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Self-organization and pattern formation represent the emergence of order in temporal and spatial
processes. Self-organization in population ecology is gaining attention due to the recent advances
concerning temporal fluctuations in the population size of dispersal-linked subunits. We shall report that
spatially structured models of population renewal promote the emergence of a complex power law order
in spatial population dynamics. We analyse a variety of population models showing that self-organization
can be identified as a temporal match in population dynamics among local units, and how the synchrony
changes in time. Our theoretical results are concordant with analyses of population data on the Canada

lynx.
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1. INTRODUCTION

The study of the evolution of order in spatial and
temporal processes, i.e. self-organization (Kauffman
1993), aims at finding general laws for characterizing the
nature of these processes in different fields of science
(Fagerstrom et al. 1996; Anonymous 1999). In population
ecology, where the general rules are exemplified by
models of population dynamics (Lotka 1925; Beverton &
Holt 1957; May 1981; Royama 1992), the topic has recently
attracted increasing interest due to the rapid development
of spatial ecology (Bascompte & Solé 1997, Tilman &
Kareiva 1997). So far, self-organization has been detected
by eye in model simulations because of the attractive
patterns generated (Hassell ef al. 1991, 1994; Solé¢ & Valls
1991; Comins et al. 1992; Solé et al. 1992; Ranta & Kaitala
1997; Kaitala & Ranta 1998). That populations may have
a temporally organized structure is suggested by the self-
repeating cyclic dynamics of Canada lynx and snowshoe
hare populations (Elton & Nicholson 1942), by various
grouse species and by Scandinavian voles and lemmings
(Lindén 198]; Lindstrom et al. 1996, 2001). It is common
for these cycle-prone species that, within a taxa, popula-
tions tend to fluctuate in step over large geographical
arcas (Elton 1924; Elton & Nicholson 1942; Lindstrom et
al. 2001), also indicating, at least to some degree, the
potentiality of spatial organization in their dynamics.
Here we report that, in a spatial setting of semi-
independent subunits connected via dispersing individuals,
ecological models of population renewal are capable of
supporting the evolution of complex order in their
dynamics. In particular, we identify self-organization at
the level of synchronicity in local dynamics in a spatially
explicit context for a variety of population dynamics
types. Instead of looking at visually identifiable (and
often attractive) spatial patterns, we shall characterize the
emerging patterns quantitatively,. We focus on the
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temporal and spatial patterns of synchrony in the
dynamics at different locations of the dispersal-linked
population subunits. We show that the model-generated
dynamics become self-organized such that the synchrony
measures between population fluctuations in the subunits
and their dependence on the interunit distance show a
power law structure. In other words, self-organization
becomes quantitatively identifiable at the level of
temporal synchronicity in the subunit dynamics such that
the synchrony, when measured using a time-windowing
technique (Ranta et al. 19974), shows temporally scale-
free, self-similar dynamics in time.

2. SEARCHING ORDER IN SPATIAL POPULATION
DYNAMICS

In our model, the space is composed of dispersal-
coupled population subunits, each of which is governed
by a local population renewal process. The spatial struc-
ture consists of n randomly distributed units in a two-
dimensional coordinate space. In order to obtain a
general view of the patterns emerging, we assume that, at
the local level, the population dynamics are governed
either by a Moran—Ricker model with delayed density
dependence (Turchin 1990; Royama 1992) or by linear
autoregressive models (Box & Jenkins 1976) of orders I or
2, i.e. AR(1) or AR(2). The population subunits are
coupled by distance-dependent dispersal such that, in
each time-step, a given fraction of newborn individuals
leave their place of birth in order to reproduce elsewhere.
The temporal dynamics in each patch are affected by
local noise and global Moran noise (e.g. Ranta et al.
1995).

The spatial population dynamics were generated by
simulations. Delayed density dependence in the Moran—
Ricker model (Turchin 1990; Ranta et al. 19974, 1999)
with proper parameter selection allows us to generate
cyclic population dynamics with approximately four-, six-
and ten-year period lengths. The temporal match in
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synchrony in pairs between the 25 population subunits
was scored by using a time-lag zero cross-correlation, 7,
(Box & Jenkins 1976). We scored the difference between
the upper and lower quartiles, i.e. Q3,—Q,, at time £,
for the 300 pairwise correlation coeflicients. The upper
(lower) quartiles are indicated by the boundaries of the
25% highest (lowest) scores of synchrony. The simulated
time-span was explored with a moving time-window
(Ranta et al. 1997a) in order to score temporal changes in
the overall degree of synchronicity. Using this technique
we also scored the temporal changes between synchrony
and its levelling off with distance, r, (e.g. Ranta et al.
1995, 1999).

(a) Spatial population dynamics model

In our model, a total of 25 populations are randomly
placed on a 20 x 20 grid. The local dynamics of the popu-
lations are affected by dispersal and local and global
noise. Assuming that a fraction m of the population
disperses annually, the local dynamics in patch ¢ are given
as

X(k+1)=

(1= m)FLX, (k)X (k = 1), p(k),w (D] + Y M(k), (1)
$,5F£1

where X;(k) is the population size in patch ¢ at time £,
(k) 1s the Moran effect, u;(k) 1s the local noise and M ;(k)
is the number of dispersing immigrants arriving at patch
¢ from patch 5. The Moran effect is characterized by its
annual probability of occurrence p(k) and its intensity p.
We write

_JH

where 0<p<1 (here p=5). When the noise occurred p
was drawn from uniform random numbers between 0.5
and 1.5.

The number of offspring alive after reproduction in
equation (1) is given as

F = X (k) p(k)u; (k) f1X:(R), X (k = 1)], (3)

if p<plh) <1,

otherwise

(2)

where the arguments of I have been omitted. Local noise
u4;(k) is a random number drawn from a uniform distribu-
tion between 0.95 and 1.05. Function f defines the density-
dependent per capita reproductive rate.

The populations were left to renew after two differing
model categories: the Moran—Ricker dynamics (Turchin
1990) and the linear autoregressive dynamics of orders 1
and 2, AR(l) and AR(2).

Ricker dynamics we write
JTX k)X (k= 1)] = explr(] — ay X (k) — a X (k= 1),

(4)
where 7 1s the maximum per capita rate of increase and a;

and ay are parameters determining density dependence.
The autoregressive renewal is given as

Xi(k+1) = g1 Xi(k) + @ X;(k = 1) + 6 +&(k), (9)

For the delayed nonlinear

where ¢, and ¢, are the parameters, ¢ is a constant (here
2) and ¢ is a normal random deviate (with mean 0 and
variance 0.2). With ¢,=0 and —1 < ¢, <1 we have the
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AR(1) process, whereas in order to achieve AR(2) the
following inequalities should be satisfied simultancously
(Box & Jenkins 1976): ¢+, <1, ¢o—¢ <1 and
—l<g¢ <l

Each year, a proportion m (here m=0.05) of indivi-
duals from each patch disperse to neighbouring patches.
In equation (1), the number of immigrants arriving at the
subpopulation ¢ from the population s is given as

mF exp ( — cd,;)

M (k) = e P (6)
> exp(—cd,)
JoJ#S

where d; is the distance from s to 7 and ¢ (here ¢=0.75) is
a constant parameter.

(b) Stmulations

At the beginning of cach simulation the 25 local popu-
lations were initiated in random phase. They were then
allowed to renew after equations (1) and (4) or (5) for 2'°
time-steps (in order to remove the transients) and then
the next 2P time-steps were used for our analyses. A
cross-correlation coefficient with time-lag zero (r;) was
used for characterizing the temporal match in fluctuations
between any pair of the population subunits. The time-
window used was 27 time-steps. Here we are interested in
the temporal behaviour of the emerging two new statistics
Q5,—Q, and rp, with £ here referring to the £th time-
window. Note that the narrower the quartile difference,
the higher the overall level of synchrony, which also
makes the rp; values close to zero. Large quartile differ-
ences, on the other hand, indicate that there are some
populations in tight synchrony while there are also pairs
of population subunits fluctuating out of phase or even
randomly. This setting allows rp, to achieve high negative
values.

3. RESULTS

The temporal changes in the difference between the
quartile boundaries of the synchrony measures show non-
cyclic irregular variations over time despite the periodic
temporal structure of the population dynamics (figure la—
¢). So also does the correlation between the pairwise
subunit synchrony against the distance between the units.
Due to the time-windowing technique, these measures
provide us with two time-series for analysis, that is
Qs5,—Q,; and rp,. Interestingly enough, the power
spectra of these time-series show a pattern which indicates
that the spectra are of the 1/f type (Halley 1995).

Our finding (figure li—iii) indicates that the temporal
dynamics of a spatially structured population are orga-
nized at the level of synchrony among population sub-
units. In the simulations the long-term average of the
synchrony is positive and rp, is negative suggesting that
the population dynamics in the subunits tend to vary in
step but in such a way that the synchrony among the
subunits decreases with increasing distance. However, the
time-windowing technique reveals that the degree of
synchrony Q5,—Q,, and its relationship against distance
rpy varies over time. Our analysis also shows that the
variations in these time-series are by no means entirely
random temporal fluctuations. Rather, when analysing
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Figure 1. The spatial population dynamics, as simulated using density-dependent population renewal with Moran—Ricker
dynamics, become organized at the level of population synchrony. The upper and lower quartiles Q, , and Q 5, (the two dashed
lines) of the synchrony measures vary in time with the local populations obeying period lengths in cyclic dynamics of (a) four
years, (b) six years and (c) ten years. The correlation coefficients 7y, describing the relationship between the level of synchrony
and the distance between the population subunits compared for the corresponding dynamics are also shown. (i-ii) The corre-
sponding specific power spectra for Q;,—Q,, (open circles) and rp,, (filled circles). The linearity of the relationship indicates
that they are of the 1/f® type, indicating the presence of a power law in the spatial and temporal dynamics (the values of o are

inserted).
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Figure 2. The average values of the slope « of the power
spectra of Q 5, — Q,, (open circles) and ry,, (filled circles) for
(a) the AR(1) process and (b,c) AR(2) process. The values in
the o contour graphs are averages of ten replicated runs for
each parameter value combination possible for the AR(1) and
AR(2) processes.

their dynamics in the frequency domain we observe that
the power of the different frequencies obey a power law of
the form 1//“, where fis the frequency and « is a constant
defining the slope of the power and also the autocorrela-
tion structure of the time-series. The negative slope of the
power spectra (positive «) (figure li—iii) indicates that
long-term fluctuations dominate, thereby giving the time-
series positive autocorrelation. More importantly, the
linear structure of the power spectra is an indication of
the presence of temporal self-similarity in the time-series
Qs — Q4 and rp.

We also verified the property of self-organization using
the AR(l) and AR(2) processes (figure 2). Curiously
enough, the most red dynamics (the highest values of a)
are obtained for the AR(I) processes with parameter
values producing negatively autocorrelated population
dynamics in the absence of a spatial population structure.
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Figure 3. The power law structure of Q5 ,—Q,; ; analysed
with the IFS test graphs for () white noise in a non-structured
population, (b,¢) in two AR (1) processes and (d) in one AR(2)
process. (/) The IFS scores for spatially structured settings
where the local populations obey cyclic dynamics with period
lengths of four, six and ten years, respectively. (¢) For compar-
ison, the IFS scores for cyclic dynamics with a period length
of four years. The temporal structure obeying the power law
in the IFS graphs is visible by aggregation of the dots along
the diagonals. (The results are the same for ry, ;, but they are
not displayed here due to lack of space).

Our results (figure 2) suggest that the autocorrelation
structure of the local population dynamics does not deter-
mine how the synchronicity among several populations
fluctuates with time. In spatial settings both the AR(1)
and AR(2) processes yield self-organized dynamics in
Qs —Q, and rp.

That a positive autocorrelation structure in Q3,—Q;,
and rp, (the results are not displayed for rp,,) is due to
the spatial structure, irrespective of the model generating
the local population dynamics, becomes clear from
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Figure 4. The long-term dynamics of the Canada lynx revisited. The 1919-1985 data are the annual lynx pelt harvest aggregated
at the province level. (a) Lower Q, , and upper Q;, quartiles of the synchrony measures in pairs among the eight Canadian
provinces, together with the correlation r,; between the synchrony level and distance between the provinces compared. (b) The
corresponding power spectra for Q 3, — Q,lk (open circles) and rpy ; (filled circles). The data are analysed by using the time-
windowing technique using 15 years as the window length. See also Ranta et al. 1997a.

comparing the iterated function system (IFS) clumpiness
scores (Jeffrey 1992) of the different processes. If the
quartile difference in the synchrony Qs;—Q, is repre-
sented by white noise in a non-structured space the IFS
score does not show any pattern (figure 34). However, the
spatial structure, with the help of dispersal-linked popula-
tion subunits superimposed with disturbance, organizes
the local dynamics into a spatial dynamics with a self-
organized structure. The closer the IFS scores are located
around the diagonals the more closely the power spectra
are expected to follow the form of 1//®. The rich variety
of local dynamics explored here all become self-organized
(in terms of the temporal synchrony pattern) due to
spatial structure only. The structure of points aggregating
around the diagonals can be detected for both the AR(1)
and AR(2) processes (figure 3b—d) and is most clearly
pronounced in the cyclic population dynamics irrespec-
tive of the period length (figure 3/~4). For comparison,
we also show the IFS score of the population dynamics
with a four-year period in the absence of dispersal (figure
3e). Clearly, this pattern, which is also typical for the
other cyclic dynamics in the absence of dispersal, does
not show any sign of self-organization.

4. DISCUSSION

The occurrence of synchrony between population
dynamics in different geographical locations has been
verified for a large number of species from different taxa
(Hanski & Woiwod 1993; Ranta et al. 1995, 19975;
Lambin et al. 1998; Bjornstad et al. 1999a,b; Paradis et al.
1999). The dependence of the synchrony level on the
geographical distance between locations is also well
established (Ranta et al. 1999). Note however that all
populations examined do not display synchronicity or its
levelling off with distance (e.g. Cattadori et al. 1999). On
the other hand, synchronization of populations may also
occur in isolation without dispersal (Moran 1953; Ranta
et al. 1995), as has been reported for feral sheep popula-
tions on two distinct islands (Grenfell et al. 1998).

When we analysed the Canada lynx data from eight
provinces earlier using the time-windowing technique
(Ranta et al. 1997a), we could show that the synchrony
level between any pair of provinces displayed a temporal
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structure such that the synchrony can be observed, but
that it may well disappear for apparently unpredictable
periods. The same data are now examined in more detail
by also calculating the new time-series Q5,—Q,, and rp
for the lynx data with the time-windowing technique.
Admittedly, the resulting time-series (figure 4) are much
shorter than used in the previous simulation analyses.
However, the Q5,—Q, and rp, statistics extracted from
the real data (figure 4a) resemble those derived from the
simulations. We found that, by subjecting the Q5,—Q,,
and rp, observations to the power spectra analysis, they
could also be described satisfactorily by the 1/f power law,
with the slopes « (figure 44) well within the range of the
values found in our simulations (figures 1 and 2). Thus, it
is tempting to suggest that the Canada lynx synchronicity
data among the eight provinces are also an indication of
self-organization mediated by the spatial processes, i.e.
dispersal and disturbance-modulated local dynamics.

The time-windowing technique, which is a central tool
here, has its pros and cons. The technique calls for long
enough time-series originating from several localities
during a matching time-period. This is a far cry
regarding long-term data on population dynamics, as
most ecological time-series are short (much less than 100
years) and rarely replicated in space (Powell & Steele
1995). The Canada lynx data (Hewitt 1921; Elton 1924)
are clearly an exception and, because of this uniqueness
in temporal and spatial coverage, it is no wonder that
they are still capable of producing new insights into popu-
lation ecological processes (Royama 1992; Ranta et al.
1997a; Stenseth et al. 1999; Gamarra & Solé 2000).

This work was supported by the Academy of Finland. We
thank Elsy-Brit Schild (Ossby, Oland, Sweden) for her hospi-
tality and patience while we were working on the manuscript
of this article.
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