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ON ADAPTIVE CONTROL OF LOW ORDER SYSTEMS T

B, Wittenmark

ABSTRACT

In this report we study the behaviour of different adaptive
regulators, derived via the theory of stochastic control.
The regulators are used on first and second order systems.
Phenomena, due to the adaptive control, will occur. These
phenomena can be eliminated by using an optimal control law,
derived through Dynamic Programming. The optimal control law
is derived for first order systems. When obtained the struc-
ture of the optimal control law a much simpler suboptimal
control law can be derived. The suboptimal control law can
be generalized to higher order systems. Results from simu-
lations are given to illustrate the behaviour of the diffe-

rent regulators.

T This work has been supported by the Swedish Board for
Technical Development under Contract 69-631/UkL8S
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1. INTRODUCTICN

There are many ways to approach the adaptive control problems.
In literature there exist a great flora of suggested solutions
to a wide range of processes. See e.g. [H]. Many of the solu-

tions can be reduced to a scheme, illustrated by figure 1.1.

y(t)

PROCESS

ult)

< REGULATOR

PARAMETER-
IDENTIFIER

Fig. 1.1: A scheme for adaptive control system

It is assumed, that the process has time varying or unknown
parameters. These parameters are calculated from input and
output data and fed into the regulator. The regulator computes
the input signal to the process, based upon the estimated para-
meter values instead of the real ones. The regulator is often

designed as if the parameters were known exactly.

When using this scheme we get a control, which is nonlinear.
The nonlinearity comes from the parameter identifier, which
e.g. can be a Kalman filter, [3], [7].

One essential question is now, how the quality of the estima-
tion affects upon the regulation. If the estimate is poor is
it then necessary to take account to the uncertainty of the es-

timated parameter values? This means, can the separation of the




problem, as demonstrated in figure 1.1, be justified? Further,
must the regulator be redesigned because of the identification
of the parameters? It will be shown in examples that the control-
ler sometimes has to be redesigned to make a smoother control

because of the uncertainty of the identified parameters.

Another important and animated discussed problem is, whether

it is necessary to apply perturbation inputs to the system in
order to get better identification or if the normal control sig-
nals are sufficient. For the pure identification problem there
is a common opinion that perturbation signals ought to be intro-

duced.

A phenomenon, associated with adaptive control, is the "burst
phenomenon”. This is well known to workers in the field, but has
unfortunately not been published. It has e.g. been pointed out
by Astrém in unpublished notes [5]. If an adaptive system is
started with poor estimates the system makes a poor control,

but the estimates will improve quickly. Thus, the system starts
to control good and has small errors. In that case the real para-
meters of the process can start drifting, and a slow parameter
estimator may not detect this from the small error signal, until
there is a large difference between the real and estimated para-
meters. Then the system will be controlled poor, and the errors
begin to grow, but then it will be possible to get better esti-
mates, and the errors become small again. The error signal of
such a system will thus consist of parts with small amplitudes

and parts with large oscillations.

The phenomenon can be influenced in many ways. One is to introduce
a perturbation signal, which shall assure good parameter estima-
tion., In this case an additional error will be introduced, and
one have to decide between additional error and the rates of the

bursts.
The mentioned problems will be discussed further in the report.

The approach to adaptive control, used in this report, goes via
the theory of stochastic optimal control. By assuming, that the
parameters are stochastic processes, the problem can be formula-
ted as a stochastic optimal control problem. This has been dis-

cussed in [6].




The problem now becomes to derive recursive equations for the
conditional probability distributions and to solve a determi-
nistic control problem. The deterministic control problem be-
comes one of controlling a system, described by nonlinear par-
tial differential equations. There are, however, special cases
where the probability distributions can be characterized by a
reasonable number of parameters and when a solution might be
found. This is the case with linear systems, having a quadratic
loss function. Then the conditional probability distribution is

characterized by the mean and covariance functions.

The purpose with this report is to treat simple examples of
adaptive control. But the examples are sufficiently complicated
to demonstrate many interesting features of adaptive systems.
Furthermore, when the simple case is solved and the structure
of the regulator is developed, the results can be generalized

to more complex systems.

The background and the statement of the problem is discussed
in section 2, where also the performance index is discussed,

i.e. how to measure the behaviour of the system.

In section 3 we will from the discussion around figure 1.1 de-
rive a heuristic control law and discuss its validity. This
control law will then be expanded in section 4, where the prob-
lem is discussed from a statistical point of view. This will
lead to a control law, which takes account to the uncertainty
of the parameter estimates. By using this, we will get a bet-
ter performance, but in some cases the special features of

adaptive control will turn up. The '"burst phenomenon" occurs

together with a related phenomenon, which we can call the "turn
off phenomenon". Briefly, this means that the regulator turns
off for periods of time and after a while turns on and begins
to control in a proper way again. This is discussed together

with simulation results for a second order system in section 5.

In order to overcome these phenomena a more complex performance
index is considered for a first order system. The derivation of
the control law is done in section 6, using the technique of

Dynamic Programming.




Results from simulation of first order system are discussed in
section 7. The optimal control law has a two-fold action. First
it takes account to the variance of the estimated parameters,

as the control law derived in section 4. Secondly, which is very
important, it makes control in a way to get better estimates,
i.e. to get a smaller variance of the parameters. A controller

of this kind is called a dual controller. The contrary controller

as in sections 3 and 4 is called nondual controller.

Some computational aspects upon the derivation of the optimal

control law are discussed in appendix.

Briefly, the main results of the report can be summarized into

the following points:

- The nondual controller, which does not take account to the

uncertainty of the estimates, has serious limitations.

- The nondual controller, which takes account to the uncertainty
of the estimates, has inspite of its simplicity good performance

in many cases.

~ Turn off and burst phenomena can occur when using nondual

controllers.

- A dual control law can be derived, which eliminates the turn off
phenomena. The dual controller has a two-fold action and consists

of one error correcting and one information sensing part.

- A suboptimal dual controller can be derived when the structure
of the optimal control law is known. The suboptimal control law
consists of two parts, first the same nondual control law, which

. . . second,
takes account to the uncertainty of the estimates, andva pertur-
bation signal. Thus in order to eliminate the turn off phencme-

non can the introduction of a perturbation signal be justified.

The author wishes to express his acknowledgements to Professor
K.J. Astrém for pointing out the problem and for the stimulating

discussions during the work with this report.




2, STATEMENT OF THE PROBLEM

When interesting in input-output performance for discrete sys-

tem many processes can be written in the following form:

y(t) + aly(tvl) L any(t~n) = bou(t) L bnu(t—n) + e(t)
(2.1)

where

y(t) —  output
u(t) =  control signal

e(t) - normal white noise

Hotice the simplification, that it is assumed, that the driving

noise is white.

1f the parameters a. and bi are known, there are many ways of
handling such systems, e.g. minimum variance strategies £7]“
But if the parameters are time-varying in an unknown way we can
get into difficulties. E.g. if the gain is varying over a wide

range and especially if it changes sign.

In order to attack these problems we rewrite equation (2.1):
= -~ - - - & - - +
y{t) aly(t 1) - ... dny(t n) + bou(t) + ...t bnu(t n) + e(t)

and introduce the vectors x and 6, defined by:

and
o = [~ y(t-1) ... - y(t-n) ult) ... u(t-n)]
Then (2.1) becomes:

y(t) = a(t) x(t) + e(t)




Assume that the parameters are linear stochastic processes.

Then the time dependence of x(t) can be written as:
x(t+l)= ¢ x(t) + v(t)

where {v(t)} is a sequence of gaussian random variables.

It is not obvious how to get the statistical properties of
the parameters e.g. how to get the matrix ¢ and the variance
of v(t). But if we overlook this difficulty we now have the

problem in a very attractive form:

Tx(t+1) = gx(t) +y ()
(2.2)
{ v(t) = 0(t) x(t) + e(t)

where {v(t)} and {e(t)} are sequences of independent gaussian

random variables with the properties:

E vt) s Ee(t) =0

L ovit) v(t)l = R,
Ee(t) e(t)! = R,
E wt) e(t)! = 0

where L denotes mathematical expectation. Further 6(t) is a
linear function of known variables y(t-1) ... y(t-n), u(t) ...
. ult-n).

This structure will cover a wide range of processes, but this

report will be limited to first and second order systems, where

0{t) is a function of u(t).

The discussed systems are simple, but yet many interesting
features of adaptive control systems can be demonstrated. The
results can be transferred to the more general problems, out-

lined above.,

In the verysimple case n = 1 we have:

((%(t¥1) = ax(t) + v(t)

y(t) = ult) x(t) + e(t)

\




This can be interpreted as a system with time-varying gain with

the output corrumpted by white noise (see fig. 2.1).

iv(t) e(t)

(t)
__%u(t) x(t) y
Fig. 2.1

To complete the statement of the problem we have to decide upon

how the behaviour of the system shall be measured. There are many
ways of specifying the performance index of a system. The complexity
of the control law will depend on this choice. Therefore, we will
use a couple of performance indices to be able to derive control

laws of different complexity.
First in section 4 we will minimize at each time step, one stage
control

ot = E(k 4 e(t) x(1)? (2.3)

where E denotes mathematical expectation.
Second in section 6 we choose to minimize

N
L =L & (k+6a(s) x(s))? (2.1
s=1

This is called N stage control.

These two performance indices can seem to be equal. But there is

a fundamental and very important difference between them. The first
case (2.3) will give a control law, which makes the best thing in
a given situation, but it does not make any attempt to get a better

situation, i.e. to get better estimates.




Using (2.4) will give a control law which does not lock at only
one time step. The difference depends on when using (2.4) a
greater loss in the beginning can be accepted in order to get
better identification of the parameters and then be able to make

a better control.
To summarize we have the following:
Problem
Given the system:
x(t+l) = ¢x(t) + v (t)
(2.2)
y(t) = sult)) =x(t) + e(t)
where
- the order of system is equal to 1 or 2.

- {v(t)} and {e(t)} are independent sequences of normal random
variables with mean equal to zero and the variance matrices

Rl respectively R2.
- o{u(t)) is a linear function of u(t).

Then find a control law u(t) as a function of u(t-1), u(t-2),

veey y(t=1), y(t-2), ..., which minimizes either of the performance
indices
1. 12
g7 = Elk + oult)) x(t) (2.3)
or
N 2
.= b I [k + 6 (uls)) x(s)} (2.w)
s=l




3. HEURISTIC APPROACH

In section 1 we pointed out that adaptive control system often
was divided in two parts. First calculation of the parameters

and second design of the controller, as if the parameters were
known (see fig. 1.1). In this section we will use this argument

to derive a control law for the problem, given in section 2.

In this part we will assume a special system of second order,

but the arguments are also valid for other systems.

Let the system be:

x(t+l) = ox(t) + v(¥)
(3.1)

i y(t) = xl(t) + u(t) xz(t)

and the performance index is to minimize the square of the output

signal.

If the state variables were known y(t) would become equal to

zero by choosing the control law:

Xl(t)

u(t) = - (3.2)

xz(t)

But in system (3.1) it is only the output y(t) which is measurable
thus we have to estimate the state variables from measurements of
the output signal. With the given structure of the problem the
estimation can be done by using the Kalman filtering theory (see
e.g. Astrém [7] or Kalman 3.

Let x(t+l|t) dencte the estimated state vector based upon measure-
ments y(t), y(t-1), ... and P(t) the variance matrix of the esti-
mation error, x(t) - x(t|t-1). Then we have the following recur-

sive equations:

(201 o) = exCEe-D) + KO (y() - exCt]t-1))

1K) = P o (eP(t) 68 + R))7T (3.3)

P(t+1) = gP(£) ¢F + Ry - ¢P(t) o (6P(r) 6 + R,)7H ept) ¢

%
1"’»,
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When using the estimates instead of the real values, the control

law becomes:

;l(tétsl)
u(t) = - =

L (3.4)
%, (] t-1)

We see that if the state variable xz(t) is small the quality of
the estimate can have great influence on the regulation. But if
xz(t) is large then the uncertainty of the estimate does not have
the same importance. This will be examplified through simulation,

and the results are discussed in section 5.

4, A STOCHASTIC CONTROL FORMULATION OF THE PROBLEM
We now consider the system:
x(t+1) = ox(t) + Vv ()

(4.1)
y(t) = ox(t)

where 6(t) = [1 u(t)] and {v(t)} are a sequence of independent

stochastic variables with zero mean and covariance matrix Rl'

Let the loss function be:
H6) = Bl (8) + 3, (Hu)? = E(e(tx()? (4.2)
1 2 :

The problem will now be formulated and solved as a stochastic
control problem. The solution can easily be transfered to other

systems of the same class.

Introduce:

(F

P T
f?% = [y(t) y(e=1) ... y(to)j

i.e. the sequence of output values up to time t.
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Rewrite (4.2)

zl(t)

1]

E(0(6)x(t))?

L[E{(ex) i&tml}} o

where E(+|y) denotes conditional expectation given y.

To minimize (4.2') with respect to u(t) is equivalent to mini-

mize:

vie) = Ee0 ) (4.3)

with respect to u(t). This is true, because %&—l is independent
of u(t).

As the system fulfils the conditions of the Kalman filtering

theory (4.3) can be written as:

vi0) = (a(t) 2(tt-1))? + s (t)P(E)o()]

ek ~ 12 2
= [xl + uxz] + Pll+ 2up12 + u Py

where x(t%t—l) and P(t) satisfy the Kalman equations given

by (3.3) in section 3.

Differentiate Vlft) with respect to u(t)

l -~ A A
By _ '
= 2X2(xl tux,) + 2py, * 2up,,

au
This will give minima of vit) for

FS a i )
i Xl(tgt»l) xo(tyt-1) + Py, () )
%o (t1t-1)7 + po, ()

o

u(t)

If the estimates are exact)P(t) = O}are (4.4) reduced to:

% (t]t-1)

u(t) = - T
Xz(tzt-l)



which is the same control law as (3.4), derived in section 3.
Thus, if the estimates are good the two control laws will have
about the same behaviour. But when controlling according to

(4.4) when the elements in the variance matrix are large we

pay regard to this and make a smoother control, and that can

give a considerable reduction of loss. But yet is the complexity
of (4.4) not greater than of (3.4), because the variance matrix
has to be calculated in both cases, because it is the same state
estimator. But there are disadvantages with (4.4) too. The control
law does just handle to minimize the expected error, but does not
make any attempt to get better estimates of the state variables.

This type of control is called nondual.

The behaviour of the control law is discussed in the next section.

5. SIMULATION OF SECOND ORDER SYSTEM

In this section we will discuss the results from simulation of
second order systems using the control laws derived in sections

3 and 4. As before the system is:

x(t+1l) = ¢x(t) + W(t)

(5.1) = (3.1)
| y(t) = Xl(t) + ult) XQ(t)
where E \Kt)v(t)T = Rl‘
The used control laws are
%) (] 1)
ult) = - e (5.2) = (3.4)
x2(t§t—1)
and
% (E-1) %, (t]t=1) + py,(t)
u(t) = - —= 2 12 (5.3) = (4.4)

- 2
%, (E] =17 + pyo (1)
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where xi(tétnl) and pij are given by the Kalman equations (3.3).

To evaluate the performance of the system we use the loss func-

tion:

y(m? (5.1)
1

V(t) =
n

1o~

If one of the state variables xi(t) is known exactly it can be

shown that:
E{v(ed} =t - r. .

where rs . is the ith diagonal element in the variance matrix
Rl’
This can be used to compare the behaviour of the system for dif-

ferent control laws.

Example 6.1
Let the system be characterized by the matrixes:
1 0 0,01 0
¢ = Rl:
0 1 0 0,01

¢ equal to the unit matrix implies that the state variables -
are not coupled. Further the state variables are pure random

walk processes.

The result of a simulation is shown in figure 5.1. After the
transients in the beginning there is no major difference bet-

ween the control laws.




LOSSFUNCTION  V(t)

8_

6 - I
11

4 - I

2_

T T T ] 1
0 100 200 300 400 500 t

Fig. 5.1: Loss function for different control laws.
I Expected loss when one state variable is known

exactly. ;l(t%t—l)

IT Loss when using u(t)

%, (] t-1)

* & - ]
%, (el 621 3, (e[ £=1) + po ()

IIT Loss when using u(t) . 5

The small differences are better seen if the influence of the
initial values are eliminated. This is done in table 5.1 by
looking at the differences V(t) - V(10) for the same cases as

in figure 5.1.

14,




V(t) - Vo
T 1T . IIT ~ o
t One known state X X, XatD
variable ult) = - ré u(t) = - A122 12
9 Xy * Pyy
100 0.9 1.04 1.01
200 1.9 2,24 2.20
300 2.9 3.24 3.21
400 3.9 Ly 4,40
500 4.g 5.37 5.34
Table 5.1

The equal performance of regulator (5.2) and (5.3) is due to the
fact that the state variables are random walk processes. A charac-
teristic feature for random walk processes is the long time between
times when the variable changes signs. Further the elements in the
Ry matrix are small, which implies that the changes of the state
variables are small between each time step and thus it is easy for

the estimator to track the state variables.

Example 5.2

This example will show the sensitivity of the regulator (5.3) when

the state variables are small.

Let the state variables have the deterministic values:

Xl(t) = 1
xz(t) = sin 0.05 t
and put
10 1072 0
¢ = and R, =
0 1 1 0 3 - l0_3

in the Kalman equations.

15.
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When using (5.3) the results can be seen in figure 5.2.

Even if we consider the uncertainty of the estimates we see

that the performance changes drasticly when Xz(t) is near zero.

Looking at the regulator we see that the system is not so sen-
sitive for small values of Xl(t) because Xl(t%t—l) only appears

in the numerator.
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OUTPUTVALUE y(t)

2
o | I Y
WESEDEDE NN
0 “iljr/ L/—’J/ EV”"’”J L’/Jl/”_’—) g k/‘J{/‘”"
-2 T T T T i T T T i ¥ T T T
200 400 600 800 t
CONTROLSIGNAL u(t)
10~
S l | ?\
h\ w. : f‘ '( | ! i\ | g’l
f\J fk‘jﬁ \_/ gUTE \ \J}
0 ; ‘ 1 i | :
A Yy
_w) \ ‘/ ¢ f[ ! i | { ! "1 |
T | | ; | ?
"10’“ 1 T J T T T T T T T T T T
200 400 600 800 t
LOSSFUNCTION V(t)
SOﬂ‘
40J o
{
| o
—1 J__,J—“"/J
!
lw_'“ﬁf____J,,___f”“—* o o
0 = T 400 600 800 t

STATE VARIABLE x5(t)

NAALALR
IRVAVRTAVATATS

Fig. 5.2 f 2 (1) = 1 10 1072 0
= R, =
? x2(t) = sin 0.05 t 0 1 1 0 3 107°
;’.; +p
2
u(t) = - 12
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This example will show the dependence of assumed variance

. . . 0 .
matrix Rl versus actual variance matrix Rl when using:

XX, t D
u()=- ot 32 (5.3)

Xy ¥ Doy

From table 5.2 we see that the regulator is not specially sen-

1 if it is chosen +oo small. But if Rl is chosen

too large the estimator will become very sluggish. Further the

sitive of R

elements in the variance matrix P will be large and thus have

the major influence upon the control signal u(t).

V(t) - V(50)
Assumed R
+ 1
0,011 0,1I I 101
100 79 75 63 1807
200 243 239 224 131997
500 624 6519 ‘ 602 33947

Table 5.2: lLoss function for the system

1 0
x(t+l) = x(t) + v(t)

0 1

y(t) = xl(t) + u(t) Xz(t)

where Rg = E V(t)v(t)T = I using the control law
; ; +p

ult) = - :éjzwmw—;z
%

2 T Py

for different values of the variance matrix Rl in

the Kalman equations (3.3).
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‘Fhenomena, occuring when chosen the variance matrix Ry too

large, will be discussed further in example 5.5.

Example 5.4
1 o 10
¢ = R, =
0 0.9 olo 2
This is a process where Xl(t) is a random walk process and X,(t)
is a stochastic variable which changes signs relatively often.

The rate of change in the state variables is greater than in

example 5.1.

In figure 5.3 the loss functions are shown for different control

laws.

x103/N LOSSFUNCTION V(t)
30 1
20-
11 It I
10
0 T T | — I —>
0 100 200 300 400 500 t

Fig. 5.3: Loss functions for the system

10
('x(t+l) = x(t) + v(t)
. 0 0.9

Z y(t) = % () + ult) %, ()

e

for different control laws.



Fig. 5.3 Contd.

XXy T D
I ult) = Alzz L2

Xy * Py
II u(t) = 0

X
IIT ule) = - T£

%9

makes a poor regulation when x2(t) often is near zero. In this
example it even gives a much greater loss than no control at all

(curve II in fig. 5.3).
The difference between (5.2) and (5.3) is further demonstrated

when looking at figures 5.4 and 5.5, where the output signals

are drawn in the same scale for the two control laws.

20,




OUTPUT SIGNAL vy (t)
150 A

100+

50

OWVLVWM i$w%rmﬁmewdAML%Amemk \L%\@

ikz’u\v

21.

-50-
-100 1
-150 T T T
0 100 200 300
E&&@mgéﬁ - Output signal for exemple 5.4 using
X
u(t) = - 7;
%9

OUTPUT SIGNAL y(t)
501

t
0 R /\/u,‘/nl\f/&/f\/“\"\j‘ \'u’k/‘,\_r\/\,q'\ﬂ—nfv"w M“\k/\,,(m”"w\, /J\vf ;‘ﬁ'\a/v J\\/J‘ H\([;"{,J-"—\ - \“_/\!\‘/\ff\,’\'u\r-\/.m
D)

'50 | T T
0 100 200 300 t
Eig%mgéé - Qutput signal for exemple 5.4 using
% %, + 8]
W) = - 012 Y 12
X

ot Pyo




Example 5.5
As mentioned in example 5.3 phencmenon can occur when chosen

the variance matrix Rl too large in comparison with the actual

value. This will be called the "turn-off" phenomenon.

Take the system:

1 0
x(t+l) = x(t) +v (L)
0 0.9

\y(t) = x (1) + ult)x, ()

with Rg = I and use Rl = 10I in the Kalman equations and the

control law

%1%y T Pyy
=5
N Y

ult) = ~

The result of a simulation is shown in figure 5.6.

The control signal is zero or almost zero for about 620 time
steps, and this implies that the output only contains informa-
tion about xl(t), and thus the best estimation of xz(t) is

%, () = 0.

After about 620 time steps the regulator starts controlling
again in a proper way. The improvement can be seen in the loss
function, where the dashed curve is the loss function for u(t)

equal to zero.
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OUTPUTVALUE y(t)
50}

-50 1+ " y T " T " T N T T T

0- CONTROL SIGNAL u(t)

"]O T T 1 T T T ¥ T T T T T T T T

:

800 - LOSSFUNCTION V(1)

x 103

400 A

0 T ¥ T 1 T T T T v T T s T T y ]
STATE VARIABLE x,(t)

“SD) ¥ T T T T T ¥ T T T l‘ T T T T 1

-SD%M ' ! T I T T T T v T T T T T 1
0 200 400 600 . 800t

Fig. 5.6 - Simulation results from example 5.5 shoWing the

turn-off phenomena
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Example 5.6

In example 5.5 it was shown, that turn-off phenomena can occur
when R1 was chosen too large. But turn-off can emerge even if

the parameter values are correct.

Take the system:

( 0.95 0

it
i

x(t+l) = { ] x(t) + v(t) R

0 0.9

yt) = (1 u(t) ) =0t

we can get curves as in figure 5.7 when using

OUTPUT SIGNAL y (t)

°“W/“‘I"MV/M

|

B |
ity o,
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. CONTROL SIGNAL u(t)

0 200 400 600

Fig. 5.7: Output and control signals for example 5.6 when using

X)Xy * Py
5
%y T Pog

ult) = -
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4000~

To overcome the turn-off of the control we can introduce a
perturbation signal in order to excite all the modes of the

system. One way of doing this is to use the following control

law:
X%, t D

W) = - 22 T (5.5)
Xy * Py

i.e. a superposition of a square wave upon the control law

(5.3), used previously.

The effect of this can be studied in figure 5.8, where the
loss functions are mapped for the control laws (5.3), (5.5)
and u(t) = 0.

LOSSFUNCTION V(t)

I

I11

2b.

I I
200 400 600

Fig. 5.8: Loss function for the system in example 5.6 using

the control laws:

I ult) =0
KKy T D
T ut) = - 1122 12
X, ¥ Py
X%+
SRy Py
IIT u(t) = - + DY 5y 6 = 0.15

800 t




The effect of the perturbation signal is that the control sig-
nal does not turn off and thus we all the time get a proper
estimation of both state variables, i.e. the elements in the

variance matrix P(t) become smaller.

Example 5.7

The burst phenomenon was mentioned in section 1, and we will

now give an example of this.

Let the system be:

1 0

(
w(t+l) = x(t) + v(t)
0 1
|

y(t) = (1 ult) ) x(t)

and the control law

N

XX +p
u(t):__?l_é?__.__l_?_
X9 ¥ Pyy

Then we can get a result as in fig. 5.9.

The burst occurs around t = 500 and when 1ooki%¥t%he state va-
riable xz(t) around t = 500 we see that it is near zero, and
thus the control law is sensitive for the variance of the esti-
mates (compare example 5.2). But for t = 250 is x,(t) also near
zero, and there is no burst. The reason for this is, that the
variance matrix element p22<t) is smaller for t = 500 than for
t = 250,

27.
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6. OPTIMAL CONTROL LAW FOR FIRST ORDER SYSTEM

In this section an optimal control law for first order system
will be derived. The solution will lead to Dynamic Programming
equations. Because of the computational limitations for high order
systems when using Dynamic Programming we will only treat first
order system. But when the structure of the optimal control law

is obtained we can choose a suboptimal control law, which will
give good performance, and this can be transfered to higher or-

der systems.
Let the system be:
x(t+l) = ax(t) + v(t)

(6.1)
y(t) = x(Dult) + e(t)

[ N—

where {v(t)} and {e(t)} are sequences of independent normal ran-

dom variables with

Ev(t) s Ee(t) =0

Ev(t)? =1

2

E e(t)2 A

The problem is to find an admissible control law which minimizes
the loss function:
N

L= E & (14 ue)x(s)? (2.1)
s=1

with respect to the control sequence u(1l) ... u(N).

A control law is admissible if u(t) is a function of u(t-1),
ult-2), .., y(t=1), y(t-2),...

Introduce the notation as in section 4
1
M= e yeen L gt

the sequence of old output values.
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Now consider the situation at time t. The output values y(1) ...
.. y(t-1) have been observed and the control signal u(t) shall

be determined. The loss function can be written as a sum of two

terms.
t-1 9 N ?
220 L (T+uGex=) +E 1 (1+ us)x(s))
s=1 s=t
The first term does not depend on u(t) u(t+l) ... u(l), and to

minimize the loss function with respect to these control signals
is equivalent to minimize the second term in the loss function.

This term can be rewritten as:

N
E z (1+ u(s)x(s))2 = E(E|z(1 + u(s)x(s)]zhif }

- brt-1

s=t
To minimize % is now equivalent to minimize:

N 2.7
E{ 2 (1 + uls)x(s)) e (6.2)

s=t
with respect to the contreol sequence u(t) ... u(N).

From the Kalman filter theory it follows, that the conditional
. . . . 4 s . .
distribution of x(t) glven‘?%_l is normal with mean value and

variance, given by the equations:

{ (41 1) = ax(t]t-1) + KO [y(6) - ultx(t]t-1)]

H

ap(tiult)
K(t) = 5 5 (6.3)
p(tiu(t)® + A
Azagp(t)
p(tt+l) = 5+ 1

p(t)u(t)2 + A




Now consider the situation for t = N. Then it only remains to
choose w(lN) to minimize (6.2) and this is equivalent to mini-
mize:

210/

B+ ux )@, 1} =

= 1+ uanzmi-1)? + uan?pan =

32.

. , (N N-1) 2 p(N)
= (xIN-1) + pQD) |ulD) + = 5 * 5
*(N[-1)% + p() ®(NIN-1)7 + p(10)

Minimum is given for:

2N 1-1)
) = - s (6.14)
®(N{N-1)° + p()

This is the first order system correspondence to the control law

derived in section Y.

Define:

. N
V(x(t{t-1), p(t), t) = min E{ 2 (1 + u(s)x(s))

2
ult) ... u() s=t ;

Je-1d

For t = N we have:

R p(N)
V(x(N[N-1), p), N) = - 5 (6.6)
x(NJN-1)7 + p(D)
Rewrite (6.5):
- N o
V(x(t]t-1), p(t), t) = min E{ ¢ (1 + us)x(s)) ' 4}
[ | ) ult)...ulh s=t( ) th“l
( )2 N : 2
= min E((L + u(t)x(t))™ + 5 (1 + uls)x(s)) iy .3}
ult) ... ulli) g=t+1 G-l

(6.5)
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= min [(1 +unce] 1) + we)Zpee) +
u(t)

N
+ min E{ =z (1+ u(s)x(s))zf‘ l%]

ult+1) . oulN)  ssttl Jt-

= min [}1 +ule)xt 1) + u) pt) + B (el v, peedl), t+1)§%&_l}J
u(t)
(6.7)

The equation (6.7) is a recuration formula from which an optimal

control signal u(t) can be chosen.

Now introduce (6.3) into (6.7):

V(x(t]t-1), p(t), t) = min [(1 FuDxCt] 1) + ) p) +
u(t)

Azazp(t) . s
Ly }:l

5 5t 1, t+1|!

+ BV |ax(]e-1) + K0 (y(0) - w(x(t|t-1)), o
u(t)ple) + 2 /

74
mean value x(t{t-1)u(t) and variance u(t)“p(t) + A\°. Given the

Furthermore, the distribution for y(t) given ® is normal with
distribution of y(t) we can evaluate the last term in the equa-

tion above and we get:

V(xCt]t-1), p(t), t) = min [(1 + u(t)é(tft-l)}z = u(e) p(t) +
u(t)

1 ©
J v(x(t+1§t>, p(t+l), t+1) -

e OO

%

+
Vo fucey ey + 1)

(5" - wOxCt[t-1)?
ds J

° eXP....
2 (u)’pt) + 19




Introduce the new variables:

i

s - u(t)r(t}t-1)

g =
VucorZoce + 22
) p(t)
w(t) = ]
x(tlt-1)
z(t) = - u(t);(tét—l)

Y

Here w(t) can be interpreted as a measure of the relative accu-

racy, small w(t) is equivalent to good relative accuracy. z(t)

is a normalized control signal.

Then
vy (-1, w(t), ) = V(xttle-1), p(o), 1) =

= min |(1 - z(t))2 bz ult) +
z(t)

[ee] -

£ (e ), w(t), thl)e © ds

1
p— z
\2r =

NE )

4

where

N - wlt)z(tds
{ x(t+1] 1) = ax(tit-1)|1 -
| V2o Zucey + 22
{
g . .
z 1 W aluoRt]t-1)7
L w(ttl) = e |1+ —— >
; x(t+1 ) 2(t) w(t) + 2

(6.8)

(6.9)

The loss function Vl is a function of the variables x(t%twl)

and w(t), and the minimization is done with respect to the

normalized control signal z(t) = - u(t)x(tjt-1). The equations

(6.6), (6.8) and (6.9) now defines a Dynamic Programming solu-

tion to the given problem. The initial value is given by (6.6)

34,




and V; can be evaluated backwards using (6.8) and (6.9). The

computational aspects are discussed in appendix.

The solution is not given in analytical form, but as a loss
table and a control table, in which values for the loss func-
tion V, and the contr?l signal z are given for discrete values
of the two variables X(tit_l) and w(t). The backstepping is
done until the changes in the control table are small. The

steady state control table is then used in the simulations.

The actual control signal in the simulations is obtained by
looking in the control table for the actual values of x(t%t—l)

and w(t). This will give z(t) and then:

1
u(t) = - x—————— o z(t) (6.10)
x(t]t-1)

The variable z(t) can be interpreted as a weighing parameter
modifying the heuristic contrel law u(t) = - l/;(t%twl) (com-
pare section 3) with respect to the uncertainty in the estimate
of the state variable. To examplify this we look at two special

cases.

First, assume that the estimate is exact e.g. p(t) = 0. Then

(6.9) reduces to:

(,Q(t+1%t) = ax(t|t-1)
5 (6.9")

: i
‘ wlt+l) = TS
: x(t+1] )7

This inserted into (6.8) gives for t = N - 1:

. - ) 1 1
VG, 0, N-1) = min|(1l - 2)° + — 5 = =
Z (ax)” + 1 (ax)™ + 1

where the minimum is%btained for z = 1. As expected the control
law will be

35.
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Second -, assume p(t) is larger than for t = N-1:

k
w(t+l) =
w(t)
- F
1 = k -5
V, = min (1-2)7 + 2% + J e ? ds
z | VoI - o + k
= minw£l—z)2 + zzé] for large w
z

and minirum isobtained for z equal to zero. From these two
special cases it seems likely that minimum iscbtained for
z(t) in the interval (0, 1), and it is verified through the

nunerical calculations.
Using w= p/x2 in (6.4) will give:
1 1

u(t) = - x— . (6.u")
x(t]t-1) 1 + w(t)

Comparing (6.4') and (6.10) we see that the factor T%E in
(6.4") also can be interpreted as a weighing factor. This re-
semblance between the two control laws (6.4') and (6.10) will
be further discussed in section 7 in connection with results

from simulations.

A very important question is:How large will the expected loss
be, when using the optimal control law? This question can be
answered, using the loss table. Take the difference between

the loss tables in two consecutive points of time at statio-
narity. The difference table will give the loss per time step.
When starting the system we do not know % and p for every time
step ahead, but we can get the statistics of % in the following

way:

First, as the Kalman estimate is unbiased the mean value of x
will be the same as for x(t), i.e. E x = 0. Further the control

will be best if the variance of the estimation error is as small




as possible. The smallest possible value of p(t) is 1, which
is the variance of the measurement error. As the estimation

Y . * .
error x and the estimate x are independent and we have
* "
X+ x=x
then

a) l
ny
var x + var x = var x =

This will give

Q
XY PO
1

varx=m—2-

Thus x is a normal stochastic variable with zero mean and the

variance

l - a
This can now be used to compute the expected loss per time step.

EAV = EAVy(x, w, t) =

2
S

1 o0 1 20A2

X
=——og s J Avl(s, ;5-, t) e ds

Through numerical integration the'expected loss can be computed,
and this value can then be used to evaluate the results from the

simulations.
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7. SIMULATION OF FIRST ORDER SYSTEM

In this section we will investigate the behaviour of a first
order system using the optimal control law, derived in section
6.

The system used is:

{ x(t+1) = 0.9 x(t) + v(t)

4 (7.1)
§ y(t) = u(t)x(t) + e(t)

where

Ev(t) =Ee(t) =0

Evit)? =1

E e(t)? = 0.25

With these numerical values the loss and control tables have
been calculated. To get the steady state control table it was
necessary to go backwards and compute twenty tables. As men-
tioned in section 6, it is possible to calculate the expected
loss per step. When using the optimal control law it was found

that the expected loss would be:

N
Er=C ¢ (1+us)x())? =0.58 « N
s=1

This can be compared with the case when u(t) = 0, then
E&=1-+N

First we will investigate the behaviour of the system when using

the nondual controller:

1 1
u(t) = - = . (6.4")
x(t{t-1) 1+ w(t)

38.
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To get a statistical sample the results from 75 different simula-
tions have been compared. The mean value of the loss and the stan-
dard deviation have been estimated. The result from the "most
average' simulation is seen in figure 7.1. As for the second or-
der system in section 5 the "turn-off" phenomena occur. The regu-

lator turns off the control for long periods of time.

When using the optimal control law, derived in section 6, the re-
sult from a typical simulation will be as in figure 7.2, With this
control law the "turn-off" phenomena do not occur. Another major
difference between the two control laws is seen in the variance
of the estimation error p(t). When using the nondual controller
(6.4") the variance is much greater than when using the optimal
control law. This depends on the fact that the optimal control
law acts in such a way to get better estimates. This control law

is with the terminology introduced in section 1 a dual controller.
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OUTPUT SIGNAL y(t)

uf(t)

CONTROL SIGNAL

VARIANCE pl(t)
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800 t
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Result from simulation of system, defined by equation

7.2

Fi

(7.1) using the optimal control law
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As the variance of the estimation error is almost constant when
using the optimal control law the influence of the variance in
the control table can be eliminated. The most suitable way is to
express the normalized control signal z as a function of w = p/§2.
This has been done in figure 7.3, where z(w) is plotted for the

optimal control law and for z(w) S
L4y

1.0
] CONTROL SIGNAL z(w)
0.5 -
0 T T |
0 5 10 15w

Fig. 7.3: The normalized control signal as function of w = p/x2 for

I Optimal control

; 1
1T z{w) = SET
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For w less than about 2 the two control laws are almost the same.
This seems natural, because for small w the relative accuracy of
the estimate is good, and nothing has to be done to improve the
estimate. In this case it is sufficient to use the regulator, de-
fined by (6.4'), But when the relative accuracy decreases, ie. w
increases, it becomes more and more necessary to improve the esti-
mate. For w greater than 2 it is the improvement of the estimate
which predominates. This change in action of the optimal control
law will give the discontinuity in control function z(w). Similar
results when using dual control laws have recently been given by
Jacobs and Langdon [2].

The jump in the control function is further explained when looking
at the loss as function of z and w. As seen in figure 7.4 there
are two valleys in the loss function. For o less than about 2

it is one valley which gives the smallesq;alues of the loss. But
when w exceeds ? it is the other which gives the absolute minimum

of the loss function.

The optimal controller thus contains of two parts, one error-
correcting and one information-sensing part. When noticing this
structure and observing that for small values of w the control

law (6.4') gives good performance it seems as if a good suboptimal

control law would be:

1 1 +
u(t) = - = ° + (=1)" - 3§ (7.2)
x(tft—l) 1+ ult)

Tt can be discussed if the second term is the best one for the
information-sensing part. But (7.2) has been chosen here to show
that inspite of its simplicity it will be a good suboptimal control

law.

Other functions for the imformation-sensing could be:

(-wl)‘t = 6 w > wy
0 m<w0
- 8/x(t/t-1) w2
0 w < W




b4,

GO.._”PUGS%

ssoT oyl Jo KsTTea puooss Ui S91POTPUT SUTT P2YSED
sy} puP WNWTUTW 23NTOSde Yl SMOYS 2UTT >OTU3d UL

@ pue z JO uoTlOUNF Se SSOT Y3 JFO sTeAsTaNOlUO) — h'L “813

o Q¢ i 01 g o

— /////// ;ﬁ H




45.

Results from an average simulation when using (7.2) with § = 0.125

can be seen in figure 7.5.

The loss functions of the average simulations in figures 7.1, 7.2
and 7.5 are mapped in figure 7.6. As seen the optimal control law
gives an average slope of the loss function which for long periods
of time is very close to the expected value derived as shown in
the end of section 6. The suboptimal control law gives a loss
which lies considerably under the loss of the nondual controller
(6.4'). The numerical values of the average loss and the standard

deviation for the different control law are shown in table 7.1.

» Average slope of the loss -
Control law Mean value Standard deviation
I 0.86 0.07
1T 0.68 ‘ 0.04
IIT 0.61 0.05
Expected slope 0.58

Table 7.1: Mean value and standard deviation for the average slope
of the loss obtained from 75 simulations with different

control laws.

I out) = - . 2% (6.4")
X 1 + W

T ou) = - £ 2+ Db (7.2)
X 1+ w

III Optimal control law

The simple suboptimal control law (7.2) gives in percentage a re-
duction of 68% of the maximally obtainable reduction. For the op-

timal control law the reduction is 93%.

To sumarize it is possible to derive an optimal control law by
using the Dynamic Programming technique. As always there is the

course of dimensionality, limiting the order of system. But as
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seen in this section it is possible to construct a suboptimal
control law which is very easy to transfer to higher order sys-
tem. E.g. it is used for a second crder system in example 5.6.
The suboptimal control law consists of two parts, one which eli-
minates the expected error and one information-sensing part. The

second part can for instance be a perturbation signal as in (7.2).

The "turn-off" phenomena thus justify an introduction of a per-
turbation signal in order to persist good estimation of the

state variables.
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APPENDIX

In appendix we will point out some special features in the solu-

tion of the Dynamic Programming problem, stated by the equations:

Vl(;(t%t—l), w(t), t) = min {ﬁl - z(t))2 s 2(0)2u0e) +

z(t)
2
1 e =
+o— vl(x(t+1it), w(t+l), t+1) e 2 s (6.8)
V-
where
( . ” ~ w(t)z(t)s
| x(erlft) = ax(t]t-1) |1 - —
2 /20 2u(t) + 27
% (6.9)
g 1 x2a2m(t)§(tgt-1)2
¢ w(trl) = S 1+ 5 5
\ x(t+1] ) 2(t)“w(t) + A
and the initial value
", w(lN)
Vy (xUN-1), 0D, N} = ——— (6.6)
1+ wu@D)

The equations have to be solved backwards from t = N. Purther-
more, the solution is given in table form, because it is impos-
sible to find analytical expression for V, when t < N-1. There-
fore the values of the loss and normalized control signal are
given in discrete points. The discretized parameters are ;(t§t~l),
w(t) and z(t). Thus the solution is given as twodimensional

matrices, one for the loss V, and one for the control signal z.

To solve the problem we first compute the loss table from (6.6),
then for each value of ;(tit—l) and ¢ (t) search for minim um of the
expression inside brackets of (6.8). The z-value, which gives
minimumnow defines the optimal control signal and is stored in

7
the control table. The minimal value of the loss is stored in a




new loss table. We thus get control and loss tables for an-
other time step backwards. By repeating this we go backwards
until there are only small changes in the control table e.g.
until we get the steady state control. This final control table

is then used in the simulation of the system.

There are some details in the Dynamic Programming solution which
shall be discussed further.

Discretation and normalization

The discretized parameters are x(t]/t-1), w(t) and z(t). The prob-
lem is now how to choose the grid points to get a suitable net of

grids all over the interesting intervals.

We make two observations:first the loss is symmetric in ;(tét—l),

thus we only have to store tables for positive %(tét—l), This will
reduce the required storage for the tables and the computation time
by a factor two. Secondly, w(t) = p(t)/;i(t{twl)2 can only have posi-

tive values.

a

For % and w we now introduce a normalization which transforms the

positive semiaxis into a finite interval:

>

X

X = .
1+
9

w

X, =

1+ 2
i

This will give functions which are almost linear for x and  less

than a, resp. a,. As an example of these functions see figure A.l.
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Fig. A.1l: The function Xl = — for a, = 2,
1+
!

By choosing a; and a, and dividing the intervals (0, a;) and
(0, az) into equidistance points we can cover all interesting

values for x and w.

In the first computations the same normalization was done for
z(t) but as discussed in section 6 it was found that minimum
occured for z(t) in the interval(0, 1). This interval was thus

divided in equidistance points.

Integration

When evaluating equation (6.8) a numerical integration has to

be done. The method used is Simpson's formula:

b h
é flx)dx = 3(fO tHE b 2f, 4 Lt 2, * an_l + fn)
where h = b-a

n




The integral in (6.8) contains an exponential function multiplied
by a smooth and limited function. As the exponential function de-
creases quickly it is sufficient to integrate over the interval

(~4, 4) and use n = 8.

To see the magnitude of the introduced error we can evaluate:

2
[ee] —-§“ (e e}

T=--—2 e 2 as=-1 s of(s)ds =1
V2T —eo /2T =0

Using Simpson's formula we get:

Th = o L(F(-8) + BE(-3) + ...+ 2£(2) + HE(3) + £(1))
/21
= 0.995112

The error in this case is 0.49%.

Interpolation

When evaluating the integral we must have function values of
Vl(;(t+lft), w(t+l), t+l) and the wanted value does not need

to be a grid point. Thus we must have an interpolation routine.
The one chosen is to do a linear interpolation in the normalized
parameters X, and X, and not in the actual parameters ;(t+l|t)
and w(t+l). This is just a matter of taste when using the inte-

rior of the loss table.




