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Robust Control Under Parametric Uncertainty Via outin [17] one can also add a complex uncertainty to treat performance
Primal-Dual Convex Analysis specifications in the same framework.
All closed-loop transfer functions froms to = attainable by nomi-
Andrey Ghulchak and Anders Rantzer nally stabilizing controllers are of the forifi.., = T + T>() where

Q is stable and’, andT» are determined b¥#. (Note that there is no

. . . T5 term in rank-on .Th ndition for r ili m
Abstract—A numerical method is proposed for optimal robust control s te ank-one case) e condition for robust stability becomes

synthesis. The method applies to the case when the coefficients of the

characteristic polynomial dependlinearly on the uncertain parameters. [1 + sT (T1 + TQQ)]—‘ cH™, Vé: |§|P <.

A primal/dual pair of infinite-dimensional convex problems is solved

by successive finite-dimensional approximations. The primal/dual pair

has no duality gap, and both upper and lower bounds produced by the A convex parameterization of all robustly stabilizing controllers was

approximations converge monotonically to the optimal value. found in [17] as follows.
Index Terms—Convex optimization, duality, finite-approximation, para- Proposition 1: Supposé/i € RH ¢, Tz € RHYy,,. Then, the
metric uncertainty, robust stabilization. following two conditions o) € RH;%,, are equivalent:

1) [1465(T + T2Q)] ' € RH™ forall § € R™ with [8], < v;
2) there existv € RH™ andj € RHS; such that) = 3/«
and

I. NOTATION

The following notation will be used throughout the note. Bythe
unit circle in the complex plane is denoted. The notatiofy, stands RelT. T, 3 _
g . . Iz < Rea(z 5 Yz S T. 2
for a vector norm irR"™ (p for primary), and the dual norm is denoted v[Re [T + T2 5](2)la ea(z), 2
by |- |a, i.e.,|zls = sup{6T:|6], < 1}. The notatiorL? denotes _ _ N _ _
the standard Lebesgue space Bnwith the L? norm referred to as Rem_ark: In _the foII0\_N|ng, we will omit indexes denoting the size
|| - Il,. The Hardy spackl® consists of functions that are analytical in®f matrix functions, which is usually clear from context.

the open unit disc and belongEs on T. The spac®H? contains all The main issue of this note is to develop a convex programming
real-rational functions A, andH! = ~H" = {f € H?: f(0) = 0}  algorithm that solves the problem (2) for the maximum possiblene
is the shiftedH? space. The prefis refers to the unit ball. algorithm is a combination of two finite-dimensional approximations

of the primal and dual infinite-dimensional problems. It produces lower
and upper bounds on the optimal uncertainty norm bound and
gives a robustly stabilizing controller with any prespecified level of
During the last decade, much progress has been made in robustegs®ptimality.

analysis of linear time-invariant systems with uncertainties [1], [3], The note is organized as follows. In Section i1, we derive the primal
[14], [18], [19]. In contrast, few results have addressguthesi®fthe  convex programming algorithm in case the uncertainty norm bound
control systems with parametric uncertainties. The classical methgdss given. The dual convex programming algorithm is proposed in
of controller design, such as the root locus and the frequency respogsetion IV. Section V refers to the important case when the uncertainty

methods, have been extended to uncertain linear systems in a numbggefs a polytope. The numerical example is considered in Section VI.
papers [2], [4], [6], [13]. In more general situations, different heuristic

methods like “D-K iteration” [7] or “QFT" [12] have been proposed. ||
However, there is still a lack of a nonconservative and easy-to-handle

design procedure for systems with real parametric uncertainty. The syn-

thesis problem has turned out to be very hard. In general, a real-valfedThe Primal Problem

uncertainty is harder to deal with than a complex one [9], [15]. The following problem is of our main interest in the note.

Recently, a large number of analysis and synthesis problems in roprimal Problem: Given» > 0 andF, G € RH™>, find a function
bust control have been stated in terms of convex optimization. Thisc RH> such that

gives great benefits both for theoretical analysis and for practical com-
putations. In particular, it has been shown in [17] that the robust stabi—7<]7 2) = Re (F(2)h(2)) = v|Re (G(:)h())|la > 0, VzeT.
lization problem under parametric uncertainties has a convex formula- =~ - ' ?)

tion if the characteristic polynomial depends linearly on the uncertaifhe problem (2) takes this form if we defide= (1 0 0) €
parameters (so callednk oneproblem). The authors consider the UNpett G = (T, T, ) € RH™ andh = [a; J]. If the set of solutions

certainty as an artificial feedback loop is nonemptyy is a lower bound for the optimal norm bound

Il. INTRODUCTION

CONVEX PROGRAMMING ALGORITHM FOR A GIVEN UNCERTAINTY
BounD

T=ae ()
Gs : ) T T\ w (1) Vopt = sup{v|3h € RH™: J(h,z) > 0,Vz € T}. 4)

w=206"z

where(s) is the nominal plantw is the scalarinput andé is the We can construct a finite-dimensional approximation by solving the
uncertain vector ift™. The objective is to robustly stabilize the plantproblem on a finite-dimensional subspac@&¥ > and on a finite grid
(1) for all reals € R™ satisfying the norm bound|, < v. As pointed of pointsz € T.

Let{®, } ;=5 be a (Schauder) basis of the spBEH > of scalar func-

z

tions (say,¢;(z) = z'). Then, the real span of the fir& functions
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forms an (n-+1)th-dimensional subspace B> . Consider afinite  2) Denote/s() = Re F(e’*)h(e’*) + 8" Re G(e’*)h(e’"). Then
grid of pointsZx = {z }r—, of the upper half of the unit circle. The

condition (3) for a functiork € Hx over the gridZ takes the form % _ ‘Im[F'h + Fh']e’ +67Im [G'h+ GH'] "
J ({hi}giglgzk) >0 Vzp € Zx. (6) < Mn
We suggest the following scheme. forall |6|, < v and for allh € Hx with {;}:*5" € Hy. Hence,
1) TakeN =1, K > 2 and{0,7} C Zx. for a grid that satisfies (8), we have
2) Find a functionh for given N, K as a solution to (6). If the "
problem is infeasible the®V := N + 1 and repeat. Ts(t) = Js(te) + / @(S)dﬁ
3) Check the condition (3) fall = in the upper half ofl. If it does t 45
not hold, increasds by adding some of “bad” points to the set > Js(te) — Mn(t —tr) > Js(tr) — =0
Zx and go to Step 2), otherwise STOP.
The main numerical questions here are: a) how to check if (3) holds for for allt € [0, z]. Finally, J() > J(t4) — 0 > 0. O
all z, and b) how to refine the frequency grid (incredsgat Step 3)?  Thus for everyV, the modified algorithm takes at ma&t,.. (V) =
The questions will be treated Section I1I-B. [w Mx /=0]+1 points. However, the actual numbErdepends on a grid

refinement strategy and usually is much less than.« in practice. A
B. Modification of the Primal Algorithm and Related Numerical  rather obvious idea of a good refinement is not to add new points where
Issues the functionJ(¢) is already large. One possible choice of “bad” points
Consider the following modification of the algorithm. L&ty C to add at Step 3) is the local negative minima/gf) calculated, for

RY(+1) pe a convex bounded set containing a neighborhood of tHbstance, with the (I_ow) accuraey /My . Another reasonabl_e S(_)Iuti_on
N—1 Is to use the function|.7|| — J (properly scaled) as a distribution

origin. Then,{h;};_,~ € Hx implies . ) ‘ .
density for the new grid. So we add more points where the function

N-1 N—1 is small.

Z Tzt < Cpn Z ihiz' < Cn

=0 oo =1 oo IV. DUALITY . OPTIMIZATION OF THE UNCERTAINTY BOUND VIA

. PRIMAL AND DUAL PROBLEMS
where the constantSy andC'y; do not depend ofih; } Y 5" For ex-
ample, the convex set A. The Dual Problem
N A feasible solution to the primal problem gives a lower bouni
{Ili}Algl | Z hi| < C the optimal value/yps. Cpnver§ely, if a given is a.Iowler pgund of
= — - Vopt, the proposed algorithm finds a feasible solution in finite number

of steps. However, the algorithm is unable to determine i v,
can be chosen af . Let us fix a tolerance, > 0 and replace Step since at each step we solve a finite-dimensional approximation, and
2) with 2. Find a functionk for given NV, K as a solution to the finite-dimensional infeasibility does not imply that of the original
problem. In this section, we use the duality result to obtain an upper
N_1 N_1 bound. The next theorem is extracted from [10] and [11].
fmax = maxy € | {hitizg” € Hx, T ({hi}i=0 ’Z’f) Theorem 2: The optimal value,,: from (4) has the following dual
representationr.,. = min{v,ps|c, Yopt|s } Where:

Voptle =inf{v | w € L'\ {0}, w(z) >0,6(z) € R™,|6(2)],
<uw: (F—l—ﬁTG) w e Hy}
8, |3z eT.6 e R™": F(z)+ 68" G(z) =0}.

If £max < 20 thenN := N 4+ 1 and repeat.
The idea to introduce the sefx is to obtain the uniform Vopt|s = inf{
boundedness of the solutidi(z) and its derivativeh'(z) indepen-
dently on the coefficientg5,}Z;". It guarantees that the function Calculation of an upper bound for,,,|. can be organized relatively
J(t) = J(h(e’'),e’") does not vary very fast, which makes iteasy as a finite-dimensional convex programming at eaébllowed
possible to conclude its global positiveness from values at a grid. by sweeping out the unit half circle. The upper bound.gn. is given
Theorem 1:Letv < vope. Then by the following corollary (the proof is trivial by putting = w?).
1) there exists arV. < 4oc such that a solution to the primal Corollary 1: The number > 0 is the upper bound of, /. iff
problem can be found g8~ ;" h; =" with {1, } 5! € Hy; there exist real functions, w € L' and a complex functioh € H)
2) for eachV, (3) holds for allz € T if (7) holds for the grid that satisfy the condition
Zx = {?'*}]_, that satisfies

[2(2)lp Svw(z)

0=t <ty <.+ <t =m, |tgg1r — 1] < Cj};: (8) w(z)F(z) + ;L’(Z)TG(Z) =h(z)
llwllx >0. ©)
where
M, :”F,HOOCN'/"”FHOC NFsupps), <, [(1G l On+ The condition (9) is linear im andh and convex inc. Applying ideas
1GlloeCn)- similar to those of Section IlI-A we can obtain a finite-dimensional
Proof: approximation of this problem in terms of convex programming. Let

1) The claim follows easily from the fact that the polynomials ar¢s; } ;=" be a (Schauder) basis of the spEEg(says; (z) = =*). Then,
uniformly dense irRH > and the set of all solutions is a cone. we approximaté: by the series expansidi(z) = Z;\;l hi¢i(z) and
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consider the condition (9) over a finite grifly = {zx}£_; of the boundedness of the derivative B¢’*)) and maximize: subject to
upper half of T to get vw — |z|, > . Second, a similar grid refinement strategy of adding
those points wheré&(z) is large can be used. Finally, we can decide

Tinea(@r, wi) <0, VE that Step 2) is successfully doneff =) is around zero within a small

Jea (s wi {hi Yty z1) =0, VE tolerance.
1 K
i Z wr >0 (10) V. LINEAR OPTIMIZATION IF THE UNCERTAINTY SET IS A POLYTOPE
k=1

Our optimization variable contains all the coefficiehtsas well asw;, _An Important case arises when the ungertalnty s_et is a polytope. In
this case, both the primal and dual conditions are linear.

andx,—the pointwise values af, = on Zx . An implementation of S that th it ballzl. < 1) i vt Then th |
the dual algorithm to estimate,,.|. may be as follows. uppose that the unit bl|, < 1} is a polytope. Then the polar

venV andk > N e th bl unit ball {|y|s < 1} is also a polytope, and for any b > 0, both
1 F(_)r_gl\_/eru -andh > (n+ 1,) solve the convex problem (10). conditions|z|, < a and|y|« < b have the form of linear inequalities.
If it is infeasible, thenV := N + 1 and repeat.

Hence, the primal finite-dimensional approximation problem (6) can
2) Checkthe condition (9)forall € T. P bp P ©

. e . Ifitdoes nothold_, increase be reduced to a system of linear inequalities in the form
K by refining the gridZx and go to Step 1), otherwise STOP.

Summing up, the problem of stability radius optimization may be AgnXn >0 (13)
solved by the finite-dimensional approximations to primal and dual N = [ AN= N and A | | ix. Th
problems in parallel. Both approximations can be implemented as eﬁ{ge.re v ={hi},= €R""" andAxy is areal matrix. Thus,
standard convex programming. For sufficiently Bigand K, either inding a functlon_h N Hx which satisfies (3) at the grigx is the

the primal or the dual algorithm finds a solution, and we can obtain glgndard LP fea5|b|_llj[y problem. L

arbitrarily good approximation of.,; by decreasing the gap between For the dual condition (10) the situation is the same. It can be reduced
the lower and upper bounds. to

Afh Xrw 20

B. Numerical Issues for the Dual Algorithm @)
A X v =0. (14)

First, let us briefly outline numerical difficulties related to calcula-
tion of v,pe = min.et vs(z) where Here, the vectoiXxn € ROPHDEHOHDN contains{a(z;)} 0,

ve(2) = inf{[6],: A(2)6 = b(=)} @y 1wl and{hiis,.

with A = [Re (G) Im (G)]" andb = [Re(F) Im (F)]*. The problem VI. EXAMPLE: ROBUST PERFORMANCEPROBLEM FOR AMECHANICAL
(11) is similar to that considered in [16]. The difference is that in [16] SYSTEM WITH RESONANCE
the matrixA has only two rows whereas in our cages R2("+1 >
The main numerical problem here is that the funciiofz) is not con-
tinuous when goes alondl, and a search for the global optimum over Consider a system of two masses connected by a spring (see Fig. 1).
a grid can easily miss it. The following result similar to [16, Lemma 14* Simple mathematical model of the system is
shows thav,(z) is piecewise continuous, with the points of possible
discontinuity being described explicitly.

Lemma 1: Let A be a continuous 4 x m 4 matrix function on maijz + cay2 + k(y2 — y1) =0

T aEdO < " < ;nir(m’jm)'kThanVs in (11_) ’is CoNtiNUOUS 0N \yhare ., is thei-th massy; is the damping coefficient for theth
Tr = {2 € Terank(A(z)) = rank([A(z) b(2)]) = r}. massy; is the position of the-th mass}: is the spring constant and

Proof: The statement is rather obvious by the following 9e0Mefz the control force. The position of the second masis assumed to
rical interpretation. The function, (z) is the|-|,-distance ifR™ from be measurable

the origin to the affine subspadd. = {§ € R™*: A(x)é = b(z)}. If Denotingg; (s) = mis® + ¢;s + k, i = 1,2, the system can be

= € T, thendim{}.) = m.4 —r. Since the functiont is continuous, o iten as ’ o

the subspacé@/. moves continuously, so the distance is a continuous

function. O Yo = k _w = Gu. (15)
The rest of the section is devoted to the second step of the dual al- ’ gr1g2 — k2

gorithm for vp¢|.. Since we find the functions andw only at finite ~ g,,5456 that our plast contains a real parametric uncertaittyin
grid Zr, we should extrapolate their values to all other points subjeg}s sacond mass. + 601 and in the second damping coefficient+

to th_e condition (10). This IS the main d|ff|c_ulty since the equality 13,2 aswell as a complex additive uncertainty due to neglected nonlinear
not likely to hold at other points for any choice of real vectors. So W@ynamics

are not able to find proper candidates for the pointwise vatgesand
w(z) between the grid points to satisfy the equality exactly. Let us i~ 500, (5) = k ; ; T+ W, A,
troduce the pointwise approximation error o g1(5)g2(s) — k2 + (5601 + bo2)sg1(s) ’
801] + [602| < ws,

A. The Problem Statement

miii + e + k(y — y2) =,

. i . R Au| S 1
E(z) = 1}111'1{|lL’F(Z) + 2" G(z) = h(2)]:|z|p

and our problem is to find a stabilizing controller with integral action
u = Kopt(s)y2 that solves the robust performarBe= optimization
Since we have foundl on Step 1), the calculation & at each: be- problem

comes a low-dimensional convex programming. We know Biat) is . _

zero atz € Zx and should be zero for all € T for & to be a solution Topt = 1§}f o] <S“F"A < Wy Ss.a. 1100 (16)

to the dual problem. To estimafe, the same ideas from Section I11-B oSS

can be used. First, because the set of all solutions is a cone, we franthe standard input sensitivity functiofs, », = 1/(1 —
impose the constrair{th, }/Z, € Hx at Step 1) (in order to guaranteeGs, a, k).

<vw, z € R", w €R}. (12)
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yr . Y2 .
u
k
C1

BSNANN
TSN

Fig. 1. A schematic representation of the system in the example.

The problem is very difficult and does not fit the method of this not remove the term M from left-hand side of the inequality in (19)
directly. However, a reasonable “convexification” can be performed tmd to consider the following problem instead:
obtain a closely related problem that has the necessary quasiconvex
form. sup {Vy: vy|WyaoMa| 4+ |[Wo M 3|
o,BEH >
B. The Convexification

The problem (16) is equivalent to [8] < Re (a'o (M + 5oTMa> - (N + 50TN5> 3) } (20)

Vopt = sup{vy: ||vy|[WySs, 0| + |[Wuk Ssy,0]l|ec <1 . ) y .
P K {1y IWy S o] + | ooll ' This corresponds to changind + 67 Ms to M in the numerator of

V|6olr <ws}. (17) Ss, a,. Intuitively it is clear that it does not affect much the value
||W,Ss,.a. |l since cardinal changes of the value are due to the
closed-loop polese due to the denominator. The problem (20) differs

N + & Ns i slightly from (3) due to the fact that only the first term of left-hand
= m + AWy side of the inequality is scaled ly;. However the primal-dual method
601 < w5, |A,] <1 Can be adapted easily (see [11] for a general case) since the primal and
the dual problems deal withfexed» and can handle unequal scaling.
whereN andM € H™ are the nominal coprime factors of the plantFinally, the optimal controller is given bif = 3/(wo«).

Goo, andW,, Ns and Ms € H® are the perturbation functions.

Consider also a controller in the forfi = 3/(ao«) whereay isthe C. The Numerical Result

fixed part of the controller (integrator in our case) an@ € H*. The

condition in (17) can be replaced by stabilitycaf (M + 65 M) o —

(N + 84 Ns) 3 plus

Consider a plant representation

Gsg.a,,

In the numerical example, we take; = 2.25 kg, m2> = 2.07 kg,
¢1 = 3.25 Ns/m,c, = 8.18 Ns/m andk = 423 N/m. The functions
N andM are chosen as the normalized coprime factors of the nominal
plant, followed by a close zero-pole cancellatiomihwith the toler-
ance 0.001 (to reduce numerical errors in the algorithm), that is:

<lJao (M + 85 My ) o= (N + 83 Ns ) 8l (18) T 90.82
N= 4 ARA 3 R 5 a2 e [
Since common factors ef and3 do not change the controlldt, we 5%+ 5.4845% + 398.55% + 10735 + 90.87
can use this freedom to remove the imaginary part of right-hand side M =5 1008753
in (18) and replace (17) with " <52 ) 0.48315% + 0.69785 + 90.82
, Ms = = g rd
Popt = sup {wyi vy [Wyaao (M + 83 M5 ) o 5 + 5.4845° + 398.55° + 10735 + 90.87
o, 3

vy \Wyao (M + 63 My ) al + (W, (M + 6§ M5 ) 9]

JVKS :0 .

ey T\ . , T g
HWa (M + Mﬁ) Al < Re (0"0 (M + Mﬁ) @ The parametric uncertainty level is chosen to be 0.5. The weighting
_ (N + 50TNé> 3) } . (19) function, is chosen ags + 10)/(s + 1000) to capture larger un-
certainty at high frequencies. The sensitivity weigli} is chosen as

Note that the closed-loop stability is included into the condition sinde + 1.4)*/s* to penalize low frequencies up to the sensitivity func-
the real part of the characteristic polynomial is strictly positive. Thiion peak which happens to be around 2 rad/s. Finally, a fixed factor
problem (19) is conservative in the sense that in general it gives only = s/(s + 1) is added tax to obtain an integral action in the re-
a lower boun.,, < vopi. However, the gap is very often small insulting controller.

practice and depends on the degree of “nonconvexity6rof the Let us make one more minor modification of the problem, namely,
relation (18). An accurate derivation of this fact is similar to [17] anth (20) we replacd> norm to (., norm (which is maximum of real
is omitted for the sake of brevity. and imaginary parts) in order to use linear programming as explained

The problem (19) is already quasiconvex and can be solved bynaSection V. Again, it does not change the problem much since these
primal-dual convex algorithm followed by a line search. However, wisvo norms are topologically equivalent.
have to simplify it even further for the technical reason that the soft- Forrv, = 0.424 the primal algorithm finds a solutiofav, 3) of order
ware we use cannot yet handle the setting (19) for now. So, we h&@ The final grid consists of 225 points. After pole-zero cancellation
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| —346.2777(s 4 25.55)(s + 3.656) (s + 0.5069) (s> + 4.0285 + 494.2)

K , :
' s(s+ 28.6)(52 + 14.15 + 75.06)(s2 + 3.574s + 397.9)

(21)

with the tolerance 0.01 the controller becomes (21), as shown at th@4] C. Marsh and H. Wei, “Robustness bound for systems with parametric
top of the page. Far, = 0.4372 the dual algorithm finds a solution. uncertainty,"Automatica vol. 32, no. 10, pp. 1447-1453, 1996.

” . . [15] L. Qiu, B. Bernhardsson, A. Rantzer, E. J. Davison, P. M. Young, and
Hence, the controlleK™ has a sufficiently good level of suboptimality J. C. Doyle, “A formula for computation of the real stability radius,”

(around 3%). Automaticavol. 31, no. 6, pp. 879-890, 1995.
Thus we have found the controller which provides us with the valug16] L. Qiuand E. J. Davison, “A unified approach for the stability robustness
1/0.424 = 2.3585 as an approximation of the robust performance  of polynomialsin a convex setAutomaticavol. 28, no. 5, pp. 945-959,

bound 1992. . L
[17] A. Rantzer and A. Megretski, “A convex parameterization of robustly

stabilizing controllers,”IEEE Trans. Automat. Contrvol. 39, pp.
v = sup [[WWy S50, . ||co- 1802-1808, 1994.
[80]1<0.5,|A,|<1 [18] M. Teboulle and J. Kogan, “Application of optimization methods to ro-
bust stability of linear systemsJ. Optim. Theory Appl.vol. 81, pp.

Of course, after several simplifications being made, we must expect  169-192, 1994.

. . . 19] A.Tesiand A. Vichino, “Robustness analysis for linear dynamic systems
that the actual bound is larger. The straightforward calculation of with linearly correlated parametric uncertainti§EE Trans. Automat.

for the controllerC gives 3.3415 which is not that far away from our Contr, vol. 35, pp. 321-329, 1990.
result. This is another confirmation that all the simplifications were
quite reasonable.

VII. CONCLUSION

In thils nl;)te, we ha\llz pr.eselnte;:l a copvelx primal-d#al techniqge for Invariance Control for a Class of Cascade
optimal robust con_tro esign in the particular case w (_en_uncertaln pa- Nonlinear Systems
rameters appear linearly in the closed-loop characteristic polynomial
(.rafnk-olne prqblem). Both the pri.mall and dual glgorithms are based on Jérg Mareczek, Martin Buss, and Mark W. Spong
finite-dimensional convex optimization. Running both algorithms si-
multaneously, it is possible to find the largest uncertainty bound, that ' ' _
is the maximum allowable perturbation of parameters without |osing_Abstract—We consider the control of partially linear cascade systems

s . - : sing switching control of the states of the linear subsystem. We give suf-
stability, as well as to design the optimal robust controller. With th icient conditions under which feedback of the linear states with switching

uncertainty set chosen as a polytope (approximating the original Wains guarantees both exponential stability of the linear subsystem and pos-
certainty set if it is not), linear optimization can be used to solve thgve invariance of a prespecified region in state space. We refer to a control
problem by efficient LP solvers. scheme incorporating these two objectives asvariance control Semiglobal
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