LUND UNIVERSITY

Stability of Model Reference Adaptive and Self-Tuning Regulators

Egardt, Bo

1978

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

Egardt, B. (1978). Stability of Model Reference Adaptive and Self-Tuning Regulators. [Doctoral Thesis
(monograph), Department of Automatic Control]. Department of Automatic Control, Lund Institute of Technology
(LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00


https://portal.research.lu.se/en/publications/b20b4c6c-5437-4de7-b871-75a05c49dce3

CODEN: LUTFD2/(TERT-1017)/1-163/(1978)

Model Reference
un

. . o

/-
e el
.
- . B
... -
s s

s o e = &

- - o e
- -
. .
e

e

-
- =

Ay St ~
- -
- -
. e
. .

.

- e ...

C

s

L
e

.

s

- ﬁ%”%» .

-

e -
-
.

L

.
.

o i
.

- -
- -

Ea
@

Selr-|

0

.

o

-

o
.

.

e
.

-
-
.

PR
- ,‘pés}{\g}% «

.

Department of Automatic Control Lund

Ing

Stability or
Adaptive and
Regulators

.
—

- .

nstitute of Technology

]




STABILITY OF

MODEL REFERENCE ADAPTIVE

AND SELF-TUNING REGULATORS

av

Bo Egardt

Civ ing, Hld

Akademisk avhandling som for avldggande av teknisk
doktorsexamen vid tekniska fakulteten vid universi-
tetet i Lund kommer att offentligen fdrsvaras i sal

M:B, Maskinhuset, Lunds Tekniska Hdgskola, fredagen
den 16 mars 1979 k1 10.15.







Stability of
Model Reference Adaptive

and Selt-Tuning Regulators

Bo Egardt

lund 19/8




3

Dokumonlutgivu.'e Dokumentnsmn Dokumentbatackning

Lund Institute of Technology REPORT LUTFD2/(TFRT-1017)/1-163/(1978)
Handisggars  Dept of Automatic Control Utgivningsdatum Arandabsteckning

Karl Johan Astrom December 1978

Faorfattare

Bo Egardt

Dokumenttitel och undertitel

Stability of Model Reference Adaptive and Self-tuning Regulators

Raferat (ssmmandrag)

Self-tuning regulators (STR) and model reference adaptive systems (MRAS)
are treated in a unified way. It is shown that MRAS can be derived from the

STR point of view. The positive real condition, which appears in the

analysis of both types of schemes, is examined. The stability properties
of STR and MRAS are analysed. Sufficient conditions for L*-stability in
the presence of disturbances are given. The stability results are used to
prove convergence of the process outputs for STR and MRAS without
disturbances.

Referat akrivet av

Author

Férslag till ytterligare nyckelord

Kiassitikationssystem och -kiassler)

Indextermar {ange kalis)

Adaptive systems, Automatic control, Stability, Adjusting, Feedback control.
(Thesaurus of Engineering and Scientific Terms, Engineers Joint Council, N.Y., USA)
Omfing $vriga bibliografiska uppgifter

163 pages

Sprak

English

Sakretessuppgiftar ISSN ISBN

Dokumentet kan erhlitas frén Mottagarans uppgifter
Department of Automatic Control

Lund Institute of Technology

Box 725, $-220 07 Lund 7, Sweden

Pris

DOKUMENTDATABLAD onligi $1562 1012

S18-
lol:N]

Blankett LU 11:25 1976-07




Table of contents

1. INTRODUCTION

2. UNIFIED DESCRIPTION OF DISCRETE TIME CONTROLLERS

2.1 Design method for known plants

2.2 Class of adaptive controllers

2.3 Example of the general control scheme
2.4 The positive real condition

3. UNIFIED DESCRIPTION OF CONTINUOUS TIME CONTROLLERS

3.1 Design method for known plants

3.2 Class of adaptive controllers

3.3 Examples of the general control scheme
3.4 The positive real condition

4, STABILITY OF DISCRETE TIME CONTROLLERS

4.1 Preliminaries

4.2 LT-stability

4.3 Convergence in the disturbance-free case
4.4 Results on other configurations

4.5 Discussion

5. STABILITY OF CONTINUOUS TIME CONTROLLERS

5.1 Preliminaries
5.2 L™-stability

5.3 Convergence in the disturbance-free case
ACKNOWLEDGEMENTS
REFERENCES
APPENDIX A - PROOF OF THEOREM 4.1

APPENDIX B - PROOF OF THEOREM 5.1

12

12
16
23
27

30

30
33
38
44

46

48
63
80
83
87

90

90
98
106

110

m

115

137




1. INTRODUCTION

Generalities

Most of the current techniques to design control systems are based on
knowledge of the plant and its enviropment. In many cases there is,
however, a lack of detailed information about the process and its
environment. The reason might be that the plant is too complex or that
basic relationships are not fully understood. Different possibilities
to overcome this difficulty exist.

One way to attack the problem is to apply some system identification
technique to obtain a model of the process and its environment from
practical experiments. The controller design is then based on the
resulting model. Another possibility is to adjust the parameters of
the controller during plant operation. This can be done manually as is
normally done for ordinary PID-controllers, provided that only a few
parameters have to be adjusted. Manual adjustment is, however, not
feasible if more sophisticated control algorithms are used. Some kind
of automatic adjustment of the controller parameters is then needed.

Adaptive control is another possibility to solve the control problem
for partially known plants. Self-tuning regulators and model reference
adaptive systems are two widely discussed approaches to solve the
problem. Although these two approaches in practise can handle slowly
time-varying plants, the design is basically made for constant but
unknown plants. The basic ideas behind the two techniques are
discussed below. '

Self-tuning regulators

The self-tuning regulators (STR) are based on a fairly natural combi-
nation of identification and control. A design method for known plants
is the starting-point. Since the plant is unknown, the parameters of
the controller can, however, not be determined. They are instead

obtained from a recursive parameter estimator. A separation between




identification and control is thus assumed.

The general configuration of a self-tuning regulator is shown in

Fig. 1.1. The regulator can be thought of as composed of three parts:

a parameter estimator, a controller, and a third part, which relates
the controller parameters to the parameter estimates. This partitioning
of the regulator is convenient when'describing how it works and to
derive algorithms. The regulator could, however, equally well be de-
scribed as a single non-linear regulator. There are of course many
design methods and identification techniques that can be combined into
a self-tuning regulator with this general structure. A survey of the
field is given in Astrom et al. (1977).

Model reference adaptive systems

The area of model reference adaptive systems (MRAS) is more difficult
to characterize in a general way. A survey of the numerous variants of
the technique is given by Landau (1974). The schemes considered in this
thesis can, however, be described as in Fig. 1.2. The unknown plant is
controlled by an adjustable controller. The desired behaviour of the
plant is defined by a reference model. Some kind of adaptation

2

Regulator . | Parameter

parameter .

calculation | estimation
Regulator = Plant Y

Figwre 1.1, Block diagram of a self-tuning regulator.




Reference
model
ﬂ Adaptation
mechanism -
—#| Adjustable u
{
8 controller Plant

Figure 1.2. Block diagram of model reference adaptive controller.

mechanism modifies the parameters of the adjustable controller to
minimize the difference between the plant output and the desired out-
put. The methods to design the adaptation loop in MRAS have in recent
years mostly been based on stability theory. Lyapunov theory and
hyperstability concepts are the major design tools.

Similarities between STR and MRAS

The STR and the MRAS were developed to solve different problems. The
STR were originally designed to solve the stochastic regulator problem.
The MRAS were developed to solve the deterministic servo problem. In
spite of these differences, the two techniques exhibit some important
similarities. This has been observed in e.g. Ljung {(1977a) and Gawthrop
(1977). The question has thus arised, whether the two approaches are
more closely related than earlier thought. Some answers are provided in
Ljung/Landau (1978) and Narendra/Valavani (1978).

The purpose of the first part of the thesis is to describe several

MRAS and STR in a unified manner. The discussion is Timited to systems
with one input and one output. It is assumed that only the plant output
is available for feedback. It will be shown that it is possible to
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derive MRAS from the STR point of view. A general algorithm, which
includes both MRAS and STR as special cases, is defined. Some problems
in the analysis are pointed out. In particular, the positive real
condition, which plays an important role in the design and analysis
of both MRAS and STR, is examined. It is shown that the condition can
be removed in the deterministic case. The discrete time case is
covered by Chapter 2 and Chapter 3 gives the treatment for the con-
tinuous time case. Since adaptive regulators are predominantly imple~
mented using digital computers, the discrete time case is emphasized.
The analysis is also a little simpler in that case.

Stability

There are a number of important properties of adaptive regulators
which are poorly understood, e.g.

- overall stability

- convergence of the regulator

- properties of the possible limiting regulators
- effects of disturbances.

Overall stability of the closed Toop system is perhaps the most
fundamental property. This is of course important both practicaliy and
theoretically. The stability problem has also been encountered indi-
rectly in most convergence studies. The importance of the stability

for the convergence of MRAS is emphasized by e.g. Landau/Béthoux (1975),
Feuer/Morse (1977), and Narendra/Valavani (1978). Stability conditions
are important also in the stochastic convergence analysis of STR, see
Astrom et al. (1977) and Ljung (1977a).

Stability analysis in presence of disturbances is the topic of the
second part of the thesis. The stability properties of the algorithms
described in Chapters 2 and 3 are investigated using the L -stability
concept. The main effort is given to algorithms with a stochastic
approximation type of estimation scheme. It is shown that the signals
in the closed loop are bounded under some reasonable assumptions. The
most important one requires the parameter estimates to be bounded. It
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is shown that this condition cannot be relaxed when disturbances
affect the plant. Boundedness of the estimates can, however, be guar-
anteed if the algorithms are modified slightly or if there are no
disturbances.

The disturbance-free case is analysed further. The closed-loop stabil-
ity is used to show that the plant oufput converges to the desired
output. Unlike most earlier convergence analysis, this result does not
require any a priori assumption of stability.

Chapter 4 treats the discrete time case and the continuous time
schemes are analysed in Chapter 5.
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2. UNIFIED DESCRIPTION OF DISCRETE TIME CONTROLLERS

The MRAS philosophy has been applied to the discrete time case in
e.g. Landau/Bethoux (1975), Béngjean (1977), and Tonescu/Monopol1 §
(1977). Stability theory is the major design tool. The STR approach
has been used almost exclusively for discrete time systems, see e.q.
Astrom/Wittenmark (1973), Clarke/Gawthrop (1975), and Astrom et al.
(1978). The basic idea is to use a certainty equivalence structure,
i.e. to use a control law for the known parameter case and just
replace the unknown parameters by their estimates.

Since the control algorithms obtained by the MRAS and the STR
approaches are very similar, it is of interést to investigate the
connections between the two approaches. Results in this direction are
given in Gawthrop (1977) and Ljung/Landau (1978). A unified treatment
of MRAS and STR for problems with output feedback will be presented
in this chapter. It will be shown that MRAS can be derived from the
STR point of view. Some problems in the design and analysis of the
discrete time schemes are also discussed. In particular, the nature
of the positive real condition, associated with both MRAS and STR,
will be examined in detail. It is shown that this condition can be
avoided in the deterministic case.

2.1. Design method for known plants

A design method, which will be the basis for the general adaptive
algorithm in the next section, is described below. It consists of a
pole placement combined with zero cancellation and adding of new
zeros. Related schemes are given in e.q. Bénéjean (1977), Ionescu/
Monopoli (1977), Gawthrop (1977), and Astrom et al. (1978).

The plant is assumed to satisfy the difference equation

A7) yit) = 7 587l ity + w(y), (2.1)

1

where q~' 1is the backward shift operator, k is a nonnegative integer,




and A(q_]) and B(q_]) are polynomials defined by
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Furthermore, w(t) is a nonmeasurable disturbance.
3

REMARK

The parameter bO is not included in the B-polynomial, because it
will be treated in a special way in the estimation part of the
adaptive controller in the next section. o

The objective of the controller design is to make the difference
between the plant output y(t) and the reference model output yM(t)
as small as possible. The reference output yM is related to the
command input uM by the reference model, given by
-(k+1) M M -
q ( )(b0+... +bp g ™) M
u

=(k+1) M, -1
Pty - BT ) -

AM(Q_]) 1 +-a¥ q'] + ...4—am q "

(t).
(2.2)
It is no restriction to assume that the polynomial degrees n and m
are the same in the model and the plant, because coefficients may be
zero in (2.2) and it is easy to add zeros or poles by modifying uM,
It is seen that the time delay of the reference model is greater than
or equal to the time delay of the plant. This is a natural assumption
to avoid noncausal control Tlaws.

The problem will be approached by assuming the controller configuration
shown in Fig. 2.1. Here R, S, and T are polynomials in the backward
shift operator. Motivation for this structure can be found in e.g.
Astrom et al. (1978). It can be shown that the controller is closely
related to the solution in a state space setup with Kalman filter and
feedback from the state estimates. Notice that the process zeros are
cancelled. This implies that only minimum phase systems can be
considered. Other versions which allow nonminimum phase systems are
discussed in Astrom et al.(1978). The T-polynomial can be interpreted

as the characteristic polynomial of an observer.
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1
bOB(q-1)R(q—1) ‘—l—"u Plant

-5 q'1)'

Figune 2.1. Controller configuration.

The design procedure will be given for two different problems. In
the first one, the disturbances are neglected and the problem is
treated as a pure servo-problem. This means that the design concen-
trates on tracking a given reference signal. The procedure will be
referred to as a deteuninistic design. On the other hand, if the
disturbance is considered as part of the problém, the controller
should have a regulating property too. An interesting special case
s when the disturbance w(t) is a moving average, given by

M(t) = c(@7) v(t) = (T+eia7 4 v, g™ v(t), (2.3)

where {v(t)} are independent, zero-mean random variables. A design
procedure which has the objective to reject noise of the form (2.3),
will be called stochastic. The deterministic design is considered
first.

Deterministic design

Assuming w(t) = 0, it is possible to have the plant output equal to
the reference model output yM(t). This is obtained by making the
closed-loop transfer function equal to the reference model transfer
function, i.e.
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g () ey N IO HCR AT
At Ag™1) b B(a™NR(aT) +a (1) b B(gT)s(g™T)
or, equivalently,
1@ N My = a@ ) RieT # D) sq7Ty. (2.4)

The observer polynomial T is cancelled in the closed-loop transfer
function. Neglecting the effects of initial values, it can therefore

be chosen arbitrarily. When T has been determined, the equation (2.4)
has many solutions R and S. It will, however, be required that the
degree of R is less than or equal to the time delay k. Then there is a
unique solution to (2.4). The degree of S will depend on n, k, and the
degree of T. Furthermore, it is required that R(0) # 0 in order to get
a causal control law. As seen from (2.4), this is equivalent to T(0) #0.
Finally the R- and T-polynomials are scaled so that T(0) = R(Q) = 1.

i

The deterministic design procedure can thus be summarized in the
following steps:

1) Choose the polynomial T(q']) defined by

T(@hy =1+ t1q'} t...+tQ

2) Solve the po]ynomfa] equation
@) AMa™h) = A @) + g (K1) g7
for the unique solutions R(q']) and S(q']),defined by

R(q™")

i

1+ r]q'1 o rkq_k

-ng

s(qg™h So +s1q_1 Feootspe g s ong = max (n+np-k-1, n-1).

n

Stochastic design

The deterministic design procedure can of course be used also when
disturbances are acting on the plant. The choice of observer
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polynomial will, however, be of importance not only during an initial
transient period. If it is assumed that w(t) is given by (2.3), then
it is well-known that the optimal choice of observer polynomial is

T(q) = ca™h), ' |

in the sense of minimum variance. This is explicitly demonstrated in
Gawthrop (1977) as a generalization of the result on minimum variance
regulators in Astrom (1970).

2.2, Class of adaptive controllers

A general adaptive control .scheme is defined in this section. The
scheme is a self-tuning version of the controller described in the
preceeding section. It will be shown to include earlier proposed MRAS
and STR as special cases.

The plant is still assumed to satisfy (2.1). The following assumptions
are also introduced.

Al) The number of plant poles n and zeros m are known.

A2) The time delay k is known ‘and the sign of bo is known. Without
loss of generality bo is assumed positive.

A3) The plant is minimum phase, i.e. the numerator polynomial B(q—1)
in (2.1) has its zeros outside the unit circle.

REMARK

Notice that some coefficients in A(q']) or B(q_]) may be zero. It
therefore suffices to know an upper bound on the polynomial degrees

to put the equation into the form of (2.1) with known n and m. The
condition on k in A2) is the counterpart of the continuous time condi-
tion, that the pole excess (i.e. the difference between the number of
poles and number of zeros) is known. Compare Chapter 3. The minimum
phase assumption was commented upon in Section 2.71. a




The objective of the controller is the same as in Section 2.1, i.e.
to minimize the error defined by

e(t) = y(t) - y(1).

The controller to be described uses an {mplicit identification, %
Astrom et al. (1978). This means that the controller parameters are
estimated instead of the parameters of the model (2.1). The first
step in the development of the algorithm is therefore to obtain a
model of the plant, expressed in the unknown controller parameters.
Thus, use the identity (2.4) and the equations (2.1) and (2.2) to
write for the error:

ety = T y(e) - T Yty = AR+ q R sy yiey -l Yty -

“( b BRu(E) +5 y(t) - T WME)] + R ow(t). (2.5)
To obtain some flexibility of the model structure, a filtered version
of the error will be considered. Let § and P be asymptotically stable
polynomials, defined by

1 g

a1y =1+ g e Iy

Pa7!) = Py(a) PplaTh) = 1+ pa ot

where P1 and P2 are factors of P of degree np and np, respectively. It
is assumed that P{(0) = Pp(0) = 1. Define the filtered error by

= Q(q_]) e(t).
P(a71)

Note that ef(t) is a known quantity, because y(t) is measured and
yM(t), Q, and P are known. Using (2.5), eg(t) can be written as

ef(t)

bsBR M
0 () [POBR s T T, R
ee(t) = g a [ ut) +2 vit) (t)] —t
Qg (k (t) t)
- g [, SE0+ b B-p 2) Ll ¥CE) . (t)] o).

(2.6)
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REMARK

The polynomials Q and P give the necessary flexibility to cover both
MRAS and STR. The exact choices of the polynomials and their degrees
will be commented in the examples in Section 2.3. It should also be
noted that instead of polynomials Q and P, one could consider rational
functions. We will however not elaborate this case. o

The general adaptive controller will first be given for the determi-
nistic design case.

Deterministic design

The observer polynomial is now determined a priori. Let 6 be a vector,
containing the unknown parameters of the polynomials BR-P2 and S/bO
and the constant 1/bO as the last element. Note that 8 contains the
parameters of the controller, described in Section 2.1.

Furthermore, define the vector o¢(t) from

M

- - - TB

o' (t) = [w_u u(e-2) o y(e) y(t-1) o TBY um(t)} 2.7)
P P P P P

where the numbers of u- and y-terms are compatible with the definition

of 6. Note that the elements of y are known signals.

Using the definitions of 6 and ¢, it is possible to write (2.6) as

e

((t) = T—?\ﬁ q (ktT) [bo LG w(t)] + R oy, (2.8

Py TAMp

This model, which contains the unknown controller parameters bo‘and 8,
can be taken as a basis for a class of adaptive controllers. The
intention is to estimate the unknown parameters bD and 8, and to use
these estimates in the control law. The estimation procedure can be
designed e.g. to force a prediction error of eg(t) to zero. Note that
ef(t) is itself a known quantity. Taking the different possibilities
of choosing e.g. estimation algorithm and control law into considera-
tion, a class of controllers can be characterized in the following way.
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BASIC CONTROL SCHEME

o Estimate the unknown parameters by and © (or some combination of
these) in the model (2.8).

o Use these estimates to determine the control signal.

A natural requirement on the controlier is that it performs as the
controlier in Section 2.1, if the parameter estimates are equal to the
true parameters.

Stochastic design

The algorithm described above can of course be used also when w #+ 0.
However, if w(t) is given by (2.3) with an unknown C-polynomial, it
was seen in Section 2.1 that the choice T = C is optimal. Since C is
unknown, it might be desirable to estimate it. Some minor changes are
then needed. Concatenate the e-vector with a vector whose elements are
the unknown parameters of C/by. Also, redefine the @-vector as

M
ol (t) = [i%)— “—(%2—) e Y(tp'”, s B,
M
- EP- M-y, ] (2.9)

The filtered error can then be written as

- Q -(k+1)[ u(t) T QR

e-{t) =—% ¢q b, HY b8 oty + 5 v(t), (2.10)
f calt 07y 0 alp

which constitutes the model for a class of algorithms in the same way
as in the deterministic design case.

The class of algorithms described above contains many different
schemes. Apart from the selection of the polynomials Q and P and the
choice between fixed or estimated observer polynomial, the choices of
control law and estimation algorithm generate different schemes. The
choice of estimation algorithm will be commented in connection with
some examples in Section 2.3 and further discussed in Section 2.4. To

proceed, it is however suitable to specify one particular method.
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A special parameter estimator

A characteristic feature of the model reference methods is that the
estimation is based on a model 1ike (2.8}, where the parameters b0

and 6 enter bilinearlfy. The estimation scheme will be described in the
deterministic design case.

Let Bo(t—]) and @(t—1) denote estimates at time t-1 of by and 8. Using
the model (2.8), a one step ahead prediction of ef(t) is defined as

A t-k-1) . ¢ A
B(tit1) = ?%M [Bo(t-n E(“Fﬁ‘) + By(t-1)87(t-1) w(t—k—])].
(2.11)

The prediction error g(t) is defined as
e(t) = eq(t) - Bc(tIt-1), | (2.12)

where eg(t) is given by (2.8), and is usually used in the parameter
updating. The following expression is obtained for e(t) if it is
assumed that the disturbance w(t) is equal to zero:

e(t) = —T%M [[bo—go(t-l)] (“_(t_P‘;_“l + 87 (e-1) w(t-k-])) "

+ bole -8(t-1)1" o(t—k-])]. (2.13)

The following parameter updating is used in the constant gain case:

B(t B (t-1
o) || Boteny |

(t) 8(t-1) o(t-k-1)

Ultokol) 4 87161 o(t-k-1)
1

where T' is a constant, positive definite matrix.

REMARK

It is straightforward to define stochastic approximation (SA) or least
squares (LS) versions of the algorithm (2.74). For LS I' is replaced by
P(t) = [E w(s) w(s)T]'] and a SA variant uses e.g. 1/tr P=1(t)
instead of T. Here

& 2 MLP]‘LH + 8T (t-1) o(t-k-1)
w(t) 8

o(t-k-1) ' o
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The intention with the algorithm (2.14) is to exploit the properties
of a strictly positive real transter function in order to estabiish
convergence of e(t) to zero. The motivation is the successful use of
Lyapunov theory and the Kalman-Yakubovich lemma in continuous time,
see Chapter 3. The problems that arise will be discussed next. Let us
just briefly comment on the stochastic case. The algorithm given by
(2.11), (2.12), and (2.14) cannot be directly applied to the model
(2.10), because the C-polynomial is unknown. This implies that the
prediction cannot be calculated according to (2.11). An easy modifi-
cation is to replace C in front of the paranthesis with an a priori
estimate of C or even with unity.

Chodice of control Law

The control law, given in Section 2.1, can be written as
u(t) = - Py(q ") [ele(t)],

where © is the vector of true parameters. Compare (2.6), (2.8). Any
reasonable control law should equal this one when the parameter
estimates are correct. Notice that a parameter estimator like (2.14)
has the objective to force the prediction error e(t) to zero. It

would thus be desirable to choose a control such that éf(tlt-1) is
equal to zero, because convergence of ef(t) to zero would then follow
from the convergence of e(t) to zero, cf. (2.12). This is accomplished
by the control law

u(t) = = Py(a) 187 (t+k) ()]

as seen from (2.11). This control law is however noncausal. It is
therefore natural to modify it in the following way:

u(t) = - Py(a”) [67(t) w(t)1. (2.15)

This control Taw is used in all control schemes of the type

considered.
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Difficultios with convengence analysis

There are two key problems in the analysis of the schemes of MRAS type
described above. The first problem is that the control law (2.15) has
to be used if a causal control law is required. This implies that
€f(tlt-1) is not equal to zero in the case k % 0. This in turn means
that it is not easy to conclude that eg(t) tends to zero even if

g(t) tends to zero.

The second problem is to show that e(t) tends to zero. Consider for
simplicity the case k = 0, which is analogous to the case for contin-
uous time systems, where the pole excess is equal to one, cf. Chapter
3. Then e(t) is equal to ef(t) if the control law (2.15) is used.
Contrary to the continuous time case, convergence of ef(t) to zero
cannot be proved straightforwardly. The reason is the following one.
If the control law (2.15) is used and it is assumed that by = 1, the
equation (2.13) can be written

e(t) = ep(t) = i@ ) - a7 [ (1) w(t)]. (2.16)
Here
-1
-1y Q{q_ )
g ') = —d L
T M@
and

8(t) = 8(t) -8.

In continuous time the estimation error g(t) is given by
=T
e(t) = G(p) [-8 (t) o(t)].

Compare Chapter 3. Positive realness of G(p) can be used to prove the
convergence of e(t) to zero. It is however not possible to use the
same arguments in discrete time, because the transfer function
H(q'])-q'] can never be made positive real. The difference appears
because a discrete time transfer function must contain a feedthrough
term to be strictly positive real, whereas a continuous time transfer
function may be strictly proper. This difficulty is also emphasized in
Landau/Bé&thoux (1975).

|
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The problem mentioned above and also, in the case k + 0, the
previously mentioned problem to relate convergence of e(t) and e(t)
are closely related to the boundedness of the signals of the closed
loop system. This is pointed out in e.g. Ionescu/Monopoli (1977). It
seems that no general solution to the problems has been presented

so far.

2.3. Examples of the general control scheme

Some special cases of the basic control scheme, proposed in the
preceeding section, will now be given. Both model reference adaptive
systems and self-tuning regulators will be shown to fit into the
general description.

EXAMPLE 2.7. Tonescu’s and Monopoli’s scheme

The scheme in Ionescu/Monopoli (1977) is a straightforward translation
into discrete time of the continuous time MRAS by Monopoli (1974). It
is possible to treat the scheme as a special case of the general
algorithm in the following way. Choose the polynomials as

Py =T of degree k
P2 of degree n-1
Q="P=PP, " of degree n+k-1.

The equation (2.6) then transforms into

P B
eplt) = e(t) = —I-\_ﬁ. g (k1) [bo ”—F(,-:l + by(BR-pp) UEL 4 % .

M

_E_M]

b u(t) |, (2.17)
where the disturbance w has been assumed to be zero as in the original
presentation. This is the model used by Ionescu and Monopoli and the
estimation scheme is similar to the one in (2.14). The polynomial Py

is chosen to make the transfer function P2/AM strictly positive real.
Some modifications of the estimation scheme are done to handle the
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problems discussed in the preceeding section, although no complete
solution is presented. The concept of augmented evion, introduced in
Monopoli (1974), is translated into discrete time. It can be shown
that the augmented error n(t) in the case k = 0 is given by

n(t) = e(t) - "2 [Ky e n(t) - lo(t-1)1 %1,
P ;

where Kn is a constant. It is shown that n(t) tends to zero, but a
boundedness assumption is needed to establish convergence of e(t) or
ef(t). Finally it should be noted that the polynomials Py and P, are
called Zg and Zw in Ionescu/Monopoli (1977). o

EXAMPLE 2.2, Béndjean’s scheme

A discrete time MRAS is presented in Bénéjean (1977). It can be shown
that the algorithm is very similar to Ionescu’s and Monopoli’s scheme.
The model used by Béndjean is obtained by reparametrizing (2.17) as
follows: '

P M M
eplt) = elt) = R (£) 4 b (BR-py) MWL)

b5 K8 (pgpr-8%) ——“Mét)].

The estimation algorithm used is similar to the one used by Ionescu
and Monopoli. Note that more parameters have to be estimated because
of the reparametrization. o

In the two MRAS examples above the natural choice Q = P has been used.
This implies that the filtered error ef(t) equals the error e(t).
Another possibility is to choose the polynomials so that the transfer
function Q /TAM becomes very simple. This is done below.

EXAMPLE 2.3. Self-tuning pole placenent algorithm

A pole placement algorithm with fixed observer polynomial is described
in Astrom et al. (1978). It can be generated from the general struc-
ture in the following way. Choose the polynomials as
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Q = TaA"
P=py=p, =1,

which means that ef(t) = TAM e(t). This implies that (2.8) has the
simple form

ee(t) = q K p ey by o7 w(t)], (2.18)

where the elements of ¢ are simply lagged input and output signals,
The disturbance has been assumed to be zero. The mode] (2.18) 1is used
for the self-tuning regulator with a minor modification. The para-
meters which are estimated by a Teast squares algorithm are bO and
boe. Since the last element in 9 is 1/b0, the effect is that one para-
meter is known to be equal to one. If 6 and ¢ are redefined not to
include the last known element, the equation (2.18) can be written as

ol

() = T [y(e) - Me)] = q ) g o(t)]- A"y My,

0

which is the model used. o

In the three examples above the choice of observer polynomial T was
made in advance. However, if there is noise of the form given by (2.3),
the optimal choice of observer polynomial is T = C, which is unknown.
It can then be estimated as described in Section 2.2. Below some
schemes of this type will be described.

EXAMPLE 2.4, Rstnim’ s and- Wittenmark’ s self-Tuning negubaton

The basic self-tuning regulator is described in Astrom/Wittenmark
(1973). It is based on a minimum variance strategy, which minimizes
the output variance. This is a special case of the problen considered
in Section 2.1 with aM = Tand yM < M=o, Inserting this into (2.6)
and using the polynomials Q = p = 1, the following is obtained:

ec(t) = y(t) = % q‘(k”)[bou(t)+b0(BR-1)u(t) £SY(t)]+Rv(t).

This model can be written analogously with (2.10) as

1 (k+1
q (k+

er(t) = y(t) = 1 )[bou(t)+eTw(t)] R v(t) (2.19)
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and is the basis for the self-tuning regulator. Since C is unknown,
the prediction is chosen as in (2.11) with T = C replaced by unity.
Compare the discussion in Section 2.2. Hence,

Se(tIt-1) = Y(tit-1) = Bo(t—ﬂu(t-k—l)+§T(t—1)gp(t—k—1). (2.20)

The fact that € is included in (2.19) but not in (2.20) makes it
somewhat unexpected that the algorithm realiy converges to the optimal
minimum variance regulator. It is shown in Ljung (1977a) that the
scheme (with a stochastic approximation estimation algorithm) converges
if 1/C is strictly positive real. If instead a least squares estimation
algorithm is used, convergence holds if 1/C-1/2 is SPR. The condition
on 1/C and its relation to the positive real condition for MRAS will

be further examined in the -following section. a

EXAMPLE 2.5. Clarke’s and Gawthrop’s self-tuning controller

Clarke and Gawthrop (1975) consider a ‘generalized output'
- -1 -1 -1, M
o(t) = P(q”)y(t) + Q{a” Du(t-k-1) - R(q Ju(t-k-1)

and applies the basic self-tuning regulator to the system generating
this output. It is possible to treat the algorithm within the general
structure in the special case Q =0 in their notation. Thus change the
notation into:

a(t) = A y(ey - o DB ().

Then it follows that ¢(t) equals ef(t) = AMe(t) if P=1and Q= A,
If the noise is given by (2.3) and T is chosen to be equal to C, the
equation (2.6) can be written as

er(t) = ¢ g~ (Db () + bo(BR-1)u(t) +Sy(t) - cuMt)] + R (t).

This is the model used in the self-tuning controller. The fact that

the first parameter in C is known to be unity is exploited. The predic-
tion is calculated as in Example 2.4, i.e. C in front of the paren-
thesis is replaced by unity. The estimation scheme is a least squares
algorithm. o
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2.4. The positive real condition

A special model structure and a specific estimation scheme were

described in Section 2.2. The structure was obtained from an analogy

with the model reference adaptive systems in continuous time. The i
intention was to use the properties of positive real transfer func-

tions to establish convergence. It was noted in Example 2.4 that a

positive real condition also appears in the analysis of a self-tuning

regulator in the presense of noise. The relations between the condi-

tions in the two cases will be treated below.

First consider the deterministic design case and for simplicity
assume that k = 0 and by = 1. If the control law (2.15) is used, we
have from (2.16)

e(t) = -H(q N[E (t-1)e(t-1)]. (2.21)

We want to show in a simple way that a positive real condition really
appears in the analysis in a natural way. To do so, assume that a
modified version of the parameter updating (2.14) is used:

B(t) = B(t-1) + !‘("%% e(t). (2.22)
olt- v

This algorithm is similar to stochastic approximation schemes and is
used in e.g. Ionescu/Monopoli (1977).

Subtract the true parameter vector 8 from both sides, multiply from
the left by the transpose and use (2.21) to get

. ...T 2
[o(t-1)] lo(t-1)
g(t) .ﬂ_
= [8(e-1)1% - 2 <”(q']>) L)
lo(t-1)]12  Jo(t-1)|?

15(t-1)|2 - 2 e(t)[(1/H-1/2)e(t)]

(2.23)

lo(t-1)]°

It can be seen that the positive real condition enters in a natural
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way. If 1/H-1/2 is positive real, the parameter error will eventually
decrease. Moreover, e(t)/ |@o(t-1)] tends to zero if 1/H-1/2 is SPR.
It should be noted that the boundedness condition mentioned in Section
2.2 appears because (2.23) only proves convergence of e(t) /je(t=-1)1.

It is straightforward to show that the positive real condition can be
avoided. Thus, let X denote the signal obtained by filtering x by
Q/TAM and rewrite (2.8) as

eg(t) = q_][P—U(:—q—Z—]—) + 8! G(t)], : (2.24)
1

where the same assumptions as above are used. Now consider this as
being the model instead of (2.8). The prediction (2.11) is then
replaced by

Se(tit-1) = EL;_]Jl £ 8T(t-1) B(t-1),

which is different from (2.11) because B(t) is timevarying. Instead of
(2.21) we then have

e(t) = - 8'(t-1) o(t-1).
If the parameter updating (2.22) is replaced by

§(t) = B(e-1) + 2L e, (2.25)
le(t-1)12

the following is obtained:

~T — 2
B2 = [Be|? 2 BB oy =8
le(t-1)] [B(t-1)]
2
3 2 g™ (t)
= 8(t-1)|" ~ —— -
| | le(t-1)1?

It thus follows that e(t) / Jo(t-1)] tends to zero without any positive
real condition. Of course the boundedness of the closed loop signals
mentioned in Section 2.2 is still a problem. The conclusion is that it
is possible to eliminate the positive real condition in the determin-
istic design case if a modified estimation scheme is used.
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Now consider the stochastic design, where the observer polynomial C

is estimated. The transfer function H(q']), which was previously known,
now contains the unknown C-polynomial. This implies that the filtering
in (2.24) and (2.25) cannot be done with the true C-polynomial. The
positive real condition then enters in the same way as in Example 2.4.
The positive real condition on H(q_T) = 1/C(q']) and a boundedness
condition are in fact sufficient to assure convergence for the self-
-tuning regulator in Exampie 2.4, see Ljung (1977a). A natural modifi-
cation in order to weaken the condition on C is to filter with

1/E(t), where E(t) is the timevarying estimate of C. This is further
discussed in Ljung (1977a).

The conclusion of the discussion above is that the positive real
condition, which appears in the analysis of both deterministic MRAS
and stochastic STR, are of a similar technical nature. There is,
however, an important difference. The condition can be eliminated for

the deterministic case by choosing another estimation algorithm, which
includes filtering by the transfer function H(q']). In the stochastic
case, the positive real condition is not possible to be dispensed

with in the same way, because the filter is unknown.
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3, UNIFIED DESCRIPTION OF CONTINUOUS TIME CONTROLLERS

The MRAS schemes were originally developed in continuous time. The
solution for the problem with output feedback was given in Gilbart et
al. (1970) for the easy case with pole excess of the plant equal to
one or two. The pole excess is defined as the difference between the
number of poles and the number of zeros. The solution was reformu-
Jated in a nice way by Monopoli (1973). Monopoli (1974) introduced
the concept of augmented ewron to treat the general case. Similar
schemes are proposed by Béngjean (1977), Feuer/Morse (1977), and
Narendra/Valavani (1977).

self-tuning regulators have not been formulated in continuous time
pefore. Yet, it is of interest to relate the MRAS philosophy and the
separation idea behind the STR in continuous time too. In this
chapter some MRAS schemes will be derived in a unified manner from
the STR point of view. The development gives a new interpretation

of the augmented error, introduced by Monopoli. Some problems in the
analysis are also pointed out and the positive real condition for
MRAS is examined. It is shown that the condition can be dispensed
with. It should be noted that the treatment of the continuous time
schemes is not as complete as for discrete time. Only the determin-
istic design is considered. It should, however, be possible to carry
through a development, analogous with discrete time, in the stochastic
design case too.

3.1. Design method for known plants

Before a unified description of several algorithms is given, the

known parameter case has to be considered. A design scheme, which
includes interesting special cases, will be described in this section,
1t is analogous to the discrete time procedure in Section 2.1. The
scheme is given in Astrim (1976) and special cases are treated in
e.g. Narendra/Valavani (1977), and Béngjean (1977).
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The plant is assumed to satisfy the differential equation

b.B b(p™ +bip™ 4. .. 4D
0®(P) u(t) = 0P *byP Ll u(t), (3.1)
A(p) p"+a T+ L

y(t) =

where p denotes the differential operator.

REMARK 17

It is assumed that there is no disturbance. It is convenient to make
this assumption in this chapter, because the design is deterministic.
Disturbances will, however, be introduced in the stability analysis in
Chapter 5. o

REMARK 2

The parameter bO is not included in the B-polynomial, because it will
be treated in a special way in the estimation part of the adaptive
controller in the next section. Compare Chapter 2. o

The objective of the controller is to make the closed-Toop transfer
operator equal to a reference model transfer operator, given by

M m M
M pUH ... 4D
0 M
My = Bl Mgy - 02— Mgy, (3.2)
A(p) p" +ay o{LL +ay

Here yM(t) is the desired output of the closed loop system and uM(t)
is the command input. It is seen that the po1e excess of the reference
model is greater than or equal to the pole excess of the plant. This
assumption is made to avoid differentiators in the control law.

Analogous to the discrete time case, a controller structure as shown
in Fig. 3.1 will be considered. The controller polynomials R, S, and

T are polynomials in the differential operator p. The configuration is
motivated in e.g. Astrom (1976). As in the discrete time case it is
related to a solution with Kalman filter and state estimate feedback.
The T-polynomial can be interpreted as an observer polynomial. Also
note that the B-polynomial is cancelled, restricting the design method
to minimum phase systems.
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bound on the number of poles to write the differential equation in
the form of (3.1) with known n and m. Knowledge of the pole excess is
the counterpart of the discrete time condition, that the time delay
is known, cf. Chapter 2. The minimum phase assumption was discussed
in Section 3.1. a

The desired closed-loop transfer function is given by (3.2). The
first step in the development is to use the results in Section 3.1
to obtain a model, expressed in the unknown controlier parameters.
Compare with Section 2.2.

The polynomial identity (3.3) and the equations (3.1) and (3.2) are
used to get the following expression for the error e(t) = y(t) —yM(t):

M

A (t) = A"

ey - M E) = (ar+5) yee) - Ty =

= boBRu(t) +Sy(t) 1Mty (3.4)

Let Py(p), Po(p), and Q(p) be stable, monic polynomials of degree
n-m-1, m+ny, and n+ny-1 respectively, and let P(p) be given by

P(p) = Py(p}Py(p).

Define the filtered error

bBR M
A s oy 18 o
ep(t) = g [T u(w) + Syt - S ®)] -
7
= —TiM [bo ult) 4 b (R-p,) AEED 45 YEL - LA M(t)]. (3.5)

REMARK

The motive to introduce the polynomials Q and P and the filtered error
is the flexibility obtained. Different choices of polynomials will be
seen to generate different MRAS schemes in the examples in the next
section. Also compare with Chapter 2. It should also be noted that




35

g and P could be chosen as rational functions, but this generaliza-
tion will not be considered here. o

Let 6 be a vector containing the unknown parameters of the polynomials
BR - P, (degree m+ny -1) and S/bg (degree n-1) and the constant 1/by
as the last element. Note that the vector 6 contains the parameters of
the controller, described in Section 3.1. Furthermore, define the
vector
m+nT-1 n-1
o (t) =[P——P—u(t),...,%u(t),—p-p—y(t),...,]Fy(t), —I%pﬁuM(t)}.
(3.6)

It is then possible to rewrite the expression (3.5) for the filtered
error ef(t) as

eplt) = ?%M [bo E%l + by 6! m(t)]. (3.7)

This model provides the starting-point for a class of adaptive
controllers as in discrete time. Note that ef(t) is still a known
quantity. As before, there is a lot of freedom when specifying the
estimation algorithm and the control law. The development done so far
thus proposes a class of adaptive controllers, defined in two steps.

BASIC CONTROL SCHEME

o Estimate the unknown parameters bg and 8 (or some combination of
these) in the model (3.7). : '

o Use these estimates to determine the control signal.

To make the discussion easier, it is convenient to specify a particular
estimation algorithm as was done in discrete time.

A special parameter estimaton

A specific structure of the estimation part will be discussed below.
It is of special interest because many MRAS schemes use this structure.




36

It is analogous to the special configuration for discrete time
controllers discussed in Chapter 2.

Using the model (3.7), an estimate of eg(t) is defined as

gp(t) = % [Bp(v) “F(j]“’ + Bo(t) 87(8) o(t)]. (3.8)

where Bo(t) and §(t) are estimates of by and 6. Define the difference
between the filtered error and its estimate as

e(t) = gf(t) - Be(t). (3.9)
The following equation is then obtained for e(t):
~ i t AT ; ~ T
ete) = S [[bgrBort1] (53t + 700 olt) )+ b0 - B(6)]" o(t)].

(3.10)
The following parameter updating is used in the constant gain case:

By(t) U 4 8T(e) o)
1

a =T
8(t) o(t)

where T' is a constant, positive definite matrix.

e(t), (3.11)

REMARK

It is possible to define variants of the algorithm (3.11) with T
replaced by some timevarying gain. These schemes can be defined ana-
logously with the discrete time case and the details are not given.

a

If the parameter updating (3.11) is used and the transfer function
Q/TAM is strictly positive real, it is possible to apply Lyapunov
theory and the Kalman-Yakubovich lemma to assure that e(t) tends to
zero. See e.g. Monopoli (1973). Note that the estimation scheme (3.11)
was the motivation for the scheme (2.14) considered in Chapter 2. Also
note that Q/TAM can always be made strictly positive real by choosing
Q appropriately, because T and M are known and the degree of Q is

one less than the degree of TAM.
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The estimation part of the controller with MRAS structure is defined
by equations (3.8), (3.9), and (3.11). Note that ef(t) is known.

So far the second part of the controller - the control law - has not
been discussed. This will be done next.

Chodice of control Law

The choice of control law contains one difficulty. It is natural to
determine the control signal so that the estimate of the error, i.e.
gf(t), is equal to zero. According to equation (3.8) this means that

u(t) = - Py(p) [87(t) o(t)]. (3.12)

This control law is identical to the one described in Section 3.1 if
@(t) is equal to the true parameter vector 6 in (3.7). This can be
seen from (3.5).

The control law, however, uses derivatives of the parameter estimates,
except for the trivial case when m = n-1, i.e. the pole excess is
equal to one. In this case P is a constant. Since 8(t) is in general
obtained by integration of known signals as in (3.11), it is in fact
possible to use (3.12) without differentiators also in the case
m=n-2.

However, in the general case the control law must be modified in order
not to include differentiators. Compare the discussion of the control
law in the case k # 0 in Section 2.2. There are different solutions
proposed in the literature. For example, Monopoli (1974) chooses a
control signal which corresponds to the choice

u(t) = - 87(t) [Py(p) w(t)]. (3.13)

It is clear that the control Taw (3.13) is asymptotically equivalent
to the control law (3.12}. Note that it follows from the definition of
@(t) that P1(p)e(t) contains filtered input, output and reference
signals without any derivatives. The choice (3.13) does not guarantee
that gf(t) = 0, and it remains to conclude that er(t) tends to zero
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from the fact that e(t) = ef(t) -Ef(t) tends to zero. This problem
is closely related to the problem of boundedness of the closed-loop
signals. Compare the discussion in Section 2.2. 1t seems that the
only solution to this problem so far is a complicated control law by
Feuer and Morse (1977).

3.3. Examples of the general control scheme

Some special cases of the procedure proposed in Section 3.2 will now
be given. Several MRAS schemes proposed in the literature will be
shown to fit into the general algorithm. As a side result, the
augmented erron introduced by Monopoli is given a new interpretation.
A new algorithm is also given to illustrate the large number of
schemes that are possible to derive from the general algorithm.

EXAMPLE 3.1, Movopoli’s scheme

The scheme by Monopoli (1974) has been frequently discussed, because
it was an attempt to solve the adaptive control problem when the

pole excess of the plant is greater than two. Monopoli introduced

the concept of augmented erron, motivated by the results on adaptive
observers. The scheme will be described in some detail in order to
show the interpretation of the augmented error. To be consistent

with the preceeding section, the notation is different from Monopoli’s.
A cross reference table between the notations is given in Table 3.1,

In summary, Monopoli’s scheme is as follows. Monic poiynomials Dw
{degree n-1) and D¢ (degree n-m-1) are chosen. Furthermore, the
polynomials D (degree n-2), F (degree n-m -2), and G (degree n-1)
are solved from the identities

D, = BD + D/by
(A-A") Do = AF + 6.

With these polynomials, e(t) = y(t)-yM(t) can be written as




39

Table 3.1. Present notation
compared to Monopoli’s

present Monopoli’s
y(t) x(t)
YM(t) Xm(t)
uM(t) ri(t)
B(p)uM(t)  r(t)
e(t) -e(t)
e1(t) y(t)
n(t) -n(t)
A(p) Dp(p)
boB(p) Dy (p)
AM(p) D (p)
8M(p) Dr(p)
-D(p) A(p)
G(p) B(p)

bpB(p)F (p) C(p}

D,

- u(t) _ y ) BT M A
e(t) = [bo S5 - g0/ +8F) § —Ll - (t)] A

A ¥ [bo ut) 4 g w(t)} (3.14)

where 6 and ¢ are defined as in the derivation of the controller in
Section 3.2.

The augmented error ﬁ(t) is defined as

n(t) = e(t) - e](t) (3.15)
where
0,(p) .
e](t) = AM ) [bo(t) w1(t)} (3.16)

and the auxiliary signal wy(t) is determined so that

u(t)
De(p)

+BT(t) (t) = w(t). (3.17)
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Here Bo(t) and é(t) denote estimates at time t of by and 6. With

an updating similar to (3.11), the positive realness of DW/AM can be
shown to assure the convergence of the augmented error to zero, see
Monopoli (1974). However, even if n(t) tends to zero, it does not
follow that e(t) tends to zero, which is the primary goal. Monopoli
makes this conclusion under the crucial boundedness assumption.
Compare the discussion in Section 3.2.

It is easy to give an interpretation of the augmented error from
the equations given above. Thus, if Equation (3.17) is inserted into
Equation (3.16), the following is obtained:
D, (p) 1A .
er(t) = 2 [Bp(m)(a +87(r) wit)].
A'(p) P

Compare this with the identity (3.14). The conclusion is that

e(t) = &(t),

where 8(t) is an estimate of e(t) using the model (3.14) with the
Jatest available parameter estimates. From equation (3.15) it then
follows that the augmented error n is simply the estimation error,
i.e. the difference between e(t) and its estimate &(t). This quantity
is denoted e(t) in the preceeding section.

1t is straightforward to show that the scheme by Monopoli is a special
case of the general algorithm in Section 3.2. Thus, it is possible

to verify that the expression (3.14) coincides with (3.5) if the
degree of T, ny, is chosen to be n-m-1. The polynomials are related

as follows:
Q="
Df = P1 =T
Dy = P2
D = by(Py-BPy)
F = P1 -R
G = -S.




41

The filtered error is thus equal to the error itself. Furthermore,
Monopoli chooses the control signal according to (3.13). It can be
seen from (3.17) that the control law (3.12) corresponds to the
choice wy(t) = 0. If n-m < 2 it is thus possible to set the extra
signal w; to zero and this means that the augmented error n(t) is
simply equal to the error e(t). o

EXAMPLE 3.2. Béngjean’s scheme

The scheme is presented in Bé&néjean (1977) and can be shown to be a
variant of Monopoli’s. The model used is obtained from Monopoli’s
after a reparametrization:

M M
_qQ u(t) -u (t) _ u(t) -u'(t) y(t) _
or(t = g [t S byt rg) MG 4 52

- (et - uM(t)
(TB" - boBR) =— ]

The choices of polynomials are identical to Monopoli’s and so are the
estimation algorithm and the choice of control Taw. Note that more
parameters have to be estimated because of the reparametrization.

o

EXAMPLE 3.3. Feuen’s and Monse’s scheme

The scheme is given in Feuer/Morse (1977). A minor change of the
design method described in Section 3.1 will be needed in order to
treat the algorithm within the general framework. To this end, write
the reference model transfer function as

B (p) = 1 h
AMpy ¥ (P) Y (p) ®.

where yo(p) and vy(p) are monic polynomials of degree 1 and n-m-1
respectively. The degree of Yo¥1 is thus equal to the pole excess of
the plant and h(p) is a proper transfer operator. Now, consider
h(p)uM(t) as being the input to the reference model with transfer
funct1on 'l/yoy1 The effect is that the development proceeds as if

=1 and AM = Yo¥q- The modification necessary is seen from the
1dent1ty corresponding to Equation (3.3), i.e.
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3.4, The positive real condition

The positive real condition has been seen to be an essential condi-
tion in order to guarantee convergence of the estimation error. The
condition has been an attribute of the MRAS algorithms ever since
parks (1966) introduced the idea. However, it has been demonstrated

in Example 3.5 in the preceeding section’that the condition can be
removed if the polynomials Q and P are chosen in a special way. It is,
in fact, possible to use a slightly different est1mat1on algorithm in
all the MRAS described, and eliminate the positive real condition in
all cases discussed.

Thus, write (3.7) as
e (t) _boi—hboe B(t),
where "' denotes filtering by Q/TAM. Let the estimate Ef(t) be given

by
&e(t) = By(t) %‘;l + By(t) 87 () (1)

instead of (3.8). Introduce

~

by(t) = By(t) - by
B(t) = 8(t) - o.

The estimation error e(t) in (3.9) satisfies the equation
e(t) = - By(t) (“ + 87t G(t)) - by 87(1) ().

Now choose € (t) as a criterion. Regarding it as a function of b0 and
8, we have

2
3eT(t) L - pe(t) (Eé,t—) 3Tt 6(t)>
b, 1

32 (t)

36

i

- 2¢(t) by W(t).

It is natural to make the parameter adjustment in a modified steepest
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descent direction, i.e.

Bo(t) = #% <Qé$l + @T(t) 6(t)> e(t), ry positive constant

6(t) = TV B(t) e(t), T positive definite. ‘i

It is possible to verify that this estimation scheme has the desired
stability property. Choose the Lyapunov function

V(t) = rghS(t) + by B (t) T B(t).
Its derivative becomes

V(t) = 2rgby(t) Eo(t) + 2boéT(t) ré(t) =
= 2by(t) @g:_ham) a(t)> e(t) +2bg8 (1) B(t) e(t) = - 2e%(t)

and it follows under mild conditions that e(t) tends to zero. The
details will be considered in Chapter 5.

The conclusion is that by modifying the estimation part, it is
possible to eliminate the positive real condition in all the described
MRAS. It should, however, be noted that the same situation occurs as
in Example 3.5. It is possible to have Qf(t) = 0 without differentia-
tors only in the case n-m = 1.




46

L, STABILITY OF DISCRETE TIME CONTROLLERS

Stability of the closed loop system is fundamental in applications

of adaptive control. Stability is also essential in most theoretical
studies of model reference adaptive systems and self-tuning regulators.
The problems which appear for discrete time MRAS were discussed in
Section 2.2. It was shown that it is difficult to relate convergence
of the filtered error ec(t) and its prediction error ¢(t) in the
general case k % 0. Moreover, even if k = 0 the convergence problem
has not been solved satisfactorily, because boundedness of the closed
loop signals has not been proven. These problems have been emphasized
in e.g. Landau/Béthoux (1975) and Ionescu/Monopoli (1977).

The stability problem also appears for the self-tuning regulators,

both in practise and in theory. The convergence results mentioned in
Chapter 2 require that the estimates and the input and output signals
belong to a bounded area infinitely often, see Ljung (1977a). Stability
in the mean square sense has been proven for the special case of an
algorithm based on a least squares identification and minimum variance
control, see Ljung/Wittenmark (1976).

The stability problem can be approached in several different ways.
Local stability results can be obtained by linearizing the equations
around the desired solution. See e.g. Feuer/Morse (1978). This tech-
nique is of limited interest because it tells little about the global
properties.

The global stability properties are much more difficult to investigate.
One possibility is to apply Lyapunov theory, but the technique suffers

from the difficulty to find a suitable Lyapunov function. This approach
has been used in Feuer/Morse (1977) to design a globally stable MRAS in
continuous time. The adaptive regulator obtained in this way is unfor-

tunately very complicated.

An alternative to the Lyapunov function approach is to analyse the
systems directly. In fact, the partitioning of the schemes into
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estimation and control parts suggests the following intuitive argu-
ment. Consider a situation when the parameter estimates would give an
unstable closed-loop system. The plant output increases and after
some time the signals are so large that the disturbances become in-
significant. The estimates then tend to be accurate and consequently
give a stable closed-loop. The plant output thus decreases again.

There are, however, some shortcomings in the heuristic argument given
above. Firstly, it is not obvious that all parameter estimates become
accurate when the signal amplitudes are growing. It might happen that
only some parameter combination is accurately estimated but that the
estimates which cause the instability are still poor. Secondly, it
takes some time for the estimates to become good, even if the signals
are very large. The reasoning above will thus not be valid if the
output increases very fast or if the parameter adjustment is very slow.

In this chapter some stability results will be given for the general
adaptive algorithm described in Chapter 2. The heuristic discussion
given above will be converted into formal proofs. In particular, the
assumptions needed to overcome the difficuilties mentioned above will
be discussed. Uniform boundedness of the closed-loop signals, i.e.
[®~stability, will be considered. It is then natural to assume that
the inputs to the overall system, i.e. the command input uM and the
disturbance w, are bounded. If it is not desirable to introduce this
assumption, some other stability concept could be considered, e.g.
stability in mean square as in Ljung/wittehmarkv(1976).

The algorithms treated are based on either deterministic .or stochastic
design, see Chapter 2. The estimation schemes used are stochastic
approximation and least squares algorithms. The main effort has been
devoted to the stochastic approximation case. For the least squares
version only partial results are given. The analysis is carried out
mainly for models where the parameters enter bilinearly as in (2.8).
This structure simplifies the stability analysis, but the significance
of the product structure is still an open problem.

The algorithms under consideration are briefly described in Section
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4.1. Some preliminary results are also given in that section. Section
4.2 gives the main theorems on L™-stability., The disturbance-free

case is then considered in Section 4.3. The boundedness results are
used to prove that part of the state vector, namely the output error
y-yM, converges to zero. This is a fairly satisfactory result for the
deterministic case. particularly, the convergence problems of the MRAS
systems discussed in Chapter 2 are solved. Section 4.4 indicates some
extensions of the stability analysis. Section 4.5 finally contains a
discussion of the results.

4.1. Preliminaries

The algorithms described in Chapter 2 were divided into two broad
cathegories, called deterministic or stochastic depending on the
underlying design method. Expressed in another way, the two approaches
deal with gixed or estimated observer polynomials. Resutts will be
given for both types of algorithms but the details are worked out for
the deterministic design case only.

For easy reference, some of the equations describing the algorithms
will be given below.

Plant model
Ay yit) = by ") g™ u(t) +u(e). (4.1)
Here k is a nonnegative integer,
ATy =1 way g e ra
B(q™)

and w(t) is a disturbance which cannot be measured.

H

1+ by q'] +... by g ™"

Reference model

M M -m
M, =1 ba+...+b ¢
- B - 0
yM(t) -q (k+1) M(q_ ) M(t) _ o (k1) Ha m — uM(t)
A'q ") 1 +ay g +...8,0
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Here AM(q'1) is asymptotically stable and uM(t) is the command input.

Filterned erron

-1 -1
er(t) = UL Do) - A ty(e) - e, (4.3)
P(a™") Pia ) Pola™)
where
-1 —nQ
a™') =1 +qyq + +anq
() =1 ™
@) =T +pypaq i+ *Pip,
-1 ! “np,
Pz(q ) =1+ Ppy Q4 * +p2nP2 q

are all asymptotically stable polynomials.

Deterministic design

The observer polynomial
_ -n

T(q’]) =1+t P q T
T .
is chosen a priori. It is assumed that T(q_]) is asymptotically stable.
The estimation model is given by

- (k+1 u(t T— R
ep(t) = 7 )[bo *'(?1*) + by 0 w(t)] +??\M_p Wt). (4.4)

Here X denotes the signal obtained by filtering x with Q/TAM and

oJTit) - [u(t-]) utmy) e AL AL | uM(t)]
P 3. vy P 3 P 3 vy P b P A
(4.5)
where
n, = max (m+k, npz)
ny = max (n+ng-k, n).

The description of the algorithms in Section 2.2 was quite general.
There are many details where several choices can be made. For the
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analysis it is necessary to be more specific. Two prototype algorithms
will be stated. They will be called the DSA-algonithm (Discrete time,
Stochastic Approximation) and the DLS-algorithm (Discrete time, Least
Squares) respectively. The deterministic versions are defined as
follows.

DSA-ALGORITHM

- estimation:
By(t) = By(t=1) + (”__—-—(t;']"” + 87 (t-1) 6(t-k—1)) iEB (4.6a)
8(t) = B(t-1) + By B(t=k-1) ﬁﬁg (4.6b)
. . 2
r(t) = Ar(t-1) + (ﬂl;,_']i‘_‘l £ 8 (t-1) 6(t—k-1)> N
+ g8 [olt-k-1)[2+a; Ocr<l; az0 (4.6¢)
e(t) = eg(t) - eq(t|t-1) (4.6d)
Bp(t]t-1) = By(e-)[LEK) 4 T a(t-k-n} (4.6¢)
1
- control:
9 - - 5T(t) (t). ' (4.6f)
Py .
REMARK 1

The constant B, is an a priori estimate of by. The importance of the
choice of By for the stability properties will be discussed in Section
4,2, o

REMARK 2

The stochastic approximation algorithm is a simple estimation scheme
which has been used by several authors, e.g. Ionescu/Monopoli (1977)
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and Ljung (1977a). Note that X is equal to one in a proper stochastic

approximation scheme. This means that the "gain" in the algorithm is

decreasing as 1/t when t e, This case is not covered in the analysis.

Compare with the discussion in connection with Theorem 4.1 in the .
next section. The constant o may be included for numerical reasons. If %
a=0, it will be assumed that r(t) is made nonzero e.g. by using A > 0

and a strictly positive initial value of r(t). Finally note that if

k=0 the estimation of by, (4.6a), is eliminated and also e(t) = ee(t).

This follows from {4.6f). o

REMARK 3

The control law (4.6f) is identical to the one discussed in Chapter 2,
see (2.15). o

REMARK 4

Note that the filtering by the transfer function Q/TAM is done as
described in Section 2.4. This implies that no positive real condition
is needed. More important is perhaps the fact that the filtering seems
to improve the transient properties of the algorithms. This is illu-
strated in the following example. o

EXAMPLE 4.1
Consider a plant given by
(1-0.9 ¢ 1) y(t) = u(t-1).
Let the reference model be
(1-0.7 g=1) yM(t) = 0.3 WM(e-1).

The plant is controlled by the MRAS by Ionescu and Monopoli. It is
seen in Example 2.1 that the polynomials should be chosen as

Q=P=T=1

and the transfer function PZ/AM =1/(1-0.7 q']) is then strictly
positive real. The estimation scheme in the DSA-algorithm is used

with By = 1, a =0, and A = 0.2. Two parameters have to be estimated,
namely sy = 0.2 and 1/bg = 1. The behaviour of the algorithm is
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M .
is a square wave. The original

shown in Figures 4.1 - 4.3 when u
algorithm has an oscillatory transient behaviour as seen in Fig. 4.1.
These oscillations are eliminated if the signals are filtered by
Q/TAM as in the DSA-algorithm. This can be seen in Fig. 4.2, It
should be noted that the effects can be more or Tess pronounced with
different choices of A. Similar observations have been made in many
cases. In Fig. 4.3 it is shown that the oscillations can be reduced

with a different A but the parameter convergence is still much

0 500

Figure 4.1. Command, output, and control signals and parameter esti-
mates for Example 4.1 without filtering by Q/TAM.
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Figure 4.2. Command, output, and control signals and parameter
estimates for Example 4.1 with filtering by Q/TAM,

The DLS-algorithm is defined analogously to the DSA-algorithm. Since
the stability proof requires that by is known, the algorithm is
stated for this case only. Some changes are then needed. Firstly,

the estimation of b0 as in (4.6a) is eliminated. Secondly, the vector
8 was previously defined to have 1/by as its last element. Since by
is assumed known, it is now not included in 6. With obvious notation
the estimation model (4.4) is replaced by

“(k#1) [y Tt T
vett) = @) [og ié]_) + by 0T a(t)] + Tigp w(t), (4.7)

where ¢(t) does not contain the last component in {4.5). The
DLS-algorithm is defined as follows.
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Command and out-
put signals
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P

Control signal
o
)

Parameter estimates

500

Figure 4.3. Command, output, and control signals and parameter esti-
mates for Example 4.1 without filtering by Q/TAM and with A = 0.8.

DLS-ALGORITHM by known]
- estimation:
8(t) = 8(t-1) + ﬁ% P(t) B(t-k-1) e(t)
1 (t) = 2PV (41) +B(t-k-1) B (tk-1)5 0 g A <1
e(t) = ye(t) - Je(tit-1)
Feltlt1) = bO[ELE%%le + 87 (1) 6(t-k—1)]

- control:

— M
SO - BT ey ¢ o ()
Py by paM

(4.8a)
(4.8b)
(4.8¢)

(4.8d)

(4.8e)
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REMARK

The updating of the matrix P_](t), (4.7b), is in practise replaced
by an equivalent updating of its inverse P(t):

— —T
P(t) = 1 [P(t_1) _ P(t—]lTw(F—k—1) @ (t~k;1) P(t-1) ] ) (4.8F)
A A+ 0 (t-k-1) P(t-1) @(t-k-1)

o

Stochastic design

It was seen in Section 2.2 that a model similar to (4.4) can be
obtained in the stochastic design case where w(t) = C(q']) v(t). The
parameter vector 6 is then augmented with the unknown C-parameters
divided by bO and the vector @(t) is redefined as

_ u(t-n ) y(t-n,+1)
wT(t):[U(;])s---s PU ,Y_%Q’...,_—ﬁy_._,
M M
B M, - B uM(t—n)] . (4.9)

The model corresponding to (4.4) is then

_ ~(k+1) 1 u(t) T QR
ec(t) = q T b0 5ot bg & @{t}]| + - w(t), (4.10)
1 CA'P
"' now denotes filtering by Q/AM. Note that it is not possible
to filter by 1/C since C is unknown. The prediction Ef(t{t-l) is

calculated as described in Section 2.2:

where

8o (t]t-1) = By(t-1) [E(_‘:}—;]LL) ¢ 87(t-1) B(t-k—l)] . (4.11)

The definitions of the DSA- and the DLS-algorithms are still valid
with these new interpretations of 8, ¢, and '~ '. The equations are
identical and are therefore not repeated.

It is convenient for the stability proofs to have a representation
Tike (4.10) but without the unknown C-polynomial. Note that (4.10) was
obtained using the identity

e < ar 4 g (KD g

)
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where the degree of R was k and the degree of S was max(n+nT-k—1, n-1}).
Use instead the identity

M _ - (k+1)
A" = ARy + g Sg-

If degree (R;) = k, then the degree of Sp will be at most n-1, i.e.
less than or equal to the degree of S. Using this identity, another
representation like (4.10) is obtained with the same ¢-vector but a
different 8-vector, here called 8yt

_ QR
- (k41 t T~ 0
ec(t) = q (k+ )[boil%l + by 8 (p(t)] = W(t). (4.12)

Here "' still denotes filtering by Q/AM. This representation is
convenient because the prediction éf(t|t-1) is calculated without the

C-polynomial, see (4.11).

Generad assumptions

The following general assumptions are made:
A1) The number of plant poles n and zeros m are known.

A2} The time delay k is known and the sign of the nonzero constant by
is known. Without loss of generality b0 will be assumed positive.

A3} The plant is minimum phase.

These assumptions were all introduced and discussed in Chapter 2.

Basic Lemmas

Some basic lemmas, which will be used several times in the proofs, are

given below. The first lemma relates the evolution of o@(t) to the

M

command input u", the disturbance w and to the error e =y —yM.
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LEMMA 4.1
Consider the plant (4.1). Assume that it is minimum phase. Then o(t),
defined by (4.5) or (4.9), satisfies

1A 1

Ea--ﬁ e(t+k+1) - by -% w(t+k+1)
0 0
0 . M
o(t+1) =F o(t) + + +U (1)
‘ 1 :
— e(t
5 e(t+l)
0 (4.13)
0 0

where the constant matrix F has all its eigenvalues inside the unit
disc and UM is a vector whose components are outputs of asymptotically
stable filters with uM as the input. o

Prook

The proof is given for the deterministic design only. The proof for
the stochastic design is, however, almost identical. From (4.5) and
(4.1) it follows that '

uft)
p
. -b1 .-bm 0...0 {
u(t-n,+1) 1 :
P |
1 0 |

o(t+1) = y(t+1) T T T T T T T T s T T T

y(t-ny+2)

(=]

M
- ~T-%—uM(tH)
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Proog

Write (4.6 a,b) in terms of Eo(t) and 5(t) and multiply them by their
transposes:

b3(t) = Bh(t=1) + 2By (t-1) Eit— ( (k1) 4 8T (-1 a(t-k-n) .

208) ((tk=1) , AT e 1y =reopo1y )2
<]—P—]—l+e(t1)np(tkl)>

285e(t) g B
o & () Bkl +

5017 = B(e-n)1?

2
+ Bg ez(t)

B(t-k=1) |2
re(t)

b
Add the second equation, multiplied by Eg’ to the first equation, which
gives 0

B3 (t) .20 18(t)]2 - (Ez(t-l) .0 [5(t—1)|2> =
0 80 0 Bp
- 2e(t [ (U(t—k-]) A TTURe ) ]
=Ty LR E + BT (t-1)5(t-k-1) ) + by 8T (t-1)B(t-k-1) | +
2(t) [(Ult-k-1) , _ 2
A8 [(EED) G ep(e-ken) ) 0y 8 [6(tk1)12] <
re(t) 1

™

r

by .2 R 2
+ max (1, —9) e (t) [(U(—)C;Sk—"ll+eT(t-1)G(t-k—1)>+Bg |5(t-1<-1)|2],
Bo/ r2(t) 1
where (4.4), (4.6e) and (4.14) are used in the last step. Let

b
c=1- l-max (1, ~9).
2 BO

Then ¢ is positive from the assumptions. Insert this into the inequality
above and use (4.6¢c) to obtain

b b
N4 2 4 0, 2
B0+ 5 O Jo(e)? - (B4 + 0 13011 ) <

S




2
2e(t) (_-— _ > ey EC(E)
< (t) wit) -e(t)) + 2(1~c) 6
2 2
1 { 1 Ry > 2 1 (R ) ]
= - - ZW(t)) - —|{=
sl (Ren - L Buw) - e L (FRm) | <
2 2
-2 (B—t>
STy tam B
which concludes the proof. o
Corollary
The same result holds for the DSA-algorithm with stochastic design if
R is replaced by Ry and o(t) is defined by (4.9). o
Proof
The same proof still holds. o

A corresponding result concerning the DLS-algorithm with known by is
given in the following lemma.

LEMMA 4.3

Let &(t) be defined by (4.14). Assume that by is known. Then the
following holds for the DLS-algorithm for the deterministic design,
(4.8):

3Tee) Pl (e) B(t) = & BT(e-1) PN (e-1) B(t-1) -

- A ef(t) , 1 (R(q—]) W(t))z. (4.16
A+ (t-k=1) P(t-1)B(t-k-1) b} b% \p(a™)

=)

Proog

Write (4.8a) in terms of é(t) and multiply from the left by P-]/z(t)-
This gives

P28y B(t) = pTV2(t) Bre-1) + - PVE(E) B(t-k-1) e(t)
0

and after multiplication with the transpose

61

)
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aTeey P l(t) B(t) = BT (t-1) PTI(t) B(t-1) +
b 2 BT (1) Bltke1) e(t) + - B (t-k=1) P(£)B(t-k-1) e2(t) =
b ;

0
o T te1) P (1) B(ee1) + [BT(E-1) B(t-k-1)]°

+ EZ‘ 5T t-1) B(t-k-1) e(t) + lZaT(tik-1) P(t) B(t-k-1) 2(t).
0 b3

If (4.7), (4.8d) and (4.14) are used, the following is obtained:

5Tty P (t) B(t) - A B (t-1) P71 (2-1) B(t-1) =

2

SV Ry V42 (R -

3 (F W (t) e(t)) . z (P W(t) a(t)) e(t) +

4 E%ET(t-k—U P(t) B(t-k-1) €2(t). (4.17)
0

The updating formula for P(t) is given by (4.8f); Multiply this
equation from the left by @ {t-k-1) and from the right by ©(t-k-1).
This gives

B (t-k=1) P(t-1) B(t-k-1)
A+9T (t-k-1) P(t-1) B(t-k-1)

3 (t-k-1) P(t) B(t-k-1) =

Insert this into the equation (4.17) to get:

3Tce) P T(t) B(t) - A B(-1) PT(t-1) B(t-1) =
2 2 T _

e, (3 W(t)) L1 @ (k1) PO B(emkeT) 2y -
b5 b3 P b A+ (t-k-1) P(£-1)B(t-k-1) .

- . A (1) , 1 (Rum
A+ (t-k-1) P(t-1) B(t-k-1) b} i b <P u )) ’

which is identical to (4.16). o

Corollany

The same result holds for the DLS-algorithm with stochastic design
if R is replaced by Ry and ©(t) is defined by (4.9). o
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Proog

The proof remains the same. o

The results of Lemma 4.2 and Lemma 4.3 can be interpreted in the
following way. The estimation errors BO and 8 decrease if the predic-
tion error g(t) is large. On the other hand, the errors increase if
the noise magnitude is large. This is natural intuitively.

4.2. T-stability

The main results on L™-stability will be given in this section. For
convenience, make the following

Definition
The closed Toop system is 1Z-stable if uniformly bounded disturbance

(w) and command (uM) signals give uniformly bounded input (u) and
output (y) signals. o

It will thus be assumed in the sequel that w(t) and uM(t) are uniformly
bounded. ‘

The main part of this section is devoted to the DSA-algorithm. The

idea behind the stability analysis is the heuristic argument given in
the beginning of this chapter. It was pointed out that there are some
shortcomings of the argument. Firstly, it is necessary to show that not
only a few of the parameter estimates become accurate when the signals
are growing large. This is no problem for the DSA-algorithm. The

second problem mentioned seems to be more difficult. It takes some

time for the estimates to become accurate even if the signals are very
large. The discussion thus requires that the output does not increase
arbitrarily fast and that the parameter adjustment is not too slow. The
latter condition is the reason why we do not consider estimation algo-
rithms with decreasing gains. Compare the definitions of the DSA- and
DLS-algorithms. The possibility that the output may increase arbi-
trarily fast is closely related to the magnitude of the parameter
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estimates. It will be eliminated by guaranteeing that the estimates
are bounded. The following example illustrates that unbounded para-
meter estimates can lead to instability.

EXAMPLE 4.7

Consider a plant given by , ;
y(t) +a y(t-1) = by u(t-1) +w(t),

where bO is known to be unity. Assume that the reference model is
M) = e,

Choose Q = P = T = 1. Equation (4.4) can then be written as

y(t) - yM(t) = u(t-1) +s y(t-1}) - uM(t-1) + wW(t), (4.18)
where s = -a. Since by is known, the prediction error can be written
as

e(t) = - s(t-1) y(t-1) + w(t), (4.19)
where

S(t) = 8(t) - s.

With A = 0 and o = 1 in the DSA-algorithm the updating of the parameter
estimate is given by

3(t) = 8(t-1) + y(t-1) —=E—
1 +y2(t-1)

This equation can be expressed in s(t) as

w(t) - S(t-1) y(t-1)

3(t) = s(t-1) +y(t-1) (4.20)
1+ y2(t-1)
The control law corresponding to (4.6F) is
u(t) = - 8(t) y(1) + u'(t),
which can be inserted into (4.18) to give
y(t) = - S(t=1) y(e-1) + u(e-1) +u(t). : (4.21)

Fgs. (4.20) and (4.21) describe the closed loop system.
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The basic idea with the example is to show that the closed Toop
system is unstable by finding a disturbance w and a command input uM
such that the parameter error 5(t) can increase without limit. Thus,
assume that the recursion (4.20), (4.21) starts at t=1 with s(1) = 0,
y(1) = 1. Define

Ft) </t(t-1) - (t—])) (1 + T]T> t=2,3,..., T-5,
for some large T. Choose the following disturbance

1
wit) =1 - — + f(t), t=2,3,..., T-5,
{ = (t)

and the following command signal

uM(t-1) =/i€- f(t), t=2,3,..., T-5.

The signals w and u™ are bounded. It is then easy to show that

s(t) = vt -1
-1
y(t) " E

for t=1, ..., T-5. Further, let

w(t) =0, t=T-4, ..., T
0, t =T-4
a(e-1) = { T, t=T-3,...,T.

It is then easy to check that E(t) and y(t) for large T are approxi-
mately given by:

t 5(t) y(t)
T-4 /T -1
T-3 i /T
1 T
T-2 -1
/T 2
T-1 o
/TT2 4
T 16
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Now choose w(T+1) and uM(T) such that s$(T+1) = 0 and y(T+1) = 1. The

state vector of (4.20), (4.21) 1is then equal to the initial state. By
repeating the procedure for increasing values of T, a subsequence of

y(t) will increase as - T and therefore is unbounded. The result of a
cimulation with T = 50, 100, 150,... is shown in Fig. 4.4. o

The example shows that bounded disturbance and command signals can be
found such that the output is unbounded. The assumption of bounded

Estimation error

Command signal Qutput signal

Disturbance

Figure 4.4. simulation results for Example 4.2.
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disturbance and command signals is thus not sufficient to guarantee
L™-stability. Some additional assumption is needed. Boundedness of
parameter estimates is chosen here and other possibilities are dis~
cussed in Section 4.5. It should finally be noted that the same
technique can be used to derive examples of instability with any A<1.

L7-s4ability fon the DSA-algorithm

The main result on L™-stability for the DSA-algorithm is given in the
following theorem.

THEOREM 4.1  (DSA-algonithm with nodise)

Consider the plant (4.1) controlled by the DSA-algorithm with determi-
nistic or stochastic design. Assume that assumptions Al - A3 are satis-
fied. Moreover assume that the parameter estimates are uniformly
bounded and that bO < ZBO. Then the closed-loop system is L™-stable.

o

Proog

The full proof for the deterministic design is given in Appendix A. It
can be concluded 1mmed{ate1y that the proof holds also for the stoch-
astic design, using the representation (4.12) instead of (4.10). Some
minor changes are needed, such as replacing R by Ry and Q/TAM by o/aM,
The @-vector will also contain more uM—components in the stochastic
design case, see (4.9).

The proof of the theorem is unfortunately fairly technical. An outline
of the proof will therefore be given.

The idea of the proof is to examine the behaviour of the algorithm when
[o(t)] is growing from an arbitrarily large value to a larger one. The
time interval under consideration can be shown to increase with the
difference between the values if the rate of growth is limited. This

is done in Step 1 of the proof.

It follows from Lemma 4.1 that e(t) must be large when |o(t)| increases.
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It must in fact be of the order of [B(t)] many times if the interval
where |w(t)| increases is long. This is shown in the first part of
Step 3 of the proof. Since r(t) is of the order of |E(t)|2 and e(t)

is of the order of e(t), it then follows from Lemma 4.2 that the
parameter errors decrease significantly at many time instants.
Neglecting the noise term, it thus follows from the boundedness of

the estimates that there is a contradiction, which implies that
arbitrarily large values of [o(t)] do not exist. This is shown in

the second part of Step 3. However, if the disturbance w(t) is nonzero
the parameter errors could increase in the intervals between any two
time instants where they decrease. See Lemma 4.2. Hence, it is impor-
tant to get an upper bound on the Jength of these intervals. This is
done in Step 2 of the proof ,- which utilizes the same kind of arguments
as Step 3. o

The conditions of the theorem have all been discussed earlier, except
for the condition by < 28« This condition enters via Lemma 4.2. It
will be shown below that the condition is in fact necessary for global
stability. Consider, however, First the local stability properties.
For simplicity assume that k =0 and that w=0. Linearize the equations
for the closed-loop system around the true parameter values and a
constant oM. 1t is then straightforward to verify that the eigenvalues
corresponding to Eq. (4.6b) are all but one equal to zero and one
eigenvalue is equal to 1 ebo(]—A)/so. A necessary condition for
Tocal stability is thus that Bg > b0(1—x)/2. It is interesting to
note that the condition requires only that By is positive in the limit
case A =1. This is exactly the condition which is met in the converg-
ence analysis in presense of noise in Ljung/Wittenmark (1974).‘

1t will be shown in the following example that the condition

By > bo(l—x)/Z must be strengthened to By > by/2 in order to assure
globat stability. The condition is also discussed in Astrim/Wittenmark
(1973) and Ljung/Wittenmark (1974).

EXAMPLE 4.3

Consider the plant and the controller described in Example 4.1. If ot
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is set to zero, only one parameter is estimated, namely Q- It is
easy to check that the estimation error §O(t) is given by

2
5 (t) = 34(t-1) (1-8 y-(t-1) .
Tolt) = 20(tl) < 0 Ar(t-1) + 82 _yz(t-1)>

Let r{0) = 0 and y(0) = 1. Assume that By = %——6 for some arbitrarily
small & > 0. Straightforward calculations then show that |y(t)]| tends
to infinity if

< 0 ABg

SO( ) > max <], m‘) .
The closed-loop system is thus not globally stable with this choice
of BO. o

Several results on boundedness of the closed-loop signals can be
derived from Theorem 4.1. Consider first the case where the disturbance
w(t) is zero. This is the situation most often analysed in connection
with model reference adaptive regulators. The following theorem gives

a solution to the boundedness problem discussed before.

THEOREM 4.2 (DSA-algorithm without nolse).

Consider the plant (4.1) with no noise, i.e. w(t) = 0, controlled by
the DSA-algorithm with deterministic design, (4.6). Assume that Al - A3
are fulfilled and that by < 280. Then the c]osed—]oop system is
L*-stable. : ' o

Proog

It follows from Lemma 4.2 that the parameter estimates are bounded if
w(t) = 0. Theorem 4.1 then gives the result. o

The corresponding result is also true for the stochastic design case.
The result is however not given, because it seems unrealistic to assume
that there is no noise when the decision has been made to estimate the
optimal observer from noise characteristics.
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It appears that the conditions for the stability result above are
fairly mild. The condition on By has been shown to be necessary for
global stability. Also, the choice A < 1 is the common one in real
applications. However, the assumption that the disturbance is equal \
to zero is not very satisfactory. It would thus be desirable to

improve the result in Theorem 4.1 without the a priori assumption of
boundedness of parameter estimates. Below are presented two stability
results, which treat modified versions of the DSA-algorithm.

THEOREM 4.3  (DSA-algorithm with conditional updating)

Consider the plant (4.1), controlled by the DSA-algorithm with deter-
ministic or stochastic design, modified in the following way:

By(t) = By(t-1) } 2 K,
it |e(t)] < > (4.22)
B(t) = 6(t-1) 2 -max (by/Bp, 1)
where
sup \ §V(t) < K, (4.23)

Assume that Al - A3 are fulfilled and that bO < 280. Then the closed-
~loop system is L -stable.

Proog

As before, the proof is given for the deterministic design only. Lemma
4.2 gives together with (4.23)
- by . - by .
e+ g0 150 1? - (BBeem) + 22 18(e) %) <
80 /

0
e [Ro-(E ) oo

o+

0
2 2
oM, 1 Ry Yo
<o e gy ()

(t cr(t)
if

Kw 2 R -
le(l 2 ¢ > 7ok (bo/B0> 1) & (E Wm)'

Combined with (4.22) this implies that the parameter estimates are
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bounded. However, this does not imply that Theorem 4.1 can be applied
straightforwardly, because the algorithm has been modified. Some
changes are needed because Lemma 4.2 is no longer true at all times.
The following minor changes of the proof in Appendix A have to be made:

(i) Lemma 4.2 is exploited in Step 2 of the proof, when (A.28) is
derived. Note that the lemma is hot necessarily valid for all
times in the interval [T}“] +k, T§+]

needed that it is true when the supremum in (A.25) is attained.

But. this follows immediately for large N from (A.11) and (A.21),

because when |e(t)| is large, the modification (4.22) is not used.

+k]. However, it is only

(i1) The above comments also apply in Step 3 of the proof. Here it is
only needed that Lemma 4.2 is true when the supremum in (A.32)
is attained.

Finally, the modification might cause some terms in the estimate of
éf(t|t~1) in Lemma A.3 to be zero. This fact just simplifies the precof.

The proof of Theorem 4.1 is thus still valid with these small modifi-
cations and the theorem 1is proven. o

Admittedly, the modification of the algorithm requires an upper bound

on the disturbance which is not known a priori. It is of course possible
to use a large K, to assure that (4.23) is fulfilled. On the other hand,
this implies that the prediction error e(t) can be large without causing
any adjustment of the estimates. If By is reasonable close to by and

the noise amplitude is small compared to the largest acceptable magni-
tude of the prediction error, then the modification could be of practi-
cal significance. Modifications of this sort are also common in
practical algorithms.

As an example, the case By =by and k=0 for the deterministic design
will be considered. Then R(q”1) = 1. If it is also assumed that Q = TaM
and P = 1 as in Example 2.3, the test (4.22) can be made very simple:

le(t)] = leg(t)] < 2 sup lw(t)].
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This means that an error e(t) twice the maximal noise amplitude is
accepted. This is not very restrictive if the signal to noise ratio
is high. It should also be noted that an errvor of the same magnitude
as the disturbance would be expected even for known parameters, at
least in the case with white noise.

Apart from the modification described in Theorem 4.3, there is one
natural modification of the algorithm which will guarantee that the
estimates are bounded. This js achieved by projecting the estimates
into a bounded area. Such a modification is always made in practice.
Similar techniques have also appeared for a long time in the stochastic
approximation 1iterature. See e.g. Albert/Gardner (1967) and Ljung
(1977b). Different possibilities to make the projection exist. Below

it is shown formally that one such modification will make the closed-
-Toop system stable.

THEOREM 4.4  (DSA-algonithm with projection)

Consider the plant (4.1}, controlled by the DSA-algorithm with determi-
nistic or stochastic design, modified in the following way:

Bty = bo(t- Ult=k=1) o 3T (t-1) Blt-k- e(t)
bo(t)-bo(t1)+( : +e(t])cp(tk1)> oI
~y ~ — t
B'(e) = BT + By o(t-k-1) iit))
bi(t bt
. S (AO( )] if {AO( )W >C (4.252)
{bo(t)\ ) |1by(t) 5Tty e 8 ()
Be) By (t)
R otherwise, (4.25b)
8'(t)
where C is a positive constant, satisfying
1, b b
c > 2 Tff_f__._ilﬂiQZ { 01 . (4.26)
min (1, bO/BO) 9

Here by and & are the true plant parameters. Assume that Al - A3 are
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satisfied and that bO < 230. Then the closed-loop system is L™ -stable.

u]
Proof

The proof is given for the deterministic design. It is obvious that
the modification implies that the parameter estimates are bounded.
Theorem 4.1 can, however, not be applied straightforwardly, because
the algorithm has been modified. The equations for updating the para-
meters are used in the proofs of Lemmas 4.2 and A.3. These lemmas will
be considered separately.

Define
T = [by /By7Bg ']
() = [By(t) /By/kg BT ()]
WT(t) = [By(t) /By7Bg 81 ()]
and analogously 9'(t) and ¢'(t). We have
min (1, by/80) (b3 + [812) < [w]® < max (1, by/8g) (b + [8]2)  (4.27)

and similarly for the other y-vectors defined above.

Consider now those times, when the projection (4.25a) is used. It
follows from (4.25a), (4.26) and (4.27) that, for some u, 0 < pu < 1/2,

191 (8) 12 > min (1, by/8o) (B2 (1) + |

> min (1, by/Bg) €2 3 lzmaxu bo/8g) (b3 +18]?) iz lwl?,

which implies that

ol < u [9(8)] < u (19 (e)] +ly])

Hence,

] Sﬁ 19 ()] (4.28)

Let
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y(t) =

[tby(t) 8'T(t)1

and use (4.25a), (4.28) to obtain

‘ By (t) - y(t) By(t) - by
= g
‘ v bo/so [6 ) [} ‘ v bO/BO [Y(t) 6‘(t) -81]

Y 1B 0)] + 11 -v(t)1 vl

n

1wl - 0=y (B

ERACHE
RO IEREONE = S IHOIRNIHOIR

where the last step follows because y(t) is Tess than one and u is
Tess than 1/2. This inequality implies that Lemma 4.2 is still appli-
cable.

The proof of Lemma A.3 remains to be discussed. If the projection
(4,25a) is used, the proof now gives estimates of terms of the type
|8' (t) - 8(t-1)] instead of |8(t)-8(t-1)|. But it follows from (4.25a)
that

18(t) - B(t-1)] = |y(t) 8'(t) -8(t-1)] <

< v(t) [B7(t) -B(t-1)] + [1=y(t)] [8(t-1)] <

. 1[5(t>e'T )] - ¢
< 18(t) - B(t-1)] + - [6(t-1)] <
|1By(t) 8'T(t)1]
o [thy(t) 8'T()1] - ¢,
< o'ty -8(x-1)] + - [6(t-1)] <

< 18'(t) - 8(t-1)] + [1hY(t) 8 T()3] - ¢,

where the last step follows from the fact that the estimates are
bounded by C. Use this inequality together with (4.24) and (4.6f) to
obtain




|8(t) - B(t-1)| < |B'(t-1)-8(t-1)

B(t-1)
0% _ T
) B(t-1) - B(t-k-1)1 (tkn] RG]
By (t-k-1) o)
€ [8'(t-1) - 8(t-1)] + (2C+8g) fo(t-k-1)] Iiizy

It is easy to see that the extra term in the right hand side of the
inequa]iﬁy above does not affect the proof of Lemma A.3

It is thus shown that Theorem 4.1 can be applied with these small
changes and the theorem is proven. o

REMARK

The modification (4.25a) is a scale reduction, which simply assures
that the norm of the vector of parameter estimates is bounded by a
constant C. The condition (4.26) ensures that the projection is

applied sufficiently far away from the true parameters. o

A discussion of the results obtained so far is given in Section 4.4.
Now consider the DLS-algorithm.

L™-stability §on the DLS-algorithm

It seems difficult to directly extend the stability results for the
DSA-algorithm to the DLS-algorithm. Only a preliminary result is
therefore given. The following theorem, which corresponds to Theorem
4.1 for the DSA-algorithm, illustrates the difficulties,

THEOREM 4.5 (DLS-algornithm with nodise)

Consider the plant (4.1) controlled by the DLS-algorithm with deter-
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ministic or stochastic design. Assume that Al - A3 are satisfied, that
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bo is known and that

sup B (t-K) P(t) B(t-k) < . (4.29)

Then the closed loop system is L™-stable.

Proog

As for the DSA-algorithm the proof is given for the deterministic
design case. The stochastic design case is treated analogously.

Apply Lemma 4.3 to obtain

. _ 2
5Tty P l(e) B(t) + Ats e A .E és) -
i A +01 (5-k=1) P(s-1)(s-k-1) b}
t 2
Atk ETg P k) Blk) + E s 2 (% W(s)> .
) s=k+1 b0 A
The assumption (4.29) and the boundedness of the noise w(t) imply
t A +sup o (t-k) P(t)B(t-k) t
EZ(t> < E Nt 52(5) < t E Nt
s=k+1 A s=k+1
: A ()
A+l (s-k-1) P(s-1) B(s-k-1) b3
t 2
<Ky |1+ s L (Rs)) 1<« (4.30)
1 b2 \P 2
s=k+1 0

for some constants K] and K2.

It follows from Equations (4.8 a,d,e) that

156(t18-1)] = lbo (U_(lpﬂ £ BT(e-T) 6(t—k-1)> <
1

N

< <

N

b {(6%-1) —@T(t-k-n) 6(t-k-1)” + % oM (t-k-1)
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3 (t-k-2) P(t-1) B(t-k-1) e(t-1)

+ ...t

<

M
+ 'GT(t—Zk-U P(t-k) o(t-k-T) a(t—k)’ + ‘Ql M-yl 4.3
paM

Consider one term in the sum, i.e. for 1 < 1 <k,
[© (t-k-1-1) P(t-1) B(t-k-1) e(t-1)| ¢

1/2 1/2

< [ET(t—k-1—i)P(t-1‘)G(t—k—l-w) —T(t k-1)P(t-1)p(t-k-1)T""|e(t~i)|<

< [ET(t—k—U P(t-1) G(t~k-1)]1/2 [e(t-1)], (4.32)
where the Tast step follows from the fact that

GT(t-k—U P(t) o(t-k-1) < 1. (4.33)

This inequality follows readily from (4.8f). Furthermore, (4.8b) implies
' (t-k-1) P(t-1) B(t-k-1) =
= O (t-k=1) P(t-i+1) P71 (t-i+1) P(t-i) B(t-k-1) =
= @ (t-k-1)P(t-i+1) [ AL +9(t-k-1)0' (t-k-1)P(t-1)] p(t-k-1) =
= A @ (t-k=1) P(t-i+1) D(t-k-1) +
+ [0 (t-k-1) P(t-1+1) B(t-k=1)]-[@ (t-k-1) P(t-1) B(t-k-1)] ¢

€ A BT (t-k-1) P(t-i+1) P(t-k-1) +

1/2 1/2.

+ [0 (t-k=1)P(t=i+1)a(t-k-1)] /- [@ (t-k=1)P(t=i+1)@(t-k-1)]

C 5 (t-k=1) P(t-1) B(t-k-1)]" 2 [& (t-k=1) P(t-1) B(t-k-1)]/2 .

(4.38)
But, since P(t-i+1) ¢ % P(t-1),
T (t-k-1) P(t-1+1) B(t-k-1) €

< [@ (t-k-1)P(t-+1)B(t-k-1 ]”2[1 B (t-k-1)P(t-1)5(t-k-1)1"/2.

Using this inequality and (4.33), (4.34) gives
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Eﬁ(t-k—l) P(t-1) o(t-k-1) <
¢ [87 (t-k-1)P(ti+1)5(t-k-1) ]/ 2+ [6 (t-k-1)P(t-1)p(t-k-1)]"/ % -
c [/ [GT(t—k—i) P(t-1) w-k_i)]wz]’

which implies that
§

B (t-k-1) P(t-1) B(t-k-1) g

¢ [T (b-ke1 )P (5141 bokeT) - [V R [ (ke )P (6 ) bk )12
< 2L (t-k-1)P(t-1+1)5(t-k=1)]-[A + (t-k-1)P(t~1)B(t-k-1)] <

< 2[1 +sup B(t-k)P(£)B(t-K) ] [6 (t-k=1)P(t-i+1)p(t-k-1)].

Use this inequality recursively for i =1, ...,k and exploit (4.33)
for i = 1. The result is

B (t-k=1)P(t-1)3(t-k-1) < 2'[1 #5up B(t-K)P P(t)o(t-k)]' <

2K #sup T t-k) () B(t-k)T%, i =,k

But from (4.29) this is bounded, by a constant Ky say, so that the
inequalities (4.31) and (4.32) give

[Ve(tit-1)] s VRS [e(t-1)] +... +[e(t-k)|] +

M
o Mie-k-1)] < kg [ Lo uek-n) ],
T paM

where (4.30) have been used in the last step.

The conclusion is thus that both e(t) and §f(tlt—1) are uniformly
bounded. But from (4.3) and (4.8c) it follows that

O IO B A G IR
P@!) P P Q P

1 - Mt
= 5 Le(®) #J(e1e-1)] - yp( )

and since Q(q_]) and P(q']) are asymptotically stable, e(t)/P(q‘]) is
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also uniformly bounded. Hence, from Lemma 4.1, @(t) is generated by
an asymptotically stable filter with bounded inputs. Therefore ¢(t) is
bounded and consequently also y(t) and u(t) are bounded. o

If the result above is compared with Theorem 4.1, it can be seen that
the boundedness condition on the parameter estimates has been replaced
by the condition {4.29). This condition is unpleasant since it cannot
be verified a priori. In the case with only one unknown parameter, i.e.
with ¢(t) being a scalar, the condition can be written

T (t-K)
t-k-1

1 tok-1-5 —2
T Z. A o (s)

s=0

sup
t

This means that ¢ shall not increase arbitrarily fast compared to the
weighted sum of old ¢. This is similar to, but somewhat weaker than,
the condition which was used for the DSA-algorithm and which was proven
in Lemma A.2. The assumption on boundedness of the parameter estimates
was used in the proof. The condition (4.29) thus holds if the estimates
are bounded and only one parameter is estimated.

However, when ¢ is a vector, the change of ¢’s direction makes the
condition more difficult to interpret. One possibility is the following
one. Let vi, i=1,...,n be orthonormal eigenvectors of P‘](t). Here

n is the dimension of ¢. Thus,

and

1 i
7Vt

t

P(t) vi =
i N . .
where {i¢}, , are the eigenvalues. Since
j=
_ no_; o
o(t-k) = T [@ (t-k) vi] vi,

i=1

it follows that
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n .
B (k) P(t) Bt-k) = 5 = [ (t-k) v]T%.
=1 Ay
But
t-k-1

i iT ;-1 i iT - i t-k=1-s — 12
A= vy PNy v = vl T k) vl e g RS 15Ty o)
s=0

S0 that

y
n [ (t-k) vi]
B (t-K)P(t)B(t-K) =Z TR
E T vl ST Gl Wi
s=0

The conclusion is that a sufficient condition for (4.29) to hold is
that there is a K, independent of t, such that for every t,

t-

0T 5(t)12 < K (1 s> b T G(s)]2> v, |v] =1
s=0 '

This condition is analogous to the interpretation in the scalar case.
It says that the growth of @ in an arbitrary direction must be bounded
by the weighted sum of old components of @ in that same direction.

The conclusion of the discussion above is that it is necessary to
examine the condition (4.29) more thoroughly in order to derive results
corresponding to Theorems 4.2, 4.3 and 4.4 for the DSA-algorithm or to
look for other methods of proving stability.

4,3. Convergence in the disturbance-free case

An important motivation for the L™-stability investigation is that a
boundedness condition is needed in the convergence analysis. This was
pointed out in Chapter 2 and in the beginning of this chapter. The
results of the preceeding section will now be used to solve the con-
vergence problem in the deterministic case. It will thus be shown that
part of the state of the closed-loop system, namely the output error

e =y —yM, tends to zero if the disturbance w is equal to zero.




81

Consider first the DSA-algorithm. The following result follows from
Theorem 4.2,

THEOREM 4.6 (DSA-algorithm without nolse)

Consider the plant (4.1) with no noise, i.e. w(t) = 0. Let the plant
be controlled by the DSA-algorithm for deterministic design, (4.6).
Assume that Al - A3 hold, that bo < 280 and o > 0 and that the command
input uM(t) is uniformly bounded. Then the output error converges to
zero, i.e.

y(t) - yE) 5 0, t o, o

Proof
It follows from Lemma 4.2 that

>0, t-»w

and so, because r(t) is bounded from Theorem 4.2,
g(t) >0, t oo

Furthermore, as in the proof of Lemma A.3 in Appendix A,

lep(tit-1)] <

e(t1) y L agl (t-2k-1) EEK) L g reara1y ).

- T
< [bglt-1)] 8y |© (t-k-2) r(E1) r(t-k)

Here BO(t—l) and p(t) are bounded from Lemma 4.2 and Theorem 4.2. Also
note that r{t) 2 o > 0 from the assumptions. It thus follows that

Ep(tit-1) 20, tow,

Consequently, since Q(q']) is asymptotically stable,

-] _
y(t) -yt = @ ep(t) = P(Q—P [e(t) +ep(tIt-1)1 > 0, t > o
Qa™") Qa™")

and the theorem is proven. o
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The result above can be applied to modified versions of the schemes

by Ionescu/Monopoli and Astrom/Wittenmark, described in Chapter 2. It
is also possible to infer the convergence of the output error for the
scheme by Bénéjean. Only minor changes are needed in the analysis.
This means that the convergence problem is solved for several schemes
without noise. In contrast to earlier convergence results for discrete
time MRAS, the result does not require any a priori assumption of
boundedness of the closed-loop signals.

The situation for the least squares version of the general algorithm
is, however, not that pieasing, as can be seen in the following
theorem.

THEOREM 4.7  (DLS-algorithm without noise)

Consider the plant (4.1) without noise, i.e. w(t) = 0. Let the plant
be controlled by the DLS-algorithm for deterministic design, (4.8).
Assume that Al - A3 hold and that by is known. Further assume that

k = 0 and that '

sup ' (¢) P() B(t) < =
Then the output error converges to zero, i.e.

y(t) - ey -0, t o .

Prooj

It readily follows from Lemma 4.3 that
e(t) » 0, t e

But k = Orimp1ies that eg(t) = e(t) as can be seen from (4.8 d,e).
The conclusion then follows as in Theorem 4.6, a

It is seen that the unpleasant condition (4.29) is still required.
Furthermore, it is assumed that k = 0. This condition can be avoided
by modifying the estimation scheme and control law. If delayed para-
meter estimates are used in (4.8 d,e), it is possible to have
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ef(t) = e(t) and the proof holds for the case k + 0 too. The conclu-
sion is that the analysis for the DLS-algorithm is not as complete
as for the DSA-algorithm and that further work on the DLS-algorithm
is needed.

Finally, it should be mentioned that there is one problem that has
not been treated here. This is to consider convergence not only of
the output error, but of another part of the state vector, namely

the parameter estimates. To make this analysis meaningful, it is
necessary to assume that the number of parameters is correctly chosen.
Note that this has not been required so far. We will, however, not
elaborate on this problem. Let it suffice to note that some kind of
persistently exciting condition on the command input is sufficient
for the estimation errors to tend to zero. See e.g. Kudva/Narendra
(1974).

4.4. Results on other configurations

The stability analysis given in the previous sections has been con-
cerned with a specific class of algorithms. In particular, some minor
changes of the algorithms were needed in order to apply the results.
Therefore a few possible extensions of the analysis are indicated in
this section.

Othen model stnuctures

The structure of the model for the DSA- and DLS-algorithms was chosen
in a particular way. The model reference adaptive systems provided the
motivation. The characteristic property of the MRAS structure is that
the model contains the unknown parameters b0 and 8 as a product, see
(4.4). This is in contrast to most model structures used for identifi-
cation and self-tuning regulators. For example, the self-tuning
controller considered in Example 2.3 uses a model which is Linear in
the unknown parameters. In the general case, a model which is Tinear
in the unknown parameters can be obtained in the following way. Let @
denote b0 times the previous 8-vector and write (4.4) as
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_ (el)f, W) L LT R
er(t) = g <b0 SR w(t)) e L), (4.33)

This model suggests an alternative to the DSA-algorithm. The new
algorithm can be written analogously with equation (4.6) as:

- estimation:

B8(t) = B(t-1) + B(t-k-1) ﬁ(t) (4.34a)
Pt) = A r(t-1) + [3(t-k-1)[2 + o (4.34b)
e(t) = ep(t) - &(t]t-1) (4.34¢)
8:(t]t-1) = g, ﬂp"_‘) + 8T(t-1) B(t-k-1) (4.34d)
- control:
ut) oo 8T =
: 3 8 (0 3 (4.34e)

REMARK

Note that an a priori estimate Bg of by is still used. Also notice
that the Tast element of 6 is known to be unity, but it is necessary
to estimate it because Bg might be chosen different from by- o

The key result, which is needed in the stability proofs, is Lemma 4.2.
It will be shown that the Tlemma still holds for the algorithm above
if k = 0. Define

Write (4.34a) in terms of 9 and multiply from the Teft by its trans-
pose. This gives for k = 0

18812 = 18(-1)]2+2 8T (1) B(t-1) 5“ +|<ot1 12 & ﬁ;

< 15(t-1)|2

[2 87 (t-1) B(t-1) e(t) +92(t)].

r(t)

It follows from (4.33) and (4.34 c,d,e) that




85

Wt-1) T

e(t) = ep(t) - S4(t[t-1) = by Fl o B(t-1) +§

- (5o T 8T (o)) -

1

By N\ /. T(t-1) AT o
- (BO - 1) (sop_]Jr 8T(t-1) @(t-1,> -

by /. By \T
-t <e(t—1) - b—o e> B(t-1) + %W(t) -

o2 a2, 1 [, B0 Ry -
Bl < 1Dl - gy (25 (5 W(t) a(t)) e(t) +e (t)] -
142 1 B0 R - _(, B0 _ 2
= {6(t-1)] +r(t) [Zb—OFW(t) e(t) (2 b 1)s(t)}
Define
c-Pol
bg 2

which is positive under the conditions of Lemma 4.2. It then follows
that

%o gw))z-uz(tw ! (i—g R W(t))z] <

. 2 et 1 Bo\2/R
< [Be-1)|% - ¢ r(é)) r (56) (Eam)
The conclusion is that the lemma is still true for the new algorithm,
provided k = 0. In this case it is thus possible to derive stability
results corresponding to Theorems 4.1 -4.4. However, it is not
straightforward to show that Lemma 4.2 also holds for the case k # O.
It is thus an open question whether the MRAS structure used in the
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pSA-algorithm is advantageous for the case k + 0. The difficulties

in the stability analysis for the algorithm (4.34) indicates this,

but on the other hand no significant differences have appeared in
simulations. Similarly it may perhaps be useful to apply the MRAS-type
of model structure in other cases.

Non-minimum phase suystems

A characteristic feature of the schemes considered is that the process
zeros are cancelled. This implies that only minimum phase systems can
be treated. The underlying design method with cancellation of zeros
was chosen because it gives a simple adaptive scheme. A convenient
implicit scheme (i.e. with estimation of contrnollen parameters) for
nonminimum phase systems seems, however, more difficult to give. One
possibility to solve the problem is to consider explicit schemes
instead. This means that the plant parameters are estimated directly
and the controller parameters are calculated from these estimates. See
Astrom et al. (1978).

A possibility to control nonminimum phase plants with an implicit
scheme without cancellation of zeros is discussed in Clarke/Gawthrop
(1975). The self-tuning controller described in Example 2.5 is used
with the polynomial Q (in their notation) in the definition of the
generalized error different from zero. This case is not covered by
the analysis so far. See Example 2.5.

The case Q #+ 0 can however be treated in the following way. Change
the notation in Example 2.5 into

M

o(t) = M@y yeey -8 WMk + e ke,

where CM is equal to Q in the original notation. When CM + 0, the
model in Example 2.5 changes into

o(t) = & q'(k”)((b0 BR+ cc™) u(t) + Sy(t) - " uM(t)> + RV(t).

Denote by ¢, the constant term in CM and rewrite the expression for
$(t) as
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M
by BR+CCM - (b, +
(b0+c0)[u(t) + 2 0* <o) u(t) +

g (k)
bo + CO

S C
—— y(t) -
bO+CO b0+CO

B uM(t)] +Ruv(t) 2

(bg+cg) [u(t) +67 o(t)] + R v(t),

vhere 8 and ¢(t) are defined as for the DSA-algorithm with estimated
observer. This model is analogous with the model (4.10) for the
DSA-algorithm. It is therefore possible to conclude that the stability
results hold for Clarke®’s and Gawthrop’s algorithm if the "MRAS-
-structure" in the DSA-algorithm is used. There is, however, one
condition that has to be fulfilled in order to apply the results.

This is that the g-vector is generated from ¢(t) and bounded signals
through stable filters. Compare with Lemma 4.1. It is easy to check
that this is the case if the polynomial (ACM~+bOBAM) is stable. This
polynomial is in fact part of the closed-Toop characteristic polyno-
mial when the underlying design scheme is used for known parameters.
The success of the scheme will thus heavily depend on the polynomials -
A" and <M. This fact is also discussed in Clarke/Gawthrop (1975).

4.5, Discussion

Different aspects of the stability results obtained in the previous
sections will be discussed in this section. The discussion is limited
to the DSA-algorithm, because the results on the DLS-algorithm are
only fragmentary.

Consider first the disturbance-free case. Theorems 4.2 and 4.6 give

a fairly complete picture of how the algorithms behave. Convergence of
the output error to zero is proved without any a priori assumption of
boundedness of closed-loop signals. Such a condition is usually
required in convergence analysis of MRAS schemes also in the absence
of noise. A notable exception is the globally stable continuous time
scheme in Feuer/Morse (1977).
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In the case with disturbances it has been demonstrated that some
additional assumptions are needed to guarantee global stability. The
approach taken here is to assume that the parameter estimates are
bounded and two different means to ensure this were considered in
Theorems 4.3 and 4.4, Another possibility is to put more conditions
on the noise and/or command signal. It does not seem unreasonable
that some kind of persistently exciting condition (see e.g. Astrom/
Bohlin (1965), Kudva/Narendra (1974)) might be sufficient to ensure
the boundedness of the parameter estimates. This is however still an
open problem. It should finally be pointed out that the case with
decreasing gains (A=1) in the estimation algorithm has not been
treated at all. This means that it is not possible to combine the
stability results presented here with results concerning the asymp-
totic behaviour of the algorithms as given e.g. by Ljung (1977a).

Some comments should also be made cn the structure of the estimation
scheme. A model structure which is bilinear in the unknown parameters
is used. It was noted in the previous section that it is not straight-
forward to extend the stability results to models which are Linear

in the unknown parameters. This is an interesting observation which
perhaps deserves further investigation.

Both the DSA-algorithm and the algorithm in the preceeding section
based on a model which is linear in the parameters suffer from a con-
dition on the a priori estimate Bg of bo. It would of course be
desirable to eliminate this condition. A straightforward solution
would be to estimate by in the model (4.33). The control Taw would
then Took like (4.34e) with By replaced by the estimate bo(t) of by.
Difficulties will appear if by(t) is very sma11Aor has the wrong sign.
In particular, the control law is undefined if bo(t) is equal to zero.
Although the scheme can behave well in practise, the stability
analysis will be difficult. This approach is therefore left with

these remarks.

Finally, the general assumptions introduced in Section 4.1 will be
discussed. The assumption that the time delay is known seems difficult
to overcome, at least in the theoretical analysis. The minimum phase




assumption is a consequence of the choice of design method. It is
naturally of interest to investigate the properties of algorithms
which are capable of controlling nonminimum phase systems. It seems
that such analysis has not been carried out so far. It is also
desirable to relax the condition that the orders of the plant model
are not underestimated. It would be valuable to have results
concerning the control of higher-order or nonlinear plants. This
seems to be an unexplored area.

89



90

5. STABILITY OF CONTINUOUS TIME CONTROLLERS

It was briefly indicated in Chapter 3 that a boundedness condition

is essential in the analysis of continuous time MRAS. It is easy to
prove that the output error converges to zero when the pole excess

s one or two, see Gilbert et al. (1970) and Monopoli (1973). However,
boundedness of the closed-loop signals has been assumed to prove con-
vergence in the general case. See Monopoli (1974), Narendra and
Valavani (1977), Feuer et al. (1978). So far the algorithm by Feuer
and Morse (1977) seems to be the only one where boundedness of the
closed loop signals is proven. The scheme is, however, very compli-
cated and the analysis covers only the noisefree case,

In this chapter some stability results will be given for the general
adaptive algorithm described in Chapter 3. The continuous time
problem is similar to the discrete time problem. The discussion of
different approaches in the beginning of Chapter 4 thus also applies
to continuous time systems. The results given in this chapter are
analogous to those for discrete time systems in Chapter 4,

The algorithm considered is defined in Section 5.1, which also
contains some preliminary results. The main results on Em-stabi1ity
are given in Section 5.2, The implications of the stability results
for the convergence in the disturbance-free case is examined in
Section 5.3. In particular, the convergence problem for MRAS is
solved.

5.1. Preliminaries

The algorithms considered were described in Section 3.2. For easy
reference, some of the equations are given below.

Plant model
The plant is described by




9

-1
by B(p) bo(p™ +byp"™ L b )

t) = ———— u(t t) =
y(t) Ap) u(t) + v(t) pn+a-[pn'1+...+an

where v(t) is a disturbance, which cannot be measured.

Reference modeld

The désired response is characterized by

WMo M
b0 p +...+b

m M
5 (p) - - WMy, (5.2)
A(p) p”+a’¥l pn1+...+a!\:

where AM is asymptotically stable and W is the command input.

Filterned enron

The filtered error is defined by

ep(t) Bi(%)l e(t) W%m [y(t) -y"(0)1, (5.3)
where
n+np-] n+n7-2
Qlp) = p +q; P Pt Qnipee

-m- m-2
Pre) = oM gy BT ey )

mny m+ny-1
n +p2.l pi t ...t p2(m+nT)

1}

Po(p)

are all asymptotically stable polynomials.

Observern polynomial

The observer polynomial

nt nT—1

Tp)=p +typ ...+t ny 3 n-m-1

nT’
is assumed asymptotically stable.
Estimation model

The estimation model is given by

eq(t) = by E;(T:_) + by o7 (1) + R, (5.4)
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where '"' denotes filtering by Q/TAM and

mHn7-1 -1

M
o(t) = [Bmrmu(t), ..., U8, ﬂ—yun“uﬂga-%~ﬁuﬂ

(5.5)

The algorithm analysed is called the CSA-akgornithm (Continuous time,
Stochastic Approximation). The estimation scheme is inspired by the
stochastic approximation method used in discrete time. The structure
of the estimator is analogous to the MRAS algorithms described in
Chapter 3. The CSA-algorithm is defined as follows.

CSA-ALGORITHM

- estimation:
éo(t) - (Uéf) + 8T(t) @(t)) igtg (5.6)
8(t) = B(t) §§€§ (5.6b)
F(E) = - ar(t) ¢ [5(6)]% + a(t); A > 0; (5.6c)
AMiin € a(t) € o, rt) < "min (0 5 S
0 < alt) €8 r(t) > .
e(t) = ep(t) - &c(t) (5.6d)
Ge(t) = Bo(t)<gé$l + (1) E(t)) (5.6¢)
- control:
%f%%? - - (;}%;; éT(t)) B(t) (E.Gf)
RENARK 1

The estimation scheme is analogous to the stochastic approximation
algorithm for discrete time. Compare with the DSA-algorithm in Chapter
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4. The denominator r(t) makes the scheme different from those usually
used in MRAS, cf. Chapter 3. Note that the case with decreasing gain
in the estimation algorithm (A =0) is nof considered. Compare with the
discussion of the DSA-algorithm. The purpose of o(t) is to prevent
r(t) from approaching zero. Also note that when the pole excess is
equal to one, Py(p) is a constant and (5.6 a,f) imply that éo(t) =0,
In this case it is thus not necessary to estimate by. It also follows
from (5.6 d,e) that e(t) = ef(t). o

REMARK 2

The modification proposed in Section 3.4 is used. The signals are

thus filtered by the transfer function Q/TAM. It is therefore not
necessary to introduce any positive real condition. It can also be
expected that the modification has a beneficial effect on the transient
properties of the algorithm as was found in the discrete time case. No
simulation studies have, however, been made. o

REMARK 3

Notice that the control law (5.6f) does not contain any differenti-
ators. The control law is not the same as the commonly used control
law (3.13). The control laws (5.6f) and (3.13) are, however, asymptot-
jcally equivalent. The important property of the control law (5.6f) is
that eg(t) and €p(t) are linear in ®(t). This is exploited in the
proofs. It is not clear whether this modification is significant or
just a technicality. The effects of different choices of control Taw
are illustrated in a simple numerical example below. o

EXAMPLE 5.1
Consider a first order plant, given by
b

y(t) = ST

u(t).

The reference model is
bM

A(p) p+al

uM(t).

The algorithm in Example 3.5 is used with the polynomials
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T=ptty

py = A

Py = T

Q=P =PPy

The expression corresponding to (3.5) is then

M
ef(t) = by ult) 4 by {ry —t1) u(t) 4 s ¥t - E—~uM(t) =

M A
_h u(t) T
= by ﬁﬂﬁ— +bg 8 o(t).
Here
R(p) = P+
S(p) = sg- B

The parameters by and @ are estimated as in the CSA-algorithm. The
numerical values of the different parameters are given in Table 5.1.

Table 5.1. Parameter values used in the simulations.
Parameter a bd alt pM t A a(t)
Value 1.0 1.0 2.0 1.0 2.0 5.0 0.1

Since the pole excess of the plant is equal to one, it is possible to
use the control law (3.12), which sets §f(t) to zero. The control Taw
is given by

u(t) = - Alp) 18T(e) w(t)l. (5.7)

Although it is possible to use this control law in this first order
example, it is interesting to compare with the results when using
other control laws, which are designed to avoid differentiators when
the pole excess is larger than one. The commonly used control law
(3.13) is given by

u(t) = - 8T(t) (Ae) w(e)). (5.8)
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The control law (5.6f) used in the CSA-algorithm is
M aM AT _
ute) = - M) [( = 8T ) 5o |, (5.9)
A%(p)

The closed-loop system was simulated using the different control laws
given above, The initial values of the parameters were zero except
BO(O) which was equal to two. The initial value of r(t) was one. The
simulation results are shown in Figures 5.1, 5.2, and 5.3 for uM(t)
being a square wave. It is seen that the control law (5.7) gives the
fastest convergence of the regulator at the price of larger control
inputs. It can also be noticed that there are hardly any differences

between the control laws (5.8) and (5.9). o
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Figure 5.7, Simulation results for Example 5.1 with control Taw (5.7).
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Figure 5.2. Simulation results for example 5.1 with control Taw (5.8).
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Figure 5.3. Simulation results for Example 5.1 with control law (5.9).
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The following general assumptions are made:

Al) The number of poles n and zeros m are known and m ¢ n-1.

2

A2) The parameter bO is nonzero and its sign is known. Without loss
of generality by is assumed positive.

A3) The plant is minimum phase, i.e. the zeros of the polynomial
B(p) 1ie in the open left half plane.

Ad) There exists a solution to the differential equations describing
the closed-Toop system such that w(t) is continuous.

The assumptions Al - A3 were introduced in Section 3.2 and discussed
there. Juste note that if only an upper bound on n (or m) is known,

the plant equation can be put into the form of (5.1) with known n and
m just by multiplying A and B by factors (p+a). The condition A3 will
not be violated by this operation if o > 0. The condition A4 is of
technical nature. It does not seem to be very restrictive. For exampie,
it can easily be shown that the closed-loop system can be written as

a differential equation

x(t) = f [x(t), t]

where f € C! if the noise v(t) is continuous. The existence and
continuity of the solution then follows from well-known theorems for
ordinary differential equations and A4 is satisfied. We will not,
however, go into these details.

Finally a lemma of independent interest will be given.

LEMMA 5.1

Let Eo(t) and é(t) be defined as in Chapter 3. Then the following holds
for the CSA-algorithm: '

a
dt

~2 STz 2t T (AR =\
b2(t) +bgy 81(t) e(t)) < - ﬁ(é)) T (T v(t)) (5.10)

a
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REMARK

If r(t) is replaced by |6(t)]2 (suitably modified if [G(t)] =0) in
the estimation part, the conclusion of the theorem is still true. o

Theorem 5.1 can be specialized in different ways. The origin of the
stability ‘investigations were the problems with MRAS. In that case
noise is generally not included in the problem formulation and
Theorem 5.1 can be specialized to give the solution.

THEOREM 5.2 (CSA-algorithm without noise)

Consider the plant (5.1) with no noise, i.e. v(t) = 0, controlled by
the CSA-algorithm. Assume that assumptions Al - A4 are satisfied. Then
the closed-Toop system is L™-stable. - o

Proog

The boundedness of the parameter estimates follows immediately from
Lemma 5.1, and Theorem 5.1 can be applied. o

Recall from Section 3.3 that the general structure includes several
MRAS, e.g. the ones by Monopoli, Feuer/Morse and Narendra/Valavani. If
the estimation algorithm in these schemes are chosen as the one in
(5.6 a~e) - or as in the remark following Theorem 5.1 - and if the
control law (5.6F) is used, the boundedness follows from Theorem 5.2,
The complicated modifications introduced by Feuer and Morse (1977)
should thus not be necessary to obtain stability. Such modifications
could of course still have effect on e.g. convergence rates.

Theorem 5.2 gives a fairly satisfactory stability result for the
deterministic case. A natural question is whether it is possible to
extend the result in Theorem 5.2 to the case of disturbances which are
not zero. The assumption of bounded estimates in Theorem 5.1 is,
however, difficult to verify a priori. In analogy with the discrete
time case, two possibilities to modify the algorithm to ensure bounded
estimates are presented below.
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THEOREM 5.3 (CSA-algonithm with conditional updating)
Consider the plant (5.1) controlled by the CSA-algorithm, modified in
the following way:

it le(t)] < K, (5.12)

where KV is a positive constant, satisfying

< K. (5.13)

AR —
s%p ITT v(t) v

Assume that Al - A4 are satisfied. Then the closed-Toop system is
L -stable. o

Proog

Two problems have to be considered in order to apply Theorem 5.1. It
must be shown that the estimates are bounded and the consequences on
Theorem 5.1 of the modification (5.12) must be examined. First, Lemma
5.1 gives

2 2
d [y ey & e, 1 Ry
g (bo(t)+b0 8 (t) e(t)) STy S (P V(t)> <0 (5.14)
if .
le(t)| 2 K, > %V(t)i-

On the other hand, it follows from {5.12) that

eq' (Bg(t) + by 87(t) 5(t)> <0
i
[E(t)l < Kv'

The parameter estimates are thus bounded.

For the second problem, the following changes are needed:

(i) In Step 2 of the proof, Lemma 5.1 is used in the derivation of
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(B.30). However, if the function 1Q(t) is defined as

T, teq={tlle(t)l 2K}
19(t) =
0, elsewhere
then (5.10) of Lemma 5.1 holds for all t if e(t) is replaced by

Tg(t) e(t). Furthermore, it follows from (B.21), (B.27), (B.26), and
(B.18) that

i i
T4 T4
i

J 15(5) e(s)] ds 3 [ le(s)| ds - (Tj+] Tj_1> K, >
i 1
T5-1 Ti-1

i i
i1 T34

2 J le(s)| ds - 28T-K, 2 J le(s)] ds - 2Ky Tn N =K, >

i i
T3-1 T3-1
Ti
j+l KﬂcM+pﬁ)+4
1 N
> le(s)| ds 7 R Kioky
T1' 4K <'l +——> KA In N-N
j-1 a
.i
Tj+]
P % J |e(s)] ds  for N sufficiently large.
3
Tj-]

It is then easy to see that (B.30) still holds if e(t) is replaced
by e{t):15(t) in the derivation. ’

(ii) Lemma 5.1 is used in the same way as above in Step 3 of the proof.
Since the technigue is similar, the above modifications can be used
here too.

(iii) The modification might cause 8(t) to be zero sometimes. The
estimate used for Q(t) in the proof of Lemma B.4 is, however, still
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valid.

The conclusion is that Theorem 5.1 can be applied and the theorem is
proven. o

The comments on the modification of the estimation algorithm in
discrete time apply here too.

Another possibility to obtain bounded estimates is to project them
into a bounded area. This idea is exploited in the following theorem.

THEOREM 5.4 [CSA-algornithm with projection)

Consider the plant (5.1) controlled by the CSA-algorithm, modified in
the following way:

bty = [E) 4 8Ty ey | €L -y 5
by(t) = | S+ 8ce) a(t) | 2 - oy Byt -
' e(t) " [“0< J *5
A .= e(t) . v & 8(t)
() = %(t) T o) 5.15)
where vy is a positive constant and the constant C satisfies
i 1, by) b
cC > 2 Tff_f___lli . { 0] s (5.16)
J min (1, by) 6

where by and © are the true plant parameters. Assume that Al - A4 are
satisfied. Then the closed-loop system is L™-stable. o

Prood
Define
o' = (b VBgeD)
Wity = (By(t) VBgdT(t)
= (by(t) VBy8T(L)).

<
—
—
o
~—
1
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1t follows readily that
min (1, bg)- (b5 +181%) < ]2 < max (1, bg)- (b3 + 18]2) (5.17)

and analogously for B(t). Mhen [(Bo(t) @T(t)]l > ¢, it follows from
(5.16) that, for some 0 < w < 1/2,

~ 2 . ~o ~ 2 . 4
()| » min (1, bg)- (bg(t) + [8(t)]°) > min (1,bg) - C° 2

1 v 2 1 2
> ;5 max (1, by)- {bg +8]%) 2 uz lwl™.

This implies that
lol < 90 < w (e(e)] + 1]

and so

o] <+ Eu lp(t)| when (5.15) is used.

Use this estimate of |y| to get

15612 =TT Ge) - 9) € 3T(E) Bt) + (o)) - o] <

T 3o + 7= 1w,

which implies

d 1Tty
LD < 5t

since the noise is uniformly bounded. Now, when the modification (5.15)

is used, we have

L (3017 = 2 [Bo(t) Bo(t) + b 8T(t) B(1)] =

P u(t) , aTiey o e(t) _ I ‘
-2 [bo(t)<ﬂP1 + 87(t) @(t)) S - By By(t) +
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IECE G R B -

=g Elt <5P5 T(t) —e(t)) P (Eo(t) By(t) +bg 87(%) 6(t)) ¢

r{t) r(t)
_szil-(. K‘Z’ T G At <
TS (5) v(t) p(t) <
2
- EELEl Ky - Yy 1 -2u > 2
"0 e T Ay Toa e (5.18)

Two things follow from this result. Firstly, it is obvious that Lemma
5.1 holds even if the modification is used. Secondly, it follows from
(5.17) that if

[9(t)| > 9| + CV/max (T, bg)

then
[Bom] Sp— S FTCHTI 1 (oe)] - o) ¢
é(t) ) vmax (1, bg) ) vmax (1, bg) v >

and so the modification is used. This fact together with (5.15) implies
that

which means that the parameter estimates are bounded.

To apply Theorem 5.1, it now only remains to modify the proof of Lemma
B.4. It is easy to see that a constant is added to [o(s)}-|e(s)] in the
integrands in (B.47) when the projection is used. This does not
influence the estimate (B.48). Equation (B.49) is still true if a
constant is added to

t
S le(s)] ds.
t=T

This does not influence the arguments in the proof of Theorem 5.1. This
concludes the proof. o
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5.3. Convergence in the disturbance-free case

Stability conditions are crucial in the convergence analysis of
adaptive schemes. For example, convergence of the output error in
the absence of noise could not readily be solved for continuous time
systems, except for the case with pole excess equal to one or two.
Compare with the discussion in the beginning of this chapter and in
Chapter 3.

The results of the preceeding section prove the boundedness of the
closed-Toop signals. It thus follows that the output error converges
to zero.

THEOREM 5.5 (CSA-algorithm w{thout noise)

Consider the plant {5.1) with no noise, i.e. v{t) = 0, controlied by
the CSA-algorithm. Assume that assumptions Al - A4 are satisfied and

that the command input uM(t) is uniformly bounded. The output error

then converges to zero, i.e.

y(t) - M) -0, tow .

Proof
Lemma 5.1 gives (v(t)=0)

=

2
(t -
i E%f?jl dt < oo,

But |@(t)| is bounded from Theorem 5.2 and r(t) is therefore also
bounded. Hence,

{ e2(t) dt < . (5.19)
0
This does not, however, imply that e(t) tends to zero. A bound on the

derivative of ez(t) is necessary for e(t) to.converge to zero. It
follows from (5.4) and (5.6 d,e,f) that
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e PO T -
e(t) = - Boe)(Be) - Sh B(0)) Bt) - o 8(8) B(0).
1

Thus, e(t) is bounded, because the parameter estimates and [p(t)]| are

bounded. Define

PO
Py(p)

H(p) =

and differentiate the expression for e(t) to get

. < ~ T_ ~ A —
e) = - [bot (e 80))' Be) +Bo(n) (e B())' Bt «

—T e(t)
+ by (t) 0

B(t) + by () (e ],

The parameter estimates and |@(t)] are bounded. Also, e(t) is bounded
as was seen above. Furthermore, H(p) is asymptotically stable and r(t)
is bounded from be]ow.by rm}n as shown in the proof of Lemma B.3,
Appendix B. Finally |w(t)| is bounded from the proof of Lemma B.2. It
is thus possible to conclude that &(t) is bounded. Hence,

4 e2(1)] = 2e(t) (t)
dt

is bounded. It then follows from (5.19) that
g(t) » 0, t e,

In the same way as in Lemma B.4 (Appendix B), we have
ey = b (ap) PUE) £(8)) 5
e(t) = Bty (a(p) 2L ) ),

where G(p) is a strictly proper, asymptotically stable transfer
operator. Since |80(t)] and [o(t)| are bounded and r(t) » Poin ¥ B

2
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it thus follows that

éf(t) -0, tow.
This implies that

ef(t) = gt) + ef(t) >0, t-e.
Hence

M P
y(t) - ) = elt) &% er(t) » 0, tow

because Q(p) is asymptotically stable and P(p)/Q(p) is proper. ®©

The output error thus converges to zero for the general algorithm
defined in Chapter 3, provided that the estimation scheme and control
Jaw are chosen as for the CSA-algorithm. The output error will also
converge to zero if the estimator is chosen as in the corollary or
remark of Theorem 5.1.

In particular, convergence of the output error is assured for earlier
propsed MRAS by Monopoli (1974) and Narendra/Valavani (1977) if some
minor modifications of the algorithms are made. Firstly, the signals
chould be filtered by the transfer function Q/TAM. In fact, this modi-
fication seems to improve the properties of the algorithms, cf. Example
4.1. Secondly, the parameter adjustment should have r(t) (or {6(t)\2)
in the denominator. Finally, the control law should be chosen as in
(5.6f). It should also be noted that the same conclusions can be made
for the algorithms by B&néjean (1977) and Feuer/Morse (1977) and the
new algorithm proposed in Section 3.3.

As in the discrete time case, it is possible to go one step further
and investigate conditions for the convergence of the parameter esti-
mates. It is then necessary to assume that the number of parameters is
chosen correctly. Note that for the above results to hold, this was
not required. The convergence of parameter estimates has been examined
by others, e.9g. Caroll/Lindorff (1973), Liders/Narendra (1973),




Kudva/Narendra ({1973), Morgan/Narendra (1977). The well-known condi-
tions on the frequency contents of the input signal are introduced to
assure convergence of parameter estimates. The problem will be Teft
with these remarks.
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AppENDIX A - PROOF OF THEOREM 4,1

Theorem 4.1

Consider a plant, described by

A Ny (t) = o ® boaa T u(t) + u(t) (A.1)
or, alternatively,

er(t) = by k”)[ﬂﬁf— rolg(t ] ¥ %W(t). (A.2)
Here '"' denotes filtering by Q/TAM and

T u(t1) o ueeny) y(8) o y(tengn) ot
(t) [ St —P—u(t)], (A.3)

=3
i

max {m+Kk, Np )
2

(A.4)
ny = max (n +ng -k, n).
The plant is controlled by the DSA-algorithm with fixed observer
polynomial, defined by
- estimation scheme:
Bo(t) =b(t-1) + [Ultk=T) 4 5 ] t)
b(t) =by(t-1) + [ > (t 1)p(t-k-1) ~(t) (A.5a)
A A — o e(t)
B(t) =8(t-1) + By o ) (A.5b)
U(t-k=1) | aT, -\ 2
r(t) =Ar(t-])+[:—~P——— + 5 (t-'l)q)(t-k—1)} .
4 1
2 — 2
+Bolwﬁ—blﬂ +o; 0ga<l; ax0 (A.5¢)
e(t) = ep(t) - e (t|t-1) (A.5d)
ep(t]t-1) = Bo(t-l)[i(i-k—ll 8T (t-1)3(t-k- 1)] (A.5e)

1
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- control Taw:

) gl Bt (A.5¢)
Py

Assume that A.1-A.3 are fulfilled. Further assume that the parameter
estimates are uniformly bounded and that 0 < 7? < By Then the
closed loop system is L*-stable, 1.e. if w(t) and Jw(t) are uniformly
bounded, then u(t) and y(t) are also uniformly bounded. '

Proog

A single realization will be considered throughout the proof. This
means that constants appearing in the estimates will depend on initial
conditions and realizations of w(t) and uM(t). The boundedness of
I9(t)] will be proved by contradiction. Thus, assume that

sup |o(t)| > NM

t30
for N and M arbitrarily large. This assumption will be contradicted
for some N and M. Under the assumption, tyy and ty are well-defined
if N> 1and M> [¢0)]:

tyy = min {t]lo(t)! 2 NM}

ty = max {t]t <ty [o(t)] = M;

]

[B(s)] <Mv s € [max (0, t-[cy InNI), t-1]}.

Here [t] denotes the integer part of t and cy is defined below. A
schematic picture of Ig(t)] in the interval [ty,tyyl is seen in Fig. A.1.

The contradiction will be achieved by analysing the algorithm in

detail in the interval [ty tNM]' An outline of the proof is as N
follows. In Step 1 an increasing subsequence of {i®(t)I}, {IG(Ti)I}izI’
is defined and a Tower bound on NT is derived. In Step 2 an upper

bound on TNT"T1 is given. Finally, Step 3 derives an upper bound on
NT. Combining the results of Steps1 and 3 gives the contradiction and
the boundedness of [@(t)l is thereby proved. It is then easy to
conclude the boundedness of u(t) and y(t).
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)
Y

Figune A.1. The behaviour of [p(t)! in the interval [Ty, tyyl.

Some preliminary results are first given as separate lemmas. Proofs of
these lemmas can be found at the end of the appendix.

Lemma A.1

Under the conditions of the theorem, there exist a positive constant K,
a constant u, O0<u<1, and an asymptotically stable matrix F such that,
for every t » s+1,
T+k+1
Bs) |+ (=K1 sup Y T fe(o)).
sgT<t
o=k+1 (A.6)

[5(t)] < || F¥®

Lemma A2

Under the conditions of the theorem, there exist positive constants K}
and K, such that

[o(t+1)] < Ky[B(t)] + K, V. (A.7)
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Lemma A.3

Under the conditions of the theorem, there exist positive constants
K3 and Ky such that, for k > 1,

N Kq
8p(t1t-1)] < <K3 T ) sup |e(s)]- (A.8)

t-2k-1<s < t-k-2 t-k<s gt-1

Before we return to the proof, we will make the definition of tM
complete by defining

- (1 __2__>

RN VN TYGVEY) (A.9)
where p is from Lemma A.1. It is meant that ¢y = 1/1n(1/u) if A=0.

Let [s],sz] be any interval between tM and tNM such that

[6(s)] <M VvV sy <s <53

[@(sp+1)] = M.

Assuming  min  |@(s)| is attained for s=s5, Lemma A.2 gives
0 g

51€5¢8
_ So=sgtl S,=S Sa=Sn-1
M [o(s,+1)] < K12 [o(sg)| + (K]Z O+K]2 0 +...+1> Ky <
S,=Snt] K
220 — 2
<" (Iateo)l fﬁ)

where it has been assumed that K1 >1, which is no restriction. The
definition of ty then implies

Gis)l 5~ - I L S | N k2
0 52—50+1 Ky -1 CMMN Ky -1 ey Inky Ky -1
Ky K N

and so, since the interval [sj,s;] is arbitrary, we have for large N
. M K2 13
min [(s)] > W-WZ—N s (A.10)
Ky-1 72
tyesstyy n M 1 1

where M has been chosen as

Cyy In K43
W en™

(A.11)
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Step 1. Characterization of the seguence {G(Tili

Assume from now on that ty < tNM' This is true for large N as seen
from (A.7). Define the sequence {Ti}?f] recursively from

T =ty
Ty = min {tfren <t <Stywe ()] 2 Tgx lo(s) |1,

where n_will be defined below. It is clear that the sequence is
nondecreasing. An illustration of the definition is given in Fig. A.2,
which shows the same realization as in Fig. A.1.

Define Np(x) to be the smallest integer that satisfies
(N S% v oixN(x) (x> 0), (A.12)

where F is defined in Lemma A.1. This is possible, because F is
asymptotically stable. Also notice that from (A.2),(A.5f) and the
boundedness of the estimates and the noise it follows that

1P(t)1
&
x
M= — — = — T
@
x x
®
@
« X
X @
@
X x
x X @
M— — ~ - o, x0T T
X o x %
x x %
M NM

Figure A.2. The definition of {1;}. The members of the sequence are
marked with a ring. = It is assumed that n. = 2.
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|ef(t+k+1)| < Ke]E(t)] + K, (A.13)

for some constants Ke and KV. Now choose n. as an integer which
satisfies the following three conditions:

T

(i) n_>k (A.14)
n_-k

T 1-u

(1) n ™ < geg )

Choose N so that

K2
M > max <Kl'1 . K2>

with K] and K2 from Lemma A.2; it is assumed that K1 >1, which is no

restriction. This can of course be achieved with an N large enough.
Conditions 1ike this one on N and M will appear several times in the
sequel. It is then important to check that the constants appearing in
these conditions do not depend on the interval under consideration and
consequently on N and M themselves. This will however not be pointed
out every time it appears.

If N is chosen as above, Lemma A.2 and the definition of {Ti} give

[o(t; 1)) € Kylo(t, =1} + Ky € K sup Jo(t)| + K, ¢
i+] 1 i+l 2 1 . eteTon 2
1 T T
n_+1 n n_-1
T

< Kt felry)] +(MT+MT ot 1) K€

K2 n_+1

- T
< K~| \IKP(T,l)l + T(]—_—]) < ZK] I

w(ri)l.

1t follows in the same way that

_ nT+1 _
|LD(tNM){ < ZK] lw(TNT)l

and so, combining these inequalities,
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_ nT+1 _ NT NT(nTH) _
NM < Jo(tyy) | < 2Ky |w(TNT)| < 820K lo(ty)] <
N_ N_(n_+1) _ N N_(n_+1)
<2 " K1T T (Ry 1Bty =1)14Ky) < 2 T N (S BT
N_ N (n_+1)+1 i
2.2t M,

where the condition on M above has been used in the last step. The
conclusion is thus that
In (N/ZK])

N, ———
T InZ+TInKy-(n+1)

(A.15) .

This is a Tower bound on NT, which will be used later on. The first step
of the proof is concluded.

Step 2. Derivation of an upper bound on Ty T4
T

Define intervals

I'I = [Ti-'l’TiH]’ i= 2, 4, ...,ZNI

where the number of intervals NI satisfies
(NT—I), NT odd.

Ny = (A.16)
(N.-2), N_ even.
T T

M= |-

N
and can be assumed positive from (A.15). Define the sequence {T}}jzo
inside the interval i (where i is arbitrary) through

To = T
(A.17)
SR i — . j
5 = min {t|t > Ti1 0 [o(t)] > M}, J=T,.00 Ny
where N} satisfies
.i
Tig1 ~h7 < TNi € Ty (A.18)
T

The left inequality follows because I@(Ti+])| > M. The integer n_ is

T
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defined as
np = Kp In N, (A.19)

where ;
Ky = max (M['l/zr(F)] g 1n(:12/u)>' (A.20)

Here r(F) is the spectral radius of the matrix F in Lemma A.1.

Denote by AT the maximal distance between any two successive members
of the sequence {T}}, Then it follows from (A.17) and the definition
of ty (cf. Fig. A.1) that

il

AT € np + ¢y In N = (Kq +cM) In N 2K, Tn N, (A.21)

A

where KA is independent of N.
Define intervals
i_ [+ i . i_
o= [y I R N AR

where the number of intervals N} satisfies

1 i i
_ 5 (1) Np odd
Ny = (A.22)
1 i i
7 NT’ v NT even.

The algorithm will be examined in detail in an interval J;. Distinguish
between two cases.

The case Nf; 3 2
It is seen from {(A.22) that there is at least one interval J; inside
the interval I;. Suppose that )

T-u) M

o osup le(st+k+1)] < IR(KL 7Ky + T)AT
1! <s<T) 3T
-1 Jj+i

(A.23)
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with K3 and K4 from Lemma A.3. This assumption will be shown to lead
to a contradiction. We will first conclude that ny > Np(4N) as defined
in (A.12). The matrix F in (A.12) is asymptotically stable, which
implies that there is a constant Ky such that

IF k() v s g
for some integer iF‘ Here r(F), the spectral radius of F, is less than
one. If NF(4N) -, N-eo, the definition of Ng(x), (A.12), gives

Ne(4N)-1 (N=(4N)-1)
1 F F
EN<HF HSKF"”(F) >
which implies that
In 4KF+1n N 2
NF(4N) £ ————+1 ¢ —————TInN < nq
In[1/r(F)1 In [1/r(F)]

for N sufficiently large.

On the other hand, if Nc(4N) is uniformly bounded in N, then the above
result is still true. It is therefore possible to use Lemma A.1 and the
definitions of Np(4N) and AT to obtain:

QG(Ti)I THk+1
— 1 i K+1-
[B(T3 )| € —g— + T (‘ + sup. i T |ef(0)|>.
/ T}sr<T3+] o=k+
Suppose the sup is attained for t=t. Then
— i t+k+]
=1 |@(T1)I t+k+1-
|w(T}+])| < —“7ﬁfl—— + KAT <1 + E u g |ef(o)|> <
o=k+1
. Tigtk=1
NM £-T: okl I Tl q+k-1-0
sZN+IMT+l%Tu J E u leg(otk+1)] +
O’:
t
+ KAT % W0 Je(orki1)| 2 % + KAT + Ry + R,. (A.24)
1
c—Tj_1+k

The terms R] and R2 will be considered separately.
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First, it follows from (A.13) and the fact that n; > k that

ny T:;_]+k-1~o B
Ry < KAT w E u (Kgl®o(o) ] +K,) <
U:

1 K o
< KAT ——— (KeNM-+K ) € T (Ke+1)AT u NM <

Ky Tn (1/u)
K 1k ok
Sm (Ke'ﬂ) u l\A In N+N NM <

=

s

where (A.21) and the definition of n., (A.19),(A.20), have also been
used in the two last steps.

The term R, can be estimated using (A.5d) and Lemma A.3:

t
R, < KAT E W50 (Je(orke) | +[8o(orkellowk)|) <
71
o—Tj_1+k
L K
E t-o [le(c+k+1)[ +(K 4 sup |e s+k+1)|]
< KaT Y -
. 3 min l@(s)ljo kessgo-1
i o-kgsgo-
o=T, .+k
3 -1
< KaT E Wb d(K3+K4 +1)  sup |e(s+k+1}| <
; o~-kgsgo
o= TJ 1+
<L(K +K, +1) AT sup le(s+k+1)] < ﬂ,
AT R ; ]
]ss<T

according to the assumption (A.23). Here it has been used that

min  [o(t)] = 1,
tMgtgtNM

which follows from (A.10). Using the estimates of R and R, in (A.24),
the following is obtained:

[o( J+1|<—M+KAT <M

if
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el

N

KAT < T.

~l=

This condition is trivially satisfied for large N as seen from (A.21)
We have thus arrived at a contradiction since )5(T}+])] > M by
construction. It is possible to conclude that

sup Je(stkel)] s — UM (A.25)

i i AK(Ky + Ky +1)AT
Tj_]gs<Tj+] ‘ 37

This inequality is valid for all intervals J;.

Define

V(t) = Ba(t) + — |B(t)] (A.26)

and suppose the supremum in (A.25) is obtained for s = t. Lemma 4.2
then gives )
) T 4k T!

3
i+l 2 3+1+k
i (T - e (s) . 1 1 R 132
V(T3 ,qtk) V(Tj#k) < - c E st % r(S)[Pw(s))s
=T} 71
s-Tj_]+k+1 s-Tj_]+k+1

)~
5 KZ Jj+1
c-o Sty Ty 1
r{t+k+1) c r{s+k+1)
s=T 1

where Kv is the bound on the noise in (A.13). It follows from (A.5c,f)
and the boundedness of the estimates that, for T}_] < t«< T}+1,
t t-s = 2

r(trk+1) < r(kel) + 2w k05 AV Jg(s) ¢ <
-2 7 520

K 2K,

o r 2 r 2

< r(k+l) + ¢ T:X'(NM) 1o (NM)“=,

for some K. if N is chosen sufficiently large. Furthermore, from (A.5c)
and (A.10) a Tower bound on r(t) can be obtained:

r(t+kel) 3 B [9(t)]% 5 8] % NG, (A.27)

If these two results are uSed above, the following inequality is
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obtained:
. c(1- x) 2 2ot KS 4
V(TY S +k) - W(T k) < (t+k+1) +
J“ L ()2 c 802 N6
and so, using (A.25), we have for N sufficiently large:
i
V(TJH k) - V(T +K) <
2 8T K
c- 0L (o),
gKr(NM)Z BK(Kg+Ka+1)AT) ¢ Bo N6
2 e K2
< é‘ M) (1-u) A
= 2 6
NEAT® 2K [4K(Ky+K,+1)] c BO N
[ Cy AT -
R ' (A.28)
N~ AT= N

where € and ¢, are independent of N.

Use the estimate of AT in (A.21) to obtain

. c ¢c,K, In N
1 25,

V(TE ak) = V(T k) < - + <
3 31 AR
g CZKAMN} -0

Nl Nt

for N sufficiently large. Here ¢y 1§ independent of N. This inequality

holds for every interval J}, i.e. N3 times. Thus,

. . N
v k) - (T € - eg
N

i
ZNJ

But V is positive and bounded. If the bound is denoted by Kv’ we have

N
(PR (A.29)

=
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The case N% < 7

It is seen from (A.22) that in this case NB = 0. Consequently, (A.29)
is trivially satisfied.

The conclusion is thus that (A.29) is valid in every interval L
provided N is chosen large enough. The inequality (A.18) and (A.22)
imply

i s i i
TiH-TZNi_(TiH T1>+<T, T )snT+AT52AT,
J T T J

and so, by using (A.29)},

i i
Tiq = Tiq = (T- =T ) + (T LTS ) <
i+l i=1 i+l ZNS o} i-1

J
: K 4K
< 28T + 2NAT < 20T (1 Y N4) <« =Y a7 N,
% S0
Summing for 1 = 2,4, ..., 2NI gives
4K
Vo, 4
TR R B AT - N7+ Np, (A.30)

which ends Step 2 of the proof.

Step 3. Derivation of an upper bound on NT and the contradiction

Consider an interval Ii defined in Step 2. Suppose that

( 'U)|E(T1+])|
sup |e(s+k+1)] < ——u-T—.
Ty 2SS <1y, HKng(KgrketT)

(A.31)
This will Tead to a contradiction in the same way as in Step 2. Thus,
analogously with (A.24) we have

)|

fo(ts 0 -n)|
i+l + Kn_ + Ry + R,,
T 1 2

7

!G(Tiﬂ) l < L

where
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t-1, 420 -k+] RENGU Ty 41720 tk-1-0
Ry =Kn_u i ]ef(o+k+1){
=
t
R, = Kn_ ? 159 e (o+ke1) |
=541 nT+k

and t is in the interval [T1+]'HT, T1+]'1]' Notice that the property
(A.1414) of n. has been used.

Let [t] denote the integer part of t and estimate R] by using (A.13)
and the inequality Kv < M=NP, which is valid for N large enough:

H

nT_k+][UT1+]_2nT+k—]-(tM-[CM InN]-1) .

R] < KnT

ty-[cy InN1-1
gl ty- [y N N1-1-0
k+1
, u [eg(otk+1)| +
c=0
T;,9-2n_tk-1
i+l T T1+]-2nr+k—1-c

+ E u [ef(c+k+1)]] <

o=ty-[cy InN]

n_-k+l

[ey InNI+k \u ol )]
<kn_u " (Ke+1){u M PRGN Ll ]

T:; T-u

where (A.14 ii) has been used in the last step. Now use (A.9) and
(A.14 iii) to obtain
n_-k

T M
R, € KnT u (Ke+]){T?ﬁ +

IG(T ])‘
: __r:__} <

1-u
n -k lo(ts, 1)
2 = +1
< Kn_ T (Kt1) g lo(r; )l < ———-iL———— .

The term R2 is estimated as in Step 2 using the assumption (A.31):

Kg+Ky+1 IG(T1+1)1
—_— — -

Ry,  Kn_ e sup Je(s+k+1)| <

T-u -
Tig1 N8 S < Ty

Insert the estimates of R1 and R2 above, which gives
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Kn_ < M = NP,
T

which of course is satisfied for large N. This gives a contradiction
and consequently the assumption (A.31) is false. Hence,

v o) (5.
sup [e{s+k+1) | ;i—u)-w (A.32)

T 2N €S < T g 4Kn_(K3+Kg+1)

in every interval 11-.

In" the same way as in Step 2, (A.5 c¢,f) and the boundedness of the
estimates imply that, for Ti] €5 € Tiys
s

o PR S$=0 = 2 _ o
r(s+k+1) < r(k+1)+-]-_—>:+,|<r § A (o)™ = r(k+1) tiog
o=

ty=Lcy TnNI-1

s-{ty-[cy InNI-T) ty-[cy InNI-1-0
+ KA MM E y |'<f>(c)|2+
g =

S

S~0 =
+ K. g AT [9(0)

cr=tM-[cM TnN]

1% <

_ 2
[cy InN1+1 2 [o(T:, )]
a M (NM) i+]
< rllel) gz K A TN o

o 2KI" — 2 3KY‘ — 2
< (k1) 4y b [G(ry )] < T @i, )15 (A.33)

for large N and (A.9) has been used in the second last step.

Now use Lemma 4.2 in the same way as in Step 2, which gives
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Tig1”] 2 2 Tin!
4k) = V(T _i+k) < - E_.Siﬁfﬁhl}‘t_j___\
V(T1+]+ ) (T1-1+ Je-c ;Ei:il r(s+k+1) c £ r{s+k+1) <
3744 i1
’ 2 !
e (t+k+1) \ 1
g2t — E e
r(t+k+1) ¢ r(s+k+T)
=44

where the supremum in (A.32) is attained for s = t. Using (A.32), (A.33),
and (A.27) we have for N large enough:

(1-1)2(1-1) CRIREL
V(ti k) = V(T qvk) € - c u gt —g 2
[4Kkn_(Ky#K,+1)173K,,  cBg N
T, - T
AL R £ B
2-cytcy — 4

where C3 and Cq are independent of N. The inequality is valid for
i=2,4,..., 2NI and so

Tonp+1 T

V(r2N1+]+k) - V(r]+k) € -y + ¢y 5 <

¢, 4K 4¢,K
s—c3NI+—%-——VAT-N4-NI=-Nl(c3- 4"-%),
N ¢ 9 N

where (A.30) is used in the second last step. But as in Step 2 V(t) is
positive and bounded from above by Ev’ so that

N, € KV < KV = EK_V
Doy By AT) c3mcyp
3 CO NZ

for N sufficiently large. This follows from (A.21). From (A.16) it then
follows that
4K,

N, < 2NI+2 < 7:; + 2,
i.e. NT is bounded by a constant. This is in disagreement with the
result of Step 1, (A.15). We have thus Tead the existence of arbitrarily
large |g(t)] into contradiction and it is thus proved that [g(t)| is
uniformly bounded.
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It remains only to conclude that |®(t)| bounded implies u(t) and y(t)
bounded. But since Q(q_]) is asymptotically stable, [@(t)| bounded
implies that |e(t)| is also bounded. From (A.3) it immediately follows
that u(t) and y(t) are bounded. The proof is thus complete.

Proof of Lemma A.l

It follows from Lemma 4.1 that

B(t+1) =Fo(t) + +gq(t) & F () +9,(t) +9q(t)s

where F is asymptotically stable and g](t) is a vector consisting of
filtered uM and w. The vector g1(t) is therefore bounded, by a constant
Ky say. Iterate the above equation to obtain

t t
B(t) = FTS5(s) + ;2::; FE1 g, (i-1) + ;E::; gt gy (i-1).

i=s+1 i=s+1

Since F is asymptotically stable,

sup || FE ) 2 Ke < e
30
Also note that
T(t) = LM e(t) = _P_M ec(t)
TA TA

which implies
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A
o e e (t+k+])
By M f
0
0
gz(t)= 1
— e (t+1)
A f
0
0

But both T and MM are asymptotically stable polynomials, so that
t4k+1

lg,(t)] < K, (1 * E ,Ut+k+]_s !ef(5)|>

s=k+1

for some K2 >0and 0 < u < 1.

Use these inequalities above. to get

[B(e)] < IF° )1 fa(s)| +
T+k+1

+ KF(t-s)[ sup K2<] + E uT+k+]'U |ef(o)|) + K]]
ser<t o=k+]

which gives (A.6) with the choice K = KF(K1+K2).
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Proof of Lemma A.2

The definition of o@(t), (A.3), gives

u(t)
0 | | B
| |
. | | 0
10! ' 0
————— I— —_— e —‘— —_—— p—
B(t+1) = I o | B(t) + l(—tp”_)
[ [
L 0
: "1l 0
|
____________ M
: : 0 - %ﬂ(m)
(A.34)
It follows from (A.5 f) and the definition of P, that
u(t) _ u(t) . u(t)
= (1-P,) 2\4L 4 AL
P (1-P2) =+ P
T _
(t) o(t), (A.35)

p21...p2np 0...0] B(t) - 8
2

where the fact n, = np_ from (A.4) has been used. The equation (A.1)
. 2
gives

y(u) oo y(E) o, y(ten+l)
_P_._ = a,l P e an P +
(u(t—k) u{t-k-1) u(t-m-k) w(t+l)
+ b0 P + b] P +oo 4+ bm 5 + 3

which, if k > 0, can be written

Y(eH) o _
Ll = 10,0 by byby...bgby 0...0 -aj...-a 0...0| B(t) +
(A.36)

On the other hand, if k = 0 (A.35) can be used to get
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izl {bob]...bobm 0...0 -aj...-a, o...o] B(t) -

- bo[le--'PZn

wi(t+1)

- (A.37)

If (A.35) and (A.36) or (A.37) are inserted into (A.34), the following
is obtained:

o(t+1) = A(t) o(t) + b(t),

where A(t) is a matrix with bounded elements because the parameter
estimates are assumed to be bounded. Also, the vector b(t) is bounded
because its components are outputs of asymptotically stable filters
with inputs w(t) and uM(t), which are bounded. The Temma is thus proven
with K; = szp HARY [l and K, = s%p |b(t)]. o

Proof of Lemma A.3

It follows from (A.5 e,f,b) that

leg(tit-1)] <

T(t-1) - 87 (t-k-1)] B(t-k-1)

e(t-k)

S| te-ken)| <

By(t-1)]+By | (t-k-2) E g b B (t-2K-1)

- sup [e(s)],

~ 1 1 1 —
< 15 o |t ot [ (k-]
< 1Pl Bg (|m(t-k—2)i et (6(t-2k-1)|>im( ) t-kgsgt-1

where (A.5 c¢) is used in the last step. From Lemma A.2 it follows that
there are constants Kj and K&, such that

[G(t-k-1)| < K} [@(t-k-1-1)| + Kp, i=T,..0k.

Insert this into the inequality above and use the boundedness of Bo(t)

to obtain
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Kl

~ I k \ 4

leg(tit-1)] < [by(t-1)| - = <K +'—_T_“""T:“‘-_> sup le(s)] <
f 0 Bo V3 min [o{s}]|/ t-keset-1

t-2k-Tgsgt-k-2

K
N <K3 + —————7——f£t:————> sup  Je(s)]
min - [B(s)]|/ t-kesgt-1
t-2k-Tgsgt-k-2

and the lemma is proven. o
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ApPENDIX B - ProoF ofF THEOREM 5,1

Theorem 5.1

Consider a plant, described by

(0 =22 gy (8.1)
= u v .
Y Alp)
or, alternatively,
ep(t) = by [Ué:) ey lB(t)] + ATfV(t). (8.2)
Here '™ ' denotes filtering by 0/TAM and
mn -1 n-1 M
o) = (B (), ML By, 28, T )
(B.3)
The plant is controlled by the CSA-algorithm, defined by
- estimation algorithm:
by (t) - @,ﬁ:—) + 81(e) a(e)) £ (8.4 a)
Seey = oty ELE)
8(t) = oft) e (B.4 b)
P(t) = - ar(t) + [B(t)|% + alt); A > 03 (8.4 c)
Aroin € oft) < f, r(t) < Tmin® FO) 3 S
0 < o(t) <o, r(t) > Poin®
e(t) = ep(t) - ep(t) (B.4 d)
8:(t) = By(t) [lé;ﬂ + 87t G(t)}. (8.4 e)
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- control law:

PO gy
- =] . (8.4 f)
Py

u(t)

P

Assume that assumptions A.1-A.4 are fulfilled. Further assume that the !
parameter estimates are uniformly bounded. Then the closed Toop is

L®-stable, i.e. if v(t) and uM(t) are uniformly bounded, then u(t) and

y(t) are also uniformly bounded.

Proog

A single realization will be considered throughout the proof. The
boundedness of |¢(t)] will be proved by contradiction. Thus,
assume that

sup [@(t)] > Nm
t20

for N and M arbitrarily large. This assumption will be contradicted for
some N and M. Assuming the unboundedness, tNM and tM are well-defined
if N> 1 and M > Jo(0)]:

tyy = min {t] To(t)l = N}

t

wo=max {t] <ty lo(t)l =M

fo(s)i<Mvse (max (0, t-cy InN), t) }.

Here the continuity of [@(t)| is used. The constant cy will be defined
below. A typical realization of [©(t){ in the time interval [tM,tNM] is !
shown in Fig. B.1.

The contradiction will follow from thorough analysis of the algorithm
in the interval [tM,tNM]. An outline of the proof is as follows. In
Step 1 an increasing sequence {IG(Ti)!}i:1 in the interval [tM,tNM] is
defined and a lower bound on NT is given. Step 2 derives an upper bound
on TNT e Finally, Step 3 derives an upper bound on NT which is in
disagreement with the result in Step 1 and the boundedness of [@(t)| is
thereby proved. The boundedness of u(t) and y(t) is then easily

concluded.
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Figure B.1. The behaviour of |p(t)| in the interval [ty tay! -

Before proceeding to the main part of the proof, some results are
given in the form of separate lemmas. Proofs of these lemmas are
found at the end of the appendix.

LEMMA B.1

Under the conditions of the theorem, there exist positive constants
a and K and an asymptotically stable matrix F such that, for every
txs+1,

wee)] < K[l1e"E Y 130s) |+ ()1 rsup, (I) e |eg(0) o).
(B.5)
LEMMA B. 2

Under the conditions of the theorem, there exist positive constants K]
and K2 such that

Ky(t

-s)
(lo(s)f +Kp) vt »s. (B.6)

[o(t)] < e
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LEMMA B.3

Under the conditions of the theorem, there exists a positive constant
Kq such that

5(t)]
_;stu_ £k Vit (B.7)

LEMMA B.4
Under the conditions of the theorem, there exist positive constants
K4, K5, and ¢ such that for arbitrary T,

N _ KT t
[8e(t)] < Ky e TIB(E)] + Kg e | th le(s)| ds vtsT (B.8)

where KT is as in Lemma B.2.

Before returning to the proof of the theorem, an important observation
will be made. First choose

_ 2 1
CM_'MX(X’E> (B.9)
with a from Lemma B.1. Let [51,52] be any interval between ty and tNM
such that
IG(Sg)t =M

[o(s)] <M v $1 <5 < Sy

If min |@(s)| is attained for s=sp, Lemma B.2 and the definition

S]SSSSZ
of ty give
K;(sp-sq) Kicy InN
— 1892720/ — 1M —
M= lo(sy)] <e (le(sg) +K) < e (To(sg) | +Ky)
which implies
— M
[o(sg)] » - Koe
0 NK]CM 2

Since the interval [51532] is arbitrary, we thus have
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min [w(s)] >

- K. (B.10)
Kic 2
tMs s< tNM N 1M

Step 1. Characterization of the sequence {@(ti)}

N
The sequence {Ti}izl is defined recursively from

Ty = tM

Ty = InF L] T <t <ty [B(8)] > sup [6(s)]]s
tmssct

where n. will be defined below. The sequence {Ti} for the realization
in Fig. B.1 is shown in Fig. B.2.

Let NF(x) be the smallest number that satisfies
[k ek Ve N(x) (x>0 (B.11)

where K and F are from Lemma B.1. The definition is meaningful because

1Pl
&

NMp— — — — —

ST
N i

Figure B.Z. The definition-of {r;l}.
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F has its eigenvalues in the open left half plane. Also note that
from (B.2), (B.4 f), and the boundedness of the estimates and the
noise it follows that for some Ke’ K

v

leg(t)] < K, [o(t)] + K, Vvt (B.12)
Now choose n in the definition of {11} to be a number which fulfills
the following conditions:

T
ang (B.13)
ik N a
(1) nee ™ € Saema ]
ks
. 2 a
(1V) n_c e < —S—K—KZ .

Here a and K are from Lemma B.1, K, as in (B.12), and c and Ky from
Lemma B.4.

Let M satisfy the condition

M > K2

with K, as in Lemma B.2. It should be noted that N and M can be chosen
arbitrarily. A number of conditions of the type above will appear in
the proof. They are however easy to fulfill by choosing N and M
appropriately. It is, hewever, important that the constants appearing
in the conditions do not depend on the choice of interval [tM,tNM],
i.e. on N and M themselves. This fact will not be commented upon in the
sequel.

If M is chosen to fulfill the condition above, Lemma B.2 gives rise to
an inequality in the following way. Separate between two cases:




(i1) T,

i > Ty S the definition of {Ti} then implies

Bepn )l < sup [a(s)]
T.iS SS‘T_‘_i+nT

and the continuity gives

_ _ K -
Ble, )l = swp (@) € 2e T [y
‘L'.ié SST1-+YIT

The same inequality thus holds in both cases. Using this together
with the fact that

taw = T n_s
NM NT T
which follows from the definition of {Ti} and the continuity, the

following is obtained:

— Kln'r - NT K]”TNT
M= Jo(tyy) | < 2e [w(TNT)] £...€2 e fo(ty)] =
N_ Kqn_N
2t Ty
which implies
In N

T In 2+Kn;

This is the lower bound on NT sought for in Step 1.

Step 2. Derivation of an upper bound on TN, =Ty
r—

Define intervals

I.1 = [Ti_'lsT.i_H]; i= 2, 4,...,2NI

where the number of intervals NI satisfies

(N.=1),  N_odd

o= o=

(NT- 2), NT even.

.N}
Consider an interval I, and define the sequence {T}}j_o inside the

143

(B.14)

(B.15)
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interval through

Ti =Ty
0 Tinl . 1. (B.16)
min{t|] t>7T .

1l

7i
J
where N} satisfies

.i
Tipp Ny § TNi € Ty (8.17)

T

The left inequality follows because ‘G(Ti+])\ > M. The constant ny is

defined as
Ny = K: n N, (B.18)
where
B 2 2
KT = max (-—ﬂ?y’ E‘a)- (B]g)
Here r(F) is the largest real part of any eigenvalue of F and p is
defined as
-
P=aac (B.20)

Let AT be the maximal distance between any T} and T}+1. 1t follows from
the definition of ty (cf. Fig. B.1) and (B.16) that

AT g np + ¢y In N = (Kp+cy) TnN2K InN, (B.21)

where KA is independent of N.

Define intervals
i oL i . i
3 = [Ty Tyl 3= 1, 3,00, - 1,
where the number of intervals NE satisfies
_ (NE-1), N} odd,
i
Ny = (B.22)
N

ro| —

i i
T NT even.

ol —

The behaviour of the algorithm in an interval J} will now be examined.
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Distinguish between two cases.

The case N? 2

From (B.22) it is seen that there is at least one interval J} in the
interval I;. Suppose that

1
Tj+]

M
j le(s)] ds < - I (8.23)
A M(]h;)ﬂe1 T
J-1

This will lead to a contradiction. To see this, we will first show

that ny 2 Np(4N). The matrix F used when defining Np(x), (B.11), has
its eigenvalues in the open left half plane. This implies the existence
of a constant K¢ such that, for some tp,

H eFt ” et'l"(F)

< KF viz tF,

where r(F) is defined in connection with (B.19). Clearly NF(4N) - co,
N - . Then it follows by continuity of |IeFt [l from {B.11) that

PN (4N Ne(4N) - r(F)

1 )
ay = K || e | < Kk e
for N sufficiently Targe and so

In N+ 1n 4KKF
N-{4N) < <
F(N) -r(F) -r(F)

In N g N

It is thus possible to use Lemma B.1 and the definitions of NF(4N) and
AT to obtain

(Ol T afmo
3T kAT (1 + sup Je a(r C’){ef(o)[ do).
Teqeri 0

J j+1

Suppose the sup is attained for t = t. Then

) (1l t
3111 < l‘p_fmﬂ + KT (1 +é e e (0)] do) <
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. i .
" —a(t-T]_q-T) 1317 -a(r]_j47-0)
< gyt OKAT+KAT e e J les(o)| do +
N ) f
P A M
srer f 0 M e ()] a0 ® Berat R +Ry, (B.24)
T}_1+T

where 0 < T < nr will be chosen later. The two terms R] and Ry will be
estimated separately. From (B.12) and the definition of {T}} it
follows that

~a(ng-T)

1
Ry < KaT e 3 su%|ef(0)[ <
osTj
-a(ny-T) _ ~a(n=T)
crate T L sup (lwlo) vk € K gy aTe T T,
osT}

if N and M are chosen such that KV < NM. The term R2 is estimated using
(B.4 d) and Lemma B.4:

t T}H
et [ (le@] + e Eo)] Jao < T [ [elo)| o s

; i
-1t T
t a
K T
+ KAT[ j e-a(t—o)<K4e-cT|?o(o)| +Kge 1 J |g(s)|d3) dc] <
o-T
17 Tl
J+1

Ke KqT -
< KAT (1 + 7; e > j le(s)|ds + g KyaT e cf

NM.
5
Tj_1
Now choose T = p ny and use (B.20) to obtain for -large N

KAT

—a(]—p)nT -cpny
Ry + Ry -5 ((Ke+]) e + K, e ) NM +
Tl
K5 K]pnT J
+ KaT (] toe > I le(s)| ds <
i

-1
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Tl
KAT ~cony ke Kqeny
$ = (KgtKytl) e NM + KAT <1 +~E—> e J le(s)| ds <
i
Tj-]
-coK+ InN
K T M M
<3 (Ke+K4+1) Ky InNe NM + T < 5 (B.25)

where (B.18), (B.21), and the assumption (B.23) have been used in the
second last step and the definition of KT’ (B.19), was used in the last
step. If (B.25) is inserted into (B.24), the result is

[Zﬁ(T}H)] < M

M

&
et

n
|

This is trivially satisfied for large N by the choice

A NK] (cM +pKy) +4

M= NP2 (B.26)

With this choice of M, we have arrived at a contradiction and the
conclusion is that

;
Tj+1
M
le(s)]| ds = s Koy - (B.27)
1 4K (1 +—a—> AT e
J-1
The inequality holds for every interval J; Define
v _ w2 =T ~
(t) = bo(t) + by 8 (t) a(t). (B.28)

Lemma 5.1 gives

i i
T541 ) T34 )
iy Lyl . e°(s) J <_A_R_- ) _ds_
V(Ti4q) - V(T50) < J sy Bt Jo V)) Gy €
T T
i §
i, T3 2
B J e“(s) d J v
" ; r(s) ; (s) ’
T T
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where K, 1s the bound on the noise introduced in (B.12). Note that, for

T;_] <s g T}H’
s

r(s) = e r(0) + J e 579 (15(0)12 + a(o)) do < ,

0 !

2

< ro) + 2 W %(NM)Z

if N and M are chosen sufficiently large. Furthermore, it follows from
Lemma B.3, (B.10), and (B.26) that, for large N,

2 2(p-Kqcp)
1= 2.1 ( 1 1%
r(s) = - [8(s)] 2——(——1() PRI . (B.29)

Apply these two inequalities above to obtain

1!

i i AT 48T K, K
V(Ts,q) = V(T ) g - I e"(s) ds + ————,
3+ 3-1 2?2 y N2(p—l§]ch1)

J-1 '

Now, use Schwarz’ inequality to obtain for N sufficiently large:

i
Tj+1 2
i i A 1
vt oy vty e - . J le(s)] ds | +
j+1 -1 ? T4
JULNURE R
3-1
i ?
401 1 Ky N J”| o) at i K,
— v A e(s)| ds | + — YL 3 ¢
2(p-Kqyc) 48T (NM)@ J w&(PKiem)
N T
-1
2
N N Tkl Ky,

q Konr2 | 2(p-Kicy)
- -
4T N2[4K<]+T5) AT e VP T] NI

S ¢y AT

>

; , B.30
3 e2K]pnT NZ(p-K]CM) ( )

N AT
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where ¢ and ¢, are independent of N.

It follows from (B.18) and (B.21) that

3
A

2K, pn 2K, pK
3. 1T < 3 1 T‘

AT K3 N7 N

Inserting this inequality into (B.30) and also using (B.26) gives
_a

2 3 3 ZKoky
N K 1°°7

2
A N" N N

<, KA N _

(KoK +4)

i i
V(Tiq) = V(T5) < -

2(KqoKy +3)

1 1
= e | — = Cy K, —mr————
7Kipks +5 | 3 "2 "A T2(KipK; + &)
N PR KA N 1°°T
C c
0 A_ 0 .
—§R;BR;77§ 2 -56 s N sufficiently large,
N N

where g is a constant, independent of N.

This inequality holds for every interval J}, i.e. Ng times, whence
. . N

v(T1 )—V(T‘)<-c 4

i 0/ = 0 p

2NJ N 0

But V is positive and also from the assumptions bounded, by Rv say, SO
that

(B.31)

The case N% < ?

The inequality (B.31) is trivially satisfied also in this case,
because N} < 2 implies NS = 0.

The conclusion is thus that (B.31) holds in every interval I provided
N is chosen large enough. From (B.17) and (B.22) it follows that
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i s i 4
Tig] ™ T . = <T1+] TNi > +(TN1 T2Ni ) < Nyt AT < 2AT
J T T J

which together with (B.31) gives

- - i i1 i
Tiel ™ Tiog (TH] T ; ) +(T ; TO/ < 20T + 2NJ AT <
2Ny 2N

K 4K p
V-Npo) c—YaTen O,
o )

< 2AT (1 +

Summing for i = 2, 4,..., 2NI gives

4K P
TZNI+1 T € - AT =N "= NI (B.32)

which concludes Step 2 of the proof.

Step 3. Derivation of an upper bound on NT and the contradiction

Consider an interval Ii defined in Step 2. Suppose that

T4l 150
j le(s)] ds < oTin )| : (B.33)
/. Kg K2
11.+1—2nT 5KnT\1 tre

This assumption will lead to a contradiction in much the same way as
in Step 2. Analogously with (B.24) we have

— !6(T1+]'n )|
[o(ty )] < ——————7§——45—m + Kn_+ Ry + Ry,
where
3 i1 20t
a(t-t; +=n.) -a{T;,q ~=Nn.-0)
Ry = Kn_e e J o leg(o)| do
0
t

- t_

Ry = kn J et Je (0)] do
3
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and t is in the interval It =N T_i+-|]. The properties (B.13 i, i1)
of n. has been used. The term Ry can be bounded from above using (B.9)
and (B.12) if K, ¢ M= NP, which is true for large enough N:

tM-cM1nN
M 3 np-(ty=cy 1nN)1 (ty-Cy In N-0)
- —alT; =5 N~ (ty=Cy In ~a{ty-cy InN-o
Rockne 2 [e o v¥1 27T MM e MM le.(0)|do
1~ Ny f
- | ’
e 'a(Tm‘g‘“r"’)
+ e leg()] dc} <
tM-cMMN
B [ty
-—— ~acy, InN o(t;,q)
M NM i+1
sKnTe 2 (KEH)[e --a—+-——a-——-} <
an; —
"z m, [0l
sKnTe (Ke+])[€+"——a—_ <
ang —
s 2 - lo(r;,)]
< Kn_e (Ko +1) 3 [o(rs )] < —
where (B.13 iii) has been used in the last step. The term R, is
estimated exactly as in Step 2:
T cn
Ks Kqng/2y ¢ R
Ry g KnT<1 +e ) J le(s)] ds + 2 K4 n.e fo(ts, )1 <
Ti41720;

< IG(TH.]H N IE(TT'H”
5 5

where (B.13 iv) and the assumption (B.33) have been used in the Tlast
step. Using the estimates of R, and RZ’ we thus have

)

[@(t;,q -0
5

3 — —
v, , + 3 lo(t; ) s ot )]

|6(T1’+])| < i
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which of course is satisfied for large N. We have thus arrived at a
contradiction and the conclusion is that

T [Brs4)]
J le(s)] ds 3 P . (B.34)
- Kg Kyng/2 '
Tit] ™ 2nT 5KnT<1 +=e )

The inequality holds for every interva

. < < T
forT1_] $ € Tiep

s
r(s) = e_)‘sr(O) +J e—)\(s—c)[ l'o(o)

0
s
0

e

“}\(S‘U) ‘(—D'(O,)Iz

N

+ e

>l el

-A(s=tyrey In ) J
+

> @l

0

E-A(

[2 do

529) |5(0)
1

-Acy TnN ) (NM)2

tycy

1 1. From (B.9) it follows that,

Pra(o)]do <

$

TnN
-Mty-cy InN-o)
e

(p(o)|2do +

”n

+

>l

€ P

L (0 1ot 1)

PN
>Rl

+ —

3 = 2
Y |@(Ti+])|

for N sufficiently large. Applying Lemma 5.1 in the same way as in
Step 2 now gives a result analogous with (B.30) for large N:

T1'[+1 , Ti+1
) ) e(s) AR — ds
V(ti) - Vty) < r(s) ds + J (7 V(S)> r(s) <
i1 ti-1

Ti41 2 Tial 2
< - f € (S) ds + J v ds g
g J r(s) r{s)

Ty "2 -1
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T 2

it+1 2
2K Ko (Toq = Taq)
< - s A 2.2] J |€(S)| ds + \ 32(p1z]c )1'1
3lo(ts, )| N . “MEM
i+l T4l 2nT N
2K2 Ky (Ti,1-T5 4)
.. 1 PRI T £ TSt LA
) Ko Kyn /2\12 - -
6n [SKn (1 W58 S )] w2 (K
T T a

o +c Tig1 7T
3 4 N2(p—K1cM) i

1>

where Cq and Cq are independent of N and (B.34) has been used in the
second last step. Summing the inequality for i = 2,4,..., 2NI gives

ToNg+l T T
Ve T VD) € el g ICREnN
4K, AT-NPO-NI 4P\V AT
TN T e T (Caee )

where (B.32) and the definitions of pg and p have been used. But V is
positive and bounded by Kv as in Step 2, so that

N 4KV AT
- KV < - NI (ca -Gy 5 >
cON

which by (B.15) and (B.21) implies

2K 2K 4K
+2 < v +2 < V__+2 = Y42

4K, AT 3-C3/2 <3
3
cON

€30

for N sufficiently large. This result obviously violates the inequality
(B.14) obtained in Step 1 for N large enough. The existence of the
sequence {lE(Ti)I} for N arbitrarily large is thus contradicted and

the boundedness of |@(t)| is proved.

It remains to conclude boundedness of u(t) and y(t) from the boundedness
of |o(t)]. From (B.2) and (B.4 f) it is clear that ef(t) =~%[y(t) -yM(t)]
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is bounded. But yM(t) is bounded and Q and P are asymptotically stable
polynomials of the same degree, which implies that y(t)} is bounded.

The boundedness of u(t) is possible to establish from (B.4 f), which

can be written
m P (0)
u{t) _ _ /1 AT —
Pz _P = (———P_I & (t)> o(t)

or, using the definition of PZ’

W =y m+nT—1 u(t) Uit
p Eé—l =" <Pz1 P ué "o Po(men) ué )> -
P1(0) _
- (-~§,] 510 ) B(e). (8.35)

Here all terms in the first bracket are components of w(t) and it

m+nT
follows that p T uét)

is bounded. Differentiating (B.35) 1,2,...
m+nT+1 T(t)

P 5 10y
is possible to differentiate because

n-m-1 times gives recursively boundedness of p
ntnp=1 =/, a
p T u(t) . Notice that 5(t)
p 3
P] is of degree n-m-1 and also that the derivatives of ®(t) are
bounded because of earlier steps in the recursion and boundedness of
. M , : T E(t)
y(t) and u(t), cf. (B.3). Finally boundedness of p s follows
by an additional differentiation of (B.35) but then the boundedness of
5(t), which follows from (B.4 b,c,d), is also used. As a result, the
first n+n; derivatives of u(t) .0 u(t) have been shown to be
! Pl
bounded. But the pole excess of Q/TAMP is exactly NNy and Q

is asymptotically stable. Hence boundedness of u(t) follows readily.

The theorem is thus proven. o
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Proof of Lemma B.1

Assume for the moment that m > 1 and define

m+n-1 n
T T
Ty = | 2 P
v (t) 5 ut)s oo Sou(t) |
which thus is formed from the m first components of @(t). Using (B.1)
and the definitions of e(t) and ef(t) (see (5.3)), the following is
obtained:

m+nT
p p—
' 5 u(t)
W(t) = : =
nT+1
pp U(t)
N m+nT—1 Ny
1P Arsiey-vit)] -b. P Tty -, . -p P&
by P [y(£)-v(t)] - by ——U(t) by, 5~ U(t)
m+nT-1
B u(t)
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nt
1p A
= T eg(t)
by oM F
SFP(L)+ 0 +b(t),
0

where F is asymptotically stable since the plant is minimum phase.
Integrating from s to t gives

ny
1 p A
: Bo T T
Bty = e (78) grsy 4 Jf of (t-0) . + b(o) + do.
S

(B.36)
The vector b(t) is obtained by filtering uM(t) and v(t) (which are
bounded) through proper, asymptotically stable fiiters and is therefore
bounded by a constant Kb say. Also note that since F has its eigen-
values in the open left half plane,

Ft
sup Jle "l = Kp <.
t30

Finally we have

n

.
1 p A

— T ec(t)
by M f

¢
< K (1 +j e73(t5) 1o ()| ds> vit, (B.37)
0

nT
where a > 0, because p A/TAM is a proper, asymptotically stable
transfer operator. Using these facts in (B.36) gives

s

T(t)] < |lef(ts)

O Qq

t
D(s)+ KFJ [K]<1 +
3

< HeF(t—s)

a

w(s)| + Kz(t—s)[1 +sup e—a(o_T)|ef(r)|dT}, (B.38)

sg<ogt

O O

where Ko = KF(K1 +Kp)-

e'a(cﬂr)Ief(T){dr>-+Kb] do <




The definitions of (t) and ¢(t) give
mng-1 P(t)
p—————lj(t) nT~]
i P_—u(t)
: P
T(t) _3
P u(t)
oty = | p™! J°F B.39
(p(t) = P 5 y(t) = pn_-| B . ( )
B y(t)
y(t) y(t)
P P
8" 8"
-5 u(t) - = U (t)
P P
From (B.1) it follows that, for 0 ¢ 1 < n; -1,

bp! u(t) = - [p™7 y(t)+...vapl () -pT AV(E)] -

[w)

() - -y e (),
where b+ 0 from assumption (A.4) and so, because v(t) is bounded,

< Ky <1+’ P_;y(t)’+...+‘ pn;i y(t)\ ;

| Epiﬂ(t)

" k PiPH U(t)‘+...+‘i Pm: U(t)D.

If this inequality is used recursively for i = k, ...,nT—1, the
following is obtained:

k / St n+nT-1_
‘ %E»u(t) < K4 \1 +‘ Qﬁﬁ-l} 4.0+ fl-T;——— y(ty| +
+lp_:IU(t) +...+\£:T:—]E(t)s>, K= 0,.eoanpel.

Using the definition of y(t), this can be simplified into
nny-1

‘—E’;E(t) < Kg <1+% ZF()L) \+...+ p—P—y(t)} + W(UI):

k=0, ...,nT—1.
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If this is used together with (B.39), the following estimate of |o(t)|
is obtained:
ntnp-1

B0 < kg (14 [ LEL o B

Here (TBM/P)UM(t) is bounded because uM(t) is bounded. Also, for
i=0, ‘..,n+nT-1,
i i i
Povty = B sy 7™Mty = o M
5 (e = B R +Y (0] = Bper(t) + BT (L),
where the first term can be estimated as in (B.37) and the second term
is bounded. The inequality (B.40) can therefore be simplified into

t
By < & (1+] € Jer@)] 4o + [B(e)]).
0
Invoking (B.38) gives for t-s 3 1
t

)| < Ky [1 [ e Jeco)] doe T E0)) e s
0

¥ Kz(t-s)<1 - sup I e 20T e (1) dT>] <
o

< % (U ) () (1 sup i e (o) ar)] <
g

ke s ”t"s)(”siﬁit i e Je(n)] o).

It remains to comment the case m=0 when y(t) is undefined. Then it
is easy to see that (B.40) is valid without the |[y(t)|-term and the
assertion of the lemma is still true. o
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Proof of Lemma B.2

It follows from the definition of @(t), (B.3), that

0 ! | N
| | o1
1 u(t)
| l P
1 01 ! 0
- - - 5 ______ B -
B(t) = ‘ Lo | By . (8.41)
I |
! ! 0
! 1T 01 M.
————————————— - I8 gy
| 10 P
From {B.4 f) it follows that
m+n menT
T - P —
P gy =2 2 5 u(t) .
5 u(t) P u(t) + :
by T p P.(0)
21 too P2 (meng) — A _
-- g 0 Gty - [ 87| we) -
1
P,(0)
_ — [ AT _
= - [pyy -+ P2(mins) 0...0] %(t) [—P]— 8 (t)] o(t) (B.42)
It can be seen from (B.1) that
n-1 m
n a, p +...t+a pr+...+b
Py . 1 n — m — A_
- (1)2 - S V(2] by ———— (E) + p (L),

which, if nr 1, can be rewritten as

n
— — A—
%y(t)=[0...0 by bgby -+ bgby -ay .- -3, 0] w(t) + 5 V(t)

n
(8.43)
whereas if np = 0 (B.42) gives
" ey - _ =) -
3 y(t) = [bgby -+ boby -21 -+ "3 0] w(t)
- by --- Py O --- 0] (1) -bO[P_gj_O) ng] B(t) + %V(t)
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If (B.42) and (B.43) or (B.44) are inserted into (B.41), the following
is obtained:

QA it
?;M; v(t)

0
0
M
- 8B Migy
paM

Here A(t) is a matrix with bounded elements according to the assumptions.
Furthermore, QA/TAMP and pQBM/PAM are proper, asymptotically stable
transfer operators and v(t) and uM(t) are assumed bounded. Hence,

B(t) = A(t) B(t) + b(t)

with a bounded vector b(t). This differential equation has the solution
o(t) = ¢(tys) o(s) + [ ¢(t,0) b{o) do, t x5 (B.45)
5

where the transition matrix ¢(t,s) satisfies
t
#(t,s) =1+ J Alo) ¢(o,s) do.
s

Using the boundedness of A(t), we have

°

t t
[fo(tss) Il < 1+ S fIA(o) - ll¢(o,s)]l do s T+Ky [ || ¢(o,s)] do.
S S
If the Groenwall-Bellman lemma is applied to this inequality, the
result is

Kqi(t=s)
o(tss) | <e !

and so, using (B.45),
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_ _ t
[o(t)] < [lo(t,s)ll » [o(s)| + J llo(t.0)[l « [b(o)] do <
s
Ky (t-s) t K (t-o) Ky (t-s) K
1 — 1 1 2
< K, do < =,
< e lo(s)] + i e ,doce (|¢(5)| + K]>
Replacing KZ/K1 by KZ’ the lemma is proven. o

Proof of Lemma B.3

The result is immediate for 0 ¢ t < 1, so it suffices to consider the
case t » 1. From (B.4 c),

T
r(t) = e Mt r(0) + J e_k(t—s)[}6(5)|2-+u(s)] ds >
0

t
s | e MES) gy ds s et inf [a(s)

|2/\ -\
t-1 t-1gsgt

— 2
=e " Jo(sy)|
(B.46)
for some t-1 g 50 € t. But from Lemma B.Z2,

_ Kyl
[o(t)] < e '[[B(sg)] +Ko]

which implies that

2K
B2 < 26 [flsg) 4+ k3]

and so, using (B.46),

.Y 2K KS
(t) 172, K
f(t) < 2e <e + r(t))'

But from (B.4 c) it follows that

rP{t) 2 -ar(t) +a(t) » -Ar . +Ar . =0 if r(t) gvr

min min min

so that, because r(0) 2 Foin?

r(t) >r v t.

min

If this is inserted into the inequality above, the lTemma is proven. o
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Proof of Lemma B.4

It is seen from (B.4 e,f,b) that

&) = B(t)(BE + 87ty B(t)) = By(t)(6T(t) -
() = B (FEL + (0 31y ) = By((Ece)

~ A — ~ i —
- Botila(e) 87161 3(1) = By((s(e) TEL ) i),
where
[P1(p) -P1(0)1/p
Gpp) = ——M

P1(p)

is a strictly proper, asymptotically stable transfer operator and Bo(t)
is bounded. Hence,

t T
|af(t)| < K]a(t)| <e"Ct + (J) e'c(t“s) lm(sz‘(;) E(S) dS)
for some positive K and c. Split the integral into two parts:
t-T _
|§f(t)| < K[o(t)] <e=ct N J o-c(t-s) |o(s)] - |e(s) ds) +
8 r(s)
t
v K[a(t)] f gc(ts) Mili%ﬂds. (B.47)
t-T

The two terms in the r.h.s. will be estimated separately. First use
the boundedness of the estimates and the noise to conclude from (B.2)
and (B.4 d,e,f) that for some K, and K,

le(t)] < K. [o(t)]| + K.
Hence,
T cttes) [Bls)] - e
- -ct -c(t-s) [o(s)] - |e(s)
K Jo(t)] (e + i e o) ds> <
t-T ) (
< cT -c{t-T-s) Jo(s)]| « |e(s)
< K[B(t)] e <1 . j e = ds) <
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N

KIo(t)| e cT <] +% sup [B(s)] (K D) +K,) ) .

sgt-T r(s)
— 2
_ T ( 1 (K, +K,) ols)|™+K,
< Klo(t)] e \1 * < si%gT 5 > <

-cT ] K
< Kla(t)] e© (1 + Ktk +k)T ¢ rm:n ) A

">

Kee T [B(E)], (B.48)

where Lemma B.3 and the lower bound on r(t) obtained in the proof of
that Temma have been used in the second last step. The second term in
(B.47) is estimated by the use of Lemma B.2:

t —_—
K [o(t)] J( ec(t-s) ‘p(s)r('s)e(s) ds ¢

t-T

t
KT _
ke Jf e (S j5(s) +Ky] |®(S)r(‘s)e(s) ds <

t-T

N

t Y
QT e(tes) (KZHi(S(SH +

[e(s)]| ds <
t-T

KT K> N
K Ko +1)K ds =
e (g v i) | el es

N

H>

Kg e le(s)] ds, (B.49)
t-T

where the second last step follows as above. Inserting (B.48) and
(B.49) into (B.47) proves the assertion of the lemma. o
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