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REAL TIME IDENTIFICATION - Part I T

Johan Wieslander

ABSTRACT

In this paper the problem of idéntifying a time varying system,
i.e. tracking the system parameters, is considered. The model
structure in this case is the one usually used in Least Squares
methods. Three different real time identification schemes are
introduced. Similarities and differences between the three methods
are discussed. The used system model structure and its limitations
are considered and a possible technique to overcome the demonstra-
ted difficulties is outlined. A practical problem concerning bias

in the measured signals is recognized and solved.

Finally, three digitally simulated examples are included. They
are intended to demonstrate the ability of the algorithms to track
rapidly varying parameters. The last one shows an application to

non-linear systems.

T This work has been partially supported by the Swedish Board
for Technical Development under Contract 63-631/U489,
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1. INTRODUCTION

In a practical application of control theory there is always

a need for a mocdel of the process under study. There are two
fundamental methods to obtain such a model, either from basic
physical, mechanical and thermodynamical equations or from
measured process input-output data. The latter method is called
identification. Before choosing the identification method, there
are two questions to answer, viz."What is the intended use of
the obtained model?" and "What are the most important proper-

ties of the system, that are to be accounted for?"

If the model is to be used for automatic design of control laws,
a parametric medel would be adequate, and if the system can be
assumed to be linear and time invariant, identification schemes
such as the maximum likelihood method,can be used. If, on the
other hand, an important property of the system is that, it is
time varying, other methods must be used. Methods capable of
tracking time varying parameters are known as real time identi-
fication metheds. These are extremely important for adaptive
control algorithms, which can be considered to consist of two
parts, one that computes the actual values of the system para-
meters, and another one that uses this information to compute

the control signal.

In section 2 of this report the model to be used throughout is
presented. In chapter 3 - 5 three different real time identifi-
fication methods are shown and these are compared in chapter 6.
Chapter 7 contains a further discussion of the model. Chapter 8
introduces an idea of how the limitations found in the previous
chapter may be overcome. In chapter 9 some practical problems

are discussed, and in chapter 10 results from digital simula-

tions are shown.




2. THE MODEL

The system model to be used throughout is:
-1 - -1
Alg 7) y(t) = B(g ™) ul{t) + e(t) (2.1)

where y is the output signal and u is the input signal of the
system. e(t) is the misfit between the medel and the available
measurements at time t. We assume that e(t) is independent gaus-
sian with E e(t) = 0 and

E e(t) e(s) = Ry 6o
q is the forward shift operator, i.e.

q x(t) = x(t+1)

The polynomials A and B are defined as follows:

-1 -1 -2 -N
Alg ™) =1+ a, q ta, gt ...t a 4

-1 -1 =2 -n
B(q 7) = byjg7+b,q"+ ... +b q

Rewrite (2.1) to cobtain:

y(t) = 9(t-1) o(t) +.e(t) (2.2)
where

O(t-1) = [- y(t-1)  ult-1) - y(t-2) ... - y(t-n)  u(t-n}]

e(t) = [a, (1) b (t)  ay(t) ... a(t) bn(‘t):lT

In the equation (2.2) ¥ is a row vector containing old input
and output values while 0 contains the parameter of the poly-

nomials A and B. The vector ¢ may be varying with time.




The model describes a system, whose pulse transfer function

is:
-1, _ B(g™H
H(g ™) “'—QT
Alg ™)
e 1
A
u B 5 y
A N/

It may seem unnatural to use a model that assumes the very spe-
cial type of noise disturbance indicated in the figure above.

The reason why the model is used in spite of this is that it is
sufficiently simple so that real time identification schemes can
be derived to track the parameters of it and that it actually
describes both the system and the noise to a certain extent. Re-
fer to sections 7 and 8 for a more detailed discussion on the mat-

ter,




3. IDENTIFICATTION USING STOCHASTIC APPROXIMATION

3.1. General Principles.

Let the aim be to find the minimum of a funciion F(x).

An often used iterative algorithm is:

%41 © %, — v[n] grad F(x ) yin] >0 (3.11)

If in each step the value of the gradient is determined by
measurements and these are corrupted by noise, certain restric-
tions must be imposed on the function F and the step size y[n] in
order for the algorithm to converge. The step size must e.g. tend
to zero as n + « but not too fast. For details, see e.g. ref. [9]
or [7]. If the step size y tends to a small positive value the al-
gorithm will not converge but Xy will be close to the true value

if N is large. See ref. [2].

3.2, Stochastic Approximation Used for Identification

Assume that the system can be described by the model (2.2):
y(t) = 9(t-1) plt) + el(t)

The aim is to determine the parameter vector 6. Define the loss

function:

F(o) = %(y(t) ~9 (1) el) )2 v (3.21)
Hence we have:

grad F(8) = - (=107 {y(t) - 9 (t-1) o)} (3.22)
The algorithm for estimating © then: is:

OCt) = B(t-1) + v(1) 9 (t-1)7 {y(t) - @ (t-1) O(t)} (3.23)

The behavicur of the algorithm is determined by the properties

of the step length y(t). For normalization, the denominator of




y(t) is chosen to be
(e *+p(t-1) o(t-1)7F)

where e is a small number. (¢ is so that the derominator never

will be zeroc.)

In the case of time invariant parameters © will converge to the
true value'if the numerator is chosen as 1/t. See ref. [9]. We

thus have:

1

y(t) = 7
tle + 9 (t-1) ¢ (t-1))

(3.24)

If, on the other hand, the numerator is chosen to be constant

= Ypo the algorithm will no longer converge but according to
ref. [2] the estimates will stay close to the true value if g
is sufficiently small. Furthermore, as the step size does not
decrease the algorithm will have the ability to track slow para-

meter variations. This will be illustrated in example I.

4. REAL TIME LEAST SQUARES

The least squares method works by minimizing

N
z e(‘t)2
t=n

where e(t) is defined by equation (2.1). As is well known this
method can be used in a recursive fashion (see ref. [4]). To ob-
tain an algorithm with real time properties we should use a loss
function that puts more weight on recent observations. This can
be done by using the loss function

N
V(N) = I AN”t e(t)2 A<l (4.1)
t=n




Using the notation of section 2, an algorithm minimizing (4.1)

is given by:
[0(++1) = () + K(EMHy(t) - 9(t-1) o(t)}

K(t) = PCt) @ (-7 {1 + @ (t-1) P9 (=113 (4.2)

S N

(Pt = %[p(t) S KA 91 Po) 9 -1 k)]
A detailed derivation of this algorithm is given in appendix B.

The algorithm is discussed in sectiocn 6.

5. THE KALMAN FILTER APPROACH.

We again use the model of section 2:
y(£) = @(t-1) olt) + e(t) (5.1
where e(t) is assumed to be gaussian with

E e(t) e(s)

§

R, §

2 ts

In order to account for the time variance of the parameters

assume that they may be described by
o(t+l) = o) + v(t) (5.2
where v(t) is independent gaussian variables

E v(t) = 0, E v(t) V(S)T = R, §

L "ts

Equation (5.2) together with (5.1) is the equation of a linear
time varying dynamical system driven by white noise where 0, con-
taining the parameters of the model, is the state vector. Accord-
ing to the assumptions made, a Kalman filter may be used to esti-

mate the state 6. We cbtain:




B(t+1) = B(t) + K(E){y(t) - (t-1) o(t)}

_ T T 1
K(£) = P(£) @(t-1) {R2 + 9 {£-1) P(E) o (t-1)} (5.3)
P(tH1) = P(t) + Ry - K(D(R, + 9(t-1) P(t) O (-1 Tk ()T

These recursive equations constitute an algorithm for real time

identification.

When implementing the algorithm, the P equation can be scaled

so that R2 = 1. This means that R., the covariance matrix of the

2
parameter noise, is given with thi measurement error variance Ry
as unit. The value of the Ry matrix must be passed to the algo-
rithm by the user. In general the characteristics of the para-
meter variations are not known. In this case good practice is fo
set Ry = r = I, where p = 0.01 ... 0.0001 typically. A small
value will make the estimations less sensitive to the measure-
ment noise while the ability to track fast parameter variations
is degraded. A more thorough discussion of the properties of the
algorithm and the relation to the previously mentioned algorithms
can be found in section 6. Methods to determine the Rl matrix are

discussed in ref. [1] and [8]. See also example III.




6. A COMPARISON BETWEEN THE DIFFERENT ALGORITHMS.

The equations (3.23), (4.2) and (5.3) possess great similarities.
The factor:

res(t) = y(t) - ©(t-1) 0(t) (6.1)

the residual, is commeon to all of them and is the difference bet-
ween the observed output from the system and the expected output.
This difference is used to mcdify the parameter estimates. The

sign and magnitude of the change is given by:

Yo o(t-1){e + 9(t-1) 9(t-1T) ! or (6.2)

P(t) @(t-1) (1 + ©(t-1) P(t) 9 (t-1)T) 7t

The only difference is that in the case of least squares or Kalman
estimates additional information from the P matrix is included

thus presumably providing more accurate estimates. It can be shown
that if A = 1 or Rl = 0 (as used for identification of time inva-
riant systems) the P matrix tends to zero as 1/t. This corresponds
to the values used for y in the time invariant stochastic approxi-
mation case. Cf eq. (3.24). The difference between the least sguares
and the Kalman method lies in the P equation. In order to obtain
real time estimates one should prevent the P matrix from converging
to zero in resemblance with the choice of a constant yO-This is
done in the least squares case by dividing the elements in P by

A < 1 in each step, while in the Kalman case the same thing is
accomplished by adding the constant matrix Rl. The main difference
is that the Rl matrix has a physical interpretation as the covariance
matrix of the noise driving the parameters. This means that if a
priori knowledge of the behaviour of the parameters is available

it is easily incorporated in the algorithm. For an example of this
situation refer to the discussion in 10.2.

The simplicity of the stochastic approximation algorithm is interest-
ing. This property could be used in a case where the Kalman indenti-
fication algorithm is used in adaptive control, ref. [10]. When there
is evidence that the system parameters happen to change little with

time for a while one could switch cver to the simpler stochastic app-




roximation algorithm, thus saving computation time. When one
detects that the parameters start varying again, switch back

to the more sophisticated algorithm.

7. DISCUSSION OF THE STRUCTURE OF THE MCDEL.

The model used is:
-1 _ -1 |
Alq ™) y(t) = B(q ™) u(t) + e(t) (7.1

where e(t) was assumed to be white noise. In practice e(t) is
likely to be correlated, hence a more appropriate model would
be

AT vt = BT utt) + clq™h) ett). (7.2)

As in the case of least squares estimation, the parameters of
the model (7.1) will be biased estimates of the true values if
the system is given by equation (7.2). Furthermore, a statisti-
cal F test of the model order will indicate a tco high value, A
remedy of this situation would be:

al to use prefiltering with the filter:

1 1

Clq

H(qg ™) =

1

Define y = Hy and u = Hu where y and u are the measured vari-
ables. Perform the identification on the filtered variables
to obtain the medel:

Ay = Bu + e e uncorrelated

We thus obtain the model} for the unfiltered variables

Ay = Bu + Ce (7.3)

which is of the required structure. The controller could then
be designed using an adaptive minimum variance strategy. A

drawback of this method is that it requires a priori knowledge



b)

a)

10,

of the polynomial C in (7.2), a not very likely situation.

to use the model (7.1) with the order indicated by the test
mentioned above in order to derive a control algorithm. This
may seem to be a rude method, but it will be shown in sec~
tion 8 that a controller obtained in this way can be expected

to have some nice properties.

to use a combination of a) and b). The reason why the some-
what unprejudiced method in b) should work is that the model
is to be used to design controllers, and in this case the on-
ly requirement is that the model dees describe behaviour of
the system up to a certain extent, while it is immaterial

whether the model has a physical interpretation or not.

The reason to use the model (7.1) and not (7.2) is due to the
fact that the estimates of the C polynomial coefficients would
be non-linear functions of the input-output data, and it has
for a long time been impossible to derive recursive or real
time algorithms in this case. Lately results on a real time
identification method for the model (7.2) has been reported,

[5] and [3], but the convergence is slow.
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8. A CONJECTURE
- IDENTIFICATION WITH TOO HIGH MODEL ORDER.

As stated earlier, the statistical F test will indicate a too
high model order when the measurement noise e(t) in (7.1) is
correlated. It will now be made plausible that a dead-beat stra-
tegy, derived from such a model, will have nice properties. let
the obtained model be:

AGCH vt = B(gD ult-k) + elt)  or (8.1)
y(E) = § ult-k) + F e(t) : (8.2)
Assume, that the system could be described deterministically by

Al y{t) = By u(t-Ik) (8.3)

It can then be expected that B = B1B2  and A = A4A, with B, = A,.

(8.2) gives then:

BB, 1 By AT
y(t)= u(t-k) + e(t) = — u(t-k) + e(t) (8.4)
Ah, Ay Ay Ay

(8.4) is of the same structure as (7.2). From (8.4) a minimum

variance strategy can be derived:

-1 _ -k
AT =AF+q 6 (8.5)
which gives:
u:_._..ci_,y: mvy (8'6?
FBl

From (8.1) a dead-beat strategy can be found:

1= A8 +q ¢ (8.7)
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us= - ‘G CI- G =Hdby (8.
F Ble F-BlA2
A comparison of (8.5) with (8.7) shows that F”= F and G~ = A, 6.

We thus find:

Hdb::.._ G z._G:H
F BlA2 FB

There is no need to stress that this argumentation in no way is
intended to prove that a dead-beat regulator achieved in the
described manner always will be close to optimum. It is felt,
however, that a model of the form (8.1) does contain enough use-
ful information of the system behaviour to allow close-to-optimun

controllers to be designed even in the case of correlated noise.

8)
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9. THE PROBLEM OF BIASED MEASUREMENTS IN REAL TIME IDENTIFICATION,

A problem which often arises when identifying on measured plant
data is what to do with biased signals. When there is a bias in
one or both of the measured signals they will not fit in a linear
model. This problem has been solved by different methods before,
but as will be shown these methods cannot be used in the case of

real time identification.

9.1l. Subtract the Mean.

A methed often used in off-line methods is to compute and subtract
the mean from the measurements. It is obvious that this trick can-

not be used in a real time environment.

9.2, Prefiltering with a High-Pass Digital Filter.

Also this method is often used in off-line calculations. A simple
b. Prefiltering with
this filter is not feasible if the input signal is a PRBS type sig-.

high-pass digital filter is H(q_l) =(1-q

nal, which is often the case in practice. The reason is that the
parameter correction term in all of the three methods discussed
earlier is essentially the vector ¢ of old input-output data with
proper weighting. In this case the filtered input signal will be
zero except when there is a change in the input. The correction of
the b parameter estimates will thus be close to zero save from those
instants mentioned above. This behaviour is drastically illustrated
in figure 1. The problem can be solved to a certain extent by intro-
ducing more dynamic in the filter, but this means to incorporate a
iot of arbitrary constants in the filter design, a not very expedi-

ent sclution.
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9.3. Incorporating an Unknown Constant in the Model.

let us use the model:
-1 -1
Alq 7)) y{t) = Blq ™) ult) + k + e(t) (9.31)

The part of the bias in the signals that dces not fit in the
linear model is accounted for by the parameter k. This method
has been used in conjunction with the maximum likelihood method
and good results are reported. However, attempts to use the mo-
del (9.31) for real time identification algorithms have failed
to converge correctly (see results below). The reason is probably
that the value of k is a function of the other parameters. The
minimization preoblem thus is too complicated to be handled by a
recursive method as in the case of real time identification. A
modification of the method described above has proved successful.

We use the following model:

y(t) +a; y (1) + ... +a y (tn) = B(g™D) ult) + k(t) + e(t)
(9.32)

where
* N
y {t) = y(t) - kit)

To illustrate the success of this method results will be shown

of an identification of a system, given by:

y(t) = 0.5 y(t-1) + 1.0 u(t-1) + 0.1 e(t)

3]

y () = y(t) + 80

u(t)

u {(t)
m
e(t) €N(0.1)

The initial values of © and P was 6(0) = 0 and P(0) = 100 * I.
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Results:
t al bl k
50 -0.489 1.013 48,870
100 -0.51% 1.910 49,955
150 -0.491 1.005 43,977
200 -0.487 0.993 50.9000
3% -3.018 0.8586 u49.102

The identification scheme used was @ Kalman filter with Rl = 10_3 x L.

The starred estimates are obtained at time t = 200 using the model
(9.31).

10. EXAMPLES.

In this section three examples will be discussed. The first one

is a simple example of the stochastic approximation method used

in real time application. The second one is intended to illustrate
the ability of the algorithm (5.3) to track fast parameter varia-
tions. Also the influence of the choice of the Rl matrix is illustra-
ted. The third example, finally, illustrates a principle that can

be used to determine the Rl matrix in the Kalman identification al-

gorithm.

10.1. Real Time Stochastic Approximation Tdentification.

The system to be identified was given by:

y(t) + alt) y(t-1) = blt) ult-1) + 0.1 e(t)

where e(t) € N(J.1) and E e(t) e(s) = &, and

ts
-0.5 t 5 300
al(t) = -0.5 - 0.0045(t-300) 300 < t < HOG

=

-0.95 + 0,0045(t-400) 400 < t g 500
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1.0 t <« 200

BlL) = 1.0 + 0.02(t-200) 200 < t ¢ 300
3.0 300 < t ¢ 400
3.0 - 0.02(¢-400) 4oo < t < 500

The identification algorithm used was that given in (3.23) with

y{t) given by:

GAM

y(t) = 0 (10.11)
GAM + 9 (t-1) ¢ (t-1)
where:
1.0 t g 10
GAM = 1.0 - (GAMHE GAMZ) (+.30) 10 <t g 50
GAMZ £ > 50

The choice of the values of GAM may need some discussion. GAM is
given a relatively high value at the first 10 sampling points in
order to allow a fast convergence to estimated parameter values
in the vicinity of the true cnes. For time instants greater than
50 GAM assumes the stationary value GAMZ. In between GAM decreases
linearly towards GAMZ.

In figures 2 and 3 the results of identification with GAMZ equal

to 1.0 resp. 0.1 are shown. Note in figure 2 the ability of the
algorithm to track the parameter variations. Compare the performance
in the time interval 0 - 208 where both parameters are held constant
with that shown in figure 3. As can be seen, the algorithm with

GAMZ = 0.1 is much less sensitive to noise but on the other hand

the tracking ability as shown in figure 3 is not as good as that
shown previously. The illustrated contrast between tracking ability
and noise rejection is a common (and very natural) factor to take
into account in all implementations of real time identification al-
gorithms.
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10.2, The Kalman Identification Applied to Rapidly Varying

Parameters.

This example is intended to demonstrate:

- the ability of the algorithm to track fast parameter varia-

tions,

~ the influence of the choice of the Rl matrix.

A continuous system was simulated digitally. The system had a

transfer function of the form:

S (Tls + 1)
G(s) = (10.21)
(Tzs + l)(Tgs + 1)

T2 and TB was held constant; T2 = 1 sec and T3 = 0.1 sec. Tl was
varying randomly from.Tl(tS) = 2,0 sec to Tl(tf) = 0.1 sec.

(tg = starting time; te = final time.)

The continuous system was transformed to its discrete time equi-
valent:

y(t) + a; y(t-1) + a, y(t-2) = by u(t-1) + b, w(t-2) + e(t)  (10.22)

The sampling interval was chosen as 0.05 sec. In this representa-
tion a, and a, were constant while b, and b, were varying with
time in such a manner that by (1) - bl(t—l) = = (bylt) - Dy(t-1)).

u(t) was gaussian noise with band width fB = 5 Hz and 0, = 10.0.

e(t) was white noise with E e(t) e(s) = § In figure % is shown

ts”
the amplitude characteristics for the system (10.21) at t = 0,
200 and 500. The input and output signals are shown in figure 5.

Note the decrease of the system band width.

In order to compare different identification runs, one need a

goodness criterion and in this case:

N 2
Ve oz res(t) (10.23)
t=1

was used,
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The identification scheme used was the Kalman type one described
in section 5. In the first run the Rl matrix was chosen to be

Rl = 5,01 * I. The tracking of the parameters a; and b, can be
studied in figure 6. As can be seen the estimates follow the ge-
neral trend of the parameters but fail to find the details. The

loss function is in this case V = 3605.

In this example a priori knowledge of the Rl matrix is available.
The theoretical value calculated from knowledge of the standard

deviation of Tl is:
0 0 0 0

RL = | O 0 0 0 (10.24)
0 0 0.01 -0.01
0 0 -0.01  0.01

If this value is used in the identification the results shown in

figure 7 are obtained.

Note, that in this case the estimate of the parameter a; tends to
a constant value (as the estimate of a,) in accordance with the
a priori information used when setting Rl,, = 0. Note also the im-
proved tracking of the parameter By. This is due to the more accu-
rate knowledge of the two constant parameters and the a priori in-
formation that the covariance of the two b parameters is -0.01

(the element R1,,). The conclusion of this example is thus, that

accurate a prioiz information is of great value, if accessible. On
the other hand false a priori information is likely to do great
harm if used in that it will impose a misleading restriction on
the algorithm. In other words, R1 matrices not of the form Rl =
r * I should be used restrictively. The problem of how to optimize

the choice of Rl matrix will be discussed in ref. [8].
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10.3. Segerstdhl's Example

The real time identification algorithm (5.3) has been applied
to example 1 of ref. [6}. The system in this example is given
by:

y(t) = alt) ult) + b(t) ult-1) + 1.225 e(t) . (10.31)
where e(t) are uncorrelated N(0,l) random variables and:

a(t)

2exp { -~ 0.2 ult) + 0.9 1}
(10.32)
b(t)

0.5 + 2 exp { - 0.15 u(t) + 0.7 }

Note, that the parameters in this case are non-linear functions
of the input. The non-linear effects are in this case described
as a time dependence of the parameters. The model used was of the
same structure as the system. In this experiment the Rl matrix
was chosen as the cne that minimized the squared sum of the last

thirty residuals, i.e. the loss functiocn:

200 2
V= 5 res(t
t=171

This procedure will yield a value of the Rl matrix that minimizes
the mean square difference between the predicted and the measured
output. The reason to choose the thirty last points is that the
parareters vary most rapidly in this interval. The result of a
search for minimum is shown in the table below.

A plot of the estimated parameter values with the Rl matrix:

3.5 2.9
RL =

x 10“3
2.9 2.5

is shown in figure 8. In figure 9 the measured and predicted out-
put signals are given. A comparison will show that the results ob-

' tained with this method are superior to those of ref. [6].
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v
. 131.91
o 3
1.5 132.41
0 4.5
H.5 0 131.88
1.5
( 3
1‘]’.5 2-5 126.01
2.5 1.5
f 3
3.5 2.9 125,64
2.3 2.5

Values of the loss V =

200
L res(t)
171

for different R1.
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11. CONCLUSION.

In this report three similar algorithms for real time identifica-
tion have been presented. Through experiments they have been shown
to possess encouraging performance as to precision and ability to
track fast parameter variations. A more thorough comparison of the
methods as well as a study on the behaviour of a controller of the
type discussed in section 8 are currently being made by two stu-
dents as master thesis work. Results should be available early 1970.
In a forthcoming second part of this report among other things a
discussion of methods to estimate the Rl matrix from measured data
and an example of identification on data from an industrial process

will appear.
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APPENDIX B

DERIVATION OF THE REAL TIME LEAST SQUARES IDENTTIFICATION
ALGORITHM.

As a rule whenever it is possible to derive a recursive method
for the identification of a system model from input-output data
one can obtain a real time algorithm by preventing the estimate
correction step-length from decreasing to zero (cf the discussion
in chapter 6 ). The only problem in how this should be done is

to retain an attractive physical interpretation.

B 1. The least Squares Method.

Consider the system model:

y(t) = - ay y(t-1) - ... - a, y(t-n) + by u(t-1) + ...
- T b ul{t-n) + e(t) _ (B 1)
Introduce:
y(n) -y(n-1} un-1) ... =y(0) u(0)
y{n+l)
Y = p=
y () -y(N-1)  u(N-1) -y(N-n) u(N-n)|
a1
bl el(n)
G = a, and F = j
. e(N)
b
— n._
The result of measurements at t = 0, 1, ..., N can now be expressed
as:

Y =¢5 t+tL (B 12)
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As is commonly known (see eq. (2.5 ) of [}J]] the estimate of

@ that minimizes:

N
Vesze(t) = EE | (B 13)
: .

is given by:

0= (o) T 4y (B 1w

B 2. Real Time Least Squares.

Intuitively what to do when identifying a system model in a time
varying case is to put more weight on recent data. This can be

done by using the loss function:

N
V(N) = I
t=n

AT o2 A<l (B 21)

This will give an exponential weighting to the sguared deviation
from a deterministic medel. In deriving an algorithm that minimizes
(B 21) we follow closely the method of zef. [11] and [4] in deriving

a recursive least squares algorithm.

Consider the situation at time N. At this instant the estimate

o) = (4 407 6 Y

is available. A new measurement is made at time N + 1. Find the

estimate o(N+1l) that minimizes:

N+1 N
v = 3 T o = 5 VT a)? + ei1)? =
I n

T 2
A By EN + e(N+1)
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Introduce the notation:
y = y(N+1) , y:ff
=] -y w) - y(N-1)... u(N-n+l)]

The results of measurements up to t = N + 1 can be written as:

u ol uod u E
N N1g+ N (B 22)
y ¢ e(N+1)

Hence we have:

~ T
: ! U
varD = 2 B B+ e(wD)? = N K (B 23)
e(N+1) e(N+1)
As in the time invariant case the least squares estimate is given
by
U T -1 T

. u ¢ T T 4

¢ ® @ y (B 24)

= O gy gy +OT O (gL Y +q>Ty)

By means of the matrix lemma:

1

(a+ B0t = At oAt p e catey (B 25)

the first factor can be rewritten as:

T T -1 1 T -1 1 T -1 T
(A¢N;‘¢N+hp @) ZT(Q’N‘bN) "T(¢N¢N) R ¢

1,T -1 T-1,1,T .1
X{L +@3 (o ) 97} P Coy oy




Now introduce for simplicity ¢ = Py then

oN+1) = (o )L oTy + (¢ Lt oly -

ST et e T e e oy -

. (¢T¢)"l &PT {1 +np-% (¢T¢)

T l l
A Py

(¢ ¢) t@Ty =

=A+B-C-1D

We find:
Az o0
¢ =3 oot (1 +ed Tt e eean = kan e
B~ -i: (pTey"t 0T +tp% Gl el i1 +cs>-%« i) teT -
~o3 Gl eTy = £ T et ved (¢l ety = kany
That is:
o(H1) = a(N) + KD (y - 9o)) (B 26)
where

1 -1

KD = = () ol +o3 (T 0T

Introducing

we have

K(N) = P(N) &DT{l + PP(N) mT}‘l (B 27)
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What remains is to find a recursive equation for P. Using (B 25)

we have:
_1,.T. -1 .1, T T -1 _
POHLY = 5 (g dgay) =5 Qg by o9 =
_ X 1,7 -1 1,7 -1 T 1.7 -1 . T.,-1

xoF (o 407} = % E»(m) - KAD{L +oPQD ¢} K(N)Tj (B 28)
Summarizing we thus have the equations:
(o(N+1) = o) + KO {y ~ @)

< Ky = pa) {1 + o) @ 13t (B 29)

\P(Nﬂ) =%— ED(N) - K(N){1 +<DP(N)&DT}' K{N)
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APPENDIX C

FIGURES
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ST LY
~200 A
-400 - . . . ' .

2 PARAMETER B
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0 100 200 300 400 500 600 700

Fig. 1 - The effect of prefiltering with (1wq—l) when the

input 1s a PRBS signal. Note the sudden changes in

the estimated b-parameter when there 1s a change
in the input,

The input signal is the steam pressure in the cylinders of

a paper mill drying section. The output is the paper moisture.

Measurements are from Billerud AB, Gruvin, Sweden.
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Stochastic approximation real time identification
with GAMZ = 0.1
Heavy line = Estimated value

Thin line = True wvalues
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Fig. 6 Identification of the system (10.22) using Kalman

approach. Rl-matrix equal to 0.01 % I
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Fig. 9 - The predicted (heavy line) and actual (thin line)

output from system (10.31) identified with

3.5 2.9 3
R1 = % 10
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