aggregates, where the potential
is high. Thus, a weakly charged chain, i.e. a chain with large separation between the charged
monomers, will lead to a more long ranged but weaker attraction. In general, one finds that
highly charged systems give rise to fewer, but stronger ”bridges”, and there will be an optimal
choice of polyelectrolyte structure for the attraction between the colloids.

The interaction between charged macromolecules is, from an electrostatic point of view,
rather insensitive to the addition of neutral random polyampholytes. It is only with block-
polyampholytes that the normal double layer repulsion can be decreased in the same way as
with oppositely charged polyelectrolytes. The oppositely charged block acts in the same way as
an oppositely charged polyelectrolyte. The only complication or constraint is that the equally
charged blocks should avoid the aggregates. If the polyampholyte has a net charge, then it
behaves qualitatively as a weakly charged polyelectrolyte. A mixing of positively and negatively



charged monomers allows a tailoring of the range and magnitude of the attraction. Figure 12b
shows the free energy of interaction between two charged macromolecules with different types of
polyampholytes. A naive picture of a tri-block between two adsorbing macromolecules, which
seems to be true for neutral block-copolymers, is one where the two ends of the PA chain
adsorb to one aggregate each and ”pull” them together. Such a structure is quite common in a
simulation, but it does not lead to a significant ”pulling” force due to the weak force constant
of a long segment of negatively charged monomers. Another way to express this is that the
free energy gain of adsorbing a PA chain is approximately distance independent for a tri-block
of the type (-10,+20,-10). Figure 13 is a snapshot from the simulation and demonstrates this
conformation.

Figure 13: A tri-block, (+10,-20,+10), adsorbing to two negatively charged, Z = −20, macroions. Counterions
and positively charged monomers are shown in grey and negatively charged monomers in black.

Protein polyelectrolyte complexation

The complexation of polyelectrolytes and proteins is extensively used in pharmaceutics, foods
and cosmetics. [26, 27, 28, 29, 30, 31, 32, 33] The subject has been addressed by a number of
authors exploring it from experimental measurements [32, 33, 34, 35] to theoretical modeling [36,
37, 38]. The strength of interaction is to a large extent regulated by electrostatic interactions,
governed by key parameters such as pH and salt concentration.

A particularly interesting observation [33, 36, 39] is the apparently paradoxical formation
of soluble complexes at conditions where the net charges of the protein and the polyelectrolyte
have the same sign. Experimental studies of Dubin, Kruif and co-workers [33, 36, 39] have
demonstrated this special feature of the polymer/protein complexation. The term complexation
“on the wrong side” has been used, meaning that a polyanion forms a complex with a protein
at a pH above the isoelectric point of the protein. The molecular interpretation of such studies
has focused on the assumption of “charged patches” on the protein surface [33, 40, 34, 37].

A formal way to describe the interaction between oppositely charged patches on two macro-
molecules is in terms of a multipole expansion. That is, for two neutral protein molecules
the leading terms would then be dipole-dipole, dipole-quadrupole, etc. Other electrostatic
properties of the protein, however, may be more important and Kirkwood and Shumaker [20]
demonstrated theoretically already in 1952 that fluctuations of residue charges in two proteins
can result in an attractive force. Recently, we have taken up this idea and used MC simulations
and a charge regulation theory in order to explain protein-protein and protein-polyelectrolyte
association in a purely electrostatic model [21, 41]. A charge regulation mechanism has also
been suggested by Biesheuvel and Cohen-Stuart [42].

We can use simulated capacitances and dipole moments in order to analytically calculate
the ion-induced charge and ion-dipole contributions to the interaction free energy according
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Figure 14: The contribution to the free energy of interaction from the charge - induced charge term (solid
lines) and the ion-dipole term (dashed lines). Lines without symbols describe lysozyme, filled circles refer to
α-lactalbumin and filled squares refer to β-lactoglobulin, respectively. The free energies are calculated from
eq.(17) using simulated capacitances and dipole moments. Note that the ion-dipole terms for α-lactalbumin
and β-lactoglobulin coincide.

to eq.(17). The results indicate that the regulation term is by far the most important term
for lysozyme, while for α-lactalbumin and β-lactoglobulin the two terms are of comparable
magnitude. The curves in Figure 14 should of course be regarded as qualitative and not
quantitative. However, they still give, as will be seen below, a correct picture of the behaviour
of the three proteins. The contact separation has been defined as the protein radius plus the
polyelectrolyte radius, Rp + Rpe. The latter has been chosen as half the end-to-end separation
of the corresponding neutral ideal polymer. Both the protein and polyelectrolyte radii are
approximate, but even with a rather generous variation of these values the general picture of
Figure 14 will remain the same. The regulation term decays slower than the ion-dipole term,
which means that it will gain in relative importance at larger separation, see Figure 14. This
means that even if the two terms are comparable at contact, the regulation term can still
dominate the contribution to, for example, the second virial coefficient.

We have performed four different simulations for each protein-polyelectrolyte complex:

• A: the “neutral” protein, that is all charges have been set to zero.

• B: the protein with fixed charges at each amino acid residue.

• C: the protein with an ideal dipole at its center of mass.

• D: the protein with titrating amino acid residues.

The first set of simulations (A) describes only the shape of the protein and the free energy
of interaction is of course everywhere repulsive. The second set of simulations (B) uses fixed
fractional charges on all residues, which has been determined in a separate simulation of the
isolated protein at the appropriate pH. In the next set (C), the charge distribution of the protein
is replaced by an ideal dipole. In the fourth and final set (D) the amino acids are allowed to
titrate and this simulation contains all electrostatic contributions including the ion-induced
charge term. The difference between set B and C describes the importance of higher order
electrostatic moments, quadrupole, octupole etc. in the protein, while a comparison of sets C
and D reveals the effect of the regulation mechanism.

The calculated free energy of interaction, A(R), for the three proteins at their respective pI
all show a clear minimum, see Figure 15. The relative strength of the minima are in qualitative
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Figure 15: The free energy of interaction between the centers of mass of the protein and the polyelectrolyte
at low salt concentration obtained from MC simulations with Model D. The curves have been calculated at the
respective isoelectric points for lysozyme (no symbols), α-lactalbumin (filled circles) and β-lactoglobulin (filled
squares).

agreement with perturbation calculations, cf. Figure 14, while the actual numbers are approx-
imately half the values predicted by second order perturbation theory. The minima appear at
roughly the same separation despite the fact that β-lactoglobulin is more than twice as big as
the two others. This can be explained by the elongated form of the former, which also results
in a more long ranged attraction. The separation R can approach zero, which corresponds to
a situation where the polyelectrolyte wraps around the protein. Note, however, that A(0) is
repulsive indicating that the “wrapping” of the chain around the proteins is an entropically
unfavourable structure.

The attractive minimum in the protein-polyelectrolyte complex is reduced upon addition of
salt [37] and we can use the minima of A(R) in Fig.15 in order to estimate the critical ionic
strength. Assuming that the salt screening can be described by simple Debye-Hückel theory
and that the complex can be defined as dissolved when the interaction is less than kT , we get
the following relation,

exp(−2κRmin)|A(Rmin)| ≤ kT (23)

The factor of two in the exponent comes from the fact that the second order terms dominate
the interaction. Following this recipe we find that approximately 10 and 20 mM salt is sufficient
to dissociate the α-lactalbumin and β-lactoglobulin polymer complexes, respectively.

Thus, we have shown that a polyanion can form a complex with a neutral protein molecule.
Next, we will make a numerically more rigorous partitioning of contributions to the free energy
of interaction shown in Fig. 15. The minimum for lysozyme is solely due to charge regulation,
Fig. 16a. If the charge distribution on lysozyme is considered fixed, then the polyanion-
lysozyme interaction is essentially everywhere repulsive. Replacing the detailed charge distri-
bution with an ideal dipole at the mass center has a small effect on the free energy. This means
that the ion-dipole interaction gives a very small attractive contribution, while the effect from
higher order moments is negligible.

As shown in Fig. 16b, the polyanion interacts more strongly with α-lactalbumin than with
lysozyme. For α-lactalbumin the regulation term increases the depth of the minimum from
approximately 4 to 6 kT . An interesting effect is that the dipolar protein shows a stronger
interaction than the protein with a detailed but fixed charge distribution. This means that the
ion-quadrupole interactions etc. add repulsive contributions to the interaction.
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Figure 16: The free energy of interaction between the centers of mass of lysozyme and the polyanion. The
free energies have been calculated at pI and the four curves correspond to the different cases mentioned in the
text. a) Lysozyme and the polyanion and b) α-lactalbumin and the polyanion.

Conclusion

We have demonstrated a few generic situations where electrostatic interactions between charged
macromolecules seem to play an important role. With Monte Carlo simulations we can obtain
the exact answer within the given interaction model, which allows us to test the validity of
approximate theories. Many biochemical systems are comparatively weakly charged, in contrast
to many inorganic systems, and simple theories based on the Debye-Hückel approximation give
accurate answers. The long range character of the Coulomb interaction usually means that the
geometry and detailed distribution of the charged groups are less important for the interaction
of two charged macromolecules.
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