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" 4. INTRODUCTION

C Historics.
Historti®

The geometric concepts which are described in this veport
were introduced by Wonham and Morse'fl}, [3] and to some
extent by Basile and Marro {21. In their original paper
[1], Wonham and Morse intended to find a more general so-
lution to the decoupling problem, i.e. the problem of
finding a suitable control which allows different subsets
of output signals to be manipulated independently. For
this purpose, a set of algebraic concepts, the geometric
state space theory, were introduced by which it was pos-
sible to describe "input-output" properties of a linear
s&stem without using transfer functions or other input-

- output operators. These concepts can be regarded as ex-

tensions of the concepts "eigenspace" and "controllable

subspace",

The geometric state space theory has later been used with~
in other areas of control theory, e.qg.

o  the algebraic regulator problem [61, [91],
o invariant properties [7], [8]

0 minimal observers for a linear functional of the
state [51, {7 1

o invertibility and minimal system inverses (4}, [111,
[12] '

o0 system zeros [8], f121

o model following {10]

This report is a summary of a series of lecturés glven at
the Division of Automatic Control in Lund. It intends to

. survey and interpret the basic results within the geomet-

ric state space theory. The more applied part of the theory
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'x = AX + Bu x {0} = Xq

 is only briefly squetched  and is used rather as illustra-
"tions of the algebraic concepts. The proofs in the origi-
{j”ﬁal papers are sometimes slightly changed and additional

explanations and comments are provided. References fox the

j;'thQOrems will not be given in the sequel. The reader can
" find most of the results in [17, [21, [3), [4].

Notations and Mathematical Background.

The notations that are used in the report are listed se-
parately in the Appendix, where also rules for evaluation
of algebraic expressions and properties of invariant sub-

spaces are summarized.

Model,

Only time invariant linear systems will be considered.

The system 1s assumed to be described by a triple of li-
near maps A: X - X, B: U = X, C: X - V¥ and an initiai con-
dition %, € X, where X, U and ¥ are linear vector spaces
of finite dimension. By this we mean either a continuous
time system of the form

(1}
y = Cx

or a discrete ‘time system

xt+l = Axt +‘But _ xor- XO

Y = Cx .

(2)

t




In most cases it is ‘immaterial which system is considered
even 1f the details in the proofs sometimes may be slight-
ly different. '




5 . A~INVARIANT SUBSPACES. -
pefinition.
Let X be a vector space and A: X » X a linear map .

pefinition 2.1. A subspace V < X is A-invariant if AV < V.

i’An A-invariant subspace has thus the property that all ele-
f”ments in the subspace are mapped into the subspace itself

ifunder A,

Interpretation.

What is the meaning of an A-invariant subspace V for the
systems {1) and (2)? Consider e.g. (2) and let Xg € ¥ and

u=0, i.e.
X = Axt xO €

Since | is A-invariant, it follows dizectly that X, €V
for t > 0, i.e. the trajectory remains within the sub-
space V. The interpretation for the continuous time sys-
tem (1) is identical. Assume for instance that the A-in-
variant subspace V is such that

V¥ < ker(C}

Since the trajectory is completely within V, this means
that the output signal y£, t > 0, is identical zero for
all initial conditions xo,E‘V{ The subspace V is thus
an unobservable subspace to the systems (1) and (2}.




Maximal A-invarlant Subspace.:

An A~-invariant subspace contained in ker(C) can thus be
interpreted as an unobservable subspace. We intend to
ééVelop this interpretation further and to give a cha-
racterization of thg A-invariant subspaces which are con-
tained in a given’éubspgcens-é X. We intend to show that
there exists a unique maximal A-invariant subspace *
~contained in §, and how this subspace is constructed.

_Introduce the class V(S) consisting of all A-invariant
- subspaces V contained in 8§, i.e,

W(S) = VIV < S5 AV @ v

(Ve Sn A"lv} | ' (3

it

This class has the folldwing properties:

{i) V(8) is closed under summation, since
let vy, V, € ¥(S). Then

Vl + Uz S+ 8§ =8

A(U1+92) = AVl + AUZ o Vl + Vz
Thus V; + V, € V(S)

(11) V(8) is partially ordered by <.

{iii} $§ has Ffinite diwmension.

The properties (1) - (iii) means that V(3) has a maximal
element which is denoted Y+, (
elements in V(8).) -

Take e.g. the sum of all




~If VO is A-invariant, i.e. satisfies (4), then by neces-
sity V¥ = Vu, since all elements in V(S) satisfy V< § =
~7UD. If this is not the case, the dimension must be de-

cgreased. Take instead
_ ~1
-Vl = 85N A UO

etc., This leads to the following segquence

(5)

Theorem 2.1. The maximal element V* is given by V* = v,

where ¢ is the least integer such that %I = UU+1 in the
sequence (3). Moreover, the seguence (5) converges in

at most dim(8) steps.

" Proof. Let us first show that V_ is an element of Vs .
By construction {5} it follows that

vV =

el A=l




i.e. VU € V(S) according to (4). It then remains to show
that UU is maximal. The sequence (5) has the following
properties:

(a)y =~ V.

i is monotonously decreasing, i.e. 8§ 2 UO 2 V2 ...

{b) Y2 ig the lower bound, i.e. Vi > V* for all i.

These properties are easily shown by induction. Property
{a) is true for i = 1 gince

- -1 -

Assume that (a) holds for i < g. Then for i =g + 1

lU c:SﬂA-lU___ =

= A_‘
v 1 sn g q-1 q

g+
Property (b} is shown in a similar way. It is true for
1 = 0 since

V*CS=V0

Assume (b) holds for i < g. Then for i = g+l

g+l = g at

Vg = 8N A"ty o opx : | (6)
From (a) and (b) it follows immediately that the sequence
Vi convergeS'towgrds the maximal element V*. From (a) we
also see that as long as the segquence does not converge,
the dimension of Vi must he decreased by at least one in
each step. Since V¥, = §, it thus follows that the sequence
converges in at most dim(S) steps.

a]




Remark.. Since Ui < Ui-l c 8 according to the proof of
Theorem 1.1, the sequence (5) can be replaced by the

following equivalent sequence

= -1, ..

Example 2.l. Consider the discrete time system

b4 = Ax X, given
- £ 0 (8)
Yy = Cxy

Find the set of states xg-for which the output y, is ze-
ro in the first k step, t.e. yy = y{ = ... =y, = 0. From
{8) we have directly

vy = calxy = 0 3 =0, 1, «our k

The initial states which produce zero outputs in k steps
are thus given by |

ker(CAj) & 0

"
e
=)

0

Introduce the subspaces Vs i=0,1, ..., k, by

v, = 0 kex(cady | " (9)

[

=0

It is immediately seen that V, = ker(C) 'and V. = Q. By

0.
rewriting (9) we have




1 . a1 p
ker(cad) = ker(t) n | n ker(cad) (10)
0 3=1 :

Obgerve that

i+l

ker(CAJ)

i

[

{xléA3x'= 0, 3 =1, 2, «v., 1+1}

g=1

{XICAJ(Ax) =0, 3=0,1, «.., i}

I

i .
{xiAx € N ker{CAJ)}
=0

i .
n ker(CAj)
=0

A“l

= a7y,
x

A substitution into (10) glves a recursion for Ui which
is identical to the sequence (5) i.e,

UO = kar (C)

1

Vi+l = ker{C) n A Ui

This result gives further interpretation to the sequence
{5). The subspacesl’_k produced by this sequence is thus

the set of initial states X which produces zero outputs
in the first k step if § = ker (C).
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Example 2.2. The following numerical example shows the

construction of V%, Let

1 0 1 ¢ 1
A= |1 L 0 § = {1
o 0 1 0 1

where {.) denotes the subgpace spanned by the column vec-
tors. Application of the sequence (5) gives

0
UO == l O
0
' 0 1 “Lro
v; =41 o} n
0 0 1l |0
o 11 10 -1 fo
=11 olnij-1 1 1l/{1
0 1] o o 1o
fo ) jo 0 fo
= 21 0y n {1 = {1
0 I’J 50 \OJ
‘0 1 1 "o
0 1 0 0
o 1} - fo 0
=41 0bop il =11
o 1 {0 o

Since V, = VZ} the sequence has converged in one step

and




1l.

e e

o
ve o= {1
Lo

VS

Note that the inverse of A exists in this case, which
simplifies the computation of the inverse image.

Exercise. Show that V* produced by the sequence (5) with
§ = ker (C) equals the unobservable subspace for the pair
(A,C), i.e. the null space of the observability matrix

0.
i

Cf, Example 2.1.
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3. (A,B)-INVARIANT SUBSPACES.

Definition.

Let X and U be vector spaces and A: X - X and B: U -» ¥
a pair of linear maps.

Definition 3.1. The subspace V¥ < ¥ is (A,B)~invariant if

there is a linear map F: X " U such that (A+BF){ < V.

-~

This means that ¥ can be made (A+BF)-invariant by a suit-
able choice of I,

Interpretation.

The map F in Definition 3.1 means a state feedback for
the systems {1} and (2), e.g. for (2}

Xpp1 = (A+BF)Xt ¥, given

Analogously with the interpretation of A-invariant sub-
spaces, this means that a trajectory can be forced to
remain within the subspace V by application of a suit-
able feedback u, = Fxt‘

Characterization.

The following tﬁeorem‘giVQS'neCeSSary and sufficient con-
ditions for a given subspace to be (A,B)~-invariant.

1




13,

Theorem 3.1. The sgubspace V is (A,B)=invariant if and
only if Al < ¥V + R,

Proof. (only if) If V is (A,B)~invariant there is a 1i-
near map F such that (A+BR}V < V. Let v € ¥ be arbitra-
ry. Then

{(A+BF)v = w € V

Thus

Av = w ~ BFv € V + B

(1f} Let Vir Vo ey vq be a basis for V. There axist
W, € ¥ and Z; € U such that

AVi gwi + Bzi i = l} 2! LI J q
Let F: X =+ U be a map such that Fvi = - z;. This map
exists since Vit Vor ey vq is a basis. Thus

(R+BF)V* =u; €V i=1, 2, ..., q
Remark. Note the similarity between the condition in
Theorem 3.1 and the definition of A-invariant subspaces.

Remark. The proof of Theorem 3.1 shows how a linear map
F can be constructed if the subspace is (A,B)-invariant.

Associated with an (A,B)-invariant subspace V¥ there are
many linear maps F such that (A+BF)Y < v, Introduce the

class F(V) consisting of all such F:

"E(V) & {FIl(A4BF) P & 1)
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It is possible to characterize all elements in this feed-
back class by means of a gingle element Fot

" Theorem 3.2. Assume that Fo € E(V). Then F € F(V) if and
cnly if B(F—Fb)v < V.

Proof. (1f) Follows directly by

i

(a+BF)V = {A &+ BF, + B(F-F,)) V-
< (B+BFy )V + B(F-Fy) v ‘
oV + ¢ =y
(only if) Let v € ¥ be arbitrary. Then
(A+BFG)V =w e
(A+BR)vV = 2 ¢ ¢
Subtract
B(F—Fo)v =z ~ 9w £ |
Remark. Note that the condition of the theorem is equi-
valent to either of the following two conditions
(a) B(F-Fy)V & 1.0 B
(b)  (F-Fg)v = 871 (p)

Sometimes it 1% desirable to find a common F such that
a set af.(A;B)*invariant subspaces Vie =1, .., g
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are {(A+BF}-invariant, i.e.

If there exists such a common F, the (A,B)-invariant sub-
spaces Vi are said to be compatible. General necessary

and sufficient conditions for a given set of subspace to
be gcompatible are not known. It is, however, possible to

give such conditions in a special case:

. Theorem 3.3, The (A,B)-invariant subspacaﬁvl and U2 are
compatible if and only if ¥, N1 V¥

2 is (A,B)~invariant.

Proof. (only if) Let F be such that vy and vV, are (A+BF) -
invariant. It follows directly that (A+BF) (V; D v,) <
{iFf) Let
F, 2 E(Vy)  Fy € E(W,) Ty, € E(V; 0 V)
A _
Moreover, let Vl and 62 be any subspaces such that
A
= 1 =~
vy =0, @ vy, v, =0, 0 v 0w,
Then also

. A ' A

It follows from the independence of the subspaces that.

there are projections Py, Py and Pio such that




16.

. A '
P, .= proj. onto b1 along ?2
D = prod A 1
P, . = proj. Qnto Uz along Ul
o . A o A
P1p T proj. onto v, Q V5 along Ul Vz
Set

F o= FyPy + FaPr, + FyP,

Then F ¢ E(Vl}, since
A
= (A+BF1)Ul + (A+BF12)(VlﬂU2)

cVy +Vnv, =

whera properties of the projections have bsen usad. By
symmetry, it also follows that F ¢ E(UZ).

A sufficlent condition for compatibilit ¢an, however,
P ¥ .

be given in a more genaral case:

Theorem 3.4. If the (A,B)-invariant subspaces Vis 4 = 1,
2y vsvy g, are independent then they are compatible.

- Proof. Since the subspaces |, are independent we have

et St b

!}.1 + ';",- ’f' & s 3 '5‘ vq = Ul @ Uz @ " 9 Uq

then thers exist srojections P, onto v, along r oy
: k i i
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Then F € g(Ui) for all i gsince

x

(A+BXE‘ij)Ui = (A—i—BFi)Vi < Ui

Maximal (A,B)-invariant Subspaces.

Let § @ X be a given subspace and consider all {(A,B)-
invariant subspaceg contained in S. Introduce the class
W(8) of all such subspaces:

t

wig) » {Vja¥ = ¥V + B, V = 8}

(11}
1

i

{VIV & 8§ n A “(V+B)}

As was the case for A-invariant subspaces, there is a

unigue maximal element V* in this class since

(i} W(S8) is closed under summation. Let Vl and V, be
elements in W(S). Then Vl + Uz € W(S) since

A(V1+U2) = Avl + AV2 c V., + B+ V., + B

1 2

=‘U1 + UZ + B

Ul + V2 g 54+ 8 = 8§

(i1)  W{$) is partially ordered by c.

5

(iii} § has finite dimension.




lgt

Based upon the sequence. (5), we construct a similar se-
quence for (A,B)-invariant subspaces:

VO =8

(12)
= 8N A"lwi+8)

Theorem 3.5. The maximal element V* is given by U# = VG

where ¢ is the least integer such that VU = More-

og+l’
over, the sequence (12) converges after at most aim(s)

steps.
Proof. The proof of Theorem 3.5 is only a simple genera-

lization of the proof of Theorem 2.1. It is left as an

exercise for the reader.
E3

Remark. Note that Theorem 2.1 is a special case of Theo-
rem 3.5 with B = ¢,

The section is concluded by some examples.

Example 3.1. Consider the system

Rygq = B, + Bu, + th Xy = 0

where v, 1s a disturbance which is measured. The follow-
ing feedforward problem shall be solved. Find a control
law of the form

]

u, = Fxt + Hvt
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such that the output signal Ve is uneffected by the dis-

turbance Vi Under what conditions can this problem be

salved?

The closed-loop system becomes

= (A+BF}xt + (G+BH)Vt Xg = 0
Ye = CX¢

Consider the impulse response. The impulse response shall
be zero since Ve is not permitted to influence Y- Thus

x

ey = (ATBF)x, Vx, € Im{G+BH)

Ye & Cxt =0

This means that an (A+BF)-invariant subspace V and a map
H shall be found so that

ker{C) o V o Im(G+BH)

Take V as the maximal (A,B)-invariant subspace contalned
in ker{C). The feedforward problem can thus be solved if
and only 1f there is a map H such that

In{G+BH) o y* .

It can be shown that this condition is equivalent to the
following '

Im{G) = ¢* + B (13)

Hence, there is a control law with the desired proper—
ties if and only if (13) holds.
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Example 3.2. The following example illustrates the con-

struction of V* from the sequence (12):

Cf. Example 3.2. The sequence (12) becomes

-
o

I

- oo

[
| al

Since UO =

) 1
0y n

) 0
1 1 0
otn =1 i
R
1 0
0y n <1 0
1 0

0
1
0
0
0
= 41
0

0 +
.1
0
1

V,+ the sequence has converged and the maxi~

mal (A,B)-invariant subspace contained in S is given by

*

it
< oo

Qe

Example 3.2. Characterize the feedback class F(V*). The

map
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belongs to F(V*) since

Ry L
(A+BFD)V =

O
- Qo o

Moreover, in this case

0 1 1
VE N B = {1 0 0 {0} = {0}
0 1 0

According to the remark of Theorem 3.2, it follows that
every F = [fl £, f3] € F(V*) is characterized by

1 0 1 f2 f1+f3+l“

0 (fl f2 f3+l) 1 0 = <0 a = {0}
0 0 1 0 0
l.e.
fl + f3 = =1

Exercise.Formulate and solve the correspondence of
Example 2.1 for (A,B)-invariant subspaces.
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4. CONTROLLABILITY SUBSPACES.

" Definition.

Let B: X » X and B: U » X be a pair ¢of linear maps, where
U and X are vector gpaces. Let us first give a definition
which directly relates to the systems (1) and (2).

Definition 4.1. A subspace R ¢ X is a controllability sub-
space if there are linear maps F and G such that

R = {A + BF | Im(BG)} “

Definition 4.1 depends on two unknown parameters, the
maps F and G. An equivalent definition which only depends
on one parameter is the following.

Definition 4.2, A subspace R = X is a controllability sub-
space 1f there is a linear map F such that

R={A+BFI| BN R} o

The equivalence between the definitions follows by the
following lemma and the fact that Im(BG) < B..

A :
Lemma 4.1. If B = B and {AIB} = R, then {AlB 0 R} = R.
Conversely, if {AIB N R} = R then there is a linear map
G such that {AlIm(BG)} = R.

Procf. It follows that

A

R={alB) =B +aB + ... + PR3

A
B >8

: A A
Since we also have B < B, it follows that R < B n R.
Thus -
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R = (alB) < {AIB n R} (14 a)

The subspace R is A-invariant, since by the Cayleigh-
Hamilton theorem

AR = AB + A°B + ... + "3
fn*l
= BB + A%B + ... + ) aiAi B
i=0
< R

where o; are the coefficients in the c¢h.p. of A, Thus
AkB N R < AR &« R

and by induction

Aj(B i R =R

Hence

H]

(BIBAR}=BNR+A(BAR + ...+ A" 1R

CR+ R+ ...+ R=R | (14 b)
By (14 a) and {14 b) it follows that R = {AlB N R} and
the first part in the theorem is proven. To prove the

second part, let bi be the i:th column in B and let
rl ‘o rq be a basis for B N R. Then

for suitable'gij. Let G =‘{gi§}. Then B N R = Im{BG).

o
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Interpretation.

Definition 4.1 gives a direct interpretation of a controll-
ability subspace R for the systems (1) and (2). The maps F
and G are parts of a control of the form

u=PFx + Gv ' (15)

where v is some external input. The closed-loop system be-
comes

% = (A+BF)x + BGv

The controllable subspace from the input v shall be exact~
ly R. If this can be achieved by a suitable control of the
form (15), R is thus a controllability subspace. The use
of controllability subspaces will be further illustrated
in connection with invertibility and decoupling below.

Characterization.

A controllability subspace R can be characterized in the
following way. ' ‘

Theorem 4.1. A subspace R © X is a controllability sub-
space if and only if ' _

{i) R is (A,B)-invariant
(11) R ="(A + BF | BN R} where F € F(R)

" 'Remark. Note that condition (i) in Theorem 4.1 is equiva-
lent to the condition that F(R) is nonempty.
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Proof. {only if) There exists a map F such that {A + BF |
| B n R} =R. Then

(A+BF)R < R
c¢f. the proof of Lemma 4.). Thus R is (A,B)~-invariant and
F € F(R). It remains to show that F can be chosen arbitra-

ry in F(R). Set

20 _ g

R = gnr+ @B B AR + ...+ (aiERITHB A R
The following recursion is obtained.

2(0) g

li

R = aesm el L g2 (16)
R o p - ta+BF I B R

Consider the same recursion for an arbitrary Fy € F (R}

RO L g

A1) A(i-1)

it

'(A+BF1) + BN R

g R oia s BF) | B n R}

| . L (L) _ A1)
It is shown by induction that R'™' =R for all i. The

equality holds for i = 0. Assume it holds for i = g, For

i =g+ 1 we have
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g la+l) {A+BF1)ﬁ(q)'+ BN R

i

.{A+BFi)R<q) + BNR

(2 + BF + B(Fl—F)]R{q) + B A R
< (aspp) R {9 B(Fl—F)R(q) + BN R
c (a+Br) R 4 g g op = platl)

where the remark of Theorem 3.2 and the fact that R(q} c R
have been used in the last step. In a similar way

olatl) (2+8F) R ‘Y 4 3 g ¢

0

(2 + BF; + B(Fl—F)]R(q) + B n R

< (A+BF1)2(q) + BAaR

!

(a+F R Y 4 g g = RO

showing that R(q+1) = Q(Q+l). The equality holds then
A
for all i and especially for i = n. Thus R = R.

(if) Follows directly from (ii) and Definition 4.2).
o

A controllability subspace can be characterized in an alterna-
tive way which does not redquire the computation of F.

For this we need the seguence (16) and the following lem-

ma. The proof of the lemma is omitted here and can be

found in [1].
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Lemma 4.2. Let R be (A,B)-invariant and ® < B. Then the
following equality holds for an arbitrary F € F(R)

BN R + (A+BFIR = R n (a%+B)

If Lemma 4.2 is applied to the sequence (16) we get
r(0) =y
RS =5 ar+ armmrY - pn arfitD g,

M) . g

gince R(i—l) < R and R is (A,B}-invariant. The following
criterion for a subspace to be a controllability subspace

is thus obtained.

Theorem 4.2. The subspace R is a controllability subspace
1f and only if

(i) R is (A,B)-invariant
(11) R = R™ yhere
RO = g

2 (1)

R n (ar‘171) gy 1, 2, vvu, n

it
il
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Maximal Contrcllability’Subspaces.

Let § © X be a given subspace, We shall show that there
is a unique maximal controllability subspace R* contained
in §.

Theorem 4.3. Let S © X be a given subspace, There is a

unique maximal controllability subspace R* contained in
S. This subspace is given by

="{A + BF | B 0 v*} (7

where V* is the maximal (A,B)-~invariant subspace contained
in § and F € F(V*),

Remark. To construct R* we must thus first apply'the se-
quencé (S) to obtain V*. After that an F ¢ E(U*) is com~
puted. The subspace R* is then obtained by (17).

Proof. According to Lemma 4.1, R* given by (17) is a con-
trollabillity subspace since g = B N V¥ ¢« B. Moreover, by
Theorem 4.1, R* is independent by the choice of F € F{U¥)
and is thus unique. It then remains to show that R* is
maximal. |

A
Let R be an arbitrary controllability subspace contained
in 8§, i.e,

i

. A . A
{2 +BF [ 5n ) F € F(R)

A
S >R

A
Since R is (A B) —~invariant according to Theorem 4.1, it

follows that R < V* by the max1mallty of V*, Hence, there
is a subspace 0 so that ' '

\
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px =R o ¥

There exist projections with the following properties:

s
i

1 = proj. onto.ﬁaalong R

5 = Proj. onto R along )

ja)
it

Moreover, let F € F(V*) and zet

F,o= FRy o+ ?Pz

Then F; € F(V*) since
* A o
(A+BF, ) VT = (A+BFP, +BFP,) (VeR)

A AA
(A+BF)V + (B4BF)R

i

where the properties of the projections Pl and P2 have
A
been used. We also have Fl € F(R) since

Ay A
(A+BF1)ﬁ (A+BFP1+BFP2)R

(A+B§)ﬁ < ﬁ‘

]

Since F, belongs to both the classes F(V*) and F(ﬁ),
it follows that :

. A .
R = {A+BF) | BNRYc {a+ BFy | B N y*} = g*.

A
since R « V* The first equality follows from Theorem
4.1, Since R is arbltrary, R* must be maximal.
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Remark. Theorems 3.5 and 4.3 show that there exist a
maximal.iA,B)—invariaﬁt subspace V* and a maximal econ-
trollability subspace R* contained in a given subspace
8. Since R* is also (A,B)-invariant, cf. Theorem 4.1,
we thus have the ordering § o U* = g%,

Properties.

Let R ¢ X be a given coentrollability subspace. Since R
is also (A,B)-invariant, there is a linear map ¥ such
that

(A+BF)R < R

Associated with the (A+BF)}-invariant subspace R is some
of the eigenvalues of A+BF, namely the eigenvalues of

(A+BF) | R

Let us first examine how the eigenvalues of (A+BF) | R
change for different choices of F € F(R). |

Theorem 4.4. Let R be a controllability subspace and let

o(s) be an arbitrary monic polynomial of degree dim(R).
Then there exists F € F(R) so that the ch.p. for

(A+BF) | R is a(s). Moreover, if 0 #+ b € B N R is arbit-
rary, then F can be chosen 50 that b in addition gaone-
rates R under (A+BF).

Remark. b generates R under (A+BF) if the vectors b,
(A+BF)b, ..., (A+BF)n_lb'span R.
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Proof. Let F, € F(R) be arbitrary. By the definition of
a controllability subspace:s

R = {A + BF I 8 N g} {19)

Let &) & A + BFy. Let by by ... b be a basis for B n R
and let Py be the largest integer so that the vedtors

p,=1
1l

b
are linearly independent. Set

=bl

Xr. =Alrj""l+bl j =2‘; 50y pl

Then ry € R and the vectors Y17 Yoo =y rpi are linear-

ly independent, If pi < dim(R) let p, be the largest in-
teger so that the vectors '

b

are linearly independent., fet

ry = Byry_q + b, 3=y + 1, ol by (20)

Then rj € R and the vectors Tys Yor eves Lpytpg are 1i-
nearly independent. Proceed recursively in this way un-
til

R = span(rl, Tor seey rs) s = dim(R)

According toI(lQ) this will happen after a finite number
of steps. '




32,

For the vectors ry we have

(21)

=Ar +b. i:l’ LI L S“l

where b; € B N R and gs is arbitrary in B N R. Let z; € U
be such that

Bz, = b, i=1, 2, ..., 8

Since the vectors ry are linearly independent there is a
map F, such that

A substitution into (21) yields

Tigy = ApHBF)r, = (A + B(Fy+F,))x, (22)
Thus, R is cyclic with generator bl,—i.e.

R = {A + BF, ] Im(bl)} FO = Fl + F2

Well~known theorems for single-input systems can how be
applied to show that the ch.p. for (A+BF0+blkT) | R can
- be made equal to a(g) by a suitable k. The c¢hoice F =
'zVFO + zlkT, where Bz, = bl’ proves the theorem.

Another interpretation of controllability subspaces is
the following. Consider the systen
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"% = Ax + Bu x{0), = 0.

Set
t Alt~s)

x{u,t}) = f e Bu{s)ds
0

let S = X be a given subspace. To which state x{u, tl) €
€ § can we control the system if we reguire that the
trajectory x(u,t), t € [O,tl}, remain within S? This
question is answered by the following theorem.

Theorem 4.5. Let 7 be the set of states x € S Such that

for some u

(i) _ x{u,t) € 8§ ¥t € [O,tll
{11) x(u,tl) = R

Then 7 = R*, where R* is the maximal controllability
subspace contained in §. Moreover, for all trajectories
with the properties (i) and (ii) we also have x{u,t) €
€ R¥, t € [0,ty].

Proof. Take u = Fx + Gv go that
="{A + BF | Im(BG)}

Linear maps F and G with ‘this property can be found ac-
cording to Lemma 4.1. Set

) A
A s A + BF B 4 BG ‘ {23)

It is well known that the controllable suhspace for the
pair (ﬁ é) equals the image of the controllability gramian

R 7 l 2.
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R* = Im(R) (24)

A . Ap .
t1 A(t1“S}AAT AT(tl-s)
R= [ e BR e ds (25)
0 : |

Let us first show that R¥ < 7. Let x € R*. Then x = Rw
for some w by (24). Choose

Amp
AT {t,~1)
vi{t) = gTe 1 W

A substitution into (25} yields

f1 Ae;-s),
X =Rw= | e Bv(s}ds
S0

This means that the equation
. 5
% = Ax + Bv %(0) = 0

has the solution x(tl) = X. Moreover, since the controll-
A A

able subspace for the pair {(A,R) equals R*, we also have

x(t) € R*, t € [0,t,]. Set '

u = Fx + Gv

and compare with (23). Then x(u,t) € R* « 8§, ¢ € {O,tll,
and x(u,tl) = X. This x € 7 and R¥ « 7,

We shall also show that R¥ o 7. Let U* be the maximal
(A,B)~invariant subspace‘éontained in 8. According to
Theorem 4.1 '

=
it
n
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Vo= ur

where VU = Uu+l‘ Agsume x € 7. Then there exists an in-
put v 50 that

x(u,t) € § t € [0,t;]
x{u,tl) = oy

and x(u,t) € V5. If x(u,t) € V,, then x(u,t) € V;. Thus
Ax(u,t) = x(u,t) - Bu(t) € v, + B

This means that

x(u,t) € Vg0 ARy = v

By induction it follows that ¥{u,t) € U = V¥, Let F ¢
€ F(V*) and define w(t) by

v{t} = Fx(u,t) - u(t)

Then

x(u,t) = (A+BF)x(u,t) + Bv (t)

and thus

BY(t) = x(u,t) — (A+BF)x(u,t) € Y% + p* = px

since %{u,t) and %x(u,t) belong to V*, We have then shown
that g
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Im(Bv(t)) < B n v* , ¥t € [0,t]

Than

£ (A+BF) (t;~5) .
x = x(u,ty) = [ e Bv(s)ds
0 P

€ {BA + BF | Bn Uk} = R*

and thus Z o R*¥. Since we have also shown that 7 < R¥%,
it follows that Z = R*, The last statement in the theo-
rem follows directly by varving the final point of time

tl.
. o

Remark. The maximal controllability subspace R¥ contained
-in §, can thus be interpreted as the set of states in §
which can be reached from the origin with a trajectory
which does not leave 8. If § = ker{C), where C is the

~ output matrix in (1), we then have a clear interpreta-
tion of the set of inputs which leavés the output unef-
fected, i.e. the kernel of the input-output operatoxr,

This interpretation is essential in the system inversion

problem treated below.

Svstem Inversion.

Consider the system (1) with x(0) = 0. The system (2)
defines a map 8 from the input space U to the output
space Y by

N

. t ,
vit) = (su){t) = ¢ 7 P (88 py (5)ds t
0

0 (27)

iv
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We will give conditions when the map ¢ i injective, i.e.
when the system (1) 'is left invertible, Since & is a 1li-
near map, 6 is injective if and only if

(28)

if
o

é(u) =0 =1

The following theorem gives necessary and sufficient con-
ditions for left invertibility.

Theorem 4.6. The system (1) is left invertible if and on-
ly if '

A1) ker (B)

i
L

i
Lo

(ii) U* n B
Remark. Note that (ii) is equivalent to R* = 0 by Theorem
4.3. Moreover, it is easily seen that (i) and (i1i) is

equivalent to the condition B"l(v*) = 0.

Proof. (only if) Let us first show (i). Let w € ker (B)
and take the input as

ult) = w t >0

Then
t A(t s)

(su) (t). = [ ce des = 0
0

and according to (28}, u(t) =w = 0, i.e. ker(B) = 0

To show (ii) let x € U* 0 B. Then we also have x € R*
according to Theorem 4.3. By Theorem 4.5, there ex1sts
an input U so that the state of (1) satisfies x(t ] =ox
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and x(t) € ker(C) for t € [O,tl}. Take

[0 0 g £t<t

|
1 Fxi{t) £t > ¢

1
u =
1

* -
where F € F(V ). Then

(gu) (t) = Cx(t) =0 t >0

and thus u = 0 by (28). Hence

tl ﬁ(tl-s)
x = x{ty) = { e Bu(s)ds = 0
0

which shows that x = 0, i.e. * pn B= 0.

i

{if) Assume that y{t) {6n) (t) = Cx(t) = 0 for t > 0.
Then'x(t) € ker(C) ¥t » 0. According to Theorem 4.5,
it follows that x(t) € R*. But R* = 0 by (ii1) and thus
x{t) = 0 ¥t > 0. Hence

t
0 =x(t) = [ ¥ % pyuiyas ¢ 5 0
0

which implies that Bu(t) = 0. Since ker(B) =0 by (i),
it follows that u{t) = 0 ¥t > 0. Left invertibility then

follows by (28}).
o




Decoupling,

The geometric concepts introduced above can be used to
formulate and solve the 80 called decoupling problem,
cf. Wonham and Morse [1]J, [31, [4].

Consider the systém
X = AX + Bu (30)

Yy =€

i x i=l’ 2’ ll.’r

i

where y; denotes different output vectors. Apply a con-
trol of the form

r
u=Fx+ ] Gv
121 171
i.e‘
r
X = (A+BF)x + BG, v, (31)
i=1 .
Yi =Cix i =lf 2; “.7' r

To have the system decoupled, the maps ¥ and G; shall be
chosen so that the input vy in (31) only influences the
output ¥y and no other output. Let Ri denote the cons
trollable subspace from vy in. (31), i.e..

Ry = {a + BF | Im(BG,)} , {32)
We note that Ri is a controllability subspace. The con~

dition that vy does‘not influernce yj if i ¥ j, can now.
be formulated in the following way
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CjRi.= 0 i+ 3 (33)
Moreover, the input vy shall influence the output Y-

We require pointwise controllability in the output space,
i.e.

C;Ry = Im(c;) (34)

By a simple rewriting of the conditions (32), (33) and
(34) , we are now able to formulate the restricted de-

coupling problem (i.e. no dynamic compensation is allowed) .

Find controllability subspaces Ry» =1, 2, .o., r, and
a map F such that '

(i) Ry ={A+BF | B n R;}
(11} R, =« n ker{C.)
i J&1 J
(iii) Ry + ker(c;) = X (35)

Note that (i) is equivalent to (32) by Lemma 4.1, (ii)
is equivalent to (33) and (iii) is equivalent to (34).

The condition which is most difficult to handle is (i),
iz€. to find a common F in the classes E(R;). If only
the conditions (ii) and (iii) are considered it is temp-
tating to take Ri maximal in .

n ker(c.)
j¥i J
i.e. Ry = RI.-ThiS'subSPace can be constructed -according
to Theorem 4.3, It is, however, not certain that .the sub-
spaces'Ri'are compatible, i.e. condition (i) may fail.
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This is the reason why, the restricted decoupling prob-
lem is yet unsolved in its most general form. Different
conditions can, however, be introduced which guarantées
that R} are ‘compatible. If dynamic compensation is per-
mitted, the general problem is solved, see Wonham and
Morse [3]. '

Here, the decoupling problem will be solved in a special
case, namely if

rank {C} = n
(36)

This condition means that the state vector has been par-
titioned into r subvectors which are to be controlled
independently by the inputs vy in (30). The condition
(36) is equivalent to the following condition

13 1

ker(Ci) =0 . (37)
1 : :

i
Necessary and sufficient conditions for the existence
of a decoupling control law of the form (30) in this
special case are given in the following theorem.

Theorem 4.7. Assume that the outputs ¥y in (30} have been
chosen so that (37) is satisfied. Then, the restricted
decoupling problem has a solution if and only if

;z’;_ + ker(cy) = X i=1,2, ..., ¢
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whereuR:-is the maximal controllability subspace con-
tained in

1] ker(cj)'
J#i

Proof. (if) It is immediately seen that (ii) and {(iii)
in {35) are satisfied. It then remains to verify (i}).

The subspaces Rz are independent since

Ri n (jii Rj} < (jgi kerfcj)] n ker{ci)

according to the assumption (37), It then follows by
Theorem 3.4 that {Ri} are compatible, i.,e. there exists

Then from Theorem 4.1
* :

i.a. {1} is satisfied.

{(only if) Trivial.

The section is concluded by some examples,
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Example 4.1. Consider

I
it
]
-t
w
h
B

oo

Is R a controllability subspace?

Use Theorem 4.1. Let us first examine if condition (i)
of the theorem is satisfied. Compute

1 1
AR = {-1 -2

1 0

11 11 11 1 1 1 0
R+B=41 2, +4{1 o0}=41 2 1 gbt=1do 1 o

100 100 1 ¢ 1 0 o o0 1

It is seen that AR « R + B, i.e. R is (A,B)-invariant by
Theorem 3.1. We have then verified condition (i) in Theo-
rem 4.1. To verify (ii) of Theorem 4.1 an F € F(R) must
be calculated. Such an F is given by )

Evaluate {A + BF | B n R}. In this case
1 {1

1 1
BAR=41 dblnit 2V=:
1 o 0l




-1
A+ BF = {0 -1
0. 0

Since n = 3:

BN R+ (AHBF) (B n R) + (A+BF)% (B

.

{A+ BF | Bn R}

1 1 1
(1 0 1 1 1

=41 -1 1y =141 2}=1p
1l 1 1 1 0

It then follows that R is a controllability subspace.

Exanple 4.2. Let

o o 1] 1 o o 0
A=1]1 0 o B =10 1 s=10 1
0o 1 0 o 0 10

44,

n R

Compute the maximal controllability subspace R* contained
in §. Use Theorem 4.3. Compute first the ‘maximal (A,B)-

invariant subspace V* contained in $ by the sequence
i.e.

(5),




4] ] 1] 0
Vl=0 ".Q' 0 +
% )
o 0 0
= {0 l( n
1 DJ g1l
0 ¢ 0 ]
= {0 it n 41 = {0
1 ] 0 1 0

The sequence has converged in one step and

0 ¢
V= = 10 1
1 0

Compute F € F{y*):

¥ o -1
F o=
0 1 0
Moreover,
{0
B n U*.m 1
0

R* is then computed by Theorem 4.3 as

R ="{A+BF | BN V¥
0 0 0. 0} [0
= + + 41 =01 1l = J1
0 i o 1} 1o

45,
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Example 4.3. Can the following system be decoupled by

a control law of the form (31)7?

First we see that

ker(C} = ker = 0

1 0
0 1 0
0 1

and condition (37) is satisfied. This means that Theorem
4.7 can be applied. We have

1 0 o 0

ker(cl) = ker = {0
0 1 0 1

1

ker(C,) = ker{0 0 1] = {0
0.

Compute the maximal controllability subspaces R{-and R;-
contained in keffcé) and ker(Cl) respectively. This is

done by Theorem 4,3. The maximal (A,B)~invariant subspa=-
ces Uf-and Vg

contained in kef(cz)'and ker(ci) feSpectivew
ly are given by: ‘
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A common F in the classes F(V{}'and F{U%) are given by

(38)

Moreover,

% o
B n Ul = 41

o)
R

0
¥
.B 0 U2 = 10
1
0 0
A+ BF = |1 0 Q
c -1

application of Theorem 4.3:

{5 + BF | B n U’i}
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It is easily verified that

(1 1.0 )
RE + ker(c)) = 4o 1+ la} = {o | = )5
(0. 0 1 0)
RY + ker(C,) = {0} + 40 1b=10 1 o} =g?
0

By Theorem 4.3 it follows that the system can be de-
coupled. The feedback matrix in (31) is given by (38).
To compute the feedforward matrices Gl and G2 in (31),
solve BG, = Siir 1 =1, 2, wvhere Si is a basis matrix
for B n V¥. Hence

1
0 Gl =
1
1 o
1 G2 =
1 1

The solutions becone

|1 ¢

Gl =

,
A decoupling control law is thus given by

0
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APPENDIX

"Hotations.

¥ F

R, B

e O o o

Im(AY or A
ker {A)
AY

Projection

Basis matrix

Span (xl,...;x

av

linear subspaces
linear méps V

Zero space

empty space

the range space of A
the null space of A
{Xlx = Av, vey

the image of V under A

{xIBxEYV)

the inverse image of V under A

{xlx = Xy + Xy, xlEUl, xzevz}

the sum of Ul and 02

Direct sum of Vl and Uz. The
sum of Ul and 02 is direct if
every element x in U1+V2 can
be written x = Xy + X, with
unigue xlEUl, xzevz.
Intersection of Ul and V2‘

The orthogonal complement of V

P is a projection onto Ul
along Vy if le=xl and Px,=0
for all xlEUlAand all'xéevg.
The projection exists if vln
ngz = 0,

V is a basis matrix for V if
the columns of v are linearly
independent and span V.

The subspace spanned by the
vectors xl,xz,,..,xk

The restriction of & to V.




Algebraic Expressions.

(AL (+r = v v,
(a2) " tyyl < AT

(B3)  A(V,+V,) = Avl + av,
(84) A(V; 0 V) @ AV 0 av,

(85) (a+B)V, < AV, + BY,

(B6) Uy M (VytVy) o Uy 0 Uy + Uy n v, (= g v, oV

(A7) (ker(n))t = m(aT)

Properties of Invariant Subspaces.

It V v i=1,2, be two A-invariant subspaces and let r:'i (8)
be the ch.p. Ffor A}L’ y i=1,2,

{A9) A!Ui is a map Ui -5 Ui.

{AL0O) ¥f Ul < U2 then dl(s} divides dz {g).

{(A11) U“L is AT-:anarlant and the ch.p. d(s} for A can he

wrltten di{s) d (s)é (s), where d (s} is the ch.p.
L
v
i

forAl




