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The field of Adaptive Control is a vital subfield of Control Theory.  During the
last few years there has been a very intense discussion on the appli‘cability"bof
adaptive control, and on the ‘standard assumptions’ made in the traditional
theory. New algorithms have been proposed, and old ones revised. :

. - Some years ago, the question of what is really the relevant information needed
for successful adaptive control begun to receive some attention. Different algo-
rithms where published, pushing’ the limits of what has been achieved before.
‘The prototype problem of stabilizing an unstable plant has been studied. This
area has by some authors been called universal controllers. It is to this tradition
the present work belongs.

Outline

Chapté} 1 gi\féS a g‘eﬁei;l”—bu’t' brief—introduction to the field of adaptive
control and different trends in it. This serves as motivation for the subsequent
work, and attempts to put the thesis in the proper context.

The problems addressed in the thesis are formally stated in Chapter 2. It
is attempted to give general problem formulations and definitions, even if this
generality is not necessarily needed for the sequel.

Several results which will be used as general building blocks, introducing
many of the fundamental ideas in the thesis, are given in Chapter 3. These
are:. a viewpoint on dynamic feedback, a result on estimating the norm of
the state, and a theorem on time-varying singularly perturbed linear systems.
Finally the concept of switching function controller is introduced, and some
properties stated.

Chapter 4 contains ‘meta-results’ on adaptive stabilization, i.e. statements
on adaptive stabilization which are independent of particular algorithms. The
main result is the complete characterization of necessary and sufficient a priori
knowledge needed for adaptive stabilization, namely knowledge of the order of
any stabilizing controller. Several other results are also given.

“The Turing Machine of Universal Controllers” is presented in Chapter 5.
As the name suggests, this adaptive controller possesses the greatest stabilizing
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viii ‘ Preface

power a smooth adaptive controller can have.

Earlier work on universal stabilizers have all dealt with variations of the
theme of high-gain stabilization. This is taken up in Chapter 6, where some
new results are presented, particularly for multivariable plants of high relative
degree.

In the final chapter, possible impact of these results on the future of adaptive
control is discussed. Suggestions for further work are given.

Intenﬁons

No particular attempt has been made to present the results by using as simple
mathematics as possible. Time has not permitted the inclusion of an appendix
‘giving' some introduction to some of the mathematical “standard facts” used
in this thesis. The following text books are tecommended as fairly elemen-
tary first introductions to the different areas: [Brickell-Clarke] or [Warner| on
differentiable manifolds; [Smith] on real analysis, [Shapiro] on algebra, [Gant-
macher| on matrix theory and linear algebra, [Simmons] on point set topology,
[Levinson-Redheffer| or [Ahlfors| on complex analysis. ’

I have tried to avoid formula numbers of the type (4.16). In this thesis
the tagged formulas are of two types: There are ‘global’ formulas, tagged by
mnemonics such as (MIMOC). These are referenced throughout the thesis, and
the tags appear in the index. There are also ‘local’ tagged formulas, tagged for
example as (Q), that are referenced only locally, i.e. within the current page
or so. Page references are also used to some extent.

The symbol m denotes the end of a proof, while o signals end of a remark,
definition, assumption, or example.

The emphasis in the thesis will be on continuous time systems. When analo-
gous results are true for discrete time systems, in general these are stated more
briefly, since the basic ideas in the proofs often are quite similar.

The mathematical conventions used, the symbols etc. are presented in Sec-
tion 2.2.

*. . * *

A vast number of papers and books have been written on the subject of Adap-
tive Control. From the standpoint of being immediately useful, this work is
probably one of the most useless among these. The results are to be considered
mainly as existence-proofs: to show that something is possible or impossible.
It is on this level its possible importance lies.
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Adaptive Control

There are probably few fields within engineering in which there are so many
different meanings, opinions, and feelings as in what is called “Adaptive Con-
trol”. The term has been used since the 1950s. Over 1500 papers have been
published. Adaptive controllers are commercially available from e.g. ASEA
and Foxboro. Some authors claim that adaptive control cannot be used for
anything, while others are extremely enthusiastic. There is very little agree-
ment on what is really adaptive control, and what is not, and how the terms
should be defined. This chapter is an attempt to increase the confusion.

We will give a very brief survey of the field of adaptive control. The goal is
to give a perspective on the present work, rather than to summarize a gigantic
field of engineering science. Therefore, comparatively few references will be
given. For a fuller survey, the reader is referred to the survey paper [Astriim
1983] and references given therein.

1.1 Adaptation, Learning, Self-organizing, Self-tuning

In everyday language to adapt means to change its behavior in order to cope
with a changing environment. An adaptive controller thus change itself to ob-
tain better performance of the plant it is controlling. This is sometimes, but
most often not what we mean when we talk about “adaptive control”. Instead,
what most people seem to mean by “adaptive control” is a sort of learning
controller, controlling a plant known only imprecisely, or changing in time in
an unpredictable fashion. The controller “learns” how to behave in order to

1




2 Chapter 1 Adaptive Control

achieve acceptable control performance. Terms like learning control system and
self-organizing control have been proposed, but these have not gained popular-
ity in the control community.

It might be meaningful to distinguish between what might be called the
adaptation problem, to track unpredictable variations in the plant, and what
can be called the tuning problem, i.e. to learn how to behave in order to control
a fixed, unknown, plant satisfactory. In the sequel, we shall only deal with the
second problem. One reason is that the problems often can be considered as
fairly close. The latter problem is also easier to formulate cleanly. We also
argue that time-varying systems are often not the natural way of describing
particular real-world dynamical system.

Learning Machines

Inspired by the development of electronics and digital computers, there was
a great interest in learning machines and learning systems in the fifties and
sixties. Alan Turing’s paper from 1950, [Turing 1950], discusses learning in
man-built systems, and is still very readable. A class of learning machines,
the perceptrons, was introduced by Rosenblatt, [Rosenblatt] and received a
great deal of attention. The perceptron was originally proposed as a model of
neuro dynamical phenomena and brain mechanisms. Learning is also sometimes
claimed to take place in certain biological systems. For a discussion of these
matters, see the classical works [Tsypkin| and [Bellman].

A branch of the very diverse field of artificial intelligence, to be distinguished
from the more engineering oriented, is searching for the Holy Grail of our time:
To create the intelligent computer, capable of e.g. passing the Turing test,
introduced in the paper cited above. An interesting opposing point of view is
presented in [Dreyfus|, “What Computers Can’t Do”, where the main argument
is that intelligent learning requires the possibility of exploring the environment
without supervisor, i.e. a body. ,

We shall to some extent return to these toplcs at the end of the chapter,
and also in the last_one. However, this will not be from the philosophical
standpoint, but rather the engineering standpoint of achieving more powerful
controllers, and automating more complicated tasks.

In this chapter, we take the standpoint that an “adaptive controller” is a
special sort of “learning machine”. What shall be meant by this? We shall
discuss this in very vague terms, where any term can be given ‘any’ interpre-
tation. Consider the situation of a machine learning to perform a certain task.
We will take the ‘cybernetic’ standpoint of viewing the learning machine M as
a dynamical system with state space X. A reasonable way of assigning a mean-
ing to the concept of “successful learning” is to say that there is a subspace
Z C X such that the natural projection of the state z € X on the quotient
space Q = X /Z converges to a certain point in Q. The subspace Z is then the
component of the state space that M needs to accomplish its prescribed task
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after learning. The quotient space Q represents the current state of knowledge,
and we shall—in accordance with the adaptive control tradition——call-this the
parameter space. In this tradition, Z is, by a slight abuse of language, called
the state space. ' S '

Adaptive Controllers as Learning Machines
We have motivated that the division of the “full” state space in a “state space”
and a “parameter space” is inherent in the idea of learning machine. From now
on, we leave the more general framework behind, and concentrate on control of
plants described by differential or difference equations on differentiable mani-
folds. We shall discuss the concept of an adaptive controller in very informal
terms, guided more by intuition and figures than hard mathematics.

- In the framework of learning machines, an adaptively controlled process has
to consist of two feedback loops. There is an inner loop, consisting of the
plant, preceded by a parameter dependent precompensator. There is also an
“adaptation loop”, consisting of a learning mec‘hani,sm, supervising the inner
loop, updating its inner state (t‘hé “paramef'ers”),' and passing parameters to
the precompensator.’ The outer loop can be considered as a non-linear ‘meta-
feedback’. This is depicted in Figure 1.1. ' ' '

&

Adaptation
Parameters
o Y
7
u Y
Regulator - Plant

Figure 1.1. The General Adaptive Controller -

By now, nothing have been said about linear versus non-linear systems. In
fact, everything so far has been completely independent of this. However, there
exists a well established engineering practice for constructive synthesis of linear
controllers for linear, time-invariant plants, and it is probably not possible to
reach the same status for any major class of non-linear systems. Therefore,




4 ’ [ Chapter 1 Adaptive Control

the plant is mdst commonly assumed tozbe linear; and the precompensator
constructed as a linear time-invariant system for fixed values of the parameters.
Assuming that the parameters really were fixed, the adaptive control problem
would “only” be to find values of the parameters, such that the inner loop,
with frozen parameters, exhibited satisfactory performance. But with frozen
parameters no adaptation at all takes place! If parameter estimation algorithms
and design algorithms are considered as given, this is the theoretical problem
of adaptive control. Heuristicly, we may argue that the parameters are only
moving “slowly” (as compared to the states), and thus we may hope that this
“slow time-variation”, then considering the inner loop as time-varying system,
does not spoil anything. This is the concept of slow adaptation. Recently, some
authors have tried to make this idea strict (or stricter) by so called averaging
techniques. This is intuitively speaking a way of separating the ‘fast’ and the
‘slow’, time scales in a local coordinate system;by, forming local path-averages
over the trajectories. - o S - ‘

In the classical setting, the learning process can have one of two goals: Either
we aim at getting the maximum information of the plant, a priori constrained
to belong to a certain, parametrized set. This is called parameter adaptive
control. The other approach is where we do not care about the plant per se,
but instead consider the control performance, and eventually try to optimize
this. This approach is called performance adaptive control. In the present work,
the latter path is chosen. e

1.2 Approaches to Adaptive Control

Some approaches to adaptive control, especially model reference adaptive con-
trol and self tuning regulators, are described in this section.

Model Reference Adaptive Control, MRAC

The model reference adaptive controller emerged from the tradition of single-
input, single-output, continuous time linear systems without stochastic distur-
bances. The adaptive controller consists of a model, i.e. a linear, time-invariant
‘nice’ system, fed with the reference signal. The object of the control is to
make the output of the plant close to the output of the model. The adjustment
mechanism is driven by the difference between the outputs of the plant and the
model. A block diagram is shown in Figure 1.2.

Self-Tuning Regulators, STR

The self-tuning regulator represents the second mainstream in adaptive control.
It consists of a recursive on-line parameter estimator, and a controller design
algorithm, which at every instant computes a controller, based on the current
parameter estimate. In principle, any combination of on-line identification and




1.2 Approaches to Adaptive Control . 5

Im
Mode

SSTLUETIIE s TOLRToihe TS Do VT =

Y

‘Regulator parameters
Adjustment |
| Mechanism -
Y
r - N : . N
- Regulator - ' “, Plant Y

Figure 1.2. The Model Reference Adraptive Controller

controller design principle can be used. In contrast to the model reference
adaptive controller, the self tuning regulator’s home ground is the discrete
time, stochastic environment. We also remark that the scheme can sometimes
be rewritten so that the regulator parameters can be achieve directly, so called
direct self-tuning control. Figure 1.3 shows the block diagram of the self-tuning
regulator. Even though the model reference adaptive controller and the self
tuning regulator steam from fairly different ‘home-lands’, it is clear from the
block diagrams that the approaches are related. Some authors have tried to
present a unified approach.

Gain Scheduling

Sometimes the concept of gain scheduling is referred to as adaptive control.
This is a heuristic approach to control of non-linear systems or control by
tusing reduced order models. The plant is considered as a parameter depen-
dent linear plant. The ‘parameters’ reflect ‘different operating conditions’, and
measurements are assumed to be available. The linear controller then is a
continuous or discontinuous function of these parameters. The time-invariant
design is motivated by ‘slow parameter variation’. A rule of thumb is that “the
parameters you schedule with respect to should be ten times as slow as the
dynamics”.

If the term “adaptive control” is interpreted to include some element of
learning, as discussed above, this is clearly not adaptive control.
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Figure 1.3. The Self Tuning Regulator
Self Oscillating Adaptive Systems, SOAS

An early approach to adaptive control was the so-called self oscillating adaptive
systems. They consisted of an oscillating relay in a high-gain loop. These
“adaptive controllers” have only historical interest.

Dual Control

Dual control is the stochastic optimal control approach to control of an un-
known, parametrized plant. In the Bayesian tradition, we “are given” a loss-
function, and initial distributions on the parameters in the system and its
initial states. The object of the dual controller is to minimize the loss-function.
Heuristically, this involves the tradeoff between low instantaneous loss, and in-
troducing perturbations in order to get more knowledge of the plant in order to
minimize the loss in the long run. The ‘parameter space’ of the controller is the
conditioned probability distribution, which is an element in an—in general infi-
nite dimensional—function space. Therefore, the computational requirements
are prohibitive for all non-trivial plants.

1.3 The Classical Assumptions of Adaptive Control

In the end of the seventies and the beginning of the eighties, proof for con-
vergence and stability of the model reference adaptive controller and the self-
tuning regulators appeared, see references given in [Astrém 1983]. These proofs
all required some variant of the following assumptions:
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(i) A bound n* on the order of the transfer function g(s) = n(s)/d(s) is

[ O R RS RS T T T

known. : wE

12 e 22

(ii) The relative-degree r = deg d(s) — deg(n) is known exactly.

SR

(ili) The plant is minimum phase. S
(iv) The sign of the ‘instantaneous gain’, i.e. the leading coefficient of n(s), is
known.

There have been different variations of this. Some algorithms have later been
presented, which are claimed to handle non-minimum phase systems. Condition
(ii) is sometimes replaced by the sharper condition that the plant is strictly
positive real, i.e. its Nyquist curve resides entirely in the right half plane. In
discrete time, usually an upper bound on the magnitude of the ‘instantaneous
gain’ is also required. There is often the requirement of a “sufficiently exiting”
input signal. - e e e s

Tt has been argued that these four assumptions always are violated in “real
life”. In a sense, this is a meaningless statement, since for example there
are no finite-dimensional, linear systems. either. A more sensible question
would be: Are these assumptions compatible with a—for the purpose of control
engineering—reasonably accurate description of plants we would like to con-
trol? Discussion of these matters often has a tendency of leading to some sort
of infinite regression. It can be argued that assumptions (ii) and (iv) deal with
the infinite-frequency behavior of the plant; with the power series of a rational
function around the point at infinity. But on the other hand, all experience
shows us that plants of high relative degree are really hard to control, at least
manually.

The ‘Counterexamples’ to Adaptive Control

In a PhD-thesis from 1982, [Rohrs|, it was shown by simulation that certain
common adaptive control schemes could be made unstable by e.g. unmodeled
higher order dynamics. That is, when condition (i) was violated, which, it
was argued, always is the case in real life. On a conference later that year,
it was claimed that “the adaptive algorithms considered cannot be used for
practical adaptive control”, [Rohrs-Valavani—Athans—Stein]. This initiated a
very intense, somewhat emotional, and sometimes confused discussion. To this
author, it seems like there has been a disagreement on the rules of the game
being played. .

The questions raised by Rohrs et. al. has been answered in essentially two
different ways. The first is very natural and fundamental: Since the basic ques-
tion really is on the more engineering level of what to do when the conditions
of an idealized, mathematical model are violated, there have been several sug-
gestions which essentially “only” are a sound view of the use of mathematical
engineering. In essence, if the excitation of the system is poor—poor in the
sense of exciting the dynamics in the frequency range around the bandwidth
of the closed loop system—then either turn off the adaptation, or introduce
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perturbation signals. This “safety net” is easily implemented as an auxiliary,
supervisory loop. It should be remarked that the commercially available adap-
tive controllers contain all sorts of “safety nets” of this sort. For example, in
ASEA’s Novatune much more software is devoted to “safety nets” than to the
adaptive algorithm.

The second response is described in the following section.

1.4 The Necessity of the Assumptions—Universal Controllers

Another direction is the investigation of the four assumptions (i) — (iv). To
what extent are they really necessary? Can we devise algorithms which do
not require such assumptions? What is the largest set of plants that can be
successfully controlled by an adaptive controller? Or equivalently, what do we
have to know about the plant in order to control.it? The present work belongs
to this tradition. Therefore, we shall be slightly less brief in this section, and
give more references.. ... .. l

- In order to isolate the questlon, we study, at least in the ﬁrst run, only the
most fundamental property of a control system, namely stability. Controllers
devised for this purpose are sometimes, in a terminology introduced by A. S.
Morse, referred to as universal controllers. We shall adopt this term in the
thesis.. At least as the term has been used up until now, a universal controller
lacks all practical interest, and its value is entirely on the theoretical level.

In the paper [Morse 1983] the following conjecture is raised: Adaptive sta-
bilization of the set of first order systems {y = y + bu: b # 0} by a smooth
adaptive controller 1s not possible. That is, adaptive stabilization is impossible
if condition (iv) is violated. (The formulation given here is slightly more infor-
mal than the original, more technical one.) The conjecture was proven for the
special case of the parameter updating law being a polynomial. It was shown
in [Nussbaum]| that the conjecture is also true for the parameter updating law
being a rational function, but—more important—that there is a whole class of
stabilizing controllers. One such controller is

u=k%cosky
T

Note the cosine-factor, which accounts for switching of the sign in the frozen
parameter controller. For a direct proof, see the survey paper [Morse 1984b]. In
[Willems-Byrnes| Nussbaum’s result was generalized to any single-input, sin-
gle output, minimum phase plant of relative degree one, and later in [Byrnes-
Willems] to square multivariable plants with invertible ‘instantaneous gain’.
The algorithm was however discontinuous and not given explicitly. A refine-
ment was given in [Byrnes-Martensson-Willems]. [Morse 1985b] gives an al-
gorithm stabilizing any single-input, single-output minimum phase plant of
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relative-degree mot. exceeding two.. In conclusion, it has been demonstrated
that neither assumption (i) nor (iv) is needed for adaptive stabilization.

. Algorithms ‘based: on the "combination. of ‘a traditional adaptive controller
together with- & sign-switching ‘Nussbaum-function’ have been presented in
[Morse 1984a], and in [Mudgett-Morse 1985ab]. An observer-based algorithm
is given in [Morse 1985a]. Adaptive stabilization of first order, single-input,
single-output discrete time plants is addressed in [Mudgett-Morse 1985¢d).

In [MAartensson 1985a] an algorithm capable of stabilizing any multivariable
plant, for which the order of a linear, time-invariant stabilizing controller is
known, was presented. The paper [Méartensson 1985b] contains the correspond-
ing discrete time result. For continuous time systems, it was shown in [Byrnes
1985] that this a priori knowledge is also necessary for adaptive stabilization.
Necessary and sufficient a priori information for adaptive stabilization has thus
been characterized. The conditions (ii) and (iii) have been replaced by a weaker
condition. '
~ Stabilization of certain non-linear plants is addressed in the paper [Byrnes-

Isidori 1984].

1.5 Multi-layer Control

Recently, to a large extent due to the rapidly increasing access to computing
power, and partially inspired by the artificial intelligence field, there has been
a growing interest in controllers operating in several different operating modes,
and on several hierachical levels. We shall call this multi-layer control. This
is not a standard term. A multi-layer controller consists of two different sets
of components: controllers used for a certain, limited purpose; and hierachic,
supervisory control. We give some examples of such ‘limited controllers’:

A very simple ‘pre-adaptive’ controller is the autotuner,-[Astrém—Hégglund}.
This is a quick-and-dirty method for automatic tuning of simple controllers
such as PID-controllers. It can be used for example for initialization of a
process, provided it is stable. Commercially available adaptive controllers have
good local convergence properties, but worse global performance. In emergency
situations, and far away from normal operating point, it might be desirable to
use a very simple, but extremely reliable controller. It is often desirable to
include sequential logic. Etcetera, etcetera.

The supervisory loop builds up a data base of its ‘experiences’ from using
a particular control strategy in a particular situation. It also incorporates
heuristics, by knowing some well established rules of thumb for e.g. tuning of
simple controllers. Since this resembles an expert system, the area is sometimes
referred to under the slightly emotionally inclined terms of ezpert control and
intelligent controllers. See [Astrém-Anton| and [Arzén-Astrém|. Also compare
the work by G. Saridis, e.g. [Saridis].
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- We-will return to these matters in thelast.cchapter;-were weralso specu-
late somewhat on the future development a.nd poss1ble practlcal use of results
presented in this thesis. . = coriancae o o= -

-Foday’s work inthefield entxtled “art1ﬁc1al mtelhgence is almost completely
experlmental work in the laboratory. Heuristic programming etc. deals with
less structured problems, where heuristics might be the only way out. When
the program, or whatever it is called, is finished, by that very procedure more
knowledge is gained, and the problem may be posed in a more structured
fashion. However, the original approach might have been the only feasible
way for the researcher to work. This situation is vaguely analogous to when
a mathematician solves a problem using mathematical methods far out of the
reach of non-mathematicians.. When the problem-is settled, often.the solution
can be rephrased in more elementary terms than originally used to solve the
problem.. - -~ - B TR . o
~ Heuristics is not a way to replace analysxs, precise knowledge and mathemat-
ics. On the contrary, we shall strive for replacing heuristics by solid knowledge
and theoretically well established methods whenever possible. There also ought
to be a mutually rewarding interplay between researchers within artificial in-
telligence, other engineers, and mathematicians.

16 Adaptive Control—A Viewpoint

Adaptive control is to some extent used in practice today. Sometimes it is used
for what has been referenced to above as the tuning problem, but more often
it is supposed to ‘follow variations in the plant’, e.g. around different operat-
ing points. These, in the terms of classical control engineering, correspond to
different linearizations of a non-linear system, and therefore to “different sys-
tems”. The adaptive controller is thus really used-for-controlling a non-linear
plant using linear theory plus adaptivity. From a purist point of view, this is of
course an abuse of the concept of adaptivity as a learning machine. However,
in a practical situation it might possibly be the best solution achievable with
existing, commercially available components.

There are well established analysis and design methods for single-input,
single-output linear systems, and emerging for multivariable. The tools for
dealing with non-linear systems in the classical control engineerers tool box
essentially concern stability only. Such tools are e.g. the describing function
method, the circle criteria, the passivity theorem, and the low-gain theorem.
Questions concerning fundamental properties such as controllability and ob-
servability for non-linear systems, and global descriptions of non-linear systems
with more general manifolds as their state spaces, have not been addressed until
the beginning of the seventies. With one exception—the characterization of the
non-linear systems that can be diffeomorphically mapped onto linear systems
by coordinate transformations of the input space and the state space—there
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have this far not been any more general constructive synthesis methods given
for a large class of non-linear systems. : -

- The general non-linear control problem is the following: Given a set of
plants: §; find a (possibly non-linear) controller achieving satisfactory perfor-
mance for each one of them. Adaptive control is one approach to the solution
of this problem, in some sense based on the concept of parameter dependent
linear control, and learning. This will be the standpoint taken in this thesis.
Another approach to the problem is robust control, namely to design one fixed
linear controller, capable of controlling each plant in the set §. If this is possi-
ble, the price might be a very high order of the controller, as compared to the
order necessary for controlling any single plant in g.

1.7 ° Control Theory, Engineering, and Mathematics

The field of control theory is very diverse. It ranges from theoretical work on
a high level of sophistication, to the very implementation of control systems. It
is sometimes claimed that control theory can be applied in many fields outside
engineering, such as economics, biology, and medicine. Modern control theory
also combines methods of mathematics, statistics, and computer science in a
creative brew. Mutual exchange of inspiration takes place, apart from the
disciplines above, e.g. with economics, power system theory and electrical
engineering on the whole, and many others. Control theory is therefore an
interesting, vital, and rapidly developing branch of engineering science.

Mathematical engineering science, and in particular control theory as a sort
of ‘meta-theory of engineering’, uses mathematics in order to describe certain
aspects of reality, with the purpose of doing something constructive with impact
on that very reality. In this sense, engineering science differs from the ‘pure’
natural science, whose goal is “just” to explain. This is the constructive element
engineering and mathematics has in common: not only to explain, but to build
up and construct something.

We are striving to build models not just for the fun of it, but to use the model
for analysis, whose outcome will affect our decisions in the future. Therefore,
we are always faced with the problem of having models “accurate enough”,
i.e. reflecting enough of the “important” aspects of the problem. The question
of what is “accurate enough” can only, eventually, by settled by real-world
experiments. On the mathematical side, we have theorems saying things like
“P implies Q”, where P and Q are mathematical statements. It can then be
widely discussed to what extent this result can be used to say something about
the real world. We might say that P represents something that can never be
satisfied in the real world, but we might very well throw away in principle all
of modern engineering in this way.
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 We.can prove that the controller v = ~2y stabilizes the unstable system
§ = y—+u, but we can never prove that a certain physical controller achieves
satisfactory performance when controlling a certain, physical plant, except by
experiments. = | oiiiiy DOTSCDEsT . SO CUE AL VD BUln e o :

P —~

n this Thesis o oo oo e

Questions as the ones discussed above will not be treated any further in this
thesis. All of its scientific contents lives in a mathematical world. Theorems
will be stated saying that if certain conditions are fulfilled for a mathematical
object, then a certain conclusion holds. To falsify this, one has to find a flaw in
the proof. The mathematical objects do not necessarily bear any reassemblence
with anything in the real world, nor be a reasonable model of anything, at least
not a priori. Sometimes we discuss the realism of the assumptions, and what
might happen if they are violated, but then most often on a more informal
level.

N SRRt ST
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Problem Formulation

2.1 Introduction

In this chapter we will introduce a class of problems to which the remainer of
the thesis will be devoted. As in all creative scientific work, we will raise more
questions than we will be able to answer, at least in the present work.

Some notations that will be used in the sequel is collected in the next section.
This is mostly standard.

In Section 2.3 we will formulate the notation of linear adaptive controller, and
what kind of stability or convergence we are heading for. Although not used in
the sequel, we also pose the problem of tracking with different kind of reference
signals, together with the regulator problem, i.e. keeping the output of the plant
close to zero in the presence of (deterministic or stochastic) disturbances. We
also define what shall be meant by an adaptive control problem.

In this thesis, a certain amount of a priori knowledge of the plant will be
considered as knowing that the plant belongs to a certain set of plants. The
more a priori knowledge about the plant we have, the smaller the set will be.
In Section 2.4 a set relation of a priori knowledge is introduced. Each node in
the set diagram corresponds to an adaptive control problem.

13
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2.2 Notations and Conventions Used

In this section we introduce some notation that is going to be used frequently
in the sequel. It will mostly be standard material, but for clarity it is collected
here anyhow. Some of the conventions used are also listed.

The symbols IN, Z, @, IR, and € denote the natural numbers, the integers,
the rational numbers, the real numbers, and the complex numbers respectively,
equipped with their usual algebraic and topological properties. For o € IR,
by €* we shall mean the subset of the complex numbers C defined by C* =
{s € C : Res < a}. C° will also be denoted by €™, while C* will denote
{s €C: Res > 0}. IR and IR are defined analogously. The positive integers
are denoted by Z7.

*“When we say that a statement P; is true for large values of the parameter ¢,

we shall mean that there exists a to such that P; is true for all £ > 5. A
statement P, is said to be true for generic z € R™ or C" if the set of z such
that P, is false form a proper (possibly empty) algebraic or analytic variety.

Sometimes we write a set 4 = {A1,...,A4,}, and then allow n to take on the
value N, the cardinal number of a countable set. In this case, A is simply the
countable set {A1, As, ...}

When we say that a time-invariant linear system is stable, this shall always
mean asymptotically stable. The same convention also applies to matrices and
transfer functions. Similarilly, the terms “left half plane” and “right half plane”
shall denote the open left, or right, half plane.

For k an integral domain (e.g. Z, @, R, or C), k™ will as usual denote
the k-module of ordered n-tuples of k. Also, k[z] is the ring of polynomials in
the indeterminate z and coefficients in k, while k(z) denotes the corresponding
field of rational functions. If f(z) = n(z)/d(z) € k(z), where n(z),d(z) € k[z],
the relative degree of f(z) will be defined as deg d(z) — deg n(z). The rational
function f(z) will be called proper (strictly proper) if the relative degree is
nonnegative (positive).

For z € R, by |z] we shall mean the (lower) integer part of z, i.e. the largest
integer smaller than or equal to z, while [z] is the upper integer part of z, i.e.
the smallest integer larger than or equal to z.

The symbol o(z) denotes any quantity satisfying limz oo o(z)/z = 0.

The transpose of a matrix A is denoted by AT, Tts spectrum, i.e. its set of
eigenvalues, will be denoted by sp A. The spectral radius, denoted by g(4), is
the largest magnitude of the eigenvalues. The maximum and minimum singular
values of -a matrix A are denoted by &(A4) and g(A) respectively. That is,

5(4) = sup [|Az], o(4)= inf Az
llzll=1 llzl|=1



2.2 Notations and Conventions Used 15

where || .|| denotes the usual Euclidean norm on R"™. We will use the same
symbol for denoting a finite-dimensional linear mapping and its associated ma-
trix. The image and kernel of a linear mapping A is denoted by im A and ker A
respectively. , - , : .
.. Sometimes we shall make statements about bounded norms without specify-
ing what norm is used. In such cases, this is harmless since we are in general
only concerned about qualitative statements, and on finite dimensional vector
spaces all norms are equivalent.

The symbol “=", sometimes reversed, denotes an assignment, i.e. the sym-
bol on the left hand side is defined to be equal to the right hand side.

For k an integral domain, §£(n, k) is the group of non-singular n X n-matrices
with coefficients in k. O(n,k) is the group of orthogonal matrices (i.e. satis-
fying 00T = OTO = I), while $§0(n,k) is the subgroup of O(n,k) having
determinant 1. If k is' IR or C, these also have the structure of Lie groups.
When the coefficient ring is obvious, the second argument will be dropped.

C* = C|J{oo} denotes the one-point compactification of the complex num-
bers. The unit sphere in n-dimensional normed space X is denoted by S™~! :=
{z € X :||z|| = 1}. This is of course dependent of the particular norm chosen.
The n-dimensional torus T" is the n-fold product of circles S! = R/27Z. We
will write T instead of T2,

For f(t) a measurable time-function (or more generally a tempered distribu-
tion), its Laplace transform is defined by

7(s) = (£} (5) = / et r(e) at

if the integral on the right hand side exists. Otherwise, in general (e.g. if f
is a Bohl distribution) the Laplace transform has a meromorphic continuation,
which we, by a slight abuse of language, also will call the Laplace transform.

The concept of a dynamical system is not defined in its full generality since
it is fairly involved, and not needed for the sequel. Only linear systems living
on finite-dimensional vector spaces are treated in this thesis. Such systems can
be described as a linear mapping

S:UxX —Y

where U and Y are suitable input- and output spaces (e.g. L? (R™,RY) and

loc

L? (IRP ,IRT) respectively), and X is the state space (or, in this setting, rather

loc
the space of initial conditions), namely a finite dimensional Euclidean space.
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2.3 Definitions

Some.-definitions-of the different concepts used in the thesis are introduced in
this section. This constitutes a foundation for the remaining work, and a way
of looking at the problems. Only continuous time problems will be covered.

Throughout this work, the dynamic system to be controlled will be called
the plant. Except for some discussional passages, this will always be just a
mathematical object, with no link—at least not a priori—to anything in the
real world. The terms tnput and output shall always be interpreted with respect
to the plant.

When the plant is considered as time-varying, we shall avoid the Laplace-
transform formalism, and insteadrqonsider the input-output description as a
function in the differential operator p := d/dt.

e .

Al pla,iifs in this thesis are considered to be controllable and observable. Of
course, all stabilizing results presented in this thesis can be restated for plants
that are just stabilizable and detectable, but we shall not do so.

The concept of linear adaptive controller, and the distinction between pa-
rameters and states—a crucial concept in adaptive control—will be discussed
next. We also define what kind of convergence we are heading for, and what
shall be meant by an adaptive control problem.

Linear Adaptive Controllers

Adaptive control is one way of looking at the more general non-linear control
problem. By a linear adaptive controller we shall mean a certain special case of a
nonlinear controller. Assume that the plant G, its times T, its input space U, its
output space Y, and its space of reference signals R are a priori given. We might
be dealing with systems described by stochastic differential equations, but this
only corresponds to a fairly straightforward change of notation, although the
interpretation might be drastically different.

Definition 2.1. Let | be a non-negative integer and X a vector bundle of
rank | over the C°°-manifold M. (Recall that X is by definition locally trivial,
i.e. locally isomorphic to the Cartesian product of an open set 0 C M and
]Rl.) We shall call the mapping

S:YxXxRxX —1U

a linear adaptive controller with state space IR’ and parameter space M if it is
smooth in the sense of a control system, [Brockett], and for fixed k € M the
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mapping Sk Y X R X R! — U is linear. That is, it can locally be written as

T PRV S T z.:F(t, k)z+ G(t,k)y
w=H(t,k)z+ K(t,k)y
k= f(y,m,t,2,k)

where F, G, H, K, and f are locally defined C*°-functions, or a corresponding
stochastic differential equation. Here z = (27,kT)7 is a decomposition of the

state of the controller corresponding to the local decomposition of X in R
and M. — SR - o

control system as a

TR ST SR

For;i global, coordinate free déscripfiéﬁ of a non-linear
section of a certain pull-back bundle, see [Brockett].

With this definition, what makes a nonlinear controller into a linear adaptive
controller is the (local) decomposition of the state space into a vector space
times a manifold, together with linearity for fixed values of the parameters.

Tt is clear from Figures 1.2 and 1.3 that this definition covers the traditional
approaches to adaptive control, namely model reference adaptive control and
the self tuning regulator. Also compare Figure 1.1.

Convergence of Adaptive Control

We will next make precise what we mean by convergence of a certain adaptive
controller, controlling a certain plant. This concept will cover both the original
stabilizing problem, the tracking problem (to follow a certain, given reference
signal r, sometimes called the servo problem), and the regulator problem (to
keep the output y close to zero in the presence of disturbances). o

With the usual controller structure, these two problems are structurally the
same, and thus there is no reason to treat more than one (on the theoretical
level of this thesis). Figure 2.1 illustrates the tracking problem. Here e = r—y,
and the object of the control is to keep e close to zero, in some suitable sense.

Controller Plant

Y

Figure 2.1. The Tracking Problem
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Controller Plant Y,

¥

Figure 2.2. The Output Disturbance Regulator Problem

' For the regulator problem, it is a simple consequence of linearity that all
disturbances can be represented as equivalent output disturbances. The reg-
ulator problem for output disturbances is depicted in Figure 2.2. Note that
the notation is slightly non-standard. The object of the control is to keep ‘the
disturbed output’ § ~ 0. It should be obvious to the reader that, on this level
of abstraction, the problems are ‘isomorphic’, i.e. the same after only a change
of notation and interpretation. In the sequel we will only consider the tracking
problem.

When there is a reference signal r # 0, it is not completely straightforward
to give a meaning to the concept of convergent adaptive control. If the set
of plants § is allowed to contain plants of arbitrary high McMillan degree,
convergence e.g. in the sense of asymptotic (perfect) tracking is not possible.
For the definitions to make sense, we require r to have some kind of stationarity.
This can mean at least seven different things:

(i) r=0

(i) r=ro

(iif) lim;—co 7(t) = ro = constant

(iv) r(t) is periodic with period T'> 0

(v) r(t) approaches periodicity with period T >0 as t — oo

(vi) r(t) is a stationary stochastic process

(vii) r(t) is a stochastic process, approaching stationarity ast — oo in a suitable
sense.

Definition 2.2. For r stationary in some of the senses above, we shall say that
the linear adaptive controller K # 0, controlling the plant G, whose state space
is IR", converges, if, as t — 0o, M O k converges to a finite value ke, while
z € R}, and £ € R™ approach stationarity in the same sense as r. o
Note that for the stabilization problem, case (i) above, this means that z and

2z approaches 0 as t goes to infinity. Also note that the definition makes sense
also if X is a non-trivial vector bundle.
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Adaptive Control Problems

Finally, this is what shall be meant by an adaptwe control problem.

R TR S R T P 3 T S

Definition 2.3. We shall call the following an adaptive control problem: Let G
be a set of plants, and r € R be an a priori given reference signal, stationary
in one of the senses above. The adaptive control problem consists of finding a
linear adaptive controller K, such that for-any plant G € §, the controller K,
controlling G, converges in the sense above. o

The ‘size’ of § can be considered as a'measure of the uncertainty of the plant.

This thesis essentially deals with the stabilization problem, i.e. where r = 0.
However, extension to the tracking problem for a constant, non-zero reference
signal r = rg is fairly easy, see Section 4.7.

Remark 1 It can be argued that the convergence concept is 1ndeed a very
weak one especially from a practlcal point of view. This weak definition is
an attempt to solve the problem of assigning some reasonable meaning to the
concept of convergence, without restricting G to be e.g. finite dimensional, and
without going into quantitative statement—which hardly can be compatible
with the qualitative concept “convergence”. o

2.4 A Set Relation of A Priori Knowledge

Once the control objective and the reference signal are given, there is a one-to-
one correspondence between adaptive control problems and subsets of plants.
The object of this thesis is, for a sensible set of plants §, to find a feasible
controller for all plants in §, giving a—in some sense—satisfying performance.
This means the stabilization problem or the tracking problem in any of the
guises outlined.

From now on, we shall consider only strictly proper, time-invariant, linear
plants described by finite dimensional differential equations, with vector spaces
as their state space. That is, plants that can be written either on state space
form as

z = Az + Bu, zeR", v e€R™

» (MIMOC)
y=Czx, yeER

or, on input-output form
9(s) = G(s)i(s)

where G(s) € IRP*™(s) is a matrix whose entries are strictly proper rational
functions in the complex variable s.

There is a corresponding notation for discrete time plants, but this is anal-
ogous, and therefore not given here. In this thesis essentially continuous time
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plants are deal with, although we will state as many statements as possible also
for discrete time plants. This will be further discussed in Chapter 4.

“The object of this thesis is performance related adaptive control. The input-
output.description is.therefore considered as the natural description of the
plant. A state space representation is sometimes used, but this is to be consid-
ered as a trick for the analysis. It follows that all state space representations
are to be considered as equally natural.

We shall take the standpoint of considering these different ‘interesting’ set
of plants as a set relation. This will almost be a hierarchical relation. A set
diagram is shown in Figure 2.3. An adaptive control problem now corresponds
to a node in this diagram.

{MIMOC)}

Known bound on
degree of stabilizing
ontroller

High-gain Known bound on
D stabilizable norm of stabilizing
~ plants o controller
Square
E ¢ plants
F @ SNS

G ® CB nonsingular

sp B inthe

H® right half plane

Figure 2.3. The Set Diagram of Adaptive Control Problems
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The Different Nodes in the Diagram

The different nodes in the diagram, i.e. some adaptive control problems, will

now be dlscussed This w1ll alsobea sneak preview of the forthcoming chapters
. SRRV § ¥4

The number of (avallable) 1nputs and outputs of the plant are of course
known. The upper node in the diagram, node A, corresponds to ‘no information
at all’ about the plant, i.e. the set consisting of all plants of the type (MIMOC),
having a certain value of m and p. As will follow from Theorem 4.1, there can be
no smooth linear adaptive controller, stabilizing all plants in this set. However,
in Section 5.4 it is shown how to stabilize any plant in this set by a suitable
switching between controllers of different dimensions of their linear constituent.

The following node, B, consists of plants for which we know a non-negative
integer [, such that for that for each plant, there exists a fixed linear regulator of
order [ stabilizing it. From the above mentioned theorem, this is the largest set
of plants stabilizable by a smooth adaptive controller. A constructive algorithm
will be given in Chapter 5. Another algorithm is given in Section 4.2.

Assuming knowledge of the degree of a stabilizing controller, the diagram
splits into two branches. The left branch, node D, consists of ‘high-gain stabi-
lizable’ plants, i.e. plans for which there exists stabilizing controllers of arbi-
trary high gain. This is very closely related to the minimum phase property.
The right branch, node C, consists of plants satisfying “Assumption Bounded
Required Gain”, i.e. such that we know an « with the property that there is
a stabilizing controller of norm not exceeding «. In Chapter 5 it is also shown
how to take advantage of this additional a priori information.

Following the node of high-gain stabilizable plants is node E, consisting of
square plants. Of course, this is not added a priori information in the same
sense as the other lower nodes. In this thesis only square high-gain stabilizable
plants will be treated. These are the only ‘true’ multivariable systems in the
sense of being a bijective mapping between input and output spaces.

Then node F follows, the set of plants satisfying “Assumption SNS” which is
a technical condition of simple null structure of certain functions of the Markov
parameters {C’A':_IB}ZI. This assumption will be introduced formally in
Chapter 6. We also require knowledge of a bound on the “strong relative
degree”, a concept we will introduce in Chapter 6. That chapter is devoted to
construction of stabilizing controllers for the set of plants under consideration,
where an algorithm capable of stabilizing the whole set is explicitly given in
Section 6.4.

Node G consists of system with “multivariable relative degree 17, i.e. sat-
isfying det CB # 0. This is the simplest multivariable generalization of Nuss-
baum’s results. An algorithm for this set is given in Section 6.3.

Finally, node H is the set of plants for which sp CB C ct. (It is a standard
fact that this property—and also assumption SNS—are independent of the
coordinates on the state space.) The property might be called ‘multivariable
relative degree 1 and positive instantaneous gain’. Such plants can be handled
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by a stabilizing algorithm based on the idea of ‘cranking up the gain’. This is
solved in Section 3.4.

- There are of course the intersections between the sets in the left hand branch
and the right hand branch. It is fairly straight-forward to modify the given
algorithms to take advantage of this added a priori knowledge. A template for
this is the second subsection of Section 5.3.




Some General Tools

3.1 Introduction

In this chapter most of the tools for the subsequent work will be developed.
Methods will be developed which hopefully will have some interest outside the
new—and perhaps short-lived—field of ‘universal stabilizers’.

In the next section we show that, in a catchy formulation, the dynamic
feedback problem is the product of the problem of determining the order of the
controller dynamics times the static feedback problem. Results on estimates
of the norm of the state of the plant, expressed in the controller parameter,
are developed in the following section. A corollary shows that, under a mild
condition, it is enough to show that the controller parameter stays bounded
in order to prove stability and convergence. Section 3.4 presents a theorem on
‘fast’ time-varying, singularly perturbed systems. This will be an alternative
viewpoint on the non-linear system an adaptive regulator constitutes. It is used
to prove a result on stability of an algorithm based on the idea of turning up
the gain. Somewhat surprisingly, this result also applies to a problem arizing
in relay control of single-input, single-output linear systems. The last section
deals with the concept of switching function controllers. Some background is
given, and a theorem on stabilization by switching function based adaptive
controllers is proven.

Some of the material in this chapter has been published before. Earlier
versions of Sections 3.2 and 3.3 can be found in [Mé&rtensson 1985ab]. The

23
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core of Section 3.4 is a result by Byrnes and Mértensson, published in [Byrnes-
Isidori 1985]. An error in that proof is corrected here. The result on switching
functions in the general setting presented is new. It has recently been brought
to the authors knowledge that [Kabamba-Longman| contains a treatment of
dynamic feedback similar to Section 3.2.

3.2 A Viewpoint on Dynamic Feedback

In this section it is shown that, from a certain point of view, dynamic feedback
can conceptually be replaced by static feedback.

The idea is very simple: the plant is augmented by a box of integrators, each
with its own input and output. Static feedback is then applied to the augmented
plant, i.e. the plant together with the integrators.-For the continuous time case,
the situation is depicted in Figure 3.1.

= H

Figure 3.1. Dynamic feedback considered as static feedback

More formally: Consider the following dynamic feedback problem: Given the
plant o '
i = Az + Bu, z e R", veR™

Y= Cz. )€ R? (MIMOC)




8.2 A Viewpoint on Dynamic Feedback 25

and the controller '
. 3=Fz+Gy, z€R

u=Hz+ Ky
It is easy to see that this is equivalent to the static feedback problem

+ Bii

B

[l
Qe

ST

ST

(MIMOCA)
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For the discrete time case: Let the plant be

z(t +1) = Az(t) + But), =zcR", w€R™ (MIMOD)
y(t) = Cz(t), y e R?P

and the controller
2(t+1) = Fz(t) + Gy(t), zeR
u(t) = Hz(t) + Ky(t)
This is equivalent to the static feedback problem

i(t+1) = f:l.%(t) + Bi(t) (MIMODA)

where a"c,g’j,é, (:", and K are as before, while
- [A 0]
A=
0 I

= [z(?(i)l) ]

Remark 1. This observation might seem very powerful at least at first sight,
but note the highly non-generic nature of fi, B, and C. This means e.g. that
results on generic pole placement by static output feedback, see [Brockett-
Byrnes|, [Byrnes 1982], do not translate at all. o
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3.3 - Estimation of tﬁe Norm of the State

In this section a lemma is proven, which gives an estimate of the norm of the
state z of (MIMOC) (or (MIMOD)), expressed in the L? (or £°) norm of y
and u. The result will be used extensively in the sequel. The lemma has a
simple corollary, which implies that, under mild conditions, to show that an
adaptive algorithm converges and stabilizes the plant, it is enough to show that
the controller stays bounded. First we give the continuous time version.

LEMMA 3.1 (“THE NORM OF THE STATE ESTIMATE LEMMA, CONTINUOUS
TIME VERSION”). Assume that the linear system (MIMOC) is observable.
Then:

(i) For all z(0), there are constants co and ¢, such that

o7 < o ea ([ o7 dr+ [ futo) 7 ar)

for all £(0), u(.), and t > 0. Here co does not depend on t or u; and ¢;
does not depend on t, u(.) or z(0).

(ii) For T >0, ¢y can be taken so

el <en ([ oo+ [ utoieer)

for all t, u(.), and z(t — T).

There is also the analogous discrete time version:

LEMMA 3.2 (“THE NORM OF THE STATE ESTIMATE LEMMA, DISCRETE
TIME VERSION”). Assume that the linear system (MIMOD) is observable.
Then:

(i) For all z(0), there are constants co and ¢y such that

lz@)I* < eo+ex (Z ly (I + > llu('r)llz)

7=0

for all z(0), u(.), and t > 0. Here co does not depend on t or u; and ¢;
does not depend on t, u(.) or z(0).

(i) For T > v, the observability index of (MIMOD), ¢ can be taken so

[EOl 301( Yo @I+ D ||u('r)\|2)

r=t—-T 7=t—-T

for all t, u(.), and z(t ~ T).
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Remark 1. In (ii) we can consider c¢; as a function of T'. This function can
clearly be taken continuous and decreasing. o

Remark 2. Note that, for t bounded from below, or, in the discrete time case,
t > v, (i) follows trivially from (ii). Also note that the co-term is necessary if
and only if we allow arbitrary small ¢t > 0, or ¢t < v, respectively. o

Remark 3. Tt is not possible to improve the result by deleting the integral
of u. A simple counter-example can be constructed by letting (MIMOC) be
an integrator, the initial state z(0) = 0, and the input u(r) = 6 (7 — (t —€)),
for some small € > 0. Choose coordinates in the state space so that z = y.
Then clearly z(t) = 1, and [ y2dr = ¢, so by letting ¢ — 0, we arrive at a
contradiction. A counterexample for the corresponding discrete time statement
is even simpler, and is therefore omitted. The lemma is true without the u-
dependent term if and only if G (.s) has a proper left-inverse. o

Proof. The proof for the continuous time case is given in detail. The proof
for the discrete time case is then outlined. This will essentially be a ‘character
string replacement routine’. However, a full proof for the discrete time case is
given in [Martensson 1985b].

In an obvious operator notation we have

5(t) = eAta(0) + /0 A7) By(r)dr = Lz(0) + Liu(.) (<)
y(.) = L3z(0) + Lyu(.) (—~)

where L, L%, L3, and L4 are bounded linear operators between suitable Hilbert
spaces. We first prove (ii). Let T > 0 be given. By using time invariance, it
is enough to show (ii) for ¢ = T. From observability, (—) can be solved with
respect to z(0), i.e. z(0) is the image of y(.) and u(.) under a continuous
linear mapping. Inserted into (), this proves (ii).

By Remark 2, it only remains to show (i) for small ¢, say ¢ < 1. For this,
note that the operators £; = {L} :0<t <1} and L2 = {L}:0<¢t < 1} are
uniformly bounded by, say, ki and k3. From these observations, (i) follows (for
t < 1) from (-), since [ ||ul?dr < S5 (Iell? + [lwll?) dr. For the continuous
time case, the proof is finished.

To construct the proof for the discrete time version, change all integrals to
the corresponding sums, and “eA(*=7)” to “A*~". Also note that z(t) can, by
definition, be expressed in y(.) and u(.) if and only if T > v. This completes
the proof. E

A Useful Corollary

The lemma has the following immediate corollary, which will be used in the
connection with adaptive stabilizers. We make the following definition:
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Definition 3.3. A function f : R? x R™ x R x R — IR will be called
L2-compatible if itis satisfies.a Llpschltz-condltlon and there exists a constant
¢ > 0 such that f(y,u,k ,t) > c(”y“2 + ||u||?) for all k and all ¢. o

The name is motivated by the fact that for f being an L2-compatible function,
we can estimate the L?-norm of (y,u) by the integral of f, as will be done in
the proof of the following corollary. ’

COROLLARY 3.4. Consider the plant (MIMOC), and let u(.) be a contin-
uous time-function. Let k satisfy

k= f(y,u,k,t), k(0)=ko

where f is an L?-compatible function. Then, if k converges to a finite limit koo
as t — 00y 1t ho]ds that Hz(t)” —0ast— o0, oo

Proof. Clearly

oo ) » 1 ee} 1
[7 o+ w7y < 3 [ Skt de = (o — ko) < o0
Vo ’ ' 0

Thus, for any T > 0, the right hand side of (ii) in Lemma 3.1 approaches zero
when t approaches infinity. The corollary follows. H

Remark 4. Obviously, there is a discrete time version. We omit both formu-
lation and proof, since we believe that this is trivial. o

Remark 5. In previous ‘universal’ stabilizing algorithms, see the references
given in Chapter 1, the step of showing that z(¢t) — 0 as ¢ — oo has involved
a minimum phase argument. This is not required here. This aspect will be
further discussed in the next section, and also in Chapter 4. o

3.4 A Result on Time-varying, Singularly Perturbed Systems

The main result in this section is a theorem on the stability of time-varying,
singularly perturbed linear systems. It states that, under some technical con-
ditions, if a singularly perturbed system is stable for large values of the param-
eters, then the system remains stable for arbitrarily fast variations in the time
scales. In this sense, the result differs from all other results on stability of time
varying system of which this author is aware of.

In this work, we are not interested in time varying systems per se, and we
claim—somewhat ideologically—that it is a very common conceptual error to
mistake a time-invariant non-linear system for a time-varying system of a dif-
ferent structure. Of course, this might be perfectly legitimate mathematically,
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but most often, it is conceptually a non-appealing description of a real-world
system. We will adopt this idea as @ mathematical trick, namely to consider the
non-linear system, i.e. the adaptive controller, as a time-varying linear system.
With this approach, the time-varying singular perturbation theorem is used to
prove a theorem on the stability of high-gain based adaptive stabilization, the
problem being to turn up the gain high enough in a scalar fashion.

This field contains a lot of unsettled questions. In 1949, M. A. Aizerman
formulated a conjecture which, slightly rephrased, stated that if, for some a >
0, sp A(t) C €~ for all ¢, then the time-varying system & = A(t)z was stable,
[Aizerman]|. Later it has been presented counter-examples showing that this
conjecture is false. It is an interesting question to find some more general
additional conditions, under which Aizerman’s conjecture would be true.

The Main Result

We will now formulate and prove a theorem on time varying, singularly per-
turbed systems. Recall that an n X n-matrix A has simple null-structure if
imA®kerA=1R".

THEOREM 3.5 ( “THE TIME-VARYING SINGULAR PERTURBATION THE-
OREM”). Consider the linear time-varying system

i=A(t)z= (Ao + f()A)z, z€R" (TVSP)

where

(i) f is a positive, scalar, real-analytic, increasing function approaching in-
finity as t — oo.

(ii) For some o > 0 it holds that sp A(t) C C™* for all sufficiently large t.

(iii) The matrix A; has simple null structure.

Under these conditions, the unique solution of (TVSP) will go to zero expo-
nentially.

Notice that it is only (iii) that imposes a hard constraint on the use of the
theorem. This will be discussed further after the proof. It will be shown in
Proposition 3.9 that system-theoretically, (iii) is equivalent to a multivariable
relative-degree-one requirement.

The proof relies on the following lemma from [Willems-Byrnes].

LEMMA 3.6 (BYRNES-WILLEMS). Consider the time-varying, multi-input,
multi-output linear system

t=Az+ Bu, z€IR", ueR™
y=Cz y€eR™

(%)
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If ($) is stable, in the sense that it represents a bounded L2-operator, there
exist constants ki,ks such that for all z(0) € R", T € IR*, and u(.) €
L%([0,T],IR™) there holds LR L -

e ST
VI U W N T B

| [ w0y ] < I 4 b JRECIRE

where (., .) denotes an arbitrary inner product on R™, ||u(t)|| the correspond-
ing norm, and ||z(0)|| any norm on R™.

In [Willems—Byrnes] the lemma was formulated only for single-input, single-
output, time invariant systems, but after only a change of notation, the same
proof holds for the formulation given here.

Proof. With the same notation as in the proof of Lemma 3.1,

(y,u) = {Laz(0), ) + (Lau,v)

where (., .) denotes the inner product on L2. By Cauchy-Schwarz’ inequality,
some elementary estimations, and since the involved operators by assumption
are bounded,

[y, u)| < [ Zalll= @ lull+ | Lallllel® < %I\Lallllm(0)112+(%HLsH + IlL4ll) ]|

This proves the lemma. | - =

We will next characterize the matrix A(t) and its eigenvalues. Let m = rank 4;.
By assumption (iii) there is a T € §L£(n) such that

4. (0 0
T1A,T = .
0 4}

where Al, is a non-singular m X m-matrix. Put

Aoo Aoy ]

T-1AT =: [
Ao A9 + FAL,

In the following, the corresponding partitioning of the state vector is also used,

i.e.
20
r —
7l

The following lemma describes the asymptotic expansion of the eigenvalues of
A(t) as t approaches infinity.
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LEMMA -3.7. When t approaches infinity, the eigenvalues of A(t) split into
two disjoint groups: There are m unbounded eigenvalues, approaching infinity
such that sp %A(t) converges to sp Ay, while the remaining n — m eigenvalues

converge to sp Ago-

Proof. The first statement is obvious. The second follows immediately from
the following, slightly more general lemma.

LEMMA 3.8. Let A(t) be a matrix of the form

Aoo(t) Aoi(t) ]

Alt) = [
() ’ vAlo(t) All(t)

where limy— oo Aoo(t) = A, g (A11(t)) — oo ast — oo, and either Aoi(t) or

A1o(t) is bounded. Then the finite eigenvalues of A(t) approachsp A ast — oo.

Proof. Assume that Ao is bounded. (Otherwise consider the matrix AT
instead.) To prove the lemma, we shall show that for any complex number
A & sp A the matrix AI — A(t) is invertible for large ¢. It is no restriction
to assume that A = 0, since otherwise we might replace A by A — AI. Let

T
v = [vg' vl ] # 0 be given. It remains to prove that A(t)v # 0 for all

sufficiently large ¢t. If vy # O we are finished, since in this case || A(t)v]] — oo
as t — oo. If v; =0 then

Apov 0
w00~ (o) # (o)
A10v0 0
for large t by the assumption that A was non-singular. This completes the
proof. m

We are now ready to complete the proof of the theorem.

Proof of Theorem 3.5. By dividing both sides of (TVSP) with f we see
that in the time-scale r = [ t f(s) ds a global Lipschitz-condition is satisfied.
Therefore there is a unique, globally defined solution to (TVSP). Lemma 3.7
and assumption (ii) imply that the matrices Agp and A}, both have their
spectra in the left half plane. Let Q@ = QT be the unique, positive definite
solution to A{ITQ + QAl, = —I. First we will prove that ||z!(¢)||? goes to
zero exponentially. For this consider

1d )
2 12l = (=85 = (', dwos®) g + (=", (4% + al) )y (V)

We may consider A10z° as the output of the time-invariant linear system $°,
which has the system matrix Agg, i.e. a stable system. This is illustrated in
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A% (pI — Aoo) ™1 A,

T Az

(pI — (A%, + f141)))

Figure 3.2. Decomposition of the system (TVSP)

Figure 3.2. By Lemma 3.6, there are constants k; and k, such that for all
T >0,

T T
/ (2, 4105%) dt§k1+k2/ 2|2 dt
0 0

Integrating (/) from O to T, and using this estimatate we have

T
% (||351(T)||‘g’2 ~ nxl(o)“g) <k + /O (2', (koI + A3 + fAL)z?)  dt

By the construction, there is a Top such that (koI + A9, + FAL)TQ + QR I +
A9, + FAY)) =2kQ — fI+ A?lTQ + QAS; < —I for t > To. Therefore, there
is a constant ks such that for all T > Ty it holds that

2 T 2
Il <k -2 [l o

From Grénwall’s lemma, [Desoer-Vidyasagar], it now follows that 2% goes
to zero exponentially.

Since SO is time-invariant and exponentially stable, also ||z°|| will go to zero
exponentially. This completes the proof. m

Some Remarks on the Theorem

First a system-theoretic interpretation of requirement (iii) on simple null-
structure is discussed. We have the following simple proposition.
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PROPOSITION 3.9. Let B and C be n xm and m X n matrices respectively,
both of rank m < n. Then BC has simple null structure if and only if CB is
non-singular.

Proof. CB being non-singular is equivalent to im B[} ker C = {0}. By count-
ing dimensions, this is equivalent to im B @ ker C = R". Since B is injective
and C surjective it follows that im B = im BC and ker C = ker BC. Hence CB
is non-singular if and only if im BC & ker BC = IR". Since the last statement
by definition means that BC has a simple null structure, the proof is complete.

]
Consider the plant (MIMOC), and assume m = p, and that C'B is invertible.
We put Ap := A, A; := BC. Pick T as before. We have

Ao A 0 0
T~1AT = [ * gl] T~'BCT = [ ]
Ao A% 0 Af

It can be shown that the zeros of (MIMOC) are sp Ago. Therefore, in this case
the proposition contains a state space version of the root locus statement “the
finite endpoints of the root locus are the open loop zeros”.

Remark 1. The proposition also contains Tychonov’s theorem on singularly
perturbed systems, see [Kokotovié], restricted to linear systems. o
Next, some further comments upon the extent to which the conditions (i), (ii),
and (iii) are necessary for the theorem to be valid are given.

Remark 2. The condition f — oo as t — oo is not really used in the proof.
The proof shows that there are constants k and T' such that if f(¢) > k for
t > T, then ||z(t)|| < coe™**® for ¢t > T and some co,c1 > 0. o

Remark 3. Clearly we may allow f to be piece-wise real-analytic instead of
real-analytic, provided that (TVSP) still has a unique solution in a suitable
sense. , o
The slightly unpleasant, ‘technical’ condition (iii), saying that A, is required
to have simple null structure, can unfortunately not just be disposed. This will
be showed by the following example.

Example 3.10. Consider the system

(1) 0[]

where f is a function satisfying (i). This equation has the solution

o(0) = [ etal + [y e:t“’os)f(S) ds 23 ]

e " z5

Clearly z will not go to zero if zJ # 0 and f grows faster than et o
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Also note that if the simple null-structure requirement is violated, then (TVSP)
does tiot represent a singular perturbation decomposition of time scales. '

Remark 4. The eigenvalue condition (ii) is necessary: The solution to the
scalar equation & = f(t)z will have a finite, nonzero limit if and only if z(0) # 0
and [ ® f(¢) dt exists finite. o

On the use of the Theorem E

In this thesis, we are not interested in time varying systems per se, but as an
alternative viewpoint on the special class of nonlinear systems adaptive systems
constitute.

* The following theorem illustrates its use in a very clear fashion.

THEOREM -3.11. Consider the linear, time invariant, multi-input, multi-
output minimal plant (MIMOC). Assume that m = p, that spCB C CT, and
that all its n — m zeros are in the left half plane. Then, for all « >0, 8 > 0,
the adaptive controller '

u=—ky

k= olly|l* + Bllull?
will stabilize the system in the sense that
(i) ||z(¢)|| will go to zero, and
(ii) k() will converge to a finite limit koo.

Proof. If (ii) does not hold, then Theorem 3.5 applies with m =1, Ao = A4,
A; = —BC, and f(t) = —k(t), now considered as an abstract time function,
defined up to a (possibly finite) time T' < co. By root locus theory, the frozen
parameter system will be stable for all sufficiently large k, so requirement (ii) of
Theorem 3.5 is fulfilled. Moreover, Proposition 3.9 implise that A has simple
null-structure. o

By Remark 2 it follows that there are constants 7o < T, ¢co > 0, ¢1 > 0
such that ||z(t)]|? < coe~ 1t for t € [To,T]. Therefore, in this time interval,
k= (a+ Bk)||vl|? < (+ BK)||C||*coe™**. Rearranging the terms, multiplying
by an integrating factor,and integrating, it follows that k is bounded. This con-
tradiction shows that (ii) holds—in particular, the solution to the differential
equation is globally defined. If 8 > O then clearly f(y,u,k,t) := ally||? + Bl|u||?
is L2-compatible. For 8 = 0, note that since ||y||Z + [u[|® < (1 + k2,)|lyll?, it
holds that f, restricted to the linear subspace defined by u(t) = —k(t)y(2), is
L2-compatible. Applying Corollary 3.4 (i) follows and the proof is compete. =

Remark 5. The theorem differs from ‘classical’ adaptive control in two very
interesting ways: First it shows that ‘slow’ adaptation is not needed for con-
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vergent. adaptive control*. The next example will illustrate this. Secondly, no
bound on the McMillan degree 1s required. LG e S o

Remark 6. Another argument showing that (ii) implies (i), used in [Willems-
Byrnes] and [Byrnes-Willems], is the following: First choose coordinates on the

state space so that
0
C= (o Im]; B=|

In the language of the proof of the Theorem 3.5, (ii) is exactly the statement
that z(.) = y(.) € L% Since z°(.) can be considered as the image of !
under a bounded affine operator on L?, also z°(.), and thus z(.) is in L?. By
(ii), also A — k(t)BC is a bounded linear operator on L?, so it follows that
#(.) € L. Therefore, (z,%) = %||z||? € L?, which means that z(t) — 0 as
t— oo, : ’ ui

Example 3.12. Consider the plant (MIMOC), where

-1 2 3 0 0
01 0
A= 2 2 -3 B = 1 2 C=
0 01
2 —2

This plant is unstable, with sp CB = {1£2i} C €1, and its only zero located in
—1, so the theorem applies. In Figure 3.4 we show a numerical simulation of the
plant controlled by the controller in the theorem, with & =1 and 8 = 0. The
parameter k (dashed line) and the three components of the state are shown.
Figure 3.5 shows the same system for a = 1,10, 100, 1000. For easy comparison,
the scales are selected equal in the four plots. The limiting value ko, turned out
to be 4.68, 7.52, 17.05, and 47.56 respectively. Note that for large k, the state z;
still decreases slowly. This is so because z; is exactly the mode corresponding
to the zero in —1, where the single finite branch of the root locus ends. o

Remark 7. The example stems from the report [Mértensson 1984b|, which de-
scribes some numerical tools for analysis and simulation of multivariable linear
systems by combining the ‘non-linear differential equation language’ Simnon,
[Astrém 1985], and [Astrém—Wittenmark], with the ‘matrix manipulation lan-
guage’ CTRL-C, [CTRL-C]. These were used in the preparation of the example
above.

This path is intended to be much further developed in the forthcoming re-
port [Holmberg, Lilja, Martensson], describing some more elaborate tools for

* It should be remarked that there are MRAC algorithms, e.g. described in [Parks], in
which arbitrarily fast adaptation can take place.
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0 2 4 6
Figure 3.3. States and k for the system in Example 3.3 fora =1 and # =0

investigating linear systems by combining the power of numerical methods in
Simnon and CTRL-C, with symbolic manipulation in MACSYMA, and type-

setting in TEX. o

Relay Controlled Systems

During the last few years, single-input, single-output plants controlled by a
relay, i.e. with the feedback control law

u= —signy

have regained interest. This stems especially from application to autotuning of
standard PID-controllers, which is a method, motivated by describing function
theory, for approximate determination of the intersection of the Nyquist curve
and the negative real axis by letting the system oscillate in a limit cycle. From
this information, the PID-parameters are calculated using heuristic formulas,
such as the Ziegler-Nichols’ rules. See e.g. the references [Astrom—Hagglund]
[Ziegler-Nicols].

Somewhat surprising, we will use Theorem 3.5 to prove a result on the sta-
bility of the origin for a certain class of relay controlled plants. Together with
well known results, this shows that there are plants which possess a locally, but
not globally, stable limit cycle.
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o=1 . o . .a=10
2 2
01 0
—2 T 1 1 -2 T 1 i
0 1 2 3 0 1 2 3
o= 1000
2 4
0 M
R, i 1 ' r '
0 1 2 3

Figure 3.4. States of the same system for o = 1, 10, 100, 1000

PROPOSITION 3.13. Consider the minimal, time invariant, single-input,
single-output linear plant S -

= Az + bu, ze R", v€R
=cz vyeER

and assume that the instantaneous gain c¢b > 0, and that all zeros are in the
left half plane. Then, with the control law v = —signy the closed loop system
will have the origin as an asymptotically stable equilibrium.

Proof. By putting
o sign y

' fory#0
F@) = |
-0 - fory=0
u=fy o
it is clear how to consider the relay control as a time-varying linear feedback.
Taking Remarks 2 and 3 on page 33 into account, we may apply Theorem 3.5.

So there is a neighborhood ¥ C IR™ such that if z(t) € U for some ¢, then z — 0
as t — co. This proves the proposition. =
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Remark 8. Note that the solution to the differential equation must be in-
terpreted in a weak sense. This is natural since, from a classical standpoint,
no solution exist for the differential equations describing some relay control
systems. ... .. o

3.5» ~S‘—\>Nitching Funcﬁons

In this section we will deal with the following problem: We want to adaptively
stabilize an unknown plant G of type (MIMOC), for which we know that G
belongs to a set §. Here § is a set of plants for which there exists a finite or
countable set of controllers K, such that for any G € g, there is at least one
controller K € K such that the control law u = Ky will stabilize G.

A heuristically appealing algorithm for stabilizing the unknown plant G
would be to try each one of the K’s for ¢ units of time, until we find one
that stabilizes the system. Unfortunately, as will be shown in Chapter 4, this
is possible if and only if we know a bound on the McMillan degree of the plants
belonging to §. Instead we try each one of the controllers for some time,
according to some criterion, in a way that will hopefully converge, and thus
will switch among the controllers only a finite number of times. A switching
function is a criterion of this type.

First we will give a ‘historical’ overview of how this concept has been used.
The next subsection contains definitions of the relevant concepts. The main
result on stabilization by switching function controller is the content of the last
subsection.

This section deals with continuous time plants. It is from these the concepts
have emerged. We outline a discrete time version of the main result in a remark.

How the Concept of Swntchmg Functions Emerged

The concept of sw1tch1ng functlon was first 1ntroduced in [Wﬂlems-Byrnes]
where the set of plants § under consideration was single-input, single-output,
minimum phase plants of relative degree one. If follows from Theorem 3.11
that for any such G € g, either the controller

u=ky
. ©)
=Y
or the controller
u= —ky o
-y ()

will stabilize G depending on the sign of the “instantaneous gain” ¢b # 0. As is
well known, if we know sign cb, we would use (©) if ¢b <0, and ({) otherwise.
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Byrnes and Willems showed that there is an algorithm stabilizing all systems
in' G, based on switching between the two controllers (V) and (¢). We give the
full formulation here. e e , ]

THEOREM 3.14 [WILLEMS-BYRNES]. Let s(k) : R — IR be a function
satisfying
(i) s is bounded on compact sets,

(ii) s is sufficiently regular in order for the differential equation describing the
closed loop system to have a unique solution, at least in a weak sense,

(iii) Using the notation
k
[ LR O NN R P S(k) :/ s(o,)o.do_
, - . o
we have that Tﬁk_,oo %S(k) = oo, and 11mA oo %S(k) = —o0.

Then, for all G € G, with § as above, the controller

will stabilize G in the sense that lim¢ oo ||Z|| = 0, while lim; o0 k = koo < 00.

As an example, the switching law

s(k) = { 1 @2n)?<k<(2m+1)?% nelN
-1 (2n4+1)2 <k < (2n +2)% ne€N

was given, which clearly switches between (¥) and (¢).

Remark 1. A function s satisfying requirements (ii) — (iii) is by some authors
called a Nussbaum function, [Morse 1984b], after the important paper [Nuss-
baum], in which the problem above, restricted to systems of degree one, was
solved for the first time. We will adopt this term here. o

Remark 2. There are two kinds of Nussbaum functions: bounded and un-
bounded. Actually, the recent contributions on related questions are divided
into two disjoint sets: the ones using bounded Nussbaum functions, and the
one using unbounded. For s being a bounded Nussbaum function, (iii) can
in a intuitive language be rephrased as s oscillates slower and slower. This is
reminiscent of the concept of ‘slow adaptation’. For s unbounded, this is not
so obvious. However, via a transformation of the time scale, we see that these
two approaches are closely related for large k. o
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In this thesis, the term “switching function” will denote a Nussbaum-like func-
tion taking on enly-a finite or countable number of'values; used to discriminate
between controllers in a finite or countable set.

_ In [Byrnes-Willems| a multivariable generalization was presented, namely to
square, minimum phase plants with CB invertible. The algorithm consisted of
switching between controllers of the type

U = kK,-y
b=yl

where, for one 7, sp BK;C C C*. Their controller read

u= kKs(k)y
k= ol

where s(k) : R — IN is a ‘switching function’, satisfying a particular require-
ment of slow change. We will return to this approach in Chapter 6.

In the remainder of this section, we introduce the pertinént concepts formally,
and prove a result on switching function based adaptive stabilization. In con-
trast to previous work, this is not necessarily tied to high-gain stabilization.

Definitions

Some definitions will now be presented. We start with the concept of switching
function.

Definition 3.15. Let s(k) be a function of a real variable, and {r;}{2, a
sequence of increasing real numbers. For r = 2,3,...,Ro, we shall say that
s(k) is a switching function of rank r with associated switching points {r}, if
s(k) is constant for k ¢ {7;}, and, for all @ € IR, s({lc > a}) = {1,...,r}.
Further, just as a notational convenience, we require a switching function to
be left continuous. o

Remark 3. Note that it follows from the definition that infinity is the only
limit point of the sequence {7;}. o

By switching function controller we shall mean the following.

Definition 3.16. For r = 2,3,...,Ro, let K = {Ki,...,K,} be a set of
controllers, with card K = r. Let f be a Lipschitz-continuous function and
s(k) a switching law of rank r. A controller of the type

U= Ks(k.)y
k= f(y,u,k,t)

will be called a switching function controller. o

(SFC)
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Remark 4. Note that in general the control law u = K,y must be interpreted
in an operator-theoretic way; not as a matrix multiplication. e o

Remark 5. The way (SFC) is written requires all the controllers K1, ..., K,
to be simultaneously connected to the output of the plant, while the switching
law chooses which controller’s output to connect to the plants input, at least if
the K;’s contain dynamics. For r large or infinite, this is clearly not a practical
way of implementing a controller. However, if all the controllers have a (not
necessarily minimal) realization on a state space of a certain dimension, then
this difficulty can be circumvented by considering the augmented plant as in

Section 3.2, and considering the controllers as static controllers. o

For further reference, we shall make clear what we mean by a set of regulators
stabilizing a set of plants in some sense.

Definition 3.17. Let f an L%-compatible function, § a set of plants of the type
(MIMOC), all of which having the same number of inputs and outputs, and K
a set of controllers of compatible dimensions. For ko € IR, let k£ be the unique
solution to k = fly,u,k,t), k(0) = ko. We shall say that K is stabilizing for §
with respect to f (or is f-stabilizing for §G) if the following holds: For any plant
G € § there is a controller K € K and constants ¢, T such that the control law
u = Ky will stabilize G in the sense that

(o]

fy,u,k,t) dt < ¢||z(to)||?
to

for all z(0) € IR™ and for all ko € R,t0 > T o

Remark 6. In particular, the left hand side stays finite, so it follows from
Corollary 3.4 that z(t) — 0 as t — co. It also follows that the solution to the
differential equation is indeed globally defined. o

Remark 7. By considering singleton sets in the definition, it is clear what we
shall mean by the statement the controller K stabilizes the plant G with respect
to f. o

The Main Result on Switching Functions

With the machinery developed so far, we can now easily prove the following
results on switching function controllers. Note that, for s being some particular
switching function, Theorem 3.14 follows immediately.

THEOREM 3.18. Suppose that f is an L2-compatible function, and that
the set of controllers K is f-stabilizing for the set of plants G. Then there is
a sequence o = {r;} such that for s(k) any switching function of rank equal
to card K, with associated switching points {r;}, the control law (SFC) will
stabilize any plant G € § in the sense that for all £(0),k(0), it holds that
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|lz(t)|| — O as t — oo, while k converges to a finite limit. Further, there is a
‘universal’ switching point sequence o, independent of the individual set §.

Proof. The steps in the proof are the following: To say that the theorem is
false is to say that for all switching sequences, there is a switching function
with the stated properties such that stabilization does not take place. It will
be shown that, if stabilization does not take place, the sequence {7;} has to
satisfy a certain requirement, depending on §, namely (£) below. A sequence
o is given, with the property that for all allowed §, the requirement is violated.
We conclude that with this very sequence stabilization takes place, which will
establish the theorem.

From Corollary 3.4, and since k is increasing, it follows that in order to
show stabilization it is enough to show that k is bounded. By the definition
of switching function, this is equivalent to the statement that s, considered as
a function of time, only switches a finite number of times. So we assume that
this is not the case, and investigate the implications of this assumption.

Consider an arbitrary, but fixed, G € §. Say that controller K; is f-
stabilizing for G, and that the controller K; is used with start at time Zo.
That is, k(to) = 7;, where s(7;) = 1. By the assumptions, this will happen for
arbitrarily large k and t. Therefore, with T as in Definition 3.17, we shall make
the assumption that to > T.

The assumption that s switches an infinite number of times implies that we
will reach the next switching point ;41 after a finite time. But this is exactly
the statement that

o0

f(y’uak’t) dt > Ti4+1— Ty (b)
to

where the left hand side, by assumption finite, is evaluated as if the controller
K; was used forever. We will show that the sequence {7;} can be taken in a
way so that (;) cannot be satisfied for 5 sufficiently large, which will prove the
theorem.

By definition of f being L2-compatible, there is a ¢, so that the left hand
side of (;) can be estimated as

o
f(y,u, k,t) dt < cf|z(to) ]|
to

Using the same argument as in the proof of Corollary 3.4, it follows from Lemma
3.1, part(i), that for all z(0), there exist constants ¢o and ¢; such that

la(@)I* < co+ erk(t)

for all t. Substituting ¢ = to, k = 7j, and combining the last two estimates, we
see that a necessary condition for (;) to be satisfied, is that

Tj4+1 — T; < cco +cc1Ty (£)
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But there are sequences+{r;} such that, for any ¢, co, ¢1, the statement (£)
will be false for-all sufficiently large 5. This is the case e.g. for the sequence

defined by
TR =T T3

T1=2

Therefore with a rswifchinrg sequence liI{e this chosen, ‘the assumﬁtion of s to
switch infinitely many times leads to a contradlctwn Since G was arbitrary,
the proof is complete =

Remark ‘8- Tn" discreté time all ‘coricepts and definitions make sense, after
some obvious changes. Since the theorem is based on Lemma 3.1, together
with its corollary, both of which having a discrete time version, there is clearly
a discrete time version of the theorem. a)

R

3.6 Conclusions

In this long chapter we have built up most of the tools which will be used to
harvest the results in the later chapters.

In Section 2 we showed that, once the order of the controller dynamics is
determined, the dynamic feedback problem is a special case—however, some-
what nongeneric—of the static feedback problem. This leadsto conceptual and
notational simplifications in the sequel.

In Section 3 we proved a lemma that provides an estimate of the state of
the plant, expressed in what will most likely be the parameter of an adaptive
controller. The corollary showed that, under a mild condltlon, if controller
stays bounded, then it stabilizes the pla.nt

A theorem on ‘fast’ time-varying singularly perturbed systems was presented
in Section 4. This was used to prove a theorem, which under a condition
reminiscent of relative degree one showed the stability on ‘cranking up the
gain’-type stabilizing algorithms.

The last section covered the concept of switching functions. Definitions and
a theorem were given. The theorem can be used for example to partition the
problem of stabilizing a high-gain stabilizable plant into two problems: to find
an (a priori bounded) precompensator such that the precompensated system
will be stable under the control law u = ky for large k, and then turning up
the gain. This problem will be further dealt with in Chapter 6.
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Meta Results on
Adaptive Stabilization

4.1 Introduction

The present chapter is devoted to results on adaptive stabilization independent
of the particular algorithm chosen. The question “what can be achieved and
what cannot be achieved by adaptive control” is addressed.

Adaptive control deals with control of plants which are known only impre-
cisely. It is obvious that whatever can be done adaptively can be done if we
know the plant. A not-so obvious question is: Given the existence of a smooth
adaptive controller of (linear) dimension /, stabilizing the plant G, is there a
constant, linear, time-invariant controller of dimension ! which also is stabi-
lizing for G? This question is answered in the affirmative in a theorem by
C. I. Byrnes. This result constitutes one half of Theorem 4.1, which gives the
complete characterization of necessary and sufficient a priori information for
adaptive stabilization, namely the order of any stabilizing controller for the set
of plants under consideration. The second half is the construction of an adap-
tive controller which does the job, with nothing but this a priori information.
A new proof is given in Section 4.2. The still unsettled question of the minimal
order of a stabilizing controller is then discussed. The multivariable Nyquist
criterion is proved and used.

45
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The idea of adaptive stabilization by stability indicators is introduced in
Section 4.3. Despite its simplicity, according to the author’s knowledge, this
idea has not occured in the literature before. We show that this idea works if
and only if an a priori bound on the McMillan degree of the plant is known.

The following section discusses continuous versus discontinuous controllers.
It is shown how to make any switching function controller continuous by inter-
polating away the discontinuities.

Section 4.5 discusses different functions f that govern the growth rate of the
parameter k according to k= f(y,u,k,t). We demonstrate a case where the
previous approach with f = ||y||? is not satisfactory.

Section 4.6 treats similarities and differences of continuous time and discrete
time control problems, with application to adaptive control. Sampling of plants
is discussed. The section ends with a slightly disappointing negative result on
adaptive stabilization of continuous time plants by a sampled controller with
fixed sample rate. h ' ‘

In the last section it is shown that it is straightforward to solve a restricted
version of the tracking problem by introducing integrators in the loop in classi-
cal engineering manner. Constant, nonzero reference values can thus be tracked
with zero error asymptotically.

4.2 Necessary and Sufficient A Priori Knowledge

This section contains the complete characterization of the a priori knowledge
needed to adaptively stabilize an unknown plant, namely the order of any fixed
linear controller capable of stabilizing the plant. The necessity was proved by
C. I Byrnes and U. Helmke in [Byrnes 1985], while the sufficiency was proved
in [Martensson 1985a]. A new proof of the sufficiency part is given, based on
the results on switching functions of the previous chapter. The still unsettled
question of the lowest degree of a (fixed) stabilizing controller for a given plant
is discussed later. ’ o N

The Main THeorem

The following theorem is the most general result on adaptive stabilization in
this thesis. . ' ' N

THEOREM 4.1 (BYRNES-MARTENSSON). Let § be a set of plants of the
type (MIMOC). The necessary and sufficient a priori knowledge for adaptive
stabilization, as defined in Chapter 2, is knowledge of an integer | such that for
any plant G € § there exists a fixed linear controller of order | stabilizing G.

Proof of Necessity. See [Byrnes 1985]. =
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The original proof of the sufficiency of this, a, priori information is given in
Chapter 5. The result can also be obtained by the method of switching func-
tions introduced in Section 3.5. This gives the following proof. Since explicit
algorithms will be given in, the following chapters, we give the proof in a non-
constructive fashion.

Proof of Sufficiency. The proof is a fairly straightforward application of
Theorem 3.18 on page 41. Consider a controller in the spirit of Section 3.2,
namely as a constant M X P-matrix, where M := m + !, and P := p + L
The set of controllers K is taken to be all such with rational coefficients, i.e.
K := QM*FP Let f be defined as f(y,u,k,t) = ||y||? + ||u||?. This is an L*-
compatible function. A stabilizing controller places the closed loop poles in
the open left half plane. The poles depend ¢omntinuously of the parameters in
the controller: -Since K is dense in the space of all controllers of order I, i.e.
RM*FP K is thus f-stabilizing for §. Theorem 3.18 establishes the existence of
a sw1tch1ng function such that the corresponding switching function controller
(SFC) stablllzes any plant in §. This completes the proof. 7 E

Remark 1. By some additional effort, an explicit algorithm based on the ideas
in the proof can be constructed. o

Remark 2. The report [MArtensson 1984a] gives a simple, discrete time con-
troller based on similar ideas, together with an independent proof and a simu-
lation. It is based on searching through a pseudo-random sequence on IR, and
stabilizes all first order plants z(t + 1) = az(t) + bu(t) for which b # 0. o

In Section 4.4, it will be shown that the controller can also be taken to be con-
tinuous by ‘smoothing-out’ the discontinuities. Another approach is presented
in Chapter 5.

On the Minimal Order of a Stabilizing Controller

The previous subsection raises the question “What determines the minimal
order of a stabilizing controller for a certain, known, plant”? This question
is still unsettled. Some preliminary results are given in [Brockett-Byrnes],
[Byrnes-Anderson 1983, 1984]. It should be noted that their results only apply
to the generic plant. That is, given a partlcular plant, no conclusion can be
inferred.

From [Brasch-Pearson], it follows that n — max(m,p) is always an upper
limit. On the other hand, there are systems for which the null-controller v = 0
stabilizes, namely the stable systems. Minimum phase, single-input, single-
output plants of relative degree r > O'At:an always be stabilized by a controller
of order r — 1, as can easily be shown.

For the purpose of the present work, it Would be desirable to know that it is
harmless to over-estimate the order required. This is the content of the next
proposition.
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PROPOSITION “4.2. Assume that there exists a proper controller K(s) of
order ly stabilizing the strictly proper plant G(s). Then, for all | > ly, there
exists an open set of controllers K'(s) of order l, stabilizing G(s).-

“Open set of controllers” shall of course mean open with respect to the
topology induced by, for some IV, via the coefficients identifying the polynomial
matrix K(s) with a point in RY, equipped with the norm topology.

The proof relies on the multivariable Nyquist criterion. In contrast to the
standard Nyquist criterion, originally given in [Nyquist], this has not yet found
its way into widely spread textbooks. Also, since there does not seem to be an
agreement of exactly what it shall mean, we formulate and prove the version
used here. A similar treatment can be found in [Postlethwaite-MacFarlane]. A
generalization to rectangular plants is given in [Brockett-Byrnes].

N
~ A ]

The Multi\);crlriabile Nyq”di's‘t“Criterion
We first introduce some notation.

Notation. Let p €C, f :€C* — C* a meromorphic function, and I a positively
oriented Jordan curve in €. By N(p, f,T’) we shall denote the number of encir-
clements of p of the curve f(I') while T is traversed in the positive direction.
More precisely,

o J ,
N )= [ [ LD
soyw—p Jrf(z)—p
The curve T will in the sequel mean the Nyquist contour
- 00 19 0=m
I'={w} _o U {Re 0}0=_/:/2

traversed in the counter-clockwise direction, and where R > 0 is large enough.
o

Remark 3. Note that we are using the mathematical, rather than the engi-
neering practice in orienting the Nyquist contour. This means that the Nyquist
curve is traversed from higher to lower frequencies, which is annoying for an
engineer. o

THEOREM 4.3 (“THE NYQUIST CRITERION FOR SQUARE MULTIVARI-
ABLE PLANTS”). Consider the square m X m plant G(s), controlled by the
control law u = —ky. Assume that G(s) has no poles on the imaginary axis
and exactly P poles in the open right half plane. Then the closed loop system
is stable for all k such that the “Nyquist curve” det G(s) when s traverses the
Nyquist contour T' encircles —1/k exactly —P times. That is, if and only if

N(——%,detG’(s),I‘) __p
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Proof. The closed loop poles are the zeros of the rettrh-d'iffere'riée' determinant
det (I + kG(s)). By the principle of the argument, the closed system is stable
if and only if N (0,det(I + kG(s)),T') = —P. But, at least formally, we can
rewrite this expression as

N (0,det (I + kG(s)),T) = N(O, H X (I+ ké(;)) ,r)
_ZNO,\(HkG ZN(——A (s)),r>
w,_M_j,_..u~~N(———IIA (66)), )—' (-5 cet(cte 1)

where \;(M) denotes the i-th eigenvalue of the matrix M. To complete the
proof, it only remains to validate the steps above. Unfortunately, the quantity
N (0,); (I + G(s)),T) does not make sense in general, not even disregarding
the ordering of the i’s. This is because the A;’s are algebraic functions on an
m-sheeted Riemann surface. If this Riemann surface has branch points on the
imaginary axis, the winding number cannot be given a meaning. However, if the
Riemann surface lacks branch points on the imaginary axis, the winding number
does make sense, the computation is justified and the proof complete. The
branch points are given by the discriminant of the numerator of det (I + kG(s)),
which is a polynomial in s and the coefficients of G(s). A suitable, arbitrarily
small perturbation of the coefficients in G(s) will thus move the zeros of this
polynomial away from the imaginary axis. The proof is complete. ™

Remark 4. Note the explicit character of our version of the theorem, namely
that it suffices to draw one curve, which answers the stability question for all
k’s, just like the standard scalar Nyquist criterion. o

We now return to the proof of the proposition.

Proof of Proposition 4.2. Break the loop at the output of the plant and
consider the strictly proper, square ‘plant’ G(s)K(s). Apply the multivariable
Nyquist criterion to this ‘plant’. With &k = 1 it follows from the assumptions
that the closed system is stable. Now put in front of the plant the ‘controller’

. 1 1
Kr(s) = dieg { Ts+1)n " Ts+ 1) }

where T > 0 and 3 1; = | — lo. Note that ||[Kr(iw)||2 < 1 for all w € R. By
choosing T large enough, for every C' > 0, minjs|<c |K7(s)||2 can be made
arbitrarily close to 1. That is, K7 can have arbitrarily small effect on every
part of the Nyquist curve that corresponds to a finite interval of the imaginary
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axis. Since the plant is strictly proper, there is an wo such that the part
of the Nyquist curve corresponding to w > wo will stand arbitrarily large
multiplicative perturbation downwards without rupturing stability. Thus, for
T sufficiently large the winding number is unchanged, i.e.

N(—1,det G(s)K(s)Kr(s),T) = N(—1,det G(s)K(s),T)

By the same arguments, the winding numbver is unchanged for sufficiently small
perturbations of the coefficients of the controller K(s)Kr(s) This completes the
proof. m

The proof has an interesting corollary.

COROLLARY 4.4. For any plant G(s), and any prescribed ‘high-frequency
roll-off’> r, there is a controller K(s) stabilizing the plant and having ‘high-
frequency roll-off > r. This means that there are constants C' and so such that

IR <Clel ™5 sl <0

A fast high-frequency roll-off may be desired for practical reasons, to decrease
the sensitivity to noise, or to avoid excitation of resonances or other higher order
dynamics. 7 »

Remark 5. Another way of seeing this result is that if G(s) is stabilizable,

then the ‘plant’ s~"G(s) is of course also stabilizable. This latter approach
however leads to higher degree in the controller. o

4.3 Adaptive Stabilization by Stability Indicators

The concept of adaptive stabilization by using stability indicators is introduced
in this section. Despite its simplicity, this idea seems to be new. The main
result will be that this is possible if and only if an a priori bound on the
McMillan degree of the plant is known.

The Basic ldea and Some Definitions

A stability indicator is some criterion for determining if an unknown autono-
mous system is stable by investigating the output from the system. Assume
that we have a finite or countable set of controllers K, such that there is at
least one controller X € K stabilizing the plant G under consideration. We
may for example use the controllers with rational coefficients. Then we try
each on them for € units of time, and use the stability indicator to tell when a
stablizing controller is found. At this point we abort the ‘adaptation’ and stay
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Figure 4.1. Adaptive Stabilization by Stability Indicator

with that controller forever. The plant has been adaptively stabilized. The
setup is illustrated in Figure 4.1.

Before proceeding we give a very simple example where it is almost trivial
to find a perfect stability indicator.

Example 4.5. Consider the set of autonomous first order systems, i.e.

y=ay
The system is stable if and only if @ < 0, which can be checked on y by forming
9/y. Thus the system is stable if and only if §/y < 0. o

First some preliminary remarks:

(i) The multivariable problem is no harder than the scalar, since we are not
considering any inputs. If one of the outputs indicates that the system is
unstable, it is unstable.

(ii) One might naively suggest: “Just use the definition of a stable linear

system, and check whether the output goes to zero or not”. The problem
is of course that this cannot be determined in a finite time.
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(iii) Tt follows from the identity theorem for analytic functions, that if the
output is known on a set of times containing a limit point, then the out-
put and thus the generating differential equation is uniquely determined.
However, this is on an abstract level only, and requires an infinite amount
of information. It is thus not possible to implement it in e.g. a digital
computer. .. ... ... V

A more sensible question is whether there exists a stability indicator utilizing
only finitely many measurements of the output. This will be made strict in the

next definition. The modern standpoint of considering a measurement of a

physical quantity not as a function, but as a continuous linear functional—

i.e. a distribution—is adopted. A feasible stability indicator operates on finite

segments of the output. For simplicity, it is assumed that this is the time

interval{0,1]. = - o

The following definition is an attempt to cover the intuitive concept of testing
on some quantities on the output, and concluding “stability” if and only if these
quantities have a certain property. Compare with the example given above.

Because of comment (i), only the scalar problem is considered.

Definition 4.6. Let the output space Y = Y[0,1] be considered as the linear
space of (scalar) test functions £ = C*(R), restricted to the interval [0,1].
By a measurement we shall mean a continuous linear functional on Y, i.e. an
element f in the dual space Y*, f : Y — R. A stability indicator of order k
is a pair (f, ), where f = (f1,-.- , fr)¥ is a collection of k measurements, and
() c IR* is an open subset,with-the property that f(y) €Q-if-and only if y is
the output of a stable plant. o

Remark 1. Tt does not imply any more generality to form continuous function
of the measurements, and testing on these instead. o

The main result on adaptive stabilization by stability indicator is that this is
possible if and only if the a priori knowledge of the plant includes a bound n*
on its McMillan degree. This will be shown in the following two subsections
respectively.

Known Bound on the McMillan Degree

In contrast to the rest of this thesis, the discrete time case is treated first. The
continuous time case will then be dealt with either by using sampled theory, i.e.
considering only equidistant samples of the output. Slightly counter-intuitive,
this will be possible without resorting to arbitrarily short sample intervals. The
continuous time results will also be derivable by methods (algebraically) similar
to the discrete time case.

The Discrete Time Case

In every textbook on identification of linear systems, e.g. [Ljung], formulas
pertaining to our problem are given. We do not reproduce them here, but will
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just give some comments. Note that the single-input, single-output identifica-
tion problem is really more.than we need, since we. are, by the remark. above,
completely satisfied with autonomous systems with one output. Also, even if
these formulas in general are given in a stochastic framework, they sure do work
in this deterministic environment, and actually converge in a finite number of
steps.

The Continuous Time Case
First the most reasonable method to be employed in a real-world situation will
be discussed, namely by sampling the output of the continuous time system,

i.e. picking out its values for equidistant times t = h,2h,.... Since only the
output segment Y = Y[0,1] is considered, this is a linear mapping

or :Y[0,1] —>AIR”

where n := |1/h +1]. Y and IR™ are vector spaces; in particular, they are
additive groups. By the homomorphism theorem, R™ = Y/ ker o). This is to
say that we can exactly reconstruct the continuous time plant modulo (additive)
modes giving output in kerop. By definition, ker o, consists of exactly the
functions which are zero at the sampling instances {kh}32 ___ . Since y(t) is the
solution of a linear, time-invariant differential equation with real coefficients, it
is a linear combination of products of powers, (real) exponentials, and shifted
sines. Only the sines can account for infinitely many zeros. Further, there can
be at most |n*/2| different sines. Therefore, the set {h : g(kh) = 0,k € 7 :
g is any mode of y} can have dimension at most |n*/2] over Q. So, by using
q := |n*/2|+1 different sample rates hy,..., hy, where {hq,...,h,} are linearly
independent over the rationals, the continuous time system can be identified
from the samples. We have proved the following proposition.

PROPOSITION 4.7. Let G be the set of all plants of the type (MIMOC)
for which it holds that for a known number n*, for all G € § its McMillan
degree is less that or equal to n*. Furthermore, let w = 0. Then, if the initial
conditions are such that all dynamics is exited, by considering sampled output
we can discriminate between any two plants Gy and G, € § by using data
from at most |n*/2| + 1 different sample rates, provided that no two of these
sample rates have a rational relationship with each other.

Remark 2. Note that, in contrast to the usual sampling theorem, it is not
necessary to let the sample period go to zero to trace arbitrarily fast dynamics.
However, infinite precision in the measurements was assumed. a

Remark 3. A proof of the standard sampling theorem, [Shannon]|, is easily
constructed along the same line, i.e. by considering the sampling as a homo-
morphism between vector spaces. It only remains to show that ker o is trivial
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if Y only contains functions whose Fourier transform has sufficiently small sup-
port. Say that the time-function f is sampled when ¢t € Z, and that-its Fourier
transform f (w) =0, ]w{ > . To say that f € ker o is, by definition, to say
that forke?Z = - —

w/2

0= / f(w)e™ dt = py ) Flw)e di
—m/2
= <f(w)’ ezkw>

where (., .) is a scalar product in L*([-n/2,n/2]). Since the set {e‘k“’}°°

forms a Hilbert basis for Lz([—ﬂ/Z 7/2)), it follows that f(w) = 0, so f@) =
which proves the sampling theorem. o

It is also possible (at least in the totally disturbance free theory the present
work lives -in) to perform continuous time identification by considering the
output in one point, together with sufficiently many derivatives in that point.
This leads to computations similar to identification of discrete time systems.

No Bound on McMillan Degree Known

We now take up a main theme of this thesis, namely when no bound on the
McMillan degree is known, or equivalently, when the set of plants § contains
plants of arbitrarily high McMillan degree. The main result of this section is
that any claimed stability indicator, as defined above, can mistake an unstable
system for a stable. We have the following result.

THEOREM 4.8. Let G be a set of plants, with no restriction on the McMillan
degree or the location of the poles. Then there exists no stability indicator

(£,9) for §.

For the proof we shall show how to fool a claimed stability indicator to mis-
take an unstable system for a stable by approximating a stable plant’s output
with an unstable plant. This will rely on the Stone-Weierstrass’ approximation
theorem, see e.g. [Simmons].

Proof. Let yo(t) be the output of a particular, stable system. This means
that po := f(y(.)) € Q. Since  is open, there is an € > 0 such that if
|p — po| < €, then p € Q. The f;’s are distributions in D’. It is a standard
fact from distribution theory, see e.g. [Hérmander], that for f € D’, there are
a constant C and an integer ¢, such that for all ¢ € D

F(p)| < C) suplp®()]

=0
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In our setting, this means that there are a constant # > 0 and an integer g,
such that for all y € Y satisfying

WO@) - <n;  tef0,1, fori=0,...,q (@)

it holds that |f(y) — f(vo)| < €, and by above, f(y) € 1. The last statement is
by definition to say that y is considered to be the output of a stable system. To
complete the proof we will show how to approximate any function g € ([0, 1])
in the sense of (@) by the output of an unstable system. First we prove the
following simple lemma:

LEMMA 4.9. Fork € IN let p,9 € Ck([O, 1]), and assume that for some
o > 0, it holds that , ,

Te®E) - MWl <a  tefo]

Then .
000w < o
for1=0,...,k.

Proof. Integrate and use the triangular inequality for integrals. E

By the lemma, it is enough to show (@) for ¢ = ¢. For this, consider the set of
‘outputs’ Y’ consisting of linear combinations of polynomials and exponentials
of the type ¥, with k non-negative integer. Every function in this set can be
achieved as the output of a plant with poles only in the non-negative integers,
i.e. an unstable plant. This set is in fact a subalgebra of the algebra C([0,1]).
Since it contains the constant function and separates points, by the Stone-
Weierstrass’ theorem its closure is the full C([0,1]). Note that it is also closed
under integration and differentiation. This shows (@) and completes the proof.

B

For the discrete time case, the non-existence of a stability indicator is obvious.
Remark 4. If the measurements only consist of the values of the output and

its derivatives in certain points, we can always fit an interpolation polynomial
exactly to these measurements. So, for this case, the proof is trivial. o

4.4 Continuous Versus Discontinuous Controllers

The purpose of this section is to show that the set of discontinuous switching
function controllers (SFC) is no more powerful than the set of smooth con-
trollers. Smoothness has often been required of stabilizing controllers. We
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show that every globally stabilizing switching function adaptive controller can
be made continuous without weakening its stabilizing power. The basic idea is
to smooth out the discontinuities by convolving with a sequence of C*°-functions
approaching a delta function. The following result holds.

THEOREM 4.10. Let f be an L?-compatible function, and let K be a
switching function controller of the form (SFC), f-stabilizing the set of plants
§. Assume that K has a realization as

2= Fyuyz+ Gor)y, ze R
v = Hyryz + Ko(r)y
k= f(y,u,kt)

for some switching function s. We shall also use the corresponding input-output
notation u = K (p, k)y. If the differences between consecutive switching points
Ti41 — T; > 6 for some 6§ > 0 and all 1 € 7L, then there is another controller I~(,
which also f-stabilizes G, given as

5= F(k)z+G(k)y, ze€R!

where F(k), G(k), H(k), and f((k) are C*°-functions of k.

Proof. Tor any plant G € § there exists infinitely many disjoint intervals {1, },
whose lengths are bounded from below by 6, such that the controller K(p, k)
stabilizes G for fixed k in I,,, for some v.

Let ¢ be a C°°-function with support contained in [—1,1], satisfying

/oocp(t)dt——-l

-—00

For € > 0 denote o, (t) := %(p(%) Define F.(k) by

oo

Fu(k) = (F % 2) (k) = / F(k — t) e (£) dt

— 00

In the language of distribution theory, {p.} is a é-generating sequence, and
e — 6ase — 0in &', It holds that F, — F in D', and also point-wise (but of
course not uniformly). If [k — €, k + €] contains no discontinuity point of F(k),
then F.(k) = F(k). For G, H, and K, the analogous notation is used, and of
course the analogous results hold.
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" First assume that we know a number 6y so that § > 60 By puttmg €= 60 /3,
the prévious proof of Theorem©3:18 holds. ---owil w2l R

This is not possible if a bound from below on § is not known, so we will
instead patch pieces together, so that the patched function satisfies the re-
quirements for arbitrarily small §. There is a sequence {«;} and an a > 0 such
that for 1 = 1,2,.. ., the function s is constant on [k; — &, k; + a] and switches
exactly once on [fc,, kit1]. Let {€;}2, be a sequence satisfying lim;_,, €; = 0.
Define F (k) by

F(k) = F,,(k), ki <k < Kit1

for + = 1,..., and analogously for G, H, and K. For large k, these are well-
defined, ‘C*°-functions for which the argument above applies. The proof is
complete. |

Remark 1. The requirement that the distance between consecutive switching
points is assumed to be bounded from below is just a fairly harmless technical-
ity: From the proof of Theorem 3.18 it was obvious that the switching sequence
should normally be taken to increase very rapidly, cf. the sequence on page
43. : O

4.5 Different Parameter Updating Laws

The adaptive controllers in this thesis are all of the type

u(t) = K(p, k)y(t)
k= f(y,u,k,t), keR

where K(p,k) for fixed value of the parameter k is a linear time-invariant
controller. Usually we have required f to be L2-compatible. In this section we
will discuss further on the choice of f.

In previous work on universal controllers, as described in the references in
Chapter 1, the parameter updating law k= f(y,u,k,t) = ||y||? has been used.
This is not an L2?-compatible function. In the present work, the favorite f is
instead f(y,u,k,t) = |ly||* + ||u/|?, which is L?-compatible. As was shown in
Section 3.3, Corollary 3.4 is not true without the u-term (unless the plant G
possesses a proper left inverse). That corollary plays a crucial part in many of
the proofs in the thesis. The importance of the u-term is not just a technicality,
as is shown by the next section.
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Non-Minimum Phase Plants . . . . - Rt TR

We consider the adaptive stabilization of a set of single-input, single-output
plants, all of which have a certain, known degree and relative degree. The set
also contains non-minimum phase plants.

PROPOSITION 4.11. Let n and r be given integers, satisfying 1 < r < n.
Also, let G be the set of single-input, single-output plants of degree n and
relative degree r. For |l = 0,1,..., there is no controller of the type

y(t) = K(p, k)u(t)
k= f(y)

where f is a continuous function, satisfying f(0) = 0, which is stabilizing for §.

Remark 1. Note that, with the definitions in Chapter 2, the condition f(0) =
is required for convergence of the stabilization problem.

Proof. Ifl < n — 1 no time-invariant, linear controller exists, so by Theo-
rem 4.1, there is nothing to prove. Therefore, assume that [ > n — 1.

Assume that (K(p, k), f) is a stabilizing controller of the requested type. We
will show that this leads to a contradiction. For this, first it will be investigated
what will happen when the controller successfully stabilizes a certain plant go.
Then, dependent on the outcome of that stabilization, we demonstrate how an-
other plant g; € §, together with initial conditions for g, and for the controller,
can be selected so that the controller will fail.

It is shown in [Ghosh| that for all I, there are plants in § for which all
stabilizing controllers of order ! are unstable. Let go be one of these. Select
a particular initial condition for go. Since (K, f) by assumption stabilizes go,
it follows that lim;_,o0 kK = koo < 0o0. By the construction, K(p, ko) has an
unstable pole so € €*. Either sq is real, or there is another unstable pole
s; = 5. There is another plant g; € § such that g;(so) = 0. There is also
an initial condition zo # 0 for g1, such that y(¢t) = 0 if z(0) = zo, and u(t) is
either e®o?, for the case of so being real, or e*°t + e°'* € IR otherwise. Thus,
there exists an initial condition (ko = koo, 20, Zo) for the total system such
that y(t) =0, u(t) — oo, and k = koo. So (K, f) does not stabilize g;, which
completes the proof. m

Remark 2. Note that it is required for the counter-example that we have
dynamics in the compensator. If y is replaced by the augmented § in the spirit
of Chapter 3, the proof is not valid. Also, the non-minimum phase property
was crucial. a)
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The results in Section 3.3 were formulated for u being an arbitrary time func-
tion. If u instead is a control signal generated by feedback, the requirement
on f to be L?-compatible can be relaxed. For example, in the static feed-
back case, eventually gotten by augmenting the plant, clearly the function
£ = (1 -+ [KI) lyll? will do.

4.6 Continuous Time Versus Discrete Time

The treatment of continuous time problems versus discrete time problems dif-
fers very much between different schools of control theory. Often, the emphasis
is entirely on continuous time systems, especially in the more theoretically
advanced linear system theory, and geometric non-linear system theory. The
effects of implementing the proposed control algorithm in a digital computer
with a non-zero sample rate is defered to ‘implementation aspects’. In other
traditions, e.g. in identification and some schools of adaptive control and sto-
chastic control theory, essentially only discrete time systems are dealt with.
Some authors try to treat the different problems in parallel.

In this work, we have taken the standpoint of considering continuous time
system as the primary object of study. We try to state as many true statements
as possible for discrete time systems, but for brevity, the exact formulation and
proof is often left out, whenever it is conceptually analogous to a continuous
time result. However, we believe that continuous and discrete time systems
are, whether considered as mathematical objects or as descriptions of real-life
entities, fundamentally different. The apparent similarities exist because of
algebraic similarities in the analysis of the systems (MIMOC) and (MIMOD).
These similarities do not reflect a deeper relationship.

A ‘Metatheorem’ on Control Theory
We formulate the following, slightly soft, ‘Metatheorem on Control Theory’.

‘METATHEOREM’ 4.12. To a theorem on continuous time systemé there is
an analogous theorem on discrete time systems (and vice versa), if and only if
the theorem states an algebraic property, and has an algebraic proof.

Since we have not defined the concepts ‘algebraic property’, and ‘algebraic
proof’—actually, contemporary mathematics does not have a generally ac-
cepted definition either—the ‘Metatheorem’ can be considered as either un-
provable or obvious, depending on the readers philosophical standpoint. We
shall not deal any further with these matters. However, we shall give some
example of the ‘Metatheorem’.

%  All results on pole-placement are equally valid for continuous and discrete
time plants.
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*  Root-locus statements carry over. .~ 7 -

% For' ‘strictly proper ‘discrete tifie®plants high-gain stabilization is impos-
sible, since at least one branch of the root locus approaches infinity, and
the stability region is bounded. o

*  The high-gain concepts, such as almost (A, B)-invariant subspaces, make
no sense in discrete time since the trajectories are disconnected.

Sampling of Continuous Time Systems

Another aspect in which continuous and discrete time systems behave funda-
mentally different, is in the meaning of the relative degree r. For continuous
time systems, this is the number of vanishing derivatives of the step response
at t = 0 (starting with the zero’th). For a discrete time system, this is instead
the number of delays from the input to the output or equivalently, the number
of leading zeros in the step response.

Control of a continuous time plant with p1ecew1se constant inputs of length
h > 0, and observing the output of the plant only (immediately before) the
change of the input gives rise to a discrete time plant. This we will, by a slight
abuse of notation, call sampling of the plant. A controller of this type we will
call a sampled controller. Denoting the continuous time transfer function by
G(s) and the discrete time transfer function by H(z), sampling of the plant
can mathematically be described as

; H(z) = (1 - z_l)ZAC_l%éﬂ

where Z is the z-transform. See e.g. [Astrém—Wittenmark]. From above, it is
obvious that sampling of any continuous plant will give rise to a discrete time
plant of relative degree one, irrespective of the relative degree r of the original
plant (except possibly for isolated values of the sample rate). It was shown in
[f&strém—Hagander-Sternby] that for r > 3 the sampled plant always has zeros
outside the unit disc for sufficiently small sample intervals hA. This prohibits
the common class of adaptive controllers based on cancellation of plant zeros to
operate at fast sample frequencies. Further treatment is given in the references
above and in [MAartensson 1982].

The limitations imposed by this phenomena shall not be over-emphasized.
When h — O+ the zeros converge, eventually outside the unit disc. That is,
the plant exhibits a non-minimum phase behavior, which puts limitations on
the achievable performance. But notice that this “performance” is measured
in the time-scale of sample steps. By letting the sample interval approach zero,
in real time these limitations also approach zero, at least theoretically.
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Adaptive Stabilization by Sampled Control

We will next consider implementation of an adaptive controller, aimed at sta-
bilization of a continuous time plant, on a digital computer. Unfortunately, the
result is negative.

It is shown in introductory textbooks on sampled control that controllabil-
ity and/or observability may be lost for isolated sample intervals. To assign a
reasonable meaning to the problem above, we have to prohibit loss of control-
lability or observability for unstable modes.

Definition 4.13. Consider a sampled controller with sample interval h. We
shall say that this controller stabilizes the plant G if

(i) Considered as a discrete time problem, the discrete time controller stabi-
lizes the sampled plant.

(i) No unstable modes or G are made uncontrollable or unobservable by sam-
pling with sample interval h.
o

Only the single-input, single-output case will be discussed. The multivariable
case only differs in notation. Since every subdeterminant of the controllabil-
ity matrix is an analytic function in h, not identically zero, controllability is
lost only for isolated sample intervals, and analogously for observability. Also,
controllability and observability is preserved for the generic plant and sample
interval. It follows from the results in [Bar-Ness, Langholz| that, for n the
McMillan degree of the plant, the set of such sample intervals can have at most
dimension |n/2| over Q. By Section 4.3, the same statement also holds for
observability, since this can be determined with zero input. Also, it is easy to
construct an example that reaches this limit: Given k := |n/2] different posi-
tive sample rates {h1,..., hi}, there is a plant of order n such that the sampling
operation will make an unstable mode uncontrollable (or unobservable) for each
h = h,...,hr. We summarize the results in the following proposition.

PROPOSITION 4.14. Let G be theset of continuous time single-input, single-
output plants of order < n*. (We allow n* = o0.) Then, for a fixed value of
the sample interval h, the generic plant g € § is stabilizable. Further, there are
plants in G, not stabilizable under this sample interval. Let k > |n* /2| and let
hi,...,h be any collection of non-negative real numbers linearly independent
over Q. Then, for any plants g € § there is a sample interval h; € {h1,...,hi}
such that g is stabilizable. No set of lower cardinality will suffice. In particular,
no finite set will do if n* = co.

Remark 1. 1If a priori knowledge of the magnitude of the fastest unstable
pole is known, the argument above does not hold, and adaptive stabilization is
possible if the sample rate is fast enough. Every practitioner assures that this
a priori knowledge is always present in practice. o
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4.7 Integrators in the Loop

Several problems related to the tracking of different reference signals has been
posed in Chapter 2. Unfortunately, we do not give many answers in this thesis.
However, in this section it will be shown how to include integrators in the loop,
thereby being able to track a constant reference signal with error approaching
Zero asymptotically.

Tracking with Zero Error Asymptotically

Every engineer knows that you cannot track a constant reference signal with
zero error asymptotically without having integrators in the loop*. The anal-
ogous statement of course applies to multivariable plants. Conversely, with
integrators in every loop, the asymptotic tracking error is zero, provided the
closed loop system is stable. This shall mean that every fixed linear combina-
tion of rows or columns of the matrix G(s) has a pole at the origin.

The construction for adaptively stabilizing a plant, with a constant reference
signal r(t) = ro is very simple: We just put the diagonal ‘precompensator’
K = s~'I,, in front of the plant. For the sequel, consider the problem of
adaptively stabilizing the ‘plant’ G(s) K (s) instead.

Extensions and Comments

Everyone with experience of practical control engineering knows that plants
with high relative degree are very hard to control manually, but often fairly
simple to control with simple controllers, such as standard PID-controllers. As
is shown in this thesis, something similar is true about adaptive control. We
need some extra dynamics in our controllers, that is all. By preceding the plant
by integrators as in the construction above, the minimal order of a stabilizing
controller might increase. A classical control engineer would say that we do
this at the expense of a decrease of the phase by 90°, and thus need some extra
phase advancing to stabilize the plant.

The same argument may be used to introduce multiple integrators in the
loop, thus being able to track ramps of higher order. Also note that everything
carries over to discrete time.

4.8 ,COﬂClTUSiOHS

In this chapter several results on adaptive stabilization have been formulated,
without going into particular algorithms. Necessary and sufficient a priori in-
formation for adaptive stabilization has been characterized. The problem of

* Quick and dirty proof: y(co) = r(co) <= ¢(0)/(1 +9(0)) = 1 <= ¢(0) =0 B
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determining the minimal order of a stabilizing controller has been discussed.
We have introduced the idea of adaptive stabilization by stability indicators,
and showed that this is possible if and only if a bound on the McMillan degree is
known. As a by-product, a proof of Shannon’s sampling theorem was achieved.
This-proof is believed to be new. Then we showed that the set of continu-
ous controllers is just as powerful as the set of switching function controllers.
Different ‘parameter-cranking’ laws k=f (y,u, k,t) were discussed, and a rea-
sonable adaptive control problem was given where the previously used updating
law k = ||y||?> was shown not to work. We discussed the similarities and the
differences between continuous time and discrete time control theory problems.
A ‘metatheorem’ was given. Sampling was discussed, and a negative result on
stabilization by sampled, adaptive controllers was presented. The last section
showed that it is straight-forward to augment the loop with integrators in the
standard engineering way. o
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The Turing Machine
of Universal Controllers

5.1 Introduction

This chapter is devoted to the construction of a universal controller, stabilizing

any plant stabilizable by a fixed controller of the same dimension as the linear

constituent of the adaptive controller. We will call this a Turing Machine

Controller since it resembles a Turing machine in several important respects.

The Turing machine was suggested by Alan Turing in 1936, [Turing 1936], as

a model of formalized computation. It is claimed that what can be effectively

computed can be computed by a Turing machine. This claim is based on the

following assumptions:

(i) It is no restriction to assume sequential computation, i.e. instead of pa-
per/blackboard etc. we can use an infinite, one-dimensional tape.

(ii) It is no restriction to assume an alphabet consisting of only the symbols
“0” and “1”.

(iii) Any algorithm used for computing can be completely described in a finite
number of words.

A Turing machine consists of a tape head moving along an infinite tape,
capable of writing “0” and “1” on the tape, erasing, and moving back and

65
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forth along the tape. Its behavior is governed by a control mechanism, which
consists of a finite state machine.

Accepting (i) - (iii) above, it follows that the Turing machine has the highest
computational power possible. Note the following properties, which motivates
why we are making the analogy with the controller presented in this chapter
and a Turing machine.

(i) A Turing machine is conceptually very simple, despite the fact that it has
the greatest computational power a machine can have.

(ii) Tt is a very ‘theoretical’ contribution in the sense that no one would ever
dream about constructing a practical computational tool according to
these principles.

(iii) Its value is instead on the theoretical level, as an abstraction and a theo-

_retical model, used to analyze questions of the type what can be computed

and what cannot be computed. For example, note that there is no way to
compute with real numbers, since these are uncountable.

(iv) There is no way of building a Turing machine in the real world. Assuming
a fixed information density on the tape, it would require an infinite amount
of material to realize the infinite tape.

All these concepts carry over to the adaptive stabilizing algorithm presented
in this chapter. The algorithm is simple, and because of the negative part of
Theorem 4.1, it has the greatest ‘stabilizing power’ a smooth adaptive controller
can have. It is absolutely useless for every practical purpose, and should be
considered as a form of existence proof. There is no way of realizing it in the
real world, since both the plant and the controller are supposed to have vector
spaces as their state spaces, not a bounded subset of a vector space (or some
more general manifold). This is crucial in the proof.

In the next section, we construct the adaptive stabilizer with the claimed prop-
erties, and prove its convergence. The section is based on [MArtensson 1985ab],
which has been extensively rewritten and extended. Some easy modifications
of the basic scheme are given in section 5.3. The following section shows how
to search over the dimension of the linear constituent of the controller, when
no regulator order is known a priori. The fairly cryptical comments on this
subject in [Mértensson 1985ab]| have been totally rewritten.

5.2 The ‘Turing Machine’ Controller

In this section we will consider the problem of adaptively stabilizing the plant
(MIMOC) or (MIMOD), given only the a priori information that an integer /
is known, such that there exists a fixed linear time-invariant controller of order
I that will stabilize the system. An explicit algorithm for this will be given.
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Description of the Controller =" °

As shown in Section 3.2, it suffices to consider adaptive control based on static
feedback. A (fixed) controller is then nothing but a matrix in RM*XP where M
and P denotes the number of inputs and outputs to the augmented plant (MI-
MOCA) or (MIMODA). Since a (fixed) controller achieving internal stability
to the closed loop system places all the eigenvalues in the open left-half plane,
(or the open unit disc) and these depend continuously on the parameters of
the controller, there is an open set in parameter space yielding a stable system.
Equip RM*F with the norm

Al = ()

4y

Thus we identify RM*F, as a normed space, with RMF | equipped with the
Euclidean norm. For the sequel, we let ||. || denote the this vector norm, or the
corresponding induced matrix norm. Partition RM*F = RT x §MFP-1 in o
natural way, namely by dividing out the norm of every non-zero matrix. S MP-1
is now the unit sphere in a normed space of controllers. Let the controller be

i = gV (k)7 )
k=gl* +le)® , (2€)
Be+1) = k() + 197 + a2 (2D)

where o '
N (h) is ‘almost periodic’ and dense on S MP-1 (3)

while A and g are continuous, scalar functions satisfying

h(k) /o0,  k— o0 (4)

There exists an a such that g% <a (5)

g({ov+ (8,M}52,) =RY forn€Z, a#0, v>p (6)
ka(h(k) 5 >0, koo (7

These different requirements will be motivated in a moment. Recall that a
function f of a real variable is called (uniformly) almost periodic if it is con-
tinuous and for all € > 0 there is a T > 0 such that all intervals of length T
contain a 7 such that ||f(t +7) — f(t)|| < & for all t € R. Properties of almost
periodic functions can be found in e.g. [Hale].

It will be shown that this controller actually does the job of stabilizing the
plant. We formulate this in the main theorem of this chapter.
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THEOREM ©5.1. Consider the minimal plant (MIMOC) or (MIMOD). As-
sume that | is chosen so that there exists a fixed linear stabilizing controller,
and that the augmentation to the form (MIMOCA) or (MIMODA) has beed
done. The controller (1) — (2) subject to (3) - (7) will then stabilize the
system in the sense that

(z(t), 2(t), k(t)) — (0,0, koo) ast — oo

where ko, < o0.

Before giving the full proof, we will in more informal terms discuss the con-
troller.

Heunst:c Descrlptlon of the Controller

Equation (1) decomposes the controller in a magmtude , g, and a ‘dlrectlon N.
Since the plant might be tacky about the ‘regulator direction’, we let the curve
{N(h)} be dense, (3). We also want the total controller g(h) N (h) to be dense in
the controller space. This is ensured by the requirement (6), which informally
can be formulated as the image under g of any sequence of equzdzstant open
intervals of the same length is all of R*t. This means that limp_eog = 00
and that, loosely speaking, g ‘lacks all kind of periodicity’. Since N (h) is
almost periodic, g(h) N (k) will therefore be dense. Because of the bound of the
derivative of g, (5), g(k)N (k) will have a bounded derivative. So, for all plants
where the assumption of existence of a stabilizing controller of order !/ holds,
there will be infinitely many open intervals of length bounded from below, on
which the frozen parameter controller will yield a system with some prescribed
margin of stability.

Note that k enters in the controller only in the form of h(k), where h is
a function that increases to infinity, (4), but fairly slowly, (7). See also the
explicit example given below. This is to account for ‘slow adaptation’.

The parameter updating law (2) differs from the previous used, in that it
also uses the norm of @ instead of just the norm of y. This is so because we
want to be able to estimate the norm of the state by k, by using Lemma 3.1,
(or 3.2) so we have to use an L2-compatible function for updating k. This has
been discussed in Chapters 3 and 4.

Explicit Construction

One set of functions satisfying (4) — (7) is

h(k) = \/logk, k>1
g(h) = Vh (sin\/f;—{- 1)
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Figuré 5.1. Graph of g(h) = \/ﬁ(sin\/ﬁ+ 1)

Remark 1. Note that h is an extremely slowly growing function—its in-
verse is e®” —which intuitively corresponds to the concept of ‘slow adaptation’.
It is also illuminating to look at the graph of g, shown in Figure 5.1. Note
that it ‘oscillates with a lower and lower frequency’, thus being able to ful-
fill im, , g = 0,limp 00 g = 00, while the derivative is bounded, and the
‘anti-periodicity requirement (6) satisfied. The properties (5) and (6) are very
plausible just from a look at the graph. o

For MP > 1, a curve N(h) on SMP~1, satisfying (3) can be realized e.g.
by the following procedure: First we introduce coordinates on SMP-1_ with

a variety of lower dimension removed. We use the spherical coordinates on
SMP——I:

z1 =sinfpp—_y...sinf2sin b,
Ty =sinfprp—1...sinf2 cos by
......... e Q)
Tpmp—1 =sinfpyp_1cosrp—2

Tpp = cosbprp1
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where
(01,...,00p—1) € (0,27) x (0,m)MP~2 = AMP~1

This is a bijection from AMP~! to a open, dense subset of SMFP-1 We will
also consider (b) as defining a mapping from RMP-1 o SMP-1_1p order to
satisfy (3) put

0; = ash 1=1,....,MP -1

where {aj,...,app—1} are linearly independent over the rational numbers.
We claim that the curve N (k) is analogous to the skew line on the torus, hence
it is dense and almost periodic.

The skew line on the torus can be described as the mapping f : IR — T
given by. f,(t) = (¢ mod2n,at mod2x). It is well-known, see e.g. [Brickell-
Clarke], that im f is a dense subset of T if (and only if) a is irrational. It is
easily seen that f is almost periodic. The same arguments show that the higher-
dimensional generalization f : R — T", given by fo(t) = (a12mod27,...,
ant mod 27) has the same propertiesif a1,...,an is linearly independent over Q.

Explicitly, by considering the §;’s modulo 27, (b) constitutes an 2MP=2_f5]d
covering from the torus TMP-1 ¢4 5 dense subset of the sphere SM¥~1. This
shows the claim.

For M = P = 1, this construction does not carry over, since S0 = {-1,1}
is not connected. Instead we may take N(h) any periodic or almost periodic
function taking on only the values +1, e.g. N(h) = signsinh. With this ap-
proach, the controller will not be continuous, however. This will be commented
upon in the next section.

Proofs

We will prove the theorem both for the continuous and discrete time case. The
proofs will to a large extent be similar. Therefore, the discrete time proof will
be given more sketchy. However, the latter proof can be found in full detail in
[M&rtensson 1985b].

The main steps in the proof are the following: First, by Corollary 3.4, it
suffices to show that k stays bounded. Lemma 3.1 yields an estimate of ||Z||?,
i.e. a measure for ‘how much wrong does it go when it goes wrong’. According
to the above, it happens infinitely often that the frozen parameter system will
be stable. Finally, we show that (7) implies that the parameter k finally will
get stuck in one such stable interval. For the discrete time case, it also has to
be shown that the change in the controller per unit of time goes to zero, in
order to eventually hit one such ‘stable interval’.

Proof. We first give the proof for the continuous time version.

Tt is enough to show that k converges to a finite limit ko. For, if this is so,
and since f(y,u,k,t) = ||ly]|? + ||lu||* is an L2-compatible function, it follows
from Corollary 3.4 applied to the plant (MIMOCA), that z(t) and z(t) — 0,
as t — o0o. For the proof we may thus assume that k /" co.
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By (2C) and part (i) of Lemma 3.1, there exist constants co and ¢; such that

I12]|* < eo + c1k ()
Next we show that for all @ € IR the set {g(h)N(k), h = h(k), k > a} is a dense
subset of the space of M x P matrices. For this, let ¢ >0and M € RM*F pe
given. We shall find a h such that ||g(h)N(h) — M|| < e. A short calculation
shows that this will be the case if

Ivor - gl < ©)

em-iMi<s )

Since N (k) is almost periodic, there is a sequence of equidistant intervals sat-
isfying (). Thus, (6) together with (3) is exactly what is needed to ensure the
existence on infinitely many simultaneous solutions to (©) and (&).

By assumption, there is a goNo such that the control law @& = goNoy stabilizes
the plant. There is also a @ = QT > 0 such that (11 + gOBNOé)TQ + Q(fi +
goBNoé) — —I. By continuity, the left hand side will be less than —-;—I
for gN in some neighborhood of goNo. That is, %zTQ:z: < —%Hz“z in this
neighborhood. From (3) and (5) it follows that the controller matrix curve is
traversed with a bounded velocity in the parameter h. We deduce that there
exists infinitely many disjoint open intervals I, = (ay,f8v), ¥ = 1,2,...; and
a constant 6 > O such that 8, — &, > 6 for v = 1,2,...; and the inequality
(A+g(h)BN(R)O) Q@ +Q (fi + g(h)faN(h)é) < —11 holds for all h in these
intervals. We may also assume that g is bounded from below on these intervals.
For an unstable plant, this is unquestionably true, and for the slightly trivial
case of ‘stabilization of a stable system’, the definition of {I,} can be suitably
altered.

We now analyze what happens when h € I, for some v. Suppose that A
enters I, when t = tog. By above, 2T Qz will then be a Lyapunov function, and
I1Z()]| < coecr (%) ||Z(to)]| for some co,c1 > 0 and ¢ > fo. This, together
with (1), means that there exists a constant d such that

/:(IIQIP + [|]|*)dt < (1 + sup g) /t:o I1§)%dt < d <1 + sup g) | (to) ||

provided that h stays within I, for some v, for all t > to. In particular, the
left hand side exists finite, and the theorem will be proved.

Finally we prove that h will get stuck in some I,: Let Iy = (h(to), h(to) + 6)
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c I,. While h € I,y h can increase by at most

o (8) L, w1 (2) o
< d sup {(j’;) (149 +ab) (co + clk)}

hel

where the last quantity uses the notation in (5) and (<). Since g is bounded
from below on {I,}, it follows from (7) that all terms of the rightmost part
approaches 0 as k approaches infinity. We conclude that for k sufficiently large,
the left hand side is less than 6. Thus there is a v such that k will never leave
I,,. This proves the theorem for the continuous time case.

In the proof of the discrete time version, the first two paragraphs are entirely
similar. In the third, the quantlty (A+goBNoC)TQ + Q(A +goBNoC) associ-
ated with the quadratic form zTQz, should be replaced by (A+goBNo ) Q
(A + goBNoC') Q, 1nd1cat1ng z(t +1)TQz(t + 1) — z(t)TQ=(2).

To be able to come up with the same conclusion, we have to show that
h(t +1) — h(t) — 0 as t — oo, in order to surely hit I,, for v large. We have

| dh )
Mt -hO < s (dk) (1302 + 112)

dh N
< sup. ( > 1+ sup g [[y[|2
dk (R(k(t)),h(k(t+1))]

dh
< sup (dk) d(1+supg) ||:7:H2

for some constant d. By the same kind of estimations as before, this tends to
zero as k goes to infinity. Hence, there is a vy such that {h(k(t)), t € IN} will
intersect the lowest half of I, for v > vy. The rest of the proof is exactly the
same, except for a replacement of 6§ with & /2. The proof is finished. "

h.3 Modifications

In this section we will discuss some modlﬁcatlons of the basic algorithm pre-
sented in the previous section.
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Getting Continuity in the Scalar Case

For the single-input, single-output, static feedback case, the construction in
the previous section does not yield a continuous controller. We will show how
to repair this cosmetic flaw in the following proposition. It shows that we can
replace the discontinuous N (k) by a continuous function N (h), approximating
N(h) better and better when h grows. Both the proposition and the proof hold
equally well for both the continuous- and discrete time case. The argument will
be similar to the one used in Section 4.4.

PROPOSITION 5.2. Suppose that N :IR — {—1,1} is a periodic function,
and that the triple (g,h, N) satisfies (3) — (7). Then there is a C*°-function

N :R — [-1,1], such that

1 b
b——a/a

and the controller corresponding to (g,h,N) will stabilize all single-input,
single-output plants stabilizable by static feedback.

N(k) — N(h)| dh — 0 as min(a,b) — oo

Proof. Let ¢ be a non-negative C*°-function with support contained in [~1,1],
satisfying ffooo ©(t) dt = 1. For € > 0 denote p.(t) := %tp(%) Define N (h) by

N = (N )W) = [ NG = )oct)

In the language of distribution theory, {¢.} is a §-generating sequence, and
pe — 6 as e — 0in £'. It holds that N, — N in D', and also point-wise.
Since ¢ > 0, —1 < N.(h) < 1, which is the only point where this requirement
is needed. If h € [h — &, h + €], and this interval contains no discontinuity point
of N(h), then N(h) = N(h).

First assume that we know a bound from below &y on the § occuring in the
proof. By putting e := 8o/3, the previous proof holds with é replaced by é /3.

This is not possible in the general case, so we will instead patch pieces to-
gether, so that the patched function will satisfy the requirements for arbitrar-
ily small 6. Let ho and a > O be real numbers such that N (h) is constant
for h € [ho — a,ho + @}, and let {&;}{2, be a sequence satisfying ¢; > 0, and
lim; o0 £; = 0. Denote the period of N (k) by H, and define N(h) by

N(h) = N.,(h), iH+ho<h<(i+1)H+ho

for : = 1,2,... When h is sufficiently large, this is a well-defined C°°-function
for which the argument above applies. The proof is complete. E
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Known Bound on the Gain of the Controller

It is easy to modify the controller (1) — (2) in order to prohlblt high-gain control
laws. More precisely, we state the following assumption. :

Assumption “Bounded Required Gain”.  Consider the pla.nf F(MIMOCA) (or

(MIMODA)) Assume that we know a k > 0 such that there exists a linear,
time-invariant stablhzmg controller of norm less than k. That is, in the lan-
guage of Section 3.2, “K I < K, for some K yielding stability to the closed loop
system. al

The modification consists of changing the gain-function g to something that
will reach, but never exceed k. More precisely, change (6) to

g({av + (8,7)}2,) =[0,] forneZ, a#0, v>p (6)

A set of functions satisfying the requirements (4), (5), (6' ), and (7) is

(k) = Iogk
g(h) =« (sin\/ﬁ-l- 1)

That is, h and N can be taken as before, and g is just slightly modified so that
it cannot exceed k. We state the result as a theorem.

THEOREM 5.3. Consider the minimal plant (MIMOC) or (MIMOD). Sup-
pose that “Assumption Bounded Required Gain” holds for a given k. Assume
that | is chosen so that there exists a fixed stabilizing controller, and that the
augmentation to_the form (MIMOCA) or (MIMODA) has beed done. The
controller (1) - (2), subject to (3) - (5), (6'), and (7), will then stabilize the
system in the sense that

(5(t), 20), K(®) — (0,0,kw) a5t o0

Whére koo < co. Furthermore, the norm of the controller ]lff | <« for all t.

Proof. The last statement is obv1ous For the rest, the old proof holds without
change. E

Remark 1. It was shown in Chapter 4 that the u-term might be crucial,
especially for non-minimum phase plants. As in the proof of Corollary 3.4, the
same proof will be valid for f any L2-compat1ble function. One such cand1date,
lacking the explicit u-dependence, is k= f(§,4,k,t) = (1 + g(h(k)))§. This
also carries over to discrete time, with obvious modifications. o
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5.4 . .Searching.over the Dimension of the Controller

In this sectlon we will solve the problem of how to stablhze a plant when not
even the order of a stablhzmg controller is known. It is tempting to try to
tie in the results on switching functions in Section 3.5. Unfortunately, this is
not possible, since the ‘Turing Maching Controller’ is not f-stabilizing even for
large ¢.

The section will deal excluswely with continuous time plants. However every
result and every detail in the proofs translates to the discrete time case. We
do not mention this explicitly.

Let the number of plant inputs and outputs, m and p respectively, be fixed
and consider the set § consisting of all minimal plants of the type (MIMOC).
We have the decomposition of § into a countable union of increasing subsets,

g= U 9 951C G111
1=0

where §; is the set of all plants stabilizable by a regulator of order . The
inclusion relation follows from Proposition 4.2.

By section 5.2, for all / there is one adaptive controller, which we will denote
by Kj, stabilizing any plant in G;. Out of these, a switching function controller
can be built, thus stabilizing any plant G € G.

Notation. For | = 0,1,..., consider the augmentation of (MIMOC) to the

form (MIMOCA). We shall use superscript / to denote a quantity belonging to

a particular augmentation, e.g. zh , : R =

We have the following theorem.

THEOREM b5.4. For fixed m and p, and for | = 0,1,..., let (g,h, NV
satisfy the requirements of Theorem 5.1. Then there is a switching function s
of rank Ng such that the switching function controller

l s(h(k))
i = g(h(k))N'g'
k=152 + &2

where we zero the controller states at every instant the switching function
switches controller, i.e.

2lher, =0,  1=1,2,...

will stabilize any plant G € §. This means that, as t — oo, ||z(t)|| — 0, while
the state of the linear constituent of the controller approaches 0, and k stays
bounded.

The following refinement of Lemma 3.1 will be needed:
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LEMMA 5.5. Assume that the:linear system (MIMOC) is observable. For
[ =0,1,..., consider the augmentation to the form (MIMOCA). Then, for all
z(0), there are constants co and ¢1 suc_h’ that

FOR <ot e ([ 100 ars [

forl =0,1,..., and all (0), w!(.), t > 0. Here co does not depend on t, al,
or I; and ¢; does not depend on t, @}, Z'(0) or l. S

Proof. For _ﬁxed !, this is exactly Lemma 3.1, so it only remains to show that
¢o and ¢; can be taken uniformly in I. In the notation used in the proof, but
with superscript | added, clearly

AT
™i_ At _ | € 0
(Ll)—e _[0 11]

so we have that for I = 0,1,..., |LTY| < |ILT°|| + 1 and || LY < || L3°] + 1.
Also, for the Gramian M that occurs, we have the estimate
sup ! = !
13 O)il=1 #(0)T MLz (0)  min(g(Mr),1)

From these arguments, it follows that all estimates in the proof can be taken
uniformly in [. =

Now there is not very much left to complete the proof:

Proof of the Theorem. Let s be a switching function of rank Ro such that for
all I € IN it holds that

g({av + (B,7)}0%n ﬂ{h :s(h) =1}) =Rt forneZ, a#0, 7>
(6")
while the sequence of switching points {7} satisfies 7,41 —7; — 00 as T — oo.
By the previous lemma, all details of the old proof will now hold. =

Remark 1. We might for example take g as before, g(h) = vh (sin\/ﬁ + 1),
and let s switch at every local maximum of g. o

Remark 2. The extra condition (6”) is necessary, at least in some weaker
form, and it does not follow from the requirement on the switching points. For
example, with ¢ as in the previous remark, for 0 < a < b and lo > 0, a switching
function s can be constructed satisfying all the other requirements, but never
letting g(h) take on values in the interval (a,b) for h such that s(h) > lo. This
corrects a minor error in [Martensson 1985ab]. o
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5.5 Conclusions. .

This chapter is an extended and revised version of the papers [Méartensson
1985ab]. We have explicitly presented an adaptive controller, capable of stabi-
lizing any plant which is stabilizable with a time-invariant, linear controller of
the same structure as the linear constituent of the adaptive controller. Its the-
oretical raison d’etre was discussed, thereby motivating the title of the chapter.
We discussed the different requirements at length. Modifications were covered,
including the continuity in the scalar case and the utilization of the extra a
priori information of a known bound on the required gain. We showed how to
search over the controller structures when not even the order of a stabilizing
controller is known. . oo o -
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High-gain Based
Stabilization

6.1 Introduction and Preliminaries

The concept of ‘universal stabilizing controllers’ was originally intimately tied
to high-gain stabilization. This refers to algorithms that increase the gain
of the controller towards infinity. This has later been augmented with con-
cepts such as Nussbaum functions and switching functions. It was first shown
in [Martensson 1985ab] that high-gain stabilizability is not required in these
schemes. In this chapter we return to high-gain based algorithms. Only square,
continuous time plants will be considered. This has been discussed in Chap-
ters 2 and 4.

In Chapter 3 we built two powerful tools, Theorem 3.5, page 29, on time-
varying singularly perturbed systems, and Theorem 3.18, page 41, on switching
function based controllers. These will be the building blocks for the main results
on adaptive stabilization in this chapter.

From high-gain stabilization of single-input, single-output plants we know
that two crucial concept are the relative degree and the sign of the instanta-
neous gain. Later in this chapter, multivariable generalizations of these con-
cepts will be defined. Until then, we shall say that the square, strictly proper
transfer function G(s) has multivariable relative degree one if det CB #0. If it
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also holds that spCB C C*, then G(s) is said to have positive instantaneous
gain. These properties are independent of the choice of coordinates on the
state space, as is well known. Since C'B is the leading coefficient of the power
series expansion of G(s) around the point co, this is a natural multivariable
generalization of the scalar concepts.

Loosely speaking, the basic idea of the present chapter is as follows. First
consider a set of plants all having ‘positive instantaneous gain’. We find a
one-parameter family of controllers, such that for any plant in the set, all
controllers with sufficiently high, frozen, value of the parameter k will stabilize
it. It remains to show that stability is maintained when the parameter is
an increasing function of time. This was demonstrated in a simple case in
Theorem 3.11, which gave an algorithm stabilizing all square minimum phase
plants with spCB C ct.

If the set of plants contains plants which do not have ‘positive instantaneous
gain’, we will resort to a switching function strategy as in Theorem 3.18. We
give a finite set of ‘precompensators’, such that for any plant, there is one ‘pre-
compensator’ with the property that the ‘precompensated plant’ has ‘positive
instantaneous gain’.

In Section 6.2 we solve the purely mathematical problem of finding a finite
set of matrices A such that for any non-singular matrix M, there is at least one
A € A such that sp AM € CT. One such set will be given explicitly. Section 6.3
combines this with Theorem 3.18, yielding an algorithm capable of stabilizing
any square minimum phase plant with CB invertible. This is generalized to
higher relative degree in Section 6.4, where a bound on the relative degree is
assumed to be known. Unfortunately, we have to put an unpleasant technical
condition on certain functions of the Markov parameters. The section concludes
with the main theorem of this chapter, summing up almost everything in the
chapter. R

The problem of Section 6.3 was originally solved in a non-constructive way
in [Byrnes-Willems]. The conjecture there is our Proposition 6.2. This, to-
gether with the first subsection of Section 6.2, has been published in [Byrnes-
Martensson-Willems]. Except for [Morse 1985b], which demonstrated an al-
gorithm stabilizing any single-input, single-output minimum phase plant of
relative degree one or two, no high-gain based algorithm capable of stabiliz-
ing plants with only a bound on the relative degree has been published. The
solutions to all problems in Section 6.4 are believed to be new.

6.2 Unmixing the Spectrum

In this section we consider the purely mathematical problem of, for an arbitrary
positive integer n, finding a set 4 C §L(n) = §L(n,IR) such that for any
M € GL(n), there is an A € A such that spAM =spMA cCt. Such an £ is
said to have the unmizing property, or to be an unmizing set. We are interested
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in finding unmixing sets with cardinal number as small as possible. Note that
M really has to be nonsingular, since for all n X n-matrices A AM has at least
as many zero eigenvalues as M. - :

It is a trivial point to note that unmixing sets do ex1st for 1nsta.nce gﬁ( ). It
is also trivial that there is countable such, e.g. GL(n, Q) nonsingular matrices
with rational coefficients. First consider the following simple example.

Example 6.1. 1t is illuminating to solve the unmixing problem for § 0(2). (We
leave the unmixing problem for $O(1) to the reader.) $0(2) is diffeomorphic
to the circle S!, and for any g € $0(2) we can write

cosa —sina
gla)=| |,
sinae cosa

for some . The matrix g(c) corresponds to the rotation the angle « in counter-
clock-wise direction. Lemma 6.3, (iii) states that spg(a) € €t if and only in
|| < 7/2. Since g(a1)g(az) = g(e1 + az) it follows that we can solve the
problem with three matrices—e.g. {g(0) = I,g(27/3),g(47/3)}—but not with
less than three. o
The next result will be that 4 can actually be taken finite for all n. Later
in this section, an explicit construction will be given, based on the Euler an-
gles on $O(n ) Regardless of this, we shall give an independent proof of the
prop051t10n, since on the way we will arrive at many results to be used in the
sequel.

PROPOSITION 6.2. Forn € {1,2, ...} there exists a number N and a finite
set A = {A;, Aa,...,An} such that for any M € GL(n), sp A;M C C" for at
least one 7 € {1,2,...,N}.

In this section let || .|| denote the Euclidean norm on IR™ or the matrix norm
induced by the Euclidean norm on IR", i.e.

1Al = max [lAz],

The proof of the proposition will rest on three lemmas. The first is a further
characterization of unitary matrices with its spectrum in the right half plane.
The lemma can be said to contain the Routh-Hurwitz’ inequalities for unitary
matrices.

LEMMA 6.3. Let Q be a unitary matrix. The following three properties
are then equivalent:

(i) spQcct
(i) 1Q-1I] <v2
(i) @ +Q* >0
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Remark 1. Note éhat, by a well-known result, [Ganfmacher, p. 306], (iii) is
equivalent with the requirement that all ‘north-west’ subdeterminants of Q+Q*
are positive. o ' 0

For the proof we use another lemma.

LEMMA 6.4. Let N be a normal matrix. Then for all p € C

N - ul| = max |As(N) —ul

Proof There is a unitaryr matrix U such that U*NU = D = diag{\1(N),...,
An(N)} Therefore, S , . A

IV —ull = _mex (N - wDel = _max, |V - uD)Us|

~ max [U*(V - uI)UxH _max [(D - uI)wH Jmex (V) —

since U is unitary. This proves the lemma. - "

Proof of Lemma 6.3.  Since a unitary matrix is normal and its eigenvalues lie
on the unit circle, Lemma 6.4 yields the equivalence of (i) and (ii). Since (ii)
< (@ - Dz| < V2 forallz € S* ! <= z*(Q* — I}(Q — I)z < 2 for all
€ S = z*(Q+ Q* ):z:>0fora,lla:ESn o= Q + Q* > 0 < (iii);

the equivalence between (ii) and (iii) is established, and the proof complete. =
An important tool for the sequel, in particular for the proof of Proposition 6.2,
will be the polar decomposition of a square matrix. Even though this is well-
known, it is given here just for the sake of completeness.

PROPOSITION 6.5 (POLAR DECOMPOSITION OF SQUARE MATRICES) .
For all M € IR™*™ there are positive semidefinite symmetric matrices P and
P' and orthogonal matrices O and O’ such that

M=OP=P'O’

Furthermore, P = VMTM and P = VM . In particular, they are uniquely
determined. If det M 76 0 also O and O’ are unique.

Proof. See [Gantmacher]. -

The next lemma, together with the previous proposition, shows that to prove
the Proposition 6.2, it is enough to consider M € O(n), and also that A can
be taken as a subset of O(n).
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LEMMA 6.6. Let P be a symmetric, positive definite matrix, and O € O(n)
an orthogonal matrix with sp O C C*t. Then spOP =sp PO cC.

Remark 2. It follows that such O in fact belongs to SO (n). o

Remark 3. This result is fascinating because there are very few general results
on eigenvalues of products. o

Remark 4. The converse of Lemma 6.6 is false: If M is a matrix with its
eigenvalues in the right half plane, and M = OP = P’O’ are its polar decom-
positions, it is in general not true that O or O’ have their eigenvalues in the
right half plane. Numerical counter-examples have been found. o

There are two ways of presentiﬁg the following proof, one algebraic, based on
existence of solutions to linear matrix equations, which might be more mathe-
matically elegant, and one guided by the theory for stability of linear differential
equations. Needless to say, it was along the latter lines the proof originally was
found. We follow that path here.

Proof. The conclusion is equivalent to the stability of the autonomous linear
system

z=—POzx (k)
Put Q := P~!. We claim that 27 Qz is a Lyapunov function for (f), which will

prove the lemma. It follows from the formula for the inverse matrix that Q

is symmetric. From the assumptions and the spectral theorem, @ is positive
definite. Thus, for =z # 0, ,

%zTQx = —zT (OTPQ + QPO) z=—zT (OT + O) <0
where the last inequality used Lemma 6.3. The claim and the lemma follows.

Proof of Proposition 6.2.  First we solve the unmixing problem for O (n), which
is a compact (Lie-) group. For every matrix Q € O(n) there is a matrix O €
O(n)—e.g. O = @T—such that spQO C €. For fixed O, this property also
holds in an open neighborhood Up 3 Q. The union of all such neighborhoods

That is, we have an open cover of O(n). From the compactness of O(n) it
follows that the open cover has a finite sub-cover, which is the same as to say
that there exists a finite set 4 := {Oy,...,On}, solving the unmixing problem
for O(n).

From the polar decomposition, Proposition 6.5, and Lemma 6.6 it follows
that A also solves the unmixing problem for G L(n). B
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By Lemma 6.6 it is enough to solve the unmixing problem for O(n). Further-
more, note that O(n) consists of two arc-wise connected components, denoted
by $O(n) and JSO(n), where J = diag{1,...,1,—1}. So, the unmixing prob-
lem splits into two, and if A solves the problem for SO (n), then A|JJA will
solve the problem for O(n). In the sequel only the unm1x1ng problem for $O(n)
will be considered.

The Crystallographical Approach to Spectrum Unmixing

It is conceptually appealing to find an unmixing set that also has the structure
of a group. The following simple proposition on unmixing groups holds.

PROPOSITION . 6.7. A necessary condition for a group § C $O(n) to have
the unmixing property is that the natural representatmn on IR™ is irreducible.
That is, G must leave no proper subspace invariant.

Proof. Assume that § leaves the proper subspace X invariant. Then, since
$0(n) acts transitively on S™~! there is a matrix § € $0(n) and a vector
x € S* 1N X+ such that gz € X. Hence, for all g € G, by the Pythagorean
theorem

lgg — II| > llggz — =l = Vllgg=l* + [z = v2

violating condition (i) of Lemma 6.3. -

A crystallographic group is a group of rigid motions of n-space leaving a crystal
structure, i.e. a lattice, invariant. With respect to a lattice basis, it is easily
seen that the linear constituent of such a motion is represented by a matrix
with integer entries and determinant 1. These are a natural choice for finding
unmixing groups.

Another natural choice for candidates for unmixing groups, especially after

the results in the previous subsection, is the orthogonal matrices with integer
coefficients. Unfortunately, this does not work for large n.

O(n, ZZ) is the subgroup of O(n) generated by the permutation matrices and
the signature matrices. The order of O(n,Z) is clearly 2"n!. We will show
that, for n large enough, these matrices do not suffice. More precisely, we have
the following proposition.

PROPOSITION 6.8. For n large enough, there is a matrix A € R™*"™ such
that sp QA ¢ €% for all Q € O(n, ZL).
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,Proof;, Put; il [NIRNSTO N voas ol il D 3L
‘ (-71-; r—a:n;_l 0y —dn;3 '—‘(11\
: %" bn—l 0 0 0
“\/1—;," —@p-1  bn_g 0 0
A - 1
Jr TOn-1 —Gn-2 bp_3 0
\—\/1—; —Qp—1 —Gp-2 —An_3 by )

where a; = 1/4/12 + ¢ and b; = ¢/v/12 + 1. For the convenience of the reader,
we show A for n =_10. -

/0.316 ~0.105 —0.118 —0.134 —0.154 —0.183 —0.224 —0.280 —0.408 —0.707
0.316 0949 0 0 0 0 0 0 0 0
0.316 —0.105 0.943 0 0 0 0 0 0 0
0.316 —0.105 —0.118 0.935 O 0 0 0 0 0
0.316 —0.105 —0.118 —0.134 0.926 0 0 0 0 0
0.316 —0.105 —0.118 —0.134 —0.154 0913 0 0 0 0
0.316 —0.105 —0.118 —0.134 —0.154 —0.183 0.894 0 0 0
0.316 —0.105 —0.118 —0.134 —0.154 —0.183 —0.224 0.866 0 0
0.316 —0.105 —0.118 —0.134 —0.154 —0.183 —0.224 —0.280 0.817 0
0.316 —0.105 —0.118 —0.134 —0.154 —0.183 —0.224 —0.280 —0.408 0.707

It is a straightforward check to verify that A € O(n). (Actually, A € $O(n),
but this will not be used.) From numerical computations, it is seen that A has
its eigenvalues in the right half plane for n < 23. For n > 24 there is a pair
of complex conjugated eigenvalues in the left half plane. The calculations were
carried out for n up to 168, and showed that the real part of the leftmost eigen-
values decreased with increasing n. E.g. for n = 24 the leftmost eigenvalues
are —0.0035 4= 1.0000z, and for n = 100 they are —0.2344 +0.9721:. The calcu-
lations were done with the matrix manipulation program CTRL-C, [CTRL-C|,
which uses double precision arithmetics. No significant change was observed
when the computations were performed in single precision arithmetics.

Next it will be shown that every nontrivial permutation of the rows, together
with changes of sign, will generate a non-positive subdeterminant of QA +
(QA)*, of order either 1 or 2, thus violating condition (iii) of Lemma 6.3.

By inspecting A, we see that in order to avoid zeros in the main diagonal
(which really is a zero subdeterminant of order 1), row i, for ¢ > 2, can only be
moved upwards, and row 1 will be moved down in every nontrivial permutation.
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Say that-row 7 is moved to row 1. Since the (1,1)-element should be positive,

row ¢ must not change sign. Now consider S, the subdeterminant of order 2,
formed by the elements (1,1), (1,7), (¢,1), and (4,7) of QA + (QA)*. By a
trivial computation, _

4 1)*
S = ‘\7——7Zan—i+1 - (bn—i+1 - 7—;}")

Since b; > 1/+/2 V2 for all 7, S is negative for n sufficiently large. More prec1sely,
since a; <1 / \/_ we arrive at the estimation

g 1, 3T 1
2 vn n
so S < 0 for n > 68. This ends the proof. E

Remark 5. Strictly speaking, the proposition has been shown only for n
between 68 and 168. a]

The Euler angles on SO(n)

The remainder of this section will be devoted to the explicit construction of a
finite set 4 C O(n) with the unmixing property. In Example 6.1 the unmixing
problem was solved for n = 2. This result is generalized to arbitrary n. The
construction will rely on the Euler angles on $§O(n). Since these do not seem
to be very well known for n > 3, we give the result in full. Because of the close
relationship with group theory, the matrices will in this subsection be denoted
by lower-case letters.

Notation. Let gx(a) denote the matrix corresponding to counter-clock-wise
rotation the angle « in the (zx41,zk)-plane. Explicitly,

cosa —sina
gi(2) :blockdiag{l,...,l, ( , ] ,1,...,1}
N, s’

sino COS &
k—1

THEOREM 6.9 (THE EULER ANGLES ON $0(n)). Any element g €
$0(n) can be written in the form

where
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for some 0}‘, k=1,...,n—1, j =1,...,k satisfying

e ~~030’1°<27r
0<Of<m  j#1

These are unique, except when 0,’§ =0 orw forsomek =2,...,n—1.

Proof. See [Vilenkin, pp. 438-439). m

Definition 6.10. By the Euler angles of g we shall mean the numbers 0:’;, k=
1,...,n—1,7=1,...,k. We also write § = (6,...,0n)T = (6%,...,072~ )T,
where N = n(n — 1)/2. The corresponding matrix will sometimes be written
as g(0). o

Remark 6. In the language of differentiable manifolds, the inverse of the
mapping the Euler angles constitutes is a C“-coordinate chart from the man-
ifold §$ O (n), with a variety of lower dimension removed, to an open subset of
R (n—1)/2 .

In the sequel the following estimate will be used.

LEMMA 6.11. Let g1,...,9m be n X n-matrices and suppose that for
i=1,...,m and some « it holds that ||g; — I|| < a. Then

g+ gm = Il < (a+1)" -1

Proof. We show the lemma by induction over m. For m = 1 there is nothing
to prove. Assuming the lemma for m — 1, we have

g1 gm — I =l(91° " 9m—1—I)(gm = I) + (91" - gm—1 — I) + (gm — I)||
‘ <((e+)™ =1 a+(a+)" -1+ a=(a+1)" -1

which is the induction step. : E

Of course, in the light of Lemma 6.3, we are interested of getting the right hand
side equal to the ‘magic number’ V2. Introduce the following notation.

Notation. Let the § O(n)-matrices with their eigenvalues in the right half plane
be denoted by 1, i.e.

0={geS0(n):spgcC*}

Put
n(n —1)

N :=dim$§0(n) = 5
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Denote the solution of (o + 1)V —1 = /2 by 8. Explicitly,

B=1Y1+v2-1
<,or 1= arccos (1 - %i)

Finally, we let M = [7/p]. o

Also, denote

The following simple lemma reveals the meaning of .

LEMMA 6.12. If |0;’| <pfork=1,...,n—1,57=1,...,k, then g(8) € Q.

Proof. By a simple computatlon, llg; ( 0" —1I|| = ,/2 — 2cos 0’“ V2 —2cosp

= (. The lemma now follows from Lemma 6.11.

A Successful Construction

We are now ready for the main result. It can informally be described as:
Put a lattice with side-length 7/M on RY™. Then the image of the lattice
points under the mapping given by the Euler angels has the unmixing property.
Furthermore, it is a group.

THEOREM 6.13. Let

T .
A= {g(ﬁ) :0;-c =nfﬁ, n;" e, k=1,...,n—-1; 7= 1,...,k;}
Then
(i) For n > 3 it holds that A C SO(n) is a subgroup of order less than
2n—I1MN,

(i) For all g(8) € SO (n) there is at least one g(0) € A such that g(8)g(9) € Q.

By the theorem together with Lemma 6.6, the group A|JJA4, where J =
diag{1,1,...,1,—1}, solves the unmixing problem for GL(n).

Remark 7. For n = 2 instead equality holds in (i), i.e. card 4 = 4. o

Remark 8. Note that for g(8) € A, we have g()T = g(6)~! = g(-0) € A.
Especially, 4 = AT. o
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Proof. We first.prove (i). The order of A follows from Theorem 6.9. Note that
“less than” follows from the non-uniqueness. To show that A is a subgroup

it only remains to show that for g{6;),9(62) € A4, it holds that g(8,)g(f2) =
g(63) € A. All elements of g(f;1)g(2) are polynomials in sin 0" and c050

where 0’° = n 7 /M. By using the standard trigonometric formulas this can
be rewntten to the corresponding element of g(Bk). Hence 6 has the form
indicated in the theorem, and it follows that A is a subgroup.
For the proof of (ii), note that for any g = g(#) € SO(n) there is a matrix
g(0) € A such that |l9’c —9’“] <pfork=1,...,n—1,and 7 =1,...,k. By (i),
g(6)~! = g(6)T € A. We claim that g(6)Tg ( ) € 0, which will complete the
proof. For j =.0,...,N, define 0(3) = (0y,...,0;—1,0;,.. .,B_N)T. We have

N ~
H (B—ry) " 9(6y) -

The components of 5(1) and 0(1_1) coincide, except for the I’th positioh; There-
fore, for 7,k corresponding to [,

o Ga-1y) "9 (@) — 1] = 116795 — 65)3 — 11l = 115 0¥ — o) ~ I

= \/2-—2cos (H_f —0;~°> < \/2—2cosp =

for some orthogonal matrix §. So the claim, and thus (11) now follows from
Lemma 6.12 and Lemma 6.3. =

lg(8)Tg(8) - Il =

Remark 9. Note that to claim that O(n,ZZ) is unmixing is exactly the same
as to say that the theorem holds with M = 2. o

No particular attempt has been made to find the smallest possible set (or group)
with the unmixing property. We will make a few comments on this.

Remark 10. For n = 2, the theorem gives a 4-element group, to be compared
with the minimal unmixing set, which has cardinality 3. For n = 3, we get
M = 10, i.e. a group of order slightly less than 2210% = 4000. This is clearly
much higher than is needed. Numerical ‘experiments’ on randomly generated
matrices have indicated that the group of rotations of the 3-dimensional cube
is unmixing. This group have an irreducible representation on $0(3) as the
matrix group § C SO(3,7Z) generated by the matrices

-1 0 ©O -1 0 O 0 01
a= 0O -1 0 b= 0O 1 O c=11 0 O
0 0 1 0O 0 -1 01 0

The order of § is 12. It is the only irreducible representation of the rotational
component of any crystallographical group in 3 dimensions, [Brown-Biilow-
Neubiiser-Wondratschek-Zassenhaus].
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Remark 11....Forlarge n we have. - .

T L.

- log(1+\/§)

Thus, for large n,

7rn(n _ 1) ) n(n—1)/2

2log (1-{—\/5)

This grows faster than any exponential. . o

card A ~ 2™ 1 (

Remark 12. A lower bound for card 4 can be achieved in the following way.
Since SO (n) is a compact (Lie-) group, it has an invariant measure, the Haar-
measure, [Warner|, which we will denote by dg. With

u=/dg
Q

there can be no unmixing set 4 of cardinality less than 1 /1. There is an explicit
description of the Haar-measure expressed in the Euler angles, [Vilenkin],

n—1 k
dg = A, H H sin? 7! 0;9 d()}"

k=1j5=1

where

_ 11 D(®/2)
An = ILII 2mk/2

Here T' denotes the I'-function, described e.g. in [Ahlfors]. This integral can,
at least in principle, be evaluated at least numerically. o

6.3 Relative Degree One, Minimum Phase Plants

This section will address the problem of stabilizing the minimum-phase, square
plant (MIMOC), assuming that C'B is invertible. The algorithm will be based
on the switching function controller idea. Recall that switching functions and
related concepts were introduced in Section 3.5. Essentially all the work has
been done in Chapter 3 and in the previous section. We formulate the algorithm
as a theorem.
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THEOREM 6.14. For m = 1,2,..., there is an integer M, a finite set
Q0 ={Q1,...,Qun} C O(m), and a sequence of switching points {r;} such that
for any switching function s(k) of rank M with associated switching points
{r;}, the switching function controller

y=—kQsk)Y
k= lyl1* + lul®

will stabilize any m X m-plant of the type (MIMOC) satisfying

(i) detC(sI — A)~'B =0 implies that s €C™,

(ii) detCB #0 ‘ )

Furthermore, one such Q was given explicitly in Theorem 6.13, and on page 43
a sequence {7;} was given. e

Proof. Since CB is non-singular, there is a change of basis on the state space
of (MIMOC), expressed by the matrix T € §L(n) such that

T—»IB:[;] CT = (0 I]

where B’ is non-singular. By Proposition 6.2, or alternatively, Theorem 6.13,
there is a finite unmixing set Q C O(n). Say that ¢ is such that sp @;B’ € CcT.
Then it follows from Theorem 3.11 on page 34 that the controller

u=—kQ;y
k= |ly||® + [|ul?

is f-stabilizing for large t, where f(y,u,k,t) := ||y||*> + [|u||*. Furthermore, f
is L%-compatible, so the theorem follows from Theorem 3.18 on page 41. H

Remark 1. In Theorem 4.10 it was shown how to modify the controller to
interpolate between the Q;’s, thus yielding a C°°-controller. o

6.4 Higher Relative Degree

This section is devoted to the solution of the problem of adaptively stabilizing
square, minimum phase plants of type (MIMOC), for which a bound on the
relative degree is known, and which satisfies a certain condition on simple null-
structure of the Markov parameters.
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We will precede by solving harder and harder problems, instead of formulat-
ing the Big Theorem at the start of-the section, and devoting the sequel to its
proof.- . — T L o

First we solve the problem of adaptively stabilizing a single-input, single-
output minimum phase plant, with positive instantaneous gain, and a bound
on the relative degree known. For this, a one-parameter linear controller is
given. We solve the ‘frozen parameter singular perturbation problem’, i.e. we
show that our proposed controller, with sufficiently large frozen parameter, will
stabilize any plant in the set of plants under consideration. Then the switching
function machinery developed in Section 3.5 is invoked to turn up the gain
step-wise. This is later generalized to the square multi-input, multi-output
case, where the ‘instantaneous gain’ is positive—a concept we define. Finally,
the results of Section 6.2 on unmixing the spectrum is tied in to solve the full
problem.. .

The SISO problem

Recall that a polynomial p(s) € IR[z] is called a Hurwitz-polynomial if p(s) #0
for Re s > 0. Consider the set of plants

G ={g(s) € R(z) : g(s) = Zgz;, n,d € Rz; degd —degn < r¥;

n is Hurwitz; and the highest non-zero coefficient of n is positive}

For ! a non-negative integer, introduce the one-parameter family of I’th order
controllers

where
' r(s,k) = (s + k%) ... (s + k%) (s + k?)

l
a=) 2 +1=2"" -1
j=1

and h(s) is an arbitrary monic Hurwitz polynomial of degree I. For l = 0,
c(s, k) reduces to k.

PROPOSITION 6.15. Ifl > r* —1, then for any plant in § there is a ko
such that the closed loop system g(s)/(1+ ¢(s,k)g(s)) is stable for all k > ko.

Since we will make heavy use of this result in the sequel, we reformulate it in a
more mathematical setting. It is easy to see that the latter formulation implies
the former.
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Notation. By writing-z ~ k" we shall mean that the quantity z is asymptoti-
cally proportional to k7 as k — oo, i.e. ‘

1.1_.1201‘;_”!#000

In particular, the limit exists. - ' - o

PROPOSITION 6.16. Let a, r(s,k), and h(s) be as above, and u € C*.
Suppose that n(s), d(s) € R[z] are such that n(s) is Hurwitz, deg d(s) = n,
the highest non-zero coefficients of d and n have the same sign, and that 1 <
deg d(s) — degn(s) =r <1+ 1. Then the polynomial

pr(s) :==r(s, k)d(s) + pk*h(s)n(s)

will have its zeros in the left half plane for all sufficiently large k. More pre-
cisely, denoting the zeros by Si,...,Sp41, it holds that sy ~ kzl,. vy Sp_1 ~
k2T s, ~ El1+2+ 27 bile Spq1y.. . Snqt Will converge to the zeros of

h(s)n(s).

Remark 1. Note that s, is slower than the rest of the unbounded zeros. o

Proof. Assume without restriction that d(s) is monic. Since a > Y27 it fol-
lows that the second term of pg(s) will dominate over the first on every bounded
subset of €. The claim on the finite zeros now follow e.g. from Rouché’s theo-
rem, see [Ahlfors]. For the infinite zeros, the claim follows from a consideration
of the different powers of k in the coefficients of s®*'~1,...,s"T=" in pi(s).
The argument goes as follows: Put px(s) =: s"Hpay(k)s" =1+ .- +anqi(k).
Also define o1,...,0n41 by 05 = k% for i = 1,...,1, while 0141,...,0n4] are
defined to be the negative of the zeros of d(s), in some ordering. If r > 1 then

n+l n+l

a; = _ZSJ ZUJ Zk2j ~ K
j=1

=1

Thus there is at least one zero ~ kzl, and no ‘faster’ zero. Also, if r > 2,

Y 1, gl—1
agzz:siSj:ZainNZkz k2 ~k2+2

i#] i#j i

Since the finite zeros converge to points in the open left half plane, no zero
8; ~ k7 for negative 4. So there is exactly one zero sy ~ k%, and this is

negative. Also, there is at least one zero ~ k2 . Applying the same argument
a total number of r — 1 times, we conclude that sa,...,s,_2 behave as claimed,
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and at least one zero ~ k2 .- . We also have that a, ~ s1...5, ~ k* =
k2'+27 e+ Qince 2072 > 2b-r+l 4 ... 41, it follows that s,_; is negative,
and is the only zero ~ K2 Furthermore, since there are exactly r infinite

branches,

81...5y ay k< _ k1+2+“_+21—r+1

Sy ~ ~ ~ T ol—r+2
81.4.8p—1 Gr—1 k% .-k

Since ay,...,a,_1 > 0, arg a, approaches arg u, it holds that arg s, approaches
arg —u, so s, € €~ for large k. This completes the proof. m

Remark 2. The problem was originally solved with Newton-Puiseuz diagram,
which is a graphical method for determining the asymptotic behavior of the
zeros of a polynomial in two complex variables, see [Postlethwaite-MacFarlane|
or [Newton]. o ut

Remark 3. The purpose behind the unorthodox choice of the polynomial
r(s,k) is to separate all closed loop poles in different powers of k, thereby
making it harmless to over-estimate the relative degree of the plant. A more
naive approach, inspired e.g. by [Zames-Bensoussan], is the following: Let

h(s)
c(s, k) = k(Ts T
where T' — 0 as k — oo, in some sense fast compared to k. This approach
does not work in general if we over-estimate the relative degree of g(s), i.e.
if ] > r —1. Say that I = r. Then the infinite branches are asymptotically
determined by
(Ts+1)!'+k=0

i.e.
—1+e/—k
= ————— + o(\l/ic_)
T
where €1,...,&; are the primitive /-th roots of unity. For I > 3, some s; must
have a positive real part. o

Stabilization of minimum phase SISO systems

Next it is shown how to tie this result to previous results to stabilize minimum
phase single-input, single-output plants, with a bound on the relative degree.
Since later the result will be generalized to a more general multivariable setting,
we here make the assumption that the instantaneous gain is positive. Recall
that a switching function of rank N, is a surjective function s : R™ — /A
This, and related concepts has been defined on page 40. We have the following
result:
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PROPOSITION 6.17. Let § and c(s, k):be as defined on page 92, and assume
that ! > r* — 1. Then, for s a switching function of rank Rg and {r;} a suitable
switching point sequence, the controller

u(t) = —e(p, s(k))y(?)

U ,;\,A'::y2+u2

will stabilize any plant ¢ € § in the usual sense, i.e. (z,z,k) — (0,0,ko) as
t — oo, where = and z denote the state in a realization of g and c respectively,
and koo < 0o.

Proof. It is easily seen that this controller is on the form (SFC) and that
f :=‘y2 + u? is L2-compatible, so the result is an immediate consequence of
Theorem 3.18, together with Remark 5 on page 41. =

Remark 4. The requirement on s to be a switching function of rank Ry is
more than is needed. The same proof will be valid if s is just required to take
on arbitrarily large values. o

Remark 5. A result like Theorem 3.11 on page 34, where the parameter in
the controller is allowed to increase continuously, would definitively be more
satisfying. Further discussion, and some motivation of the difficulties, are given
in Section 7.2. o

Multivariable Extensions

In order to give multivariable extensions of the previous result, some new ter-
minology is introduced. '

Definition 6.18. Consider the multivariable linear plant (MIMOC) with m = p.
Put

o0 o0

G(s)=C(sI—A)"'B=) CA™'Bs™ =) M;s™"
1=1 1=1

The sums are convergent if |s| > g(A). We shall say that G(s) has weak

relative degree r if My = -+ = My_1 = 0, M, # 0, and strong relative degree 7

if det My, ...,det Ms_, = 0, while det M+ # 0. Note that r < 7.

If there is a so € R™ such that for some a > 0 it holds that arg \;G(s) €
[-Z+a,5—a]fori=1,...,m and all real s > 5o we will call G(s) a plant
with positive instantaneous gain.

We shall say that (MIMOC) satisfies Assumption Symple Null Structure
(SNS) if for i = 1,...,7 the matrices )} M;s~* have simple null structure,
except possibly for isolated s. o
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Note that these definitions agree with the usual single-input, single-output
concepts, and also with the preliminary definitions given in.Section 6.1. Also
observe that (MIMOC) will, by the initial value theorem for the Laplace trans-
form, have positive instantaneous gain if and only if the impulse response ma-
trix H(t) := L7!G(s) has its eigenvalues in a fixed, closed sector in the right
half plane for sufficiently small ¢ > 0. This property accounts for the name.

For ! a non-negative integer, we introduce the most natural multivariable
generalization of the controller ¢(s, k), namely

C(s,k) =c(s,k)Im
The following result holds.
PROPOSITION 6.19. Ifl > r* —1, then for any G in the set

B —_—{G(s) € R™™(z) : 7 < r*;det G(s) # 0 for Res > 0;
G(s) has positive instantaneous gain;

G(s) satisfies assumption SNS}

for sufficiently large, fixed k, the control law u = —C(p, k)y will stabilize G.

Proof. The poles of the closed loop system are given as the zeros of det (I+
¢(s,k)G(s)). These are by definition the s for which —1/c(s, k) is an eigenvalue
of G(s). ,

By a standard argument based on e.g. Rouché’s theorem, the finite endpoints
of the root locus as k — oo are exactly the zeros of detc(s,k)G(s), which by
assumption resides in the left half plane.

Let d(s) be the monic least common multiple of the denominators of the
elements in G(s), i.e. the characteristic polynomial of the plant. Since the
eigenvalues A; of G(s) are the zeros of the polynomial ¢(s,A) := det(Ad(s)] —
d(s)G(s)) and G(s) is strictly proper, the eigenvalues have an asymptotic ex-
pansion, see e.g. [Brockett-Byrnes],

A = pys P 4 o(s"”‘/q"), pi,qi € LT, i=1,...,m

when IR S s.— co. By assumption SNS, the quantities p;/g; are all integers,
[Byrnes-Stevens|. Since G(s) is assumed to have positive instantaneous gain, it
follows that p; € €. It is easy to see that r < p;/¢; <Ffori¢=1,...,n. The
infinite branches of the root locus are therefore given as the unbounded zeros

of
1 r(sk)
Te(s, k) keh(s)
for 1 =1,...,m. By Proposition 6.16, these are in the the left half plane for k
sufficiently large. This completes the proof. =

= \; = pys Pi/% 4 o(sTPi/ %)
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Remark. . 6. Other treatments of ‘high-gain root locus can be found in e.g.
[Brockett-Byrnes] and [Sastry-Desoer]. It.can be shown that the simple null-
structure requirement in the latter paper is equivalent to ours. An analysis
of the behavior of the root. locus in the absence of this condition is found in
[Byrnes-Stevens]. : o
For the full result it only remains to bring in the results on switching functions
and unmixing of the spectrum. Unfortunately, since the weak and strong rela-
tive degrees might differ, this is not entirely straightforward, but requires some
extra steps. This is taken care of in the following lemma.

LEMMA 6.20. Consider the set of plants
G ={G(s) e R™*™(z) : 7 <r*;det G(s) # 0 for Res > o}

Let Q € O(m) be any unmixing set. Then for any G(s) € G, thereisaQ € Q
such that QG(s) has positive instantaneous gain.

Proof. Use the polar decomposition of G(s), i.e. G(s) = O(s)P(s). We claim
that O(s) converges as R > s — oo. By Lemma 6.6 this will complete the
proof, since if @ € O(n) is such that sp QO(c0) C C™t, then spQG(s) C C*
for large s € IR. Since G(s) is non-singular for large s, by Proposition 6.5
O = O(s) can be written as O = G(s) (G’(s)TG(s))_l/z. Every element of
O(s) is therefore a meromorphic function in s. Since it is bounded at infinity,
it follows from a familiar argument using the Cauchy estimate, [Ahlfors], that
every element is a rational function of s. Therefore O(s) converges as s — oo,
completing the proof. =

Summing up, we have the following result, containing almost all results of this
chapter:

THEOREM 6.21. Let § and c¢(s,k) be as above, and !l > r* —1. Then
there is an integer M, a finite set Q = {Q1,...,Qm} C O(m), and a sequence
of switching points {r;} such that for any switching function s(k) of rank R
with associated switching points {;}, the switching function controller

—_— U= _c(pas(k))Qs(k) mod MY
k= llyll* + llu]®

will stabilize any plant G € §. Furthermore, one such Q was given explicitly
on page 88, and page 43 gave a sequence {7‘,‘}.

Proof. Analogous to Proposition 6.17. m
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6.5.- An Example. Gl 0 LEI-GRITO TOGOL 00U LETL Lol

In the laboratory at the Department of Automatic Control in Lund there is a
process called the ball and beam. This consists on an electrical motor whose
shaft is connected to an approximately one meter long beam. There is a slot
in the beam in which a steel ball is rolling. With the use of a resistance wire,
a measurement of the position of the ball is available. Also the angle of the
beam is available as output. The input is the current to the motor.

A standard simple linearized model for the transfer function an electric motor
from current to position of the shaft is b/s(s + a), where a > 0. The dynamics
from the angle of the beam to the position of the ball is, for small angles, clearly
a double integrator. Thus, the transfer function from current to position of the

ball is given by
b
g(s) = 33(s+a)

where we consider a and b as unknown. Theorem 6.18 gives e.g. the controller

(p+1)°
p+s(k)®)(p+ s(k)*)(p + s(k)?)

e(p, k) = 0(8(’6))8(’6)15(
= y? + u?

where s : RT — Z* is a suitable switching function, and ¢ : ZT — {-1,1}
a sign-switching function. This will stabilize g(s) for all @ and b # 0. When
trying to simulate this process in Simnon, severe numerical problems occured,
because of the size of the coefficients, and since the system turned out to be
extremely stiff, i.e. to have a very large difference in the time scale of the
different states. Instead, the controller

_ ; _(p+1)°
c(p, k) = o(k)s(k) (p + s(k)?)®
((1,1) k<2

(-1,1) 2<k<4

_ ) (1,2) 4<k<16

(@90 =1 C1)2)  16<k <256
(1,3) 256 < k < 65536
A N
k =y

was simulated. It can easily be shown in the same way as before that this
controller is stabilizing for single-input, single-output minimum phase plants
of relative degree four. A simulation where ¢ = b = 1 is shown in Figure 6.1.
The upper diagram shows the logarithms of |y| (dashed line) and |u| (solid
line). (Actually, for practical reasons log(|y| + 1) and log(|u| + 1) is shown
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Figure 6.1. Simulation of adaptive stabilization of the ball and beam process.

instead.) The lower diagram shows s and o(s). Note the wild, but fairly short
excursions of u when s switches.

6.6 Conclusions

This chapter has been closer to the tradition that gave rise to the original
‘universal controllers>—namely high-gain stabilization—than the rest of the
thesis.

Section 6.2 solved the purely mathematical “unmixing problem” in a con-
structive way. The main tool in the construction was the Euler angles. In
Section 6.3 the solution was used to construct an algorithm for stabilizing
multivariable, relative degree one, minimum phase plants. The second main
constituent in this algorithm was the switching function machinery developed
in Chapter 3. The algorithms were extended to plants of higher relative de-
gree in Section 6.4. Multivariable generalizations of the single-input, single-
output concepts of relative degree and positive instantaneous gain were given.
A one-parameter family of controllers was presented. This family is capable
of stabilizing any minimum phase plant with positive instantaneous gain and
a bound on the (strong) relative degree known, for all sufficiently large values
of the parameter. In the multivariable case, a certain condition on simple null
structure was also required of the plant. By invoking switching functions and
unmixing sets, this gave rise to an adaptive algorithm.
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Conclusions and
Suggestions for
Further Research

7.1 Introduction

What is the future of adaptive control? Will the results in this thesis have some
impact on future practical algorithms? Or will the concept of adaptive control
vanish out in the mist, replaced by a unified theory of non-linear control? Is
there a use for todays adaptive algorithms?

These questions will not be answered here. Instead, we will in a slightly
more humble way discuss extensions of the results presented in the thesis,
and possible impact on future algorithms, especially in combination with other
control strategies in the context of multi-layer control.

Let us start the discussion with a brief resumé of the thesis. On several
different levels of precision, we have discussed what to mean by an adaptive
controller. Some mathematical tools where given in Chapter 3. More general
‘meta’-results were given in Chapter 4, especially the complete characterization
of necessary and sufficient a priori knowledge for adaptive stabilization. The

101
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“Turing Machine of Universal Controllers’, i.e. an adaptive controller with the
greatest stabilizing power possible, was presented in Chapter 5. The problem
was specialized to high-gain stabilizable plants in Chapter 6.

7.2 Extensions and Discussion

A beauty spot in Chapter 6 is that for the case of positive instantaneous gain,
we could not devise an algorithm which was increasing the gain in the controller
in a continuous way. Of course, by the regularizing machinery in Chapter 4,
this flaw can to some extent be repaired, but it would have been desirable to
use a version of Theorem 3.5 to increase the gain continuously. However, there
are some problems associated with this. First, since k(t) and the differential
operator p do not commute, the trajectories will depend on the realization cho-
sen for the controller. Secondly, it can be shown that the scheme of Section 6.4
does not fit in the framework of Theorem 3.5. A requirement would thus be to
have a generalization of that theorem to an arbitrary number of time-scales. In
fact, the author have a proof under fairly restrictive assumptions. It is believed
that the requirement of simple null structure is crucial, compare Example 3.10.
Unfortunately, it can be shown that among plants with (strong) relative degree
greater that one, for all realizations of the controller in Section 6.5, there are
plants such that the simple null-structure requirement will be violated. A pos-
sible remedy would be to consider controllers of higher relative degree, together
with non-minimal realizations.

We conjecture that the requirement of simple null-structure in Section 6.4
will be shown superfluous with a more elaborate proof, at least as long as the
gain is increased stepwise in a switching function manner.

The most easily suggested extension of the results in this thesis is to the case
of continuous exitation, i.e. the tracking and disturbance problems. This was
discussed in Chapter 2. The problem is to ensure that the parameter is not
going off to infinity despite the continuous exitation.

An interesting idea is to use optimal stochastic control theory in order to op-
timally choose between different controllers in a switching function controller
manner. In the deterministic case, only the discrete time problem makes sense
because of the identity theorem for analytic functions. Actually, this formula-
tion is a generalization of the N-armed bandit problem in stochastic control,
see [Kelly].

The problem can of course also be linked with the more total, optimal, sto-
chastic framework of dual control, see Chapter 1. -

Another highly interesting path is the extension to stabilization of non-linear
plants, pioneered in [Byrnes-Isidori 1984].

All ‘universal controllers’ presented in this thesis have had a one-dimensional
parameter space, where the parameter increases monotonically. The need for
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taking on a multitude of different ‘directions’ is ensured by letting that param-
eter parametrize a ‘sufficiently dense’ curve in the parameter space of the linear
constituent of the controller. In this respect, they differ form the traditional
adaptive controllers, which have a higher-dimensional parameter space, thus
being able to converge in a more straight-forward fashion. These can often be
interpreted as local gradient algorithms, and hence have most often good local
performance, but behave worse globally.

It is the belief of this author that a sensible, practical algorithm probably
should be based on searching -in a parameter space of larger dimension than
one. Also, all control problems more composite than the isolated stabilization
problems require the parameters to have a possibility to decrease, in contrast
to e.g. k= ||y||2 + |[u]®.

In practice, some form of a priori knowledge of the time-scale of the unstable
modes, and of the magnitude of the “gain” is always present. This has not
been taken into account in-this work. :

In the content of multi-layer control, see Chapter 1, algorithms related to
ours might possibly be used. One idea would be to use some form of ‘universal
stabilizer’ to first of all get a grip of the process, and to get it under control, and
then feed a more elaborate algorithm, aimed at local steady-state operation,
with sensible starting values.

- Practical experiments can be performed on the basis of thls thesis. The ball
and beam process in our laboratory at the Department of Automatic Control in
Lund was described in Section 6.5. It is the belief of the author that an adaptive
controller of this process can be implemented on a dedicated high-performance
personal computer.

* * *

By the results of this thesis and its predecessors, listed in Chapter 1, it
has been made plausible that there should exist reasonable adaptive control
algorithms, which do not require the four assumptions (i) — (iv) described on
page 7. No algorithm in this thesis is claimed to be practically usable. It would
be a most exiting topic for the future to find practical algorithms.
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