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Abstract— We apply the Fokker-Planck equation to
analyze the stochastic behavior of a 1-micron diameter
polystyrene bead trapped in water using an optical tweezer.
Due to thermal noise, given enough time, a trapped
particle will escape confinement from the trap. However,
at biological temperatures, for laser powers of greater than
approximately 5 milliwatts at the focus, the mean first exit
time in the lateral plane is extremely large, and unbounded
for most practical purposes. We show that the mean exit
time increases exponentially with laser power. Further-
more, for a trapped 9.6-micron diameter polystyrene bead,
we show that experimental mean passage times within
the linear trapping region are in close agreement with
theoretical calculations.

I. INTRODUCTION

The optical tweezer is a device that uses a focused
laser beam to trap and manipulate individual dielectric
particles in an aqueous medium. The laser beam is sent
through a high numerical aperture (highly converging)
microscope objective that is used for both trapping
and viewing particles of interest. Several milliwatts of
laser power at the focus can generate trapping forces
on the order of piconewtons, which is well suited for
biomolecular studies. Although biological molecules are
too small to be trapped at room temperature, a molecule
can be grasped once a trappable ‘handle’, such as a
polystyrene bead, is (biochemically) attached to that
molecule [1].

Fig. 1. Basic optical tweezer. A single laser beam is focused to a
diffraction-limited spot using a high numerical aperture microscope
objective. Dielectric particles are trapped near the laser focus.

Although optical tweezers have been used to trap
dielectric particles with diameters in the range of tens
of nanometers to tens of microns, strongest trapping is

expected for particles that are roughly the same size
as the laser wavelength [1], [2]. Since the most com-
monly used laser wavelength in biological experiments
is 1064 nm, this paper will investigate the trapping
behavior of polystyrene beads of diameter 1 µm. For
small enough displacements from the center of the trap
(up to approximately 200 nm) [3], the optical tweezer
can be modeled as a Hookeian spring, characterized by a
fixed trap-stiffness [4]. For larger displacements from the
center of the trap (up to the maximum trapping radius R
of approximately 675 nm), the optical tweezer behaves
like a nonlinear restoring spring [3]. led as a Hookeian
spring, characterized by a fixed trap-stiffness [4]. For
larger displacements from the center of the trap (up
to the maximum trapping radius R of approximately
675 nm), the optical tweezer behaves like a nonlinear
restoring spring [3].

The performance of an optical trap can be char-
acterized in several ways. Within the linear trapping
region, parameters such as trap stiffness and charac-
teristic frequency are commonly used, whereas within
the nonlinear (entire) trapping region, the maximum
trapping force is often used [4], [5], [6]. In this paper, we
will investigate first exit times, which tell us how long a
particle will remain within the optical trap. For a given
optical tweezer configuration, the first exit time is an
extremely useful measure of trapping capability because
it quantifies the time horizon during which experiments
can be conducted before trapped particles are lost;
although high-quality microscope objectives are capable
of handling laser power levels of up to approximately
500 mW at the focus, typical biological optical tweezer
experiments use much lower power levels; it is espe-
cially important to use lower power levels when studying
biological samples to avoid damaging them with heat,
which is known as ‘opticution’ [7]. Furthermore, in
applications in which the power from a single laser beam
is shared by many traps, the power available for each
trap can be very small; in this situation, it is useful to
understand and quantify the lowest power levels that are
capable of providing sufficiently strong traps.

In the remaining sections of this paper, we describe
the equation of motion of a spherical particle trapped
in an optical tweezer. We then apply the Fokker-Planck
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equation to investigate the probability distribution and
lateral mean first exit time of a trapped 1-µm diameter
polystyrene bead. We show that, for a 9.6-µm diameter
bead trapped within the linear trapping force region,
mean passage times according to experimental data are
in close agreement with theoretical calculations.

II. MODELING

A. Equation of Motion

The equation of motion along the lateral x-axis for a
trapped bead of mass m and lateral position x is given
by

mẍ = FT (xr) + FD(ẋ) + FL(t), (1)

where FT (·) is the optical trapping force, FD(·) is the
viscous drag, and FL(t) is a Langevin (random thermal)
disturbance force. The relative position xr is defined as

xr := x − xT , (2)

where xT is the trap (laser focus) position. For relative
displacements within the trapping radius R, the trap can
be modeled as a cubic restoring spring:

FT =

{
α3x

3
r − α1xr for |xr| < R =

√
α1
α3

0 otherwise.
(3)

Figure 2 shows a typical cubic trapping force model
in which α3 = 22 pN/µm3, α1 = 10 pN/µm, and
R = 0.674 µm. The nonlinear spring constants α1

and α3 were obtained by fitting a cubic polynomial to
experimental results published by Simmons et al. [3].
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Fig. 2. Cubic trapping force model for a 1-µm diameter polystyrene
bead, based on experimental results from [3], in which laser power is
approximately 100 mW at the focus (ρ = 1).

It should be mentioned that an optical tweezer traps
particles in not only one, but three dimensions (Fig-
ure 1). For a well-aligned trap, the trapping profile
is cylindrically symmetric about the axial z direction
in which laser light propagates. As a result, ignoring
polarization effects, the optical trapping force along the
lateral y axis is identical to that along the lateral x
axis. However, the trapping force in the x direction is
not invariant with respect to motion along the y axis

[6]. Therefore, when considering motion in a lateral
plane, it is convenient to use polar coordinates instead
of Cartesian coordinates. In the remainder of this paper,
we will interpret the spatial coordinate x as representing
radial position in the lateral plane from the center of the
trap.

The trapping force of an optical tweezer is propor-
tional to the laser power [8]. In the remainder of this
paper, we will denote the laser power by the factor
ρ > 0, which is defined relative to the power level used
in [3]. In particular, ρ = 1 corresponds to approximately
100 mW at the focus. The trapping force also increases
with numerical aperture, so the force model (3), and
therefore, the material in this paper, are quantitatively
accurate for a 1.25 NA (numerical aperture) microscope
objective, which was used in [3]. However, as shown in
[9], the trapping force for a spherical particle always has
a profile that qualitatively matches (3). Therefore, our
results can be extended qualitatively to higher numerical
apertures (for example, NA = 1.30 or 1.40), if necessary.

The drag force can be expressed as

FD = −βẋ, (4)

where β > 0 is the viscous damping factor given by
Stoke’s equation, β = 6πηrb, in which rb is the bead
radius and η is the fluid viscosity. For a 1-µm bead
trapped in water at room temperature, β ≈ 0.01 pNs/µm.
The power fraction ρ, (1), (3), and (4) can be combined
to obtain the equation of motion for a trapped particle:

mẍ = ρψ(xr)(α3x
3
r − α1xr) − βẋ + FL(t), (5)

in which

ψ(xr) :=
{

1 for |xr| < R
0 otherwise.

(6)

Along one axis, the Langevin force has an average
value of zero and a constant, one-sided power spectrum
(i.e., ideal white noise force) given by S+

L (f) = 4βkBT ,
where kB is Boltzmann’s constant and T is absolute
temperature [5]. Correspondingly, denoting the Dirac
delta function by δ(t), the covariance rL(t) of the radial
Langevin force is given by

rL(t) = RLδ(t) = 2βkBTδ(t), (7)

since RL = 1
2SL, in magnitude [10]. At biological

temperatures, kBT = 4 × 10−3 pNµm [5]. Hence, for
a 1-µm polystyrene bead trapped at room temperature,
RL ≈ 8 × 10−5 µm2.

In practice, the mass of the trapped particle is small
enough that it can be ignored. For example, for a 1-µm
diameter polystyrene bead, m ≈ 5.5 × 10−10 mg, and
the characteristic frequency (bandwidth) ωc of the trap
(with the force profile shown in Figure 2) is given by
ωc ≤ α1

β = 1 krad/s. Therefore, (5) can be simplified to
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obtain the noninertial equation of motion for a trapped
particle at low Reynolds’ number:

0 = ρψ(xr)(α3x
3
r − α1xr) − βẋ + FL(t). (8)

B. State Model

By defining trap position as the control input,
u := xT , we can express (8) by the state model:

ẋ = ρ
ψ(x − u)

β

[
α3(x − u)3 − α1(x − u)

]
+

FL

β
y = x. (9)

Therefore, the open loop differential equation is given
by

ẋ = ρ
ψ(x)

β

[
α3x

3 − α1x
]
+

FL

β
. (10)

Because it does not account for angular position θ, the
state form (9) is not a complete state space description.
For the purposes of this paper, however, we are not
concerned with angular position. Comparing (10) with
the standard state form from [10],

ẋ = f(x, t) + σ(x, t)e(t), (11)

in which e(t) is white noise with covariance re(τ) =
δ(τ), we see that f(x, t) = f(x) and σ(x, t) = σ are
given by

f(x) = ρ
ψ(x)

β

[
α3x

3 − α1x
]

(12)

σ =

√
2kBT

β
. (13)

For a 1-µm bead trapped in water at room temperature,
σ2 = 0.8 µm2.

C. Stochastic Differential Equation

We can express (9) as a stochastic differential equa-
tion:

dx = ρ
ψ(x − u)

β

[
α3(x − u)3 − α1(x − u)

]
dt

+
FL

β
dt, (14)

which, in the open loop case, simplifies as:

dx = ρ
ψ(x)

β

[
α3x

3 − α1x
]
dt +

FL

β
dt. (15)

Comparing with the standard state form,

dx = f(x, t)dt + σ(x, t)dw, (16)

in which w is a Wiener process with incremental covari-
ance dt, we see that f(x) and σ are given by (12) and
(13).

III. PROBABILITY DISTRIBUTION

Defining p = p(x, t; x0, t0) as the probability of being
in state x at time t given that the particle was (initially)
in state x0 at time t0, the conditional distribution p
satisfies the Fokker-Planck equation (also known as the
Kolmogorov forward equation) given by

∂p

∂t
= − ∂

∂x
(pf) +

1
2

∂2

∂x2
(σ2p), (17)

where f and σ are defined according to the stochastic
differential equation (16) [10]. The initial condition is
specified as p(x, t0; x0, t0) = δ(x − x0).

A. Transient Distribution

The time-dependent Fokker-Planck equation (17) can
be solved numerically, but we have not included the
solution in this paper. (Solution procedures can be found
in most texts on partial differential equations.)

B. Steady State Distribution

By analyzing the probability distribution in steady-
state, we can classify the nature of boundaries for a
trapped particle. Substituting ∂p

∂t = 0 into (17), we
obtain:

∂

∂x
(pf) =

1
2

∂2

∂x2
(σ2p). (18)

This can be integrated twice to obtain

ln
(

p(x)
p(0)

)
=

2
σ2

∫ x

0

f(x)dx, (19)

assuming f(0) = 0 and
[

dp
dx

]
x=0

= 0. The first
assumption is satisfied according to (3), and we will
subsequently see that the second assumption also holds.
Denoting the integral in (19) as I(x), we can use the
expression for f(x) from (12) to show that

I(x) =

⎧⎨
⎩

ρ x2

4β (α3x
2 − 2α1) for |x| < R =

√
α1
α3

−ρ
α2

1
4βα3

for |x| ≥ R,
(20)

which is shown graphically in the top plot of Figure 3
for ρ = 1 (100 mW) and ρ = 0.1 (10 mW). From (19),
we see that

p(x) = p(0)e
2

σ2 I(x), (21)

which, combined with (20) and (13) gives

p(x) =

⎧⎨
⎩ p(0)eρ x2

4kBT (α3x2−2α1) for |x| < R

p(0)e−ρ
α2
1

4kBT α3 for |x| ≥ R,
(22)

which is shown graphically in the bottom plot of Fig-
ure 3.

Because the integral I(x) is not negatively unbounded
outside of the trapping radius R, the probability density
p(x) has a nonzero value for all positions outside of the
trapping radius. As a result, if we attempt to normalize
p(x) by imposing the condition,

∫ ∞
−∞ p(x)dx = 1, we
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Fig. 3. Normalized steady state probability distribution calculations
for ρ = 1 and ρ = 0.1, assuming finite absorbing boundaries at
x = ±50 µm. In the bottom plot, the nonzero tails of the probability
distributions are too small to be seen.

find that p(x) is zero for all x. In other words, in
the absence of finite absorbing boundaries, the particle
has a finite probability of being anywhere in the radial
x-direction (i.e., in the lateral plane), which implies
that, given enough time, a trapped particle will escape
confinement by the trap and move in a Brownian fashion.
In terms of classification of boundary conditions, this
implies that a trapped particle has accessible boundaries
at all locations in the lateral plane [11].

In practice, the fluid cell which contains trapped parti-
cles has lateral dimension of approximately 20 mm and
the field of view is typically about 100 µm. Therefore,
we can impose absorbing boundaries at x = ±50 µm,
which has been done for the distributions shown in
Figure 3.

IV. FIRST EXIT TIME

In Section III-B, we showed that, in theory, given
enough time, a trapped particle will travel beyond the
trapping radius R and escape confinement of the trap
[11]. Therefore, in the presence of accessible boundaries,
we can define the first exit time T1 as the random
variable

T1 = T1(x0,−R,R) (23)

:= sup{t|X(τ) ∈ (−R,R), 0 ≤ τ ≤ t},
where X(τ) is the random variable corresponding to
particle position x with initial condition X(0) = x0

[11]. In theory, it is possible for a particle to escape
from the trap and wander back into it as a result of
Brownian motion. Therefore, the ‘exit times’ described
in this paper are not synonymous with ‘escape times’;
according to our model, a particle never truly escapes
from the trap unless it hits a finite absorbing boundary.

A. First Exit Time Distribution

If we define g = g(t; x0,−R,R) as the probability
density function of the first exit time T1(x0,−R,R),
we can use results from [11] to show that the Laplace

transform G = G(s; x0,−R,R) is given by the expres-
sion

G(s; x0,−R,R) =

ε2(x0)[ε1(R) − ε2(−R)] − ε1(x0)[ε2(R) − ε2(−R)]
ε1(R)ε2(−R) − ε1(−R)ε2(R)

,

(24)
where ε1(x) and ε2(x) are any two linearly independent
solutions of the ordinary differential equation

kBT

β

d2ε

dx2
+ ρ

(α3x
3 − α1x)
β

dε

dx
− sε = 0. (25)

Obtaining the above density function g of the first exit
time requires tedious calculations that are unnecessary
for the purposes of this paper. To simplify our analysis,
we will investigate the mean first exit time, which can
be obtained using much simpler calculations.

B. Mean Exit Time

For our system, the mean first exit time m1 := E{T1}
in the radial x direction is given by the linear second
order ordinary differential equation

1
2
σ2 d2m1

dx2
0

+ f(x0)
dm1

dx0
= −1, (26)

with two-point boundary conditions, m1(−R) =
m1(R) = 0 [12]. Substituting f and σ from (12) and
(13), we obtain:

kBT

β

d2m1

dx2
0

+ ρ
(α3x

3
0 − α1x0)

β

dm1

dx0
+ 1 = 0, (27)

which can be solved numerically. The mean exit time
for ρ = 1 (100 mW) is bounded, but extremely large,
with a maximum in the vicinity of over 10100 trillion
years for x0 = 0. This length of time is unbounded for
all practical purposes! As shown in Figure 4, reducing
the power to ρ = 0.01 (1 mW) drastically reduces the
mean exit time such that its maximum is approximately
2.51 s at x0 = 0. For comparison, the mean exit time
for ρ = 0 is 0.57 s, which corresponds to free diffusion
of an untrapped particle due to Brownian motion.
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Fig. 4. Mean exit time for ρ = 0.01 (1 mW). Maximum is m1(0) =
2.51 s.

Figure 5 shows the maximum mean exit time m1(0)
as a function of the laser power factor ρ for ρ ≤ 0.1
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(10 mW). The solid line pertains to a 1-µm diameter
polystyrene bead in water at biological temperature
(σ2 = 0.8 µm2; β = 0.01 pNs/µm). For comparison,
three other combinations of σ2 and β have also been
plotted. The maximum mean exit time (solid line) for
ρ = 0.05 (5 mW) is 3.63 × 104 s, or about 10 hours,
which is more than sufficient for present-day optical
tweezer experiments. (Due to factors such as drift and
cross-contamination, typical biological experiments are
conducted for not more than a few minutes at a stretch
[5], [13]).
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Fig. 5. Maximum mean exit time as a function of laser power factor.
The mean exit time increases exponentially with laser power.

According to Figure 5, the maximum mean exit time
for ρ = 0 appears to be directly proportional to σ2. That
is, with reference to (13),

[m1(0)]ρ=0 ∝ σ2 ∝ kBT

β
. (28)

Furthermore, for a given value of ρ, the rate of change
of the logarithm of the maximum mean exit time (with
respect to ρ) appears to be inversely proportional to σ2β.
That is, with reference to (13),[

d log m1(0)
dρ

]
ρ const.

∝ 1
σ2β

∝ 1
kBT

. (29)

C. Experimental Results

Verifying the theoretical mean exit time results from
Section IV-B is difficult for a number of reasons:

1) Typical position detection systems, such as pho-
todetector circuits, are often ineffective beyond
the linear trapping region. As a result, real-time
position detection at the outskirts of the trapping
radius usually requires an imaging system with
very high spatial and temporal resolution. Such
a system is not available in our laboratory.

2) Once a particle escapes the trap, it will often drift
away. To obtain enough measurements of the exit
time to make statistically meaningful statements,
we would require a system that automatically
captures particles and measures their exit times.

The alternative would be to manually trap and
measure mean exit times, but that is an inaccurate
and labor intensive process.

3) The lateral mean exit time calculations do not
account for the fact that the particle might escape
in the axial direction. A thorough experimental
verification of exit times would require an accurate
model of the axial trapping force, which is not
currently available.

However, we can compute the mean passage time for
particles within the linear region quite easily by detect-
ing zero crossings and subsequent excursions outside
of the radius r of interest. The mean passage time is
analogous to the mean exit time, but with R in (23)
replaced by r < R [11]. Figure 6 shows how the
maximum mean exit time can be calculated for a trapped
9.6-µm bead.
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x 
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r (
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)

Zero crossing 
Pertinent exit

Fig. 6. Calculation of maximum mean exit time from r = ±0.05 µm
for a 9.6-µm polystyrene bead. Green circles depict pertinent zero
crossings; Red squares depict pertinent excursions outside of xr =
±0.05 µm. Experimental data was sampled at 10 kHz for a total of
30 seconds.

Figure 7 shows the calculated mean passage times for
a 9.6-µm diameter bead in a Phosphate-Buffered Saline
(PBS) solution, which is used to prevent beads from
clumping together. For comparison, theoretical values
for α1 = 1.81 pN/µm and β = 0.015 pNs/µm are
also shown. (We assume α3 = 0 within the linear
trapping region.) These stiffness and drag values were
obtained from a standard power spectrum calibration
[6]. Clearly, the theoretical and experimental values are
in close agreement. The slight discrepancies for low
and high values of r are most likely due to unmodeled
nonlinearities in the position detector response; further-
more, experimental mean passage times for low r are
artificially inflated due to quantization errors. Although
the experimental results in this section pertain to a bead
that is much larger than the 1-µm bead studied in the
previous sections, the results apply to beads of any size,
as long as they remain within the linear region. If we
considered the entire nonlinear trapping region, the cubic
model (3) would have to be re-scaled; it is unclear
how the nonlinear force model should be modified to
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accurately account for larger beads.
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Fig. 7. Maximum mean exit time within the linear region for a 9.6-µm
bead. Top plot shows measured mean exit time, including measured
standard deviation bounds (dashed lines); bottom plot shows number of
pertinent crossings outside of the radius of interest. Theoretical values
assume α = 1.81 pN/µm and β = 0.015 pNs/µm; experimental data
was sampled at 10 kHz for a total of 30 seconds.

V. CONCLUSION

In this paper, we applied the Fokker-Planck equation
to analyze the stochastic behavior of a spherical particle
trapped in an optical tweezer. In theory, given enough
time, a trapped particle will escape confinement from
the trap. We calculated values for a 1-µm diameter
polystyrene bead trapped in water at biological tem-
perature; in particular, for laser powers of greater than
approximately 5 mW at the focus, the mean first escape
time is extremely large, and unbounded for most prac-
tical purposes. With no laser power (i.e., in the absence
of an optical trap), the particle moves in a Brownian
manner, which has a maximum mean escape time in the
radial x direction of just under 0.6 s. We show that the
maximum mean exit time increases exponentially with
laser power. For a trapped 9.6-µm diameter polystyrene
bead, we show that experimental mean passage times
within the linear trapping region are in close agreement
with theoretical calculations.

As mentioned in Section II-A, the axial trapping
force directed toward the microscope objective (in the
z direction), will be weaker than the lateral trapping
force. Consequently, a trapped particle is more likely to
escape in the axial direction away from the microscope
objective (in the direction of laser light propagation) than
in any other direction. Therefore, if we consider all three
spatial dimensions, the actual mean escape times will
be less than that for just the lateral plane considered in
this paper. In the absence of an experimentally verified
trapping force model for the axial z direction, we
have not attempted to calculate 3-dimensional exit times
in this paper. Instead, we have assumed that trapped

particles have been stabilized in the axial z direction. In
practice, axial stabilization (within measurement error)
can be achieved using low-gain feedback with appropri-
ate sensors and actuators [3], [4].

By casting our system as a stochastic differential
equation and using a lateral nonlinear trapping force
model of an optical trap, we have developed a framework
for studying the stochastic behavior of trapped particles
in the lateral plane. This has enabled us to study the
mean first exit time, which is an extremely useful
measure of the trapping capability of an optical tweezer;
it enables system designers to understand and quantify
the limitations of using low power levels. Although our
(nonlinear) analysis applies specifically to (commonly
used) 1-µm diameter polystyrene beads trapped in water
using a 1.25 NA microscope objective, the methods
used in this paper are applicable to a wide variety of
optical tweezer systems, once appropriate adjustments
have been made to account for different trapping force
profiles (FT ), particle sizes (rb), fluid properties (β), and
temperature (T ). We believe that the results of this paper
will be useful for designers of optical tweezer systems
and experiments.
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