LUND UNIVERSITY

Omola
An Object-Oriented Language for Model Representation

Andersson, Mats

1990

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Andersson, M. (1990). Omola: An Object-Oriented Language for Model Representation. [Licentiate Thesis,
Department of Automatic Control]. Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/8c1203f1-9f3b-40bb-a534-9ce84deff02f

Omola

An Object-Oriented Language
for Model Representation

Mats Andersson

Lund 1990

Department of Automatic Control

Lund Institute of Technology
P.O. Box 118
S-221 00 Lund Sweden

Document name
Licentiate Thesis

Date of issue

May 1990

Document Number

CODEN:LUTFD2/(TFRT-3208)/1-102/(1990)

Supervisor

Author(s)
Sven Erik Mattsson and Karl Johan Astrém

Mats Andersson

Sponsoring organisation
The National Swedish Board of Technical Develop-
ment (STU contracts 87-2503, 87-2425)

Title and subtitle
Omola — An Object-Oriented Language for Model Representation

Abstract

Models are essential in all kinds of control and process engineering. Computer based tools for control and
process engineering are available but different tools do not communicate easily. This thesis presents a new
language for structured dynamic models. The language, called Omola, is inteded to function as a common
representation in an integrated environment of cooperating control engineering tools.

The thesis discusses the basic requirements on a new modeling languages and it presents the fundamental
model structuring concepts and the design of Omola. Some basic algorithms for checking model consistency
are outlined. Finally, as an example, an Omola model of a chemical reactor is presented.

Models can be decomposed into a multi-level hierarchy of submodels with abstract interfaces based on termi-
nals and parameters. Models may have multiple descriptions of behaviour and terminals may be structured
to model physical interaction. The framework for describing model behaviour is based on differential and

algebraic equations but also more special descritions of behaviour are considered.

Omola is based on ideas from object-oriented programming. Models are represented as classes with attributes.
Inheritance and hierarchical submodel decomposition improves model structure and facilitates reuse of models.
The language is designed to be general and extendible in order to represent future, yet unpredicted, model

representation concepts.

Key words
Computer Aided Control Engineering, object-oriented, modeling language, simulation language

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN

Language Number of pages Recipient’s notes

English 102

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,
5-221 03 Lund, Sweden, Telex: 33248 lubbis lund.

Table of Contents

Preface . 3
Acknowledgements 3
1. Introduction 4
2. Languages for Dynamic Models and Simulation . 8
2.1 Simulation languages 9
2.2 Discrete event simulation 11
3. Elements of Structured Models 13
3.1 Abstraction beats complexity 13
3.2 Basic model components 17
3.3 The mathematical framework 22
3.4 Other modeling concepts 24
4. The Object-Oriented Paradigm 25
4.1 The essence of object-oriented programming 25
4.2 Object-oriented programming languages 29
4.3 Object-oriented databases and environments 31
4.4 Object-oriented modeling 33
5. Omola 00000034
5.1 Some Omola examples 34
5.2 Basic Omola 1
5.3 Model representation in Omola S 143
5.4 Discussion — representation of equations and connections . 50
5.5 Interpretation of Omola bl
6. Model Operations b3
6.1 Variable and parameter expressions b4
6.2 Derivation of variable values 57
6.3 Instantiation of Omola classes. 60
6.4 Simulation 61
7. An Example A i
7.1 The Process and its model O 1
7.2 A transfer function model representation 68

Q

. Conclusions

8.1 Future work

. References

Syntax Rules

. Data Types and Model Classes . .

B.1 Omola Types
B.2 Omola Model Classes

. Algorithms

. Tank Reactor Example
D.1 The Reactor System and its Submodels

D.2 Standard Component Models .
D.3 Terminals

71
72

76
81

85
85
86

88

92
92
96
98

Preface

This thesis describes the design of a new language. The purpose of this
and every other language is two-fold: it is a framework for thoughts and
it is a means of communication. In this case the language is designed to
support our concepts of model representation in control engineering and
to provide the means of communicating these ideas. To be more concrete,
the language is designed as a new simulation language for continuous time
systems with the ultimate goal that the language should be useful as a
common representation in an environment of cooperating tools for system
design. The design of a language with as wide ambitions as these is not
a one man’s work. In this case, the work has evolved during continuous
discussions within the CACE (Computer Aided Control Engineering)
group but it should still be viewed as a sketch which may be revised
number of times before it reaches steady state.

This is an interdisciplinary work involving areas in control engineer-
ing and computer science, especially computer languages. The reader is
assumed to have some basic knowledge in system and control engineering
methodology and in programming methodology.

A cknowledgements

I would like to thank Professor Karl Johan Astrom for initiating the
project and for providing strong support and encouragement. I am also
very grateful to my advisor Sven Erik Mattsson for his creative criticism
and patience with my stubborness. A language is of little use if it has
only a single user; Bernt Nilsson used Omola in his licentiate thesis, so
in this case we are at least two users. I am very grateful to him for his
valuable suggestions and for our creative discussions. Other members
of the CACE group I would like to thank are Tomas Schénthal and
Dag Briick for his help with the syntax specification and everything else.
Finally I would like to thank Professor Bjorn Wittenmark for valuable
comments on the manuscript and Leif Andersson for providing excellent
computer support and TEX type-setting.

The financial support has been provided by the National Swedish
Board of Technical Development (STU). The work has been carried out
under contracts 87-2503 and 87-2425.

1. Introduction

This thesis proposes a new language for representing models of dynamic
systems. The language is called Omola and it is based on ideas from
object-oriented programming. The name is short for Object-oriented
MOdeling LAnguage.

Omola is one of the outcomes from a larger project in computer aided
control engineering — CACE. In this project it was realized that models
are playing an essential role in engineering and in particular in the design
of control systems. Most simulation languages and model representations
used in various design tools are too specialized and unflexible to be used
for general modeling. Omola has been designed to overcome some of
these deficiencies.

In this introduction we will identify the reasons why a new modeling
language is needed and then try to define the requirements of such a
language.

An integrated CACE environment

One of the main goals of the CACE project is to design an integrated
environment of cooperative tools supporting the various stages in process
and control system design. We are not there yet, but Omola contributes
as a common ground, or a core model representation, around which the
tools may be arranged. The core model representation serves as a com-
mon database and a communication channel between the tools. In a
sense, Omola is designed to be the Interlingua, or Esperanto, of model-
ing languages.

A CACE environment cannot be viewed as a single piece of software
designed from a specification based on current knowledge about control
design. Control systems design is a very inhomogeneous and fluctuating
area. Different persons prefer different techniques and new methods are
developed all the time. An environment for CACE must therefore be
very flexible and adaptable to new tools and techniques. We may view a
CACE environment as a collection of, more or less self-sufficient, tools.

Figure 1.1 shows a graphical view of a typical CACE environment.
In the center there is the core model representation — a database* of pro-

USER INTERFACE

MODEL SYMBOLIC
DATABASE TOOLS

SIMULATION
TOOLS

Figure 1.1 An integrated CACE environment

cess models, control systems, etc. The use of a database in a CACE en-
vironment is discussed in [Taylor et al., 1989] and [Tan and Maciejowski,
1989]. The database may include all kinds of data used in control systems
design, such as control specifications, measured data, simulation results,
etc. A number of tools are configured around the model database. One of
the tools is an interactive user interface to manipulate and examine the
models. Other tools are devoted to simulation, numeric computations
and algebraic manipulation of mathematical expressions. In addition to
a basic set of rather general tools there may be additional layers of more
specialized tools devoted to particular areas of applications. The role
that Omola plays in the CACE environment is that of being a textual
representation of the core model database. In the earlier phases of the
CACE project it was not recognized that a new language was needed.
Model representation was discussed in terms of concepts and data struc-
tures rather than in language terms. Omola was actually invented as a
tool for thinking about and discussing model structuring concepts but
its potential as a general modeling language was soon discovered.

Requirements on a new modeling language

Many modeling languages in use today, have their origins in the seventies
or even earlier. Most of these languages have poor structuring facilities
and are not easily integrated within an interactive modeling environment.
Also, most modeling languages are devoted to specific tasks, for example

* The word ‘database’ should here be interpreted as a general source of information
and not necessarily as proper database manager

simulation, and the models are represented in a way that is special for
the particular task. This makes it difficult to use the models for other
purposes.

In a project studying new concepts for model representation [Matts-
son, 1989a], a number of important properties of a new modeling language
have been identified:

e The language should support a number of mathematical and logical
frameworks for representing model behaviour. For example, differen-
tial algebraic equations [Elmqvist, 1978] [Mattsson, 1989b], transfer
functions, state space descriptions, discrete events and qualitative
behaviour.

e It should include concepts for structuring of large models. At least,
it should support hierarchical submodel decomposition as in Dymola

[Elmgqvist, 1978].

e It should be modular in order to support reuse of parts of models in
other models.

e It should be possible to include “redundant” information in models
for the purpose of documentation and automatic consistency check.

e It should be generally useful as an input language for different con-
trol design tools and simulators. It should also be useful for model
documentation and as a standardized exchange language between
users and tools. That means, it must fit within an interactive CACE
environment.

e It should be useful for incremental model development and graphical
manipulations.

Object-oriented modeling

Object-oriented programming has been an increasingly popular program-
ming methodology. Many ideas and concepts of object-oriented program-
ming applies to representation of dynamic models as well [Astrém and
Kreutzer, 1986]. We started to investigate the use of object-oriented
concepts at an early stage in the CACE project and when Omola was
introduced it was clear that the language had to be object-oriented.
The concept of object-oriented modeling was introduced in [Nilsson,
1989] which used Omola to model a fairly large chemical plant. The
aim of this study was to investigate how an object-oriented approach

can improve the modeling methodology of chemical processes in order to
facilitate reuse of models.

Object-oriented modeling is not a change of paradigm, but rather,
it enhances the notion of structured modeling that has been around for
a couple of decades. In order to get more users, especially in industry, to
adopt the new techniques of modeling better tools are needed. We need
tools to investigate large system models and display them from different
perspectives. We also need tools that help the user to detect possible
inconsistencies and errors in models. Expert system techniques for design
support and intelligent help systems are developing, but they need the
firm ground of a formal model representation in order to be applicable.
Further, the traditional tools used in engineering design has to be adapted
to the new modeling concepts, i.e., they have to be integrated into a
single, reasonably consistent, environment.

Outline of the thesis

The thesis is organized as follows. Chapter 2 contains a short overview
of existing languages for modeling and simulation. The focus is mainly
on continuous time systems but also discrete event modeling is discussed
briefly. Chapter 3 introduces the basic concepts of model structuring.
It contains a general discussion on the importance of abstraction and a
presentation of the basic model components. A general introduction to
object-oriented programming and terminology is given in Chapter 4. The
main results are presented in Chapter 5, which gives the design of Omola,
and in Chapter 6 which discusses some operations on Omola models. An
example of a chemical reactor modeled in Omola is given in Chapter 7.
Finally, a concluding summary and some discussions on future work are
given in Chapter 8.

2. Languages for Dynamic
Models and Simulation

It is very common that computers are used for simulating the behaviour
of systems. The systems simulated can be of very different nature such as
mechanical, chemical or electrical systems. Also non-technical systems
like economical, ecological and sociological systems are often simulated
using computers.

All simulations are based on some kind of model which represents
some a priori knowledge we have about the system we want to study.
Simulation can be viewed as experiments on models. Models are usu-
ally based on a mathematical or logical framework such as differential
equations, difference equations or probabilities.

Early simulation programs were implemented directly in a general
purpose programming language like Fortran. In these simulations, the
models were represented implicitly in the program code. Usually, code
representing the actual model was mixed together with code for solving
the model equations and code for presenting the simulation results. Such
simulation programs are hard to maintain, unless they are trivially small.

The first step towards structured modeling and simulation is to sep-
arate the model descriptions from the simulation machinery including
solution algorithms and code for collecting and presenting the results.
This separation can to some extent be made by using the structuring
concepts, like functions and procedures, available in a general program-
ming language. Simulation systems, based on this concept, are often
written in Fortran and distributed as packages of subroutines.

A model typically describes parallel activities. For example, a set of
differential equations, describing a continuous time system, are valid at
all times. In order to solve the equations by a computer, the equations
have to be evaluated in sequence. If functions in an ordinary program-
ming language are used for representing such models, it is the responsi-
bility of the model designer to decide upon a proper order of evaluation.
However, more advanced simulation systems allow the user to specify
the equations in any order. Very often it is also possible to group sets
of equations together in modules. Such a simulation system is some-

times called equation oriented and it uses a special purpose simulation
or model language for defining models. Some equation oriented simula-
tion systems use a pre-processor that sorts the equations and translates
them into, for example, Fortran procedures which are then compiled and
linked in a standard way. Other systems translate the models directly
into executable code.

2.1 Simulation languages

We will here give a brief description of a few systems for continuous
simulation. A fairly complete listing of simulation systems available on
the market is given in [Simulation, 1988].

CSSL and derivatives

CSSL is an equation-oriented simulation language standardized by the
Society for Computer Simulation [SCS, 1967],[Korn and Wait 1978|.
There exists a number of simulation systems based on the CSSL defi-
nition. One of the most widely spread is ACSL (Advanced Continuous
Simulation Language) [ACSL, 1986].

A model in CSSL may contain a number of state equations and
auxiliary variable definitions. A state equation is an expression assigned
to a state derivative, while a variable definition is an assignment to a
non-derivated variable. A state derivative is indicated by a variable name
followed by an apostrophe. As an example, the following code models
a damped pendulum. It contains two state equations defining the first
and the second derivative of the angular displacement and two auxiliary
variables: damping and pi.

fi’ = fidot

fidot’ = -sin(2*pixfi) - damping
damping = 0.3%fidot

pi = 3.14

When several intermediate variables are used it is necessary to avoid
algebraic loops. That means it must be possible to sort the expressions
in an order such that each variable can be computed explicitly without
the need to solve implicit equations.

CSSL based systems are all based on Fortran and they translate
the models into Fortran code which is then linked together with the

procedures for integration etc. This makes it relatively easy to include
special purpose Fortran procedures in the models.

Simulators based on CSSL make a reasonably clear separation be-
tween model definitions and the simulation experiment setup. However,
in many cases, changes in the experimental conditions, like initial con-
ditions and step sizes, require recompilation of the model. For some
systems the the experimental conditions, presentation of results, etc.,
can be controlled interactively.

CSSL includes rudimentary model structuring concepts by the use
of language macros. A macro looks similar to a procedure and it has
a list of dummy arguments. When a model definition is translated, the
macros are expanded and the dummy variable names are replaced by
the actual ones. In this way the model structure is not preserved in the
actual simulation model which is a serious drawback.

Simnon

Simnon is an interactive, equation based, simulation system developed
at Department of Automatic Control in Lund [Elmqvist, 1975][Elmqvist
et al., 1990]. Simnon is not based on an ordinary programming language
but translates the models directly into executable simulation code. This
makes the turn-around time from changes in the model until its ready
for simulation much shorter. Commands for controlling the simulation
experiments can be entered interactively or they can be saved on files as
macros (command procedures).

Models can be decomposed into a one-level structure with modules,
called systems. Each system defines a number of input and output vari-
ables, state variables and state equations. A special superior system
defines the connections between the input and output variables of all the
other systems. Sampled (discrete) and continuous systems can be mixed.

Figure 2.1 shows a small example of continuous Simnon system with
one input and one output.

Dymola, LICS and Hibliz

Dymola is a modeling and simulation language with more advanced con-
cepts for model structuring [Elmqvist, 1978]. It allows models to be
divided into submodels to any depth. Interaction between submodels
is modeled by terminal variables which can be grouped into cuts and
connected with other cuts of similar structure.

10

CONTINUOUS SYSTEM proc

"Integrator with input saturation

INPUT u

OUTPUT y

STATE x

DER dx

upr=IF u<-0.1 THEN -0.1 ELSE IF u>0.1 THEN 0.1 ELSE u
dx=upr

y=Xx

END

Figure 2.1 Example of a Simnon system.

Dymola accepts state equations given on implicit form, i.e, a state
equation that is an equality relation between two expressions rather than
an assignment to a state derivative. Also general algebraic equations are
permitted.

LICS (Language for Implementation of Control Systems) [Elmqvist,
1985] has many concepts in common with Dymola. However, LICS is an
interactive environment for defining control systems. LICS is based on a
graphical representation of models and uses a computer with interactive
graphics capabilities. The concept of information zooming is important
in LICS. On the highest level, models are represented graphically as block
diagrams in which the user may pan and zoom. When he/she zooms into
a block it opens up and its internal structure becomes visible.

LICS was further developed into Hibliz (HIerarchical BLock dia-
grams with Information Zooming), a prototype simulator for dynamical
systems allowing continuous and discrete models [Elmqvist and Matts-

son, 1989].

2.2 Discrete event simulation

So far we have only discussed simulation systems for continuous time or
sampled data models. There is another, equally important, category of
simulation systems based on discrete event models. Discrete event models
appear in areas like queuing theory, communication, operating systems,
manufacturing systems and in sociological and ecological systems dealing
with populations of individuals.

11

Discrete event simulations are naturally object-oriented and the first
object-oriented programming language, namely Simula [Birtwistle et al.,
1973], was developed for the purpose of discrete event simulation. A
typical discrete event simulation models customers as objects. They are
created, they spend some time in the system interacting with other ob-
jects and service resources, they collect statistics and they may finally be
removed.

Simulation of discrete event systems involves sampling of the ex-
ecution of the discrete event model. Often discrete event models con-
tain non-deterministic elements represented by some statistic distribu-
tion function. Experiments on the model then involves sampling the
distribution function of the overall system. Such simulations are often
called Monte Carlo simulations. A comprehensive discussion on discrete
event simulation techniques and languages is given in [Kreutzer, 1986].

Combined discrete event and continuous time systems

Despite the fact that many systems are most naturally represented by
combined continuous time and discrete event models, the two ways of
modeling have evolved in two separated communities. Discrete event
models and simulation are not so common in control engineering and,
therefore, in this report we are mostly considering continuous time and
sampled data models. However, we do not commit ourselves to only
represent continuous time models.

Some examples of simulation system allowing combined discrete
event and continuous models are Simscript II.5 [Fayek et al. 1987],
GASP-1V [Pritsker and Hurst, 1973]. G2 [Moore, 1987] combines rule-
based, continuous and discrete models with a graphical presentation. The
numerical problems of combined simulation are treated in [Cellier, 1979].

12

3. Elements of Structured

Models

This chapter is a detailed description of our conception of model struc-
turing. We will identify the basic concepts of model representation and
we will try to give them a well defined meaning. This chapter serves also
as a motivation for the design of the Omola language.

The first section is a general discussion about the importance of using
abstraction and decomposition in model representation. Then the basic
building blocks, called components, of structured models are presented.
The next section talks about the mathematical framework needed to rep-
resent model behaviour. Finally, some modeling concepts are presented
that are not indispensable but might be considered in future develop-
ments of the project.

3.1 Abstraction beats complexity

Abstraction is the standard way for humans to understand and to operate
complex systems. For example, in order to use a television set, one
does not have to know how it is constructed inside. This is because the
TV designer has provided us with an abstract interface. In this case it
consists of a number of control buttons and a users manual describing
how they are used. The designer of the TV set, or somebody who is
repairing it, must have a more detailed understanding of its internal
structure. However, a TV set might be constructed from basic building
blocks like integrated circuits. In order to use an integrated circuit it
is not necessary to know how it is constructed internally because the
designer of the integrated circuit has provided an abstract description,
containing only the minimal amount of information needed to use it.
From this examples we can understand that different people, designers
and operators of complex systems, work on different levels of abstraction.
In particular, if many people are involved in the design of a large system,
abstraction is necessary since no single person can know the details of
the whole system.

13

Abstraction in programming

The evolution of computer programming languages is a movement to-
wards higher levels of abstraction. The early programming languages
like Fortran and Lisp abstract away most of the details of the computer
hardware and make it possible for the programmer to create new pro-
cedural or functional abstractions. A function or a procedure definition
is an abstract interface to an algorithm. Structured programming was
developed as a programming methodology based procedural decomposi-
tion of the program. More recent programming methodologies focus on
data abstraction and new programming languages with better support
for this have been developed. Pascal is an example of this generation of
programming languages.

Object-oriented programming is the latest trend in programming
methodology. Object-oriented programming is based on abstractions,
called objects, containing data as well as procedures. Object-oriented
programming will be discussed in more detail in the next chapter.

An interesting fact in the history of programming languages is that
Lisp, which was one of the first high level languages, has survived and
is still used for advanced programming, especially by the AI commu-
nity. One reason for this is probably that Lisp provides good support
for creating abstractions, not only for data and procedures but also lan-
guage abstractions. This means that it is possible to define new, special
purpose, high level, languages within Lisp.

Abstraction and modularity in modeling

A concept closely related to abstraction is decomposition. A system
description may, at any level of abstraction, be divided into functional
or structural blocks, sometimes called components or modules. A good
decomposition is characterized by loose coupling between the components
and strong cohesion within the components [Booch, 1983|.

Abstraction and modularity are as important in modeling as in pro-
gramming and other kinds of engineering. Especially when the model
becomes large, representing for example a complete chemical process or
a power plant. As an example, let us consider a typical chemical process
like the one modeled by [Nilsson, 1989]. First, the process can be di-
vided into three main functional parts: the preparation subprocess, the
reaction subprocess and the separation subprocess. Each one of these
functional blocks contains a number of physical components like pumps,

14

Figure 3.1 A multilevel hierarchy of models.

heat exchangers, valves, etc. Some of the components have complicated
internal structures and can be further decomposed into subcomponents.
It is also shown that some components can be decomposed into a ma-
chine model and a media model, thus separating the description of the
physical equipment from the description of the chemical reactions. This
kind of decomposition is based on the model designer’s mental picture
of what is going on in the system, rather than the physical appearance
of the system. One can recognize two kinds of decomposition principles:
functional decomposition and structural decomposition. These are two
complementary ways to view a system and they may sometimes conflict
and cause confusion. Which one is to prefer depends usually on the level
of abstraction. Functional modeling is discussed in [Lind, 1987] and [Ras-
mussen and Lind, 1981]. Models can be decomposed in many different
ways and there are no given rules of how it should be done. Some differ-
ent methods of decomposition and some directions are given in [Nilsson,
1989]. The most intuitive method is decomposition by physical compo-
nents. To make a good decomposition of a large model it requires quite
good understanding of it. Very often the first attempt is not so successful
but the model designer will get enough insight to make a new and better
decomposition. ‘

Modularization is a special case of decomposition. A module can be
viewed as a component intended to be reused. The component models
in the chemical process example can be treated as modules that can be
reused in other similar models. A properly decomposed system model,
with well defined abstraction interfaces, will not just help the model
designer and the model user to understand the model, but it will also

15

support reuse of components. Model reuse is important since it makes
it possible for a less knowledgeable user to develop new models in less
time.

Model subtyping

A model type is a definition of a the characteristics of a particular type
of system rather than one particular instance of a system. For example,
when a certain kind of valve is defined as a model type, a composite
model containing many instances of that type may be defined.

The type concept is general and useful. Everywhere in this report,
when we are talking about models and model components, we are actually
referring to model types and component types. A model instance is a
representation of a particular system at a certain moment in time. An
instance is needed when a model is going to be simulated, but it is less
general and may be created automatically from its type definition. Model
instantiation will be discussed further in Chapter 6. In the following
chapters, when the object-oriented terminology has been introduced, the
term class will sometimes be used for model type.

Once the type concept has been introduced it is natural to extend it
by introducing the notion of subtype. Suppose we have defined a model
type A and then want to define a new model type B which is identical to
A except for a few additional features. Then it would be convenient to
say that B is a subtype of A and then just give the additional attributes.
Figure 3.2 shows a hierarchy of models with some typical attributes. For
example, TankWithHeating is a subtype of Tank which is a subtype of
Vessel. It inherits one attribute from Tank and two attributes from
Vessel and it defines one local attribute.

Vessel

inlet
outlet

V isa
GasVessel Tank
volume area
is \{
TankWithHeating TankWithOverflow
heater maxLevel

Figure 3.2 Example of a model type hierarchy.

X

16

Subtyping is a method of abstraction which is different from decom-
position. There are cases in model design where it is not immediately
obvious if subtyping or composition is appropriate but typically the dis-
tinction is clear. For example, it is natural to say that a truck is a special
kind of motor vehicle but it is a bit odd to say that a truck is built from
a motor vehicle or having a motor vehicle as a component. In this case
subtyping should be used and the truck defined as a subtype of motor
vehicle. On the other hand, the truck is composed of four wheels, an
engine, etc. This is a typical example of decomposition where subtyping
would be inappropriate.

Proper use of subtyping in models will not just save code, but also
help users to understand the models more easily. Once a particular model
type is well understood, it is often easy to understand the subtypes as
well, in particular if they add few extra features. This will in its turn
lead to models that are easier to maintain. Also, when models are stored
in libraries, subtyping adds structure to the libraries and makes it easier
for a model designer to find what he needs.

3.2 Basic model components

We will now define the concepts and different kinds of components needed
to describe structure and behavior of dynamic systems in a modular
way. Some concepts are well known and tested in other simulation and

modeling languages while others are new results from the CACE project
[Mattsson and Andersson, 1989).

Models

The model is the main structural entity and the most important type
of module. A model has an interface and one, or many, descriptions of
behaviour. The interface defines how the model interacts with the envi-
ronment and the description of behaviour defines the internal behaviour
of the model. The environment of a model consists of other models and
the user. The model user should here be taken in a broad sense; it can
be the model designer who wants to reuse the model or it can be a tool,
for example a simulator.

The parts of a model describing its interaction with the environment
are called terminals and parameters. Terminals may be connected to
terminals of other models. A description of behaviour of a model is called

17

a realization. A model may also contain a number of internal variables
representing the state of the model.

Terminals, parameters, realizations and internal variables are all dif-
ferent model components. They are themselves abstractions and they will
be discussed in the following.

Model: Tank

parameters:
Area

realization:
Area dh In-0O
gt =n- ut

Out

Figure 3.3 A model with interface and realization.

Terminals

A terminal is a model component and a part of the model’s interface.
In its simplest form a terminal is a variable which is shared between the
model and its environment.

In models of physical systems, the terminals often represent physical
quantities. For example, in a tank model the flow of liquid into and out
from the tank are represented by two terminals. Terminals have values
and a number of other attributes, for example, the name of the quantity,
its measurement unit and the permitted range of the value. In most
modeling languages, this kind of extra information can only be added
informally as text comments to the model. If these terminal attributes
were added to the terminal descriptions, the modeling tool could use this
extra information for checking consistency when models are connected
together.

A terminal is transferring information into or out from a model. The
causality (input or output) should normally not be defined for terminals.
In an equation based framework, causality can be derived automatically
from the structure of the models and equations. In many cases the causal-
ity of a terminal is not a property of a particular model but depends on

18

how it is connected to other models. Models without defined causality
of the terminals are more general [Mattsson, 1989b]. However, in some
cases terminal causality is obvious, for example, the value from a mea-
suring device is always an output terminal. This fact may be added to
the terminal and it can be used for automatic consistency check.

Very often in physical models, interaction involves a group of quan-
tities. For example, consider a tank connected with a pipe. A pipe
connection may carry the quantities of mass flow rate, pressure and tem-
perature, and possibly also information about the media flowing through
the pipe. In this case, it is natural to group these quantities together in a
single terminal. Such a terminal will be called a record terminal and it is
a kind of structured terminal. Figure 3.4 shows a picture of two models
connected through record terminals. A terminal that is not structured
will be called a simple terminal. The components of a record terminal
can be simple terminals or other structured terminals.

PUMP TANK

OutPipe

InPipe
—lym|o

ol AR

Figure 3.4 Example of structured terminals.

There is a second type of structured terminal called vector terminal
that can be useful in some cases. A vector terminal is an array of identical
components that can be indexed by an integer. A vector terminal may,
for example, be used to represent a mixed flow of gases. The vector
components may then hold the partial pressure of the gas components.

Realizations

A realization is a model component representing behaviour. There are
different kinds of realizations based on different frameworks for behaviour
descriptions. A realization based on some logical or mathematical frame-
work is called a primitive realization since it does not depend on other
models. A realization defining behaviour in terms of other models is
called a structured realization. A model containing a structured realiza-
tion is called a structured model.

19

ControlSystem

Regulator

Process Y

T
—

-
]
=
M|

Figure 3.5 A structured model.

A structured realization has components called submodels and con-
nections. A submodel is an ordinary model used as a component. A
connection is a relation between two terminals. Structured realizations
form the basis for hierarchical model decomposition. One reason for
having the realization as an extra layer of abstraction between the model
and its behaviour, is that it will allow a model to have more than one
description of behaviour. Multiple realizations may represent different
versions of the model, for example, a simple version and a more refined
one. Of course, only one realization can be valid at a time, but it gives
the user of the model a possibility to choose. Multiple realizations can
also be used to represent different behaviours under different operating
conditions. Suppose a primitive model described by a set of equations,
most of which depend on some boolean condition, for example, if some
temperature is below or above some critical point. In this case, the model
might be more clear and easy to understand if the equations were sepa-
rated into two different realizations. The correct realization may then be
selected automatically depending on the boolean condition. An example
of a model with two realizations, one linear and the other non-linear, is
shown in Figure 3.6.

Connections

A connection is a relation between two terminals representing some kind
of interaction between models. Connections are components of struc-
tured realizations. A connection may involve terminals of submodels
and terminals of the model of which the realization is a component, in
any combination.

20

Tank
Equations:

Area % = InFlow - OutFlow

OutFlow = kv’ h
= 2
2 i
= TransferFunction: 3

OutFlow _ T

Inflow s+ T

Figure 8.6 A model with multiple realizations.

In an equation based modeling environment, a connection should be
interpreted as one or many equations between variables. We may call
this interpretation the semantics of the connection. The semantics of
a connection depends on the type of terminals involved. A connection
between two structured terminals should be interpreted as connections
between each one of the terminal components. A connection between two
simple terminals representing across quantities should render an equality
relation between the two quantities.

A tool for automatic consistency check of models may test that con-
nected terminals are compatible in structure and in attribute values. For
example, if terminals with defined quantity attributes are connected, the
attribute values have to be the same if the model should be correct.
Connection semantics is also discussed in [Mattsson, 1989c].

Parameters

Parameters are used by the model designer to make the model more
general so that a user can adapt the model to his particular need. A
parameter is part of the model’s interface and it is a variable that is
constant in time during simulation but may be changed by the model
user.

When many submodels with parameters are connected together the
resulting structured model will typically have too many parameters. Usu-
ally the parameters of the different submodels will not be independent
and there may be parameters of submodels that the model designer does
not want the user to change. For this reason, a concept for defining
parameter dependencies is needed. Such dependencies will be called pa-

21

rameter constraints. Parameter constraints can be used by the designer
of structured models to tie parameters of submodels to certain values and
to bring parameters of submodels “up to the surface”, i.e, to tie param-
eters of submodels to the value of parameters defined in the structured
model. If all parameters of submodels are either fixed to constant values
or bound to parameters of the supermodel, the user of the supermodel
may ignore its internal definition. This is totally in accordance with the
concept of abstraction.

Parameters may be used in at least two different ways. A simple
kind of use is a parameter that represents a time invariant property of a
model, such as the size of a tank, the maximum allowable control value,
etc. Another kind of parameter affects the structure of the model itself.
Such a parameter is called a structure parameter. A structure parameter
may, for example, define the dimension of a state vector or an equation.
The value of a structure parameter must be fixed before the model is
instantiated for simulation.

Internal variables

Simple terminals and parameters are two kinds of variables that have
been discussed so far. All other model variables are called internal vari-
ables or just variables. Internal variables represent the state of the model
and they are not part of the model’s interface, i.e., they can not be ac-
cessed from other models.

3.3 The mathematical framework

In order to define the behaviour of primitive models, some kind of math-
ematical framework i needed. In control engineering continuous systems
are most often described by ordinary differential equations (ODE) or dif-
ferential algebraic equations (DAE). Sampled data systems are described
by difference equations.

In case of linear systems, polynomial transfer functions and normal
linear state space forms are often used. These forms can be viewed as
special cases of DAE or ODE systems that can easily be transformed
into sets of differential equations. However, it is important that linear
models may be represented on their special forms since they are required
by some tools and they make certain analysis possible.

22

ODE and DAE models can be simulated and linear models can be
analyzed in various aspects. A more general form of models are described
by partial differential equations (PDE). It is not difficult to introduce a
representation of PDE models in our system but it is of little use since
there are very few general tools that can handle this kind of models.

Expressions and equations

An equation is a relation between two mathematical expressions. Expres-
sions are operations on model variables and their time derivatives. The
data types and operations needed to represent model behaviour are iden-
tical to those used in tools for numeric and symbolic algebra like Matlab
and Macsyma. Except for ordinary mathematical operations that are
available in most programming languages we need a derivative operator.
The independent variable is usually the time which is a global variable
available to all models.

All kinds of data like values of variables and expressions are of a
certain type. Model variables have a declared type and expressions and
equations must be type consistent in order to be legal. To represent
differential equations the only data type needed is real scalars. However,
in order to represent other kinds of model properties, integer, complex,
and string values are useful. Matrix and polynomial representations are
also convenient since they are often used in control engineering and they
are fundamental in numerical software like Matlab.

Model equations appear to be similar to assignments in imperative
languages like Matlab and Fortran. However, an equation describing the
behaviour of a continuous model has a meaning that is very different from
an assignment in an imperative language. A model equation represents
a fact about the model that is true at all times. The assignments in
an imperative language are evaluated in a well defined sequence and,
interpreted as equations, they are only valid directly after evaluation.
Model equations are evaluated in any order decided by the integration
algorithm in the simulator.

Sampled and discrete event models (see below) are more naturally
described by a sequence of assignments that are executed in sequence at
every sample instance.

23

3.4 Other modeling concepts

In the previous sections in this chapter we have discussed the basic con-
cepts for representing model structures. We have also identified the nec-
essary mathematical framework needed to describe model behaviour as
differential or difference equations. We will here give some ideas about
other things that could be useful to include in model representations.

Events and actions

There is a type of dynamic models that is not so common in control en-
gineering called discrete event dynamical systems. Discrete event models
represent systems where all state changes occur at specific instances in
time called events. The time instances are usually not known in ad-
vance. Many real systems show behaviour that is a combination of con-
tinuous time and discrete event dynamics. One example is an industrial
plant that is doing batch processing. Another example is “intelligent”,
or rule-based control, and supervisory control [Arzén, 1987]. This type
of systems and controllers are addressed as one of the future challenges
to control — the question of representation as well as the development
of a control methodology [Anon, 1987].

Petri nets [Peterson, 1981] is a formal way of representing discrete
event systems. In order to represent combined discrete event and contin-
uous models we have to introduce some new concepts describing when
an event will occur and how it affects the continuous and discrete states
of the system.

Model presentation

In an environment for interactive model design and simulation, models
are treated as objects defining some structure and behaviour. In a com-
puter using graphics and direct manipulation to access and manipulate
models, the model objects are presented on the screen as graphical ob-
jects. A structured model may be presented as a block diagram or a flow
sheet. Used as a submodel the same model may appear as named box or
an iconic picture.

The way of presenting itself is an important property that may be
included in the model descriptions.

24

4. The Object-Oriented
Paradigm

Object-oriented programming is a program structuring methodology that
has gained in popularity in the last few years. Object-oriented program-
ming claims to increase the programmer’s efficiency and facilitate reuse
of code.

An object is an entity containing data as well as behaviour. An
object-oriented program models the domain of discourse by a set of ob-
jects communicating by sending messages to each other. This is a pow-
erful concept for abstraction and decomposition which in many cases is
close to programmer’s view of the problem domain.

This chapter is devoted to object-oriented programming from a gen-
eral viewpoint. The important concepts and the characteristics of object-
oriented programs are explained. Then follows a short overview of a few
different object-oriented languages. Object-oriented database systems
and specification languages are covered briefly. Finally, as an introduc-
tion to the next chapter, the notion of object-oriented modeling is intro-
duced. A short introduction to object-oriented programming can also be

found in [Stefik and Bobrow, 1986].

4.1 The essence of object-oriented programming

It is not possible to give a single, clear, definition of object-oriented
programming. Instead, we will here describe object-oriented program-
ming by its characteristic features. These features act as a common
ground, and most of them are present in every object-oriented program.
In [Mayer, 1988] these characteristic concepts are presented as the “seven
steps towards object-oriented happiness”. The steps are:

1. Object-based modular structure is used, which means that systems
are modularized on the basis of their data structures rather than on
the basis of their functional behaviour.

2. Data abstraction is used. The data of an object is not directly acces-
sible for others. Rather, data is manipulated and accessed through

25

an abstract interface of access procedures. This means that the ac-
tual representation of the internal data is hidden for other objects.

3. Memory management is done automatically. Fully automatic mem-
ory management means that memory space is reclaimed automat-
ically by the system when it is no longer needed, i.e., when there
is no other object referring to the object at the particular location.
A garbage collector, which may decrease the run-time preformance
substantially, is needed for fully automatic memory management. A
semi automatic approach to memory management is when the ap-
plication explicitly calls a procedure deallocating objects that are no
longer needed.

4. Classes are used to describe objects. A class is a definition of an
abstract data type. It defines the representation of the data of all
objects of that type, and it defines the access functions, i.e., the
abstract interface of the objects.

5. Inheritance of attributes may take place between classes or objects.
This means that one class may inherit functionality from another
class, called the superclass.

6. Polymorphism and dynamic binding may be used. Polymorphism
means that type declared variables may take values of the declared
type or of any subtype. Dynamic binding means that the code that
gets executed by a function call depends on the actual type of the
argument values.

7. Multiple inheritance is possible. This means that a class may inherit
from more than one superclass.

A programming languages that supports most of these seven con-
cepts may be called an object-oriented language. Some of the most im-
portant object-oriented languages do not support multiple inheritance
and there are examples of class-less languages that still are object-orien-
ted. In many cases it is also possible to adopt an object-oriented style of
programming in languages that are not considered to be object-oriented.

The real nature of object-oriented programming and the question
of what is and what is not object-oriented is under much debate. This
is mainly because object-oriented programming is a relatively new and
a very “hot” area. Object-oriented programming is also very much a
“style” rather than a well defined methodology.

Some of the important concepts of object-oriented programming
mentioned in the seven steps above, are discussed in more detail in the

26

following.

Objects

The most basic concept in object-oriented programming is, of course,
the object. An object contains data and it has some means to access
or manipulate that data. Objects can be created, they can respond to
stimuli from the environment and they can be terminated when they are
no longer needed. An object has a unique identity but its state may
change throughout its life-time.

A function that is associated with with a certain type of object and
has access the internal state of the object is called a method. Methods
are used to query the object about its current state, to change its state
and to carry out various actions. Different objects may have the same
methods but with different implementations. For example, consider two
objects representing a circle and a rectangle. Both objects have a Draw
method and a Move method. The Move methods may have the same
implementation, changing the current position of the objects, while the
Draw methods, causing the objects to be displayed on the screen, are
different.

Calling a method of an object is sometimes viewed as a message is
sent to the object. Object interaction is often called message passing.
The message passing paradigm is sometimes emphasized by the syntax
of the language. For example, suppose we have the object Rectangle
and the integer variables x and y and want to evoke the Move method.
In Flavors this would be coded as:

(send Rectangle ’Move x y)
while in Simula or C++ it looks more like an ordinary function call:
Rectangle.Move(x,y);

No matter whether the message passing metaphor is emphasized or not,
it is the recipient object that decides which procedure to call in response.
Just like functions, many methods return a result value to the sender.
Every method is implemented as a function that has the exclusive right to
access the object data. It is the responsibility of the function to leave the
object in a consistent state. From a puritanically object-oriented view
there should be no other way to access an object attribute but calling
one of its methods.

Objects correspond closely to the way most people view the world.
In order to comprehend the world around us, we like to view it as a

27

number of separate entities with limited interaction. Every entity has its
current state which evolves in time due to interaction with other entities.
It is relatively easy to model real world entities as objects. It is also not
difficult to realize how more abstract entities of a real or an imaginary
world can be represented as objects.

Classes

The structure of any object in a system is described by its class. A class
is an object type definition. It can also be viewed as an implementation
of an abstract data type. In comparison with a traditional programming
language like Pascal, a class corresponds to a record declaration while
objects are record variables. A class defines not only the data fields of
the objects but also their methods. Objects that share the same class
are sald to be instances of that class. All instances of a particular class
shares the same functionality and in particular they have the same set
of methods with identical implementation.

Object data fields, corresponding to the fields of a record, are defined
in the class. They are called instance variables since every instance has
its own set. Some object-oriented languages also have class variables
which are common, and accessible, to all instances of that class.

It is important to realize that classes are descriptions defining the
properties of a set of similar objects. In a compiled object-oriented lan-
guage like Simula or C++, classes appear only in the source code, defin-
ing objects which are created at run time. However, in dynamic object-
oriented languages like Smalltalk or CLOS, also classes are objects. That
means that new classes can be created and manipulated at run time. The
class of a class object is called a meta class. The meta class defines the
methods for all class objects. A typical class method is Make Instance
(sometimes called New) which controls the creation of new instances.

Inheritance

A class may be defined to be a subclass of a previously defined class. The
‘sub’-property is a relation to another class, not an absolute property of
the class itself. The inverse relation will be called super class. A class
will inherit all properties of its superclass. This applies to methods as
well as data fields. It means that instances of the subclass will have all
the properties that instances of the superclass have as well properties
defined in the subclass itself. Inheritance works to any depth in a multi-
level hierarchy of classes and subclasses.

28

A class is always an extension of its superclass. That means it has
at least the attributes of its superclass and in particular, it has all the
methods of its superclass. However, the subclass may change the imple-
mentation of a method. It is not possible to inherit only some of the
attributes of a superclass or to remove inherited attributes. This is im-
portant since in means that everything that is true for some class is also
true for all the subclasses. This makes it possible to do compile-time type
checking of polymorphic variables. A polymorphic variable is a variable
that is declared to be an object of a particular class but which at run
time may take an object of any of its subclasses.

Inheritance makes it easy to define objects that are almost like ob-
jects of a previously defined class. That means we can reuse code and
abstraction defined in other classes. Proper reuse of abstraction makes
programs that are easy to read and to understand. It means that a con-
cept that is a special case of another concept is represented by a subclass
of the more general one. In reality, it is quite difficult to reuse code and
abstraction, even in an object-oriented environment. Very often there is
a conflict between reuse of abstraction and reuse of code. Object-oriented
programs striving for maximum reuse of code are usually very hard to
understand while programs striving for maximum reuse of abstraction
may be relatively easy to understand.

4.2 Object-oriented programming languages

In this section we will give a short overview of some of the more important
object-oriented programming languages. An overview of implementation
languages for CACE software is also found in [Briick, 1987].

Simula

Many of the basic concepts of object-oriented programming originate
from the Simula programming language [Birtwistle et al., 1973]. Orig-
inally Simula I was a special purpose language for discrete event simu-
lation. It then developed into a general purpose programming language
called Simula 67.

Simula is a block oriented language based on Algol. It has a class
concept allowing data and procedures to be grouped together as a unit.
A class can be prefixed with another class. A prefix class is the same
as a superclass in our terminology. All declarations of a prefix class

29

are available in the subclass so the important concept of inheritance is
supported.

Simula supports virtual procedures which means dynamic binding
of procedures. It is the actual type of an object, determined at run time,
that decides which procedure to call in respond to a message. Simula also
uses a garbage collector to reclaim the memory of any object to which
there is no reference.

Smalltalk

Smalltalk is an interactive, object-oriented, programming language
[Goldberg and Robson, 1983)]. It is also the origin of most of the object-
oriented terminology used today. Smalltalk is totally object-oriented in
the sense that everything is an object and all computing is done by mes-
sage passing. Smalltalk-80 is also a complete programming environment
including class browser, for efficient reuse of code, special editors, etc.
Since Smalltalk is an interactive language, there is no distinction
between the compile time and the run time environment. New classes
can be defined at run time as a result of a message to a meta class. This
makes Smalltalk well suited for modeling purposes where classes are used
to represent models and class instances are simulations of the models.

Lisp extensions

Lisp itself is not an object-oriented language but it is easily extended
in various directions. This has resulted in a number of Lisp add-ons
to support object-oriented programming. One of the more used ones is
Flavors [Allen et al., 1984]. Flavors support multiple inheritance and it
is dynamic in the sense that new classes (flavors) can be created at run
time.

CLOS (Common Lisp Object System) [Keene, 1989] is a relatively
new extension to Common Lisp adopting many of ideas form earlier
object-oriented add-ons and from Smalltalk. ANSI has accepted CLOS
as a standardized extension to Common Lisp.

C++

C++ [Stroustrup, 1986] is an extension to C that supports object-orien-
ted programming with multiple inheritance. It is also intended to be “a
better C”.

30

C++ does not include a garbage collector. Temporary objects are
destructed automatically while others have to be terminated by an ex-
plicit call to a destructor function when they are no longer needed.

The use of C++ 1is rapidly increasing, especially within industry,
probably because of its origin in C and because it is supported by a few
influential organizations. Recently a committee within ANSI has been
formed to work on the standardization of C++ [Briick, 1990].

Frames

Frames [Minsky, 1975] is not really a programming language but a scheme
for knowledge representation developed in the AI community. A frame is
an entity representing an object, a class, a relation or any other concept.
It has a number of attributes called slots and a slot can in its turn have
attributes called facets. Values as well as procedures can be attached to
slots or facets. Frames can be related by ‘IS-A’ and ‘A-KIND-OF’ links
indicating subclass or instance relationships.

Frame systems have been developed as extensions to Lisp. Many
knowledge representation and knowledge engineering systems use frame
based representations. An example is KEE*(Knowledge Engineering En-
vironment) that has been used extensively for prototyping in this project.

4.3 Object-oriented databases and environments

Because of the strong impact that object-oriented ideas have had on pro-
gramming methodology, many ideas have migrated over to other areas of
computer science and to engineering in general. In particular, this applies
to the powerful data type concepts of classes with inheritance. Object-
oriented database management systems (OODBMS) is a new research
are that has been attracting much interest lately [Beech, 1987].

The question of how to represent data in a computer is called data
modeling and it is a research area that is closely related to OODBMS.
Also data modeling has been greatly influenced by object-oriented pro-
gramming and by research on knowledge representation in Allike Frames.

Integrated environments for software engineering have been an ac-
tive research and technology development area for some year now. Also

* KEE is a trademark of IntelliCorp

31

in this area interests have been attracted towards object-oriented think-
ing. Much inspiration for the CACE project has come from the devel-
opment of integrated environments for software engineering. Further on,
research on OODBMS and data modeling apply to model representation
in Omola. Therefore, this section will discuss some of the main points in
these research areas.

Object-oriented databases

The relational data model is the current state-of-the-art in database sys-
tems. This scheme of data modeling is based on entities and relations
[Elmasri and Shamkant, 1989]. Much research in database systems has
been aimed at representing a large number of fairly simple objects in
an efficient way. The relational model is poor on representing complex
objects with complex relations in between. There is much hope that an
object-oriented data modeling scheme will overcome this deficiency.

Object-oriented database systems have been approached from two
different directions (at least). One approach has been to extend a con-
ventional database system with possibilities to declare new data types
and classes with inheritance. Another approach has been to extend an
object-oriented programming language with database facilities. These ex-
tensions are sometimes referred to as persistent objects, i.e., objects that
survives from one execution to another. In order to have full database
capabilities with persistent objects, it must also be possible to share the
objects in a multi-user environment.

The problem of data modeling, i.e., how to represent data in the com-
puter, is inherent in many application like engineering support systems
(CAD, CACSD, etc). Such applications usually involve a modest amount
of data with very complex relations. Traditional data models have been
used but they are usually not the optimal solutions. Therefore, a number
of more elaborate data models, better adapted for these kind of applica-
tions, have been developed; one example is the data modeling language
Express [Schenck, 1988]. The data models support a number of object
relations that are used frequently. For example, the relation between
an object representing an assembly of parts and the objects represent-
ing the parts themselves is common in various engineering and product
databases.

In software development support systems we have objects represent-
ing specifications, program definition and implementation modules in
source code or compiled code. In such applications a number of different

32

relations between objects are needed and also some kind of version man-
agement system keeping track of the different versions of the software.

4.4 Object-oriented modeling

We have discussed how ideas of object-oriented programming have influ-
enced other areas of technology and in particular the representation of
data in database systems and in systems for engineering support. An
approach to object-oriented modeling, rather similar to the one taken in
this thesis, is found in [Piela, 1989]. Our approach will be the subject of
the following chapter.

33

5. Omola

Omola is an object-oriented language designed to represent the modeling
concepts presented in Chapter 3. One of the main design principles
has been to make Omola as clean and simple as possible. That means,
the language should contain as few concepts as possible and that these
concepts should have a well defined and easily understood meaning.

Omola represents models as class objects with attributes. There are
two kinds of relations between class objects: IS-A and PART-OF relations.
An IS-A relation indicates that a class is a specialization of another one.
A PART-OF relation means that a class can be a component of another
class, i.e., classes may be nested.

The purpose of this chapter is to describe the basic concepts of
Omola in detail and to show how they may be used to represent dynamic
models. We will start to introduce Omola by some small examples of
how it is used for model representation. In the following section we will
present Omola in more detail and on a more general level. Finally we
will return to discussing Omola as a modeling language, this time in a
more systematic way.

5.1 Some Omola examples

Omola is designed to represent structured dynamic models in the fashion
discussed in Chapter 3. In this section, we will introduce Omola by
showing some examples of models and model components. The examples
will not be explained in all details; only the most important features are
discussed.

Models and model components are all represented as Omola classes.
Every Omola class has a name, a superclass, and a set of attributes.
When Omola is used in an environment for model representation, there
are a number of predefined classes in the system, among these are: Model,
Terminal, Realization, and Parameter. They will be used as superclasses
in some of the following examples.

34

Primitive models

Suppose we want to define a tank model with some terminals and pa-
rameters. In Omola the tank might be defined as:

Basic_Tank ISA Model WITH
terminals:
inflow ISA Terminal;
outflow ISA Terminal;
parameter:
tank_area TYPE Real := 5.0;
END;

The defined model is named Basic_Tank and it is a subclass of the pre-
defined class Model. The key-word WITH indicates the start of the class
body which defines the attributes of the class. The tank has three at-
tributes called inflow, outflow and tank_area. The words terminals:
and parameters: indicate which role the subsequent attributes play in
the model. Inflow and outflow are two terminals while tank_area is a
parameters of the model. The terminal attributes are classes themselves
while the parameter, in this case, is a simple variable with a type and a
value.

In the basic tank model only the interface, but no behaviour, is
defined. We may use inheritance and specialize the tank model by adding
some description of behaviour. We do this by defining a new model:

Tank ISA Basic_Tank WITH

realization:
mass_balance ISA SetOfDAE WITH
variable:
level TYPE Real := 0;
equation:

tank_area * dot(level) = inflow - outflow;
END;
END;

Since Tank is a subclass of the previously defined Basic_Tank, it will
inherit its terminal and parameter attributes. We may say that the Tank
specializes the Basic_Tank. The new model defines one local attribute
named mass_balance, which is a subclass of SetOfDAE. SetOfDAE is a
predefined class used as a superclass of primitive (equation based) re-
alizations. In this case the realization defines a state variable, level,
and a mass balance equation. The equation refers to the parameter, the

35

terminals and the variable of the tank. The dot operator, used in the
equation as dot(level), denotes the time derivative of a variable.

A structured model

The tank defined in the previous example was called a primitive model
because it did not contain any submodels. A model that is not primitive
is called a structured model. Whether a model is structured or primitive
depends on its realization. Here is an example of a structured model
containing two buffer tanks connected in series:

Tank_System ISA Model WITH
terminals:
in ISA Terminal;
out ISA Terminal;
realization:
tank_structure ISA Structure WITH
submodels:
tankl ISA Tank;
tank2 ISA Tank;
connection:
in AT tankl.inflow;
tankl.outflow AT tank2.inflow;
tank2.outflow AT out;
END;
END;

The structured model called Tank_System has two terminals and a real-
ization. The realization is a subclass of Structure which is a predefined
in the system. A structured realization typically has components which
are submodels and connections. The submodels are subclasses of the pre-
viously defined Tank. The connections are written as pairs of terminals
with the key-word “AT” in between. A dot-notation is used to reference
terminals of submodels.

Structured models are more naturally represented graphically as
block diagrams. Figure 5.1 shows a block diagram of Tank_System.

36

Tank_System

H——[Tanki [—— Tank2]—[’8]

Figure 5.1 The tank system.

Terminals

Terminals are model components for defining interaction between sub-
models. A terminal class may be defined as a model attribute, as in the
previous examples, but it may also be defined as a global class. Global
terminal classes representing various physical quantities may be defined
and saved in libraries. A terminal representing a single physical quantity
may have a number of different attributes in addition to its value. Such
a terminal is called a simple terminal and it is a predefined class in the
system. It is instructive to see part of its Omola definition:

SimpleTerminal ISA Terminal WITH

attributes:
value TYPE real;
default_value TYPE real;
quantity TYPE symbol;
unit TYPE string;
direction TYPE (In, OUT, Across);
END;

The simple terminal has a number of attributes which may be given
specific values in user defined subclasses. For example, we may define a
voltage terminal in the following way:

VoltageTerminal ISA SimpleTerminal WITH
quantity := Voltage;

unit = "y,
direction := Across;
END;

The voltage terminal will inherit all the attributes defined for simple

37

terminals and three of those are given explicit values. We define a cur-
rent terminal in a similar way and then construct a structured terminal
representing an electric terminal:

ElectricTerminal ISA StructureTerminal WITH
components:
i ISA CurrentTerminal;
u ISA VoltageTerminal;
END;

The superclass StructureTerminal is a predefined class.

We have now seen a few examples of models written in Omola. In the
following sections Omola will be described more formally and in greater
detail.

5.2 Basic Omola

It has been a desire to design Omola in such a way that new types of
models and new model structuring concepts may be incorporated and
expressed in the language. For this reason, Omola has become a gen-
eral object-oriented data modeling language. It is instructive to view
Omola on two different levels: The basic level of Omola contains a small
number of basic concepts based on nested classes with attributes and
inheritance. On this level there is no reference whatsoever to models and
model structures. This level of Omola will be discussed some detail in
this section.

On top of the basic level of Omola is the model representation level.
This level defines how models and model structures, as discussed in Chap-
ter 3, are represented in terms of basic Omola data structures. The model
representation level of Omola will be discussed in the next section.

The advantage of defining and viewing Omola on the two different
levels is flexibility. The basic level has a well defined syntax and semantics
in terms of data structures. It is less likely that anything on this level has
to change, even though completely new modeling concepts are introduced
in the future. The model representation level, on the other hand, is
more like a set of conventions between different users and tools on how
to interpret the Omola code as models. This set of conventions may be
extended in order to include new types of models and to satisfy the needs
of new tools.

38

Omola classes

The most important kind of entity in Omola is the class. Every class has
a name, a superclass and a set of attributes. A class definition looks like:

<name list> ISA <name of superclass> WITH
<class body>
END;

The <name list> may be a single name or a list of names separated by
a comma. A new class will be defined for every name in the name list.
For example, to define two classes with the same superclass we can write

A ISA Class;
B ISA Class;

or with a shorter notation having the same meaning
A,B ISA Class;

The class body contains definitions of class attributes. If the class does
not contain any local attributes the body may be omitted and the class
definition would just be:

<name list> ISA <name of superclass>;

The key word ISAN may be used as a synonym for ISA.

A class body may contain variable definitions, variable assignments,
component definitions and category tags. These kinds of class body items
will be explained in the following.

A variable is a class attribute which has a name, a type and possibly
a binding. A variable declaration has the following format:

<name list> TYPE <type designator> := <expression>;

The name list may be a single name or a list of names separated by comma
for defining a number of terminals of identical type. Type designators
will be discussed later but it is basically a name of a predefined data
type. The ending assignment part is called the binding and it is optional
in a variable declaration. A binding is an expression that sooner or later
should evaluate to the correct type. The expression may be a literal
of the correct type, the name of another variable attribute or a more
complicated expression. A variable declaration with an assignment part
gives the variable a defined value (which may or may not be known at
this level); we may say that the variable (or parameter) is bound to an
expression or a constant. This will be discussed in more detail in a section
about parameter propagation.

39

A variable assignment has the following format:
<name list> := <expression>;

And it is a short form for giving a new binding to an inherited variable.
It redefines the inherited variable with the same type but with a new
binding. As an example regard the following class definitions:

A ISA Class WITH
vl TYPE Real := 1.0;
v2 TYPE Real;

END;

B ISAN A WITH

vl := 2.0;
v2 := 2%vi;
END;

Class A defines two variable attributes: vi with a defined value of 1.0,
and v2 without a known value. Class B inherits the variables form A but
it changes the defined value of vl to 2.0. Also in B, the variable v2 is
bound to the value two times the value of v1.

A component is a class attribute that is a nested class definition.
That means a class locally defined in the body of another class. Com-
ponents are used to define objects which have other objects as parts.
Terminals and realizations are examples of model components.

A category tag is a word ending with a colon. A category is a group
of attributes in a class. The category tag indicates the category of the
attributes following it and it is valid until the next category tag or to
the end of the class body. In the previous examples we have seen ex-
amples of categories like terminals, parameters and realizations. These
are standard categories with a predefined meaning that will be discussed
below. For all standard categories singular or plural form of the category
tag can be used synonymously, for example, terminal: and terminals:
denotes the same category. Attributes defined in a class body prior to
any category tag are assumed to belong to the standard category at-
tributes:. ’

40

Class inheritance

A class inherits all attributes of its superclass. This means that attributes
(components as well as variables) that are part of the superclass definition
are also a part of the definition of the subclass. A class definition may
define additional attributes or it may redefine inherited attributes. Any
attribute may be redefined in order to change its superclass, its type or
its binding. A redefined attribute stays in its original category. It is not
an error to redefine an attribute under another category tag but it will
not change the inherited category and its bad style and may result in a
warning from the Omola parser.
Here is an example of how inheritance may be used:

Cl1 ISA Class WITH
% unimportant body
END;

C2 ISA Class WITH
% unimportant body
END;

C3 ISA Class WITH
cat_a:
x,y ISA C1;
END;

C4 ISA C3 WITH
y ISA C2;
END;

The class objects C1 and C2 are used as component superclasses in C3
and C4. The class object C3 defines two components, x and y, in the
cat_a: category. Since C4 has C3 as a superclass, x and y will also be
attributes of C4 and belong to the same category. However, y is redefined
with a different superclass: C2.

Data types

Omola defines a fixed set of data types. Among these are the ordinary
algebraic data types like Real, Integer and Boolean that are present in
most programming languages. A Cardinal is non-negative integer. There
are also the symbolic data types String and Name. Further, Omola has

41

List Complex Cardinal
mamﬁ é integer—_ Column
umbober Matrix
Generic Polynomial < Row

Real
Range
String
Symbol

Figure 5.2 The Omola type hierarchy.

some aggregate types like Matrix, Polynomial and List. It is also possible
to declare variables of generic type or as a number which can be a Real,
an Integer or a Matrix. The Omola data types are ordered in a hierarchy
with the generic data type on top and the most special data types at
the bottom. A variable may take values of types that are below the
declared type in the hierarchy. A complete list of Omola data types is
found in Appendix B. Matrix and vector data types have parameterized
type designators. They are written as:

matrix[m,n] of element-type
column[m] of element-type
row[n] of element-type

where the “of element-type” parts are optional. The parameters m and
n indicate the number of rows and columns and they can be given as a
constant number or an expression. The element type may be any simple
type or Polynomial; if it is not specified it is assumed to be Real. A
row vector defined by row[n] is identical to matrix[1,n] and a column
vector defined by column[m] is identical to matrix[m,1].

Expressions

Expressions are constructs that may appear to the right of the assign-
ment operator “:=" in variable declarations or assignments, or as we saw
above, in matrix type definitions. An expression may be a literal like
2.0, a variable name like v1 in the example above, or a more complicated
arithmetic expression. The value of an expression may not be known at
class level but sooner or later, in some context, it should evaluate to the
type of the variable on the left hand side of the assignment. In principle,
it should be possible to derive and check the type of an expression on the
class level. In reality, it might not be feasible to enforce type consistency
at class level in a dynamic world of class definitions.

The expression syntax is similar to most programming languages

42

and to Matlab. Its formal definition is found in Appendix A and will not
be discussed here. Expressions may contain calls to standard and library
functions and operators. The most important variable operator is the
time derivative: dot(x) refers to the time derivative of the variable x
and dot(x,n) refers to the n’th derivative of x.

Basic scope rules

The rules determining which objects are visible, and may be referred to
by name in a certain context, are called the scope rules. On this basic
level of Omola the scope rules are simple and quite liberal. In the next
section, describing model representation, we will make some further scope
restrictions.

Classes in Omola are either global, i.e., defined on the top level, or
they are local defined as components inside another class. A global class
may be referred to by name in any context where it makes sense to refer
to a class.

Class attributes may be referred to by dot notation which means
that the class name followed by a dot and then the attribute name. In
the last example we may refer to the y attribute of C4 by ‘C4.y’ which
denotes a component class.

Every class body has its own local name space. The name space
of a class is the name space of its superclass extended with all the lo-
cal attributes. If we have a hierarchy of class bodies inside other class
bodies, a name is resolved by first searching the own class body then the
surrounding class body and so on, until finally the name-space of global
classes is searched. This probably needs an example:

D ISA Class WITH
x TYPE Real;
END;

E ISA D WITH
y TYPE Real;
z ISA Class WITH
y TYPE Integer;
w TYPE Real := x+y;
END;
END;
Regard the expression ‘x+y’ that binds the variable w in the component
class z in class E. In this expression x is resolved to the variable defined

43

in class D since the name is not in the name-space of z but it is in E which
has D as its superclass. The variable y in the same expression is resolved
to the integer defined in the body of z.

The superclass of a component may either be

e a global class,
e a local component, or
e an inherited component.

In order to distinguish between the different cases without ambiguity,
two special dot notations are used: this and super, where this.c refers
to the component ¢ defined locally in the same class body and super.c
refers to an inherited component with the same name. No other kind
of dot notation is permitted in the superclass position of a component
definition. If none of these special notations are used, a reference to a
global class is assumed. In the following example we can see how this
works:

X ISA Class;

F ISA Class WITH
X ISA Class;
END;

G ISAN F WITH

X ISAN X WITH ... END;

Y ISA this.X WITH ... END;
Z ISA super.X WITH ... END;
END;

In the body of class G the first component X is a specialization of the
global class named X. The second component, named Y, specializes the
first component while the third component, named Z specializes the X
defined in the superclass F.

Classes may not be subclasses of themselves and for this reason a
component declared as ‘X ISA this.X’ is an error.

In order to make the task of an Omola parser easier, a class has to
be defined before it is used as a superclass. This applies to global classes
as well as to components within a class body. Any implementation of an
Omola parser may relax this restriction.

44

5.3 Model representation in Omola

In the previous section, we have looked at Omola on the basic level and
defined the primitive concepts. Now we will see how these concepts may
be used to represent structured dynamic models. This part of the Omola
definition is called the model representation level. It will be described in

three aspects:
e A set of predefined classes,

e for each predefined class a set of categories with special meaning,
and

e for each of these categories some rules limiting the kind of attributes
defined in it and their interpretations as model components.

Some basic model classes

The basic classes defined and discussed in this section will serve as su-
perclasses, directly or indirectly, of all user defined model component
classes. Tools operating on models may rely on these superclasses as a
classification of model components. In the following, when we say that
something is a model or a terminal we mean an Omola class that is a de-
scendant of the predefined classes Model or Terminal. The class—subclass
hierarchy of all predefined classes is shown in figure 5.3. These classes
will be described in more detail in the following.

Model
SetOfDAE
Realization <
Class Structure
Parameter
SimpleTerminal
Terminal RecordTerminal

VectorTerminal

Figure 5.3 Predefined Omola Classes.

45

The Model class

The class Model is the Omola representation of the model concept dis-
cussed in Chapter 3. Its definition is simple since it has only one at-
tribute:

Model ISA Class WITH
primary_realization TYPE Name;
terminals:
parameters:
variables:
realizations:
constraints:
END;

In the body we have also listed the categories of special importance;
this is legal but of no significance since they contain no attributes. The
different categories have special meaning to the user and to the various
tools. There are also some rules on which kind of attributes the categories
may contain:

46

terminals: The attributes defined in this category define the inter-
face of the model. Only components which are descendants of the
superclass Terminal are accepted.

parameters: These attributes are model variables which are not
varying in time and may be set by a user. Variable attributes or
components which are descendants of the superclass Parameter may
be defined in this category. Since parameters and terminals are part
of the model interface special scope rules applies to attributes defined
in these categories. These scope rules will be discussed below.

variables: These are model variables which may be time varying
in a model instance during simulation. This category may contain
variable attributes or components which are descendants of the class

Variable.

realizations: These are components defining the behaviour of the
model. The components must be descendants of the predefined class
Realization. The attribute primary_realization names one of the
realizations to be used by default.

constraints: These are equations used for propagating parameter
values. Constraints will be discussed more in Chapter 6.

The Terminal class

A terminal is a model component used for defining interaction with other
models. A terminal attribute is special because it may be related to a
terminal in another model by a connection. The class Terminal is empty
with the trivial Omola definition:

Terminal ISA Class;

It will serve as a common superclass to three other predefined terminal
classes: SimpleTerminal, RecordTerminal and VectorTerminal. Their
Omola definitions are given below. For a more elaborate discussion on
terminal semantics, see [Mattson, 1988 and 1989c].

SimpleTerminals represent single quantities. A simple terminal has
a number of attributes making it possible to specify its physical quantity,
unit of measure, causality with respect to the model, value limits, etc.
However, the most important attribute is value. The value of a terminal
may be bound to other terminals through a connection or an equation.
The class has the following Omola definition:

SimpleTerminal ISA Terminal WITH
value TYPE Real;
default TYPE Real;
direction TYPE (Across, In, Out);
causality TYPE (Read, Write);
variability TYPE

(TimeVarying, Parameter, Constant) := TimeVarying;

low_1limit TYPE Real;
high_limit TYPE Real;
unit TYPE String;
quantity TYPE Symbol;

END;

RecordTerminals are similar to records in Pascal or structures in
C. The fields in the record are defined as component attributes in the
the category components:. The components of a record terminal are
terminals themselves. The code is:

RecordTerminal ISA Terminal WITH
components:
END;

47

VectorTerminals have a number of identical components. They can
be used as column vectors in matrix equations. The VectorTerminal
class defines two attributes: length which is positive integer determining
the number of components, and comptype which is a terminal component.

VectorTerminal ISA Terminal WITH
length TYPE Cardinal;
comptype ISA Terminal;

END;

The Realization class

Realizations are used to define model behaviour. The class Realization
is a trivial empty class definition:

Realization ISA Class;

There are two important subclasses called SetOfDAE and Structure
which will be discussed here. When Omola is used in a multi tool envi-
ronment other kinds of realizations are useful, such as transfer function
or linear state-space realization.

SetOfDAE realizations define model behaviour as a set of differen-
tial or algebraic equations. A realization may define local parameter
attributes and variable attributes with the same meaning as in models.
Further more, a SetOfDAE realization may define a number of equations
in the category equations:. Equations are written in a special syntax
that is not actually part of the basic Omola:

expression = expression;

How this special syntax relates to the basic Omola definition will be
discussed in a following section.

The equations of a primitive realization can refer to variables and
parameters of the realization as well as variables, parameters, terminals
and terminal components of the model of which the realization is a com-
ponent. This will be discussed in more detail below.

Structure realizations define model behaviour as a set of submodels
and connections. The following category tags are special:

e submodels: All attributes in this category must be components
which are models.

48

e connections: A connection attribute is a relation between two ter-
minals and it is written in a special syntax using the key word AT.

e constraints: are actually equations between parameter attributes.
Equation syntax is used for defining constraints.

Scope rules of equations and connections

Some fundamental scope rules of class and attribute names were stated
for Omola on the basic level. These rules were liberal in the sense that any
attribute in any class was accessible by dot notation. When Omola is used
for model representation is is desirable to restrict attribute access in order
to make reuse of models secure. The restrictions are based on the idea
that the terminals and the parameters constitute the model interface.
Interaction between models should be limited to terminal connections
and parameter constraint equations.

The following rules state all the permitted types of references. A
connection defined in a realization may refer to

la terminals of the model,
1b components of terminals of the model, or
lc terminals of submodels defined in the realization.
An equation or a binding expression in a model may refer to
2a variable attributes of the model,
2b terminals of the model, or
2¢ attributes of terminals of the model, or
2d variables of realizations.
An equation or a binding expression in a realization may refer to
3a variable attributes of the realization or the model,
3b terminals of the model,
3c attributes of terminals of the model, or

3d parameters of submodels defined in the realization.

49

5.4 Discussion — representation of equations and con-
nections

In the last section we introduced some new special syntax for defining
equations and connections in Omola. The formats were used because they
are convenient and natural for the user. The AT key word to indicate a
connection between two models is used in Dymola [Elmqvist, 1978]. The
equal sign “=” is chosen to indicate equality between two expression
because it is the standard mathematical notation (though in Matlab, for
example, the equal sign is used for assignment which is different).

The concepts of equation and connection may be introduced in
Omola in either of two ways:

1. The concepts are added as new primitives in the basic Omola defi-
nition, or

2. equations and connections are translated from the suggested form
into basic Omola structures by the Omola parser or by a pre-pro-
CesSOr.

The first alternative is simple and straight forward but it is against
the desire to keep the basic Omola language definition as small and simple
as possible. If we choose the second alternative we have to come up with
a representation of equations and connections based on existing Omola
primitives. This is not so difficult; if we introduce the following predefined
classes in the model representation level, they can be used as component
superclasses to represent equations and connections in models:

Equation ISA Class WITH
left_hand_side TYPE Number;
right_hand_side TYPE Number;

END;

Connection ISA Class WITH
terminall TYPE Name;
terminal?2 TYPE Name;
END;
Then for example, the equation ‘dot(x) = -x’ and a connection between
the outflow of Tankl to the inflow of Tank2 may be represented by the
following two components declared in proper categories of their models:

E1 ISAN Equation WITH
left_hand_side := dot(x);

50

right_hand_side := -x;
END;

C1 ISA Connection WITH

terminall := Tankl.outflow;
terminal?2 := Tank2.inflow;
END;

This kind of Omola representation of equations and connections may be
hidden for the user since they are entered and displayed in short form.
However, there is one advantage with the full Omola representation: con-
nections and equations are named classes which can be specialized or
redefined in subclass models. If only the short forms are used, a sub-
class model may only add more equations and connections or replace
the whole set by redefining its realization. Individual connections and
equations may not be redefined.

In the current Omola definition, only the short form of connections
and equations is supported. This means as far as the user’s concern
alternative 1 is used but the actual implementation may use alternative
2.

5.5 Interpretation of Omola

Omola is a declarative language for model representation. This means
that Omola code states the facts about a model rather than saying how
things should be computed. Declarative models are universal and may be
used for different purposes — not just simulation. The act of traversing a
model or a set of model objects represented in Omola is called interpre-
tation. Omola models may be interpreted differently by different tools
depending on the purpose. The subdivision of attributes into categories
may be used to separate out the aspects that are important for a specific
tool. For example, a simulation tool that interprets a model in order
to generate efficient simulation code is mainly interested in the equa-
tions and the connections of the model while it is ignoring many other
attributes. The model representation level of Omola, as it is presented
in this chapter, is mainly intended to support the needs of a simulation
tool. However, it is also sufficient for control design and similar tasks,
especially if it is augmented with realizations for linear models like trans-
fer functions and state space descriptions. In contrast to this, if Omola

51

is used in a graphical tool for manipulating and viewing models on block
diagram form, the connection and submodel attributes are not sufficient
as they are presented. We need to add some additional attributes to the
models dealing with their appearance as graphical objects. The point is
that it is perfectly alright to add these attributes in a new category, say it
is called graphics:, without disturbing the interpretation of the models
in other tools. The simulator will simply ignore any attribute defined in
the graphics: category.

Model instantiation

One of the more important ways to interpret an Omola model is called
instantiation. An Omola class is a description of a real object rather
than a representation of the object itself. This is an advantage when
models are defined because objects that are separate but identical in the
real world may share the same description. However, when a model is
going to be simulated we need separate representation for all objects.
On class level a tank model represents the concept of a tank, i.e., what
is true for all tanks at all times. In a simulation on the other hand, a
tank instance represents a specific tank at a specific moment in time.
The procedure of interpreting Omola code in order to create instances is
called instantiation. The instantiation procedure will be discussed in the
next chapter.

52

6. Model Operations

Models represented in Omola can be used for various purposes like sim-
ulation, control design and documentation. Omola can be viewed as a
textual image of a model database which is central in an environment
of different special purpose applications or tools. An application inter-
rogates the model database about structure and behaviour. Some appli-
cations may derive and insert new information into the database while
others are just using it as input source code.

Most operations on models are performed by applications, part of
an environment for simulation and design, which are not discussed in
any detail in this thesis. However, some model operations, like model
consistency check and instantiation, are fundamental to the database
itself. These model operations will be the topic of this chapter.

Model correctness may be studied on several different levels. On the
lowest level we have the Omola syntax. Omola has a grammer definition
and every sentence that is parsed by the grammer is syntactically cor-
rect. The second level concerns semantics of models as it was discussed
in Section 5.3. Correctness on this level is based on the scope rules of
variable references and on terminal connections. If every variable refer-
ence and connection is resolvable according to the scope rules, the model
is correct on this level. The third level of correctness is called model
consistency. Variable values may be derived through bindings, equations
and connections which may form a complex web of dependencies. If all
derived variable values are consistent, the the model is consistent. Some
values are static, which means, their values are the same for the whole
class, that is for all instances at all times. Consistency of static variables
may be checked at class level.

It is desirable to catch model inconsistencies as early as possible,
preferably before instantiation. Model consistency check at class level
requires that static variable values are derived from instantiated models.
This will be the topic of the following sections. First there will be some
introductory discussions and then an algorithm is presented. More details
about the algorithm are given in Appendix C.

Instantiation is another fundamental operation on model classes.
Instantiation is needed when a model is going to be simulated. Model

53

instantiation and simulation are discussed in the two last sections of this
chapter.

6.1 Variable and parameter expressions

In this section we will discuss the meaning and the use of variables in
models. It will serve as an introduction and as a motivation for the
following section devoted to derivation of variable values.

Variables play three different roles in a model, they are representing

1. time varying properties (states) of the model,
2. time constant properties, i.e., model parameters, and
3. structure parameters.

Variables are declared in models as typed variable attributes or
as components that are descendants of any of the predefined classes
SimpleTerminal, Variable, or Parameter. By default, a variable is con-
sidered to represent a time varying property of the model, that means
it belongs the the first type. A variable defined in the parameter cate-
gory of a class is considered to represent a static property, that means
it belongs to the second or third type. Also a simple terminal having its
variability attribute bound to parameter or constant belongs to this
type.

Parameters are considered to be part of the interface between the
model and the model user and they provide the means of adapting the de-
scription of behaviour of the model. Whether a variable is a parameter or
not, effects mostly its accessibility from other classes. This was discussed
in the previous chapter in the section about scope rules. Parameters may
also be treated specially by the user interface.

A structure parameter is a parameter that affects the model repre-
sentation itself and its value must be known at class level. A structure
parameter usually affects the dimension, i.e., the number of equations
and variables, of the model. Examples are found in [Nilsson, 1989] where
some models have an array of submodels of similar type. The length of
such an array is a typical structure parameter which affects the instanti-
ation of the model.

Variables may be related through bindings and equations. A binding
or an equation may refer to variables of other models or model compo-
nents according to the scope rules discussed in Section 5.3.

o4

Variable bindings

A variable binding is an expression that can be used to compute the value
of the variable. A binding that is constant, i.e., it is a number literal or an
expression containing only variables with known values, may be evaluated
at class level. The value of a variable with such a binding is the same for
all instances at all times. In a model instance, the variable is considered
to be a constant.

Here are a few examples of variables with bindings:

M ISA Model WITH
vl TYPE Real := 0.5;
v2 TYPE Real := 2x%vi;
v3 TYPE Integer;
parameters:
pl ISA Parameter;
p2 TYPE Integer := v3;
END;

The model contains five variables, two of which are considered to be
parameters. The values of v1 and v2 are known because v1 has a binding
to a constant and v2 has a binding which can be evaluated to a known
value. All the other values are unknown in this model at class level; v3
and pl because they have no bindings and p2 because it is bounded to
a variable with an unknown value. (Recall that since p1 is a subclass
of parameter, its value is defined by the value of the inherited value
attribute, which has no binding.)

‘Variables with unknown values may be given values in a subclass,
by a constraint equation in a supermodel or in a model instance.

Equations and constraints

Equations are mathematical expressions defining relations between vari-
ables. Some equations are static, i.e, they contain only variables which
are time invariant like parameters. Static equations are sometimes called
constraints or parameter equations. A constraint containing only vari-
ables that are known may be evaluated and checked for consistency. A
model with variable values that are not consistent with the constraints
is said to be inconsistent. As an example of an inconsistent model con-
sider a model where two simple terminals are connected. One terminal
has the quantity attribute bound to Voltage while the other terminal
has the same attribute bound to Current. The connection defines an

55

implicit equation between the quantity attributes. Since the values of
the attributes are not the same we have an inconsistency in the model
due to the connection.

From a model designer’s point of view, parameter bindings and con-
straints are ways of defining parameter propagation. Parameter values
may propagate up and down in a hierarchy of models and submodels,
and they may propagate via terminals and connections. Regard the fol-
lowing example of a structured model using the model M defined above,
as submodels.

MM ISA Model WITH
parameter:
p ISA Parameter;
realization:
MM_behaviour ISA Structure WITH
submodels:
M1 ISA M;
M2 ISA M;
constraints:
Mi.p = p;
M2.p = 2xp;
END;
END;

The two constraint equations in the realization relates the p parameters
in the submodels with the p parameter of MM. This means that if any
of the tree parameters gets a binding the other two will also be bound.
In particular, if p of the supermodel MM is left unbound in the class it
will be a free parameter in all instances. When the user assigns a value
to the parameter in an instance, this value will propagate down to the
submodels as well.

From a formal point of view, all bindings and constraints in a model,
define a system of equations. On class level, this system of equations is
typically under determined, i.e., there are more variables than equations.
However, the system of equations can usually be partitioned such that
some groups of variables can be solved from a group of equations while
some other equations are used to test for consistency. In general, con-
straints and bindings are nonlinear expressions. Using them for deriving
parameter values involves solving nonlinear systems of equations. It is
the limitations of the nonlinear equation solver that restricts what type
of constraint expressions that may be used for deriving variable values.

56

It is desirable to derive variable values and to check for model in-
consistency at class level. For this reason, we will in the following section
describe an algorithm for deriving variable values by examining the vari-
able bindings, constraints and connections defined in the model.

Variable consistency

A variable may get values from a bindings as well as from equations
or constraints. These values have to be consistent; if they are not, we
say that the model is inconsistent. The following is an example of an
inconsistent model.

BadModel ISA Model WITH

X TYPE Real := 0.0;
Y TYPE REAL := 1.0;
constraint:
X=Y;
END;

Inconsistencies may also result from connections indicating that a sub-
model is used in an incorrect manner. Models should be checked for
consistency before they are instantiated for simulation or any other pur-
pose. If models are created interactively, consistency can be checked
whenever new attributes are added. The model designer will then get
immediate feedback if he adds a connection or an equation that leads to
an inconsistent model.

In order to check if a model is consistent, it must be possible to
derive variable values at class level. This procedure is given below.

6.2 Derivation of variable values

As mentioned above, a variable may get its value through a binding
or through a constraint. Before we present the algorithms for deriving
variable values we have to introduce a new concept called context.

Context

A context is a chain of component attributes from a root class to a
particular attribute. A context can also be viewed as an instantiation of
a model hierarchy. Contexts are needed in order to reason about models
at the class level as if they were model instances. Contexts are not part

57

of the Omola language; it is introduced here as a tool for reasoning about
models and it will be used in the algorithms discussed later.

Regard the following example with a simple and a structured model
with some constraint equations:

M1 ISA Model WITH
p TYPE Real;
END;

M2 ISA Model WITH
realization:
M2struct ISA Structure WITH
submodels:
S1 ISA Mi;

S2 ISA Mi;
constraints:
Si.p = 1;
S2.p = 2;

END;
END;

The variable attribute p defined in model M1 is a class objects, i.e., it
represents the properties of the p attribute of all models of type M1 in-
cluding all subclasses of it. If we want to reason about model M2 and
its equations we need to distinguish between the p of S1 and the p of
S2, however, at class level they refer to the same object. One solution
would be to actually instantiate the model and then reason about the
instances which will be unique. This would be unnecessary work since
we do not need the instance objects themselves, we only need to reason
about them. Therefore, the context concept is useful.

Contexts are similar to dot-notation and we can use dot-notation
to represent a context in written form in this report. For example the
context ”X.Y.Z” means the 7 attribute of the Y component of the class
called X and it represents an instance of Z given any instance of X. A
single element context, for example ”X”, should be interpreted as any
given instance of X. In the example above we can imagine three different
contexts for p; they are written as "M1.p”, "M2.M2struct.S1.p” and
"M2.M2struct.S2.p”.

Operations on contexts are defined and used in Appendix C.

98

Bindings and constraints

A binding for variable v may formally be written as the equation

v=f(v1,..,Vn)

where f is a known function. From this equation we can compute the
value of v if the values of v; to v,, are known.

Any constraint equation may, by simple manipulations, be trans-
formed into the equation:

9(vi,..yv,) =0

From this we can compute the value of a variable v € {v,...,v,} if the
equation is solvable for v and if all the other variables appearing in the
equation are known. What is solvable depends on the function g and on
the solution algorithm. A minimum level of ambition is to be able to
solve for all variables that appear linearly in the equation.

Algorithms

The main algorithm for deriving a variable value in a certain context will
be given as a function written in a pseudo language.

The main function is called £ind_value and it takes a context (of a
variable) and tries to derive a value. If the variable has no binding and
if there is no equation which can be solved for the variable then nil is
returned.

find_value(v: Context): Value;
BEGIN
IF binding(last(v)) THEN
RETURN eval(v);
ELSE
FOR EACH e IN find_equations(v) DO
IF x:=solve(e,v) THEN
RETURN x;
END
END

The expression last(v) refers to the variable itself and the function
binding is a simple database lookup that returns true if the variable
attribute has a binding. The function eval evaluates the binding of the

59

variable in its context. It will call find_value recursively to get values of
variables appearing in the expression. The function £ind_equations re-
turns the set of all equations in which the variable v appears while solve
tries to solve an equation with respect to the variable in its environment.

The function find_equations is non-trivial and its implementation
is given in Appendix C. The basic idea is to search the environment
for equations and connections referring to the particular variable. The
scope rules given in Section 5.3 give some ideas of how this search may
be limited to a small set of models and realizations.

6.3 Instantiation of Omola classes

An Omola instance is an object created based on an Omola class. The
instance has the same attributes as the class and their values are refer-
ences to other instances. An instance of a variable attribute is an object
capable of storing a value of the variable type. Any number of unique
instances may be created from one class.

Variable resolve

Expressions in equations, connections, attributes and bindings contain
symbolic references to other model attributes. During model instantia-
tion these references have to be resolved, i.e., they have to be turned into
references to attribute instances. Instantiation of expressions is a func-
tion that takes an unresolved expression and a class instance and returns
an expression with all variables resolved. Since resolve requires that all
instances of referenced variables are available resolve must be done after
instantiation of each attribute.

The instantiation of a an Omola class is a simple procedure that
is recursive in the class attributes. The procedure is outlined in the
following:

Instantiate class:
Create a class instance object.
For each attribute of the class:
Instantiate the attribute and add it as attribute
of the instance object.
For each expression in the class:
Insert the resolved expression in the instance.

60

Instantiate variable:
Create a variable instance.

Structure parameters

All structure parameters of the model have to have known values before
the instantiation can be done. Recall that a structure parameter by
definition affects the instantiation. A typical example is a parameter
defining the dimension of a vector terminal.

Any change in the model class affecting the structure of the model
will make all existing instances of that class invalid. It might be possible
to develop an instance updating procedure that updates all instances ac-
cording to the changes in the class but this may be rather complicated.
The simplest solution to the updating problem is probably to disregard
the old instances and create new ones. However, it might be possible to
allow some minor changes, not affecting the basic structure, in a model
class and to propagate these changes to all existing instances. For exam-
ple, minor changes to the equations of a primitive realization are easy to
propagate to all instances.

6.4 Simulation

A simulator is one of the most important tools in an environment for
modeling and process design. In this section we will outline the basic
procedure of setting up a simulation based on a model represented as an
Omola class in the model database.

Setting up a simulation of a model represented as an Omola class
starts by instantiation, as it was outlined above. Then the model instance
structure is traversed and every resolved equation is collected. Equations
must also be generated from every connection between simple terminals.
A connection between two structured terminals will then result in a num-
ber of equations. When connections are turned into equations one have
to consider if the terminals are across or through and if conversion factors
between different units of measure has to be introduced.

From the equations collected from the model instance we can now,
by simple manipulations, turn the problem into the differential /algebraic
(DAE) form

g(t,:&,m,v,p, C) =0

61

where t is the independent variable (usually time), z is a vector of vari-
ables that appear derivated, v is a vector of other unknown variables, p
are known parameters and c are known constants. This type of problem
can be solved by standard DAE solvers; DASSL [Petzold, 1982] is an ex-
ample of such a routine. The DAE solver needs a routine for computing
the residual:

A =g(t, &, z,v,p,c).

The residual can be computed by interpreting and evaluating the instan-
tiated equations or, in order to increase the efficiency, the equations can
be coded in some programming language like Fortran or C which is then
compiled.

In most cases it is also possible to increase the efficiency by applying
simple symbolic manipulations. Many intermediate variables and trivial
equations like A = B are generated from connection equations. These
variables may be eliminated thus reducing the size of the problem. The
equations and variables are also sorted so that the the problem is turned
into a block triangular form. This may detect deficiencies like too many
or too few equations. More about this is found in [Elmqvist, 1978] and
[Mattsson, 1989b].

62

7. An Example

In this chapter we will discuss a process model represented in Omola.
The process is a chemical reactor, chosen as an example of a reasonably
complex system, so that the structuring facilities of Omola are demon-
strated. First the process is presented and then the Omola model is
discussed and some of the interesting points are highlighted. Finally, we
will see how a totally new model representation — a transfer function —
can be introduced in Omola.

7.1 The Process and its model

The process to be modeled is a continuous, well stirred, tank reactor
for an exothermic reaction. The reactor can be used as a component
in a larger chemical process with other components processing the raw
materials and the product and with systems for recirculation of energy
and materials.

The process is described in [Nilsson, 1989b] which also presents a hi-
erarchical decomposition of the system. The same model decomposition
is used in this example with only some minor changes.

A schematic picture of the process can be seen in Figure 7.1. The
main components of the reactor is the tank, which is supposed to be
homogeneous in concentration and temperature. The tank has an input
flow of mixed raw materials and an output flow of reaction products. The
input flow can be controlled by a valve while the output flow depends on
the following stages in the process. The reaction dynamics is supposed
to be fast compared with the residence time in the tank.

Since the reaction is exothermic, heat has to be dissipated from the
tank which is done by a cooling jacket. The flow of cold water through
the jacket can be controlled by a valve. During startup of the reactor,
steam or hot water can also be fed through the cooling jacket in order to
rise the temperature to the desired operating point.

The reactor system is also supplied with devices for measuring the
temperature and the level in the tank and the output flow.

63

@ Level sensor
/

s
7 Temperature
‘ _ sensor
— :@:% -7
N
N
%\ _ _Qooling
- & jacket
Flow sensor
f —
1L
Figure 7.1 The chemical reactor system.
The model

The Omola code of the model is given in Appendix C. We will here give
a brief top-down description of the model structure.

The model of the complete reactor is called ReactorSystem and it is
decomposed into components representing the reactor vessel, the cooling
jacket, and the valves and measurement devices; see Figure 7.2. The
reactor system has terminals representing the control and measurement
signals and the flows of cooling medium, raw materials and product. The
flows are represented by structured terminals which will be discussed
below. The interaction between the cooling jacket and the reactor vessel
is modeled by a connection between two heat flux terminals representing
the temperature and the energy flux through the walls of the vessel.

The valves, the cooling jacket and the measurement devices are prim-
itive models. The cooling jacket model is a simple heat transfer through
a wall with a given heat transfer coefficient. The cooling medium is
supposed to have a linear temperature profile through the jacket.

The reactor vessel has an internal structure based on a media-
machine decomposition [Nilsson , 1989]; see Figure 7.3. The machine
model contains mass, energy, and component balance equations. The
media model describes the chemical reactions and the properties of the
involved substances. The interaction between the machine and the media
model is represented by a connection between two media data terminals.

64

Liquidin

ControlAct Cooln
Feed |Cool

ReactorSystem

| Fvalve

Cooling [Reactor]
—

| |

FSensor |I

"

CoolOut LiquidOut

TSensor [

=T

LSensor

n| [
silosusg

Figure 7.2 The structure of the reactor system model.

Inlet

ReactorVessel

o

8| machine —A Media

3

(o]
T
o
3

Outlet

Figure 7.3 The structure of the reactor vessel model.

The terminal classes defined in the example are typical for this kind
of application. The terminals could have been taken from a library of

65

L — (‘simplelnPipe)

(SimpleFlowPipe)4——————@imple0utPip¢9

A/CCompositelnPipe)
— CCompositeOutPipe)

@om positeFlowPip@

1sa

Figure 7.4 The inheritance structure for the flow pipe terminals

general terminal types used for chemical process modeling.

Inheritance is used for several terminal definitions. For example,
SimpleFlowPipe is a record terminal with three components: flow, tem-
perature and pressure and it is not intended to be used directly but as a
general superclass for a number of specializations. The flow component
(called F) is just included in SimpleFlowPipe as a dummy; it is special-
ized in the descendants SimpleInPipe and SimpleOutPipe, used for the
flow of cooling liquid, to be a FlowInTerminal and a FlowOutTerminal
respectively. FlowInTerminal and FlowOutTerminal are simple termi-
nals where the quantity attribute is bound to volumetric_flow, the unit
of measure is set to m3 /s, and the direction attribute is bound to in and
out respectively, indicating that the components are through terminals.

Another specialization of SimpleFlowPipe, called CompositeFlow-
Pipe and used in the product circuit, adds a fourth component which
is a CompositionTerminal — a vector containing the concentrations of
the chemical components of the flow. The dimension of the vector, i.e.,
the number of flow components, is not specified in the terminal but de-
rived from the models where it is used. The CompositeFlowPipe is also
specialized in the same way as SimpleFlowPipe giving the inheritance
hierarchy shown in Figure 7.4.

Inheritance is also used in the valve models. The reactor system
has two valves: one is controlling the flow of cooling liquid and one is
controlling the input flow of the vessel. We want to use the same model
for both valves but the two flows are represented by different types of
terminals; the product flow has a composition component not present in
the cooling flow.

We start by defining a simple valve model, called Valve, that has
SimpleInPipe and SimpleOutPipe as flow terminals. These are the same
types of terminals that are used for the cooling circuit so we can use Valve

66

SetOfDAE
A

_win —-—V(SimplelnPipeD

iour <« - — Z
Behaviour Valve <= -m Qut —b CSimpIeOutPip@

A

.e

v In ———>CCompositeInPipe)

Behaviour—=- - —-(CompValve)<

A Qut ——»CCompositeOutPipe)

has]
- _sa_ g,

Figure 7.5 Some objects of the valve models.

to control the flow of cooling liquid. The model has a realization con-
taining equations for the pressure drop depending on the position of the
valve and of the flow. There are also two equations defining preservation
of flow rate and temperature.

Now we want to define a valve model useful for composite flows in the
product circuit. The only difference between this new valve and the pre-
vious one is the type of the flow terminals and an additional equation. We
can use inheritance and define a valve model, called CompValve, as a sub-
class of Valve that redefines the flow terminals to be CompositeInPipe
and CompositeOutPipe. The behaviour of this model is identical to
the previous one, except that an equation defining preservation of flow
composition has to be added. This is done be overriding the inherited
realization with a specialization of it adding the new equation. This is
done by using the super prefix for the superclass of the new realization.
See Appendix C.2 for the definition of the CompValve. The structure
diagram with the important components and their relations are shown
in Figure 7.5.

The sensor models used in the reactor system are of two types: one
type, called SimpleSensor, is used for typical across quantities like the

67

level and the temperature of the reactor, and one type, called FlowSen-
sor, is used for composite flows.

A simple sensor has an input terminal for the physical quantity and
an output terminal for the measured value. The terminals have their
causality attributes defined to be either input or output. The reason for
having defined causalities for the measurements is to prevent misuse of
the model by attempt to affect the system through its sensors.

The flow sensor model has two composite flow terminals — an inflow
and an outflow — and a terminal for the measurement value with a
defined causality. Both types of sensor models have the most trivial kind
of behaviour in this example. More complex sensor models, e.g., with
dynamics, flow resistance or measurement noise, can easily be defined by
using inheritance.

Parameter constraints are used in a few places in the reactor model
to propagate parameter values between different model components. One
example is in the media model where media parameters are bound to pa-
rameters in the media data terminal and thus propagated to the machine
model. Another example is the number of components involved in the
composite flow terminals and in the reaction model. This parameter is
defined explicitly in the media model where it also bound to the value
of 2. The value propagates to the length attribute of twelve different
vector terminals in different places in the model. Propagation is in most
of the cases defined implicitly through connections but there are also two
explicit constraint expressions: one in the media and one in the machine
model.

7.2 A transfer function model representation

The heat exchanger model of the cooling jacket may be quite critical
for the simulation and for the tuning of the control system. For that
reason it may be wise to try to identify a more accurate model based
on measurements from the real process. Assume we have estimated an
ARMAX model that we want to use for the cooling jacket instead of the
one used previously.

From an identified ARMAX model for a single-input single-output
system we can get the deterministic part of the model represented by two
polynomials, a(q) and b(g) in the time delay operator q such that

a(q)y(k) = b(q)u(k)

68

where u(k) is the sampled input and y(k) is the sampled output. A model
with n inputs and m outputs can then be represented by two m by n
matrices of polynomials, A(q) and B(g), such that

A;j(9)yi(k) = Bij(q)u;i(k)

In order to represent this in Omola we have to invent a new type of
realization that we can call DiscreteTransfer:

DiscreteTransfer ISA Realization WITH
attributes:
NoInputs TYPE Cardinal;
NoOutputs TYPE Cardinal;
SampleTime TYPE Real;
U TYPE Column[NoInputs];
Y TYPE Column[NoOutputs];
A TYPE Matrix[NoInputs,NoOutputs] OF Polynomial;
B TYPE Matrix[NoInputs,NoOutputs] OF Polynomial;
END;

Once this new realization type is defined we can extend our simulator and
all other tools that we want to use discrete transfer functions. It is the
names and the meanings of the attributes defined in DiscreteTransfer
that works as a common framework for representing transfer function
models. A particular model based on a discrete transfer function defines
a realization component that is a subclass of DiscreteTransfer and
assigns values to the attributes. A tool accessing such a model has to
know the names of the relevant attributes.

A transfer function for the cooling jacket

We can now use the new type of realization in a new version of the cooling
jacket model. The new cooling jacket model will inherit all attributes
from the old model.

The cooling jacket has three input signals and three output signals.
This makes all together nine transfer functions but we can assume that
one of the outputs, the flow rate of the cooling outlet, is identical to the
flow rate of the cooling inlet and not effected by the other inputs, so we
have actually six transfer functions.

In the transfer function realization of the new cooling jacket we have
to assign values to the number of inputs and number of outputs attributes
and we have to define the assumed ordering of the inputs and outputs by

69

assigning the U and Y vectors. In this example we have chosen to define
the actual transfer function polynomials as parameters so that they can
easily be changed.

CoolingJacket2 ISA CoolingJacket WITH
realization:
TransferFunc ISA DiscreteTransfer WITH
parameters:
A11,A12,A13,A21,A22,A23 TYPE Polynomial;
B11,B12,B13,B21,B22,B23 TYPE Polynomial;
attributes:
NoInputs := 3;
NoQutputs := 3;
U:=[HeatIn.T, CoolIn.T, CoolIn.F];
Y:=[HeatIn.Q, CoolOut.T, CoolOut.F];
A:=[A11,A12,A13; A21,A22,A23; 0,0,1];
B:=[B11,B12,B13; B21,B22,B23; 0,0,1];
END;
END;
With a new cooling jacket model we can now define a new reactor system.
This is easy since the interface of the cooling jacket model is the same

as before. By using inheritance from ReactorSystem as well as from its
realization ReactorStructure, the new reactor model becomes:

ReactorSystem2 ISA ReactorSystem WITH

realization:
ReactorStructure ISA Super.ReactorStructure WITH
submodels:
Cooling ISA CoolingJacket2;
END;
END;

70

8. Conclusions

Models are essential in all kinds of control and process engineering. Since
it is difficult to develop good models, and since models of real processes
tends to become very complex, it is important to have advanced computer
resources supporting development and reuse. Process and control design
usually involve the use of a number of different tools supporting analysis,
synthesis and simulation. All these tools are normally based on some kind
of process model represented in some formal way. The problem is that
the tools are intended to be used as stand-alone programs and therefore
normally communicates with the user and not with other programs.

It is the goal of this thesis to define a standard model representa-
tion to be used as a basis in an integrated environment of cooperating
CACE tools. Such a model representation can be thought of — and
formalized — as a modeling language. In the introduction, the essential
requirements of a new modeling language were identified. In short, the
language must support a number of mathematical and logical frameworks
for representing model behaviour, it must include concepts for structur-
ing complex models and it should facilitate reuse of model components.
Further, the language must be general and extendible in order to rep-
resent new modeling concepts in the future and it must be suitable for
graphical manipulations and incremental model development.

Abstraction and decomposition are the foundations of structured
modeling. This was discussed in Chapter 3 where also the basic concepts
and the different types of model components were presented. The main
structure entity is the model. A model has terminals, parameters and
realizations. A realization is a description of behaviour and a model may
have more than one. The behaviour of a model may be defined by a
set of submodels and connections, thus forming the basis for hierarchical
submodel decomposition. Differential and algebraic equations are the
most general mathematical framework considered for model behaviour
discriptions but also more special types of descriptions are discussed.
Parameters that propagate over terminals and connections make it pos-
sible to check model consistency and prevent misuse of models. This
is specially important when models are saved in libraries and reused by
other persons.

71

The main contribution of this thesis is the specification of a model-
ing language to meet the requirements mentioned above. The language is
called Omola and it was presented in Chapter 5. Omola extends the no-
tion of structured modeling with concepts adopted from object-oriented
programming. Omola can be viewed on two different levels: the basic
level which is a general, object-oriented data representation language and
the model representation level which defines model structuring compo-
nents like model, terminal, realization, etc. The basic level of Omola is
based on the class concept. A class may have attributes which may be
other class definitions or typed variables. Attributes may be grouped
into categories to indicate their different roles. Classes may be related
by subclass relations thus forming an inheritance hierarchy. While the
basic level of Omola is firmly set by the syntax the model representation
level is more flexible; it can be extended with new concepts simply as
agreements between different users and tools.

In Chapter 6 some operations on Omola models were discussed. In
particular an algorithm for parameter propagation and consistency check-
ing was outlined. Also model instantiation and simulation were discussed
briefly.

Omola has been used in an application project studying structured
modeling of chemical processes and found to meet most expectations
[Nilsson, 1989]. The language has been supported by a prototype im-
plementation in KEE and Lisp of an interactive modeling environment.
It also serves as a basis in an on-going implementation project in C++
aiming at a kernel system for modeling, simulation and design.

8.1 Future work

Omola is designed to be extendible and many new modeling concepts can
probably be represented within the current framework without substan-
tial modifications. However, there are extensions to Omola that might be
interesting to include in the future. Some of the extensions are of nota-
tional nature and quite easily adopted while others are more fundamental
and require further research.

72

Regular structure notation

In [Nilsson, 1989] a notation for regular structures is suggested. A regular
structure is a set of submodels of the same type connected in a regular
fashion. This kind of structure appears sometimes in chemical process
applications, in electrical circuits, and as approximations of distributed
parameter models (partial differential equations).

It is suggested that connections of regular structures can be made
by a matrix notation. For example, with an array of submodels declared
by

Element[1..N] ISAN ElementModel;

where N is a structure parameter, we can connect these submodels by a
single connection statement:

Element[1..N-1].0ut AT Element[2..N].In;

It is easy to see how this can be translated into an equivalent set of NV —1
single connection statements.

Multiple inheritance

Many object-oriented programming languages and frame based systems
allow multiple inheritance, i.e., a class may inherit from more than one
direct superclass.

Multiple inheritance is natural when a class can be considered to be
a specialization of several separate concepts. From the example in the
previous chapter, a chemical reactor may, from the first impression, be
defined as a subclass of a tank model, containing the mass and energy bal-
ance equations, and as a subclass of a chemical reaction model. However,
in reality it turns out to be not so simple. The main problem is due to
lack of methods for defining interaction between the inherited parts. This
may possibly be solved by naming conventions, i.e., attributes with iden-
tical names in the superclasses are assumed to refer to the same attribute
in a descendant class. However, this is beyond standard object-oriented
methodology and have to be investigated further.

In [Nilsson, 1989] and in the previous chapter, the chemical reactor
model is instead structured by a media-machine submodel decomposi-
tion. The author also points out that he has not found any good examples
where multiple inheritance could be used effectively. It is my impression
that in most cases where multiple inheritance seems natural, submodel
decomposition can be used just as well.

73

If multiple inheritance turns out to be useful in modeling it can be
included in Omola without too much effort. Basically it requires the
definition of the rules governing resolution of name conflicts, that can
appear when attributes from more than one class are inherited.

Procedural specification

The version of Omola presented in this thesis is a purely declarative
language and there are no concepts of procedural or functional knowl-
edge. In many cases model behaviour is most naturally represented by
functions or procedures in some traditional programming language or in
a special language like Matlab [Moler et al., 1987]. The possibility to
define procedural behaviour in other languages is particularly useful for
development of control systems. The control algorithms may be eval-
uated in a simulation environment and then down-loaded into the real
control system computer.

Procedural knowledge in models can be viewed as user defined meth-
ods. The methods may represent discrete time model behaviour as men-
tioned above but they may also be used to manipulate model classes. For
example, a non-linear model may have a method for linearization that
returns or inserts a new linear realization.

It is desirable that a method concept is introduced in a future de-
velopment of Omola. The definition and invocation of methods will then
be a part of Omola while the implementation of the methods is given
in some other language. Methods may be implemented in Fortran or C
but also in special purpose languages like Matlab for numeric compu-
tations, or Macsyma [Macsyma, 1983] for symbolic manipulations. For
example, a linearization method may be implemented in Macsyma and
also use Macsyma as an external tool to execute the method. In this
way, Omola methods may serve as a common framework and the means
of communication between tools in the environment.

Discrete event models

Many phenomena in the real world are most naturally represented by
discrete event models rather than by continuous time differential equa-
tions. Discrete event models where discussed in Chapter 2. Sampled
models are also common, specially in computer controlled systems and
in models obtained by from measured data by parametric identification.

The extension of Omola towards discrete event and sampled models
is closely related to the introduction of procedural specifications discussed

74

above. If Omola is going to fulfill the intentions of being a universal
modeling language it is important that the notion of discrete events is
incorporated in future versions. It is my strong belief that also this
extension can be made in a graceful way.

75

9. References

ACSL (1986): Advanced Continuous Simulation Language (ACSL),
Reference Manual, Mitchel and Gauthier Associates, Concord, Mas-
sachusetts.

ALLEN, E. M., R. H. TricG and R. J. WoobD (1983): “The Maryland
Artificial Intelligence Group Franz Lisp Environment,” TR-1226,
University of Maryland, College Park, Maryland.

ANDERSSON, M, (1989): “An Object-Oriented Modelling Environment,”
Proc. of the 1989 FEuropean Simulation Multiconference, Rome, June

7-9.

ANON (1987): “Challenges to Control: A Collective View,” IEEE
Transactions on Automatic Control, AC-32, No. 4, April 1987,
275-285.

ARrzEN, K.-E. (1987): Realization of Expert System Based Feedback
Control TFRT-1029, Department of Automatic Control, Lund Insti-
tute of Technology, Lund, Sweden.

AstroM, K. J. and W. KREUTZER (1986): “System representations,”
Proc. IEEE Control Systems Society Third Symposium on Com-

puter-Aided Control Systems Design (CACSD).

BeEcH, D. (1987): “Groundwork for an Object Database Model,”
in B. Shriver and P. Wegner (Ed.): Research Directions in Ob-
ject-Oriented Programming, The MIT Press, Cambridge, Mas-
sachusetts.

BIRTWISTLE, G. M., O-J. DAHL, B. MYHRHAUG and K. NYGAARD
(1973): Simula Begin, Auerbach, Philadelphia, Pa.

BoocH, G. (1983): Software Engineering with Ada, The Ben-
jamin /Cummings Publishing Company, Menlo Park, California.

Brick, D. M. (1987): “Implementation Languages for CACE Software
TFRT-3195, Department of Automatic Control, Lund Institute of
Technology, Lund, Sweden,”.

76

BrUck, D. M. (1990): “ANSI C++ Committee Meeting — December
15, 1989 TFRT-7421, Department of Automatic Control, Lund
Institute of Technology, Lund, Sweden,”.

CELLIER, F. E. (1979): Combined Continuous/Discrete System Simula-
tion by Use of Digital Computers: Techniques and Tools, Dissertation,
Swiss Federal Institute of Techology Ziirich.

ELMASRI, R. and B. N. SHAMKANT (1989): Fundamentals of Database
Systems, The Benjamin/Cummings Publishing Company, Redwood
City, California.

ELMQvisT, H. (1975): SIMNON — An Interactive Simulation Program
for Nonlinear Systems — User’s Manual TFRT-3091, Department of
Automatic Control, Lund Institute of Technology, Lund, Sweden.

ELmqQvisT, H. (1978): A Structured Model Language for Large Contin-
uous Systems TFRT-1015, Department of Automatic Control, Lund
Institute of Technology, Lund, Sweden.

ErmquisT, H. (1986): LICS — Language for Implementation of Control
Systems TFRT-3179, Department of Automatic Control, Lund Insti-
tute of Technology, Lund, Sweden.

ELMQvisT, H. and S. E. MATTSSON (1989): “Simulator for Dynamical
Systems Using Graphics and Equations for Modeling,” IEEE Control
Systems Magazine, 9, No. 1, January 1989, 53-58.

ELmquistT, H., K. J. AsTroM, T. SCHONTHAL and B. WITTENMARK
(1990): Simnon — User’s Guide for MS-DOS Computers, SSPA

Systems, Goteborg, Sweden.

Favek, A. M., R. C. HUNTSINGER and R. E. CROSBIE (1987): “The
New Continuous Systems Simulation Environment in the Simscript
I1.5 Simulation Language,” Preprints of the International Symposium
on Al, Expert Systems and Languages in Modelling and Simulation,

IMACS, June 2—4 1987, Barcelona, Spain.

GOLDBERG, A. AND D. RoBsoN (1983): Smalltalk-80: The Language
and its Implementation, Addison-Wesley, Reading, Massachusetts.

KEENE, S. E. (1989): Object-Oriented Programming in Common Lisp,
Addison-Wesley, Reading, Massachusetts.

KorN, G. A. and J. V. Warr (1978): Digital Continuous-System

7

Simulation, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

KREUTZER, W. (1986): System Simulation: Programming Styles and
Languages., Addison-Wesley Publishers Limited.

LiND, M (1987): “Multilevel Flow Modelling — Basic Concepts,” Espri
Project 96, working paper.

MAcsyMA (1983): MACSYMA Reference Manual, The Mathlab Group
Laboratory for Computer Science, MIT, Cambridge, Massachusetts.

MATTSSON, S. E. (1988): “On Model Structuring Concepts,” Preprints
of the 4th IFAC Symposium on Computer-Aided Design in Control
Systems (CADCS), August 23-25 1988, P.R. China, pp. 269-274.

MATTSSON, S. E. (ED) (1989a): “New Tools for Model Development
and Simulation TFRT-7438, Department of Automatic Control, Lund
Institute of Technology, Lund, Sweden,”.

MATTSSON, S. E. (1989b): “On Modelling and Differential/Algebraic
Systems,” Simulation, 52, No. 1, 24-32.

MATTSSON, S. E. (1989c): “Modelling of Interactions between Submod-
els,” Proc. of the 1989 European Simulation Multiconference, Rome,

June 7-9.

MATTSSON, S. E. and M. ANDERSSON (1989): “An Environment for
Model Development and Simulation TFRT-3205, Department of
Automatic Control, Lund Institute of Technology, Lund, Sweden,”.

MEYER, B. (1988): Object-oriented Software Construction, Prentice
Hall.

MINsKY, M. (1975): “A framework for representing knowledge,” in
P. H. Winston (Ed.): The Psychology of Computer Vision, Mc-
Graw-Hill, New York.

MOLER, C., J. LITTLE and S. BANGERT (1987): PRO-MATLAB User’s
Guide, The MathWorks, Inc., Sherborn, MA.

Moorg, R. L., L. B. HAwWKINSON, M. LEVIN, A. G. HOFFMANN,
B. L. MATTHEWS and M. H. DavID (1987): “Expert system method-
ology for real-time process control,” Proc. 10th IFAC World Congress,
pp- 274-281.

NILSSON, B (1989): Structured Modelling of Chemical Processes —

78

An Object-Oriented Approach TFRT-3203, Department of Automatic
Control, Lund Institute of Technology, Lund, Sweden.

NiLssON, B (1989b): “Structured Modelling of Chemical Processes with
Control Systems TFRT-7439, Department of Automatic Control, Lund
Institute of Technology, Lund, Sweden,”.

PETERSON, J. L. (1981): Petri Net Theory and the Modeling of Systems,
Prentice-Hall, Englewood Cliffs, New Jersey.

PeTzoLD, L. R. (1982): “A Discription of DASSL: A Differen-
tial/Algebraic Systems Solver,”.

PiELA, P. C. (1989): ASCEND: An Object-Oriented Computer Envi-
ronment for Modeling and Analysis, Dissertation, Carnegie-Mellon
University, Pittsburg, Pennsylvania.

PRITSKER A. A. B. and HursT N. R. (1973): “GASP-IV: A Com-
bined Continuous Continuous/Discrete Fortran-Based Simulation Lan-
guage,” Simulation, September 1973, 65-70.

RASMUSSEN, J and M. LIND (1981): “Coping with Complexity,”
Risg-M-2293, Risg National Laboratory, Roskilde, Denmark.

RimmvaLL, C. M. (1986): Man-Machine Interfaces and Implementational
Issues in Computer-Aided Control System Design, Dissertation, Swiss
Federal Institute of Technology Zurich.

SCHENCK, D. (1988): Express, ISO TC184/SC4/WG1, Draft N210,
February 1988.

SCS (1967): “The SCi Continuous System Simulation Language
(CSSL),” Simulation, 9, No. 6, 281-303.

SIMULATION (1988): “Catalog of Simulation Software,” Simulation, 51,
No. 4, 136-156.

STEFIK, M. and D. G. BoBrOW (1986): “Object-Oriented Program-
ming: Themes and variations,” AI Magazine, 6:4, pp. 40-62.

STROUSTRUP, B. (1986): The C++ Programming Language, Addi-
son-Wesley, Reading, Massachusetts.

TAN, C.-Y. and J. M. MACIEJOWSKI (1989): “The GE MEAD Com-
puter-Aided Control Engineering Environment,” 1989 IEEE Control
Systems Society Workshop on Computer-Aided Control System De-
sign (CACSD), December 16, 1989, Tampa, Florida, pp. 72-77.

79

TAYLOR, J. H., D. K. FREDERICK, C. M. RIMVALL
and H. A. SUTHERLAND (1989): “The GE MEAD Computer-Aided
Control Engineering Environment,” 1989 IEEE Control Systems Soci-
ety Workshop on Computer-Aided Control System Design (CACSD),
December 16, 1989, Tampa, Florida, pp. 16-23.

80

A. Syntax Rules

This appendix presents the formal syntax rules of Omola on extended
Backus-Naur (EBNF) form. We have used lower case letters for non-
terminal symbols. Terminal symbols are written in capital letters or
whithin double quotes. A vertical bar “|” separates alternatives, an
expression within square brackets is optional, an expression followed by
an asterisk “*” can be taken zero or many times while an expression
followed by a plus “+” can be taken one or many times. Operators
in expressions are parsed with the following precedence levels; binary
operators are left associative except = which is right associative:

1. unary -, ° 2. %,/

3. +,- 4. range operator
5. relational operators 6. mnot

7. and 8. or

class_definitions ->
(name class_def)*

class_def ->
super_class_def ["with" class_body "end"]

super_class_def ->
isa (IDENT | "this" "." IDENT | "super" "." IDENT)

class_body ->
body-item* tag_body

body_item ->
name_list (class_def |
type_declaration |
variable_binding) ";"

tag_body ->
(TAG body-item* | special_tag_body)x*

81

special_tag_body ->
equation_tag equation* |
constraint_tag equation# |
connection_tag connectionx*

equation ->
conditional_expression "=" conditional_expression ";"

connection ->
terminal AT terminal ";"

type_declaration ->
"type" type_designator [variable_binding]

type_designator ->
n(n na.me_list n)n I
simple_type_designator |
struct_type_designator ["of" simple_type_designator]

simple_type_designator ->
"real" | "integer" | '"cardinal" | "number" |
"complex" | "string" | "generic" | "name" | "symbol"

struct_type_designator ->
"matrix" "[" expr "," expr "]" |
"I‘OW" n[n eXpI‘ "]., I
"ecolumn" n[n expr "]" I
"list" |
"ra:nge"

variable_binding ->
":=" conditional_expr

conditional_expr ->
expr |

"if" expr '"then" expr "else" conditional_expr

expr ->
expr "or" expr |

82

expr "and" expr |
"not" expr |

expr rel_op expr |
expr ".." expr |
expr add_op expr | -
expr mul_op expr |
expr """ expr |

n_..n expr I

primary

primary ->
variable |
matrix |
polynomial |
REAL | INTEGER | STRING |
u(n expr n)n
function_designator

matrix ->
u[n rows n]n

rows —>
expr_list (";" expr_list)#*

expr_list ->
conditional_expr ("," conditional_expr)*

polynomial ->
n{n (c_poly I r_poly) n}n

c_poly ->
expr_list;
r_poly ->
expr ":" expr_list

function_designator ->
IDENT "(" [expr_list] ")"

83

name ->
IDENT

name_list ->
name ("," name)*

variable ->
IDENT (".'" IDENT | "[" expr_list "]")=*

terminal ->
variable

isa ->
"isa" I "isan"

equation_tag ->
"equation:" | "equations:"

constraint_tag —->
"constraint:" | "constraints:"

connection_tag ->

"connection:" | "connections:"
rel_op —>

nyn I nen I et I Ny = | ng="
add_op ->

g l n_mn
mul_op ->

Mg I n/n

84

B-. Data Types and Model

Classes

In this appendix we will give a complete list of all types currently avail-
able in Omola. We will also give the definitions of all predefined model

component classes.

B.1 Omola Types

Type Declaration
Cardinal cardinal
Complex complex
Enumeration (a,b,c)
Generic generic
Integer integer
List list
Matrix matrix[m,n]
row[m]
column[n]
Name name
Number number
Polynomial polynomial
Range range
Real real
String string
Symbol symbol
Comments

Example litteral Comment

1
1i-1
a 1.

-1

[a,b,c]

[1, 0; 0, 1]
[1, 0]

[1; 0]

T.A 3.
3.14
{1,2,3} or
{2: 1,1}
0..10

3.14

um/sn

Tank

1. The type designator may be any list of symbols.

2. Any type is valid data.

85

3. A Name is a symbolic reference that can be resolved to a class or a
variable.

B.2 Omola Model Classes

Model ISA Class WITH
primary_realization TYPE name;
parameters:
terminals:
variables:
realizations:
constraints:
END;

Terminal ISA Class;

SimpleTerminal ISA Terminal WITH
value TYPE Real;
default TYPE Real;
direction TYPE (Across, In, Out);
causality TYPE (Read, Write);
variability TYPE

(TimeVarying, Parameter, Constant) := TimeVarying;

low_limit TYPE Real;
high_limit TYPE Real;
unit TYPE String;
quantity TYPE Symbol;

END;

RecordTerminal ISA Terminal WITH

components:
END;

VectorTerminal ISA Terminal WITH
length TYPE Cardinal;
comptype ISA Terminal;

END;

86

Realization ISA Class;

SetOfDAE ISA Realization WITH
parameters:
variables:
equations:
constraints:
END;

Structure ISA Realization WITH
submodels:
connections:
constraints:

END;

Parameter ISA Class WITH
value TYPE Real;
END;

Variable ISA Class WITH
value TYPE Real;
END;

87

C. Algorithms

This appendix gives the algorithms for searching a model context for all
equations refering to a particular variable. The algorithms are used in
Section 6.2 for deriving variable values. Variables as well as equations are
represented as contexts, i.e., as a class object with a component chain.

The high level procedures are given in Lisp code below. The al-
gorithms are efficient in the sense that they regard the scope rules and
search only those components which may refer to the variable. The scope
rules are, quoted from Chapter 5, the following. A connection defined in
a realization may refer to

la terminals of the model,
1b components of terminals of the model, or
lc terminals of submodels defined in the realization.
An equation or a binding expression in a model may refer to
2a variable attributes of the model,
2b terminals of the model, or
2¢ attributes of terminals of the model, or
2d variables of realizations.
An equation or a binding expression in a realization may refer to
3a variable attributes of the realization or the model,
3b terminals of the model,
3¢ attributes of terminals of the model, or
3d parameters of submodels defined in the realization.

In the procedures, some operations have comments refering to the
particular scope rule numbers.

(defun find_equations (v-context)
;5 Search the context and return a list of equatiomns
;5 and contexts that refer to a particular variable.
(cond ((top-terminal? v-context)

88

(find-equs-top-term v-context))
((terminal-comp? v-context)
(find-equs-term-comp v-context))
((parameter? v-context)
(find-equs-parameter v-context))
((variable? v-context)
(find-equs-variable v-context))
(t

(error "Not a variable context."))))

(defun find-equs-top-term (c)
;; Return all equations refering to the terminal contex c.
(let* ((m (owner c)) ; the model context
(r (prime-realization m)) ; the primary realization
(s (owner m))) ; super model

(append

(filter (equations m) (last c)) ; 2b
(filter (equations r) (last c)) ; 1a, 3b
(filter (equations s) (last2 c))))) ; 1c

(defun find-equs-term-comp (c)
;5 Return all equations refering to terminal component c.
(let* ((m (owner (top-term c))) ; the model
(r (prime-realization m)); its prime realization

(tc (term-comp c))) ; Context of comp relative
; top term.
(append
(filter (equations m) tc) ; 2¢

(filter (equations r) tc)))) ; 1b, 3¢

(defun find-equs-parameter (c)
;5 Return all equations refering to parameter context c.
(let ((s (owner (owner c)))) ; a model or a realization
(append
(find-equs-variable c)
(filter (equations s) (last2 c))))) ; 3d

(defun find-equs-variable (c)

89

(let ((o (owner c))) ; model or realization context
(cond ((model? o)
(append
(filter (equations o) (last c)) ; 2a
(filter (equations (prime-realization o)) ; 3a
(last ¢))))
((realization? o)
(append
(filter (equations o) (last c)) ; 3a
(filter (equations (owner o))
(1ast2 ¢))))))) ; 2d

The algorithms use a number of low-level procedures which are not given
as code but listed together with short descriptions below.

First we have some basic context operations. The concept of context
was introduced in Chapter 6. In the following function descriptions a
string notation is used for contexts.

Owner context [Function]
Return the owner’s context. For example, owner ("A.B.C") re-
turns the context "A.B" since B is the owner of C.

Last context [Function]
Return the “last” part context. For example, last("A.B.C")

returns the context "C".

Last2 context [Function]
Return the “two last” part context. For example,
last("A.B.C") returns the context "B.C".

Concat contextl context2 [Function]
Return the concatenated context. For example,
concat ("A.B","C.D") returns the context "A.B.C.D".

Top-Term term-context [Function]
Return the context of the top terminal given the context of
a terminal component. By top terminal is meant a terminal
directly owned by a model. For example, topterm("M.T.A.B")
returns the context "M.T" if M is a model and T is one of its
terminals.

Term-Comp term-context [Function]
Return the context of a terminal component relative its top
terminal. This is the complementary function to previous func-

90

tion TopTerm. For example, topterm("M.T.A.B") returns the
context "A.B" if M is a model T is one of its terminals.

Here follows the descriptions of the other functions used in the algorithms

above.

Equations context [Function]
Return all equations and bindings that are defined in context.
The returned equations are represented with contexts.

Filter equations var-context [Function]
Return only those equations that have references to var-context. |

Model? context [Predicate]
Return true if the context is a model context.

Parameter? context [Predicate]
Return true if context is a parameter context.

Prime-realization model-context [Function]
Given a model-context return the context of its primary real-
ization.

Realization? context [Predicate]

Return true if the context is a realization context.

Terminal-Comp? context [Predicate]
Return true if context is a terminal component context.

Top-Terminal? context [Predicate]
Return true if context is the terminal of a top terminal, i.e., a
terminal directly owned by a model.

Variable? context [Predicate]
Return true if context is a variable context.

91

D. Tank Reactor Example

D.1 The Reactor System and its Submodels

ReactorSystem is the top-most model in this example. Its code is given
in this section followed by the code of the main submodel ReactorVessel
and its submodels ReactorVesselMachineModel and MediaModel. The
CoolingJacket model is also found in this section.

ReactorSystem ISA Model WITH
h
% Reactor vessel with cooling jacket,
% valves and sensors.
%
terminals:
CoolIn ISA SimpleInPipe;
CoolOut ISA SimpleOutPipe;
LiquidIn ISA CompositeInPipe;
LiquidOut ISA CompositeOutPipe;
ControlAct ISA RecordTerminal WITH
Cool ISA SimpelTerminal;
Feed ISA SimpelTerminal;
END;
Sensors ISA RecordTerminal WITH
L, T, F ISA SimpleTerminal;
END;
realization:
ReactorStructure ISA Structure WITH
submodels:
Reactor ISA ReactorVessel;
Cooling ISA CoolingJacket;
CValve ISA Valve;
FValve ISA Valve;
LSensor ISA LevelSensor;

92

TSensor ISA TemperatureSensor;
FSensor ISA FlowSensor;
connections:
CoolIn AT CValve.IN;
CValve.Out AT Cooling.CoollIn;
Cooling.CoolOut AT CoolOut;
LiquidIn AT FValve.In;
FValve.Out AT Reactor.LiquidIn;
LiquidOut AT FSensor.In;
FSensor.Out AT LiquidOut;
FSensor.Flow AT Sensors.F;
LSensor.In AT Reactor.Level
LSensor.0ut AT Sensors.L;
TSensor.In AT Reactor.T;
TSensor.Out AT Sensors.T;
Cooling.HeatIn AT Reactor.HeatOut;
ControlAct.Cool AT CValve.X;
ControlAct.Feed AT FValve.X;
END; :
END;

ReactorVessel ISA Model WITH
/
% Media -- data decomposition of reactor.
b
terminals:
Inlet ISA CompositeInPipe;
Outlet ISA CompositeOutPipe;
Cooling ISA HeatFluxOut;
Level ISA LevelData:

Temp ISA TemperatureTerminal;
realization:
MediaMachine ISA Structure WITH
submodels:

Machine ISA ReactorVesselMachineModel;
Media ISA MediaModel;
connections:
Inlet AT Machine.Inlet;
Outlet AT Machine.Outlet;

94

Cooling AT Machine.Cooling;
Level AT Machine.Level;
Temp AT Machine.Temp;
Machine.MD AT Media.MD;
END;
END;

ReactorVesselMachineModel ISA Model WITH
h
% A liquid tank with dynamic behaviour.
h
terminals:
Inlet ISA CompositelInPipe;
Outlet ISA CompositeOutPipe;
Cooling ISA HeatFluxOut;
Level ISA LevelData;
Temp ISA TemperatureTerminal;
MD ISA MediaDataTerminal;
parameters:
Area ISA Parameter;
constraints:
MD.C.length = Outlet.C.length = Inlet.C.length;
realization:
Behaviour ISA SetOfDAE WITH
equations:
% Mass balance:
Area*dot(Level) = Inlet.F - Outlet.F;
V = AreaxLevel;
% Component mass balance:
dot(N) = Inlet.F*Inlet.C - Outlet.F*Qutlet.C +
V*MD.R;
C=N/V;
% Energy balance:
dot(e) = MD.roh*(Inlet.F*Inlet.T*MD.Cp
- Outlet.F*0Outlet.T*MD.Cp)
+ MD.Q - Cooling.Q;
e = MD.roh*V*MD.Cp*Outlet.T;
% Homogeneity:
Cooling.T = Outlet.T;

Outlet.C = C;
MD.C = C;
END;
END;

MediaModel ISA Model WITH
h
% Media model of ReactorVessel.
% Describing the reaction: A -> B
h
terminal:
MD ISA MediaDataTerminal;
parameters:
roh TYPE Real; % Density
Cp TYPE Real; Y Heat capacity
dH TYPE Real; 7 Reaction entalphy
Ea TYPE Real; J Activation energy
R TYPE Real := 8.3143;
noComp TYPE Cardinal := 2;
constraints:
MD.roh = roh;
MD.Cp = Cp;
MD.R.length = MD.C.length = noComp;
realization:
Behaviour ISA SetOfDAE WITH
equations:
MD.R = [rr -rr]’;
rr = kxMD.C(1);
k = kOxexp(-Ea/R/MD.T);
MD.Q = dHx*rr;
END;
END;

CoolingJacket ISA Model WITH
b
% Cooling jacket of tank reactor.
h
terminals:
CoolIn ISA SimpleInPipe;

95

CoolOut ISA SimpleOutPipe;
HeatIn ISA HeatTransferIn;
parameters:
Area TYPE Real;
Cv TYPE Real; ¥ Heat transfer coeff.
Cp TYPE Real; Y% Heat capacity of cooling media.
roh TYPE Real; 7 Density of cooling media.
realization:
Equations ISA SetOfDAE WITH
equations:
% energy balance:
HeatIn.Q = deltaT*(Cp*roh*CoolIn.F);
deltaT = CoolOut.T - CoolIn.T;
% mass balance:
CoolIn.F = Cool0ut.F;
% heat transfer:
HeatIn.Q = CvxArea*(HeatIn.T - Tav);
Tav = CoolingIn.T + deltaT/2;
END;
END;

D.2 Standard Component Models

In this section, the code of Valve, CompValve, SimpleSensor and
FlowSensor is given.

Valve ISA Model WITH
h
% Valve model.
h X is valve position where X=1 is fully open
% and X=0 is closed.
h
terminals:
In ISA SimpleInPipe;
Out ISA SimpleOutPipe;
X ISA ActuatorTerminal;
parameter:
k TYPE Real := 1.0; % Gain
realization:

96

Behaviour ISA SetOfDAE WITH
equations:
Out .F*ABS(Out.F) = k*XxdeltaP;
deltaP = In.P - Qut.P;

% Flow and teperature preservation:

Out.F = In.F;
Out.T = In.T;
END;
END;

CompValve ISA Valve WITH
//
% Refinement of Valve that takes
% composite flows.
h
terminals:
In ISA CompositeInPipe;
Out ISA CompositeOutPipe;

realization:
Behaviour ISA Super.Behaviour WITH
equation:
In.C = Out.C;
END;
END;

SimpleSensor ISA Model WITH
terminals:
In ISA InTerminal;
Out ISA OutTerminal;
parameter:
k TYPE Real := 1.0; % Gain

realization:
Behaviour ISA SetOfDAE WITH

equation:
Out = k*In;
END;
END;

FlowSensor ISA Model WITH

97

h
% Flow sensor for composite flows.
/
terminals:
In ISA CompositelInPipe;
Out ISA CompositeOutPipe;
Flow ISA OutTerminal;
parameter:
k TYPE Real := 1; % Gain
realization:
Behaviour ISA SetOfDAE WITH
equations:
In = Qut;
Flow = k*0ut.F;
END;
END;

D.3 Terminals

Here follows the code for terminal types used in the reactor example.

Structured Terminals

CompositionTerminal ISA VectorTerminal WITH

length := 2;
CompType ISA ConcentrationTerminal;
END;

SimpleFlowPipe ISA RecordTerminal WITH
components:
F ISA SimpleTerminal;
T ISA TemperatureTerminal;
P ISA PressureTerminal;
END;

SimpleInPipe ISA SimpleFlowPipe WITH
F ISA FlowInTerminal;
END;

98

SimpleOutPipe ISA SimpleFlowPipe WITH
F ISA FlowOutTerminal;
END;

CompositeFlowPipe ISA SimpleFlowPipe WITH
components:
C ISA CompositionTerminal;

END;

CompositeInPipe ISA CompositeFlowPipe WITH
F ISA FlowInTerminal;
END;

CompositeOutPipe ISA CompositeFlowPipe WITH
F ISA FlowOutTerminal;
END;

HeatTransferIn ISA RecordTerminal WITH
components:
F ISA HeatFluxIn;
T ISA TemperatureTerminal;
END;

HeatTransferOQut ISA RecordTerminal WITH
components:
F ISA HeatFluxQOut;
T ISA TemperatureTerminal;
END;

FlowData ISA FlowTerminal WITH

direction := across;
causality := out;
END;

LevelData ISA SimpleTerminal WITH

quantity := position;
unit := "m";
direction := across;

99

END;

MediaDataTerminal ISA RecordTerminal WITH
h
% Terminal for connecting media and
% machine model in reactor vessel.
/
components:
% Reaction rate:
R ISA VectorTerminal WITH
CompType ISA SimpleTerminal;
END;
% Concentration:
C ISA VectorTerminal WITH
CompType ISA ConcentrationTerminal;
END;
% Temp:
T ISA TemperatureTerminal;
% Parameters:
roh, Cp ISA ParameterTerminal;
END;

General, Simple Terminals

100

ParameterTerminal ISA SimpleTerminal WITH
variability := parameter;
END;

ActuatorTerminal ISA SimpleTerminal WITH
range := 0.0..1.0;
END;

InTerminal ISA SimpleTerminal WITH
causality := in;
END;

OutTerminal ISA SimpleTerminal WITH
causality := out;
END;

Physical Quantity Terminals

PressureTerminal ISA SimpleTerminal WITH

quantity := pressure;

unit := "kPa";

direction := across;
END;

TemperatureTerminal ISA SimpleTerminal WITH

quantity := temperature;
unit e= "KM,
direction := across;

END;

FlowTerminal ISA SimpleTerminal WITH

quantity := volumetric_flow;
unit = "m~3/s";
END;

FlowOutTerminal ISA FlowTerminal WITH
direction := out;
END;

FlowInTerminal ISA FlowTerminal WITH
direction := in;
END;

HeatFluxTerminal ISA SimpleTerminal WITH
quantity := heat_flux;
unit := "J/s/m"2";

END;

HeatFluxIn ISA HeatFluxTerminal WITH
direction := in;
END;

HeatFluxOut ISA HeatFluxTerminal WITH

direction := out;
END;

101

102

ConcentrationTerminal ISA SimpleTerminal WITH

quantity := mole_concentration;
unit = "kmole/m"~3";
direction := across;

END;

