Identification of Helicobacter pylori and other Helicobacter species by PCR, hybridization, and partial DNA sequencing in human liver samples from patients with primary sclerosing cholangitis or primary biliary cirrhosis

Nilsson, Hans-Olof; Taneera, Jalal; Castedal, Maria; Glatz, Elisabeth; Olsson, Rolf; Wadström, Torkel

Published in:
Journal of Clinical Microbiology

2000

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Identification of *Helicobacter pylori* and Other *Helicobacter* Species by PCR, Hybridization, and Partial DNA Sequencing in Human Liver Samples from Patients with Primary Sclerosing Cholangitis or Primary Biliary Cirrhosis

HANS-OLOF NILSSON,1 JALAL TANEERA,1 MARIA CASTEDAL,2 ELISABETH GLATZ,1 ROLF OLSSON,2 AND TORKEL WADSTROM1

Department of Infectious Diseases and Medical Microbiology, Lund University Hospital, Lund,1 and Transplantation Unit, Department of Surgery,2 and Hepato-Gastroenterology Unit,3 Department of Medicine, Sahlgrenska University Hospital, Sahlgrenska, Gothenburg, Sweden

Received 13 August 1999/Returned for modification 3 November 1999/Accepted 20 December 1999

Helicobacter pylori was identified in human liver tissue by PCR, hybridization, and partial DNA sequencing. Liver biopsies were obtained from patients with primary sclerosing cholangitis (*n* = 12), primary biliary cirrhosis (*n* = 12), and noncholestatic liver cirrhosis (*n* = 13) and (as controls) normal livers (*n* = 10). PCR analyses were carried out using primers for the *Helicobacter* genus, *Helicobacter pylori* (the gene encoding a species-specific 26-kDa protein and the 16S rRNA), *Helicobacter bilis*, *Helicobacter pullorum*, and *Helicobacter hepaticus*. Samples from patients with primary biliary cirrhosis and primary sclerosing cholangitis (11 and 9 samples, respectively) were positive by PCR with *Helicobacter* genus-specific primers. Of these 20 samples, 8 were positive with the 16S rRNA primer and 9 were positive with the 26-kDa protein primer of *H. pylori*. These nine latter samples were also positive by Southern blot hybridization for the amplified 26-kDa fragment, and four of those were verified to be *H. pylori* by partial 16S rDNA sequencing. None of the samples reacted with primers for *H. bilis*, *H. pullorum*, or *H. hepaticus*. None of the normal livers had positive results in the *Helicobacter* genus PCR assay, and only one patient in the noncholestatic liver cirrhosis group, a young boy who at reexamination showed histological features suggesting primary sclerosing cholangitis, had a positive result in the same assay. *Helicobacter* positivity was thus significantly more common in patients with cholestatic diseases (20 of 24) than in patients with noncholestatic diseases and normal controls (1 of 23) (*P* < 0.00001). Patients positive for *Helicobacter* genus had significantly higher values of alkaline phosphatases and prothrombin complex than *Helicobacter*-negative patients (*P* = 0.0001 and *P* = 0.0003, respectively). Among primary sclerosing cholangitis patients, *Helicobacter* genus PCR positivity was weakly associated with ulcerative colitis (*P* = 0.05). Significant differences related to blood group or HLA status were not found.

During the past few years *Helicobacter* infections have been reported to be associated with certain diseases in the liver of some animal species such as *Helicobacter canis* in dogs (10), *Helicobacter pullorum* in poultry (31), and *Helicobacter hepaticus* (33) and *Helicobacter bilis* (12) in mice. These findings, in conjunction with the role of *Helicobacter pylori* as a major pathogenic factor of chronic gastritis, peptic ulcer disease, gastric mucosa-associated lymphoma, and gastric cancer (7), demand further studies to explore the possibility of a relationship between *Helicobacter* infection and liver disease in humans.

Primary sclerosing cholangitis (PSC) and primary biliary cirrhosis (PBC) are diseases affecting the human liver. The etiology of PSC is unknown (6). There is ample evidence that the disease, but not the course of it, is associated with specific HLA antigens (24). About 65% of PSC patients are positive for anti-neutrophil cytoplasm antibody in serum (1). Few studies have suggested that pathogens may cause PSC (29), but this was not confirmed (4). Clinical symptoms are jaundice, pruritus, right upper quadrant pain, fever, and fatigue (25). Complications involve bacterial cholangitis, hepatosplenomegaly, and gallbladder and biliary stones (6, 13). The disease is characterized by fibrosis of the extra- and/or intrahepatic bile ducts, biliary fibrosis and cirrhosis, portal hypertension, liver failure (6, 13), and cholangiocarcinoma (3). Diagnosis is based on the cholangiographic demonstration of multiple stenoses, dilatations of the biliary tree, and a cholestatic liver laboratory profile. PSC is correlated with ulcerative colitis (UC), Crohn’s disease, and other forms of inflammatory bowel disease (6, 26).

PBC is an autoimmune disease characterized by destruction of the intrahepatic bile ducts and inflammation of the portal system, followed by tissue fibrosis and liver failure. Lethargy, pruritus, and jaundice are common symptoms (16), and PBC may be associated with inherited abnormalities of immunoregulation (16). Diagnosis is based on a cholestatic liver laboratory profile, the demonstration of serum antimitochondrial antibodies, and a characteristic histological picture.

The aim of this study was to investigate if *Helicobacter* gene sequences in general, and *H. pylori*, *H. bilis*, *H. pullorum*, or *H. hepaticus* in particular, could be detected in human liver samples from patients with PSC, a disease with many features suggestive of an infectious etiopathology. For comparison, we studied liver samples not only from patients with another cholestatic disease, namely, PBC, but also from patients with noncholestatic liver cirrhosis (NCLC) as well as from controls with normal livers.
Salmonella typhi isolated from dog feces, were kindly provided by M.-L. Hänninen, Department from patients with PSC (bacterial strains was used previously to test the specificity of the different primers Lund University Hospital. DNA was extracted as described above. A range of (15 to 20 mg/specimen) were homogenized in 300 ml of homogenized liver tissue was added to 100 ml of extraction buffer (75 mM KCl, 3 mM EDTA, 150 mM Tris-HCl [pH 8.0], 0.75% Tween 20), and the mixture was vortexed and incubated at 22°C for 15 min. The samples were heated at 90°C for 10 min and cooled on ice for 2 min. An ion-exchange resin (AG 51-X8, 20 to 50 mesh; Bio-Rad Laboratories, Hercules, Calif.) was added for a final concentration of 10% (wt/vol). Samples were vortexed and centrifuged at 12,000 x g at 4°C. The upper phase, containing the DNA, was used as the template in the PCR.

data extraction. The DNA extraction method has been described previously (21). Briefly, 5 to 50 ml of homogenized liver tissue was added to 100 ml of extraction buffer (75 mM KCl, 3 mM EDTA, 150 mM Tris-HCl [pH 8.0], 0.75% Tween 20), and the mixture was vortexed and incubated at 22°C for 15 min. The samples were heated at 90°C for 10 min and cooled on ice for 2 min. An ion-exchange resin (AG 51-X8, 20 to 50 mesh; Bio-Rad Laboratories, Hercules, Calif.) was added for a final concentration of 10% (wt/vol). Samples were vortexed and centrifuged at 12,000 x g at 4°C. The upper phase, containing the DNA, was used as the template in the PCR.

data extraction. The DNA extraction method has been described previously (21). Briefly, 5 to 50 ml of homogenized liver tissue was added to 100 ml of extraction buffer (75 mM KCl, 3 mM EDTA, 150 mM Tris-HCl [pH 8.0], 0.75% Tween 20), and the mixture was vortexed and incubated at 22°C for 15 min. The samples were heated at 90°C for 10 min and cooled on ice for 2 min. An ion-exchange resin (AG 51-X8, 20 to 50 mesh; Bio-Rad Laboratories, Hercules, Calif.) was added for a final concentration of 10% (wt/vol). Samples were vortexed and centrifuged at 12,000 x g at 4°C. The upper phase, containing the DNA, was used as the template in the PCR.

data extraction. The DNA extraction method has been described previously (21). Briefly, 5 to 50 ml of homogenized liver tissue was added to 100 ml of extraction buffer (75 mM KCl, 3 mM EDTA, 150 mM Tris-HCl [pH 8.0], 0.75% Tween 20), and the mixture was vortexed and incubated at 22°C for 15 min. The samples were heated at 90°C for 10 min and cooled on ice for 2 min. An ion-exchange resin (AG 51-X8, 20 to 50 mesh; Bio-Rad Laboratories, Hercules, Calif.) was added for a final concentration of 10% (wt/vol). Samples were vortexed and centrifuged at 12,000 x g at 4°C. The upper phase, containing the DNA, was used as the template in the PCR.

data extraction. The DNA extraction method has been described previously (21). Briefly, 5 to 50 ml of homogenized liver tissue was added to 100 ml of extraction buffer (75 mM KCl, 3 mM EDTA, 150 mM Tris-HCl [pH 8.0], 0.75% Tween 20), and the mixture was vortexed and incubated at 22°C for 15 min. The samples were heated at 90°C for 10 min and cooled on ice for 2 min. An ion-exchange resin (AG 51-X8, 20 to 50 mesh; Bio-Rad Laboratories, Hercules, Calif.) was added for a final concentration of 10% (wt/vol). Samples were vortexed and centrifuged at 12,000 x g at 4°C. The upper phase, containing the DNA, was used as the template in the PCR.

data extraction. The DNA extraction method has been described previously (21). Briefly, 5 to 50 ml of homogenized liver tissue was added to 100 ml of extraction buffer (75 mM KCl, 3 mM EDTA, 150 mM Tris-HCl [pH 8.0], 0.75% Tween 20), and the mixture was vortexed and incubated at 22°C for 15 min. The samples were heated at 90°C for 10 min and cooled on ice for 2 min. An ion-exchange resin (AG 51-X8, 20 to 50 mesh; Bio-Rad Laboratories, Hercules, Calif.) was added for a final concentration of 10% (wt/vol). Samples were vortexed and centrifuged at 12,000 x g at 4°C. The upper phase, containing the DNA, was used as the template in the PCR.

data extraction. The DNA extraction method has been described previously (21). Briefly, 5 to 50 ml of homogenized liver tissue was added to 100 ml of extraction buffer (75 mM KCl, 3 mM EDTA, 150 mM Tris-HCl [pH 8.0], 0.75% Tween 20), and the mixture was vortexed and incubated at 22°C for 15 min. The samples were heated at 90°C for 10 min and cooled on ice for 2 min. An ion-exchange resin (AG 51-X8, 20 to 50 mesh; Bio-Rad Laboratories, Hercules, Calif.) was added for a final concentration of 10% (wt/vol). Samples were vortexed and centrifuged at 12,000 x g at 4°C. The upper phase, containing the DNA, was used as the template in the PCR.

data extraction. The DNA extraction method has been described previously (21). Briefly, 5 to 50 ml of homogenized liver tissue was added to 100 ml of extraction buffer (75 mM KCl, 3 mM EDTA, 150 mM Tris-HCl [pH 8.0], 0.75% Tween 20), and the mixture was vortexed and incubated at 22°C for 15 min. The samples were heated at 90°C for 10 min and cooled on ice for 2 min. An ion-exchange resin (AG 51-X8, 20 to 50 mesh; Bio-Rad Laboratories, Hercules, Calif.) was added for a final concentration of 10% (wt/vol). Samples were vortexed and centrifuged at 12,000 x g at 4°C. The upper phase, containing the DNA, was used as the template in the PCR.

data extraction. The DNA extraction method has been described previously (21). Briefly, 5 to 50 ml of homogenized liver tissue was added to 100 ml of extraction buffer (75 mM KCl, 3 mM EDTA, 150 mM Tris-HCl [pH 8.0], 0.75% Tween 20), and the mixture was vortexed and incubated at 22°C for 15 min. The samples were heated at 90°C for 10 min and cooled on ice for 2 min. An ion-exchange resin (AG 51-X8, 20 to 50 mesh; Bio-Rad Laboratories, Hercules, Calif.) was added for a final concentration of 10% (wt/vol). Samples were vortexed and centrifuged at 12,000 x g at 4°C. The upper phase, containing the DNA, was used as the template in the PCR.
in 20 of 24 samples of the PSC and PBC patient groups. Under UV illumination the size of the PCR product corresponded to the expected 400 bp (Fig. 1). As shown in Table 2, a high level of PCR positivity was found in the PSC and PBC patient groups, whereas only one sample was positive in the NCLC group and among the normal liver controls. In comparing total Helicobacter genus positivity of the cholestatic liver disease patients (20 of 24) and the control groups (1 of 23) a high level of significance was found ($P = <0.00001$).

PCF for species identification. The Helicobacter genus-positive samples from the PSC and PBC patients that were positive using primers for the *H. pylori* gene encoding the 26-kDa protein (HpD) and for *H. pylori* 16S rRNA (HpACT) are shown in Table 2. The sizes of the PCR fragments generated with the HpD primers (298 bp) and the HpACT primers (537 bp) corresponded to the respective expected sizes. Several samples positive by Helicobacter genus-specific PCR were negative using both sets of primers targeting *H. pylori* genes (Table 2). None of the 20 Helicobacter genus-positive PSC and PBC samples reacted in PCR assays using primers for 16S rRNA of *H. bilis*, *H. pullorum*, or *H. hepaticus*. The NCLC patient that was Helicobacter genus positive was negative in all species-specific PCR assays.

Southern blot hybridization. The liver samples that were positive by PCR using primers targeting the gene for the 26-kDa protein of *H. pylori* were all positive by Southern blot hybridization with a digoxigenin-labeled probe generated by PCR using the species-specific HpD primers. A representative Southern blot hybridization is shown in Fig. 2. The results of the hybridization confirm the presence of gene sequences of *H. pylori* in liver tissue samples obtained from patients with a chronic cholestatic liver disease.

DNA sequencing. Four 16S ribosomal DNA fragments, obtained by PCR using C97 and C98 primers, from *Helicobacter*

![Image](56x650 to 290x714)

TABLE 3. Clinical correlates of *Helicobacter* positivity in the PSC, PBC, and NCLC patient groups

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value for group</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>Bilirubin (μmol/liter)</td>
<td>204 ± 175</td>
<td>184 ± 255</td>
</tr>
<tr>
<td>ALP (μkat/liter)</td>
<td>32 ± 12</td>
<td>7 ± 6</td>
</tr>
<tr>
<td>PTK (%)</td>
<td>85 ± 29</td>
<td>49 ± 18</td>
</tr>
<tr>
<td>Present or previous UC/no UCc</td>
<td>8/13</td>
<td>1/15</td>
</tr>
</tbody>
</table>

a Sample groups were positive ($n = 21$) or negative ($n = 16$) by PCR with *Helicobacter* genus-specific primers.

b NS, not significant.

c Only found in PSC patients.

d Statistical significance related to difference in prevalence of *Helicobacter* spp. positivity between patients with previous history of or present UC and those without UC.

DISCUSSION

The detection of gene sequences of *Helicobacter* species in liver tissue samples of patients with PSC and PBC (Table 2) is interesting, since some previous reports have suggested an association of *Helicobacter* and liver disease (5, 9, 20, 23, 30). In one study using PCR and subsequent sequencing of a part of the amplified ureA gene, *H. pylori* was detected in 3 of 7 human bile samples collected by percutaneous transhepatic cholangiography from patients with pancreatic head tumors, suggesting that *H. pylori* may be associated with asymptomatic cholangitis (20). Another study using PCR and immunohistochemical staining observed a *H. pylori*-like organism in the gallbladder mucosa of a 41-year-old woman admitted to the hospital with fever and upper right quadrant pain (17). A higher prevalence of antibodies to *H. pylori* in the serum of patients with liver diseases was also reported (30). These observations prompted us to explore a possible association of *Helicobacter* and chronic liver disease in Swedish patients.

Twenty of 24 liver samples from patients with PSC or PBC were positive by PCR analysis using *Helicobacter* genus-specific primers. Nine of these 20 samples were positive for *H. pylori* by...
PCR analysis. Lin et al. (20) detected *H. pylori* in bile samples with primers based on the *ureA* gene. We detected *H. pylori* by analysis with two independent PCR assays, based on the sequence of a gene encoding a species-specific 26-kDa surface protein and 16S RNA, respectively, to avoid the possibility of cross-reaction with other *Helicobacter* species. Each liver biopsy was homogenized, extracted, and amplified on different occasions by different investigators. PCR results with *Helicobacter* genus-specific as well as *H. pylori* species-specific primers were reproduced very well. These precautions were taken to certify that laboratory contamination did not account for the positive PCR results. Moreover, reagent mixing, sample addition and thermocycling were performed separately. One sample, positive with the *H. pylori* 26-kDa protein primers, was negative using *H. pylori* 16S rRNA primers. An explanation for this one negative sample in the 16S rRNA PCR could be strain variation at one of the primer sites, especially one located in a variable region.

H. pylori has been shown to be sensitive in vitro to the major free bile acids in human bile, deoxycholic and chemodeoxycholic acid (15), arguing against *H. pylori* colonizing the liver. However, it is possible that *H. pylori* in vivo adapt to bile acids, as shown by studies recovering *H. pylori* in human feces (19). Moreover, under certain pathological conditions, such as bile duct obstruction, bile components inhibitory for the growth of *H. pylori* may change (35), and duodenogastric bile reflux does not seem to affect the growth of *H. pylori* in the antrum (18).

The predominant association with cholestatic liver disease is underlined by the significantly higher ALP and PTK levels in the *Helicobacter* positive patients. On the other hand, the lack of difference in bilirubin levels between *Helicobacter*-positive and -negative patients, and the significantly higher PTK levels in the *Helicobacter*-positive patients show that the *Helicobacter* positivity was not primarily related to severe liver failure. The fact that not all patients with the two cholestatic liver diseases were positive for *Helicobacter* should be considered against the fact that there is a considerable sampling variability as to histologic changes, especially for patients with PSC (27), but also for patients with PBC (14). Thus, the possibility remains that even more patients with these two diseases could be *Helicobacter* positive.

The large-duct involvement in PSC and the frequent occurrence of fever in PSC, in contrast to PBC, initiated the study in the PSC patients. Thus, PBC patients, who also suffer from a cholestatic syndrome in the liver, may have a triggering effect, where the response is modified by host factors.

Previous studies have found immunoglobulin G serum antibodies to *H. pylori* to be more common in cirrhotic compared with noncirrhotic patients (30). However, in a recent study, PBC patients with negative gastric biopsy colonization for *H. pylori* often had high antibody titers in an *H. pylori* enzyme immunoassay (8). The reason for this is unclear, but a past *H. pylori* infection or cross-reactivities of antibodies against other *Helicobacter* species are possible factors accounting for this (11). *H. hepaticus* and *H. bilis* have been shown to be possible causes of inflammatory disease in the liver of mice (11). Primary sclerosing cholangitis is often accompanied by inflammatory bowel disease in human patients, and Fox et al. (9) recently reported on *H. bilis*, *H. pullorum*, or *H. rappini* in gallbladder as well as bile samples of humans with chronic cholecystitis by cloning and sequencing of amplified 16S rRNA PCR products. In our present study, 9 of 20 samples found to be *Helicobacter* genus positive by PCR were identified as *H. pylori*, a finding which was verified for 4 of the 9 by sequence analysis. None of the *Helicobacter* genus-positive samples were positive in PCR assays targeting *H. bilis*, *H. pullorum*, or *H. hepaticus*. The samples not identified to the species level may represent other possible hepatic *Helicobacter* species. The sequence of one such 16S rDNA fragment was determined, and the result from sequence comparison showed only weak homology with *Helicobacter* spp. Further studies are needed to establish the role of *H. pylori* and *Helicobacter* species in PSC and PBC.

ACKNOWLEDGMENTS

This study was supported by a grant from the Swedish Medical Research Council (16×04725) and grants from the Lund Medical Faculty and Lund University Hospital.

REFERENCES

