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Abstract

System identification of linear multivariable dy-
namic models based on discrete-time data can be
performed using a algorithm combining linear re-
gression and LQG-balanced model reduction. The
approach is applicable also to unstable system dy-
namics and it provides balanced models for optimal
linear prediction and control.
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Introduction

Among many approaches to system identification,
least-squares methods, maximum-likelihood meth-
ods, realization-based methods and subspace-based
metheds stand out as methods of choice in various
contexts. However, certain weaknesses can be no-
ticed in the capacity of algorithms to produce min-
imal model representation and to handle correlated
noise or multi-input’ multi-output data. For ex-
ample, a drawback with many implementations of
(approximate) maximum-likelihood (ML) methods is
that they rely on numerical optimization. Related
problems appear in applications of these methods to
multi-input multi-output systems where properties
of uniqueness of parametrization become important.
Another weak point in many system identification
approaches to multivariable linear systems is how to
find appropriate models for colored noise. The com-
bination of these issues have inspired new efforts to
improve pseudolinear regression and subspace-based
models using singular value decomposition. Pseu-
dolinear regression is often organized as a two-step
method where the first step involves linear regres-
sion to find a high-order model and a second step in
which the model order is reduced and where the dis-
turbance model is found—e.g., as an iterated Markov
estimate. One alternative is to apply balanced model
reduction in the second step. As balanced model re-
duction only can be applied to stable models, there
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is a limited application range for this method. How-
ever, Fuhrmann and Ober and more recently Sa-
lomon et al. have suggested a modified balanced
model that exploited a modified balancing approach
{3], [12]. Instead of solving for a pair of Gramians
using Lyapunov function, it was suggested to be re-
placed by Riccati equation. An immediate applica-
tion in the context of model reduction is that un-
stable systems may be objects for model reduction.
The idea goes back at least to Desai and Pal [2], and
Jonckheere and Silverman [9], who suggested LQG-
like balanced realization for innovation models and
Kalman filters obtained in covariance analysis [2, 9].

This important observation can also be exploited in
the context of system identification. In the context
of pseudolinear regression, the benefit is two-fold.
Firstly, it permits the application ef pseudolinear re-
gression to unstable systems which, in, turn permits
derivation of disturbance models. Secendly, by virtue
of the LQG properties it permits the formulation of
optimal linear model approximation to reduced-order
models for application in LQG control and Kalman
filtering. Important application is to be found in
identification for control, Kalman filter design and
spectrum analysis.

Preliminaries

Balanced Model Reduction
Given is a linear time-invariant m-inputs p outputs
transfer matrix G(s) with a realization given by

Axp, + Buy
Cxp, + Duy,

Xyl
Ve

(1)

where x € R% uw € R™, y € R? and A,B,C,D are
matrices of appropriate dimensions. Denote the re-
alization of H(z) given in Eq. (1) by ${4,B,C,D}

]

()



The controllability and observability Gramians are
defined as

P

iAkBBT(AT)", 3
Q

Q i(AT)*CTCA" (4)
0

Note that P, @ are also the solutions to the discrete
Lyapunov equations {or Stein equations)

APAT + BRT
ATQA +CTC

P (5)
Q (6)

In the case where (A, B} is controllable and (A, C)
observable, there exists a linear transformation
T such that S{TAT,TB,CT"!, D} is balanced—
ie, TPTT (T 1QT-! I with X
diag{c1,02,...,0,}. Now partition of the resulting
transformed system matrix into

1l

[ An A | B Ay € R™,
S=| A A |B: |, BeR™, r<n (7}
C, G| D C, € RE*T

Then, a reduced-order model 5, of order r < n can
be obtained as one of the following approximants
»Ortl S HS_ Sr'Hoo S 2 Z Ok

By
D
k=r+1

An— ApApiAn | B — ApAR By } (8)
C} - 02A§21A21 l D~ 02A2_21B2

S

‘-

where the first one is known as balanced truncation
whereas the second one is the singular perturbation
approximation,

il
—

The discrete Lyapunov equation APAT + BBT = P
has a unique solution if and only if A;,(4)4;{A)" # 1,
¥i,j. Even for the unstable case, there may exist
unique and symmetric solutions. A serious problem,
however, is that the resulting P will be indefinite
and useless for modell approximation purposes. Sa-
lomon et al. [12] showed that for (A, B) stabilizable,
(A, C) detectable there are still relevant solutions
obtained by replacing Lyapunov equations with the
Riccati equations -

P = APA" +BBT (®)
APB(R + BTPB) 'BTPAT
@ = ATQA+CTC (10)

ATQCT(R + CQCTYICQA

The model reduction scheme obtained using this
modification is called LQG-balanced model reduc-
tion. :
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System Identification Algorithm
Consider a discrete-time time-invariant system
S2(4, B, C, D) with system equations
Ax, + Buy +vg
Cxp + Duyp + e

X+l
Yr

(11)

with input z; € R™, output y; € R?, state vector x; €
R® and zero-mean disturbance stochastic processes
vy € R*, e, € RP acting on the state dynamics and
the output, respectively. The discrete-time system
identification problem is to find estimates of system
matrices A, B, C, D from finite sequences {uk}}’f:u
and {y:}}", of input-output data. Using a left matrix
fraction description

Ap(e Y B (e ) =C(zI —A) !B+ D
ALz ) (e )y =Clel —A) 'K +1
Ap(z D=L+ A1z + - + A,z " € RPPz77]
Bi(z")=By+ Bz 4+ + B,z € RPz7]
Coiz ) =G+ Cz7l +- + Gz " € RF*P[z7]]
To the purpose of linear regression for estimation, it
is straightforward to formulate this model as coun-
terpart to the autoregressive moving-average model
with external input (ARMAX) used in time-series
analysis
AL(z7N)Y(2) = BL(z™)U (2) + CL(z7)W(2)

and the linear regresson model

(12)

- Z Az *Y (2) + Zn: Bilz""U{2)

Y(z) =
k=1 k=0
+ ) G tW(z) (13)
k=0

Example 1—Spectral Ratio
Rational functions obtained from z-transformed
input-output data

Y(z)
U(2)

provide transfer function estimate that are highly
nonminimal rational functions with many approxi-
mate pole-zero cancellations (Fig. 1). The pole-zero
map with many poles and zeros within the unit circle
as well as outside the unit circle is difficult to han-
dle using standard balanced model reduction as the
solutions for controllability and observability Grami-
ans fail.

H{z)= (14)

LQG-Balanced System Identification

Because W(z) is not available to measurement, lin-
ear regression cannot be applied. As a substitute,
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Figure 1: Pole-zero map of transfer function estimate
obtained from spectral ratic model reduction
. exhibits many pole-zero cancellations inside
and outside the unit circle. Pole pattern after
1.QG-balanced pole shifting shows a shift into
stable region. Original poles are indicated by

’x" and the LQG-shifted poles as '+

pseudolinear regression may be applied as an itera-
tive procedure where the essential step is to find a
pseudoregressor sequence to substitute the unknown
regressor sequence. To the purpose of least-squares
identification, then, it is suitable to organize model
and data according to

1: Arrange for data sequences of discrete-time data
{ur}, {7} with {; L, for j = 0,1,..., g, for some
g>n

2: Formulate the regression model

Ye = —Aiyve1— - —Ap¥en (15)
+Bu) + -+ Bytig_n, YR ERP
8 = (Ai...A, Bi...B,)", geRr(max
which suggests the linear regression model
Mi: Yy=0n8 (18)
3: Arrange data sequences into matrices
T
¢ = (_yij;l“- —¥in u;{—l"‘u;{—n)
o o7
7 3
yN — ; € RNX‘D, GOy = ; c Ran(m-(-p)

el |
.
-1

Y

4: Compute the least-squares estimate 8 and the
residual sequence Ey € RY*? with rows {el}.,

By = (PFoN)oLow (17)
En(d) = Yn-Fn=0n-0nb

i

(Iy — N (PLON) O)YN  (18)

5: Formulate a pseudoregression model! using
{ex}lY, to replace unknown disturbance {w;}

ye = —Awka— Ak Y €RPu, eR™
+Bup 1+ + Bhup_p v
+er 4+ Ciep1+ 4 Cobrn (19}

6 = (A1...A4, Bi..B, G...G)",
which suggests the linear regression model

Mz : DfN =dyb8, O€ Jpr(mt+2p+1)xp. _ (20)

As a result of the non-unigueness of parameters, the
normal equations of the associated least-squares es-
timation of @ will exhibit rank deficit in general. It is
therefore natural to apply the least-squares solution

Oy = (PFoNn) oL YN (21)

where (9% ®y)* denotes the matrix pseudo-inverse
of L ®y. The associated least-squares estimate
then obtained has the smallest 2-norm of all possible
minimizers of the least-squares criterion.

Step 2—LQG-balanced Model Reduction:
The regression models M;, M, suggest nonminimal
multivariable state-space models which may be ob-
jects for model reduction.

A nonminimal state-space model may be suggested
as

—A, —A; —Ay -+ —A,
I, 0 0 - 0
A = o I, 0 :
0 - 0 I @
B, = [In 0 0 - 0 (22
C. = [Bi B: - B (23)

The intermediate high-order result

Xr+1) _ Ax Bx Ak
()-(& 9)@G) e
permits application of LQG-balanced model reduc-

tion. Note that the state-space description of Eq.
(24) is observable but not controllable.
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Figure 2: Input-output data of Example 2.

LQG-balancing in Spectrum Analysis

Based on N samples of input-output data, a trans-
fer function estimate can be obtained as the spectral
ratio

H(z) = 8,.(2)8;1z) where (25)
N

Sy(z) = 3 Cu(k)z™, S, € RP™(2) (26)
E=—N
N

Sulz) = 3 Cul®)z™ Su eR™M(2) (27)

k=—N

The spectral ratio offers an interpretation as a non-
minimal right matrix fraction description

Ar(2){(2) = U{2) (28)
Y(z}) = Bgr(2)§(2) {29)
where
AR(Z) = ZNSuu(z) (30)
Bg(z) = zNSyu(z) (31)

LQG-balanced model approximation serves to re-
duce the rational function to a coprime factorization.

Example 2—Spectrum Analysis
Step-response data (N = 50} obtained from the sys-

tem
(1i5 —8.9) o+ (D64) w (32)
(1 0)xx (33)

were used for transfer function estimation (Figs. 2-
3). Singular values are shown in Fig. 4. Spectral

Xk41

i

Yk
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Phase {dog); Magnitude {di)

Frequency [radisec)

Figure 3: Transfer function estimates obtained from
spectral ratio model reduction exhibit many
pole-zero cancellations inside and outside the
unit circle and transfer function estimate af- .
ter LQG-balanced pole shifting shows a shift
into stable region.

estimates, LQG-balanced spectral estimate and spec-
tral estimate of the reduced-order model are shown
in Fig. 3.

LQG-balancing for Frequency-domain Meth-
ods

Frequency response fitting based on least-squares
identification in the complex frequency domain is a
natural idea which also benefits from LQG balanc-
ing. Let the polynomial ratio

Gliw) = A (iw)B(io) (34)
As) = s L+A1s" T+ + A5+ A,
B(s) = Bis"'+---+B,15+B,

denote a transfer function estimate to be fitted to
the experimental data G(iw;) and known at the fre-
quency points @, k= 1,2,..., N. A natural goal of
optimization is to minimize the error criterion

min Y IAEY (@) - BUEL,, o (35)
k

where Y(z), U(z) denote z-transformed input-output
data. The linear regression problem with parameter
vector 8 takes on the format

#

Y
e

Dy = (Dy dy)o
(A A, B

(36)

YY)

B.)
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Figure 4: Singular values obtained from LQG-balancing
of spectral ratic in Example 2. Model re-
duction exhibits many pole-zerc cancellations
inside and outside the unit cirele and trans-
fer function estimate after LQG-balanced pole
shifting shows a shift into stable region.

with o
()" Y7 (2%1)
{iwe)" Y7 (2')
v = : (38)
(iww)"Y7 (2i7%)
and the regressor matrices
—(iw, P T (@) i YT (F%) YT(EM)
(g YT (ef®)  imp¥T(2r)  YT(e'™)
Gy =
—(in)"‘iYT(ej“’N) iy YT (79N) YT(x;"‘"N)
(iwl)"_]UT(em’l) “-ia)lUT(ij‘) U]"(eximl)
(i)t UT () .. impUT (™)  UT (%)
Py = : : :
(fwn) -1 UT(EoN) - imgUT(Zo8)  UT (&%)
The least-squares sclution minimizing is then
@ = (Do)l (39)

whera ®* denotes the transpose and complex conju-
gate of .

LQG-balanced model reducticn can be applied to the
intermediate result

_A, Ay, - —A, 1.

I, ] 0 0 0
Xpp1 = . R . x| L | e

0 0 I, O 0
wo= (B B . B)m
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Discussion and Conclusions

Assume that LQG-balanced model reduction exploits
the Riccati equations

P = ATPA+BBT-ATPB(R+BTPB)'BTPA,
Q AQAT + CTC — AQCT (R + CQCT)1CQAT
or
P = (A-BK)"P(A-BK)+BB" + KTRK
K = (R+BTPB)!BTPA,
Q@ = (A-LCO)RQA-LC)YT +C"C+LRLT
L AQCT(R +CQCT)! (40)
Introduce the variables and factorizations
R (RY*)T(RY?) (41)
Sp R+BTPB = (8Y)78/%,  (42)
Se = R+0QCT =58,  (43)
A-BK -B
.ﬂP = (S;lfz(Rl/g)TK 0 )1 (44)
A-LC LRVIS;'?
= Q 4.
e ( —c 0 (48)
P O
Pp = PL= (0 Sp) >0, (46)
Q@ ©
Py = Ph= (0 Sq) >0 (47)
BBT 0
Qp = ( o R)zo, {48)
cTC o
Qe = (%° 7)20 (19)

Then, the Riccati equations of Eq. (40) may be rep-
resented by the Lyapunov equations

ALPpAp — Pp
APAL — P

(50)
(51)

—Qr
—Qq

where it can be concluded that all eigenvalues of
the system matrices Ap, Ag have magnitude less
than one. This formulation serves to express the
formal similarity between Gramian-based balancing
and that of LQG-balanced model reduction.

Moreover, the balancing and model reduction oper-
ations of Eqs. (7-8) can be represented by left and
right matrix multiplications of the Lyapunov equa-
tions (50-51). For the case of balanced truncation,



there are matrices Tp and Ty, respectively.

TePpT§ = Tp(ALPplp+ Qp)TF (52)
= (T3 ApTE)T - TpPpTE TEATE
+ TpQpTf
TePeTy = To(AePafg +Qe)T5 (53)
= (ToAqTY) (TePQT3)  (ToAQTH)"
TeQ T3

Major application areas are to be found for optimal
control and optimal prediction using reduced-order
models. For a model S{A,, B,,C., D,} of reduced or-
der r, we have the reduced-order Riccati equations

P, = (A —-B.K)'P(A,—B.K,)
+B,.BI + KTRK, + Rp
K. = (R+BFTP.B)'BTP.A,, (54)
Qr (Ar - L, Cr)Qr(Ar - LrCF)T
+CTC + L. RLY + Ry (55)
L, = AQCTR+GQCH™!

for some matrices Rp, Rg which represent the dif-
ference between the higher-order model and the
reduced-order model. An interpretation is that Rp,
Rg represent the approximation cost associated with
the model approximation. For example, the cbhserver

§k+1

e

(Ar - Lr Cr)'gk + (Br - LrDr)uk + Lryk,
G + Dy, (56)

has an asymptotic covariance function from @, and
its convergence rate described by

V(&) = -f?égrgk Ekfé?k—-fk (67)
AV(Er) = V(Sk+1) = V(Er)
= EN(—CTC - L,RLT - Rg)é,
< 0, ||&l#0 (58)

Thus, the cost of optimal approximation can be quan-
tified by Rg in the context of optimal prediction [8].

Another interesting application which is opened
up by the LQG-balanced model reduction is state-
space model identification based on empirical trans-
fer function estimates—e.g., input-cutput spectrum
ratios or cross-spectrum ratios. Previously, such ap-
proaches were hampered by the presence of unsta-
ble pole-zero cancellation in the rational functions
obtained. A remaining problem, though, is how to
treat cases with eigenvalues of A on the imaginary
axis. Unlike regular balancing, LQG-balancing re-
quires the solution of two Riccati equations and the
computational cost for solving Riccati equations may
be high. Hence, a serious concern is the order of the
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system to which LQG-balancing be applied. An in-
teresting question for further investigation is how to
exploit relationships to subspace-based identification
and to the Krylov-Arnoldi methods—see [5], [1]).

References

[t] A. C. Antoulas, D. C. Sorensen, and
5. Gugercin. A survey of model reduction methods
for large-scale systems. In Structured Matrices
in Operator Theory, Numerical Analysis, Con-
trol, Signal and Image Processing, Contemporary
Mathematics. AMS publications, 2001.

[2] U.B. Desai and D. Pal. A realization approach
to stochastic model reduction and balanced stochas-
tic realizations. In Proc. IEEE Conf. Decision and
Control, pages 1105-1112, Orlando, FL, 1982.

[3] P. A Fubrmann and R. Ober. A functional ap-
proach to LQG balancing. Int. J. Control, 57:627-
741, 1993.

[4] K. Glover. All optimal Hankel-norm approxi-
mations of linear multivariable systems and their L-
infinity error bounds. Int. J. Control, 39:1115-1193,
1984.

{5] S. Gugercin and A. C. Antoulas. A comparative
study of 7 model reduction algorithms. In Proc. 39th
IEEE Conf, Decision and Control, Sydney, Australia,
Dec. 2000.

[6] R.Johansson. Identification of continuous-time
models. IEEE Trans. Signal Processing, 4(42):887—
897, 1994,

{71 R. Johansson, M. Verhaegen, and C. T. Chou.
Stochastic theory of continuous-time state-space
identification. IEEE Trans. Signal Processing,
47:41-51, 1999,

[8] R. Johansson, M. Verhaegen, Chun T. Chou,
and A. Robertsson. Residual models and stochastic
realization in state-space identification. Int. J. Con-
trol, 74(10):988-995, 2001.

[9] E. A. Jonckheere and L. M. Silverman. A new
set of invariants for linear systems—application te
reduced-order compensator design. IEEE Trans. Au-
tomatic Control, 28:953-964, 1983.

[10] B. €. Moore. Principal component analysis
in linear systems: Controllability, observability, and
model reduction. IEEE Trans. Autom. Control, AC-
26:17-32, 1981.

[11] L. Pernebo and L. M. Silverman. Model re-
duction via balanced state-space realizations. IEEE
Trans. Automatic Control, pages 382-387, 1982.

[12] G. Salomon, K. Zhou, and E. Wu. A new bal-
anced realization and model reduction method for
unstable systems. In Preprints I14th IFAC World
Congress, Beijing, China, 1999.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


