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UPPER BOUNDS FOR THE NUMBER OF LIMIT CYCLES OF
SWITCHED SYSTEMS THROUGH DISTRIBUTION THEORY.

JAN MELIN
DEPARTMENT OF CHEMISTRY AND BIOMEDICAL SCIENCES
UNIVERSITY OF KALMAR, NORRA VAGEN 48, 39182 KALMAR, SWEDEN.

ABSTRACT. We use the theory of distributions to extend the theory of stability of
limit cycles and caleulating the Floguet exponents to piecewise C! aysiems possess.
ing unique and continuous solutions. We demonstrate the use of these extensions
by several exampies. - .
Keywords: Floquet exponents, distributions, piecewise linear systerns,
AMS subject classification: 34A36, 34A12, 34H05 e

1. INTRODUCTION

Finding upper bounds for the number of limit cycles for two-dimensional systems
of ordinary differential equations has been a difficult and acknowledged mathematical
problem since Hilbert published his 23 problems 1900. In Inany cases, upper limits
for the mumber of limit cycles have been calculated using Floquet theory, see e.g.
Zhang [10], Cherkas and Zhilevich (2], Ye et al [9] and Zhang {11]. In this paper we
suggest an extension of this classical method that is suitable for systems with discon-
tinuities in the righthand side. Our extensions requires calculation of the divergence
of such systems in distributional sense. Such calculations require special mathemat-
ical knowledge and in some cases these calculationis can be quite extensive, Yeot, we
claim that our approach yields information that otherwise would be hardly available.
The organisation of our paper is as follows: We start by explaining our setting and
formulating the main theorem. After this we discuss the calculation of the Floquet-
exponents in distributional sense and work through examples that have appeared in
the literature recently. We summarize our results in the end of the paper.

2. OUR SETTINGS AND MAIN THEOREMS

We shall work with planar autonomous systems with discontinuous righthand sides
throughout this paper. We restrict the properties of the systems under consideration
by four major assumptions.

We consider a planar autonomous system

(1) X=fX),Xeq

(Al).  is an open domain in R?, divided i into a finite number of sub domains §;
(also called switching regions), such that USY, = T3,
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(A2). If 7% and {7 are not disjoint and i # j, then O; N0 = I, where I';; (joint
boundaries) are piecewise smooth.

(A3). fis in €' in all sub domains Q; and possibly discontinuous along I'; {also
called discontinuity curves}.

(Ad4). The vector field f defines a direction in each point in {). In particular, at
every point along I';; the vector field specifies into which € the flow is directed.

The conditions (A3)-(A4) imply that (1) has unique, continuous and piecewise C2-
solutions in ). Note that (A4) gives strong restrictions on the possible discontinuities.
In terms of Filippov [3] there are three kinds of sliding modes. We only allow transver-
sal sliding mode, that is: the vector field is directed from one side to the other at the
discontinnity curves. The solutions will pass the discontimuity curves in the field di-
rection and we have uniqueness of solutions there. However we will involve repulsion
sliding mode later and define it then. Now we will give an extension of a’classical
theorem concerning stability of limit cycles.

Theorem 1. Consider the planar autonomons system (1). Let the conditions (Al)-
(A4) be satisfied, let f be bounded in Q and divf (the divergence of f calculsted in
sense of distributions) be in L‘(Q) Furthermore let X (&) be a closed trajectory of (1)
with period T and let p = d.lvf(X (t))dt fihe Floquet—e:npanents) Ifp<o,
then X () is asymptotically stable and if u > 0 then X(t) is unstable. .

Proof: Suppose for simplicity that there is only one intersection point between
X(t) and a discontinuity curve at ¢t = 0. Let O, =| — ¢, | be an open neighborhcod
of t = 0. Take ¢ € C§°(R) such that suppyp C [~1,1], ¢(t) = 0 and [ p(t)dt =1 and
put @;(t) = j- ¢(j - t), then suppyp; C [, H.ps(t) = 0 and [py()dt = 1. Now we
have X s p; — X, a8 — o0 (convolutlon defined coordinate wise). Let X,(£) be the
C-restriction of X (t) to the interval [-T, T}\ O,. Suppose also that ; is chosen so
that (X « ¢;)® (xze) = X&) (ke), k=0,1,2 and define X;({£) as follows:

_ X ift € (~3, 31\ O
X0 ={ 500 ToH
then X;{t) is a closed C®-curve and X;(t) — X{t) in C° and:
v . . X?(t) lfte["grgl\oz
X;() = { (X +p)(t) ifteO.
and this leads to:
Ix. e = 4 fAXAD ifte [~ 5\ 0.
fit%@) = { (foX)re) itteo,””
from this we have f; € C* and f; — f in D (convergence in sense of distribution
theory, and note that o means composition) and furthermore:

. _ | divfa(Xt) ifte[-%,Z]\ O,
d“'f"x“’”“{ (div(f o X) s o)) K120,
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then divf; is in C* and divf; — divf in I'. Now we have:

Lo
=g _/Id“’f:'()‘:‘(t))df =

T

since divf is in L' we have:
L @vso oo = [ avixna [ gma= | avitxwna
for j large enough and finally the Floquet-exponents becomes:

1 . . _1orE
b= ( L;,;}\oa div o Xo(8))dt + fo ‘ dwf(X(t))dt) == /: L K@)

It is obvious that f satisfies the theorem since f; satisfies the original theorem. This
can of course be generalized to a finite number of discontinuity points, and so the
theorem holds.

=L, . .
) (/1;15-%%\0; v Xt )d”/o.(d’v(f X) %)(t)dt).

Now we will give a theorem which involves "repulsion sliding mode™. According
to Filippov [3] that is: the vector field is directed away from the discontinuity curve
on both sides. This means that the motion along the discontinuity curve is unstable
and the direction of the vector field is not unique.

Theorem 2. If the conditions (A1)-(Ad) are satisfied, then a closed trajectory of (1)
must enclose at least one fized point or at least one interval of repulsion sliding mode,

Proof: Choose the approximations X; and f; of X respectively f from theorem 1.
The original theorem (see for example Grimshaw {8]) holds for the system X, = fi(X),
since f; € C' and Xj € C?. The original theorem does not involve repulsion sliding
mode, but it is obvious that the theorem requires uniqueness of the vector field. Since
X; and f; are arbitrary close to X respectively f for j large enough, this theorem
holds.

3. CALCULATION OF THE FLOQUET-EXPONENTS

Put X = : in (1) and suppose that we only have one discontinuity curve T

represented by the equation ¥(z,y) = 0, where 3 is smooth.

Let Q, = {(z,y) € O g(x,y) > 0}, Q. ={(z,9) € Qiv(zr,y) < 0} and

f= fro iz e, where f* and f~isin C? and su that the solution:
=1 7 if(ny) e ppose solutlions

passes I' from (1_ into 0,. Let x4 and x. be the characteristic functions of Q.

respectively 2, then y, = H((z,y)) and x. = | -~ H(y(z, 7)) where If is the

Heavyside function,

We have f = f*.x, + f~ - x. and this could be written as

f=f"+(f* - f) - Hiy(z,y)}. The divergence of f now becomes:

divf = divf~ + (divf* — divf™)- H{y(z,y)) + (f* - [, gradp) - 6(w(z, 1)),
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where & i3 the Dirac impulse and (-, -} is the inner product. The divergence of fisin
L' so the integral

h= j div f(z(t), y(£))dt

is well defined and finite, and (x(t), y(t)) is a closed trajectory of (1) with period 7.
Now consider the infinite part divf; of div f, that is
divfa(z, y) = c(x, y) - 6(¥(z,y)) where c = {f* — f~ gradw) is in C.

We will now calculate the integral I of divf; over the interval {t; - ——27—, fo + &4, where
At is the infinitely small interval length and (zo, o) = (2(ts), ¥{ts)) is the intersection
between the closed trajectory and the discontinuity curve. We have

ot 4 to+4t
f— f 4 divfa(z(t), y(t))dt = f c(2(t), y(t)) - S((z(L), y())dt.

A change of variables s = ¥(z(t), y(t)) [5] gives us
#2
I—f f-(f—(%—-i-’-(-t—l o{s)ds, where
sy = Y(z(to — 3, y(to — §1)) < 0 and 8y = ¢(z(to + §8), y(to + 4)) > 0. The chain
rule implies § = =2+ gby ¥ = (f, grad®). On the boundary we put, according
to Filippov [3] f = f°, where fo = f~ + - (f* — f~) and o is a parameter in the
interval [0, 1]. Then the integral becomes
. e(z(t), y(t))
I= f - 6(s)ds.
o TP, 00, ek, s %
We have s = 0 <3 ¢t = {5 & (z(f), y(2)) = (2o, 70), this implies
(2) T = C(.'Eo, yﬁ)
[{f*(x0, o0}, grady(zo, 1a))|’
where f%(zo, 1) is set valued, so J belongs to an interval as « varies in the interval
[0,1]. Suppose now that we have a finite number of intersection points between the
closed trajectory and the discontinuity curves. The Floquet-exponents of (1) can
therefore be written as

T
O S RCCVOETED B

where v is bounded and L' in 2 and ¥, Ji is a finite sum of integrals (v is obtained
from divf). Each integral I} is calculated as in formula (2) above.

Note that u is set valued and belongs to an interval [fnin, fmas). If we like to deter-
mine the type of stability for the closed trajectory (z(t), y(t)) of (1), then we have to
consider the following two conditions:

1) I fonae < O then (x{t), y(1)) is asymptotically stable.
2} If e > O then {x(f), y{t)) is unstable.

We now introduce a number of examples, in which we show how to calculate the
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Floquet-exponents, if possible determine the type of stability and the uniqueness of
closed orbits.

4. EXAMPLES
Exampel 1 (Branicky [1]). Consider the system:

( i ) _ ( —x + (100 - 90A)y + 90(2A — 1) - ¥ - (H{z) + H{y) — 2H(x)H(y)) )
# (90X + 10)x — i + 90(2A — 1) -z - (H(2) + H(y) — 2H (2} H{y))

The parameter A is in the interval [0,1]. According to J. Melin [6] the divergence of
the righthand side f is

divf(z,y) = —2+90-(1~24)- (jyl - 6() + |z| - 6(y))-

A necessary condition for a closed orbit is if divf changes signs, so choose 0 < A < {.
Due to symmetry a closed orbit passes through the discontinuity points: (r,0), {0, -7},
(~r,0) and (0,r) where r > 0, see figure 1. The switching regions are {}y : v > 0,y <
0, :2<0,y<0,fh:2<0,y>0and 0y : > 0,y > 0 { the four quadrants).
We will now calculate the integrals I;, point by point.

We start with the discontinuity point 1 with the coordinates (o, yo)=(r, 0), and obtain

ca(x,y) = 90(1 — 2X) - jz| => co(zo, o) = 80(1 — 2A) - r
Y(z, y) =y = gradi(zo, o) = (0,1)

~z + (100 — 90A -
@) = ( (902~ 100)z ~ g;y ) > [ @ow) = ( (907~ 100)r )

iy ~z+ (100~ 90N) - _ —r

[ = ( _m(gomw)z—: ) = [ {70, w) = ( ~(90A + 10)r )
- 0

= fo(«’ﬂ‘o,yo) = ( *(%Ail{})r )"}'ﬂ’} * ( {1804\“90)7' ) ‘0 S(It S 1

and simplify this to f°(zo, o) = ( {30\ + 10)r — 90y (1 — Z)r )

this gives |{f°(zo, 10}, gradi(zo, w)}| = 10r(9A + 1 + 9a; (1 ~ 2)))
9(1 = 2))
A+ 1+ 9o (1 —27)

and finally the integral becomes I; =

We can in a similar way calculate the other three integrals and obtain

9(1 - 2))
9A+ 14 9ak(l — 27)

Ii= , where k=1,2,3,4and 0 < ar < 1.

Then the Floquet-exponents becomes

L1 : 9(1 — 22
z; ( )

OX + 1+ 9ap(l — 23)
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and the maximum respectively minimum of u are
_ 36(1 - 22)

Hmaz = =24 o3

36(1 — 2))
T(10 = 9A)
According to J. Melin [6] we have for A = 0.482544... ( this value of A implies the

period T = 0.114286...) infinitely many closed orbits. The chosen values of A and T
gives pu € [~0.056, 0.058] so the theorem does not tell us anything, which of course is

expected.

Exampel 2 (Giannakopoulos-Pliete [4]). Consider the system introduced by Gianna-
kopoulos-Pliete in 2001.
Y _{ —z+y+bsgaiz) 1
( 7 ) - ( —p-z+bs-sgn(z) ) where p > 4,b1 >0 and 0 < by < by
Tn the paper of J.Melin [6] we obtain divf(z,y) = —1 + b; - §(x) and the fact that it
exists a limit cycle, of this system, for this parameter range. According to symmetry,
a closed orbit passes through the following two discontinuity points: (0,r) and (0, ~r),
where r > by, see figure 2. The switching regions are {4 : 2 > 0 and 3 : £ < 0. The
discontinuity curve is represented by ¥(z,y) == x. Now we calculate the integrals I
and I ag we did in example 1 and the caleulation gives:
I = R T
T Tk + 2y by
and the Floquet-exponents are

H
]

when oy

= P when og = 1

,wherek=1,2and 0 < ap < 1,

3 1
~p_—1+_jrl(1'*b1“f“20‘151 +T——b1+2a’2b1)

and this gives
pmz~—l+—--£él-— when oy = o = 0
T(r — b))’
" Tir+b)

It is not a trivial problem to estimate the parameters r and T, but we can always
do this numerically. From a simulation we get: r = 30000, T° = 2 and 6; = 8000.
This gives u € [—0.579, —0.273] and this means that the limit cycle is asymptotically
stable and unique. The calculations can of course be repeated for other parameter
values. This result of course coincides with the result of Giannakopoulos-Pliete {4].

, when oq =ap = 1.

Exampel 3 {J.Meclin-A.Hultgren [7]). A resonant converter can, in the two dimen-
sional case, be modelled as

¥

. I 2
(T)z ,whereR>0,L>0,C>0az1d—L->E~.
¥ TRy - c™ 4

L
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The switching regions are

Q1$2+y2<13,y>9
M+ <idy<0
Q3!$2+y2>i3,y)0
Q2+ >2,y<0

and the discontinuity curves are represented by ¥;(z,y) = y and ¢a(z, ) = r*+y* -4
We have six discontinuity points symmetrically located at the z-axis and the circle,
see figure 3. The bifurcation parameters Uy and E ~ Up satisfies in this example
Up < i, and E ~ Uy > i,. The control parameters u; takes the values of u; = £ — U,
uy = Uy — &, ug = —Uy and uy = Up in their respectively switching regions ;. 1t is
shown in the paper of Melin-Hultgren [7] that this system has an unique limit cycle
in the special case R = 0. In fact there exists a limit cycle for R > 0, but we will not
show it in this paper. Instead we will show type of stability and uniqueness of the
limit cycle. The divergence of the righthand side f in sense of distribution theory is

Bvf@ 1) = B4 2 (B Uy= B B = 2)-80) ~ 22y - 6 + 1= ).

The divergence changes signs and therefore there is a necessary condition for existence
of limit cycles. Now just consider the two discontinuity points at the z-axis, then
divf(z,y) = —8 — &2 §(y) so the coefficients ¢;{z,y) are negative. If we just
consider the four discontinuity points at the circle we have divf(z,y) = -2 - 2E .|y
8(x® + y* — i2), so even in this case the coefficients ¢;(z, y) are negative. That means
that the integrals f, are negative and therefore the Floquet-exponents are negative

and a limit cycle of this type is asymptotically stable and unique.

5. SUMMARY

In this paper we have suggested an extension of the Floquet-exponent theory that
can be applied to many systems of ordinary differential equations with discontinuous
righthand sides. Our rnethod yields possibilities for estimating the maximum num-
ber of limit cycles in such systems and involves calculation with distributions. We
have excluded some difficult discontinuities from our framewoark but claim that most
systemns appearing in the applications can be analyzed by the method presented. We
analyzed examples that have appeared in the literature in the light of our results.
Qur first example was due to Branicky [1] and has strictly negative divergence in
classical sense. Yet, this system possess infinitely many closed orbits for a specified
parameter value. The divergence in distribution sense integrated over a closed orbit
in this system is an closed interval containing zero, which explains the possibility for
infinitely many closed orbits. We continue by the example of Giannakopoulos-Pliete
[4] and this example shows how extensive explicit calculations can be reduced con-
siderably using our new method. We end up with an example by Melin-Hultgren |7]
where explicit calculations of the trajectories is difficult to do and our method yields
information of the presence of a unique limit cycle.
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FIGURE 2. limit cycle ex.2
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IC, Ky, UDw0, w0, i3 i0u

FIGURE 3. limit cycle ex.3



