LUND UNIVERSITY

Linear Quadratic Control Package
Part | - The Continuous Problem
Martensson, Krister

1968
Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

Martensson, K. (1968). Linear Quadratic Control Package: Part | - The Continuous Problem. (Research Reports

TFRT-3002). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/79e83be7-d799-4aa1-8446-5d9041e475f9

LINEAR QUADRATIC CONTROL PACKAGE
PART I - THE CONTINUOUS PROBLEM

K. MARTENSSON

REPORT 6802 APRIL 1 1968
LUND INSTITUTE OF TECHNOLOGY
DIVISION OF AUTOMATIC CONTROL

LINEAR QUADRATIC CONTROL PACKAGE
PART I - THE CONTINUOUS PROBLEM

‘K. Martensson

Abstract

The numerical solution of the linear quadratic control
problem is discussed. Two algorithms based on the Euler-
Lagrange and the Hamilton-Jacobi approach are presented.
The relative merits of the approaches are discussed. Com-
plete FORTRAN programs for the algorithms are presented.
The programs can be used to design optimal multivariable
control systems and to compute optimal filters and pre-
dictors. The work has been carried out with the support

of the Swedish Technical Research Council.

Report 6802 April 1 1968
Lund Institute of Technology

Division of Automatic Control

1. INTRODUCTION

In this report we discuss numerical methods to solve the
so called linear gquadratic control problem and present
two complete program packages for the solution of the

problem. All the programming is done in FORTRAN.

There are many control problems which favourably can be
formulated as linear quadratic control problems, e.g.
steady state control of multivariable industrial pro-

cesses, optimal filtering and prediction etc.

The problem, which is well-known from the calculus of
variations, can be approached in two different ways. The
method associated with the names Euler-Lagrange-Pontryagin
reduces the problem to a two point boundary value problem
for a system of ordinary differential equations, while the
Hamilton-Jacobi-Bellman method gives an initial value pro-
blem for a partial differential equation. In the special
case of time-invariant systems, the two point boundary value
problem can be reduced to an initial value problem, and the
partial differential equation can be reduced to an ordinary

non-linear differential equation, the Riccati equation.

The two different approaches to the variational problem
thus immediately suggest two different algorithms. These
are presented in the report, and the advantages and dis-

advantages are discussed and compared.

The statement of the problem is given in section 2, and
the solution to the problem following the two different
approaches 1s given in section 3. In section 4 we present
and describe the routines required for the numerical so-
lution. Section 5 contains some examples for test purpose.
The listing of the programs and some typical outputs are

given in the appendices.

2. STATEMENT OF THE PROBLEM

Consider a linear time-varying dynamical system given by

the equation

dxCE) o acry x(t) + B(t) ult) (2.1)
dt

whepe the state x(t) is a vector of dimension n, the
control input u(t) a vector of dimension r, A(t) an

N x n matrix and B(t) an n x r matrix. A(t) and B(t) are
assumed to be piecewise continuous, that is aij(t) and
bij(t) are piecewise continuous. We now specify the ob-
jective of the system in the following way. Let t and

+. be given timepoints. Form the so called cost func-

1
tional
T
Vu) = = {XT(tl)°Q x(t.)) + & 7 {XT(S)°Ql(s)x(s)+uT(S)QZ(S)u(S)}ds
2 o1 2t
O

(2.2)

where we assume Q and Ql(S) to be symmetric nonnegative
definite matrices, and Qz(s) a symmetric positive definite
matrix. We also postulate that Ql(s) and Qz(s) are piece-

wise continuous.

The object is to determine a control signal for the sys-
tem (2.1) so that the cost functional (2.2) becomes as

small as possible.

We will assume that there are no constraints on the magni-
tude of the control vector u or the state vector x. From
a physical point of view this may seem to be a rather un-
realistic assumption, because we always have in physical
systems some kind of restrictions on the system variables.
The reason is that we under these assumptions are able to
get an analytic expression for the control signal, and
that this control signal will become a linear function of
the state variables. We can then realize the optimal sys-
tem by a linear time-varying feedback. (Thus 1t is not

impossible that the control signal in some cases grows

very large. However, by using the quadratic criteria
(2.2), large signals are much more punished than small
ones.) When solving the problem we will refer to well-
known results from the calculus of variations, and we
shall compare two possible methods to solve the problem,

namely:

A. Fuler-Lagrange Method
B. Hamilton-Jacobi Method

3. SOLUTION TO THE LINEAR QUADRATIC PROBLEM

A. Euler-Lagrange Method.

The method associated with the names Euler-Lagrange charac-
terizes the optimal trajectory by examination of the varia-
tion of the loss functional in a small neighbourhood of the
optimal trajectory. The method leads to a two point boun-

dary value problem, and the solution is primarily obtained

only for the initial state considered. We form the Hamiltonian
ZJQ(X,p,u) = XTle + uTQzu + 2pT(Ax + Bu) (3.1)
The Hamiltonian shall be minimized with respect to u, and

this is most easily done by completing the square.

o (x,p,u) = XTle + ZPTAX + {u + QZ—lBTp}T Q2{u + Qz-lBTp} -

- pTB Qz”l BTp (3.2)

We then get the stationary value

240°(x,p) = xQx + 2p A - pTBQ, " Bp (3.3)
for
u = - Qz_l BTp (3.“‘)

Notice the importance of the assumption that Q, is positive
definite. If Q, is only nonnegative definite, the control u

that minimizes the Hamiltonian (3.1) is not unique.

The canonical equations are

dx o) -1 T

—— 2 :AX—BQ B (3'5)
at)@ D 2 p

d o _ T

ﬁ:?}@x__glx_lqp (3.6)

with the boundary conditions

x(t) a (3.7)
o

p(tl) Q, - x(tl) (3.8)
Notice that this is a two point boundary value problem for
a system of 2n differential equations. n boundary values
are given at time t,» and n at time t,. The solution is gi-

ven only for the special initial state X(to) = a.

However, the linearity of the equations (3.5) and (3.6)
makes it possible to reduce the two point boundary problem
to an initial value problem. Introduce the 2n x 2n matrix
Z(t;tl) being a fundamental matrix to the canonical equa-

tiong (3.5) and (3.6). Hence

A -BQz_l BT
4 5(esty) = T(tyts) (3.9)
] 1 1
dt T
~Ql -A
and
z(tlgtl) =TI , (3.10)

where I is the 2n x 2n identity matrix.

Partition the 2n x 2n matrix Z(t;tl) into four n x n sub-

matrices in the following way

le(t;tl) ZlQ(t;tl)
Z(t;tl) = (3.11)
Zzl(t;tl) 222(t;tl)

The solutions to .the canonical equations (3.5) and (3.6)

can then be written

x{(t) = le(t;tl)b + ZlQ(t;tl) Qob (3.12)
p(t) = le(t;tl)b‘+ zzz(t;tl) Qob (3.13)
where b = X(tl). From (3.7) we have X(to) = a, and from

(3.12) we then get

—_ - . _l
b = (zll(to,tl) + le(tO,tl) QO) a (3.14)
provided that
det(le(tO;tl) + le(tO;tl) QO) # 0 (3.15)

This condition is obviously satisfied if the time difference

Tty -t is small enough, because

1
le(tl;tl) = I (3.16)
le(tl;tl) = 0 (3.17)

and the matrix Z(t;tl) is continuous because we assume the
matrices A, B, Ql’ Q2 to be pilecewise continuous. It can be
shown (with some effort) that the inverse always exists with

the assumptions made about A, B, QO> Ql and Q2'

Notice that the control signal u given by (3.4) is a func-
tion of time. Physically this corresponds to an open loop
control of the system (2.1), and is therefore less attrac-
tive from the control point of view. However, the linearity
of the canonical equations makes it possible to obtain a
feedback solution. Equation (3.4) gives the value of the
control signal at time t, u(t), as a function of the ad-
joint variable p at time t. p(t) can with (3.12) and (3.13)
be expressed as a linear function of the state variables

x(t). We then get
p(t) = S(t) =x(t) (3.18)

where

S(E) = (2, (t3t)) + B, (t5£00 318 (r3t)) + Ty, Cese)0 17
(3.19)

Tt can be shown that S is always symmetric.

The control variable is now given as

u(t) = - Q,7T(r) BT(E) 8(t) x(t) (3.20)

or

u(t) = - L(t) x(t) ‘ (3.21)

We thus have got a feedback solution, in which the gain
coefficients are functions of the time. Furthermore, the
solution is no longer restricted to a special value of the

initial state X(to).

B. Hamilton-Jacobi Method.

Typical for this method is that the problem is embedded in
a suite of problems, and the solution does not depend on
the sﬁecial initial state. Besides we will directly get the

feedback solution. Introduce the functional

T
1
V(x,t) = min { = XT(tl)Q x(ty) + Ly {XT(S)Ql(S)X(S) +
u 2 © 2t
@]
¥ uT<s>Q2<s>u<s>} ds} (3.22)

and form the same Hamiltonian as in A

23{(X,p,u) = XTQlX + uTQzu + 2pT(AX + Bu) = XTQlX + ZPTAX -
- pTBQQ‘lBTp + (u + Q2‘lBTp>TQ2<u + QQ_lBTp)
(3.23)

The minimum of the Hamiltonian with respect to u is

2dl°(x,p) = xTqux + 2pTAx - p7BQ,™BTp (3.24)

for

u = - QQ’ B p (3.25)

The functional V(x,t) must satisfy the Hamilton-Jacobi

partial differential equation

o) T, _
Vt +3{ (X,VX) =0 (3.26)
where Vt = %¥~ and Vx = grad_V. From (3.24) we then have
T -1, 7., T _
2Vt + % le + 2VXAX - VXBQ2 B VX =0 (3.27)

(3.22) provides the boundary condition

V(x,t,) = 1 XT(tl) Qx(t)) (3.28)

2
To solve the partial differential equation (3.27), the

boundary condition (3.28) suggests that we make the approach

Vix,t) = = x0(t) S(t) x(t) (3.29)

2
where S is an n x n matrix. There is no loss in generali-
ty if we assume S symmetric and nonnegative definite. (3.29)
is then a solution to (3.27) if S satisfies the non-linear

differential equation

45 4+ a%s + sa - sTBo,TBTs + Q= 0 (3.30)

dt

with boundary conditions given at the terminal time t

S(tl) = QO (3.31)

The matrix differential equation (3.30) contains n? non-
linear first order differential equations, and is the so
called Riccati equation. With the assumptions made about
the matrices A, B, QO, Ql and Qz, the solution to the

Riccati equation always exists and is unique.

As S is a symmetric matrix, the number of differential
equations to solve is then reduced from n? to n(n + 1)/2.
Notice that these equations are solved backwards in time
since the boundary conditions are given at the terminal

time tl.

In the minimum Hamiltonian (3.24) we have replaced the
adjoint variable p with the gradient VXT. From (3.29)

we have

T _ |
v, o= Sx (3.32)

and hence the optimal control law (3.25) becomes
u = - Q, B~ Sx (3.33)

The value of the control variable u at time t, u(t), is

thus given by

ule) = - Q2‘1<t> Bl () S(t) x(t) (3.31)
or
() = - L(t) x(t) (3.35)

Notice that the Hamilton-Jacobi method directly gives the
feedback control law (with time-varying parameters), and
that the solution is independent of the initial state X(to).
If we compare the results above with the results we get
from Euler-Lagrange method, we can see that they are the
same, which obviously depends on the fact that the system
is linear and the loss functional quadratic. However, the
two methods suggest two possible different ways to solve
the problem. By differentiating (3.19) with respect to
time, it can be shown that the matrix S given by (3.19)
satisfies the Riccati equation (3.30) with the boundary

condition (3.31).

4., NUMERICAL SOLUTION TO THE LINEAR QUADRATIC PROBLEM

In the preceding section we have shown two different ways
to solve the linear-quadratic problem, Euler-Lagrange and
Hamilton-Jacobi. In this section we will present two al-

gorithms directly based on the methods described in sec-

tion 3. Thus we will be able to compare the methods from
a computational point of view. We will also present the
complete program packages solving the problem for time-
invariant matrices A, B, Qq and Q2. All the programming
is done in FORTRAN (CDC-3600 FORTRAN). The results and

comparisons of the methods are presented in section 5.

A. Numerical solution with Euler-Lagrange method.

From the fundamental matrix

zll(t;tl) 212(t;t1)
Z(t;tl) = (4.1)

zZl(t;tl) 222(t;tl)
satisfying

A —BQQ—lBT
ST Z(tsty) (4.2)
dt _q AT
1

we have

- - 0 . . _l
S(t) = (le(t,tl) + zzz(t,tl)Qo)(zll(t,tl) + le(t,tl)QO)

(4.3)

In the time-invariant case we can give an explicite ex-
pression for Z(t;tl)

A —BQz_lBT

(t;tl) = exp (t—tl) ¢y
T

-Qq A

where tos t g tl. Tn the numerical calculations we now
proceed as follows. Form the matrix

A -BQZ'lBT

F = (t—tl} (4.5)

Then compute the matrix function

G = eF (4.6)

where ef is defined through its Taylor series expansion

2 3 iol
eF = I+ ¢ + £ + £ + .00t £ R 4.7)

21! 3! nt
The series converges for all matrices F (see subroutine
MEXP7T), and we then have Z(t;tl). Partition £ according

to (3.11) and form the matrices

(221(t;tl) + Zzz(t;tl)Qo) (4.8)
and
(le(t;tl) + zlz(t;tl)QO> (4.9)

(4.9) is inverted and the product
— . - - . _l
S(t) = (Zzl(t,tl) + Zzz(t,tl)QO)(le(t,tl) + ZlQ(t,tl)Qo)

(4.10)

is formed.

Finally we get the feedback matrix L(t) by some simple
matrix multiplications. We can see that except for the
matrix exponentiation, there are only very simple com-

putations involved. Now suppose that we want to compute

the feedback matrix L at tl, tl - AL, tl - 2ht, oo,
t; o= nat. Since the system is time-invariant, the funda-
mental matrix n(s - At,s) only depends on the time dif-

fepence At. We then start with computing Z(tl - At,tl),
S(tl - At) and L(tl - At). In (4.8), (4.9) and (4.10)

we then replace Qo with the computed S(tl - At), which

is the boundary value at t = t; - At, and get S(tl - 2At)
and L(tl - 2At). This is repeated until ty - nbt = T,
With this iteration method we can compute Z(tl - At,tl)
once for all, thereby reducing the computations involved.
In the time-varying case it is not possible to use this
procedure, and at the end of this section we will give

a brief discussion of the consequences of time-varying

parameters. The program package (appendix A) consists of:

LIOPCON Main program
RICCE Subroutine
MEXP7T Subroutine
GJRV Subroutine
NORM Subroutine

We give here a short description of the subroutines, its

parameters and the input-output required.

SUBROUTINE NORM (A, N, IA, S)

This subroutine computes the norm of an n x n matrix.
A. The norm S is taken as

n
S = min { max : |a N (4.11)
Parameters:
A-matrix
N-order of A

IA-dimension parameter

S-resulting norm.

SUBROUTINE GJRV (A, N, EPS, TIERR, IA)

Inverts asymmetric matrices by the method of Gauss-Jordan

with row-pivoting.
Parameters:

A-the matrix to be inverted. A is returned containing the

inverse A—l if the inversion has succeeded.
N-order of A.

IPS-value +to be used as a tolerance for acceptance of the

singularity of the matrix.

TERR-integer variable which will contain zero upon return
if the inversion is completed or -1 if any pivot element
has an absolute value less than EPS, in which case the

matrix is considered to be singular.

IA-dimension parameter.

SUBROUTINE MEXP7T (A, B, N, IA, NOTRACE)

Computes the matrix function B = ef where A and B are
n x n matrices. We define e by its Taylor series ex-

pansion

2
eA = I + A+ A o T

21

%
-+

(4.12)

o)

Tt is easy to show that this series converges for all
matrices A. Introduce the vector space Ln = {x|x an
n x n matrix}. Then Ln is a Banach-space, and the series

(4.12) is convergent if it is convergent in the norm.

We have
n n

A)] < Lalls (4.13)
n! n!

; A (b 1m)

and

n
Lall (4.15)

n!

1™ 8

n=o

are ordinary positive series, and (4.15) converges for
l!Alle From (4.13) the

a1l | |Al| towards the scalar-e

sepies (4.1Y4%) then is dominated convergent, which fi-

nally proves that
T — (4.16)

converges for all quadratic matrices A.

Further we notice that the relation

e2A = eA eA (4.17)

holds for all quadratic matrices A and

AtB - R (4.18)
if the matrices A and B commutate.

From (4.18) and from the fact that

e® =1 (4.19)
where ¢ is the null matrix, we get the inverse

(et = A (4.20)

Tn the numerical calculations, the great problem obvious-
1y is how many terms in the expansion we must sum up to get
accurate results. We will here make a very rough estimation
based on the number of significant digits that can be ob-
tained from the computer used. Suppose we estimate the

error with

n n
oL LAt et a1

From (4.17) we can see that instead of computing e® we

2 A" This
) = e

rof >

compute % and then take the square
e (e

means a scaling of the matrix before computing the sum,
but also one more matrix multiplication. With respect to
the execution time, we could then as well increase the
sum with one more term. Suppose that these two methods

shall give the same accuracy. We then get

LLE 2L [al]"
e I (4.22)
(n-1)! 5 n' |le”]]
[le”]]

If ||A|| is small enough, then IIeA[| = 1 and (4.17) can
be reduced to
[|a[] =n - 2772 (4.23)
We estimate ||A[| and e for some different n.
n e, Al
5 8 x 107° 0.625
6 b x 107° 0.375
7 vh x 10—9 0.219

The computer used (CDC 3600) has an accuracy of about
10 significant digits, which means that we shall sum up

7-8 terms in the series expansion. Instead of scaling A

so that |]A]| < 0.2, we have in the subroutine chosen to
compute and store A~ éi , and then scale A so
it 7l

10

7
that I]%T[I< 1.0 - 107 If the norm is too large, we

scale A with a factor 2n, where n is determined so that

|| < 1.0 - 10710 (4.24)

After the summation where the identity matrix is added,

the result is

B =-¢e (4.25)

The matrix 1s squared n times

0
B, = B
2
By, = By
n
_ 2 90 A
Bn = Bn—l = Bo = e (4,26)

By scaling with an appropriate term o instead of an in-
teger m, the number of matrix multiplications required

are reduced from m to n, where o™ & m. Here again we will
emphasize, that the estimations done are very rough, and
not in any way mathematically rigorous. However, the sub-
routine has given very accurate results even for some very
ill-conditioned matrices. MEXP7T has an option called
NOTRACE. This gives a possibility to shift the origin to
the centre of the eigenvalues. The sum of the eigenvalues
is equal to tr A (trace of A), and consequently the centre

is tr A/n, where n is the order of A. We then have

A= (Ao ALy oA (4.27)
n n

and

R (A - tﬁ ALy 4 (ti A1)

et = e (4.28)

But the matrices

Ao AL g (1.29)
n

and

te A 1 (4.30)

n

commutate, which implies that (4.28) can be written

L oA AL
et = e e (4.31)

We now compute

tr A
n

(A -
B = e

i)
(4.32)

with the method indicated above, and finally multiply
r A

each term in B with the scalar etn The origin shift

obviously makes the convergence of the series faster.
Suppose we have a 2 x 2 matrix A with eigenvalues L99
and 501. After shifting the origin we have a matrix with
eigenvalues -1 and 1, and the series expansion will give

much faster convergence towards el and e_1 than towards

501 499
e .

and e However, as we will see below, there are

cases when the trace computation is not necessary which

is the reason for the option.

Parameters:

A-input matrix
B-resulting matrix B = e
N-order of A and B
IA-dimension parameter

NOTRACE - is set zero if no

trace computation is wanted,

1 if the origin shift shall be done.
SUBROUTINE RICCE (A, B, Q0, Ql, Q2, S, N, NU, IA, IB, TD, IERR)
The inputs to RICCE are the system and loss functional ma-
trices A, B, Q0, Ql, Q2 and the time difference TD = t, - tT.
RICCE arranges the matrix
A —BQQ—lBT
EA = (t - tl) (4.33)
T
-Qq -A
and then, by calling MEXP7T, computes
EA (1.31)

Z(t;tl) = e

The fundamental matrix is partitioned and

— . . . - —l
S(t) = (le(t,tl) + 222(t,t1)Qo>(zll(t,tl) + ZlQ(t,tl)Qo)

(4.35)

is the output matrix. From (4.33) we have tr EA = 0 for all

matrices A, B, Q1 and Q> and hence when computing Z(t;tl)
we can skip the origin shift (which is zero) in MEXP7T,
thereby avoiding meaningless computations. RICCE has an
entry point named ITERATE. This gives us possibility to
compute the fundamental matrix Z(t1 - At, tl) once for all,
and then make use of the previously mentioned iteration
technique. We then proceed as follows. At the first call
to RICCE we have Q_ = S(tl) thereby computing Z(tl - At,
tl) and the output matrix S(tl - At). The fundamental ma-
tpix is carefully stored in an internal array in RICCE,
and will consequently never be destroyed by computations
outside the subroutine. In the main program the feedback
matrix L(tl - At) is then computed, and Qo is set equal
to S(tl - At). When computing S(tq - 2At) we now call
ITERATE and get

1

S(t, - 2At) = +

7 S(t

- at)) (2 ¥ Iq,5(t - AE)) T

(Z,) + 29,801y

(4.36)

using the formerly computed Zij:s. This is repeated until

t, - nit =t . Notice that this iteration procedure de-

minds the matrices A, B, Qq and Q, to be time-invariant.

Tn RICCE we have not made use of the symmetry of S5, a

fact that could give possibilify to decrease the execution
time. The peason for this is that the computations that
could be saved, are very few in comparison with those we
need anyway, and besides we have here a chance to get some
information about the accuracy of the computed S and L
matrices. If S begins to differ very much from a symmetric
matrix, the results should of course be treated very suspi-

ciously.

Parameters:

A-system matrix of order N x N.
B-system insignal matrix of order N x NU.
Q0, Ql-loss functional matrices of order N x N.

Q2-loss functional matrix of order NU x NU.

S-output matrix of order N x N.
TD-time difference t, - t.
TIERR-returned -1 if any inversion has failed.

TA,IB-dimension parameters.

PROGRAM LIOPCON

This is the main program administrating inputs and outputs.
I+ also makes the appropriate calls to RICCE or ITERATE
and computes the feedback matrix L. The inputs to LIOPCON

are:

N-order of the system (max 10).

NU-number of insignals (max 10).

ITIME-number of equidistant points in which S and L are
computed and printed. The terminal time T is not included
in ITIME.

ITER-ITER=0 means that the fundamental matrix is computed
at each step. ITER=1 means that it is computed only in the
first step, and the entry point ITERATE in RICCE is used
in the other steps.

TIMEDIF-time difference between the points (At).

A-system matrix of order N x N.

B-system insignal matrix of order N x NU.

Q0, Ql-loss functional matrices of order N x N.

02-loss functional matrix of order NU x NU.

Concerning the input formats, see appendix A. The main
program LIOPCON can only handle the time-invariant case.
If the matrices A, B, Ql and Q2 are time-varying, we ap-
proximate them with piecewise constant matrices over some

properly chosen time intervall At. In the main program we

must then update the matrices and replace Q_ with the
in the previous step computed S before each call to
RICCE. In (4.36) the Zij:s now depends not only on the
time difference At, but also on the actual time t, and

the fundamental matrix must be computed at each step.

A

A-proper choice-of At must-be-a compromise between the
time variations in the matrices, the accuracy desired
and the increase of execution time which is a consequence

of a reduction of At.

B. Numerical solution with Hamilton—Jacobi method.

Solving the linear-quadratic problem with Hamilton-Jacobi
method seems at first glance to be a much more straight-
forward procedure than Euler-Lagrange method. The only
computations involved are the solution of the system of

non-linear differential equations (the Riccati equation)

9 4 aTs + sa - sBQ, 'BTS + Q) = 0 (4.37)

dt
with boundary conditions given at the terminal time

S(tl) = Qo (4.38)

and the computation of the feedback matrix

Lt = Q, ey - BTr) - s (4.39)
There are many numerical methods to solve equations of the
type (4.37). We have here chosen to use a fourth order
Runge-Kutta method, which probably is the method that gives
the best accuracy with respect to the effort required. We
then solve the Riccati equation (4.37) backwards in time,
and after each step the feedback matrix can be computed.
In the main program (appendix B) we will only consider the
time-invariant case, which makes it possible to compute
the matrices BQz—lBT in (4.,37) and Qz—lBT in (4.39) once
for all. The inverse QZ'—l is then computed before star-

ting to solve (4.37), and there are then no more inver-

sions involved in the computations. We have also here
neglected the fact that S is symmetric, thereby hoping

to get an alarm when the accuracy is too bad.

The program package (appendix B) consists of:

RKRICCE Maln program

GJRV Subroutine
RK1STMAT Subroutine
FUNC Subroutine

SUBROUTINE GJRV (A, N, EPS, IERR, IA)

This is the same routine as used in LIOPCON.

SUBROUTINE RK1STMAT (T, YIN, H, YE, N, IA)

Solves the differential equation %% = F(S,t), where S is

a quadratic matrix, with fourth order Runge-Kutta method.
Parameters:

YIN-the value of S at time T.
H-integration step length

YE-the value of S at time T + H.
N-order of S.

IA-dimension parameter.

SUBROUTINE FUNC (N)

This subroutine computes the matrix function

F(S,T) = - ATs - sA + SBQz_lBTS - Qq

The matrices A, BQz_lBT and Ql lie in a common field. The

parameter N is the order of the system.
PROGRAM RKRICCE

Main program administrating inputs and outputs. The in-

puts to RKRICCE are:

N-order of the system (max 10).

NU-number of insignals (max 10).

ITIME-number of equidistant points in which S 1s com-
puted.

NUMBDIST-distance between printouts. This parameter is
required because of the step length, that often must be

chosen very small to get good accuracy (see section 5), and

this —would give —an enormous lot of useless. printouts

If NUMBDIST is set equal to M, the matrices S and L will
be printed at t = tl’ t = tl - M x TIMEDIF, t = tl -

oM x TIMEDIF etc. The feedback matrix L is computed only
at those points where we want it printed out.
TIMEDIF-time difference between the points in which S is
computed (integration step length).

A-system matrix of order N x N.

B-system insignal matrix of order N x NU.

Q0, Ql-loss functional matrices of order N x N.

Q2-loss functional matrix of order NU x NU.

Concerning the input formats, see appendix B. The program
is easily modified to handle the time-varying case. We
then approximate the time-varying matrices with matrices
that are piecewise constant over the integration step

length, and update A, Ql and BQQ_lBT before each call to

RK1STMAT, and Q2—lBT before the computation of the feed-

back matrix L.

5. EXAMPLES

A, Double-integral plant.

The system is

Xm .

dt 2

dx2

—= = u (5.1)
dt

We choose the cost functional

t
2 1 2
2V = Xq (tl) + 7 0.5 °* u” ds (5.2)

t
o

which corresponds to the matrices

0 1 0 1 0 0 0
A = ; B = ;3 Q= 3 Qp =
0 0 1 0 0 0 0

I
w
O
N
1
7~
o
.
&3]
h—

This relatively simple choice gives us possibility to cal-
culate an explicite expression of the matrix S(t). We will
not carry through the computations, but just state that the

solution is

1 -(t-t;)

S(t) = . v (5.3)

D —(t—tl) (t—tl)
where
D=1-2" (t-t)° (5.4)

3
Notice that
1 0
S(t,) = = Q (5.5)
1 0 0 o)

We have now possibilities to compare the computed solution
with the exact solution, and get an idea about the accura-

cy of the methods. We choose arbitrarily to compute S(t)

from t = tl to t = tl - 10.0, In the Euler-Lagrange-
based program LIOPCON, the S- and L-matrices have been
computed in 50, 20, 10, 5 and 2 points, corresponding
to the time differences 0.2, 0.5, 1.0, 2.0 and 5.0
between the points. For every case we have compared
the difference between computing the fundamental matrix
just once (iteration method), and computing it at each
step. The largest deviation from the exact S-matrix
was found to be two units in the tenth digit, which
must be regarded as a very good accuracy, considering
that the computer used (CDC-3600) gives 10-11 signifi-
cant digits. The execution time varies from 1 to 8 se-
conds , the longest time for computing 50 points with
time difference 0.2, and the fundamental matrix compu-
ted at each step. The printouts for the case 10 points
(time difference 1.0) are shown in appendix C together

with the exact S-matrix.

The results obtained from LIOPCON shall be compared with
those from Hamilton-Jacobi-based RKRICCE. If we choose
the integration step length h = 0.1, S must be computed
in 100 points to cover the time interval. The execution
time then showed to be rather short, 3 seconds, but the
accuracy no better than U-5 correct digits. When h was
reduced to 0.01 (1000 points), the accuracy was improved
to 7-8 correct digits, but the execution time increased
to 16 seconds. This is still not as accurate as the re-
sults obtained from LIOPCON, in spite of the much longer
execution time needed. It is also obvious that a further
attempt to improve the accuracy by decreasing the step
length will be very expensive with respect to the execu-

tion time.

B. Oscillator.

The system is

+ u (5.6)

The cost functional is chosen as
2 1 2
2V = xq (tl) + / 0.5 « u” ds (5.7)

t
O

We then have the matrices
A = ; B o= 5 Q= 5 Qq = ;Q2=(O.5)

The exact solution is also here possible to compute and is

given by
cos2 (t-t.) -k sin 2(t-t,)
1 1 2 1
S(t) = =
D 1 . . 2
-5 sin 2(t~tl) sin (t—tl) (5.8)
where
D= 1 - (f=t,) + T + sin 2(t-t,) (5.9)
1 5 1
We have
1 8
S(t.) = = Q (5.10)
1 0 0 o)

Both methods gave approximately the same results concer-
ning accuracy and execution time as in example A, with
the same different choices of the parameters ITIME and

TIMEDIF.

An example of the output from LIOPCON is given in appendix
D (10 points, time difference 1.0 sec.), and a computed
feedback matrix L is presented in fig. 1 (50 points, time

difference 0.2 sec.).

1.0

Ly
. 6.0 "L 8.0
0 . T T T+ * T T —>
20 o 4.0 10.0
. time difference
ty - t
-10
1.0
Lyg
0 T T 7 T * {
2.0 4.0 6.0 8.0 10.0
time difference
t1 -t

Fig. 1
(Oscillator).

Components of the feedback matrix L.

C. Double-integral plant.

Consider again the system

—i:X

dat 2

de

— = U (5.11)
dt

The matrices A and B are the same as in A, but we choose
now the cost functional matrices Ql and Q2 as
1 1

Q = R Q = (1) (5.12)
iR 1 5 2

In this case the matrix S will show to converge to a sta-
tionary value as the time difference t,-t increases, and

we will therefore consider three different boundary values
of S(tl) = Q-

We choose

Q = ; Q = ; Q = (5.13)

The computed feedback matrices L are shown in fig. 2. We
can see that independant of the boundary value S(tl),

L(t) (and S(t)) reaches its stationary value for a time
difference of about 5 seconds. The time needed for com-
puting the stationary feedback matrix with program LIOPCON
was U seconds (30 points, time difference 1.0 sec.), and
the L-matrix had then converged to its stationary value
with nine correct digits. When computing the fundamental
matrix at each step, LIOPCON shows a weakness. Not only
does the execution time increase (7 seconds), but the
accuracy decreases to about 8 correct digits. This obvious-

1y depends on the fact that the norm of the matrix

A -BQ, "B

T

(t—tl) (5.14)
_Ql A

Fig, 2 Components of the feedback matrix L for various Q-

(Double integrator plant).

200 e L,
' 0 0
Q
: ° (o 0>
X' PP R PP PR R Ly
T T T —>
2.0 4.0 6.0 t-t
/
X B S R L12
1 1>
QO 1 2
]_D— L"
T T T -
2.0 4.0 6.0 H-t
/]
10.0 %
5.0 1
¥
¥ %k
xxx"X*xxxxxxx#Xxxﬂxxx L12 <10 0>
0
Ly 0 10
I ~
T T
2.0 4.0 6.0 t-t

becomes too large. This means too many scalings and sub-
sequent matrix multiplications, in which the errors grow

too large.

When comparing the results above with the Hamilton-Jacobi

program RKRICCE, we choose the integration step length

h = 0.01, which proves to give 8-9 correct digits. How-
ever, the execution time was as long as 40 seconds, and
this clearly shows the great advantage using Euler-Lagrange
method when computing stationary optimal feedbacks. We

will finally mention, that there may be cases when the
program RKRICCE is preferred. If the system is time-varying
with rapidly varying coefficient, where it is necessary

+o make the time interval over which we approximate the
matrices very small, then it could be more economic to

use the Runge-Kutta method.

Another advantage may be the storage requirement. The pro-
gram LIOPCON as presented in appendix A needs about 7k
depart from the system routines needed for input-output,
while RKRICCE only requires about 2.5k. The main reasons
for the large storage area required for LIOPCON, are the
many arrays that are used, especially in subroutine MEXP7T,
and that we have tried to avoid using the "common" and
"equivalence" possibilities, thereby hoping to make the
routines as flexible as possible. If we restrict the num-
ber of insignals and state variables allowed to five,

the storage requirement will probably decrease to about
3k.

REFERENCES :

1.

Athans, Optimal Control, McGraw-Hill Inc., 1966

2. Kalman, Contributions to the Theory of Optimal
Control, Bol.Soc.Mat.Mex., vol 5, 1860
3. Astrdm, On the Choice of Smpling Rates in Optimal

Linear Systems, Report RJ 243, 1963, IBM San Jose

Research Laboratory, California, USA

Al

APPENDIX A

¥

ES

pod

[

G,
£

nt

A2

T o

» 5 [

APPENDIX A
(continued)

i~y [= o~
i : ; e

: » -
R - e
Y B " b 5 j
o ~ e . v ; - SIRTS

APPENDIX A

(continued)

A3

Al

APPENDIX A

(continued)

iy e e oy W

.

APPENDIX A

(continued

A5

AB

APPENDIX A
(continued)

APPENDIX A

(continued)

A7

A8

APPENDIX A

(continued)

&

—

et

b
Pl
)
o

APPENDIX A

(continued)

A9

Al0

APPENDIX A

(continued)

B1

APPENDIX B

e

B2

APPENDIX B

(continued)

] ; oy - st L S -~

- = . @ * 4 LS V od ia wr 2
= 2 7 - 4 — : e o

B : . ; st - ; o
e K ! w] - T R o

e L b * > 3 v [U - . RS, SN 4 - -
b ! A i — Yo H g ~

3 : -] TR)

APPENDIX B

(continued)

B3

B4

APPENDIX B

(continued)

et

APPENDIX B

(continued)

B5

Bt

APPENDIX B

(continued)

APPENDIX B

(continued)

B7

{

L

00,0
S-INITIAL=GO

1.0000000000+000
-0,0000000000¢000

TD= 1,00000

=3,0000000000+000
~0,0000000000¢000

APPENDIX C

Cl

EXACT S-MATRIX

5.9909999999=001
5,9999999999=001

COMPUTED S-MATRIX

6.,0000000000~001
6.,00006000000-001

509999999999-001
509999999999-001

6.,0000000000~0012
6.,0000000000-001

T0= 2.00000
EXACT S=-MATRIX

1.5789473684-001
3.1578947368-001

COMPUTED S=MATRIX

1.5789473685-001
3.1578947369=0061

T0= 3.00000
EXACT S-MATRIX

5.,2631578947<002
1,5789473684-001

COMPUTED S=MATRIX

5,2631578950-002
1,5789473685=-001

T0= 4,00000
EXACT S=-MATRIX

2.,2900763358-002
9.1603053433-002

COMPUTED S=MATRIX

2.2900763359-002
9.4603053436-002

3.4578947368~001
6.3157894736-001

3.1578947369~-001
603157894738-001

1.5789473684~-001
4,7368421052-001

1.5789473685-001
4,7368421054-001

9,1603053433-002
3.66414221374~001

9,1603053436-002
3.66412241374-001

iD=

=

5.00000
EXACT S=-MATRIX

1.4857707540-002
5,9288537550=002
COMPUTED

S=HMATRIX
1.4857707509-002

5,9288537550-002
5,92868537547=002

2,9644268775-001

TH

=

6.00000

5.9288537548-002
EXACT S=MATRIX

2:9644268774-0014

6.89655172414-003
4.1379310344-0062
COMPUTED S-MATRIX

APPENDIX C

(continued)

C2

6.8965547236~-003
4,41379310343=-002
70

=

7.080000

4,1379310344-002
2.4827586206-001

EXACT S=MaTRIX

4,4379310346-002

4,3541364295-003
3,0478955007-002
COMPUTED S-MATRIX

4,3541364293=-003
3,0478955006~002

To=

8.00000
EXACT S-MATRIX

2.9214295033-003
2.3369036027-002
COMPUTED

o~

3

=MATRIX

20.9211295034=-003

2.3369036027-002
2,3369036027-002

1.8695228822-001

TD=

=

2:3369036027~002

1.8695228822-001
2.00000
EXACT S=MATRIX

2.4827586208-0041

3.0478955007-002
2:1335268504~-001

3.0478955007-002
201335268505-001

2,0533880903-003
1.8480492813-002

COMPUTED S=MATRIX

2,0533880899=003
1,8480492609<-002

1,8480492843-002
1,6632443532-001

1.8480492813-002
1.6632443531-001

APPENDIX C

(continued)

C3

TD= 106.00000
EXACT S-MATRIX

1,4977533699-003
1,49775337060-0902

COMPUTED S=MATRIX

4.,4977533700-002
4.4977533699-001

1,4977533699-003
1.,4977533699-002

1,4977533700-002
1.4977533700-001

PRINTOUTS FROM PROGRAM LIOPCON

THE SYSTEM IS

APPENDIX D

D1

MATRIX A
-0.,0000000600¢000 1.0000000000+000
=1,0000000000+000 =0,0000000000+000
MATREIX B
=0,0000000000%000
1.,0000000000¢000
MATRIX QO
1,00000000002000 =0,0000000000+000
=0,0000000000+000 =0.00000006000¢000
MATRIX (1
=0,0000000000+000 =0,0000000000+000
-0.0000000000¢000 =0.,0000000000+000
MATREX Q2

5.,0000000000-001

NUMBER OF EQUIDISTANTY POINTS= 10
(EXCLUDING THE FInAL TIME T1)

TIME DIFFERENCE BETWEEN THE POINTS=

1.00000

THE FUNDAMENTAL MATRIX IS COMPUTED ONLY AT FIRST STeP

TD=0.0
S=INITIAL=QO

1,00000000006+000 =0,0000000000+000
=0,0000000000+000 =0,0000000000+000

L-INITIAL(Us=LsX)

6.00600000000¢000 0,0000000000+000

APPENDIX D

(continued)

D2

T0= 1,00000
COMPUTED S=MATRIX

1.,8890629221-001 2694204141873-001
2.9420411874-001 4,5819576716-001

COMPUTED L-MATRIX(U=s=LeX]}

5.,8840823750-001 9,1639453431~-001

TD= 2.00000
COMPUTED S=MATRIX

85.,1260397426=002 =1,1200604424-001
~1.4200604141-001 2,4473759918-001

COMPUTED L=MATRIX(U==LaX)

=2,2404202223-001 468947519836-001

Th= 3,00000
COMPUTED S=MATRIX

2.3675225470-001 =3,3748215454-002
=3.3748215456-002 408106914455-003

COMPUTED L-MATRIX(U=-LsX)

~6,7496430915-002 9,6213828940-003

YD= 4.00000
COMPUTED S-MATRIX

9.,4832309335-002 1,0979886602-001
1.0979886602-001 1.2742746386-001

COMPUTED L-MATRIX(U=-LeX)

2.1959773204-001 2.5425492777~-001

TD= 5,00000
COMPUTED S=MATRIX

1.28290975%93-002 =4 o,3368956915-002
=4,3368956314~-002 1.4660949959-001

COMPUTED L-MATRIX{(U==L2X])

APPENDIX D

(continued)

D3

-8.6737913822~-002 209321881919-001

TD= 600000

COMPUTED S-MATRIX

1+2684241416-001 =3e6244926962=-002

=3.6911926957=002 1.07414599275=-002
COMPUTED L-MATRIX(U==LoX)

=7.3823853916=002 2.1483198551-002

TD= 7.00000
COMPUTED S=-MATRIX

7.5735057698=002 6,5999163273-002
6.5999463275=-002 5,7544837741-002

COMPUTED L=MATRIX(U==LaX)

13199832655=001 11502967542-001

TD= 8.,00000
COMPUTED S-MATRIX

2.3152200431-003 =1,5742828034-002
=1.5742828033=002 1.07646687938-001

COMPUTED L=MATRIX(U==LaX)

=3.1485656066-002 203409337597-001

TD= 9.,00000
COMPUTED S=-MATRIX

8.,0011456267-002 =3.6190434585-002
=3.,6190434585~-0302 1.6369500275-002

COMPUTED L=MATRIX{U==LaX)

=7.23808691473-002 362739000552-002

Th= 10.00000
COMPUTED S-MATRIX

6o0774714544-902 4.3294409499~-002

APPENDIX D

(continued)

D4

463294109196=002 2.80670204476-002
COMPUTED L-MATRIX{U=~LeaX)}

8.,6588218394-002 5:6140408951-002

