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1

Introduction

1.1 Background and Motivation

Systems that support a driver in traffic situations and reduce the total
driver workload, is a growing research topic. Several of these sup-
port systems aim toward full or partial automatic driver assistance,
such as those for longitudinal control that are often called Adaptive
Cruise Control (ACC) systems. Adaptive cruise control distinguishes
itself from cruise control in its use of sensors that measure the head-
way distance and a controller which adjusts the velocity and distance
to the vehicle in front. Adaptive cruise control requires appropriate
sensor technology, actuators and control devices and its system design
requires data acquisition, control system design and validation proce-
dures. The motivation for these systems is that they aim at increasing
the driving comfort, reducing traffic accidents and increasing the traffic
flow throughput. The ACC systems autonomously adjust the vehicle’s
speed according to current driving conditions. In order to accomplish
driver comfort the system must resemble driver behavior in traffic.
The system must avoid irritation of the driver and of the surrounding
traffic. Therefore, to design a system that resembles the natural longi-
tudinal behavior of a driver a good model is needed. There exist several
attempts to model the drivers’ longitudinal behavior, which all aim at
describing various parts of the drivers’ behavior. The model structures
are different, some are based on cognitive models or general longitudi-
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1.1 Background and Motivation

nal models or only car-following models. Most of them have one thing
in common in that they are using static models.

The main contributions of the thesis are:

• An experimental platform for adaptive cruise control and driver
modeling;

• Contribution to the description of human driver’s longitudinal
driver behavior using dynamic models;

• The use of system identification methods to obtain the driver
models useful for adaptive cruise control.

Experiments in which seven drivers participated have been per-
formed for a variety of different traffic situations. The collected data
have been analyzed and used in the estimation of the driver models.
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2

Review of driver models

2.1 Introduction

Human driver behavior has been studied since the beginning of the
1950s, but during the 1990s the topic has grown considerably.

The division of driver behavior into separately studied parts has
been a common theme of the field, since a general driver model is inher-
ently complex. For example, there exist separate models for describing
steering behavior, driver work load, safety behavior and longitudinal
behavior.

This chapter concentrates on a review of different longitudinal be-
havior models. A longitudinal model describes vehicle acceleration be-
havior using throttle and brakes as input signals.

2.2 Human driver models

The study of the human driver behavior in car-following situations
started in the 1950s and has since been an extended topic. The general
form of the car-following driver models developed in the 1950s is based
on the assumption that each driver reacts in a specific fashion to a
stimulus, which leads to an actuation of the acceleration. Stimulus may
be a change in the headway distance or a change in the environment
condition.

10



2.2 Human driver models

vF , aF vL, aL

∆Y

Figure 2.1 Car-following

This leads to a stimulus-response model:

rn(t) = kn(t −τ n) ⋅ sn(t − τ n) (2.1)

where

rn(t) = acceleration applied at time t for driver n

k = sensitivity

s = stimulus

t = time of observation

τ n = reaction time for driver n (Includes

the time for both perception and action)

Car-following models describe the drivers longitudinal behavior in
situations such as in Fig. 2.1. In these situations the driver is following
another car and tries to maintain a driver specific headway distance
to the front car.

A simple human-driver model in car-following tasks can simplified
be represented as in Fig. 2.2.

All of the early work in car-following driver modeling assumes that
the driver is able to percept the space headway and the relative speed
between his car and the lead car. Chandler et al. [10] developed a linear
car-following model based on this general stimulus-response relation-
ship. Mathematically, the model can be expressed as:

aF(t) = λ
M
[vL(t −τ ) − vF(t− τ )] (2.2)
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Figure 2.2 Structure of a human driver in car-following
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Figure 2.3 Car-following model

where

aF(t) = acceleration of the following car

λ = sensitivity factor of the control mechanism

M = vehicle mass

vL = velocity of the leader car

vF = velocity of the following car

The model can also be expressed in block diagram, Fig. 2.3.
Chandler et al. at the General Motors Technical Center estimated

the model using a correlation analysis method and collected car-following
data. They used eight male drivers in the study and the experiments
showed that the reaction time T was approximately 1.5 seconds and
the ratio of sensitivity to mass was approximately 0.37 seconds−1. In
this model, the sensitivity term λ or gain was constant for all situa-
tions which limits the validity of the model. Gazis et al. assumed λ to
be dependent on the spacing headway between the cars. In [12] they

12



2.2 Human driver models

developed the following model:

aF(t) = b
∆Y(t −τ ) (vL(t− τ ) − vF(t − τ )) (2.3)

where

b = sensitivity constant

∆Y(t− τ ) = the space headway at time (t −τ )

As this model had limitations in low density traffic Edie et al. [11]
proposed a new model:

aF(t) = b
vL(t −τ )

∆Y(t− τ )2 (vL(t −τ ) − vF(t −τ )) (2.4)

This model performs better than the model proposed by Gazis et
al. [12] at low traffic densities. Gazis et al. [13] developed a model
that would be known as the General Motors Nonlinear (GM) model.
Mathematically the model can be expressed as:

aF(t) = α
vL(t)β

∆Y(t −τ )γ (vL(t− τ ) − vF(t− τ )) (2.5)

where

α = constant

β = model parameter

γ = model parameter

Gazis et al. tried to estimate the model, but they had not sufficient
data to claim a certain model to be superior to all others. May and
Keller [38] made a rigorous framework to estimate the GM model. In
the Gazis et al [13] study, β and γ were integers but in the May Keller
[38] study the β and γ were allowed to be real values. They found that
α = 1.33e-4, β = 0.8, and γ = 2.8 gave higher correlation between the
observed and estimated accelerations.
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θ

Figure 2.4 The visual angle in car-following

Pipes [42] developed an alternative approach, which is based on the
assumption that a driver is using the visual angle enclosing the lead
car (Fig 2.4).

The angle θ increases when the following car is approaching the
lead car. Using this approach, Pipe developed a model where the ac-
celeration of the following car is proportional to the driver’s perception
of the rate of change of the visual angle θ . Expressed mathematically:

aF(t) = b
(vL(t − τ ) − vF(t − τ ))

(∆Y(t −τ ))2 (2.6)

Addison and Low [1] developed a model based on the assumption
that the driver aims at a desired headway and strives to minimize the
relative speed ∆v. The model is an extension of the Gazis et al. [13]
including a nonlinear headway-dependent term. Mathematically, the
model can be expressed as:

an(t) = α
vf (t)β ∆v(t − τ )
(∆Y(t −τ ))γ +η(∆Y(t − τ ) − Dn)3 (2.7)

where

Dn = the desired headway

η = constant

Linear Optimal Control Model Structure

The optimal control model structure is based on a performance crite-
rion such as that of linear quadratic Gaussian control [3]. Minimization
of the performance criteria gives the structure of the controller. This
structure differs from the stimulus-response structure, since nonlin-
earities in the vehicle are included in the model. Bekey [4], who made
a review on this model structure, mentioned that even though it may
not be reasonable to assume that a human driver should mimic an
optimal controller, the result is interesting.
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2.2 Human driver models
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Figure 2.5 Look-ahead model

Rational function model

Bleile [6] proposed a new longitudinal driver model. Bleile used kernel
density estimation and found that the most relevant triple of input
variables are vn, ∆Y and vn−1 − vn to describe the driver’s longitudi-
nal behavior. Choosing a rational function as approach for the relation
between the input variables vn, ∆Y and vn−1 − vn and the mean accel-
eration an the model can be expressed as:

an = f (vn, ∆Y , vn−1) + r(vn, ∆Y , vn−1)ξ (t) (2.8)

where

f (vn, ∆Y , vn−1) = 1+ b1vn + b2∆Y + b3vn∆Y + b4vn−1 + b5vnvn−1

c0 + c1vn + c2∆Y + c3vn∆Y + c4vn−1 + c6∆Yvn−1

ξ (t) = zero mean white Gaussian noise with a

identity power spectral density

Bleile implemented the model as an Extended Kalman Filter with vn−1

as input and ∆Y , vn as observed variables.

Heuristic human driver models

Bekey [4] also reviewed two heuristic human driver models. The first
of these, the look-ahead model (Fig. 2.5), was based on the assumption
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Review of driver models

that the driver observes the behavior of three cars ahead of him, and
that he adjust his own strategy from their behavior. The second model,
a finite-state model, is based on the assumption that a human driver
always tries to maintain a velocity equal to the lead car along a safe
headway.

Adaptive Cruise Control

Ioannou [25] presented an ACC system, which he compared to three
human driver models: Linear car-follow model, Linear Optimal Control
Model, and Look-ahead Model. Mathematically, the vehicle model can
be expressed as:

d
dt

yn(t) = vn(t)
d
dt

ẏn(t) = an(t)
d
dt

ÿn(t) = b( ẏn, ÿn) +α ( ẏn)un(t)

where

α ( ẏn) = 1
mnτ n( ẏn)

b( ẏn, ÿn) = −2
kdn

mn
ẏn ÿn − 1

τ n( ẏn) [ ÿn + kdn

mn
ẏ2

n +
dmn( ẏn)

mn
]

yn = position of the nth vehicle

vn = velocity of the nth vehicle

an = acceleration of the nth vehicle

mn = mass of the nth vehicle

τ n = nth vehicle’s engine time constant

un = nth vehicle’s engine input

kdn = nth aerodynamic drag coefficient

dmn = mechanical drag of the nth vehicle

Control law:

un = 1
α ( ẏn) [cn(t) − b( ẏn, ÿn)] (2.9)

16



2.2 Human driver models

where

cn = Cpδ n(t) + Cuδ̇ n(t) + Kvvn(t) + Kaan(t)
δ n(t) = yn−1(t) − yn − (Ln + Son + λ2vn(t))
δ̇ n(t) = vn−1(t) − vn − λ2an(t)

Ln = length of the nth vehicle

Son = initial headway

δ n(t) = deviation from desired headway

Cp = design constant

Cv = design constant

Kv = design constant

Ka = design constant

Ioannou’s conclusion was that the comparison indicates a strong po-
tential for ACC to smoothen traffic flows and to increase traffic flow
rates considerably if designed and implemented properly. In this study
several emergency situations were simulated and used to demonstrate
that the ACC proposed may lead to much safer driving. This ACC
model is the foundation for the ACC system now used by Ford.

Neural network and fuzzy logic model.

Ghazi Zadeh et al. [15] made a literature survey on this area. The
driver models presented in the review all handle lateral guidance and
some of them also include longitudinal guidance. Several of the driver
models in the survey are for autonomous vehicle following, e.g., Gris-
wold [19]. Germann and Isermann [14] proposed an intelligent cruise
control (ICC) based on fuzzy logic and neural networks. They use a
three-layer structure, Fig. 2.6.

In the first layer, a linearization of the nonlinearities is made. The
second layer consists of a linear acceleration controller, based on clas-
sical controlling techniques and the third layer consist of a fuzzy con-
troller, based on the linguistic description of comfort demands.

The fuzzy controller (Fig 2.7) is based on the different ‘linguistic’
input variables: distance, velocity, relative velocity, and actual velocity.

17
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Figure 2.7 Fuzzy-logic controller

The output acceleration is obtained by:

a = min[a(velocity), a(distance)] (2.10)

Additionally they replace the two fuzzy controllers by an artificial neu-
ral network, which they trained by measurement data. The ICC is
implemented, and tested both in highway traffic and in stop-and-go
traffic on highway congestion.
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2.2 Human driver models

supervisory
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vehicle vehicle
control control

lateral use

car phone

SR TR BA

KB behavior
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Figure 2.8 Hierarchical structure of the mental model [17]

Mental models

Goodrich and Boer [17] proposed a mental model to describe the hu-
man driver behavior. A mental model is an internal representation
employed to encode, predict, evaluate, and communicate the conse-
quences of perceived and intended changes to the operator’s current
state within the dynamic environment [30]. To describe the human
driving behavior multiple mental models are used, which can be orga-
nized into a society of interacting agents (Fig. 2.8). The mental mod-
els are organized in a three level hierarchical structure, which cor-
responds to Rasmussen’s knowledge-based (KB), rule-based (RB), and
skill-based (SB) behaviors [44]. The model include, at the RB level, car
phone usage, in order to see how attention is shared between agents.

Although Goodrich and Boer did not provide a complete formula-
tion of the proposed model, they provided a preliminary computational
model to emulate RB and SB behaviors. Boer et al. [7] have also pro-
posed an integrated driver model, which incorporate the dynamical
aspects of driver behavior and the role of driver needs (Fig. 2.9).

Using this structure, Kuge et al. [34] proposed a driver behavior
recognition model based on the Hidden Markov Model (HMM). They
developed a HMM driver behavior model recognition in lane changes,
which they validate. A favorable property of this method is that it
detects a lane change very early in the stage of steering. In order to
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Figure 2.9 Integrated driver model [7]

base driver assistance on HMM driver behavior recognition, more work
will have to be done. General models of lane changing recognition will
have to be developed and robustness will have to be assured. Kiencke
and Nielsen [33] presented a hybrid driver model aiming to describe
the complete cognitive process of the human operator.

2.3 General longitudinal driver behavior

Leutzbach [36] proposed a psycho-physical spacing model where he in-
troduced the term "perceptual threshold" to define the behavior of the
driver. If the stimulus is smaller than the threshold then the driver is
influenced of the lead car and if the stimulus exceeds the threshold the
driver is uninfluenced of the lead car. Even if Leutzbach did not provide
any mathematical suggestion how this threshold could be estimated, it
was a first step to more general models of the driver’s longitudinal be-
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2.3 General longitudinal driver behavior

havior. Wiedermann [53] extended the Leutzbach model and presented
how to calculate the thresholds and how to perform simulation. Wie-
dermann wanted to cover the whole range of drivers’ behavior, poor as
well as good. Therefore, the single parameters of the model are nor-
mally distributed and standardized around a median. The driver model
distinguishes between four driving situations, in which drivers behave
in significantly different ways. Wiedermann introduced the individual
driving parameters: desired speed, want for safety and reaction time
in different driving situations. He used these to determine the drivers’
levels of perception. The four driving situations are:

• Uninfluenced driving:
In this driving situation the driver is uninfluenced of other cars,
and he/she attain his/her desired speed. The driver’s desired
speed is reasonably constant, determined by a compromise be-
tween desire for safety on the one hand and minimizing the trip
duration on the other hand.

• Approaching:
Consciously influenced driving. The driver is closing up the front
car. The driver has reached his/her individual reaction distance,
∆Yr, and begins to slow down. During this situation, the driver
decreases his/her speed and aims to adjust his/her speed to the
speed of the vehicle in front. The headway distance aimed at by
the driver during the approach is individual and is essentially
depending on the driver’s desire of safety.

• Braking:
Consciously influenced driving. The headway distance sinks un-
der the driver individual minimal headway distance, ∆Ymin. The
driver brakes to reestablish the minimal headway distance. When
the driver has established his/her individual headway the driver
changes either from approaching or from braking into
car-following.

• Car-following:
Unconsciously influenced driving. Follows the leading vehicle and
tries to maintain his/her desired headway and will vary with the
distance from the desired headway. The variation will be between
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∆Ymax

∆Ymin

∆Ystop

∆V

Braking

Following

∆Yr

∆Y

Approaching

Uninfluenced

Figure 2.10 Driving situations and the different levels of perception

an individual maximal following distance and an individual min-
imal following distance. If the headway distance is not in that
interval, the driver will switch from car-following to one of the
other three driving situations.

∆Ystop = 5.5+ ZF1

∆Ymin = ∆Ystop + (1+ 7 ⋅ ZF1) ⋅
√
(VF)

∆Ymax = ∆Ystop + (2− ZF2 + NZF ) ⋅ (∆Ymin − ∆Ystop)
∆Yr = ((∆Y − ∆Ystop)/(25 ⋅ (1+ ZF1 + ZF2)))2

With ZF1 = driver’s need for safety [0..1], ZF2= driver’s perception
ability, NZF = driver’s situation dependent model parameter.

Recently, Institut für Kraftfahrwesen Aachen (IKA) and BMW cre-
ated the microscopic traffic simulation program PELOPS (Program for
the dEvelopment of Longitudinal micrOscopic traffic Process in a Sys-
tem relevant environment), developed 1990-1994, using Wiedermann’s
model [37].

Gipps [16] presented a general car-following model that also works
in the uninfluenced regime. The model is based on the assumption that
the driver sets limits to his/her desired braking and acceleration rates
and using these limits to calculate the desired speed. He also used the
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2.3 General longitudinal driver behavior

assumption that the driver selects a speed where he is ensured that
he can perform a safe stop if the lead car is doing a sudden stop. Gipps
calculated the maximum acceleration for the driver such that it will not
exceed the driver’s desired speed. He did not estimate the individual
reaction time, but instead used constant reaction time of 2/3 seconds
for all drivers. The parameters in the model were estimated, but not
in a rigorous framework.

Benekohal and Treiterer [5] developed an acceleration algorithm
where they separated the acceleration and deceleration rates in the
following five situations:

1. The following car is moving but has not reached the desired
speed.

2. The following car has reached the desired speed.

3. The following car was stopped and has to start from a stand-still
position.

4. The car-following algorithm governs the following car’s perfor-
mance while space headway constraint is satisfied.

5. The car is advanced according to the car-following algorithm with
non-collision constraint.

No rigorous framework for parameter estimation was presented. Us-
ing this acceleration model they developed a car-following model, called
CARSIM, which simulated traffic both in normal and in stop-and-go
conditions. Yang and Koutsopoulus [55] developed a general longitudi-
nal driver model depending on the headway as classified driver into the
following regimes: uninfluenced driving, car-following, and emergency
deceleration. In the emergency regime the driver use an appropriate
deceleration to avoid collision. In the car-following regime they used
the known GM model. Ahmed [2] developed a model build on earlier
work by Subramanian [45] and extended it. Ahmed’s model has two
regimes uninfluenced regime and car-following regime. The sensitivity
factors in the car-following during acceleration and deceleration dif-
fers. The model includes the traffic density ahead of the car. Ahmed’s
model is mathematically expressed as:

an(t) =
{

ac f
n (t), i f hn(t −τ n) ≤ h∗

n

au
n(t), o.w.

(2.11)
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where

τ n = reaction time for driver n

ac f
n = car following acceleration

au
n = uninfluenced acceleration

hn(t− τ n) = ∆Yn(t −τ n)/vn(t− τ n), the time headway

h∗
n = unobserved headway threshold for driver n

The car-following model

ac f
n (t) = s[Yc f ,n

n (t − ξτ n)] f [∆vn(t −τ n)] + ε c f ,n
n (t) (2.12)

where

n ∈ [acc, dec]
s[Yc f ,n

n (t − ξτ n)] = sensitivity

ξ ∈ [0, 1], a parameter for sensitivity lag

f [∆vn(t −τ n)] = stimulus

ε c f ,n
n (t) = random term associated with the car-following

acceleration of driver n at time t

The stimulus is a function of the relative speed, Fig. 2.11. When
∆V is low drivers is not able to percept a small deviation of the relative
speed, but for ∆Y larger than a certain threshold, h∆V1h, drivers get a
better sense of the stimulus and therefore, increase the acceleration at
an increasing rate. When the ∆V gets larger than the threshold h∆V2h,
the acceleration applied by the driver is limited by the acceleration
capacity of the vehicle.

The model sensitivity and stimulus function is:

s[Yc f ,n
n (t − ξτ n)] = α n Vn(t− ξτ n)βn

∆Y(t − ξτ n)γ n kn(t− ξτ n) (2.13)

f [∆vn(t−τ n)] = ∆V1((t−τ n)λ
n
1 + ∆V2(t−τ n)λ

n
2 + ∆V3(t−τ n)λ

n
3 (2.14)
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h∆V hh∆V1h h∆V2h

acc or
hdech

Figure 2.11 Impact of the relative speed on drivers’ acceleration decision

where

∆V1(t − τ n) = min(h∆Vn(t− τ n)h, h∆V 1h)
∆V2(t − τ n) = max(h∆Vn(t − τ n)h − h∆V1h, h∆V2h − h∆V1h)
∆V3(t − τ n) = max(0, h∆Vn(t− τ n)h − h∆V2h)

k(t− ξτ n) = density of traffic ahead of the car within its view

au
n(t) = λu[V ∗

n(t− τ n) − Vn(t− τ n)] + ε u
n(t) (2.15)

where

λu = sensitivity

V ∗
n(t− τ n) = desired speed of the driver

V ∗
n(t − τ n) − Vn(t −τ n)] = stimulus

ε u
n(t) = random term associated with the

unifluenced acceleration of
driver n at time t

The headway threshold, h∗, is assumed to be normally distributed trun-
cated beyond h∗

min, h∗
max.

f (h∗
n) =


1

σ h
φ(h∗

n − µh)

Φ(h
∗
max − µh

σ h
) − Φ(h

∗
min − µh

σ h
)

h∗
min ≤ h∗

n ≤ h∗
max

0, otherwise
(2.16)

25



Review of driver models

where

µ,σ = mean and standard deviation of the
untruncated distribution

h∗
min, h∗

max = minimum and maximum values of h∗
n

φ = probability density function

Φ = distribution function

2.4 The human driver brake behavior

Lee [35] proposed that the driver use the simplest type of visual infor-
mation from the optic flow, which is sufficient for controlling braking.
That is time-to-collision information (TTC) , not information about dis-
tance, relative speed, or acceleration. The driver bases his judgment
on TTC information, when to start braking and to control the braking
action. Van Der Horst [48] supported this assumption, and performed
a framework which shows that both the decision when to start braking
and how to control the braking progress are based on TTC information
available from the optic field. In the study, it is also noticeable that
a driver often brakes with a rather constant deceleration during the
brake procedure. Van Winsum and Heino [49] proposed the following
hypotheses:

• Preferred time-headway is constant over different speeds;

• Preferred time-headway is consistent within individual drivers,
but differs between drivers;

• The initiation of braking, measured by brake reaction time
(BRT), is more strongly related to TTC at the moment the lead
vehicle starts to brake for short followers compared to long fol-
lowers. This is assumed to be related to differences in the ability
to perceive TTC information;

• Preferred time-headway is related to the intensity of braking
and quality of braking control. The maximum percentage brake
pressed measures the intensity of braking while the quality of
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braking control is measured by the sensitivity of the braking in-
tensity to criticality and by the time difference between tTTCmin

and tDECmax .

Usually BRT was measured as the time from the presentation of the
stimulus until the foot touches the brake pedal, tTTCmin being the time
when the minimum TTC is reached during braking, and tDECmax being
the time when the maximum deceleration is reached during braking.

Winsum and Heino performed experiments to validate the hypothe-
sis, and based on the experiments they concluded that preferred time-
headway is constant over different speeds and it is consistent within
individual drivers [49]. But there was no evidence that short follow-
ers and long followers differ in sensitivity of BRT and the moment the
lead vehicle starts to brake. According to the last hypothesis, preferred
time-headway is related to the intensity of braking and quality of brak-
ing control, not either confirmed, but it was found that the intensity
of braking is partly programmed and based on TTC.
Johansson and Rumer [27] estimated the driver brake reaction time
using data collected from 321 drivers in real traffic. By using sound
as stimulus for braking and measuring the time until the brake light
turned on, they found that the brake reaction time varied from 0.4 to
2.7 seconds, with a mean, and standard deviation of 1.01, and 0.37 sec-
onds. Since the drivers were informed that they were participating in
a brake reaction study and the use of sound as stimulus, these values
may be biased.

2.5 Safety

Often is it suggested that ACC will increase the safety in traffic. The
motivation for this is that the ACC give the driver assistance in the
driving tasks. The assistance will it reduce the driver’s workload, which
allows the driver to concentrate more on other tasks. This implies that
the drivers will experience less fatigue of driving and that the driving
will become more comfortable. The purpose of the ACC is to provide
support to the driver in a wide range of driving environments, but
the full responsibility will always be on the driver. One objection to
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that ACC increase the safety is that the driver may be over-reliant
on the ACC system and may not be prepared to take control of the
vehicle in extreme situations. Hitz et al. [23] have done a field op-
erational test in order to evaluate the safety of ACC in traffic. This
test involved 108 drivers, which were studied for a year. In this safety
study they use a list of standard surrogate measures of safety. They
also extended this to include new safety surrogates and performance
measures. Hitz et al. compared ACC driving with manual driving and
conventional cruise control (CCC) driving. In this study it was found
that the ACC drivers tended to wait for the system to control situa-
tions and therefore intervened later when necessary which led to that
brake pressure above -0.1n where more commonly among ACC drivers,
but this did not in general result in extreme situations. It also shows
that the drivers using ACC had a longer response time than human
drivers and slightly less than CCC drivers did. Since the ACC drivers
have greater headway distance than manual drivers do, it is not clear
that the longer response time implies inattentiveness by the driver. In
the study the drivers ranked the manual driving as most safe followed
by ACC driving and CCC driving last. But they also agreed that ACC
would improve safety. Hitz et al. made a Monte Carlo computer simu-
lation using the data from the test study in order to estimate the safety
effects of wide spread ACC use [23]. Their simulation showed that two
types of collisions on freeways would be reduced by 17 percent:

• Situations when an ACC equipped vehicle approaching a slower
vehicle traveling at constant velocity.

• Situations when the lead vehicle decelerating in front of an ACC
equipped vehicle.

The Hitz’s et al. conclusion of this field test was that if the ACC system
would be widespread and fully implemented it would result in a net in-
crease of safety. They did not propose what should be the highest value
of deceleration in an ACC system. This would require more study. To-
day this deceleration authority differs among the systems available.
Iijima et al. [24] found that 90 percent of all decelerations is less than
2.5m/s2. In BMW’s ACC system by Prestl et al. [43], a highest decel-
eration of −2m/s2 was used. Prestl et al. found this to be a suitable
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compromise between customer benefit, convenience and safety. This
low limit will ensure that the system limits are reached frequently and
will not lead the driver to become over-reliant on the system. Prestl et
al. also shared Hitz et al. opinion that a new driver must learn how to
use an ACC system properly and understand its limits.

Prestl et al. have chosen not to have an audible take-over alarm, the
reason is that this could be misunderstood as a collision warning. Dur-
ing their work, they found that a driver is very sensitive to kinesthetic
feedback in the beginning of a deceleration, which will raise the driver
attention. Therefore experienced drivers do not need any take-over
alarm and they also have learned when to start braking. Neither Hitz
et al. or Prestl et al. presented any idea how to best teach a new driver
these new requirements placed on him. Prestl et al. also presented a
technical safety concept, which includes safety in distributed system
and shutdown mechanism.

All ACC systems aim towards reducing the driver’s workload, which
will lead to increased comfort. Nakayama et al. [40] proposed a method
of measuring the driver workload, called ”The steering entropy
method”. By measuring the driver’s variation in the steering angle
during driving, it was possible to evaluate the workload. Iijima et al.
[24] used this method to conclude that their suggested ACC driving
reduced the workload in compare with CCC driving. In this study both
experienced drivers and novice drivers participated.

2.6 Existing systems

With Navlab at Carnegie Mellon University, Thorpe et. al [47] devel-
oped a Free Agent system, which fully automates driving. Their strat-
egy was to surround the vehicles with sensors, putting all the sensing
and decision-making in the vehicles to make them fully automated.
The automated vehicles were equipped with a vision system, and a
radar system. Since the most important mission for the automated ve-
hicle was to increase the safety on the highways, the Free Agent was
designed to keep a safe space around the vehicle. The Free Agent aims
to have a large enough headway between vehicles that high-bandwidth
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throttle and brake servo are not needed. Since only low-bandwidth con-
trol is needed, the existing cruise control could be used to perform all
the throttle actuation. The Free Agent was demonstrated in August
1997 for the UN National Automated Highway System Consortium.
During the demo several of the common actions at highways were per-
formed, but not any cut-in or critical situations.

As of November 2001, BMW started introducing its new ACC system,
which will be available in the 7-series. This new ACC system was de-
scribed by Prestl et al. [43] as a complete system including technology
and properties of the radar to a human machine interface. They also
studied the safety aspects of ACC. BMW’s intentions with the ACC
system is to enhance the driver’s comfort and to support the driver in
follow situations. The system was developed in close cooperation with
Robert Bosch GmbH, which designed and built the ACC sensor. This
module also use information about the current gear, which is provided
by BMW’s Transmission Control Unit. The presented ACC system is
divided into four basic parts, (Figure 2.12):

• Situation specific control functions: Set Speed Controller, Follow
Controller and Curve controller;

• Combination and selection respectively as well as limitation of
the specific control values in the Mixer;

• Conversion of the acceleration value into desired values for the
actuator systems in the Longitudinal Controller;

• Actuator systems that realize controller output.

As other system, for example [24], the FOC aiming to adjust the head-
way distance to the desired distance and the relative velocity with the
preceding vehicle approaching zero.

The following cars are available at the moment:

• Mercedes S-class using radar;

• Jaguar XK series using radar;

• BMW Z9 Convertible concept car using radar;
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Figure 2.12 BMW’s ACC system structure

• Toyota Celsior using laser;

• Toyota Progress using laser;

• Mitsubishi Diamante using laser;

• Lexus LS430 using laser.

2.7 Cut in Situations

In design of an ACC system aiming to increase the driver’s comfort, it
is necessary understand drivers cut-in behavior. Iijma et al. [24] have
studied the behavior and included this in theirs ACC model.

2.8 Activities and WWW-links

Automated highway systems at Carnegie Mellon.
http://www.cs.cmu.edu/XSGroups/ahs/

Cambridge Basic Research at laboratory of Nissan Technical Center
North America, Inc.
http://pathfinder.cbr.com/

The Center for Advanced Transportation Technology (CATT) at the
University of Southern California.
http://www.usc.edu/dept/ee/catt/

Vehicle Dynamics Lab (VDL)at University of California, Berkeley.
http://vehicle.me.berkeley.edu/
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PATH project
http://www.path.berkley.edu/

The Man Vehicle Laboratory (MVL) at the Massachusetts Institute of
Technology.
http://mvl.mit.edu/

The Center for Transportation Analysis (CTA) in the Oak Ridge.
http://www-cta.ornl.gov/cta/research/trb/tft.html

Intelligent Transportation Systems (ITS) at the Massachusetts Insti-
tute of Technology.
http://its.mit.edu/

32



3

Material & Methods

3.1 Introduction

In order to design an ACC which with the drivers feel safe and com-
fortable, the ACC needs to mimic the driver behavior in traffic. The
human driver behavior changes in different traffic situations. There-
fore, standard traffic situations have to be identified and used in the
experimental phase. Several different drivers are used to capture a
range of driver behaviors.

There is a difference between carrying out experiments on public
roads and on test tracks. It is assumed that a driver’s natural behavior
is best caught on public roads. If test tracks are used the subject might
show different driver behavior. A possible reason being that the driver
feels safer on the test track and as a result drives more aggressively.

Sensors are needed to detect other vehicles in order to study hu-
man driver behavior in real traffic situations. Usually the velocity and
distance to the vehicle in front are measured.

For this purpose there exist three standard sensors: the radar, the
laser, and the camera. The radar is expensive, but is robust to bad
weather conditions, like rain, mud, dust or snow. It offers a narrow
field-of-view of 8–12 degrees but has a long working range of around
150 meters.

The laser is less expensive, but performs poorly in bad weather
because the laser beam is easily blocked by atmospheric particles. The
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field-of-view is easily adjustable up to 180 degrees. A typical working
range is around 50 meters.

The camera is often used in conjunction with the radar or the laser.
It is capable of easily distinguishing between moving and stationary
objects. The field-of-view is usually large, depending on the choice of
lens.

Sensor field-of-view and range parameter choices are important.
For instance, a large field-of-view is advantageous when detecting cut-
in vehicles, like cars switching lanes. Small field-of-view sensors, like
the radar, does not detect a vehicle until it is almost in front of the
driver’s vehicle, while a large field-of-view sensor, like the laser or a
camera, detects the cut-in vehicle when it starts to switch lanes. The
choice of appropriate range depends somewhat on the design philos-
ophy behind the ACC. One opinion is that the sensor should not be
better than a human being in order to not introduce a false sense of
safety. Other states that the sensor should be as good as possible to
enhance the capabilities of the driver driving the vehicle.

Combinations of sensors are used to achieve robust information
extraction. The combination of radar and camera uses the camera to
compensate for the small field-of-view of the radar and segment moving
objects from stationary. This may be a problem when using only range-
based sensors like the radar or the laser. The laser and the camera are
used in a similar manner. The combination of radar and laser can be
used to increase reliability and system robustness. The sensors have
different fields-of-view and working range and seldom lose track of the
front vehicle at the same time. From a traffic safety point of view this
is preferable. Widmann et. al. have made a comparison of laser-based
and radar-based sensor in ACC [52].

3.2 Experimental platform

Vehicle

Two automatic transmission Volvo 850:s were used in a leading-vehicle-
following-vehicle experimental setup (Fig. 3.1). Both vehicles have
been used in previous ACC-projects at Volvo Technical Development.
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Figure 3.1 One of the two Volvo 850 used in the experiments.

Autoliv-CelsiusTech Electronics

Modulation characteristics Modulation type FMCW

Radar scanning principle Mechanical scanning

Frequency 76-77 GHz

Transmitted power 10mW

Minimum tracking distance 2 m

Maximum tracking distance 200 m

Update rate of radar 10 Hz

Field of view 24○

Angle resolution 0.1○

Distance resolution 1 m

Table 3.1 Radar specification.

They were equipped with a prototype system allowing control of the
vehicle’s hydraulic brake and throttle angle using control signals from
a PC. The following vehicle was equipped with two types of range sen-
sors, radar and laser.

Sensor equipment

A radar from Autoliv-CelsiusTech Electronics was used to measure the
distance to the front vehicle ∆Y and its relative speed ∆v, Table 3.1.
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IBEO Laser scanner LD Automotive

Minimum tracking distance 0.4 m

Maximum tracking distance 100 m

Update rate of laser 10 Hz

Field of view up to 270○

Angle resolution 0.25○

Distance resolution 0.004 m

Table 3.2 Laser specification

A practical difficulty was that the radar must have good resolution,
also at small distances and that the relative speed should be measured
with high resolution.

A laser from IBEO, Laser scanner LD Automotive, Fig 3.2, was
used to measure ∆Y and ∆v, Table 3.2.

The reason to use both radar and laser is their complementary
working ranges and for redundancy. The radar has a narrow but long
working range and the laser has a wide but short working range (Fig.
3.2).

Our earlier work on ACC

Some work on ACC was reported in [41]. In this study a stop-and-go
controller for ACC was designed and implemented.

Data acquisition

Drivers are limited in terms of the types of variables they can perceive
well. For example, humans are capable of accurately estimating visual
angles encompassing the leader vehicle, time-to-collision (TTC) (visual
angle divided by rate of change in visual angle) [18]. They are ill-
suited to estimate distances; especially longitudinally- and absolute
velocities and differential velocity to the leader vehicle; whereas the
radar and laser measure these parameters well. The absolute signals,
space headway (∆Y), differential velocity (∆v), and velocity (vf ), can
be used to calculate the TTC.
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Figure 3.2 Radar (left) and laser (middle) mounted on vehicle. The used laser
from IBEO (right).

Data were collected with a sampling rate of 10Hz. The measured
variables were space headway (∆Y), differential velocity (∆v), velocity
(vf ), throttle angle (α t) and brake pressure (pb). The measured α t is
the control signal to the throttle servo, not the actual throttle position.
However, since the actual throttle position is almost proportional to the
measured α t, it can be viewed as the throttle position in a different
scale. The measured pb is the set-point to the braking system. Several
experiments showed that in practice this difference could be neglected
and therefore the measured α t and pb were treated as measurements
of actual values.

The vehicles used in the experiment were not equipped with an
accelerometer or GPS. However, both vehicles were equipped with a
CAN bus, which was used for acquisition of measurements.

3.3 Experimental design

Fig. 3.3 shows a car following situation. The velocity of the leader
vehicle and the follow vehicle are denoted vl and vf respectively, and
the distance between the vehicles are denoted ∆Y , where headway
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Figure 3.3 Body-fixed and earth-fixed reference frames.

∆Y = yl − yf . The relative speed is defined as:

∆v = vl − vf = d
dt

∆Y (3.1)

The driver’s longitudinal behavior changes in different traffic situa-
tions. Therefore, in order to study the driver behavior, it is necessary to
design experiments which capture driving behavior in standard traffic
situations:

• Free flow: In the free flow situation the driver is uninfluenced
by other cars, and attains his desired speed.

• Follow: The follow situation describes a scenario where the driver
follows the leading vehicle and tries to maintain a desired indi-
vidual headway distance.

• Cut-in: The cut-in situation describes a scenario wherein a ve-
hicle cuts in in front of the driver’s vehicle from a different lane.
During this scenario the minimal individual headway distance
can be exceeded for a short period in order to maintain driving
comfort. The cut-in vehicle could have a higher speed or a lower
speed than the driver’s vehicle.
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• Braking: In a braking situation, the headway distance decreases
below the individual minimal headway distance, and the driver
brakes to reestablish the headway distance.

• Approaching: In an approaching situation the driver is closing
up behind the front vehicle and starts to adjust his speed to the
vehicle in front. During this situation the driver change from free
flow driving to car following.

Follow situations

The Follow situation data were collected for 8 different experiments,
performed on public roads as well as on a test track. Six of these
experiments were performed on two lane public roads and the velocity
was in the range of 65 to 90 km/h. The experiments were designed to
mimic free way and main country road environments. The velocity of
the leader vehicle changes smoothly, without fast accelerations. Two
of these experiments were performed on a two-lane test track and
the velocity was in the range of 0 to 55 km/h. The experiments were
designed to mimic urban environment and included some stop-and-go
situations. The velocity of the leader vehicle in urban situations can
change fast which was taken into account during the design of the
experiments.

As well known, human drivers differ in their behavior, each driver
having his own driving behavior, different desired headway distance,
more or less aggressive, etc. To study the driving behavior it is de-
sirable to be able to repeat exactly the same experiment for each test
person who participated in the study. This was achieved since the used
leading vehicle in the study was equipped with a system allowing con-
trol of the brakes and of the throttle. The experiment was then per-
formed in the following way.

• The kind of situation was decided (country side/urban).
• The road and length of the experiment were chosen.

• The vehicle which was used as the leader vehicle in the experi-
ment was used to drive the chosen road part and the brake pres-
sure and throttle angle were measured and stored.

The leader vehicle had the property of being programmable to drive
along a predefined longitudinal trajectory, which was specified using
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Figure 3.4 Velocity of the leader vehicle in one of the follow situations.

brake pressure and throttle angle. This programmability was used to
repeat the experiment for several drivers while simulating the same
traffic situation. This minimized influence from unknown factors, re-
sulting in a simpler comparison between driver behaviors. The partici-
pating drivers in the experiments drove the follow vehicle and tried to
maintain the individual desired following distance. The length of the
experiment on the public roads was around 10km and that of the ones
carried out on the test track was around 2km.

Cut-in situations

The following cut-in situations were performed both on public road and
on a test track.

In order to make the experiment similar for all drivers, three dif-
ferent cut-in distances were specified: short, medium, and far (Tables
3.3 and 3.4). The short distance was chosen closer than minimal head-
way distance so that the driver must perform noticeable brake action
immediately. The medium distance was chosen close to the minimal
headway distance so that the driver could allow short exceeding of the
headway distance, but still the driver needed to perform some brak-
ing action. The far distance was chosen near the maximal headway
distance such that the driver would only need to reduce the throttle
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Vleader (km/h) Vf ollower (km/h) ∆distance (m)
40 50 short

40 50 medium

40 50 far

50 50 short

50 50 medium

50 50 far

60 50 short

60 50 medium

60 50 far

60 70 short

60 70 medium

60 70 far

70 70 short

70 70 medium

70 70 far

80 70 short

80 70 medium

80 70 far

80 90 short

80 90 medium

80 90 far

90 90 short

90 90 medium

90 90 far

100 90 short

100 90 medium

100 90 far

Table 3.3 Experimental protocol of cut-in situations.
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Vleader (km/h) Vf ollower (km/h) ∆distance (m)
90 110 short

90 110 medium

90 110 far

100 110 short

100 110 medium

100 110 far

110 110 short

110 110 medium

110 110 far

Table 3.4 Experimental protocol of cut-in situations.

angle. The situations where the driver drove in 70 or 90 km/h were
carried out on public road and the situations where the driver drove
in 50 and 110 km/h were carried out on a test track. The driver was
either in following or free flow mode when the cut-in occurred.

Braking situations

The following braking situations were performed on both public road
and a test track. Three types of braking situations where tested.

Type 1: When the braking situation starts, the driver is in following
mode and tries to maintain the desired headway distance. The leader
vehicle had the property of being able to set the deceleration to −3,
−4, or −5 m/s2, which allowed the different drivers to perform the
same traffic situation. In the experiments the leader vehicle brakes to
a final velocity and then maintains this velocity (Tables 3.5 and 3.6).
The driver thereafter changes back to following mode.

Type 2: When the braking situation starts, the driver is in approach-
ing mode but would soon switch to following mode. In the experiments
the leader vehicle brakes to a final velocity and then maintains this
velocity (Table 3.6). The driver thereafter changes back to following
mode.

Type 3: When the braking situation starts, the driver is in following
mode. In the experiments the leader vehicle brakes to zero velocity and
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Vleader (km/h) Vf ollower (km/h) a (m/s2) Vleader final (km/h)
50 50 -3 20

50 50 -4 20

50 50 -5 20

60 60 -3 30

60 60 -4 30

60 60 -5 30

90 90 -3 50

90 90 -4 50

90 90 -5 50

Table 3.5 Experimental protocol of braking situations.

Vleader (km/h) Vf ollower (km/h) a (m/s2) Vleader final (km/h)
110 110 -3 70

110 110 -4 70

110 110 -5 70

Vleader (km/h) Vf ollower (km/h) a (m/s2) Vleader final (km/h)
50 60 -3 20

50 60 -4 20

50 60 -5 20

70 90 -3 50

70 90 -4 50

70 90 -5 50

Table 3.6 Experimental protocol of braking situations.

the driver stops (Table 3.7).

Approaching situations

The following approaching situations were performed on a test track.
When the experiments start the driver is approaching the leading
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Vleader (km/h) Vf ollower (km/h) a (m/s2)
50 60 -3

50 60 -4

50 60 -5

70 90 -3

70 90 -4

70 90 -5

Table 3.7 Experimental protocol of braking situations.

Vleader (km/h) Vf ollower (km/h)
60

80

70 90

90 110

Table 3.8 Experimental protocol of approaching situations

vehicle and the experiments are finished when the driver switched to
following mode (Table 3.8).

Free flow

Free flow was not studied since the purpose of this thesis was to study
and model the driver longitudinal behavior in cases with a leading car
present.

All experiments were repeated twice in order to study divergence
in the behavior. Seven different drivers of various age (23–35), six
men and one woman, participated in the data collection. The data
acquisition was performed in the summer of 2000 during good weather
conditions.
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Figure 3.5 Representations of two different input and output separations.
System 1 is the standard separation.

3.4 System identification

Data Analysis

There are at least two possible separations of input and output vari-
ables, the first one being the selection ∆Y , ∆v, and vf as inputs and
the outputs as α t, pb (Fig. 3.5). This is the standard separation. The
other approach is to let the velocity of the leader, vl be the input and
∆Y , ∆v, vf , α t, and pb to be the outputs (Fig. 3.5). This model is useful
since there is interaction between the driver and the vehicle.

Figs. 3.6 and 3.7 show data from one of the following situations in
which the seven drivers participated. There are individual differences
among the drivers, but also large similarities among their behaviors.
The major differences between the drivers consist in the choice of space
headway and safety distance. Some of the drivers drove with caution
and kept a long headway distance. These drivers only used small brake
pressure. Those drivers who drove more aggressively and kept a short
headway distance used higher brake pressure.

Fig. 3.8 shows data from cut-in situations. In the cut-in situation
the driver allowed the headway to distance decrease below the indi-
vidual minimal headway distance for a short period in order to avoid
unnecessary hard deceleration. After a while the headway distance sta-
bilizes around the individual headway distance. There are similarities
in their behavior, the drivers allow the headway distance to be reduced
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Figure 3.6 Data collection from of the inputs in one following situation. Data
were collected from different drivers.
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Figure 3.7 Data collection from of the outputs in one following situation. Data
where collected from different drivers.

far below the desired headway distance in order to avoid hard deceler-
ation. How far below the headway distance was allowed to be reduced
to and how quickly the desired headway distance was reestablished
differ between the drivers.

46



3.4 System identification

−6 −5 −4 −3 −2 −1 0 1 2
19

20

21

22

23

24

25

26

27

28

∆
Y
[m
]

∆v [km/h] −4 −3 −2 −1 0 1 2
35

36

37

38

39

40

41

42

43

44

45

∆
Y
[m
]

∆v [km/h]

Figure 3.8 Data collection from two different cut in situations (∆v∆ y-plane).
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Figure 3.9 Data collection of a brake situation. ∆Y (upper left), ∆v (lower
left), vf (upper right), and bp (lower right).

Fig. 3.9 shows data from two brake situations. When the sequence
starts the drivers keep the individual headway distance. Then the
leader vehicle brakes with -5 m/s2 from 60 to 30 km/h. Fig. 3.10 shows
how the two situations look like in the ∆v∆Y-plane. They differ from
the behavior in cut-in situations.

There are similarities, but the brake pressure profiles differ, for
instance the cautious driver uses early high brake pressure in order
to rapidly settle the desired headway distance.
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Figure 3.10 Data collection from two different braking situations (∆v∆Y-
plane).

Fig. 3.11 shows data from an approaching situation where the
driver changed his behavior from free flow mode to following mode.
When the situation started the driver drove in free flow mode and
then caught up with a leader vehicle and started to adjust his speed
to the vehicle in front. In the end of the sequence the driver tried to
maintain his desired headway distance. Different drivers start to ad-
just the velocity to the vehicle in front at different moments. Some
start early to adjust the speed and uses a long time to catch up with
the vehicle and to switch to following mode, others start later and use
shorter time to catch up.

Data analysis was done by means of system identification method-
ology [28]. Auto-spectra, cross-spectra and coherence spectra of the
inputs (∆Y , ∆v, and vf ) and outputs (α t and pb), were made for as-
sessment of the various signal levels and relationships. In Fig. 3.12
the estimated transfer function of the drivers from a car-following sit-
uation is shown. A rectangular window with the same length as the
data series was used. Since the used data series where long, 4600 or
more data points, the ringing effects are small and the purpose is not
to examine two contiguous sinus frequencies. The transfer functions
were calculated for 512 frequencies.

Some similarities between the estimated transfer functions of the
drivers can be observed. The amplitude of the estimated transfer func-
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Figure 3.11 Data collection of a approaching situation. ∆Y (upper left), ∆v
(lower left) vf , (upper right), and α t (lower right).

tions between the input ∆Y and the output bp show for all driver
derivation effects for low frequencies. Apparently, there are zeros in
the transfer function for higher frequencies. The phase of the esti-
mated transfer functions between the input ∆Y and the output bp

shows that there is time delay among the drivers, i. e., the reaction
time. It is hard to estimate the time delay well using spectral anal-
ysis. The result depend on window size, window type. The properties
of the model could drastically change when modifying, for example,
the window size. From estimated transfer functions using rectangu-
lar window with the same size as the data series it was found that
the reaction time among the drivers varies in the interval 1.3 to 4.4
s. When using a Hamming window with the length 256 it was found
that the reaction time among the drivers varies in the interval .25
to 1.3 s. Thus, failure to find consistent estimations leaves doubts on
the usefulness of spectrum analysis. Another approach is to estimate
a high order linear model and study the transfer function. In Fig. 3.12
an estimated transfer function between ∆Y and α t using a high order
prediction error estimate of a general linear model is shown. Also here
we notice that the phase lag is large for high frequencies indicating a
time delay. The amplitude curve shows bandpass properties. Fig. 3.13
shows the transfer functions between the inputs and the outputs for
one driver in a following situation, where the model is a high order
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Figure 3.14 Coherence spectra between the inputs and the outputs. The upper
figure: coherence between inputs [∆Y ∆v vf ] and the output pb. The lower
figure: coherence between inputs [∆Y ∆v vf ] and the output α t.

state space model estimated using the subspace method. The driver
proves to have bandpass properties and this is also what we would
expect, since it has been found elsewhere that human sensors have
bandpass properties [9].

Drivers use the throttle in a different manner than the brakes.
The throttle is almost continuously used and often the changes are
slow. The brakes are seldom used and changes can be fast or slow.
The reaction time is best estimated using braking situations. Drivers
plan the usage of the throttle using the assumption that if no obstacle
is seen the leader vehicle will keep the current velocity. This could
explain some of the differences between the bp and the α t.

In Fig. 3.14 the coherence spectra among inputs and outputs are
shown. All the three signals ∆Y , ∆v, and vf were used as inputs. The
coherence among inputs and outputs is high, which can be interpreted
as an indication that there exists a linear relationship between the
inputs and the outputs. Note that the coherence for pb is higher than
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Vehicle
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Figure 3.15 Structure of a human driver in car-following with r as the inputs
to the driver from the lead vehicle, v as the observation noise, w as the motor
noise, and y as the car position and velocity.

for α t.

System identification and modeling methods

Interaction of the car and the human driver can be viewed as a closed-
loop system with feedback from the front vehicles velocity vl (Fig. 3.15).
All the experiments were performed in closed-loop feedback operation
and there may be systematic problems how to obtain relevant infor-
mation from this type of experiments [28, Ch. 8]. If there is feedback
during the experiment, the data may not be informative enough to
establish a valid model of the driver. The system is of multi-input
multi-output structure.

We use the inputs and outputs chosen to make a direct identifica-
tion of the human driver. Different models have been used which, in
short is described below.

Linear regression models To find out if there is some relationship
between the input data and the output, a linear regression model was
estimated [28]. The linear regression model takes on the format

yk = [∆Yk...∆Yk−n ∆vk...∆vk−n vfk ...vfk−n]θ + ek (3.2)

where n is the estimated order and ek represents an additive error
sequence. A linear regression model of high-order was estimated. Since
the model order is high, it may be assumed that the computed residual
ε k = yk − ŷk is a good approximation of the noise ek. The computed
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residual sequence was used in pseudolinear regression to estimate a
model of lower order. This method is also known as a two-step linear
regression approach.

State-space models using subspace-based identification A dis-
crete-time time-invariant system in state-space realization: Innovation
model

xk+1 = Axk + Buk + Kwk

yk = Cxk + Duk+ wk

where wk and vk are noise sequences. The problem is to estimate the
order n of the system and the system matrices A, B, C, D. In Fig. 3.16
there is a schematic representation of the identification problem. The

[A,B,C,D]

vkwk

ykuk Σ

Figure 3.16 Schematic representation of the innovations model identification
problem.

subspace method is well suited for modeling of multivariable systems
[28]. To determine the order, a Hankel matrix is constructed [51, 50].
The choice of model order is based on the singular values of the Hankel
matrix. However, if there is strong noise influence then this criterion
degrades and becomes non-conclusive.

Behavioral model Behavioral model identification may be sug-
gested in cases without clear-cut distinction of signals as inputs or
outputs [54, 29]. This may be preferable since there is feedback in-
teraction between the driver and the car. There are also interactions
between the driver and the other vehicles, for example in cut-in situa-
tions. The behavioral method has great similarities with the subspace
method, but differs in its absence of explicit separation among inputs
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and outputs. Thus, the estimated state-space model represents all the
dynamics, both for the inputs and for the outputs. Then by matrix
fraction description an input-output model can be obtained.

Detection of changed driver behavior The driver behavior de-
pends on the traffic situation, it is therefore interesting to be able to
detect changes in the behavior. One way to do this is to use a Gener-
alized Auto-Regressive Conditional Heteroscedasticity, GARCH(r,m)
model [8, 21].

An AR process of an order k is described as:

A(z−1)yk = ek (3.3)

where ek is white noise:

E{ek} = 0 (3.4)

E{ekei} =
{

σ 2, k = i

0, otherwise
(3.5)

The model could be used to predict the output yk. Sometimes it is
interesting not only to predict the output yk, but also its variance. Het-
eroscedasticity refers to unequal variance in the regression errors, the
variance changes over time. One approach is to model the amplitude
varying residuals u2

k as an AR(m) process:

u2
k = ζ +α 1u2

k−1 +α 2u2
k−2 + ⋅ ⋅ ⋅+α mu2

k−m + wk (3.6)

where wk is a new white noise sequence:

E{wk} = 0 (3.7)

E{wkwi} =
{

λ2, k = i

0, otherwise
(3.8)

A process uk satisfying 3.6 is called an autoregressive conditional het-
eroskedasticity (ARCH) process. An alternative representation is:

uk =
√

hkvk (3.9)
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where vk is white noise:

E{vk} = 0 E{v2
k} = 1 (3.10)

and
hk = ζ +α 1u2

k−1 +α 2u2
k−2 + ⋅ ⋅ ⋅+α mu2

k−m (3.11)
The ACRH model can be extended into a generalized autoregressive

conditional heteroskedasticity (GARCH) model which also includes
lags of u2

k.

hk = κ +δ 1hk−1+δ 2hk−2+ ⋅ ⋅ ⋅+δ rhk−r+α 1u2
k−1+α 2u2

k−2+ ⋅ ⋅ ⋅+α mu2
k−m

(3.12)
for

κ � [1− δ 1 + δ 2 + ⋅ ⋅ ⋅+ δ r] (3.13)
This could be used to model the behavior when the driver changes
behavior in a traffic situation or due to the leader vehicle brakes or
a vehicle cuts in when driving in following mode. Then the residual
for a model designed for following mode becomes large, i.e., the driver
diverge from following behavior.

3.5 Transposed data

Human drivers are difficult to model by linear models in their use of
brakes and throttle. The throttle angle and the brake pressure are
never less than zero and they are only piecewise active (Fig. 3.17).
Using this fact, the result from the linear methods can be improved
by transposing the resulting negative brake pressure to positive throt-
tle angle and negative throttle angle to positive brake pressure. The
transposed data is achieved by the following procedure:

• Estimate a model using normalized data;

• Simulate the estimated model;

• Truncate the data at zero level and move negative bp to positive
α t and negative α t to positive bp.

Then the new transposed data provide acceleration-deceleration data,
taking only positive values.. This is an attempt to improve the accuracy
of the estimated models, and it proved to increase the result.
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Figure 3.17 Normalized brake pressure and throttle angle from one driver in
a follow situation.
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Figure 3.18 Neural controller with 9 input, 15 hidden, and 2 output neurons.

3.6 Driver modeling using neural networks

For comperative studies with the system identification approach neau-
ral networks where trained. The data used for training consist of data
from several sequences. Since a neural network consists of learning
functional relationship between inputs and outputs it is possible to
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combine several sequences to one, without affecting the dynamics. This
makes it easier to train neural network in cut-in situations since these
are only present during a short time interval. A cut-in situation usu-
ally only last for 30–40s and the collected data from one sequence is
not enough to train a neural network. There exist several strategies
for learning, in this study we have used back propagation [26]. There
are many variations of the back propagation algorithm. The simplest
implementation of back propagation updates the network weights and
biases in the direction in which the gradient decreases most rapidly.
The Levenberg-Marquardt algorithm [20] has been used for numeri-
cal optimization in all cases. All measured data have been scaled in
such a way that all variables have the standard deviation 1. The neu-
ral network used for learning human driver behavior is shown in Fig.
3.18. The transfer function in the input and in the hidden layer was
a hyperbolic tangent sigmoid transfer function. For the output layer it
was purely linear.

Neural networks have been used for identification and modeling of
driver’s behavior. In the review some works in his field are mentioned.
Human driver behavior can be described as the relationship between
task inputs y and control outputs u. Neural network might be used in
learning this functional relationship between y and u. One advantage
of neural networks that it also can identify present nonlinearities. Un-
fortunately, one important drawback with trained neural networks is
that they give no guarantee of closed-loop stability, i.e., when we use
the trained model to act as a virtual driver. The neural network will
be used in comparison to other models.
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4

Validation & Results

4.1 Introduction

Different model structures have been designed and validated. The es-
timated models have been simulated in Matlab and in Simulink. In
order to study the usefulness of different identification methods for
the capturing of human driver behavior, a follow, a cut-in, and a brak-
ing situation were chosen and were used as test cases for all methods.

The follow situation involves two braking sequences, one larger and
one smaller. The leader vehicle also made the driver to use the throt-
tle actively during this sequence. The data is from one of the follow
situation and the total length of the situation is around 7 minutes. In
the estimation of the model all 7 minutes of data were used.

By studying the correlation between α t and acceleration, and be-
tween bp and acceleration it was found that the brake and the throttle
have different dynamic properties (Fig. 4.1). This is due to the fact that
brake pressure affects the wheel almost directly, whereas the throttle
only affects the carburetor air stream, which affects the combustion
engine, which affects the transmission system, which finally affects
the wheel.

Model validation was perfromed to verify whether the identified
model fulfills the requirements of good model approximation proper-
ties. Methods used in the validation process were:
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Figure 4.1 The static correlation between α t (left) and bp (right) and accel-
eration a.

• Variance-accounted-for (VAF);
• Residual analysis test;

• Cross-validation test.

Identification accuracy was measured using the
Variance-Accounted-For (VAF)[28].

VAF = (1 − var(y− ŷ)
var(y) ) � 100% (4.1)

The VAF score gives an identification of how close the original signal
and its estimate resemble each other, both for bias and variance. If the
VAF score is 100% they are complete equal.

The residuals is the misfit between real data and model data and
residual analysis is useful when performing test of:

• Independence of residuals

• Normal distribution of residuals

• Zero crossings of the residual sequence

• Correlation between residuals and input
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The cross-validation test, using data which not have been used in
the identification procedure, is one of the most important validation
tests. This test gives an indication whether the estimated model cap-
ture the dominated dynamics of the true system or not and if the model
is able to predict the behavior when applied to new data.

In the model estimation the normalized ∆Y , ∆v, vf , α t and pt were
used. They where normalized with respect of the standard deviation.

4.2 Linear regression

For the linear regression model the inputs and outputs were chosen
according to system 1 (Fig. 3.5). Linear regression models of different
orders were estimated, but the regression models only succeeded to
capture some of the driver behavior. Even if the order was increased,
the result was not satisfying.

Follow situation

A linear regression model of order n = 30 is shown in Fig 4.2 for a
follow situation. The model captures some of the driver behavior. The
experiment setup is a closed-loop system, which makes the identifica-
tion more difficult. The model is better in predicting the driver’s throt-
tle angle α t behavior, than the brake pressure pb behavior. A possible
background would be that the acceleration and deceleration have dif-
ferent explanations, for example, that deceleration could be explained
by air resistance or topography.

The residual analysis of the model is shown in Fig 4.3 and it was
found that the residual from output α t and from the output pb have
different distributions. This is probably due to the fact that the human
drivers differ in their brake and throttle behavior. The coherence spec-
tra between the chosen inputs and outputs were high, therefore we
would expect better result from linear regression than obtained. One
explanation could be that the brake pressure and the throttle angle are
never less than zero and the throttle angle and the brake pressure are
only piecewise active, and sometimes neither the brakes or the throttle
are active. Composition of an acceleration signal from brake pressure
and throttle angle may be suggested (Fig. 4.4). The signal composed
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Figure 4.2 Measured bp and α t from one driver (grey) and simulated output
data from a linear regression model of order n = 30 (black). Normalized brake
pressure and throttle angle was used.

10
−3

10
−2

10
−1

10
0

0

5

10

−2 −1 0 1 2
0

200

400

600
Frequency [Hz]

P
xx

H
is

to
gr

am

10
−3

10
−2

10
−1

10
0

0

5

10

−2 −1 0 1 2
0

200

400
Frequency [Hz]

P
xx

H
is

to
gr

am

Figure 4.3 Histogram and auto-correlation of the residuals from a thirtieth
order linear regression model. To the left is the residual of output pb. To the
right is the residual of output α t.

was used as input but the result was not improved. The result from
the linear regression model could be improved. The brake pressure
and the throttle angle could only be positive. Consequently the nega-
tive contribution from the brake pressure could be transfered to the
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Figure 4.4 Acceleration as composed by normalized brake pressure and throt-
tle angle. (arbitrary units)
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Figure 4.5 Measured bp and α t from one driver (grey) and simulated output
data from a linear regression model of order n = 30 (black) when the negative
contribution of brake pressure was transfered to throttle angle and vice versa.
Normalized brake pressure and throttle angle were used.

throttle angle as positive and vice versa. The data are transposed into
acceleration-deceleration signal (Fig. 4.5).

The residuals of this high order model were further used to estimate
a pseudolinear regression model. The result is shown in Fig. 4.6, and
the model captures most of the driver’s behavior, even the braking
behavior. The VAF scores for the linear regression model are 41.1% (pb)
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Figure 4.6 Measured bp and α t from one driver (grey) and simulated output
data from a pseudolinear regression model of 3rd order (black).

and 46.2% (α t) whereas the VAF scores for the linear regression model
after transferring the negative contribution from bp to α t and vice
versa, after the simulation of the model in acceleration-deceleration,
are 52,7% (pb) and 48.6% (α t).

The VAF scores for the pseudolinear regression model are 89.9%
(pb) and 73.2% (α t) respectively.

Cut-in situation

In Fig. 4.7 result from a 15th order model estimated by linear regres-
sion in a cut-in situation. The linear regression method have problem
when using only a short period of data. Cut-in situations often only
last for 8–13 s and the linear regression methods need longer data
series to get good result. For this 15th order model 48 parameters are
estimated and the total length of data series is 92. This will make the
model over-fit and not robust against noise and in crossvalidation the
model may give poor result. The VAF scores for the linear regression
model are 94.5% (pb) and 96.6% (α t).

Brake situation

In Fig. 4.8 result from a 10th order model estimated by linear regres-
sion in a braking situation is shown. The result seems to be good. As
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Figure 4.7 Cut-in: measured bp and α t from one driver (grey) and simulated
output data from a linear regression model of 15th order (black).
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Figure 4.8 Brake: normalized bp and α t from one driver (solid) and simulated
output data from a linear regression model of 10th order (dashed).

for the cut-in situations, the model tends to be over-fitted and not ro-
bust against noise. The VAF scores for the linear regression model are
97.4% (pb) and 99.9% (α t).

Approaching situation

In Fig. 4.9 result from a 15th order model estimated by linear regres-
sion in a approaching situation is shown. The approaching situation

65



Result & Validation

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

Time [s]

T
hr

ot
tle

 a
ng

le
 (

de
gr

ee
)

Figure 4.9 Approaching: normalized α t from one driver (solid) and simulated
output data from a linear regression model of 15th order (dashed).

does not involve any braking. Hence, only a model for the throttle
behavior was estimated. The model only captures some of the driver
behavior. The VAF scores for the linear regression model is 74,5% (α t).

4.3 Subspace-based identification

In identification of state-space models by subspace-based methods in-
put and output was chosen as system 1 (Fig. 3.5). The state-space
models using subspace-based methods have been designed using the
SMI Toolbox in Matlab [22]. State-space models of different orders were
estimated. In Fig. 4.10 the result from a models of order n = 5 and
and order n = 15 is shown. The estimated models capture some of the
driver behavior. The result was better for the 15th order state-space
model. The results from the state-space models were similar with the
result from the 30th order linear regression model. The residual anal-
ysis of the model is shown in Fig. 4.11 and similar to the linear re-
gression model the residual for α t and pb have different distributions.
The estimated model n = 15 is better to capture the driver’s throttle
behavior than the brake behavior with VAF scores: 44.3% (pb) and
48.7% (α t). An estimated model n = 5 gives VAF scores of 30.3% (pb)
and 23.7% (α t).
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Figure 4.10 Measured bp and α t from one driver (grey) and simulated output
data from state-space models using subspace-based methods, n = 5 (dashdot),
and n = 15(solid). Normalized and detrended brake pressure and throttle angle
was used.

10
−3

10
−2

10
−1

10
0

0

5

10

−2 −1 0 1 2
0

200

400

600
Frequency [Hz]

P
xx

H
is

to
gr

am

10
−3

10
−2

10
−1

10
0

0

5

10

−2 −1 0 1 2
0

200

400

Frequency [Hz]

P
xx

H
is

to
gr

am

Figure 4.11 Histogram and auto-correlation of the residuals from a 15th order
sub-space model. To the left is the residuals of output pb. To the right is the
residuals of output α t.

The result from the estimated state-space model was improved by
transposing data into a acceleration-deceleration signal. An attempt
to transpose the data into acceleration-deceleration signal is shown in
Fig. 4.12. The result for the 15th order estimated state-space model
captures most of the driver behavior and we notice that a 5th order
state-space model is not sufficient to capture the behavior. The VAF
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Figure 4.12 Measured bp and α t from one driver (grey) and transposed output
data from state-space models using subspace-based methods, n = 5 (dashdot),
and n = 15(solid). Normalized brake pressure and throttle angle was used. No
transposed data were used in the model identification.
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Figure 4.13 Measured bp and α t from one driver (solid) and simulated data
from a one-step ahead predictor. (dotted).

scores after transposing the data are for the 15th order model are
55.5% (pb) and 52.2% (α t) and for the 5th order model are 42.3% (pb)
and 30.4% (α t).

It is also interesting to study the results from a one-step predictor
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Figure 4.14 Simulink model of driver and actuator. Inputs to the model are:
leading vehicle’s velocity (vl) and initial conditions, outputs are: ∆Y, ∆v and vf .

using the estimated state-space models. Fig. 4.13 shows the result
from a one-step predictor using the estimated 5th order. Even this low
order model gives satisfying result, and the result can be improved by
transposing the data.

Simulink models were designed in order to simulate and validate
the estimated models, Fig. 4.14. The input to the Simulink model are
leader vehicle’s velocity (vl) and initial conditions of the experiment,
and the output are ∆Y , ∆v, and vf .

In Fig. 4.15 the result from a Simulink simulation using a 7th order
state-space model is shown: The follow vehicle succeeds in following
the leading vehicle in a behavior similar to the driver, who was used
in the experiment. In this simulation the data was not transposed into
an acceleration-deceleration signal, which would improved the result.
Nevertheless, the model captures most of the behavior. The input to
the Simulink model was the velocity of the leader vehicle and the
initial condition, that includes the headway distance of the follower at
the start of the simulation. The input was the measured velocity of
the leader in an urban follow situation which the participated drivers
drove. It contains several stop situations and fast accelerations of the
leader vehicle. The output from the simulation was compared with
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Figure 4.15 Measured velocity from the driver used in the model estimation
(dotted) and velocity from the Simulink simulation of the model (solid).

measured velocity of the driver used in the estimation of the model.
The models have some problem in the stop situations resulting in that
the simulated vehicle reversed direction. This problem could be solve
by including a saturation in the Simulink model of the brake pressure
and throttle angle, a better solution would be to use the transposed
brake pressure and throttle angle.

Cut-in situation

In Figs. 4.16 and 4.17, result from a 3rd and 4th order state-space
model estimated by the subspace-based method is shown. The subspace-
based methods have problems when there are time delays in the sys-
tem. We have previously found that system of a human driver contains
time delays. There is no general methods for this problem. The time
delay introduces increase negative phase contribution at higher fre-
quencies. By introducing higher order dynamics some of the phase
could be captured, but it is on the cost of physical interpretation of the
identified model. The 4th order state space model gives better results
than the 3rd order state space model. The VAF scores for the estimated
3rd order state space model are 95.80% (bp) and 96.91% (α t) and for
the 4th order state space model are 96.30% (bp) and 96.93% (α t).

Fig. 4.18 shows the cross validation result from a 4th order state-
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Figure 4.16 Measured bp and α t from a driver in a cut-in situation(solid).
Simulated out data from a 4th order state-space model (dotted). Simulated out
data from a 4th order one-step ahead predictor (dashed).
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Figure 4.17 Measured bp and α t from a driver in a cut-in situation(solid).
Simulated output data from a 3rd order state-space model (dotted). Simulated
output data from a 3rd order one-step ahead predictor (dashed).

space model estimated by the subspace-based method, when simulat-
ing using data from another cut-in situation. The noise level is high
and unknown and therefore is it not fair to compare the output of the
model with the real output. As it is not possible to predict the output
well on the basis of the input alone, we therefore estimated a Kalman
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Figure 4.18 Cross validation: measured bp and α t from a driver in a cut-in
situation(solid) not used in the model estimation. Simulated output data from
a 4th order one-step ahead predictor (dashed).

filter, to build a one-step ahead predictor on the basis of our model. We
noticed that the predictor have problems with low frequency gain and
there is an offset between the real output and the predicted output.
The VAF scores for the cross validation of the estimated 4th order one-
step ahead predictor state space model are 78.33% (bp) and 52.53%
(α t).

Brake situation

In Fig. 4.19, result from a 3rd order state-space model estimated by the
subspace-based method in a braking situation is shown. The estimated
low order model captures the driver behavior well by means of throttle
and brake usage. The VAF scores for the estimated 3rd order state
space model are 91.2% (bp) and 92.4% (α t).

Fig. 4.20 shows the cross validation result from a 3rd order state-
space model estimated by the subspace-based method, when simulat-
ing using data from another braking situation. The model capture most
of the behavior, but have problems with low frequency gain and there
is an offset which lower the VAF scores. The VAF scores for the cross
validation of the estimated 3rd order state space model are 91.7% (bp)
and 39.3% (α t).
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Figure 4.19 Measured bp and α t from a driver in a braking situation(solid).
Simulated out data from a 3rd order state-space model (dotted). Simulated out-
put data from a 3rd order one-step ahead predictor (dashed)
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Figure 4.20 Cross validation: measured bp and α t from a driver in a braking
situation(solid) not used in the model estimation. Simulated output data from
a 3rd order state-space model (dotted). Simulated output data from a 3rd order
one-step ahead predictor (dashed).

Approaching situation

In Fig. 4.21, result from a 3rd order state-space model estimated by
the subspace-based method in a approaching situation is shown. The
estimated low order model captures some of the driver behavior by
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Figure 4.21 Approaching: measured α t from one driver (solid) and simulated
output data from a 3:rd order state-space model(dashed).

means of throttle usage. The VAF scores for the estimated 3rd order
state space model is 80.9% (α t).

String stability

For application in automated highway it is necessary that a stream of
cars are string stable, i. e., if several vehicles are put in a row they
should not give rise to oscillation causing car crashes [46]. Fig. 4.22
shows Simulink simulation result from a follow situation where 6 ve-
hicles have been put in a row. Each vehicle is controlled by a 5th order
model identified using the subspace-based method. No crash occurs
in the simulation, but the oscillations grow in magnitude. Previous
simulation results show that a 15th order state-space model captures
the driving behavior significantly better than a 5th order state-space
model and that the result can be improved using transposed signals.

4.4 Behavioral model

For the behavioral models the inputs and outputs were chosen accord-
ing to system 2 (Fig. 3.5). Behavioral model of different order where
estimated. The estimated model including both dynamic of the input
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Figure 4.22 Result from a Simulink simulation with 6 vehicles in row. ∆Y
between the vehicles (left) and vf of the vehicles (right).

and the outputs, since the model does not explicitly separate the sig-
nals into inputs and outputs, which is an advantage in the identifica-
tion process since there are interactions between the driver and the
vehicle.

Follow situation

In Fig. 4.23 a model with the total order of 30 is shown. The model fits
the driver behavior well capturing both the braking behavior and the
throttle behavior.

The residual analysis of the estimated 30th order model based
on the behavior method is shown in Fig. 4.24. Both brake pressure
and throttle angle have empirical distributions comparable with nor-
mal distributions. The VAF scores for the behavioral model are 81.9%
(pb) and 92.2% (α t). In order to use the estimated model in an ACC-
approach it is necessary to obtain from the estimated model, which
contain dynamics both of the inputs and the outputs as well as the
experimental condition, a input-output relation according to system 1
(Fig. 3.5). The transfer function for the input-output can be obtained
by matrix fraction decomposition, but this is not a easily solved prob-
lem, since the estimated model can be divided into submodels and we
want to find the subsystem which best matches the inputs and the
outputs. This problem is not yet solved.
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Figure 4.23 Follow: measured bp and α t from one driver (grey) and simulated
output data from a behavioral model order n = 30 (black).
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Figure 4.24 Residuals of output pb from a behavior model n = 30 (left). Resid-
uals of output α t from a behavior model n = 30 (right). Notice that the residual
of the output pb becomes large when the time is around 460s.
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Figure 4.25 Cut-in: measured ∆Y and ∆v (solid) and simulated ∆Y and ∆v
from a behavioral model of order n = 10 (dotted). Driver 1 (left) and driver 2
(right)
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Figure 4.26 Cut-in: measured bp and α t from one driver (solid) and simulated
output data from a behavioral model n = 10 (dotted).

Cut-in situation

Figs 4.25 and 4.26 show result from a estimated behavioral models of
order n = 10 estimated from data from a cut-in situation. The model fit
the measured data well, but one problem capture the driver behavior in
cut-in situations is that they last only a short period of time resulting
in a short data sequence. By only studying the data and the result from
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Figure 4.27 Measured bp and α t from one driver (solid) and simulated output
data from a behavioral model n = 3 (dotted) from two braking situations.

the estimated model in Figs. 4.25 and 4.26 one would perhaps believe
that the model could be reduced, but no good result was obtained from
a behavioral model with order less than 10.

The VAF scores for the behavioral model of cut-in situation 1 are
99.3% (pb) and 98.9% (α t). The VAF scores for the behavior model of
cut-in situation 2 are 96.1% (pb) and 87.8% (α t).

Brake situation

In Fig. 4.27, a result from a estimated 3rd order behavioral model in a
braking situation is shown. The model captures the throttle and brake
behavior well. The VAF scores for the estimated 3rd order behavioral
model are 98.3% (bp) and 97.2% (α t).

Fig. 4.28 shows the result from the 3rd order model in the ∆v∆ y-
plane and we notice that the model captures the dynamic in the brak-
ing situations.

Approaching situation

In Fig. 4.29, result from an estimated 20th order behavioral model in
an approaching situation is shown. The model captures the throttle
behavior well. The VAF score for the estimated 20th order behavioral
model is 95.4% (α t).
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Figure 4.28 Measured ∆v∆ y-plane from two different braking situations
(solid) and simulated ∆v∆ y-plane from a behavioral model n = 3 (right).
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Figure 4.29 Approaching: measured α t from one driver (solid) and simulated
output data from a behavioral model n = 20 (dashed).

4.5 Detection and modeling of changed driver behavior

We notice that the residual ε from the 30th order behavior model
for pb becomes large when the braking starts. We may call this phe-
nomenon ‘arousal behavior’ and estimate a GARCH model. In Fig. 4.30
the squared residual sequence is shown, and the residual of pb seems
to increase linearly during the brake part. The estimated third order
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Figure 4.30 Squared residuals ε from a behavioral model of order n = 30.
Note the change in the amplitude during the experiment.
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Figure 4.31 Residuals ε from driver 1 (dashed) and computed residuals ε
from a linear regression model (solid).

linear regression models for the different drivers capture the behav-
ior of the residual well, Figs. 4.31, and 4.32. A GARCH model using
these amplitude varying residuals can be used for detecting when the
driver changes his driving behavior. This property could be used for a
hybrid model switching between different driver behavior models iden-
tified from the different traffic situations; follow, cut-in, braking and
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Figure 4.32 Residuals ε from driver 2 (dashed) and computed residuals ε
from a linear regression model (solid).

approaching. Notice that there is an association between the arousal
behavior in the brake situation and the throttle behavior, respectively.

4.6 Neural network modeling

Learning human driver behavior

Fig. 4.33 shows the results of a trained neural network when using
data from one driver. The data used for training was from different
follow sequences but the same driver. The trained neural network cap-
tures most of the behavior of the driver. The sequence showed is from
a follow situation where the speed varies from 0 km/h to 50 km/h.
Figs. 4.34 and 4.35 show results when using data which have not been
used for the training (cross validation), but from the same driver and
same kind of traffic situation. The result was satisfying and the neural
network captures some of the behavior of the driver.

Testing of neural network model

The result from the simulation of the neural network seemed to be
good, but it has to be evaluated in closed-loop situations in order to
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Figure 4.33 Result from the fitted neural network model. Measured bp and
α t (solid) and simulated (dotted).
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Figure 4.34 Result from the fitted neural network model, using data which
was not used in the training. Measured bp and α t (solid) and simulated (dotted).

study their behavior. In evaluation, data from the learning was used
to check the reproducing capacity. The closed-loop simulation was per-
formed in Simulink, where the input to the system was velocity of the
leader vehicle in one of the situations which was used in the training of
the neural network. The results are shown in Fig. 4.36. The simulation
showed that the neural network failed to reproduce the human driver
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Figure 4.35 Result from the fitted neural network model, using data which
was not used in the training. Measured bp and α t (solid) and simulated (dotted).

behavior. The problem with neural network is that you do not know
how well the trained model will work in closed-loop and you have no
guarantee of stability in closed-loop. This property makes the neural
network difficult to use.

4.7 Summary

In this chapter we have compared results from different methods of
obtaining models of human driver’s longitudinal behavior; linear re-
gression, subspace identification, behavioral model identification and
neural network, with different rate of success. Best result had the be-
havioral model method, but there is an implementation problem in the
decomposition of the behavioral model into car model and driver model.
The subspace-based method gives good results, better than the ones
obtained for linear regression. The neural networks showed closed-loop
stability problem, which complicates their usage.
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Figure 4.36 Closed-loop evaluation of the neural network model. Measured
∆Y (solid) and simulated ∆Y (dashed) (upper). Measured ∆v (solid) and sim-
ulated ∆v (dashed) (middle). Measured vf (solid) and simulated vf (dashed)
(lower).
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5

Discussion & Conclusions

5.1 Discussion

Human drivers use several sensors in the driving tasks: eyesight, hear-
ing, balance organ (vestibular organ of the inner ear; vestibular nu-
clei), and proprioception. The central nervous system fuses the infor-
mation from the sensors [31]. The vestibular system nuclei and pro-
prioception detect changes in orientation, position and acceleration.
These physological human sensors can be translated into: camera, mi-
crophone, gyro, and accelerometer. As the information rate must be
manageable and since the total information rate from the sensors is
huge, it is not reasonable to measure all such information.

Sensors have different significance. The eyesight (vision) is the
most important sensor a human driver uses in the driving task. Thus,
for practical reasons only a laser and a radar were used in the exper-
iments.

It is known that human sensors have bandpass properties [9], which
also was found in the data analysis (Figs. 3.12, 3.13). The lower limit
was found around 0.1 Hz and the upper limit around 1.2 Hz. The
lower limit may be explained by visual suppression, which occur in
this region [39]. It has also been found that galvanic stimulation of
the horizontal vestibulo-ocular reflex is not affected below 0.1 Hz [32].
In other words, there exist other physiological evidence which explain
that a human driver exhibits bandpass properties. The upper limit
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may be explained by the human brake reaction time, perception time
and movement time, which is around 0.6-1.0s [27]. Visual suppression
may also occur at high frequencies.

Seven drivers participated in the study. However, seven drivers are
not enough to draw any statistical conclusions about the spread of
the human driver behavior. A study with more drivers participating
is needed, in order to be able to draw statistical conclusions of the
driver behavior. The driver behavior of the drivers that participated in
the study showed, as expected, large similarities. The major difference
between the drivers consist in the choice of headway distance and ag-
gressiveness. None of the drivers in the study were under influence of
alcohol, but it would be interesting to study how this would change the
driver behavior and try to model it. Such a study should be performed
at a test track for safety and legal reasons.

The similarities in the driving behavior indicate that it is possible
to identify a driver behavior on which most drivers would agree to be
a sensible driver. A model capturing this behavior could be used in the
design of an ACC system. To find a behavior which most drivers would
be satisfied with is a problem which need to be studied.

Newer Volvo cars than the ones used in the experiments have a
throttle controller where the acceleration is proportional to the throttle
angle. This would probably improve the result of the identified models.

In retrospect extra sensor measurement like measurements of ac-
celeration, GPS and gear information signals would have been inter-
esting to use when studying the longitudinal driver behavior.

From the spectral analysis it was found that the drivers all had
different reaction time, but it is hard to find the reaction time using
spectral analysis. The experiments should have contained a part where
the reaction time of the drivers was explicitly measured.

To identify physical parameters from estimated models could be
interesting. This could be used for increasing understanding of driver
behavior and reduction of model order.

The estimated models have only been tested in Matlab and Simulink,
and an interesting next step would be to validate the model perfor-
mance in real traffic situations. A related issue is how to parameterize
driving comfort. One disadvantage with computer simulation is that it
is hard to use in the validation of the driving comfort, as the validation
has to be done in real traffic situations.
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Figure 5.1 Measured bp and α t from one driver (solid) and simulated output
data from a 30:th step response model (dashed) in a cut-in situation.

Possibly the string stability could be improved by using higher order
models and transposed signals and resulting in decreased oscillations.

Normally, a cut-in situation starts with a positive step in bp and
later a step in α t. Therefore a realization-based step-response analysis
can also be used to find the dynamics of a human driver, Fig. 5.1. The
method is related to realization methods for impulse-response analysis
and covariance analysis and seems to work well for moderate noise
levels. In Fig. 5.1 the result from a 30th order step response model is
shown. To get good result a high order model had to be used, in order
to capture both brake and throttle behavior.

Behavioral models are well suited for identification of driver be-
havior since there is no clear-cut distinction of signals as inputs and
outputs. This may be preferable since there is feedback interaction be-
tween the driver and the car. The drawback is the open problem of
obtaining input-output relations from the estimated model with good
quality, which is needed in order to use the result in practice and for
model simulation.
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5.2 Conclusions

One contribution of this thesis is to describe human driver longitudinal
behavior using dynamic models. Existing methods and models describ-
ing human driver behavior have been reviewed: linear and non-linear
dynamic car-following models, linear optimal control models, heuristic
models, neural network and fuzzy logic models, mental models, and
general longitudinal models.

Another contribution is the application of existing identification
methods to describe human driver’s longitudinal behavior. Linear re-
gression, subspace model identification, behavioral models and neural
networks for finding dynamic models of human driver have been stud-
ied, with varying results. The result of the proposed approach using
system identification was found satisfying. The models estimated have
been simulated in closed-loop operation using Simulink with satisfy-
ing result. The best result was found when using the behavioral model
method, but since the problem of obtaining an input-output relation
for the component models in open-loop operation, the practical use-
fulness of the models are reduced. The estimated models using the
subspace-based methods did not give as good results as the behavioral
models, but still better than the linear regression models. The model-
ing of changes in driver behavior has been performed using GARCH
models with satisfying results.
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