Polymorphism in the MHC2TA gene is associated with features of the metabolic syndrome and cardiovascular mortality.

Lindholm, Eero; Melander, Olle; Almgren, Peter; Berglund, Göran; Agardh, Carl-David; Groop, Leif; Orho-Melander, Marju

Published in:
PLoS ONE

DOI:
10.1371/journal.pone.0000064

2006

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Polymorphism in the MHC2TA Gene Is Associated with Features of the Metabolic Syndrome and Cardiovascular Mortality

Eero Lindholm1, Olle Melander, Peter Almgren, Gårin Berglund, Carl-David Agardh, Leif Groop, Marju Orho-Melander

Department of Clinical Sciences, Clinical Research Center, University Hospital Malmö (MAS), Lund University, Malmö, Sweden

Background. Recently, a -168A→G polymorphism in the MHC class II transactivator gene (MHC2TA) was shown to be associated with increased susceptibility to myocardial infarction (MI). Aim. To confirm the association between the MHC2TA -168A→G polymorphism and MI and to study its putative role for microalbuminuria, the metabolic syndrome (MetS) and cardiovascular mortality. Materials and Methods. Using an allelic discrimination method we genotyped 11,064 individuals from three study populations: 1) 6,432 individuals from the Botnia type 2 diabetes (T2D) study, 2) 1,222 patients with MI and 2,345 control subjects participating in the Malmö Diet and Cancer study and comprising an MI case-control sample, and 3) 3,065 T2D patients from the Local Swedish Diabetes registry. Results. No association between the -168A→G polymorphism in MHC2TA and MI was observed. However, in the Botnia cohort the AG/GG genotypes were associated with cardiovascular mortality after MI (1.78 [1.09–2.92], p = 0.02). In addition, the AG/GG genotypes were more common in subjects with MetS (40.1% vs. 36.9%, p = 0.03) and in non-diabetic subjects with microalbuminuria (45.4% vs. 36.5%, p = 0.003) compared to control subjects. Conclusions. A polymorphism in MHC2TA was associated with cardiovascular mortality and predictors of cardiovascular mortality, microalbuminuria and MetS.

INTRODUCTION
Cardiovascular disease is the leading cause of death in Sweden and in most Western countries. Almost 50% of deceased individuals died due to cardiovascular causes in Sweden 2005 (Swedish National Board of Health and Welfare http://www.socialstyrelsen.se). Both genetic and environmental factors modify the risk for cardiovascular diseases including myocardial infarction (MI) [1], smoking, dyslipidemia, diabetes, obesity and hypertension, are present in up to 90% of patients with MI [2,3]. Family history of MI has been shown to be a strong independent risk factor for coronary heart disease [4–7].

Microalbuminuria is an established risk marker for cardiovascular morbidity and mortality both in diabetic [8] and non-diabetic patients [9]. Inflammation is believed to play a major role in the pathogenesis of both microalbuminuria [10] and MI [11]. Insulin resistance has been proposed as a common denominator for these conditions, and has also been related to subclinical chronic inflammation [12].

A -168 A→G polymorphism in the MHC class II transactivator gene (MHC2TA) was recently found to be associated with MI, rheumatoid arthritis and multiple sclerosis [13]. The -168 A→G polymorphism was associated with lower expression of MHC2TA after stimulation of leukocytes with interferon-γ in humans and differences in expression of MHC class II molecules in different rat strains. Because of the role of MHC class II molecules in recognition of antigen molecules, genes like MHC2TA that can influence expression of MHC class II, are also candidate genes for autoimmune diseases [13].

To address this issue, we searched for any association between MHC2TA -168 A→G polymorphism and cardiovascular morbidity and mortality as well as their predictors, microalbuminuria and the metabolic syndrome (MetS).

MATERIALS AND METHODS
Study Subjects
Patients were selected from three large populations in Finland and Sweden; the Botnia study, the Malmö Diet and Cancer Study (MDC) and the Diabetes Registry in Southern Sweden (DR). The protocols were approved by local Ethics committees, and informed consent was obtained from all subjects.

The Botnia Study
The Botnia Study was initiated in 1990 and represents a large population-based type 2 diabetes (T2D) study.

The Malmö Diet and Cancer Study (MDC) and the Diabetes Registry in Southern Sweden (DR).

The Botnia Study is principally supported by the Sigrid Juselius Foundation, the Academy of Finland, the Finnish Diabetes Research and Development Foundation, the Folkhalsan Research Foundation, the Karolinska Institute, the Knut and Alice Wallenberg Foundation, the Swedish Medical Research Council, the Swedish Research Council Linköping University, the Crafoord Foundation, the Novo Nordisk Foundation, the Swedish Society for Medical Research, the Swedish Heart and Lung Foundation, the Swedish Council for Cardiovascular Research and Development Foundation, the Finnish Diabetes Research Foundation, the Folkhälsan Research Foundation, and the Västerås Olofssons Foundation.

Competing Interests: Professor Leif Groop has been a member of the Advisory Board of the Bristol-Myers Squibb BMS.

* To whom correspondence should be addressed. E-mail: Eero.Lindholm@med.lu.se
family study in Finland and Sweden, aiming at identification of genes increasing susceptibility to T2D, MetS and associated complications. Details of the study cohort, sampling strategy as well as anthropometric and metabolic measurements have been described earlier [14,15]. At the baseline examination, a structured questionnaire was completed by specially trained nurses, covering information about diseases other than T2D (particularly hypertension, coronary heart disease, MI and stroke) and data on smoking habits. Both previous and current smokers were recorded as current smokers. Microalbuminuria was defined as urinary albumin excretion rate $\geq 20 \mu g/min$ in an overnight urine collection.

Total and cardiovascular mortality were assessed with a median follow up time of 7.9 years and the mortality data was obtained from the central death-certificate registry in Finland. Cardiovascular mortality was classified using the 9th revision of the International Classification of Diseases (cardiovascular diagnosis codes 390–459) before 1997 and the 10th revision (codes 100–199) thereafter. Causes of death were classified as 1) cardiovascular death (coronary heart disease), cerebrovascular disease (including both thrombotic stroke and cerebral haemorrhage) or other cardiovascular (including pulmonary embolism, abdominal aortic aneurysm, hypertensive complications, general atherosclerosis and peripheral artery disease with gangrene) or 2) other causes of death (neoplasms, violent or other). MetS was defined according to the National Cholesterol Education Program (NCEP) [16].

In total, 4,432 individuals were genotyped for the $MHC2TA$ -168 A\rightarrowG polymorphism including 2,964 individuals without diabetes mellitus and 1,557 with T2D. Data on MI was available in 97% and on microalbuminuria in 64% of the subjects. Data on cardiovascular mortality was available for all participants.

The MI case-control population from the Malmö diet and cancer study (MDC) The Malmö Diet and Cancer study population (MDC) [17] includes 20,098 randomly selected men (born 1923–1945) and women (born 1923–1950) living in the city of Malmö (population 230,000) in Sweden. A baseline examination was carried out between 1991 and 1996 encompassing a comprehensive assessment of lifestyle factors, heredity, medical history and family relations. As a result, the MI cases were included in the Swedish Patient Registry or in the Swedish Cause of Death Registry. MI cases (first MI) were identified in the Swedish Patient Registry or in the Swedish Cause of Death Registry, using ICD codes 410 and I21 in the Swedish Patient Registry and 410–414 and I21–I25 in the Swedish Cause of Death Registry.

Two age (±2.1 year) and gender-matched controls without MI from MDC were assigned to each MI patient, resulting in a case-control material consisting of 1,244 MI patients and 2,488 controls. Of total 3,732 individuals, 3,657 were successfully genotyped for the A\rightarrowG polymorphism in $MHC2TA$. Diabetes diagnosis was defined as self reported earlier diagnosis, fasting blood glucose ≥ 6.1 mmol/l or treatment for earlier diagnosed diabetes mellitus.

Diabetes registry in Southern Sweden (DR) 3,063 T2D patients from a local diabetes registry in Southern Sweden [18], most of them enrolled at the Department of Endocrinology, University Hospital MÅS, Malmö, were selected and genotyped for the $MHC2TA$ -168 A\rightarrowG polymorphism. Data on MI was obtained from the patient records and was available in 77% and on microalbuminuria in 70% of the subjects.

Analytical techniques HbA$_1c$, total cholesterol, HDL-cholesterol, triglycerides and PPAR-alpha were measured with standard laboratory methods. A detailed description of the methods are found elsewhere [13,18,19]. The urinary albumin concentration was in DR determined first by immuno-nephelometric method (Beckman Instruments, CA, USA) until 1998, and thereafter by an immunoturbimetric method (Beckman Coulter, Beckman Instruments, CA, USA). In the Botnia study, urine albumin concentration was determined with a radioimmunoassay with a detection limit of 2 mg/l. Microalbuminuria was defined as AER $\geq 20 \mu g/min$.

Genotyping In total 11,064 individuals were successfully genotyped for the -168 A\rightarrowG polymorphism (rs3087456) using allelic discrimination method on the ABI 7900 instrument (Applied Biosystems, Foster City, CA). Risk genotypes were defined according to earlier published report [13]. The genotyping success rate was 97.9, 98.0 and 99.0% in Botnia, MDC and DR cohorts, respectively.

Statistical methods

Data are presented as mean \pm SD or as median (25th–75th) percentile. Chi-square tests were used to analyze differences among allele- and genotype frequencies. To test differences between group means, the Student’s two-tailed t-test was used for normally distributed values and Mann-Whitney U-test for non-normally distributed medians. In order to identify factors associated with MI and microalbuminuria, a multiple logistic regression analysis with forward selection was performed. Because of the nature of Botnia cohort as a family collection, the analyses were adjusted for the family relations. For the mortality analyses, clinical variables together with $MHC2TA$ genotypes were entered into a forward stepwise Cox regression model adjusted for sex, age and family relations.

All data were analyzed with a NCSS 2004 (NCSS statistical software, Kaysville, UT, USA). A p-value of <0.05 was considered statistically significant. Power analysis was made using Genetic Power Calculator [20].

RESULTS

The clinical characteristics of the study groups are given in Table 1. The genotype and allele frequencies of the $MHC2TA$ polymorphism were similar in patients with or without MI, regardless of the study population and T2D status (Table 2). No association with T2D was observed, neither in the Finnish (Botnia), nor in the Swedish (MDC or DR) cohorts.

No correlation between the $MHC2TA$ -168 AG/GG genotypes and cardiovascular mortality was found in the Botnia Study population [HR 0.96 [0.75–1.22], p = 0.74] (Table 3). As the $MHC2TA$ polymorphism was earlier shown to be associated with MI, we performed a subgroup analysis of individuals with previous history of MI. In fact, among these patients the $MHC2TA$ AG/GG genotypes were associated with increased risk of cardiovascular death compared with AA genotype carriers [HR 1.76 [1.09–2.82], p = 0.02] (Table 3, Figure 1). We also tested the $MHC2TA$ GG genotype against the AA or AG genotypes and found that the GG genotype was protective against cardiovascular death in the whole group [HR 0.30 [0.16–0.92], p = 0.05], but not in patients with previous MI [HR 0.45 [0.19–4.06], p = 0.40].

The $MHC2TA$ AG/GG genotypes were more frequently found among patients with MetS (40.1 vs. 36.9%, p = 0.030) as well as among non-diabetic individuals with microalbuminuria in the Botnia cohort (50.9% vs. 36.0%, p = 0.003) (Table 2). In contrast, the AG/GG genotypes were not associated with microalbuminuria among T2D patients, neither in the Botnia, nor the DR cohort (Table 2). Correspondingly, logistic regression analysis with age, waist-hip ratio, fasting insulin, systolic- and diastolic blood pressure, triglycerides, HbA$_1c$, total cholesterol, HDL-cholesterol, systolic and diastolic blood pressure, and smoking habits as independent variables, revealed significant differences between AG/GG and AA genotypes. Smoking habits were also significantly more common among MI patients than among non MI patients in all study populations (Table 3). In addition, lower HDL-cholesterol and higher triglycerides were noted in MI patients among all study populations (Table 3). The clinical characteristics of the study groups are given in Table 1.
pressure, smoking, gender and MHC2TA AG/GG genotypes as independent factors, revealed the AG/GG genotypes as risk factors for microalbuminuria in non-diabetic subjects (OR 2.07).

| Table 1. Clinical characteristics of the study subjects. |
Botnia	MDC	DR					
Non-diabetic	T2D	p	Non-diabetic	T2D	p	T2D	
Male/Female	1307/1566	731/828	0.37	2492/891	202/72	0.98	1766/1299
Age (Yrs.)	54 ± 13	67.12	<1 x 10^-6	63 ± 7	63.06	0.14	63.12
BMI (kg/m^2)	26.2 ± 4.1	28.1 ± 4.7	<1 x 10^-6	26.2 ± 5.7	28.1 ± 4.3	<1 x 10^-6	29.5 ± 5.6
SBP (mmHg)	135 ± 20	150 ± 22	<1 x 10^-6	147 ± 21	153 ± 19	7 x 10^-5	144 ± 20
DBP (mmHg)	81 ± 10	83 ± 11	<1 x 10^-6	88 ± 10	88 ± 10	0.41	83 ± 11
HbA1c (%)	5.5 ± 0.5	7.5 ± 1.7	<1 x 10^-6	4.8 ± 0.4 (N=575)	6.8 ± 1.8 (N=82)	<1 x 10^-6	6.9 ± 1.7
Age at onset of Diabetes (Yrs.)	-	59 ± 14	-	-	-	54 ± 16	
Smoking (%)*	38.0	36.7	0.40	69.1	75.9	0.02	50.1

Numbers are mean ± SD or percent. *Both previous and current smoking. P-values refer to comparison between non-diabetic and T2D patients.

doi:10.1371/journal.pone.0000064.t001

| Table 2. The genotype frequencies of the MHC2TA -168 A→G polymorphism in different study populations according to history of previous MI and microalbuminuria status. |
Botnia	MDC	Diabetes registry				
MI p	Microalbuminuria (MALB) p					
MI+	MI-	NA/AG/GG	AA/AG/GG	AA/AG/GG	AA/AG/GG	
Non-diabetic	63.4/33.0/3.6 (N = 112)	62.8/33.3/3.9 (N = 2086)	0.90	49.5/45.5/5.0 (N = 99)	64.0/32.4/3.6 (N = 1940)	0.003
T2D	59.2/38.0/2.7 (N = 184)	59.7/36.0/4.2 (N = 1326)	0.90	49.7/45.5/5.0 (N = 129)	58.9/38.8/2.3 (N = 756)	0.33
Non-diabetic	58.0/35.7/6.3 (N = 1071)	55.7/37.4/6.9 (N = 2312)	0.21	-	-	-
T2D	45.7/43.7/10.6 (N = 151)	52.8/42.3/4.9 (N = 123)	0.24	-	-	-

The numbers are allele frequencies (%) and number of patients. P-values refer to comparison between genotype frequencies of the –168A→G risk genotypes (AG or GG) among individuals with or without MI and with or without microalbuminuria, respectively.

doi:10.1371/journal.pone.0000064.t002

| Table 3. Predictors of cardiovascular mortality among all individuals and patients with previous MI from the Botnia study. |
All patients	Previous MI	
Male Sex	1.34 (1.00–1.80)	1.20 (0.64–2.31)
Smoking	1.42 (1.04–1.96)	1.33 (0.78–2.25)
Cholesterol (mmol/l)	1.11 (1.01–1.22)	1.10 (1.07–1.13)
HDL cholesterol (mmol/l)	0.57 (0.38–0.85)	0.76 (0.27–2.23)
SBP (mmHg)*	1.00 (0.99–1.01)	1.00 (0.98–1.01)
DBP (mmHg)*	1.00 (0.99–1.01)	0.99 (0.97–1.02)
T2D	2.97 (2.22–3.97)	2.19 (1.18–4.06)
MHC2TA (AG or GG)	0.96 (0.75–1.22)	1.76 (1.09–2.82)

Numbers are hazard ratio (HR) and 95% Confidence limits. HRs were mutually adjusted.
*HR per mmHg

doi:10.1371/journal.pone.0000064.t003

Figure 1. Cardiovascular mortality in the Botnia cohort in patients with previous MI according to MHC2TA -168 A→G genotypes. Kaplan Meier survival curves illustrating a higher risk for CV mortality (HR 1.76 [1.09–2.82], p = 0.02) in AG/GG genotype carriers with previous History of MI.
outcomes of cardiovascular disease. Among patients with MetS.

MHC2TA

the finding of the present study was an association between the MHC2TA -168 A–G polymorphism and cardiovascular mortality. These findings support the earlier report of association between this polymorphism and MI [12]. However, in contrast to the earlier study [13], the -168 A–G was not associated with MI in our study. Possible explanations could be differences in definition of MI. Our study consisted of population-based material, whereas the information of MI was collected retrospectively, whereas the population of Swanberg et al. was recruited from all patients below 60 yrs. that were admitted to the hospital for acute MI.

Microalbuminuria is a risk marker for cardiovascular disease [9] and has been suggested to reflect a state of low-grade systemic inflammation [21]. Several factors like high blood pressure, hyperglycaemia, smoking, heart failure and renal atherosclerosis, all of which themselves are associated with increased inflammatory activity, are known to play a role in the development of microalbuminuria [22]. The association with microalbuminuria was, however, restricted to non-diabetic subjects. This could reflect the fact that in diabetic subjects other factors including hyperglycaemia may influence the day-to-day variation in albumin excretion. The non-diabetic patients with microalbuminuria had several features of MetS including higher waist to hip ratios, higher HOMA index, and higher blood pressure (data not shown) compared to individuals without microalbuminuria. Accordingly, the MHC2TA -168A–G polymorphism was also associated with MetS.

Thus, the MHC2TA -168 A–G polymorphism influenced both outcome and prediction of cardiovascular disease. Among patients with previous MI, carriers of the AG or GG genotypes had increased risk of cardiovascular death compared with AA genotype carriers (Table 3 and Figure 1). It is known that inflammation plays a key role in development of atherosclerosis [11] and activated T-lymphocytes are already present in the atherosclerotic plaque, as well as in the immediate site of plaque rupture or superficial erosions in patients who have died due to MI or unstable angina [23]. Our results suggest that the G allele (and in particular the AG genotype) could be a risk factor for cardiovascular mortality after MI, although the mechanism remains unclear. Swanberg et al. suggested that the G allele could cause reduced induction of MHC-class II genes thus leading to less efficient presentation of antigens to regulatory T cells [13]. However, the previous association analysis compared AG and GG genotype carriers to AA genotype carriers and showed that in particular the AG (and not GG) genotype carriers were at higher risk [13]. In contrast, the expression analysis compared a pool of AA, AG, and GG genotype carriers to GG genotype carriers, thus not challenging the possibility of a difference between the more common AA and AG genotype carriers [13]. Interestingly, we observed that in fact the GG carriers had a lower risk for death due to cardiovascular events compared to AA or AG genotype carriers (HR 0.38 [0.16–0.92]). It is therefore unclear whether the risk mainly is associated with less induction of the MHC II genes in response to inflammation stimuli. To clarify this issue, expression levels of all genotypes would therefore be of interest, especially comparisons between the AA and AG genotypes.

Taken together, despite lack of a relationship between MHC2TA and MI in this large association study, we show that the AG/GG genotypes of the MHC2TA -168 A–G polymorphism are associated with microalbuminuria and features of MetS. This, in turn, translates into an increased risk of cardiovascular mortality.

ACKNOWLEDGMENTS

Author Contributions

Conceived and designed the experiments: OM MO. Performed the experiments: MO. Analyzed the data: PA EL. Contributed reagents/materials/analysis tools: LG GB OM MO. Wrote the paper: LG GB EL OM MO.

REFERENCES

23. van der Wal MG, Becker AE, van der Loos CM, Davie PK (1994) Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 89: 50–44.