Polymorphism in the MHC2TA gene is associated with features of the metabolic syndrome and cardiovascular mortality.

Lindholm, Eero; Melander, Olle; Almgren, Peter; Berglund, Göran; Agardh, Carl-David; Groop, Leif; Orho-Melander, Marju

Published in: PLoS ONE

DOI: 10.1371/journal.pone.0000064

Published: 2006-01-01

Polymorphism in the MHC2TA Gene Is Associated with Features of the Metabolic Syndrome and Cardiovascular Mortality

Eero Lindholm*, Olle Melander, Peter Almgren, Göran Berglund, Carl-David Agardh, Leif Groop, Marju Orho-Melander

Department of Clinical Sciences, Clinical Research Center, University Hospital Malmö (MAS), Lund University, Malmö, Sweden

INTRODUCTION
Cardiovascular disease is the leading cause of death in Sweden and in most Western countries. Almost 50% of deceased individuals died due to cardiovascular causes in Sweden 2005 (Swedish National Board of Health and Welfare http://www.socialstyrelsen.se). Both genetic and environmental factors modify the risk for cardiovascular diseases including myocardial infarction (MI) [1], smoking, dyslipidaemia, diabetes, obesity and hypertension, are present in up to 50% of patients with MI [2,3]. Family history of MI has been shown to be a strong independent risk factor for coronary heart disease [4–7].

Microalbuminuria is an established risk marker for cardiovascular morbidity and mortality both in diabetic [8] and non-diabetic patients [9]. Inflammation is believed to play a major role in the pathogenesis of both microalbuminuria [10] and MI [11]. Insulin resistance has been proposed as a common denominator for these conditions, and has also been related to subclinical chronic inflammation [12].

A -168A→G polymorphism in the MHC class II transactivator gene (MHC2TA) was recently found to be associated with MI, rheumatoid arthritis and multiple sclerosis [11]. The -168A→G polymorphism was associated with lower expression of MHC2TA after stimulation of leukocytes with interferon-γ in humans and differences in expression of MHC class II molecules in different rat strains. Because of the role of MHC class II molecules in recognition of antigen molecules, genes like MHC2TA that can influence expression of MHC class II, are also candidate genes for autoimmune diseases [13].

To address this issue, we searched for any association between MHC2TA -168 A→G polymorphism and cardiovascular morbidity and mortality as well as their predictors, microalbuminuria and the metabolic syndrome (MetS).

MATERIALS AND METHODS
Study Subjects
Patients were selected from three large populations in Finland and Sweden; the Botnia study, the Malmö Diet and Cancer Study (MDC) and the Diabetes Registry in Southern Sweden (DR). The protocols were approved by local Ethics committees, and informed consent was obtained from all subjects.

The Botnia Study
The Botnia Study was initiated in 1990 and represents a large population-based type 2 diabetes (T2D)

Background. Recently, a -168A→G polymorphism in the MHC class II transactivator gene (MHC2TA) was shown to be associated with increased susceptibility to myocardial infarction (MI). Aim. To confirm the association between the MHC2TA -168A→G polymorphism and MI and to study its putative role for microalbuminuria, the metabolic syndrome (MetS) and cardiovascular mortality. Materials and Methods. Using an allelic discrimination method we genotyped 11,064 individuals from three studies: 1) 4,432 individuals from the Botnia type 2 diabetes (T2D) study, 2) 1,225 patients with MI and 2,345 control subjects participating in the Malmö Diet and Cancer study and comprising an MI case-control sample, and 3) 3,065 T2D patients from the Local Swedish Diabetes registry. Results. No association between the -168A→G polymorphism in MHC2TA and MI was observed. However, in the Botnia cohort the AG/GG genotypes were associated with cardiovascular mortality after MI (1.78 [1.09–2.92], p = 0.02). In addition, the AG/GG genotypes were more common in subjects with MetS (40.1% vs. 36.9%, p = 0.03) and in non-diabetic subjects with microalbuminuria (45.4% vs. 36.5%, p = 0.003) compared to control subjects. Conclusions. A polymorphism in MHC2TA was associated with cardiovascular mortality and predictors of cardiovascular morbidity, microalbuminuria and MetS.

* To whom correspondence should be addressed. E-mail: Eero.Lindholm@med.lu.se
family study in Finland and Sweden, aiming at identification of genes increasing susceptibility to T2D, MetS and associated complications. Details of the study cohort, sampling strategy as well as anthropometric and metabolic measurements have been described earlier [14,15]. At the baseline examination, a structured questionnaire was completed by specially trained nurses, covering information on lifestyle, medical and family history of diabetes mellitus and on microalbuminuria in 64% of the subjects. Data on cardiovascular mortality was available for all patients.

Genotyping

In total 11,064 individuals were successfully genotyped for the -168 A/G polymorphism (rs3087456) using allelic discrimination method on the ABI 7900 instrument (Applied Biosystems, Foster City, CA). Risk genotypes were defined according to earlier published report [13]. The genotyping success rate was 97.9, 98.0 and 99.0% in Botnia, MDC and DR cohorts, respectively.

Statistical methods

Data are presented as mean ± SD or as median [25th–75th] percentile. Chi-square tests were used to analyze differences between allele- and genotype frequencies. To test differences between group means, the Student’s two-tailed t-test was used for normally distributed values and Mann-Whitney U-test for non-normally distributed medians. In order to identify factors associated with MI and microalbuminuria, a multiple logistic regression analysis with forward selection was performed. Because of the nature of Botnia cohort as a family collection, the analyses were adjusted for the family relations. For the mortality analyses, clinical variables together with MHC2TA genotypes were entered into a forward stepwise Cox regression model adjusted for sex, age and family relations.

All data were analyzed with a NCSS 2004 (NCSS statistical software, Kaysville, UT, USA). A p-value of <0.05 was considered statistically significant. Power analysis was made using Generic Power Calculator [20].

RESULTS

The clinical characteristics of the study groups are given in Table 1. The genotype and allele frequencies of the MHC2TA polymorphism were similar in patients with or without MI, regardless of the study population and T2D status (Table 2). No association with T2D was observed, neither in the Finnish (Botnia), nor in the Swedish (MDC or DR) cohorts.

No correlation between the MHC2TA-168 AG/GG genotypes and cardiovascular mortality was found in the Botnia Study population (HR 0.96 [0.75–1.22], p = 0.74) (Table 3). As the MHC2TA polymorphism was earlier shown to be associated with MI, we performed a subgroup analysis of individuals with previous MI (HR 0.45 [0.49–4.16], p = 0.40).

The **MHC2TA AG/GG genotypes were more frequently found among patients with MetS (30.1 vs. 36.9%, p = 0.030) as well as among non-diabetic individuals with microalbuminuria in the Botnia cohort (30.9% vs. 36.0%, p = 0.003) (Table 2). In contrast, the AG/GG genotypes were not associated with microalbuminuria among T2D patients, neither in the Botnia, nor the DR cohort (Table 2). Correspondingly, logistic regression analysis with age, waist-hip ratio, fasting insulin, systolic- and diastolic blood pressure as well as previous MI was not performed.**
pressure, smoking, gender and MHC2TA AG/GG genotypes as independent factors, revealed the AG/GG genotypes as risk factors for microalbuminuria in non-diabetic subjects (OR 2.07

<table>
<thead>
<tr>
<th>Botnia</th>
<th>Non-diabetic</th>
<th>T2D</th>
<th>p</th>
<th>Non-diabetic</th>
<th>T2D</th>
<th>p</th>
<th>T2D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male/Female</td>
<td>1307/1566</td>
<td>731/828</td>
<td>0.37</td>
<td>2492/991</td>
<td>202/72</td>
<td>0.98</td>
<td>1766/1299</td>
</tr>
<tr>
<td>Age (Yrs.)</td>
<td>54±13</td>
<td>67±12</td>
<td><1×10⁻⁴</td>
<td>63±7</td>
<td>63±6</td>
<td>0.14</td>
<td>63±12</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>26.2±4.1</td>
<td>28.1±4.7</td>
<td><1×10⁻⁴</td>
<td>26.2±3.7</td>
<td>28.1±4.3</td>
<td><1×10⁻⁴</td>
<td>29.5±5.6</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>135±20</td>
<td>150±22</td>
<td><1×10⁻⁴</td>
<td>147±21</td>
<td>155±19</td>
<td>7×10⁻³</td>
<td>144±20</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>81±10</td>
<td>83±11</td>
<td><1×10⁻⁴</td>
<td>88±10</td>
<td>88±10</td>
<td>0.41</td>
<td>80±11</td>
</tr>
<tr>
<td>Hba1c (%)</td>
<td>5.5±0.5</td>
<td>7.5±1.7</td>
<td><1×10⁻⁴</td>
<td>4.8±0.4 (N = 575)</td>
<td>6.8±1.8 (N = 82)</td>
<td><1×10⁻⁴</td>
<td>6.9±1.7</td>
</tr>
<tr>
<td>Age at onset of Diabetes (Yrs.)</td>
<td>-</td>
<td>59±14</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>54±13</td>
<td></td>
</tr>
<tr>
<td>Smoking (%)</td>
<td>38.0</td>
<td>36.7</td>
<td>0.40</td>
<td>69.1</td>
<td>75.9</td>
<td>0.02</td>
<td>50.1</td>
</tr>
</tbody>
</table>

Numbers are mean±SD or percent. *Both previous and current smoking. P-values refer to comparison between non-diabetic and T2D patients.

doi:10.1371/journal.pone.0000064.t001

Table 2. The genotype frequencies of the MHC2TA -168 A→G polymorphism in different study populations according to history of previous MI and microalbuminuria status.

<table>
<thead>
<tr>
<th>MI</th>
<th>Botnia</th>
<th>Non-diabetic</th>
<th>T2D</th>
<th>p</th>
<th>MDC</th>
<th>Non-diabetic</th>
<th>T2D</th>
<th>p</th>
<th>Diabetes registry</th>
<th>Non-diabetic</th>
<th>T2D</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-diabetic</td>
<td>(N = 112)</td>
<td>(N = 2686)</td>
<td>0.90</td>
<td>(N = 99)</td>
<td>(N = 1940)</td>
<td>0.003</td>
<td>(N = 129)</td>
<td>(N = 756)</td>
<td>0.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T2D</td>
<td>(N = 184)</td>
<td>(N = 1326)</td>
<td>0.90</td>
<td>(N = 151)</td>
<td>(N = 123)</td>
<td>0.24</td>
<td>(N = 132)</td>
<td>(N = 756)</td>
<td>0.33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The numbers are allele frequencies (%) and number of patients. P-values refer to comparison between genotype frequencies of the –168A risk genotypes (AG or GG) among individuals with or without MI and with or without microalbuminuria, respectively.

doi:10.1371/journal.pone.0000064.t002

Table 3. Predictors of cardiovascular mortality among all individuals and patients with previous MI from the Botnia study.

<table>
<thead>
<tr>
<th>All patients</th>
<th>Previous MI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male Sex</td>
<td>1.34 [1.00–1.80]</td>
</tr>
<tr>
<td>Smoking</td>
<td>1.42 [1.04–1.96]</td>
</tr>
<tr>
<td>Cholesterol (mmol/l)</td>
<td>1.11 [1.01–1.22]</td>
</tr>
<tr>
<td>HDL cholesterol (mmol/l)</td>
<td>0.57 [0.38–0.85]</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>1.00 [0.99–1.01]</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>1.00 [0.99–1.01]</td>
</tr>
<tr>
<td>MHC2TA (AG or GG)</td>
<td>0.96 [0.75–1.22]</td>
</tr>
</tbody>
</table>

Numbers are hazard ratio (HR) and 95% Confidence limits. HRs were mutually adjusted.

1 HR per mmHg

doi:10.1371/journal.pone.0000064.t003

Figure 1. Cardiovascular mortality in the Botnia cohort in patients with previous MI according to MHC2TA -168 A→G genotypes. Kaplan Meier survival curves illustrating a higher risk for CV mortality (HR 1.76 [1.09–2.82], p = 0.02) in AG/GG genotype carriers with previous history of MI.

doi:10.1371/journal.pone.0000064.g001
with previous MI, carriers of the AG or GG genotypes had outcome and prediction of cardiovascular disease. Among patients MetS.

The key finding of the present study was an association between the MHC2TA -168 A→G polymorphism and cardiovascular disease in non-diabetic subjects. This could reflect the fact that in diabetic subjects other factors including hyperglycaemia, smoking, heart failure and renal atherosclerosis, all of which themselves are associated with increased inflammatory activity, are known to play a role in the development of microalbuminuria [22]. The association with microalbuminuria was, however, restricted to non-diabetic subjects. This could reflect the fact that in diabetic subjects other factors including hyperglycaemia may influence the day-to-day variation in albumin excretion. The non-diabetic patients with microalbuminuria had several features of MetS including higher waist to hip ratio, higher blood pressure, smoking, heart failure and renal atherosclerosis, and hyperglycaemia. Several factors like high blood pressure, hyperglycaemia, smoking, heart failure and renal atherosclerosis, all of which themselves are associated with increased inflammatory activity, are known to play a role in the development of microalbuminuria [22].

ACKNOWLEDGMENTS

Author Contributions

Conceived and designed the experiments: OM MO. Performed the experiments: OM MO. Analyzed the data: PA EL. Contributed reagents/materials/analysis tools: LG GB OM CA MO. Wrote the paper: LG GB EL OM CA MO.

REFERENCES