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1. Introduction

This report describes the work done in the project “Representation and visu-
alization of systems and their behaviowr” (STU project 86-4049). It has been
a part of the project “Computer Aided Control Engineering (CACE)” at the
Department of Automatic Control, Lund Institute of Technology.

This introductory chapter is organized as follows. First, we briefly moti-
vate why representation of systems is an important issue in CACE., Second, we
consider how some basic requirements on CACL systems influence the design
of a system concept. Third, the organization of the report is described.

1.1 Motivation

The notion of system is an essential element of control theory. The system
concept is used in all steps from specification to implementation of control
systems. Consequently, the representation and visualization of systems and
their behaviour are from several aspects a key issue in CACE.

1t is fruitful to view a CACE system as a high level problem solving lan-
guage. A language should be more than just a means for instructing the
computer to perform tasks. It should also serve as a framework within which
we organize our ideas about the application. It should support the user’s men-
tal model of the problem. Consequently, the designer of a user interface must
know the user. This is a basic and important reason why control engineers
should take part in the design of CACE programs.

In the subproject “High-level problem solving languages for computer
aided control engineering” (STU contract 85-4808) (Astrém and Mattsson,
1987) existing CACE packages were viewed as high level problem solving lan-
guages. Examples of system representations used in current CACSD packages
are given in the report. The study showed that system representations are
poorly dealt with in existing CACY systems.

Most of today’s CACE programs are dealing with pure mathematical de-
scriptions, However, there is also a need for being able to discuss qualitatively
about systems and for handling of incomplete and maybe inconsistent informa-
tion. Ideas and concepts from artificial intelligence and knowledge engineering
may be useful in this context.

Existing CACE packages were designed for computers, which by today’s
standards have moderate computing power and primitive devices for input and
output. Graphics plays an important role in control engineering. First, many
of the techniques for the analysis of control systems rely on graphics; trend
curves, phase planes, Bode plots, Nyquist plots and root locus plots. Second,
it is natural for a control engineer to use block diagrams when describing a
process or a model, Unfortunately, the use of graphics in CACE has been
hampered by lack of feasible hardware for a long time. However, the situation
is changing drastically. The new workstations with high performance, real-
time graphics offer new possibilities to introduce graphics in CACE.




1.2 Basic Requirements

We will in this section discuss how some basic requirements on CACE software
influence the design of a system concept.

Integrated toolkit, not encapsulated packages

It is today commonly agreed that it is impossible to make the ultimate CACE
package. First, new methods for analysis and design are developed. Second,
different nusers may have conflicting demands. Third, such a package would be
of incredible size and impossible to manage and maintain. A CACE system
should not be an encapsulated package. The CACTE software should be flexible
and modularized with well-defined interfaces between the modules. The buzz-
words are tool, toolkit (tool box) and tool machine. The last one indicates
that it is important that a CACE system is not merely a collection of tools,
but an integrated system. By integration we mean that there need not be
any explicit context switches or conversions when switching between tools and
that a user should have a uniform, consistent and predictable interface to all
tools.

Separate the user interface from processing paris

To get a flexible tool box it is important that the CACE software is properly
modularized. In rough outline a CACE system can be decomposed into three
parts: the user interface, data and processing tools.

A user interface could be designed in many different ways using various
kinds of input and output devices. The programmer should be able to include
new tools that support new I/O devices and new ways to interact, Since
various users have diflerent preferences and need different kinds of support, it
would be attractive if the user could design his favourite interface. The CACE
system must of course provide a number of typical interfaces, especially for
beginners and casual users.

The feasibility of separating the user interface from the processing parts
is supported by the observation that it is useful to view a CACE system as a
high level problem solving language. The design of a CACE system can then
be split into two parts: first, the language and the user environment or in
other words the user interface and second, the interpreter with the processing
parts, A CACI system can be considered as executing a read-evaluate-print
loop. In the read- and print-phases the user interface is active, A user in-
terface can be viewed as consisting of a language and an environment. The
language should support concepts that are powerful and natural for the user,
For languages there are concepts such as syntax and semantics. We may say
that syntax defines allowable forms and semantics has to do with the meaning
and interpretation. In an interactive environment where menus and graphics
are used for input, the borderline between the language and the environment
is less distinct. The user can just as well view the syntax as a part of the
environment.

The user interface can he made flexible by allowing various forms of syntax:
text input from keyboard, menus, graphics etc, Various help and expert system
interfaces could be included on this level. The user interface should collect the
user’s input and then convert it into a textual representation. When this is
done the proper processing tool should be invoked. When the user interface has
got the result, it should be presented to the user. The textual representation
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of a command is useful for the documentation and when programming new
composite commands.

The discussion above indicates that the representation of systems is an
important and critical part of a CACE system, since it should be made com-
mon to all tools. We believe that it is possible to agree upon a common set of
modelling concepts, but that it would be useful to allow the concepts to have
different textual and graphical representations.

Standardization efforts

The importance of having a common, standardized way of describing systems
is now widely recognized in the control community. As an outcome of a discus-
sion session on standardization of software for CACSD at the 3rd IFAC/IFIP
International Symposium on Computer Aided Design in Control and Engi-
neering Systems, CADCE ’85, Lyngby, Denmark, July 31 — August 2, 1985 an
IFAC Working Group on “Guidelines for CACSD Software” was formed. It
is chaired by prof. Magnus Rimvall, ETH, Ziirich., Three subgroups has also
been formed: algorithms (Valk, Delft, the Netherlands), data structures (Ma-
ciejowski, Cambridge University, UK) and user interface (Rimvall). Members
of the CACE project are participating in this work.

The subgroup on data structures are currently concerned with format
and structure of external files for transfer of data between CACSD software.
There is a proposal for state space models (linear, time invariant), transfer
function matrices, matrix fraction descriptions and pole-zero-gain definitions.
The standardization of more complex models has not been addressed yet. The
subgroup on user interfaces is also considering system representation but from
another viewpoint. It is a well-known fact that the matrix language MATLAB
has inspired the developers of CACSD packages for analysis and design of
linear systems., CTRL-C, MATRIXY, PC-MATLAB and PRO-MATLAB are
three commercial examples, and Blaise, IMPACT and EAGLES/M are three
examples from university or non-commercial research institutes. The impact
of MATLAB has implied that the syntax of expressions etc. is very similar,
However, there are minor, but annoying differences which makes it impossible
to use the same system descriptions or command procedures, This situation
indicate that it would be possible to come up with a standard in this area.
Rimvall has submitted a draft proposal.

Declarative models

The desire to have models that could be used in various contexts implies that
declarative forms (equations) should be used to describe the behaviour of sub-
models and the interactions between models, Declarative models on symbolic
forms can be used in various contexts, since they can be manipulated au-
tomatically to generate efficient code for simulation, code for calculation of
stationary points, linear representations, efficient control code, descriptions
which are accepted by other existing packages etc. Furthermore, it is a global
problem to make a procedural description or make the algorithm from which
the behaviour can be calculated. It cannot be made for the individual sub-
models independently of how they are used.




1.3 Outline of the Report

The work of the project described in this report has been focused in a number
of directions. In Chapter 2 the focus is put on semantical issues whereas syn-
tactical issues is discussed in Chapter 3. The purpose is as indicated above to
separate the design of a system concept and its semantics from the design of
its syntax and representation. It this way we can hopefully obtain a common
system concept so that the tools could be made integrated, while at the same
time allowing different users to have different textual and graphical represen-
tations. Chapters 2 and 3 start with an outline of their content. Conclusions
are presented in Chapter 4.




2. Model Structuring Concepts

From practice we know that models for real plants often become complex,
large and difficult to handle and understand. In most cases it is also difficult
to reuse a model or a part of a model in another application. The objective
of this chapter is to discuss how we by imposing structure on models and
collections of models can remedy these complexity problems.

This chapter is organized as follows. In Section 2.1 we identify five com-
plementary model structuring principles that are useful to handle model com-
plexity. In Sections 2.2-2.4 these principles are discussed in more detail to
find out what concepts are needed to support them. The approach is to first
indicate concepts that in some way may be useful without bothering too much
about whether our desires may be contradictory. To begin with, the focus is
put on semantical issues while representational and syntactical issues are dis-
regarded. When possibilities to represent a concept are indicated, the purpose
is to make the discussion somewhat more concrete or to indicate that it is
possible to come up with a useful representation.

It is our aim to separate the design of the structuring concepts and their
semantics from the design of their syntax and representation. We believe
that various users could agree upon a common set of concepts, but that it
would be useful to allow the concepts to have various textual and graphical
representations, This approach is also consistent with the desire to separate
the user interface, database and the processing parts from each other.

2.1 Model Structuring Principles

Abstraction and modularization are two basic principles that can be used to
impose structure. The essence of abstraction is to extract important prop-
erties while omitting insignificant details. By introducing different views the
attention can be focused on various properties of the model. By introducing
levels of abstraction the model can be viewed in more or less detail, allowing
the model to be viewed with gradually increasing detail. The amount of in-
formation increases at lower abstraction levels. Modularization can be used
in order to maintain useful views with a limited number of related concepts.
Modularization means that the information at a certain abstraction level is
decomposed into smaller entities.

We will in this section point out five complementary model structuring
principles or classes of abstraction views, namely:

1. Hierarchical submodel decomposition
2. Model types

3. Model categories

4. Multiple versions

5. Multiple presentations

which are natural and useful for handling model complexity.




Hierarchical submodel decomposition

Concepts allowing a hierarchical decomposition of a model info submodels
are useful. Modularization simplifies the modelling in several ways. First,
the model developer can focus on a smaller part of the system at a time.
Second, libraries of submodels can be built. This means that models can
be reused. Technical systems are often built in a modular way composed of
standard components. Their behaviour may be well-known. Good, generally
accepted models may already exist. Third, modularization facilitates testing,.
It is difficult to verify that a simulation program implements the intended
mathematical model. With a modular approach we split the problem into
smaller parts. Fourth, the model becomes more flexible and easier to adapt.

Model types

In a complex plant, a component may appear several times. For example a
chemical plant may have several identical PID controllers. The maintenance
of a model for this plant is facilitated if the models for all those PID con-
trollers share a common description. Common deseriptions can be supported
by introduction of a model type concept.

Model categories

To make a model library useful, structuring mechanisms which allow classi-
fieation of the models into various categories should be provided. Without
structuring mechanisms the libraries would be messy and it would be difficult
for a user to find the models that might be of interest for him. It should be
possible to reference a library and automatically have 2 menu of its models. ¥
the category name is used when referencing a model the name space of model
names are split up and the risk of name conflicts is decreased.

Multiple versions

Modularization by itself supports flexibility, but there is also a need for other
model structuring concepts to support flexibility. Two conceptually different
needs of adaptability can be identified: adaptability with respect to different
plant designs and adaptability with respect to model complexity.

When developing a new model it is convenient to start with a simple
model and to test it, and then refine it stepwise by adding new features, while
retaining the old versions for comparison. Furthermore, it is impossible to
make a model which can simulate all aspects of a given plant. Models of
different complexity must be used for simulation of different events. If all
these models have the same interfaces to the environment, it is convenient to
view them as different versions of the same model. The user can then easily
adapt the model by selecting an appropriate version for example by using the
mouse and an automatically generated menu. One can also visualize a system
which can select the particular version automatically.

We also need structuring concepts to make the model flexible with respect
to different process designs. During the design of a system the model has to
be updated as the design proceeds, Questions of the type “What happens if
we modify the design in this way?” arise frequently in simulation projects.
For example, if we simulate a wind power plant jt should be simple to first
simulate the system when it has a synchronous generator and then when it
has an asynchronous generator. This can be achieved if we define a generator
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model with properly defined interfaces, and if the simulator offers a facility to
exchange the content of the generator model easily.

Multiple presentations

The model developers and users may want different views of a mode! and
their needs may change with time. As an example consider a user who selects
models from a library. The user then first wants a list of contents (an index)
for quick scanning, If he finds a model of interest, he wants basic information
about the model like:

1. Purpose of the model
2. Assumptions done

3. Range of validity

4. References

Assume that the user finds a model that seems to fulfil his requirements. He
then wants to know how it is used. Two types of information are of interest.
First, how can the model be controlled; what are the parameters? Second,
which variables can be inspected, plotted, stored etc.? The information about
parameters and variables should be easily available on the user’s request. Note
that he is not at any of these stages interested to see the equations themselves.
This is too low a level.

2.2 Hierarchical Submodel Decomposition

As motivated above it is important that a CACE system has facilities which
allow a hierarchical decomposition of a model into submodels. We view hier-
archical submodel decomposition as the conceptually most important concept
to handle model complexity. It supports our way of thinking about systems.
The other four concepts mentioned above are of course important and useful,
but they are more technical to their nature. They mainly support bookkeeping
and maintenance of models. We will now discuss what we should mean by a
submodel and how the concept should be formalized.

Which submadel concept should we have?

The selection of submodel boundaries should be guided by our own percep-
tion of the problem space. Our main intended application is modelling and
simulation of technical systems. It is thus natural to consider our perception
of these systems. Technical systems are often designed and built in a mod-
ular way. Whether we consider large plants or smaller systems, it is natural
to talk about components and subsystems. A person with some technical
knowledge about a system views it as consisting of a number of components.
There exists a terminology. Consequently, it is of interest to support a hi-
erarchical submodel concept that could map the component structure of real
systems, If a hierarchical component concept is supported, it is possible to
build model libraries. Models for more complex systems could be built in a
similar way as the system itself by composing existing submodels. There are
more good reasons for having an easily identifiable model for each component
of a system. Fist, it would give a very good technical documentation of the
components. Second, as indicated in Section 2.1 different users want different
views of a model. When the submodels corresponds to components, various
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stylized pictures and component symbols could be provided as representations
for the parts. This implies that various graphical representations like circuit
diagrams, mimic diagrams or stylized cartoons could be created with reason-
able effort. Third, it would be more natural for manufacturers of technical
components to supply a useful model instead of awkward data sheets. We
believe that purchasers will in the future demand that suppliers of fechnical
components provide dynamical models for their components. Consequently,
standardization is needed, as well as procedures and organizations for valida-
tion and certification. Fourth, it would be easier to reconfigure the model and
thereby easier to investigate the effect of new or or alternative components.

Encapsulation

A difficult part when designing a modularization concept is how interaction
between modules should be defined and treated.

Today most computer scientists favor strongly encapsulated modules. The
package concept of Ada and the popularity of object-oriented programming
are two manifestations of this fact. The basic reason for having encapsulated
modules is that it supports abstraction. A user need not bother about imple-
mentation details and the developer is free to modify the implementation as
long as he preserves the properties of the module as defined by the interface.
Encapsulation also allows the system to check that a module is used properly.

When discussing encapsulation we must consider nesting of mode! defi-
nitions. We do not see any good reasons to allow nested model definitions.
The name space of model names could as indicated in Section 2.1 be split
up using a category concept. Non-nested definitions support the building of
component libraries implying that it will be easier to reuse models and parts
of models. The basic scope rule should be that the environment should be
invisible from inside a submodel. A submodel should basically only be able to
see its own internal variables and its interface variables. However, there are
good reasons to have a few exceptions from this rule. Time is such example.
Every submodel should be able to read the unjversal time.

Let us now consider what should be visible and manipulatable from outside
a submodel. Our starting point is that a submodel is a encapsulafed unit, i.e.,
that nothing is implicitly available from the outside. It must be possible to
model the physical interaction between components of a plant. It is also of
interest that the models to some extent are adaptable so they can be used in
a range of applications without having to be edited. For example, it ought to
be possible to make a model that could describe pipes having various length
and diameter. A simple but rather powerful approach to introduce parameters
that could be set from outside a model. We will return to these issues after
having considered modelling of interaction between components.

Modelling of interaction between components

Interaction between two compouents can in many cases be described using an
idealized model of a real “physical” connection. Typical examples are shafts,
pipes and electrical wires, The “ideal” shaft has no mass, is rigid and cannot
break. Its attributes ave position, speed and torque. The “ideal” pipe has
no losses, no transportation time (infinitely short length) and do not mix the
material. Its attributes are {low rate, pressure, temperature, enthalpy, various
concentrations etc. The “ideal” electrical wire has no resistance, no delay time
and does not distort wave forms. Its attributes are voltage and current.
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To be able to describe relations between attributes of submodels, we must
be able to access the attributes from the outside. We will do that by letting the
submodels have variables called terminal variables, which are accessible from
the ontside. The physics of the idealized interactions discussed above indicates
that it is useful to introduce two types of terminal variables. One type is those
terminals where a connection implies that connected terminal variables should
be equal. Variables obeying this kind of connection semantics are sometimes
called “across variables” in the literature (Koenig, Tokad and Kesavan, 1967).
Examples of across variables are voltage, pressure and temperature. The other
type is called through variables and has an associated direction (in or out) and
the connection semantics implies that connected variables should sum to zero.
Examples of through variables are current, mass and energy flow, thrust and
torque. If a real physical connection cannot be modelled in this idealized
way, the natural solution is to introduce a new submodel to describe the more
complex relation.

The concept of using simple relations to describe interaction between sub-
models seems to be very natural. It was proposed by Elmqvist (1978). How-
ever, most of today’s languages for continuous simulation do not support this
concept. Instead the models can have inputs and outputs. In the simplest
case interaction is modelled by connecting an output to each input. This
means that the value of an input is defined by an assignment statement saying
that the value should be set to the value of an output. This can be general-
ized somewhat by allowing the right part of the assignment statement to be
an expression including various outputs and parameters. However, as thor-
oughly motivated in, for example, Elmqvist (1978) and Elmqvist and Matisson
(1986), the need to define for each submodel which of its variables are inputs
(in other words are known) and which of its variables are outputs (defined by
the model) puts constraints on the possibilities to build model libraries. What
is input and output of a submodel from a computational viewpoint depends
on how the submodel is connected to other submodels and cannot be decided
locally inside a submodel, The conclusion is that in order to support model
libraries, the submodels should have explicitly defined terminals which could
be referenced on the parent level, and the concepts for describing interactions
should be based on equations and not assignment statements.

Terminals

Structuring concepts for terminal variables are needed, since, as indicated
above, an interaction between two submodels often involves several attributes.
We must be able to aggregate terminal variables. With a hierarchical submodel
concept it is natural to have a hierarchical aggregation concept for terminal
variables. The word “terminal” will in the following denote such an aggregate.

A connection between two terminals should of course imply that the com-
ponents of the terminals are connected, but how should the components be
matched? There are two major approaches. First, the position could be used;
the first components are considered to be connected and so on, Second, the
names or other significant information about the components could be used.
These two approaches and probably all other have the drawback that the user
may have to make additional definitions or is forced to introduce new simple
subsystems that works as adapters when he wants to connect two subsystems
that have not been designed with explicit purpose of being connected to each
other. One way to avoid this problem at least within certain application do-
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mains or companies, is to explore the idea that terminals are idealized models
of real physical connections and build libraries for terminals, Such a library
could also contain conversion rules or adapters.

A basic task is to make the use of library models user friendly, safe and
reliable. The encapsulation of submodels prevents to a large extent unintended
abuse. However, the terminals are delicate holes in the wall. It would be nice if
the user could get automatic warnings when making improper connections. To
be able to issue automatic warnings, the system must be given rules for what
can be accepted. Connections between across and through variables should
not be accepted, and boolean and numerical terminal variables should not be
connected, To be able to provide more elaborate checks, the model developer
must supply more information. One approach is to associate a type to each
terminal and only accept connections between terminals of the same type. This
demands a common agreement on the names of the types. To make it possible
to use models developed at various places without to much work, it ought to be
possible to define conversion rules or adapters in a simple way. Furthermore,
to make it possible to use generic models (e.g a first order system) there must
be a universal type. A second approach is to give attributes like units and
other characteristics, for example, water temperature [K]. This approach
also requires agreements, now in the form of what kind of information that
should be supplied and how.

Let us consider the pros and cons of the type based approach and the
attribute oriented approach a bit further. The type based approach is proba-
bly simpler to implement. The attribute oriented approach requires rules and
pattern matching. The type based approach gives very good opportunities
to detect erroneous connections, if the model developers have used the type
concept properly and introduced sufficiently many types. However, the is a
risk that the model developers associate the same type or the universal type to
all terminal variables. The attribute oriented approach might be easier to use.
The user does not have o decide at the start of a model development project
which types of terminal variables should exist. Attributes can be added incre-
mentally. The model becomes more readable. The attributes of the terminal
are explicit and not encoded into a type. To sum up, {for us it is an open ques-
tion whether a type based or attribute oriented approach, or maybe something
else, should be recommended. The idea mentioned above to view a terminal
as an idealized physical components indicates a middle course. The various
types could then correspond to different idealized components as electrical
wires, pipes, shafts etc or combinations of those. By allowing parametrization
of the terminals additional safety checks could be provided., For example, a
terminal corresponding to a pipe could have a parameter indicating the pipe
diameter and it could then be checked automatically that two connected pipes
have the same diameter.

A way of preventing unintended abuse of a model during simulation is to
allow the model developer to define ranges for the terminal variables and issue
warnings when some terminal variable gets outside its allowed range.

Measurements

A drawback with strong encapsulation is that the model developer must antic-
ipate all reasonable ways that the submodel can interact with its environment.
If he has forgotten to include variables that you think are useful to describe
an interaction, you have to modify and edit the model. For technical systems
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it is advisable, and a reasonable task for the model developer, to include in-
terface variables to that extent that those ways of interaction anticipated by
the designer of the real component can be modelled.

It may be difficult o anticipate hooking on of measurement devices. Con-
sequently, it may be reasonable to allow exceptions from the strong encapsu-
lation rules when the user wants to model an ideal measurement in order to
be able to rapidly check the benefits of a new measurements. An ideal mea-
surement does not directly influence the dynamics of the submodel, since it is
just a reading of a value.

Time

When solving an ODY, the independent variable has a special status and it
ought to be accessible from all submodels. For obvious reasons we usually refer
to it as time. A nice and natural way of making the actual time accessible
in a submodel is to let the user define a local name for the time, as done in
ACSI ”Variable t” or as in Simnon "Time t” where Variable and Time
are special reserved keywords. The user is here free to select any convenient
name.

Adaptability — parameters

To make a model library useful, it is important that the models could be
designed to cover a wide range of applications. Adaptable model types would
also mean that the number of model types needed in an application domain
could be reduced. However, the concepts for supporting adaptability of model
types must be designed carefully so the use of library models does not become
unnecessary laborious.

The extreme way of adapting a model to a certain application is of course
to edit its type definition. The user then has to decide if he wants to modify
the existing definition or if he wants to create a new model type using the old
one as a starting point. As indicated in Section 2.1, it would be useful to have
a version concept so versions of a model could be collected into one model
type. This allows editing of a model type without destroying the existing
one. Thus a model version concept supports flexibility. It may be argued that
it is clumsy to use. However, when the versions are available, the user just
has to select. All alternatives need not be developed at once. They could be
developed when needed. If also a default alternative is provided, the casual
user may even be unaware about the flexibility and no extra burden is put on
him. An example where this technique may be useful is when a component
may be implemented in several structurally different ways. For example, we
can have a general model for electrical generators where the synchronous type
and the asynchronous type are two major alternatives.

Unfortunately, it is in many cases not sufficient to have just a small number
of alternatives. Flexibility can then be supported by leaving suitable properties
undefined and assuming that they are provided via terminals of the model.
This is in many cases an unnecessarily clumsy and laborious approach. As an
example consider a model for an ideal resistor. A natural demand is that the
user should be able to set the resistance in a simple way. This kind of flexibility
can be supported by introduction of parameters having default values.

By a parameter we mean basically a variable which value is fixed during
a simulation but can be changed in a simple way between two simulations.
A model of a straight pipe may for example have length, width and surface

14




roughness of the pipe as parameters. If the user can change the value of a
parameter by issuing a simple command, he can easily try out a number of
process designs that do not involve structurally modifications of the plant.
Parameterization also means that the number of model types can be kept
lower. For example, just one resistor model type is needed.

The value of a parameter cannot be a property of a model type, since it is
natural demand that a model type could be used at several places in a model
simultaneously. For example, an electrical circuit contains typically several
resistors having different resistance as well as a chemical plant has several
pipes of various length. However, it is reasonable that the default value of a
parameter is a property of the model type.

A hierarchically decomposed model will typically have a lot of parameters.
Consequently, it is important to consider the handling of parameters carefully.
When a number of components are put together to form a new and more
complex component, the components usually must fulfil some constraints to
fit together and to meet the specifications. For the model this implies that
parameters should be related to each other, and that some parameters should
become fixed and constant. For example a simple connection of two pipes
may demand that the shapes and sizes of the two cross sections are equal.
This indicates that the model developer should be able to define a new set of
parameters which defines the values of parameters at lower levels, Or in other
words, he should be able to define old parameters in terms of new ones. In
this way existing parameters could be given new default values. Furthermore,
the model developer should be able to fix the value of an old parameter and
tell the simulator that it should be considered as a constant. This approach
also supports the introduction of performance related and functionally related
parameters at higher levels. A more pragmatic reason is that the model devel-
oper may want to assume certain relations between the parameters of different
submodels to make the new model less complex. For example a model may as-
sume that a number of components of the same type have identical parameter
values,

In many cases a simple numerical or boolean variable will do as a param-
eter. However, there are motives for having more complex parameters. The
characteristics of a linear spring can be described by a spring coefficient. If
the spring characteristics is nonlinear the situation becomes more complex.
One way to solve the problem partially is to parameterize the nonlinearity.
Towever, we then cannot handle general spring characteristics. Only certain
classes anticipated by the model developer are available. The need to describe
nonlinear characteristics in models of technical systems is quite common. For
example, IEEE (1968) has developed standard models for excitation systems
of electrical generators. These models contain non-linear saturation functions.
Analytical expressions are not given for these functions. The standard con-
tains instead procedures for how to calculate those from data. These models
should of course be available in a model library. It would certainly be con-
venient if such functions could be supplied as parameters. Parameters have
the important advantage that they may have default values. This means that
unsophisticated use of the model could be simplified.

The design of user interfaces for parameter handling is also important.
Complex submodels in a model library should have a nice user interface so the
user can get quick answers to relevant questions, When it concerns parameters
of the model, he should be able to get a description of them without having to
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inspect each submodel. The simulator could for example display descriptions
of parameters in a window on request., It should be possible to set parameters
both from the terminal using mouse and menus (tables) and from a user defined
macro. It should be possible to store and retrieve parameter values from files.
Sometimes, different parameter settings corresponds to different cases that
the users have names for, for example: designl, model540, lowpower and
highpower. He should then of course be able to reference these cases by name.

To prevent unintended abuse of a model, the model developer should be
allowed to define ranges for the parameters, and a user should not be allowed
to set a parameter outside its allowed range. The information about allowed
ranges for parameters may also be useful in another context. It is possible
to use symbolic formula manipulation to facilitate numerical calculations. 1t
may be correct to make a certain manipulation for most parameter values,
but there may be certain combinations that cause division by zero. However,
in many cases those combinations never will show up, for example, because
they are non-physical. This indicates that it could be useful to have ranges
for parameters. The simulator may find the problem considerably simpler if
some conditions on parameter values are fulfilled. It is then desirable if the
simulator could ask if this is the case. The user may be able to confirm that
the conditions are met in his case. When developing a model, it is often not
obvious what is critical.

2.3 Multiple Versions

In Section 2.2 it was indicated that it would be useful to let a submodel be the
description of a physical component. For a given component there are typically
several possible models, Models of different complexity are used for simulation
of different events, since it is unpractical and probably impossible to make a
model which can simulate all aspects of a given component. The “complete”
model would be cumbersome, For example, simulation of normal operation on
one hand and malfunctions and emergency situations on the other hand, may
require completely different models. Phenomena that can be neglected during
normal operation could be of outmost importance in an emergency situation.
In other words, models that are good for simulation of normal operation could
become invalid in emergency situations. Consequently, there are reasons to
introduce concepts so a model could contain alternative descriptions. Before
discussing these concepts, let us indicate two additional reasons for introduec-
ing them. First, when developing a new model it is convenient to start with a
simple model and test it, and then extend it stepwise by adding new features,
while retaining the old versions for comparison. Second, a “simpler” version
may also have its intrinsic value, Simulation is often used for empirical studies
with the intention fo gain understanding. When studying the importance of
various dynamics it is very useful to be able to include or exclude different
features of the model. Inclusion and exclusion of dynamics can to some extent
be handled by parameters, Sometimes the simpler version could in theory be
obtained be setting a real valued parameter of the more complex model to an
extreme value (typically zero or infinity). However, this may lead to numer-
ical difficulties as overflow, division by zero, stiff system, etc. For example,
it might be of interest to study how the elasticity of a robot link degrades
the performance by comparing it to that of a robot having a rigid link. We
could do that by increasing the stiffness parameter of the link, but this will
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unfortunately imply that the ODE system becomes stiff and difficult to solve,
To avoid this, we could make the model more sophisticated. The drawback
is then that the mode! may become messy and difficult to understand. The
model would be much more transparent if we instead could have two separate
descriptions and not one interlaced version. Support of multiple versions is a
way of introducing abstraction and multiple views.

We propose a version concept which allows a model to contain a number of
versions. To simplify changes, the versions should have a common interface to
the environment. This means that the versions should have common terminals
and parameters. Since the versions are meant to describe the same component,
it is natural o let them have the same terminals. It is also natural to let them
share parameters.

When designing a concept for handling multiple versions, it is important
to consider the relation to the submodel concept. The intention of the version
concept is to allow multiple descriptions of the behaviour of a component,
whereas the submodel concept is meant to allow decomposition of a model
into submodels; a submodel could contain a number of versions and each
version could consist of a number of submodels. The submodel is hierarchical
whereas the version concept proposed is fiat.

It is desirable to have a mechanism that allows version selection of a
model’s submodels. This can be achieved by letting a standard parameter of
the model define which version that should be used. We then have the power
of the parameter concept and can at various levels define proper combinations
of versions of submodels. Since the model version concept is basic, it might
be a good idea to introduce special user interface facilities for selection of
versions besides those available for setting parameter values. It might also be
of interest to be able to switch model version during a simulation. Typical
applications are simulation of malfunctions and emergency versions where the
behaviour of a component changes drastically. When switching models it must
be possible define the initial values of the new states in terms of the old states.

In Section 2.1 it was indicated that it is desirable to be have models that
are flexible with respect to process design so it is easy to exchange components.
The submodel concept and the version concept offer mechanisms that make
it possible to introduce flexibility. However, the desire to have this kind of
flexibility implies that the model must be designed more carefully. The model
developer may have to introduce more levels. Asan example, consider the case
mentioned in Section 2.1, where we indicated that it could be useful to be able
to switch between a synchronous generator and a asynchronous generator.
A way to handle this could be to define a model Generator that abstracts
the common properties of these to types of generators. The model Generator
should have two versions: an asynchronous generator model and a synchronous
generator model with an excitation system. It could have terminals describing
driving input torque and electrical quantities at the generator terminal. The
parameters could be selected to be more performance related.

2.4 Combined Discrete-Continuous Simulation
The dynamics of a system can be modelled in different ways. There are
two basic and well-established modelling styles, namely continuous-system

modelling and discrete-event modelling. Countinuous-system models describe
the behaviour or state at all times, whereas discrete-event models give snap-
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shots of the model state at instants of “interest”, but say nothing about the
behaviour during intervening time periods. Ordinary differential equations
(ODE’s) and partial differential equations (PDE’s) are used to describe be-
haviour in continuous-system models, whereas sequences of time events and
difference equations are used in discrete-event models. Although it is not com-
mon today, there is a need to be able to also discuss more qualitative about
systems and to handle incomplete and uncertain information.

In many applications, it has turned out that many models can be natu-
rally expressed in a combined framework, combined discrete-continuous mod-
elling. In this section we will discuss how the desire to support combined
discrete-continuous modelling influences the design of structuring concepts.
The critical point is modelling of interaction between submodels. A basic
difficulty is that an input to a continuous-system model must be defined all
times, discrete-event models only have their outputs defined at certain time
instants. Consequently, if we want to use an output of a discrete-event model
to define the input of a continuous model, we must decide what should be
done during intervening time periods when the output of the discrete-event
model is undefined.

Before discussing the possibilities and difficulties of modelling interaction
between submodels in combined discrete-continuous models, we will give some
motives for at all supporting combined discrete-continuous modelling,

Motives

ODE’s, PDE’, difference equations and sequences of discrete events are all
useful in automatic control engineering to describe system dynamics. ODE’s
are fundamental to describe dynamics in automatic control and a simulation
tool must be able to handle them. However, it is a very difficult task to develop
a general purpose simulation tool for PDE’s. It is not the scope of this report to
discuss tools for simulation of PDE’s. To get simple and manageable models,
a model developer often avoids to use distributed parameter models. He may
discretize the model using finite element techniques. He may assume that the
distribution over a volume has a certain parametrized shape or even that it
is constant. He can then use ODE’ to describe the dynamics. Transform
techniques could be used to solve linear PDE’s.

Difference equations are important in automatic control, since many con-
trollers are implemented digitally.

There are several reasons for using discrete events in what is basically a
continuous-system model. First, the purpose of a continuous-system model
is to describe how a system behaves transiently with high resolution in time.
However, sometimes a transient is so short with respect to the time scale, that
we could view the transient phase to be infinitesimally short. Such an ideal-
ization often implies that the model could be made conceptually simpler, since
we then do not have to describe the transient, but just define how the state
after the transient should be calculated from the state before the transient.
An example is the classical way of modelling a bouncing ball assuming an
infinitesimally short time of bounce. In continuous-system simulation such an
idealization cannot be done, since it leads to forces having Dirac delta compo-
nents. Second, it is inconvenient to count pulses or to detect zero crossings in
terms of ordinary differential equations and difference equations. You can use
sampled models with high sampling rate, but this is inefficient. Third, there is
a “metareason” to use discrete-event concepts. Sometimes, it is convenient to
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be able to change models when certain events occur. Examples are modelling
of batch processes, malfunctions and emergency situations. In these situation
the dynamics may change drastically. The models could be made more read-
able if we could have separate models and rather than one interlaced version.
This need for model structuring was mentioned in Section 2.3, when discussing
the use of having multiple model version.

When is a relation valid?

In Section 2.2 is was motivated that equations (relations) containing terminal
variables should be used to describe interaction between submodels. Without
explicitly mentioning it, we assumed that those relations should be valid for all
times, where the time was assumed to be continuous. In discrete models the
behaviour or the state is only defined at discrete time instants. Consegquently,
it is not quite trivial to define the meaning of a connection between a terminal
variable of a continuous-time model and a terminal variable of a discrete model.

As an illustrative example of the difficulty, consider a plant that is con-
trolled by a digital controller. A digital controller is conveniently described by
difference equations. Let the submodel have the input wy and the output 3.
Assume that the plant is modelled as a continzous-time system with an input
u. and an output y,. To model the interaction between the plant and the
controller, let us connect y. to ug and 3y to %.. In the framework discussed in
Section 2.2 this would generate the “equations” uy = y, and u, = yg. These
look very similar, but for us they should have quite different meanings. The
normal, idealized, mental picture of the digital controller is that at a sam-
pling instant the input should be read, and the state and the output should
be calculated. We also in most cases imagine that the output actually is de-
fined and constant between the sampling instants, as we assume zero-order
sample-and-hold.

A critical step in the interpretation of the connection “equations” Ug = Ye
and u; = yg is how we would like to view the variables of the discrete model
between the sampling instants. The example indicate that it is useful to let
the output gy be defined to model zero-order hold, The input u4 need not be
defined between the sampling instants, but for the user of the simulator, it
may be useful to have access to ug at any time. For example it may facilitate
the debugging of the model. We may remark that the state must be preserved
between the sampling instants and it is then very natural to assume that
it is also defined between the sampling instants, because it must be stored
samewhere.

Let us now assume that the values of the terminals of a discrete model are
defined also between sampling instants and that the values are those calculated
at the latest sampling instant. The connection “equation” u, = 24 is then a
relation which is valid at all times, but in contrast to connections between
continuous-time models the causality is given, since the relation should define
te. On the other hand, ug = ¥, is valid only at the sampling instant. The input
#g should be set to . at the sampling instant and keep that value until next
sampling instant. Moreover, uy = g, should not put any direct and explicit
constraints on y. It should merely imply that the value of y, are read now
and then,

The discussion indicates that we have to define the semantics of a connec-
tion between a continuous-time model and a discrete model more specificly.
You may have hoped that the simulator could sort out these issues itself, Un-
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fortunately, this is not the case. To realize this, consider the example discussed
above. Tt would then be possible for the simulator to assume that yy is the
input and ug the output. This view would give the composite model quite
ancther behaviour.

There are different ways of letting the model developer define the meaning
of a connection between a continuous-time model and a discrete model. First,
he could do it when making the connection. Second, the model developer of
a discrete model could define the terminals as being either inputs or outputs.
We recommend the second approach for three reasons. First, discrete models
are very often models of digital systems or computer programs. The causality
should then be given and it is actually not difficult to define which terminals
that are inputs and which that are outputs. Second, on the contrary it must
be viewed to be favourable to define the causalify, since this allows the simu-
lator to make additional consistency checks of the the connections. Third, a
model developer putting together library models may find the first approach
laborious. He may have to answer a number of questions when making a con-
nection, since a terminal may be composite. In the second approach, he gets
messages only when he makes an erroneous connection,

We have above talked about continuous-time models and discrete mod-
els. But what about combined models? They will certainly be created when
submodels of the two types are connected. That is no problem when consider-
ing the connection semantics. The encapsulation of composite models is only
introduced for convenience and the terminals of composite models are just
intermediaries which easily could be removed. Assuming that this has been
done, then all connections are connections between non-composite models. If
we introduce a rule saying that a non-composite model should be of either
type, we in fact have no combined models when interpreting the connections.
There are other good reasons for not allowing mixed non-composite models.
If a non-composite submodel could be of a combined type, we must for each
of its variable declare explicitly whether it is a continuous-time variable or a
discrete-time variable. We must also indicate the interpretation of each “equa-
tion” that involves variables of both types. As you can understand, this could
easily result in messy, unreadable and erroneous models. A rule saying that a
non-composite model must be of either type enforces structure. Furthermore,
we need not introduce a concept for describing the semantics of variables and
relations. It is given implicitly by the type of the model.

Sampled models — discrete-time models

We will now consider the problem of defining the sampling instants and the
decomposition of discrete models.

Tt is desirable to have the same structuring concepts when we are using
difference equations to describe behavior as when using ODE’s. The diffi-
culties discussed above were due to different time concepts. It is possible to
decompose the model into submodels and use relations to describe the inter-
actions between submodels if all submodels in the hierarchy have common
sampling instants. This is for example the case when we would like to make a
model of a complex digital control system and neglect calculation times. The
difficulty arises when we want to model components that are not synchronized
or interact with parts that are modelled by continuous-time models.

To solve this problem we propose the introduction of two discrete sub-
model types: discrete-time and sampled. From a structural view, the discrete-
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time model is equivalent to the continuous-time model, except that difference
equations and not ODE’s are used to describe behaviour. Both types can be
decomposed into submodels and interaction between the submodels could be
described by interactions. A continuous-time model assumes that the time is
defined globally. So does the discrete-time model, but it also assumes that the -
sampling instants are defined at a higher level.

The sampled type is introduced to make it possible to combine continuous-
time and discrete-time models. A sampled model should have the exter-
nal properties of discrete models discussed in the preceding paragraph. The
causality of the terminals should be defined by the model developer; the model
should have inputs and outputs. At a sampling instant the sampled model
should read the inputs and with the internal state caleulate the outputs. The
encapsulation actually functions as a sample and hold of the inputs and out-
puts. If the internal description of the behaviour sets the output equal to the
input, we have a model of a zero-order hold device. Discrete-time models could
be used to describe the internal behaviour of a sampled model. The sampled
model then defines the sampling instants of its discrete-time submodels. Tt is
for us an open question whether the use of continuous-time and sampled sub-
models for describing the behaviour of a sampled system should be supported.
To motivate such a support we must have some applications where it would
be useful. In the following we will assume that only discrete-time submodels
may be used to describe behaviour of a sampled model.

You may think that the introduction of the sampled model type makes
the relation between continuous-time and discrete-time models unsymmetri-
cal. Why not let the sampled model type encapsulate continuous-time models
instead? When designing digital controller, it is important to study also how
the system behaves between the sampling instants. For obvious reasons, it
is not a very good idea to try to restrict the description of the behaviour of
the continuous-time parts to the sampling instants. Another answer is that
the problem of connecting two discrete-time mode! having different sampling
instants is similar to that of connecting a continuous-time and a discrete-fime
model. The concepts discussed above also solve the problem of interconnect-
ing discrete systems having different sampling instants. In this way we can
handle multi-rate sampling in a convenient way.

With discrete systems we must be able to define the sampling instants. A
simple, but powerful way to do this, is to let each sampled subsystem have a
variable that defines the time of the next sampling instant. If we have several
discrete subsystems, it may be important that they are sampled synchronously.
If they should be sampled at identical time instants, this is easily handled by
letting the subsystems be of discrete-time type, since then the encapsulating
sampled model defines the sampling instants. If we want the submodels to be
sampled synchronously but with phase shifts, this could be done by making
submodels of sampled type. If the different submodels calculate their sam-
pling instants themselves, numerical imperfections may introduce drift so the
samplings after a while are not synchronous. This problem is avoided if the
caleulation of the sampling instants is centralized in one place. The model de-
yeloper can introduce a submodel of sampled type that models a clock having
outputs that defines the samplings instants. The other submodels can read
this value and set their sampling times accordingly.

21




Discrete-event models

Discrete-event modelling is well-established and it has been used in many
applications. An overview with many references are given in Kreutzer {1986).

If we say discrete-event simulation and encapsulated submodels, it is nat-
ural to come to think about object-oriented programming. You could say that
object-oriented programming has its roots going back to discrete-event simu-
lation, since many ideas behind object-oriented programming have their roots
going back to Simula, which is a programming language for discrete-event
simulation. In the object-oriented approach the submodels could be viewed
as active objects and the interaction could be modelled by message sending
between the objects, The behaviour is described by procedures,

Let us recall the approach indicated for continuous-time simulation. T
was argued that declarative forms (equations) should be used to describe be-
haviour of submodels and interations between submodels to make it feasible
to build model libraries. It is a global problem to make a procedural descrip-
tion or make the algorithm from which the behaviour can be calculated. It
cannot be made for the individual submodels independently of how they are
used. There are simulators which accept discrete-event models given on declar-
ative forms (Kreutzer, 1986), for example, as sets of rules. There is a close
relationship with data and knowledge representation in artificial intelligence,
knowledge-based engineering and expert systems. Note also that models given
on declarative forms can also be used in other contexts than simulation.

We will not here discuss the support of general discrete-event modelling,
but we will focus on how ideas from discrete-event modelling can be used in a
basically continuous-system modelling style. '

Motivated by such examples as those given in this section under “Mo-
tives”, we propose a new submodel type called discrete-event model having
the following properties, A terminal should be either input or output. An
event is defined as a zero-crossing from below of an indicator expression, which
may involve time, inputs and other variables of the discrete-event model. A
discrete-event model should be able to wait for one or many events. When an
event occurs, the waiting discrete-event model should become active. Refer-
ing to our examples, we want the discrete-event model to be able to initiate
switching of models and to set the states of other models, If we just want
to count the number of events this could be handled internally. It is not the
topic of this chapter to discuss the internal format of a discrete-event model,
However, it could be noted that to support the use indicated by the examples,
a discrete-event model could be kept simple.

When a submodels receives an order to switch version, it must be able to
calculate the initial values of the new states from the states of the old model
version. This need was also mentioned in Section 2.3.

The example of modelling a bouncing ball in the classical way indicates
that it should be possible to manipulate the state of a submodel. One approach
is o let the submodel owning the states handle the calculation of the new state
s0 the discrete-event model just has to initiate the calculation. This approach
could be considered as a special way of switching model version. Another
approach would be to let the discrete-event model do the calculation. However,
the desire to have encapsulated submodels makes this approach unfeasible.

Let us consider how events could be detected when solving ODE’s numer-
ically, Events that are specified by the clock are easy to detect and handle.
It can be handled by integrating the equations up to that time and then
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restart the integration routine. This means that it is almost straightforward
to simulate models consisting of both continuous-time submodels and sampled
submodels. If the event depends on the state, the problem becomes more com-
plex, since we must be detect if and when events occur. Cellier (1979) proposes
an approach where indicator functions tell the integration when events may
occur. The integration goes on until an indicator function indicates an event.
The step-size control mechanism of the integration routine is then disabled
and the step is repeated with a new step size computed by a special iteration
scheme to establish if and when an event has occurred. Tt is important that
the indicator functions are calculated with enough accuracy and resolution in
time so events are detected, One way to get some automatic control of the
caleulation of the indicator functions is to introduce the indicator functions
as extra states. Thus making the integration routine explicitly aware of the
indicators, so it adjusts the step-size also with respect to the behaviour of
the indicators. However, the method does not guarantee that fast multiple
switches are detected. If the model is supposed to model something and the
behaviour of the model exhibits multiple fast switches, the user must really
consider whether important dynamics has been neglected. It may then be
important to model the transitions in more detail.

Handling of events is closely related to handling of discontinuities. There
are efficient and robust numerical ODE solvers for systems consisting of ODE’s
on state space form when the state derivatives are continuous. Cellier (1979)
shows that discontinuities cannot be handled by step length control, since
the integration routines can miss fast switches and give a completely false
result. His approach is to view the problem as a continuous problem and to
view a discontinuity as an event which means that we should switch to a new
continuous problem. Symbolic analysis can be used to set up the indicator
functions automatically. If the model is given in symbolic form, it is rather
easy to detect discontinuities by scanning through the equations.

Cellier concludes that to handle discontinuities properly, an event con-
cept with indicator functions must be introduced. In Cellier’s approach the
integration routine must not switch to the new set of equations until it has
been established that an event has occured. Note that this implies that the
numerical integration routine may want to evaluate the model outside the va-
lidity range of the model. Consequently, the derivatives must be defined so
this evaluation does not cause numerical overflow or division by zero.
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3. Visualization

Graphics plays an important role in control engineering. First, many of the
techniques for the analysis of control systems rely on graphics; trend curves,
phase planes, Bode plots, Nyquist plots and root locus plots. Second, it is
natural for a control engineer to use block diagrams when describing a process
or a model. Unfortunately, the use of graphics in CACE has been hampered
by lack of feasible hardware for a long time. However, the situation is changing
drastically. The new workstations with high performance, real-time graphics
offer new possibilities to introduce graphics in CACE,

In this chapter we will focus on the use of graphics to visualize systems
and their behaviour. In Section 3.1 we discuss the use of hierarchical block dia-
grams to describe the model decomposition and interaction structure. Section
3.2 describes an introductory study of a window-based environment for the
simulation package Simnon on the Sun workstation. An example of animation
to visualize behaviour is given in Section 3.3. Implementational and stan-
dardization issues for graphics and window systems are discussed in Section
3.4.

3.1 Hierarchical Block Diagrams

Hibliz

In the project “New forms of man-machine interaction” (STU project 84-
5069) (Mattsson, Elmqvist, Briick, 1986) a prototype simulator for dynamical
systems was developed and implemented. The purpose was to investigate some
possibilities of using graphics to improve the user interface. The structural
properties of a system or a model are very important particularly when working
with complex or large systems. These structures are, however, difficult to
represent in an easily apprehendable way when a purely textual description is
used. For example, the interconnection structure of subsystems is much easier
to describe graphically.

The simulator supports hierarchical block diagrams to describe the model
decomposition and the interaction structure. At the highest level the user sees
a diagram of annotated boxes connected with lines, The user can scroll, pan
and zoom the block diagram continuously in real-time. Zooming controls the
amount of information displayed. When zooming in on a block, it changes
from an annotated box into a representation showing internal structure with
increasing detail. Since the block diagrams can be hierarchical, it is possi-
ble to make the description at each level simple and clear. The simulator is
called Hibliz which stands for Hlerarchical BLock diagrams with Information
Zooming. The user creates and edits his block diagrams in a Macintosh-like
fashion. He can also create overview windows which indicate where he is when
he pans and zooms. Hibliz also simplifies model development by allowing sub-
models in the form of ordinary differential and algebraic equations rather than
assignment statements for derivatives and algebraic variables.
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Assessment of Hibliz

Many demonstrations for people from university and industry indicate that
the hierarchical block diagram is a natural and easily understood concept for
describing model decomposition. Hierarchical block diagrams also make the
model more concrete. The user can view the model as an object. The concept
of seeing and pointing is important, For example, to inspect a model the user
can just point at it and zoom-in.

An application study of modelling a destillation column in a number of
languages has been performed (Nilsson, 1987). The study focused on how the
model structure could be described. The model was decomposed into nine
trays, one reboiler and one reflux drum. An interesting structural feature of
this model is that the nine trays are identical and are connected in series.
Today’s commercial simulation languages have no graphical interfaces for de-
scribing model structure. Nilsson found that the hierarchical block concept of
Hibliz allowed a very illustrative way of describing the model structure and
made it possible to create nice overviews of the whole model. However, he
found it laborious to create the hierarchical diagram. The user interface of
Hibliz does not allow the user to explore the fact that he would have nine
identical trays in series. The user has to create one model for a tray. When he
has done this, he can copy the model nine times and lay out and cornect them
manually. Tt is understandable if a user finds this work laborions. However,
as stated by Nilsson there is a tradeoff between simplicity and power of the
commands. The drawing of block diagrams could possible be facilitated by
inclusion of a grid, automatic alignment procedures ete.

Another serious drawback with Hibliz is that it does not support a model
type concept. When the user copies the tray model, the copies become com-
pletely independent of each other. This means that maintenance of the destil-
lation column model becomes laborious. If the user wants to modify the tray
model, he has to edit all nine tray models. The maintenance would be much
simpler if there was a type concept that allowed all nine tray models to share
a common description.

In summary, we recommend hierarchical block diagrams as a general tool
for describing model structure. However, we would also like to stress that there
are many open questions concerning their look and the means for creating and
editing them. Should symbols (icons) be used to denote different parts instead
of annotated boxes? How should keyboard and mouse be used when creating,
editing and inspecting models? Continuous scrolling, panning and zooming
demand fast graphics. It is not necessary to have these features to implement
hierarchical block diagrams. The zooming up of a block can be implemented
by creating a new window and displaying the block in this window.

The new approach

To evaluate ideas, when developing user interfaces, you have to implement
them to get feedback. This implies that it should be easy to make prototype
implementations. Hibliz is written in Pascal and it is laborious to modify it.
So we decided to freeze Hibliz and start from scratch. The experiences from
other subprojects had indicated that Lisp gave a nice interactive environment.
When the project started we had only the IRIS 2400 workstation available. We
upgraded it by purchasing another 70 Mbyte Winchester disk and by increasing
the CPU memory from 2.5 Mbyte to 6.5 Mbyte. The Extended Common
Lisp implementation from Franz Inc, was purchased. This Common Lisp
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implementation provides interfaces to C procedures and the IRIS Graphics
Tibrary. The EMACS editor was also installed on the IRIS. The IRIS window
manager Mex (multiple exposure), EMACS and Common Lisp turned out to
give a nice interactive environment.

Our aim was to make the software portable. The use of Common Lisp
guaranteed to some extend portability. However, the fact that we would like to
use graphics and windowing facilities made the thing worse. Standardization
issues are discussed further in Section 3.4. Qur approach was to isolate the
implementation dependent parts in a graphical front-end. To make it easily
portable, we studied a number of workstations and windowing systems to
see which graphical operations that commonly were supported or easily could
be implemented. The graphical front-end was implemented on the IRIS. It
is discussed further in Section 3.4. Here we will only mention that it was
more laborious and took longer time than we had estimated when we started.
Hopefully, we could avoid such work in the future.

A minor prototype for creating and editing block diagrams has been de-
veloped and can be used for rapid prototyping. The support of the window
manager make it easy to implement information zooming by open up a new
window. Also creation of menus are supported.

3.2 A Window-Based Environment for Simnon

Despite of how you organize information, there will always turn up situations
where the user would like to access information from two different places si-
multaneously. A way to accomplish this is by supporting windowing.

Professor Dean Frederick, Rensellaer Polytechnic, Troy, New York, USA,
participated in this project as a guest researcher for two month (May 15 —
July 15, 1987). When he arrived, the department had just got four Sun
Microsystems 3/50 workstations. It was decided that he should make some
initial efforts to develop a modern workstation-based version of the simulation
program Simnon on the Sun workstation. The reasons were as follows. First,
he had various experiences of using graphics in CACE. Second, it would give
us experiences of using the Sun workstation in this kind of applications. Third,
the result could be useful. Simnon is commonly used at the department and
with four workstations there is a potential to get feedback from many users.

The result of his effort is described in Frederick (1987). To this date six
window-related commands have been added to Simnon:

mkwin  a graphics window for plotting

wedit  an editing window

wifdir a directory facility for models and macros, with editing
wdisp a window for the Simnon DISP command

wprint a window for the PRINT command

whelp  help on the window-related commands

These commands can be issued from the keyboard when Simnon is displaying
its prompt. For window management the SunView software has been used.
This means that the windows created by Simnon behave and can be controlled
as ordinary, native windows on the SUN. The windows can be repositioned,
resized, closed to become an icon or deleted. Text windows can be scrolled.
In plotting windows created by issuing the mkwin, all of the usual Simnon
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graphics related commands, like for example SPLIT and AREA, can be used with
the usual arguments. The implementation is usable, but unexpected crashes
occur. Frederick (1987) suspects that it is the communication between Simnon
and the window system that causes the crashes. Dean Frederick and Tomas
Schonthal at our department have plans to continue the work.

3.3 Animation

An exciting idea is to present the results of simulations or data logging as
some kind of animation of the process studied. One possibility to visualize
results is to simulate an instrument and to present the results in windows as if
you were viewing them on real devices. Mimic diagrams is another possibility.
The data then controls positions, sizes, colors and visibility of objects in the
picture, For example, a mimic diagram can show the level in a tank. Color
can indicate the temperature of the content. Warning indicators may turn
on when the level becomes too high. Note that animation is also useful for
demonstrations for non-experts and customers, It must be pointed out that
the design of the animation must be done carefully so it does not become more
spectacular than useful.

Since it is a large effort to develop general, interactive tools for defining
mimic diagrams or more general stylized representations for animated car-
toons, and since there already exist good implementations on the market, we
have decided not to develop own such tools.

Our IRIS 2400 has the possibilities to make fancy real-time animations. It
is for example capable of real-time animation of a robot in 3-D graphics. Ola
Dahl has modified the demonstration program robot from Silicon Graphics to
display ASEA’s Industrial Robot IRB 6/2. The program can read the coor-
dinates of the robot joints from a file, which can be the result of a simulation
or a logging of a real experiment. When the robot performs its movements,
the user can using the mouse move around the 3-D world and study how the
robot performs its work cycles. This animation feels very real.

Dr. Hirzinger, DFVLR Deutche Forschungs- und Versuchsanstalt fiir Luft-
und Raumfahrt e.V., Oberpfaffenhofen, West Germany (close to Munich) has
developed a steering ball with six degrees of freedom. It senses the forces and
torques you apply to it using your hand. It can be used in various ways. A
natural way to use it for controlling objects on a graphical screen is to let a
force in the vertical direction mean scrolling, a left or right horizontal force
mean panning, and pressing mean zooming. Torques can be interpreted as a
desire to have the object on the screen to rotate. With fast visual feedback
the steering ball is very natural and easy fo use. It is a terrific input device
that can make graphics workstations more powerful.

DFVLR have a number of interesting applications of animation. One
application is animation of robots in space. It is difficult to control robots in
a space station manually from earth since there could be a considerable time
delay. The idea is to superpose graphics on the video picture of the robot. The
human operator on earth could by controlling the animated robot virtually get
rid of some of the time delay effects.

We have purchased a steering ball and used it in the robot program. The
user can use the steering ball to modify his position relative the animated
robot and in this way view the robot from different distances and angles of
view when the robot is performing its work cycle.
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3.4 Graphics and Window Standards

Portability is a major concern when designing and implementing software for
CACE. Much of the problem is overcome by programming in a language that
is supported on many computers, Unfortunately, the use of languages like
Fortran, C, Pascal, Modula-2, Ada, Commeon Lisp etc. does not eliminate all
potability issues, since the use of graphics is important in CACE.

Current Status

There is today one generally accepted graphics standard: GKS (Enderle et al.
1984; Hopgood et al. 1983). GKS is rather low-level, but all high-level opera-
tions in an integrated engineering environment can probably be implemented
on-top of GKS. Regrettably, most of today’s implementations are poor. They
are unacceptably slow. A basic problem is that most implementations do not
support sampled or event driven input, implying that they cannot be used for
interactive “workstation-type” graphics. Another problem is that the use of
GKS more or less forces you to select a programming language for which GKS
has defined standard name bindings. This means for example that you cannot
use C. There are no standard C name bindings in GKS, since C itself is not
standardized.

Another maybe more difficult problem is windowing. A good overview
of relevant issues and some existing window systems is given in Hopgood et
al. (1986). Another interesting overview is Rosenthal (1986). Standardiza-
tion cannot be expected before 1989. One important source of difficulties is
the interaction between the window manager and the graphics package. The
windowing facilities are normally not accessible from the graphics packages,
and user input is handled differently. It is extremely frustrating to have to
use two vastly different ways of interaction simultaneously, Another aspect is
that a user does not like to learn several window systems. The advantages of
having a standard window system for all CACE programs are guite obvious
and uncontroversial, but it should be noted that CACE programs are not the
only use of a workstation. The user will use the native, vendor-supplied win-
dow manager, and would therefore prefer that one also in CACE programs.
The same also applies for text editors,

To sum up we can say that current status is a bit chaotic. Tach vendor
of workstation has there own graphics and window systems. There are also
emerging third-part systems that could be used on a number of workstations.

Future Trends

An extended and improved ANSI standard, PHIGS (Programmer’s Hierarchi-
cal Tnteractive Graphics System) (SIS 1985; Shuey et al. 1986; Brown, 1985),
is proposed. PHIGS seems to have valuable high-level features, in particular a
dynamic, hierarchical structure for graphics. It should be noted that PHIGS
is very strongly promoted by TBM.

One problem area (which may eventually solve itself) is the lack of expe-
rience of using PHIGS. We do not yet know what “programming style” best
explores the strengths and features of PHIGS, Neither is the relationship to
object-oriented programming understood. To get experience of using PHIGS,
we have ordered a PHIGS implementation called FIGARO for our IRIS 2400
(FIGARO, 1986; Plachn, 1987). FIGARO is developed by Template Graphics
Software Inc., San Diego, California, USA.
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We are not aware of any prosed standard for window systems. However,
X-windows owned by MIT appears to become a de facto standard.

Our approach

When the project started, we anticipated that we had to run the software
on at least two different workstations. Not having a standard to rely on we
decided to isolate graphics and window system dependent issues in a graphical
front-end module to facilitate porting to another workstation. We studied
a number of workstations and their graphics and windowing systems to see
which graphical operations that commonly were supported or easily could be
implemented.

The design and implementation of the graphical front-end is described
in Briick (1987). It handles input from keyboard, pointing device (mouse)
and stored files and can draw on a graphical screen. There are 34 operations
divided into eight groups:

1. Drawing primitives: move, draw, rectangle, fillrectangle, circle,
fillcircle, setcolor, setlinewidth

2. Texi: drawstring, requeststring

3. Local, hierarchical coordinate systems: scale, translate, pushmatrix,
popmatrix

4, Hierarchical segments, which can be appended to but not edited: open,
close, delete, call, highlight

5. Picking (multiple hits has to be resolved by the application): pushmarker,
popmarker, requestpick

6. Rubberbanding: requestline, requestrectangle, requestshape

7. Reshapable and overlapping windows: create, title, bind, limits,
erase, redravwindow, redrawall

8. Definition of menus, which at selection returns text commands. newmenuy,
addtomenu, requestment, mainmenu

The current version runs on the IRIS 2400 workstation. The IRIS window
manager Mex imposes certain requirements on the implementation. A ba-
sic question is “who should be responsible for redrawing the windows when
the user moves or resizes windows: the window manager or the application
program?” The problem is discussed in Hopgood et al. (1986). From the
application programmer’s point of view, the redraw request should be hidden
where possible. However, it must be recognized that redraw requests to the
application program are an inescapable fact of life, for example, when there
is insufficient memory to hold off-screen copies of windows; the screen of our
IRIS has a resolution of 768%1024 pixels and 24 bitplanes implying, that a copy
of the screen requires 2.4 MB of memory. Another problem is that resizing
a window might imply that the content of the window also should be scaled
and in that case the old raster copy is not useful. The picture must then be
regenerated. This is easily done when a picture is stored in a high level format
(a segment).

The TRIS window manager Mex does not handle redraws itsel, but puts a
special redraw token on the same queue that is used for mouse input. These
requests must be served as fast as possible since all processes owning windows
may be blocked until all redraw requests are served. In our implementation,
this is handled by letting the graphical front end be a separate Unix process.
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The graphical front-end stores the content of each window as a segment and
can in this way handle redraw requests itself. An invokation of a graphics rou-
tine from the application means that a message are sent from the application
process to the graphical front-end process.
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4. Conclusions

The purpose of this work has been to study various aspects of system represen-
tation, which is an important issue in CACE. The work has been a continuation
of earlier CACE subprojects in this area: “New Forms of Man-Machine In-
teraction” (STU project 84-5069) (Mattsson, Elmqvist and Briick, 1986) and
“High-Level Problem Solving Languages for Computer Aided Control Engi-
neering” (STU project 85-4808) {Astrom and Mattsson, 1987).

A basic idea is that the user interface should be separated from the pro-
cessing parts to get flexible tools allowing adaptation of the user interface
to the needs and the desires of various users. The representation of systems
is an important and critical part of a CACE system, since it should be uni-
fied to integrate the various. We believe that it is possible to agree upon a
common set of modelling concepts, but that it would be useful to allow the
concepts to have different textual and graphical representations. Basic mod-
elling concepts were outlined in Chapter 2 and five complementary modelling
structuring principles were proposed.

Another basic idea is that that declarative forms (equations) should be
used to describe the behaviour of submodels and the interactions between
models. Declarative models on symbolic forms are flexible, since they can be
used in various contexts., They can be manipulated automatically to generate
efficient code for simulation, code for calculation of stationary points, linear
representations, efficient control code, descriptions which are accepted by other
existing packages etc. Furthermore, it is a global problem to make a procedural
description or make the algorithm from which the behaviour can be calculated.
This cannot be made for the individual submodels independently of how they
are used.

Chapter 3 focussed on the use of graphics to visualize systems and their
behaviour. First, hierarchical block diagrams and Hibliz were discussed. The
conclusion is that it is a good idea to use hierarchical block diagrams to de-
scribe model structure, but there are many open questions concerning their
look and the means for creating, and editing them. We are currently testing a
number of ideas. Second, a prototype window-based environment for Simnon
on the Sun workstation has been developed. This gave us new experiences of
graphics and window systems. The prototype is usable and can thus give us
user feedback. Third, a program for real-time animation in 3-D graphics of
ASEA’s Industrial Robot IRB 6/2 has been developed. The animation feels
very reel. Fourth, we have discussed graphics and window standards.

The work has been influential in shaping the future of the CACE project
(Mattsson, 1987), which will be focussed on development of prototype tools
for model development and simulation,
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