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Abstract
Natural radiative lifetimes of 25 even-parity levels in Gd I(4f75d26p, 4f75d6s6p
and 4f85d6s configurations) and 13 even-parity levels in Gd II (4f75d6p and
4f76s6p configurations) have been measured using the time-resolved laser-
induced fluorescence technique in a laser-induced gadolinium plasma. The
Gd I and Gd II levels range in energy from 26 866 to 36 395 cm−1, and 25 960 to
42 746 cm−1, respectively. In the measurements, stimulated Brillouin scattering
techniques were employed to produce 1 ns laser pulses to enable accurate
measurements of short-lived states. The uncertainty of the radiative lifetimes
is, with a few exceptions, about ±5%.

1. Introduction

The lanthanide elements are of importance in astrophysical investigations due mainly to their
high cosmic abundance and richness in spectral lines. Evaluation and extraction of information
from stellar spectra require knowledge about radiative parameters of the lanthanide elements,
such as radiative lifetimes, branching ratios and oscillator strengths, which can be used for
studies of elemental abundances (Mathys and Cowley 1992, Biémont et al 1998). Besides the
astrophysical aspects, the studies of radiative parameters of the lanthanide elements are also
of great interest in many other fields, such as laser chemistry, atomic and plasma physics and
light-source technology.

Gadolinium (Z = 64) is an even-Z lanthanide element, which has been observed in
spectra of a variety of stellar objects: the Sun (Spector 1970), the galactic disc (Andrievsky
et al 2001), the Si star HD 43819 (Poli et al 1987), the Ap star HD 215038 (Rice 1978) and
the peculiar A star HD 25354 (Pyper 1976). This has stimulated a lot of work concerning
the radiative parameters of gadolinium in recent years. However, reported data on radiative
lifetimes, which constitute very fundamental spectroscopic characteristics of atomic and ionic
species, are incomplete; in particular, radiative lifetimes of Gd I and Gd II for many even-
parity high-lying excited states remain to be explored. For this reason, we have undertaken
the present experimental investigation of radiative lifetimes for neutral and singly ionized
gadolinium atoms, and have extended the lifetime data considerably.
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Previously, Marek and Stahnke (1980) presented 16 even-parity lifetimes (between 17 380
and 27 337 cm−1) of Gd I, measured with the delayed-coincidence method with laser excitation.
Mishin and Fedoseev (1983) measured three odd-parity lifetimes of Gd I, using multi-step
resonance ionization spectroscopy. Lifetime measurement results on 16 levels of Gd I (between
22 334 and 29 452 cm−1) and six levels of Gd II (between 26 211 and 30 102 cm−1) were
reported by Gorshkov et al (1983), Gorshkov and Komarovshii (1986), using the delayed-
coincidence technique with crossing atomic and electron beams. Later on, Bergström et al
(1988) published three lifetimes of Gd II, in the range from 29 242 to 30 102 cm−1, employing
a time-resolved laser-induced fluorescence (LIF) technique on a hollow-cathode discharge.
Miyabe et al (1997) reported the lifetimes of Gd I for ten even states in the 16 061–18 510 cm−1

region and 64 odd states in the 31 064–36 361 cm−1 region, using three-step resonance
ionization spectroscopy. Recently, radiative lifetimes of 20 levels (29 045–34 179 cm−1) in
Gd II and five levels (43 019–48 340 cm−1) in Gd III (Zhang et al 2001) have been measured
by time-resolved LIF techniques.

In this paper, we report radiative lifetime measurements on 25 even-parity levels of
Gd I, in the energy range from 26 866 to 36 395 cm−1, and 13 even-parity levels of Gd II,
in the 25 960–42 746 cm−1 region. Since the analysis of the stellar spectra relies strongly
upon the availability of atomic data, the present experiments were performed using time-
resolved LIF techniques, which have been proven to constitute an accurate measurement
method for determination of radiative lifetimes. In the present study, stimulated Brillouin
scattering (SBS) techniques (Li et al 1999) were used to obtain 1 ns laser pulses, in order to
allow the measurements of short-lived states. Stimulated Stokes Raman scattering (SSRS) in
hydrogen gas was also employed, for extending the tunable range of the exciting dye laser
source. Free gadolinium atoms and ions were produced in a laser-induced plasma. The
states under investigation were selectively excited, and the subsequent fluorescence signal was
monitored with a fast detection system.

2. Experimental set-up

Figure 1 schematically shows the experimental set-up used in the lifetime measurements.
Free neutral and singly ionized gadolinium atoms were produced in a laser-produced ablation
plasma. A pure gadolinium foil was put on a rotating target in a vacuum chamber, in which
the pressure was about 10−6–10−5 mbar. The ablation laser pulses, characterized by a 532 nm
wavelength, a 10 Hz repetition rate and 10 ns duration, were emitted from a Nd:YAG laser
(Continuum Surelite) with variable pulse energy. Pulse energies in the range 2–10 mJ were
normally used. The pulses were sent from the top of the vacuum system through a glass window,
and were focused vertically onto the surface of the rotated gadolinium foil. After the impinging
of the laser pulse on the gadolinium foil, the plasma, with sufficient populations in ground as
well as metastable states of neutral and singly ionized gadolinium atoms, expanded from the
foil for appropriately chosen plasma conditions. When the plasma reached the interaction zone,
about 10 mm above the rotating target surface, it was crossed at right angles by an excitation
laser beam, which was provided by a tunable nanosecond laser system.

The laser system consists of an injection-seeded and Q-switched Nd:YAG laser
(Continuum NY-82), an SBS compressor, a dye laser (Continuum Nd-60), a potassium
dihydrogen phosphate (KDP) crystal, a retarding plate, a β-barium borate (BBO) crystal and
an SSRS cell. A 532 nm beam from the Nd:YAG laser with a 8 ns pulse duration, a single pulse
energy of 400 mJ and a repetition rate of 10 Hz was first sent to the SBS compressor to shorten
the pulse to about 1 ns, and then the shortened laser pulse was employed to pump the dye laser,
in which DCM dye was operated in the wavelength range from 607 to 676 nm. Depending on
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Figure 1. Experimental set-up for time-resolved LIF measurements on gadolinium.

the excitation requirements, different nonlinear processes have been adopted in this experiment
to obtain the UV radiation at wavelength from 233 to 386 nm. The radiation from the dye laser
could be frequency doubled in a KDP crystal, and then mixed with the fundamental frequency
in a BBO crystal to produce the third harmonic of the dye laser frequency. The retarding
plate was placed between the KDP and BBO crystals for polarization rotation (Bengtsson et al
1990). In order to extend the tunable laser range, the second harmonic, or the third harmonic of
the dye laser beam was focused into the SSRS cell with hydrogen at 10 bar, in which different
orders of stimulated Stokes and anti-Stokes Raman scattering were obtained. The different
components of the laser beams from the SSRS cell were first isolated with a CaF2 Pellin–Broca
prism, and then the appropriate excitation light was horizontally sent into the vacuum chamber
and crossed with the expanding laser-induced plasma.

Both Nd:YAG lasers were externally triggered by the same digital delay generator
(Stanford Research Systems model 535). This enables a free variation of the delay time
between the ablation and excitation laser pulses.

The fluorescence, decaying from the excited levels,was collected by a fused-silica lens and
focused to the entrance slit of a 1/8 m monochromator (resolution 6.4 nm mm−1), which was
used as a filter to choose a desired fluorescence line and block stray light. A Hamamatsu 1564U
micro-channel-plate (MCP) photomultiplier tube (200 ps rise time and 200–600 nm spectral
response region) was employed to detect the fluorescent light selected by the monochroma-
tor. A transient digitizer (Tektronix model DSA 602), which was triggered by a Thorlabs
SV2-FC photo-diode (120 ps rise time), driven by a reflection from the excitation laser beam,
was used to record and average the signals from the MCP. Finally the averaged time-resolved
fluorescence signals were transferred to a personal computer, where lifetime evaluations were
performed immediately.
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3. Measurements and results

The element gadolinium has a rather complex electronic structure with a half-full 4f electron
shell and the presence of a 5d electron. The ground electronic configurations (odd parity) of the
Gd I and Gd II are 4f75d6s2 and 4f75d6s, respectively. Through one-photon excitations from the
ground state and appropriate metastable states, the radiative lifetimes of 25 even-parity levels of
Gd I, belonging to the 4f75d26p, 4f75d6s6p and 4f85d6s configurations, and of 13 even-parity
levels of Gd II, belonging to the 4f75d6p and 4f76s6p configurations, were measured. The
energy levels used in the present work were obtained from the NIST atomic spectrum database
(http://www.physics.nist.gov/cgi-bin/AtData/main asd). The levels measured are summarized
in table 1, with excitation schemes indicated.

In the measurements, fluorescence signals in the different decay channels, from excited
upper levels to possible lower levels, were checked in order to ensure that the Gd I and Gd II

transitions of interest were indeed studied. The strongest one of the fluorescence signals was
usually recorded and used for the evaluation of the radiative lifetime.

Systematic influences in the lifetime measurements can potentially affect the accuracy of
the measured lifetimes. In our experiments, special attention has been given to all possible
systematic effects, such as flight-out-of-view effects, radiation trapping and collisional effects,
on fluorescence decay curves, by adjusting a variety of experimental conditions.

The plasma density and atomic/ionic speeds at the observed spot can be adjusted by
changing the ablation pulse energy, the size of the focused ablation pulse on the foil, the distance
above the target surface and the delay time between the ablation and excitation pulses. To check
the collisional quenching and radiation trapping effects, measurements under different plasma
conditions were performed. The delay time between the ablation pulse and the excitation pulse
could be as long as 35 µs for Gd I measurements and 6 µs for Gd II, but still reasonably good
signals for evaluating the lifetime were obtained. Though the detected fluorescence intensity
varied by a factor of ten, the lifetime values were found to be well coincident. This indicated that
radiation trapping and collisional quenching effects were negligible under our measurement
conditions. The longer delay time interval for Gd I than for Gd II is easily understood due to
the lower speeds of atoms compared to ions. When collisions are negligible, alignment effects
resulting from the polarization of the excitation laser do not influence the time evolution of the
fluorescence signal (Schade et al 1993).

In this experiment, a pair of Helmholtz coils provided about 100 G static magnetic field
to wash out quantum beats due to the Zeeman effects for long-lived states. It is well known
that flight-out-of-view effects are important in lifetime measurements, especially when the
measured lifetimes are long. Therefore, the position and width of the entrance slit of the
monochromator and the delay times between the ablation and the excitation pulses were
adjusted during the experiment in order to identify and eliminate possible influences of such
effects. To ensure a linear response of the detection system, the fluorescence signals were
detected with different neutral density filters inserted in the exciting laser light path.

The Gd I and Gd II lifetimes reported here fall in the range 2–75 ns. The temporal shape of
the excitation pulse thus had to be recorded for the short-lived lifetime measurements. While
the ablation laser was turned off, a metal rod was inserted into the interaction zone of the
excitation laser and the plasma, and scattered light due to the excitation pulse was collected
by the same detection system. The recorded curve is a convolution of the real laser pulse
and the time-response function of the detection system. The effects of the finite duration of
the excitation pulse and the limited response time of the detection system could be taken into
account in the evaluation process by fitting the experimental fluorescence decay curve to a
convolution of the detected excitation pulse and a pure exponential function.
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Table 1. Levels measured in Gd I and Gd II, with excitation schemes and results.

Excitation Observed Lifetime (ns)

Configuration E (cm−1) Origin λ (nm)vac λ (nm)vac This work Previous

Gd I

4f7(8So)5d(7Do)6s6p(3Do) 26 866.385 215.124 375.22 386.5 59(3)
27 041.751 0.0 369.80 372.8 59(3) 59.3(4.2)a

27 118.725 215.124 371.70 371.7 72(4) 77.1(5.4)a

27 315.791 532.977 373.37 373.4 46(2) 43.7(3.1)a

4f7(8So)5d(9Do)6s6p(1Po) 27 135.695 0.0 368.52 371.5 3.5(0.2) 5.4(0.5)b

27 425.245 215.124 367.51 378.4 3.9(0.2) 6.7(0.5)b

4f8(7F)5d(8D)6s 27 704.965 532.977 368.03 368.0 68(5)
27 571.672 532.977 369.84 386.8 14.6(0.5)

4f7(8So)5d2(3F)(10Fo)6p 27 861.093 0.0 358.92 474.5 8.8(0.4)
28 111.670 215.124 358.47 463.8 12.2(0.6)
28 841.676 999.121 359.16 460.0 10.5(0.6)

4f7(8So)5d6s6p 29 451.356 1719.087 360.59 351.5 11.5(0.5) 13.5(0.5)b

30 307.480 215.124 332.31 341.2 24(1)
30 394.640 0.0 329.01 438.0 102(5)

4f7(8So)5d2(3F)(10Fo)6p 30 881.658 532.977 329.50 329.5 7.7(0.4)
4f8(7F)5d6s 31 777.972 532.977 320.05 400.1 6.4(0.2)
4f7(8So)5d(7Do)6s6p(1Po) 32 133.125 0.0 311.20 407.0 18.5(0.9)

32 149.515 0.0 311.05 404.5 7.2(0.4)
32 336.079 0.0 309.25 405.2 7.2(0.3)

4f8(7F)5d6s 32 384.000 0.0 308.79 458.6 16.6(0.7)
4f7(8So)5d2(3P)(10Po)6p 32 785.115 215.124 307.03 387.5 8.5(0.3)

33 851.828 1719.087 311.21 304.4 7.6(0.4)
4f8(7F)5d6s 35 794.634 532.977 283.59 417.3 9.0(0.4)
4f7(8So)5d2(3F)(8Fo)6p 36 191.722 215.124 277.96 337.4 9.7(0.4)

36 394.507 532.977 278.85 337.7 9.7(0.5)
Gd II

4f7(8So)5d(9Do)6p 25 960.073 0.0 385.21 385.2 6.5(0.2)
26 211.912 0.0 381.51 385.4 6.4(0.3) 9.3(1.2)b

26 595.222 0.0 376.01 376.0 6.4(0.2) 14.6(0.5)b

27 162.224 633.273 376.95 376.9 6.1(0.3) 11.7(0.5)b

29 353.344 1158.943 354.68 354.7 5.3(0.2)
4f7(8So)6s6p(3Po) 28 502.312 1158.943 365.72 365.7 15.5(0.8)
4f7(8So)5d(9Do)6p 29 197.887 2856.678 379.63 345.6 12.3(0.6)

30 027.378 261.841 335.96 375.9 4.5(0.2)
4f7(8So)5d(7Do)6p 39 024.491 0.0 256.25 285.7 2.34(0.2)

39 170.192 0.0 255.30 279.8 2.34(0.2)
39 537.159 3444.235 277.06 320.0 3.12(0.2)

4f7(8So)5d(7Do)6p 42 628.167 0.0 234.59 307.3 3.01(0.2)
42 745.310 0.0 233.94 309.1 2.86(0.2)

a Marek and Stahnke (1980).
b Gorshkov et al (1983).

Every decay curve was obtained by averaging fluorescence photons from 1000 pulses,
in order to obtain a sufficiently high signal-to-noise ratio. For each level measured, about
ten fluorescence decay curves were recorded, under different experimental conditions. The
averaged lifetime value was adopted as the final result. For the long-lived levels, a least-
squares exponential fitting procedure was used to evaluate the lifetimes. For the short-lived
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Figure 2. A typical curve for the 39 537.159 cm−1 level of Gd II, with a convolution fit.

levels, a deconvolution fitting procedure was performed, as described above. A typical curve
of short lifetime and the corresponding convolution fit are shown in figure 2 for the 4f75d6p
(39 537.159 cm−1) level of Gd II. All experimental lifetime results measured are given in the
sixth column of table 1. The error bars of our reported lifetimes reflect not only the statistical
errors, but also a conservative estimate for possible remaining systematic errors.

4. Discussion

The lifetime data from the present investigations are compared in table 1 with previously
published results. Three levels of Gd I were earlier measured by Marek and Stahnke (1980)
using the delayed-coincidence method with laser excitation, and a good agreement with
our results, within the quoted uncertainties, was found. However, three lifetimes obtained
for Gd I and three for Gd II are much smaller than those reported by Gorshkov et al
(1983) employing a delayed-coincidence technique with crossing atomic and electron beams
(unselective excitation).

In summary, radiative lifetimes of 25 levels for Gd I and 13 levels for Gd II have been
obtained using time-resolved LIF techniques, in all of which 29 levels were measured for
the first time. These new lifetimes, with a few exceptions, are believed to be accurate to
about ±5%.
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