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Robust Control Under Parametric Uncertainty Via
Primal-Dual Convex Analysis

Andrey Ghulchak and Anders Rantzer

Abstract—A numerical method is proposed for optimal robust control
synthesis. The method applies to the case when the coefficients of the
characteristic polynomial depend linearly on the uncertain parameters.
A primal/dual pair of infinite-dimensional convex problems is solved
by successive finite-dimensional approximations. The primal/dual pair
has no duality gap, and both upper and lower bounds produced by the
approximations converge monotonically to the optimal value.

Index Terms—Convex optimization, duality, finite-approximation, para-
metric uncertainty, robust stabilization.

I. NOTATION

The following notation will be used throughout the note. By, the
unit circle in the complex plane is denoted. The notationj � jp stands
for a vector norm in n (p for primary), and the dual norm is denoted
by j � jd, i.e., jxjd = supf�T x: j�jp � 1g. The notationLq denotes
the standard Lebesgue space on, with theLq norm referred to as
k � kq. The Hardy spaceHq consists of functions that are analytical in
the open unit disc and belong toLq on . The spaceRHq contains all
real-rational functions ofHq, andHq

0 = zHq = ff 2 Hq: f(0) = 0g
is the shiftedHq space. The prefixB refers to the unit ball.

II. I NTRODUCTION

During the last decade, much progress has been made in robustness
analysis of linear time-invariant systems with uncertainties [1], [3],
[14], [18], [19]. In contrast, few results have addressedsynthesisof the
control systems with parametric uncertainties. The classical methods
of controller design, such as the root locus and the frequency response
methods, have been extended to uncertain linear systems in a number of
papers [2], [4], [6], [13]. In more general situations, different heuristic
methods like “D-K iteration” [7] or “QFT” [12] have been proposed.

However, there is still a lack of a nonconservative and easy-to-handle
design procedure for systems with real parametric uncertainty. The syn-
thesis problem has turned out to be very hard. In general, a real-valued
uncertainty is harder to deal with than a complex one [9], [15].

Recently, a large number of analysis and synthesis problems in ro-
bust control have been stated in terms of convex optimization. This
gives great benefits both for theoretical analysis and for practical com-
putations. In particular, it has been shown in [17] that the robust stabi-
lization problem under parametric uncertainties has a convex formula-
tion if the characteristic polynomial depends linearly on the uncertain
parameters (so calledrank oneproblem). The authors consider the un-
certainty as an artificial feedback loop

G� :
y

z
= G(s)

u

w

w = �T z

(1)

whereG(s) is the nominal plant,w is thescalar input and� is the
uncertain vector in m. The objective is to robustly stabilize the plant
(1) for all real� 2 m satisfying the norm boundj�jp � �. As pointed
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out in [17] one can also add a complex uncertainty to treat performance
specifications in the same framework.

All closed-loop transfer functions fromw to z attainable by nomi-
nally stabilizing controllers are of the formTzw = T1 + T2Q where
Q is stable andT1 andT2 are determined byG. (Note that there is no
T3 term in rank-one case). The condition for robust stability becomes

[1 + �T (T1 + T2Q)]�1 2 H1; 8 �: j�jp � �:

A convex parameterization of all robustly stabilizing controllers was
found in [17] as follows.

Proposition 1: SupposeT1 2 RH1m�1, T2 2 RH1m�n. Then, the
following two conditions onQ 2 RH1n�1 are equivalent:

1) [1 + �T (T1 + T2Q)]�1 2 RH1 for all � 2 m with j�jp � �;
2) there exist� 2 RH1 and� 2 RH1n�1 such thatQ = �=�

and

�jRe [T1� + T2�](z)jd < Re�(z); 8 z 2 : (2)

Remark: In the following, we will omit indexes denoting the size
of matrix functions, which is usually clear from context.

The main issue of this note is to develop a convex programming
algorithm that solves the problem (2) for the maximum possible�. The
algorithm is a combination of two finite-dimensional approximations
of the primal and dual infinite-dimensional problems. It produces lower
and upper bounds on the optimal uncertainty norm bound�opt and
gives a robustly stabilizing controller with any prespecified level of
suboptimality.

The note is organized as follows. In Section III, we derive the primal
convex programming algorithm in case the uncertainty norm bound
� is given. The dual convex programming algorithm is proposed in
Section IV. Section V refers to the important case when the uncertainty
set is a polytope. The numerical example is considered in Section VI.

III. CONVEX PROGRAMMING ALGORITHM FOR AGIVEN UNCERTAINTY

BOUND

A. The Primal Problem

The following problem is of our main interest in the note.
Primal Problem: Given� > 0 andF; G 2 RH1, find a function

h 2 RH1 such that

J (h; z) = Re (F (z)h(z))� �jRe (G(z)h(z))jd > 0; 8 z 2 :

(3)
The problem (2) takes this form if we defineF = (1 0 . . . 0 ) 2
n+1,G = (T1 T2 ) 2 RH

1 andh = [�; �]. If the set of solutions
is nonempty,� is a lower bound for the optimal norm bound

�opt = supf�j9h 2 RH1:J (h; z) > 0;8 z 2 g: (4)

We can construct a finite-dimensional approximation by solving the
problem on a finite-dimensional subspace ofRH1 and on a finite grid
of pointsz 2 .

Letf�ig+1i=0 be a (Schauder) basis of the spaceRH1 of scalar func-
tions (say,�i(z) = zi). Then, the real span of the firstN functions
f�ig

N�1
i=0

HN = h j h(z) =

N�1

i=0

hi�i(z); hi 2
n+1 (5)
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forms anN(n+1)th-dimensional subspace ofRH1. Consider a finite
grid of pointsZK = fzkg

K
k=1 of the upper half of the unit circle. The

condition (3) for a functionh 2 HN over the gridZK takes the form

J fhig
N�1
i=0 ; zk > 0 8 zk 2 ZK : (6)

We suggest the following scheme.

1) TakeN = 1, K � 2 andf0; �g � ZK .
2) Find a functionh for givenN , K as a solution to (6). If the

problem is infeasible thenN := N + 1 and repeat.
3) Check the condition (3) forall z in the upper half of . If it does

not hold, increaseK by adding some of “bad” points to the set
ZK and go to Step 2), otherwise STOP.

The main numerical questions here are: a) how to check if (3) holds for
all z, and b) how to refine the frequency grid (increaseK) at Step 3)?
The questions will be treated Section III-B.

B. Modification of the Primal Algorithm and Related Numerical
Issues

Consider the following modification of the algorithm. LetHN �
N(n+1) be a convex bounded set containing a neighborhood of the

origin. Then,fhigN�1i=0 2 HN implies

N�1

i=0

hiz
i

1

� CN

N�1

i=1

ihiz
i

1

� C0
N

where the constantsCN andC 0
N do not depend onfhigN�1i=0 . For ex-

ample, the convex set

fhig
N�1
i=0 j

N�1

i=0

jhij � CN

can be chosen asHN . Let us fix a tolerance"0 > 0 and replace Step
2) with 20. Find a functionh for givenN , K as a solution to

"max = max " j fhig
N�1
i=0 2 HN ;J fhig

N�1
i=0 ; zk

� "; 8 zk 2 ZK : (7)

If "max � "0 thenN := N + 1 and repeat.
The idea to introduce the setHN is to obtain the uniform

boundedness of the solutionh(z) and its derivativeh0(z) indepen-
dently on the coefficientsfhigN�1i=0 . It guarantees that the function
J(t) = J (h(ejt); ejt) does not vary very fast, which makes it
possible to conclude its global positiveness from values at a grid.

Theorem 1: Let � < �opt. Then

1) there exists anN < +1 such that a solution to the primal
problem can be found as N�1

i=0 hiz
i with fhigN�1i=0 2 HN ;

2) for eachN , (3) holds for allz 2 if (7) holds for the grid
ZK = fejt gKk=1 that satisfies

0 = t1 � t2 � � � � � tK = �; jtk+1 � tkj �
"max

MN

(8)

where
MN =kF 0k1CN+kFk1C

0
N+supj�j �� j�j(kG

0k1CN+

kGk1C
0
N).

Proof:

1) The claim follows easily from the fact that the polynomials are
uniformly dense inRH1 and the set of all solutions is a cone.

2) DenoteJ�(t) = ReF (ejt)h(ejt) + �TReG(ejt)h(ejt). Then

dJ�
dt

= Im[F 0h+ Fh0] ejt + �T Im G0h+Gh0 ejt

�MN

for all j�jp � � and for allh 2 HN with fhigN�1i=0 2 HN . Hence,
for a grid that satisfies (8), we have

J�(t) = J�(tk) +
t

t

dJ�
ds

(s)ds

� J�(tk)�MN (t� tk) � J�(tk)� "0

for all t 2 [0; �]. Finally,J(t) � J(tk)� "0 > 0.

Thus for everyN , the modified algorithm takes at mostKmax(N) =
[�MN="0]+1 points. However, the actual numberK depends on a grid
refinement strategy and usually is much less thanKmax in practice. A
rather obvious idea of a good refinement is not to add new points where
the functionJ(t) is already large. One possible choice of “bad” points
to add at Step 3) is the local negative minima ofJ(t) calculated, for
instance, with the (low) accuracy"0=MN . Another reasonable solution
is to use the functionkJk1 � J (properly scaled) as a distribution
density for the new grid. So we add more points where the functionJ
is small.

IV. DUALITY . OPTIMIZATION OF THE UNCERTAINTY BOUND VIA

PRIMAL AND DUAL PROBLEMS

A. The Dual Problem

A feasible solution to the primal problem gives a lower bound� to
the optimal value�opt. Conversely, if a given� is a lower bound of
�opt, the proposed algorithm finds a feasible solution in finite number
of steps. However, the algorithm is unable to determine if� > �opt
since at each step we solve a finite-dimensional approximation, and
the finite-dimensional infeasibility does not imply that of the original
problem. In this section, we use the duality result to obtain an upper
bound. The next theorem is extracted from [10] and [11].

Theorem 2: The optimal value�opt from (4) has the following dual
representation�opt = minf�optjc; �optjsg where:

�optjc = inff� j w 2 L1 n f0g; w(z) � 0; �(z) 2 m; j�(z)jp

� �: F + �TG w 2 H1
0g

�optjs = inffj�jp j 9 z 2 ; � 2 m:F (z) + �TG(z) = 0g:

Calculation of an upper bound for�optjs can be organized relatively
easy as a finite-dimensional convex programming at eachz, followed
by sweeping out the unit half circle. The upper bound on�optjc is given
by the following corollary (the proof is trivial by puttingx = w�).

Corollary 1: The number� � 0 is the upper bound of�optjc iff
there exist real functionsx, w 2 L1 and a complex functionh 2 H1

0

that satisfy the condition

jx(z)jp ��w(z)

w(z)F(z) + x(z)TG(z) =h(z)

kwk1 >0: (9)

The condition (9) is linear inw andh and convex inx. Applying ideas
similar to those of Section III-A we can obtain a finite-dimensional
approximation of this problem in terms of convex programming. Let
f�ig

+1
i=1 be a (Schauder) basis of the spaceH1

0 (say�i(z) = zi). Then,
we approximateh by the series expansionh(z) = N

i=1 hi�i(z) and
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consider the condition (9) over a finite gridZK = fzkg
K
k=1 of the

upper half of to get

Jineq(xk; wk) �0; 8 k

Jeq(xk; wk; fhig
N
i=1; zk) =0; 8 k

1

K

K

k=1

wk >0: (10)

Our optimization variable contains all the coefficientshi as well aswk

andxk—the pointwise values ofw, x onZK . An implementation of
the dual algorithm to estimate�optjc may be as follows.

1) For givenN andK > N(n+1) solve the convex problem (10).
If it is infeasible, thenN := N + 1 and repeat.

2) Check the condition (9) for allz 2 . If it does not hold, increase
K by refining the gridZK and go to Step 1), otherwise STOP.

Summing up, the problem of stability radius optimization may be
solved by the finite-dimensional approximations to primal and dual
problems in parallel. Both approximations can be implemented as the
standard convex programming. For sufficiently bigN andK, either
the primal or the dual algorithm finds a solution, and we can obtain an
arbitrarily good approximation of�opt by decreasing the gap between
the lower and upper bounds.

B. Numerical Issues for the Dual Algorithm

First, let us briefly outline numerical difficulties related to calcula-
tion of �sjopt = minz2 �s(z) where

�s(z) = inffj�jp:A(z)� = b(z)g (11)

withA = [Re (G) Im (G)]T andb = [Re(F ) Im (F )]T . The problem
(11) is similar to that considered in [16]. The difference is that in [16]
the matrixA has only two rows whereas in our caseA 2 2(n+1)�m.
The main numerical problem here is that the function�s(z) is not con-
tinuous whenz goes along , and a search for the global optimum over
a grid can easily miss it. The following result similar to [16, Lemma 1]
shows that�s(z) is piecewise continuous, with the points of possible
discontinuity being described explicitly.

Lemma 1: Let A be a continuousnA � mA matrix function on
and0 � r � min(nA; mA). Then�s in (11) is continuous on
r = fz 2 : rank(A(z)) = rank([A(z) b(z)]) = rg.

Proof: The statement is rather obvious by the following geomet-
rical interpretation. The function�s(z) is thej�jp-distance in m from
the origin to the affine subspaceMz = f� 2 m :A(z)� = b(z)g. If
z 2 r then dim(Mz) = mA� r. Since the functionA is continuous,
the subspaceMz moves continuously, so the distance is a continuous
function.

The rest of the section is devoted to the second step of the dual al-
gorithm for�optjc. Since we find the functionsx andw only at finite
gridZK , we should extrapolate their values to all other points subject
to the condition (10). This is the main difficulty since the equality is
not likely to hold at other points for any choice of real vectors. So we
are not able to find proper candidates for the pointwise valuesx(z) and
w(z) between the grid points to satisfy the equality exactly. Let us in-
troduce the pointwise approximation error

E(z) = min
x;w

fjwF (z) + xTG(z)� h(z)j: jxjp

� �w; x 2 m; w 2 g: (12)

Since we have foundh on Step 1), the calculation ofE at eachz be-
comes a low-dimensional convex programming. We know thatE(z) is
zero atz 2 ZK and should be zero for allz 2 for h to be a solution
to the dual problem. To estimateE, the same ideas from Section III-B
can be used. First, because the set of all solutions is a cone, we can
impose the constraintfhigNi=1 2 HN at Step 1) (in order to guarantee

boundedness of the derivative ofE(ejt)) and maximize" subject to
�w � jxjp � ". Second, a similar grid refinement strategy of adding
those points whereE(z) is large can be used. Finally, we can decide
that Step 2) is successfully done ifE(z) is around zero within a small
tolerance.

V. LINEAR OPTIMIZATION IF THE UNCERTAINTY SET IS A POLYTOPE

An important case arises when the uncertainty set is a polytope. In
this case, both the primal and dual conditions are linear.

Suppose that the unit ballfjxjp � 1g is a polytope. Then the polar
unit ball fjyjd � 1g is also a polytope, and for anya; b � 0, both
conditionsjxjp � a andjyjd � b have the form of linear inequalities.

Hence, the primal finite-dimensional approximation problem (6) can
be reduced to a system of linear inequalities in the form

AKNXN � 0 (13)

whereXN = fhig
N�1
i=0 2 N(n+1) andAKN is a real matrix. Thus,

finding a functionh 2 HN which satisfies (3) at the gridZK is the
standard LP feasibility problem.

For the dual condition (10) the situation is the same. It can be reduced
to

A
(1)
KNXKN �0

A
(2)
KNXKN =0: (14)

Here, the vectorXKN 2 (m+1)K+(n+1)N containsfx(zk)gKk=1,
fw(zk)g

K
k=1, andfhigNi=1.

VI. EXAMPLE: ROBUSTPERFORMANCEPROBLEM FOR AMECHANICAL

SYSTEM WITH RESONANCE

A. The Problem Statement

Consider a system of two masses connected by a spring (see Fig. 1).
A simple mathematical model of the system is

m1�y1 + c1 _y1 + k(y1 � y2) =u;

m2�y2 + c2 _y2 + k(y2 � y1) =0

wheremi is the i-th mass,ci is the damping coefficient for thei-th
mass,yi is the position of thei-th mass,k is the spring constant andu
is the control force. The position of the second massy2 is assumed to
be measurable.

Denotinggi(s) = mis
2 + cis + k, i = 1; 2, the system can be

rewritten as

y2 =
k

g1g2 � k2
u = Gu: (15)

Suppose that our plantG contains a real parametric uncertainty�0 in
the second massm2+ �01 and in the second damping coefficientc2+
�02 as well as a complex additive uncertainty due to neglected nonlinear
dynamics

G� ;� (s) =
k

g1(s)g2(s)� k2 + (s�01 + �02)sg1(s)
+Wu�u;

j�01j + j�02j � ��; j�uj � 1

and our problem is to find a stabilizing controller with integral action
u = Kopt(s)y2 that solves the robust performanceH1 optimization
problem


opt = inf
K

sup
j� j �� ;j� j�1

kWyS� ;� k1 (16)

for the standard input sensitivity functionS� ;� = 1=(1 �
G� ;� K).
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Fig. 1. A schematic representation of the system in the example.

The problem is very difficult and does not fit the method of this note
directly. However, a reasonable “convexification” can be performed to
obtain a closely related problem that has the necessary quasiconvex
form.

B. The Convexification

The problem (16) is equivalent to [8]

�opt = sup
K

f�y: k�yjWyS� ;0j+ jWuKS� ;0jk1 < 1;

8 j�0j1 � ��g: (17)

Consider a plant representation

G� ;� =
N + �T0 N�

M + �T0 M�

+�uWu

j�0j1 � ��; j�uj � 1

whereN andM 2 H1 are the nominal coprime factors of the plant
G0;0, andWu, N� andM� 2 H1 are the perturbation functions.
Consider also a controller in the formK = �=(�0�) where�0 is the
fixed part of the controller (integrator in our case) and�,� 2 H1. The
condition in (17) can be replaced by stability of�0 M + �T0 M� ��
N + �T0 N� � plus

�yjWy�0 M + �T0 M� �j + jWu M + �T0 M� �j

< j�0 M + �T0 M� �� N + �T0 N� �j: (18)

Since common factors of� and� do not change the controllerK, we
can use this freedom to remove the imaginary part of right-hand side
in (18) and replace (17) with

�̂opt =sup
�;�

�y: �yjWy�0 M + �T0 M� �j

+jWu M + �T0 M� �j < Re �0 M + �T0 M� �

� N + �T0 N� � : (19)

Note that the closed-loop stability is included into the condition since
the real part of the characteristic polynomial is strictly positive. The
problem (19) is conservative in the sense that in general it gives only
a lower bound̂�opt � �opt. However, the gap is very often small in
practice and depends on the degree of “nonconvexity on�0” of the
relation (18). An accurate derivation of this fact is similar to [17] and
is omitted for the sake of brevity.

The problem (19) is already quasiconvex and can be solved by a
primal-dual convex algorithm followed by a line search. However, we
have to simplify it even further for the technical reason that the soft-
ware we use cannot yet handle the setting (19) for now. So, we have

to remove the term�T0 M� from left-hand side of the inequality in (19)
and to consider the following problem instead:

sup
�;�2H

�y: �yjWy�0M�j + jWuM�j

< Re �0 M + �T0 M� �� N + �T0 N� � : (20)

This corresponds to changingM + �T0 M� to M in the numerator of
S� ;� . Intuitively it is clear that it does not affect much the value
kWyS� ;� k1 since cardinal changes of the value are due to the
closed-loop poles,ie due to the denominator. The problem (20) differs
slightly from (3) due to the fact that only the first term of left-hand
side of the inequality is scaled by�y . However the primal-dual method
can be adapted easily (see [11] for a general case) since the primal and
the dual problems deal with afixed� and can handle unequal scaling.
Finally, the optimal controller is given byK = �=(�0�).

C. The Numerical Result

In the numerical example, we takem1 = 2:25 kg,m2 = 2:07 kg,
c1 = 3:25 Ns/m,c2 = 8:18 Ns/m andk = 423 N/m. The functions
N andM are chosen as the normalized coprime factors of the nominal
plant, followed by a close zero-pole cancellation inM with the toler-
ance 0.001 (to reduce numerical errors in the algorithm), that is:

N =
90:82

s4 + 5:484s3 + 398:5s2 + 1073s+ 90:87

M =
s

s+ 0:08753

M� =
s2

s

0:4831s2 + 0:6978s+ 90:82

s4 + 5:484s3 + 398:5s2 + 1073s+ 90:87

N� =0:

The parametric uncertainty level�� is chosen to be 0.5. The weighting
functionWu is chosen as(s + 10)=(s+ 1000) to capture larger un-
certainty at high frequencies. The sensitivity weightWy is chosen as
(s + 1:4)2=s2 to penalize low frequencies up to the sensitivity func-
tion peak which happens to be around 2 rad/s. Finally, a fixed factor
�0 = s=(s + 1) is added to� to obtain an integral action in the re-
sulting controller.

Let us make one more minor modification of the problem, namely,
in (20) we replacè 2 norm to`1 norm (which is maximum of real
and imaginary parts) in order to use linear programming as explained
in Section V. Again, it does not change the problem much since these
two norms are topologically equivalent.

For�y = 0:424 the primal algorithm finds a solution(�; �) of order
80. The final grid consists of 225 points. After pole-zero cancellation
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K =
�346:2777(s+ 25:55)(s+ 3:656)(s+ 0:5069)(s2 + 4:028s+ 494:2)

s(s+ 28:6)(s2 + 14:1s+ 75:06)(s2 + 3:574s+ 397:9)
: (21)

with the tolerance 0.01 the controller becomes (21), as shown at the
top of the page. For�y = 0:4372 the dual algorithm finds a solution.
Hence, the controllerK has a sufficiently good level of suboptimality
(around 3%).

Thus we have found the controller which provides us with the value
1/0.424 = 2.3585 as an approximation of the robust performance
bound


 = sup
j� j �0:5;j� j�1

kWyS� ;� k1:

Of course, after several simplifications being made, we must expect
that the actual bound is larger. The straightforward calculation of


for the controllerK gives 3.3415 which is not that far away from our
result. This is another confirmation that all the simplifications were
quite reasonable.

VII. CONCLUSION

In this note, we have presented a convex primal-dual technique for
optimal robust control design in the particular case when uncertain pa-
rameters appear linearly in the closed-loop characteristic polynomial
(rank-one problem). Both the primal and dual algorithms are based on
finite-dimensional convex optimization. Running both algorithms si-
multaneously, it is possible to find the largest uncertainty bound, that
is the maximum allowable perturbation of parameters without losing
stability, as well as to design the optimal robust controller. With the
uncertainty set chosen as a polytope (approximating the original un-
certainty set if it is not), linear optimization can be used to solve the
problem by efficient LP solvers.
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Invariance Control for a Class of Cascade
Nonlinear Systems

Jörg Mareczek, Martin Buss, and Mark W. Spong

Abstract—We consider the control of partially linear cascade systems
using switching control of the states of the linear subsystem. We give suf-
ficient conditions under which feedback of the linear states with switching
gains guarantees both exponential stability of the linear subsystem and pos-
itive invariance of a prespecified region in state space. We refer to a control
scheme incorporating these two objectives asinvariance control. Semiglobal
asymptotic stabilization follows under some additional conditions. The key
idea of our design is to keep a given state space region positively invariant
by switching on the boundary of the region. Thus, the transient response
of the system can be kept within prescribed bounds which is important in
many practical applications. Our approach can also be viewed as an al-
ternative to high gain designs. The results in this note can be extended to
nonlinear cascades and even to noncascaded systems.

Index Terms—Cascade nonlinear systems, internal dynamics, invariance
control, switching gains.

I. INTRODUCTION

In this note, we consider the partially linear cascade nonlinear system

_z =f(z; x) (1)

_x =Ax + bu (2)
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