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Abstract

1 Fluids in motion
Here all the essential principles within the continuum concept will be adopted
to obtain the so-called Navier Stoke's equations. All five balance principles,
i.e. balance of mass, linear and angula¡ momentum, energy and the seãond
axiom of thermodynamics will be considered. Furthermore the principles
of constitutive theory will be utilized, that is, frame-indifferencef mateìial
symmetry (isotropic materials only), and restrictions from the second axiom
of thermodynamics.

1.1 Thermodynamic potentials
In order to give a detailed description of viscous fluids some thermodynamic
definitions must be considered. The main reason to this is that a thermo-
dynamic pressure is introduced in the description of a general fluid. This
pressure differs in most cases from the mean mechanical pressure. Certain
restriction on the thermodynamic pressure may be introduced which is re-
strictions imposed by the second axiom of thermodynamics. Here a method
will be discussed where it is not necessary to impose special restriction on
the thermodynamic pïessure.

Continuum thermodynamics based on a caloric equation of state assumes
that the local internal energy 6 per unit mass is determined by the Thermo-
dynamic state, specifred by n-t1 state variables urt t/2t ..., un and, r¡,where z¡



are the therrnodynamic substate uariables and 4 is the specific entropy. The
substate variables have mechanical or electromagnetical dimensions, but are
otherwise left arbitrary in the general formulation. In the simplest case of a
fluid pure substance there is only one substate variable, the specific volume
o. In ideal elasticity we will have nine substate variables, the components of
one of the strain or deformation tensors. In other cases the identifi.cation of
the substate variables may be difficutt.

The basic assumption of thermodynamics has been that in addition to
lhe n substate variables z¡, just one additional dimensionally independent
scalar pararneter suffices to determine the specifi.c inte¡nal energ'y density e.
This assumes that there exists a caloric equation of state

e : e(n,',x) (1)

In any particular motion x: x(x,¿), where x is the cu¡rent place and
X is the reference configuration (or equally the particle) and z is all the n
substate variables. The possible dependence of X only includes the possibility
of the caloric equation being difierent for different particles in inhomogeneous
media. Often one do not explicitly include X in the caloric equation of state.

The thermodynami,c temperature d is defined by

(2)

where e is the internal energ.y density and 4 is the entropy density. The prop-
erties u are the thermodynamic substate variables. The subscript indicates
that the thermodynamic substate variables are held constant.

The secalled thermodynamic tensions r¡ are defined by

,,=(h),, j :1,2,..',fr'

Thus, in any real or hypothetical change in the thermodynamic state of a
given particle X one must have

de : 9dq I r¡du¡; sum j : Iton.

(3)

(4)

This is known as a Gibbs relati,on, although Gibbs gave the equation only for
the case of a fluid, whose only substate variable is the specific volume u. for
the fluid the Gibbs relation takes the form

de:9dq - pdu; so that e - and -p- (5)



where p is the thermodynamic pressure; the thermodynamic tension conju-
gate to the specifi.c volume u is -p, as g is conjugate to 4. This p is not in
general equal to the mean pressure F and its relation to any measured pres-
sure for nonideal fluids in motion must be established. For a viscous fluid
the mean pressure will be equal to the thermodynamic pressure only in two
special cases. This will be discussed in detail in section xx.

Fhom the caloric equation of state (1) and the definitions (2) and (3), it
follows that the temperature and the thermodynamic tensions are functions
of the thermodynamic state: For a given particle

0:0(q,r); rj:r¡(n,u)
Assuming the first equation in (6) to be inveriible to yield

n: q(0,r) (7)

and by substitute this into the caloric equation of state (1) to obtain an
alternative form for the state equation

e: e(0,v,X)
substituting equation (7) into the second equation (6), one obtain

or assuming invertibility

Tj--Tj(0,v,X)

uj : uj (d, z, X)

(6)

These last two equations are called thermal equations of state. (In most
cases, the explicit dependence on the particle X will not be indicated.) The
thermal equations of state resembles stress-strain relations, but some caution
is necessa¡y in interpreting the tensions as stresses and u¡ as sftuns (or as
velocity gradients for a fluid). The difference between the thermodynamic
pressure p and the mechanical pressure B is one reason to be careful.

With the above definition of the thermodynarnic temperature and the
thermodynamic tensions one can define the following thermodynamic poten-
tials, four thermodynamic potentials a¡e introduced, each useful for certain
choice of independent state variables, as tabulated below

e; Indep. Yaùab. q,u¡
,þ : e - q0; Indep. Yariab. 0,u¡
h : e - T¡u¡i Indep. Yariab. r¡,r¡
g : €-'q0-rjui:h-n0; Indep, Yariab.0,r¡

(8)

(e)

(10)

(1 1)

(12)

(13)

(14)



where T/ is the Helmholt's free energy, h. is the entalpy and g is the free
entalpy or Gibbs function. By having the independent functions as

e : e (rlru¡)

'þ 
: ',þ (0,r¡)

h : h(q,r¡)

one can define the rollowir,* olr,t:.:.i:#1" expressions

^ /0e\ /ae\a - \u),t "': \u*),
rt: -(H),, ",:(#),
o - (#)"; uj:-(#),
rt: -(H),, ui:-(H),

and the differentiation of (72)-(75) hence takes the forms

de : 9dq +- r¡d,u¡

ùþ : -qd?*r¡du¡
dll : ?dq-u¡dr¡
dg : -qd?-u¡d,r¡

ToË : 4eep-r1 : ldet Fl F-17
p

4

(15)

(16)

(17)

(18)

(1e)

(20)

(21)

(22)

(23)

(24)
(25)

(26)

The Helmholt's free energ-yT/ is the portion of the internal energy available
for doing work at constanú temperature. The entalpy h is the portion of the
internal energ.y that can be released as heat when the thermod¡rnamic tension
are held constant.

It can be shown that the mass density in the reference configur ation po^
can be related as

T:#:ldetFl
where F is the deformation gradient. It is also possible define a stress tensor
related to the reference confrguration ToË as

(27)

(28)



T: P p1'oa
PoR

(2e)

Loosely speaking, the transformation (28) accounts for that the direction
of the traction force on a surface (contributing to a stress state ToÃ in the
undeformed state) changes its direction in the deformed state. 'When 

the
deformation gradients a¡e small roß = T i.e. poy N p. But, in general one
may for example have a viscous fluid which mass density from a reference
state differs significantly from the actual mass density in the deformed state.

The secalled stress pov/er tr(TD) can be formulated as

tr (TD) : tr (TL) : t' (tnr-t)

since L : FF-t and due to L : D +'w where w is skew symmetric with
zero element in the diagonal. And further

t, (rnr-') : r. (*rr**"-') : fir,(t""")
since FF-1 : 1. That is

tr (TD) : fit, (r,"É) (32)

(30)

(31)

(33)

(34)

(35)

one may choose the stress state Ton by identifying the thermodynamic
tensions Ti as nine components denoted z where z is identified with the
deformation gradient F which is a natural choice since F relates the mass
density poo arld p. That is one may write

':*''^
where ponhæ been included, and z is identified as

U:F
using the pa,rtial derivative expression (lgb), i.e. r¡ : (ðef ðv¡)n where each
of the nine components are arranged into the for nat of r, as

, :fif"R : (ðelùu),t: @elôF),



where the choice (33) and (3 ) has been adopted.
consider, also, the stress tensor T defined as consisting of two parts, one

equilibrium part {E which is independent of the velocity gradient D and a
dy_namical part TD which is dependent on the velocity graà'ient, i.e. TE and
TD are independent, arid relatåd as

T: TE+TD (36)

_Noting, further that T : p/p"RF,ToE, i.". (29), therefore the stress tensor
TE can be formulated as

TE : T : p/ poaFToÈ : /F (ôel0I'),

during a situation where TD : 0.
Dealing only with a symmetric stress tensor T the energy balance can be

written

(37)

pè : tr (TL) -div (q) + p,
Flom the 'equilibrium' thermodynamic relation we choose (23), i.e.

de:?dqtr¡du¡

(38)

(3e)

writing this with the differential d exchanged by the material derivative as

è : 0q tlr¡ù,¡
j:r

The nine components in the last term on the left-hand side are arranged with
help from the certain choice for r¡, i.e. (35) andu¡, i,e. (34), as

Drt¡', : (0e/õr), .È
j:r

Combining (3S), (40), and (36) to yiel,rl

pLrt : tr ((rE+r")") -div (q) * pr - oir¡t,, (42)

Using,the expression (a1) in (42) and noting that L : FF-t, girr..

pTrt : t' ((nr @e l0F)rFF-'+Trr,)) -ar" (q) + p" - p @e l0F), . È lae¡

(40)

(41)



;îffi ; 1,'ö, :ß:,:îi'i_' ;îi i,ì;:Í:Jî' :::,?;,îîî
tribution from the thermodynamic tension p(ðelô/)n.È ca,ncels due to the
'equilibrium' stress porver tr(tEl) being equal with an opposite sign. That
is (a3) reduces to

port : tr (tDr,) -div (q) + pr

pIn : t. (rDl) -divq * ø
since rr(TDr,) :t.(t"o). That is

i:, - \"(t"¡) * {ai,, 1n¡

The second axiom of thermodynamics i.e.

n > ,/o - la* @/e)

where 7 is the entropy production, can be rewritten as

i : n -, /o * \aru *for. grad o > o

where the identity

!ai, ço¡e¡: þ.s.ad 
e - \arry

has been used.
By eliminating the term r f 0 between (ab) and (ag) to obtain

,: \t (t"o) -þ.grado > o

or equally

pgy : tr (rDn) -fi *'* o > o

(44)

(45)

(46)

(47)

(48)

(4e)

(50)

(51)

It is clear that the following two conditions is sufficient to assure that the
inequality is satisfied

p7.y^".n.: t. (toD) > o

È(

(52)



pT.y"on¿.:-'l.gradd > 0 (b3)

By considering the stress Do\'r'er trlfDO) ) 0 only, it is concluded that TE as
defined in (37) can be 

"hår"n 
* dt : -pr,where p being a thermodynamic

pressure. This means that the thermodynamic pressure can be assumed to
be recoverable not contributing to any dissipatiãn since the inequality (52)
do not include the effect of the term tr(TED).

L.2 Deviatoric stress
In turns out that it is advantageous to separate the mechanical pressure
from the stress tensor when it comes to derive the equations for a fluid.
Therefore the concept of deviatoric stress will be introduced. The mearì
normal 'mechanical, pressure is defined as

-P - å (rtr rTzz+ 
"se) 

: $trT (54)

(55)

where

-pI:
-F 0 0
0 -p 0

oo-F
Recall that the components in the stress tensor T can be represented as

Zrs I
T4 I

?ìr l
The deviatoric stress tensor T'
mechanical pressure B, as

by the stress tensor T and the

Tt Tp
Tzt Tzz

Tr Tsz

is defined

(56)

Tn Tß
Tzz * p Tze

Tsz Tss I p
(57)

Therefore, the relation between the stress tensor T and the deviatoric stress
tensor T' is

T' : T+pI (bg)
which follows from the definitions (5a) and (bZ).

Another deviator often used in fluid mechanics is the definition



D' : D-å (rrD)r (59)

The physical significance of the second term on the right hand side of this
expression will be analyzed further in section xx.

L.3 Restrictions imposed by material frame-indifference
It was shown in previous section that an assumption for the stress tensor
cannot be arbitrary chosen due to the principle of frame-indifierence (or
objectivity of space). For example the constitutive function for the streàs;T- f (D, w, *, ji,d, grad0, p) cannot hold due to the frame-indifference pos-
tulate, since 'w', * and ji do not behave indifferent under a change of fráme.
That is the above proposed relation for the stress tensor T must, in this case,
be reduced to T : f (D,e,grad1, p).

It can, a.ìso, be shown that grad0 cannot be included as an independent
constitutive variable due to the restrictions imposed by the seconà axiom
of thermodynamics. This has already been pointed out in section xx. In-
deed, the independence of gradd when d.etermining the stress is not the only
restriction imposed by the entropy inequality when studying viscous fluids,
therefore this subject will be discussed further in section ror.

L-4 Restrictions imposed by materiar symmetry, isotropy
It was shown in section xx that an isotropic material function, e.g. T : f- (D),
where the material function f* is independent of the reference configuratiòn,
i.e. f,," (D) is an isotropic material function, the stress tensor T can only be
related to the symmetric part of the velocity gradient as

T: f- (D):orl+6.zD*6,sD2 (60)

where d7, Q2 and a3 are material parameters which can be functions of
invariant measures only. In section xx three different invariant measures
where discussed i.e. þt:t¡D, þr: T(trn)2 - +D, and, Bs:det(D). The
values þt, þz ar'd B3 takes the same .rräln"r indeplndentry oi a.ry oithogo.rar
transformation since they are inva¡iants.

^ By introducing the thermodynamic pressure p (which not should be con-
fused with the mechanical pressure p-which is due to the fluid having a mo-
tion) and the two material coefficients À and ¡-e characterizing the viscosity



of the fluid, as

dt: -p + ) (trD) ; and a2:21.1; and 6ys : 0 (61)

where only one invariant is invoked, that is, trD. The constitutive relation
for the stress tensor T in (60) then becomes

T : f_ (D): _pl_tÀ (trD) I+zp,D (62)

.This is the so-called Naui,er-Poi,sson law of a Newtonian fl,uid,. The simplest
case of (62) is due to newton (1687). The three-dimensional case for a in-
compressible fluid where obtained by molecular models by Navier (1821) and
by Poisson (1s31) in general. The continuum theory is due to St. Venant
(1343) and Stokes (1845).

In some application it is of interest to assume constitutive relations for
the stress tensor T by an isotropic function f* which is dependent on two
different second order tersors. This can be illustrated as

T: f- (D, N) (63)

where D and N are symmetric second order tensors. It turns out that the ex-
act dependency of this type of isotropic constitutive relation must be related
as

T : arl*azD-l o,sD2 + c¿N+c¡N2 (64)

+a6 (ND + DN) + az (N2o + DN,)

+as (Nn2 + o'zrv)

due to the assumed material symmetry (isotropy). The material parameters
o1...s cârì only be dependent on invariants of D and N and on other scalar
properties.

Moreover, an isotropic vector-valued function f^(D,t) of a s¡rmmetric
tensor D and a vector v has the representation

f- (D, v) : (a1l*a2DasrD') t (6b)

whereal, a2 ar,'d 03 âre simultaneous scalar function of the invariants.

10



1.5 obtaining the Navier-Poisson law in an alternative
manner

It turns out that it can be illustrative to used. the tensor index notation to
show the approximations which are involved in reaching the Navier-Poissons
law. It should be observed, however, that nothing new is introduced into the
model.

The stress is assumed to be determined by the thermodynamic pressure
p and the velocity gradient D, ffi

T : -?r+ Ô (D) ) T¿¡: -p6¿¡*ô¿¡ntDn¿ (66)
.Where 

Ô is u fourth order tensor, i.e. ô¿¡¡¿.
The fourth order tensor Ô is explicitly assumed to be isotropic, that is

any change of reference configuration will leave Ô unaffected.. Alternativel¡
an isotropic tensor is one whose rectangular Cartesian components are un-
changed by any orthogonal transformation of the coordinate axes. A trivial
example is the zero tensor of any order. All tensors order zero (scalars) a,re
isotropic, but there are no isotropic first order tensors (vectors) u*""pi th"
zero vector. The unit tensor I, whose components are given in any rectan-
gular Cartesian system by the Kronecker delta á¿7, is isotropic, and it can
therefore be proved that this and scalar multiples of it u,ru the only nontrivial
second-order isotropic tensors. (Malvern)

The most general fourth-order isotropic tensor ô¿¡¡r¡has Cartesian com-
ponents of the form

Ô n,o, : ),6 ¡¡ 6 ¡,¡ * ¡,r, (6 ¿¡,6 ¡¿ + 6 u6 ¡n) t u (6 ¿¡6 ¡¿ - 6 n6 in)

where the material parameter scalars À, ¡,r and u have the same value in a|
coordinate systems.

It is possible to show that the isotropic tensor ô¿¡¡¿ must have the sym-
metry condition Ônror: i¡no, *heo the stress tensor is symmetric, i.e. when
T: Tr. That is

Tt¡ : T¡ü T : TT one must have Ôn¡or: ô¡ou,

(67)

(68)

The velocity gradient D is symmetric by definition. One may therefore choose
yet another symmetry condition, namely Ònjrr: ôojro

D¿¡ : D¡t, D : DT one may choose ôn¡or: ônrro (69)

11



compare xx for proof.. In either case if Ô¿¡¡¿ is required to be symmetric in
either ij or kl, one must have u :0.

Hence, the most general fourth-order isotropic tensor with Cartesian com-
ponents symmetric in either ij or kI has the components of the form

Cnjm : ),6¿¡6¡"¿ -f p,(6¿¡"6¡¡ + 6u6¡n) (70)

Then this is substituted into (66b) the constitutive equation takes the form

T,i¡: -p6¡¡+ (^6ij6k¿ I p,(6¿¡"6¡1* 6a6¡*)) Dnt

i.e.

T¿j: -p6¿¡*\D,n .,"6a¡ t 2¡-r,D¿¡

or in the direct tensor notation

1' : -pI*À (trD) I+2p,D

That is, expression (62) and (78) are identical.

(71)

(72)

(73)

1-.6 Relation between the thermodynamic and rnechan-
ical pressure

Here a physical interpretation of the thermodynamic and mechanical pressure
and its relation to each others will be discussed. To show this relation the
deviatoric measures of the stress tensor T and the symmetric part of the
velocity gradient D will be used.

The deviator form of the stress tensor T denoted r' is defined as

T' : T-fp.I (74)

where p is the mechanical pressure defined. in (ba). In the same manner one
can define a deviatoric part of D as

D' : D-å (tro) r (75)

where D' denotes the deviator of the symmetric part of the velocity gradient
D.

Now consider the Navier-Poisson law rewritten by replacing some terms
with its corresponding deviators, as.

T : T' - FI : -pI*À (trD) I + 2¡-r (O' * f ltrl¡ f) (76)

12



where the term 2¡rD has been replaced by 2p (D + | (tro) Ð ot use of the
definition (75). F\rrther, rearrangement of (76)'yields

T':(p-p)I+À(tro)t+lu(trn)r+zpD' (77)

or equally
T' : (p-p)t + (r+f r) {t'o) r + 2p,D' (zs)

This expression can be simplified fruther by using the relations trD' : 0 and
trT':O. To validate these conditions consider the trace of D together with
the definition (75), as

rrD :rrD' + t. (å (tro) r) (7e)

where

t. (å (tuD)r) : tro (so)

that is

trD :trD' * trD (S1)

i'e' 
trD':o (s2)

To verifi' trT':0 consider the definition (54) and (5S) combined, as

T' : T-å (trr)r (ffi)

The trace operating on this expression is

rrT':trT - r. (å ltrt; r) (84)

Noting that the identity

-" (å (trr)r) : -rrT (8b)

holds. That is (S4) and (85) combines to yield

trT':O (36)

By using the Navier-Poisson law expressed with the deviatoric stress T', i.e.
equation (78), together with (86), yields

trT':rr (@-n) r+ À(trD) r+?LL(trD)r + z¡rt') : o (sz)

13



i.e.

rt (p-p)I * trÀ (trD)t+t lu(rrD)I + tr2pD' : 0 (88)

Flom (82) one conclude that tr2¡.r,D' - 0, and expression (gg) therefore sim-
plifies to

t (p_p)r * rrÀ (trl)t+t lu (trD) r : 0 (se)

Noting also that the following identities holds

t. ((p--p)I) : s (p-p) (e0)

tr (À (trD) I) : 3À (tro) (e1)

t, (?u(trD) t) : zp(rrD) (e2)

By (90), (91) and (92) expression (89) takes the form

z (F-ù + 3À (rrD) * ¡r (trD) : s (e3)

i.e.

(p-p)+À(trD) +fø(trD) :o (e4)

or equally
(p-p): - (.r +?p) (trD) (eb)

By combining (78), i.e.

T':(p-p)I+ À(tro) I+zrp (trD) I+zttD', (96)

with (95), gives

T': - (^* 3r) (rrD)r+À(tro) t+fiu(trD) r+zrD' (ez)

Fbom (97) it then follows that

T':ZpD' (gg)

holds.
The relation between the mechanical pressure p and the thermodynamic

pressure p is the expression (95). This relation can be formulated by use of
the so-called bulk ui,scosi,tg rc by writing

p:p-(^*åø) {t'o) -p-rc(trD) (ee)

T4



le

where ,c : I + tø is the bulk viscosity.
By considering the balance of mass written as

p -l pdivx :þ + ptrD :0

trD: -4p

-pqþ - p1þ - grad0 .q,/0 +tr (TD) >0

(1oo)

(101)

the relation between p and p can be further simplified by combining (gg) and
(101) to yield

o
P:PltcL p

Equation (102) shows that the mean mechanical pressure p equals the ther-
mod¡mamic pressure p if and only if one of the following two conditions is
satisfied

trD :0 (i."., þ: 0) or rc : À _l l¡,t,:0 (103)

which is, also, a physical interpretation of the inva¡iant trD. The special
choice X + lU: 0 is called the Stokes condition.

L.7 Restriction imposed by the second a>ciom of ther-
rnodynamics

When dealing with mechanical stresses in solids or fluids it turns out that it
is convenient to write the second axiom of thermodynamics in terms of the
entropy 4 and the Helmholt's free energ.y 1þ, æ

-prtï - p,þ - gradd .ql0 +tr (rrr,) >O

(102)

(104)

(105)

compare the derivation of the balance principles in chapter xx. Due to T
being symmetric the relation tr(frt) :tr(TL) holds, furthermore it turns
out that tr(TL) :tr(TD) holds, which is due to the spin tensor W (note that
L : D + \M) being skew-symmetric having zeros in the diagonal, compare
chapter xx. That is, the entropy inequality (104) can be written as

when the stress tensor is symmetric, which is the case, compare chapter ror.
Due to the frame-indifference principle, the velocity gradient L, the veloc-

ity x, and the acceleration ji cannot be included as constitutive independent

15



properties. Due to the equiprecense principle it is also proposed that all
constitutive dependent properties should be assumed to depend on the same
quantities. The following choice will be tested

,,þ : ,þ (0, p,D, g) ; ïl : rt (0, p,D,g)
q : q(0,p,D,g) ;T:T(d,p,D,g)

Consider, first, a differentiation of tþ i.e.

(106)

,t':*\*ffit# *fr e (107)

-s,¡it - , (Hu.#*# u*H È) - grads .q,to +rr (rD) >0 (108)

- ru (, . #) - r#t- rffø - r#.ó - gradd . ql 0 +tr(rD) >0 (10e)

Since the temperature change d must be allowed t be arbitrary in a general
model one usually define the thermodynamic relation

a1þ

a0- 't (110)

(112)

F\rthermore, it will be explicitly assumed that Helmholt's free energy tþ
cannot depend on the temperature gradient g and on the symmetrical part
of the velocity gradient D, i.e.

(111)

This 'choice' is done because it is realized that it is very difficult to satisfy
the inequality (109) when the terms $ and D a.e allowed, to be arbitrary. So
fa¡ the dependency of the Helmholt's free energy ry' is reduce d, to tþ : ,þ (0, p)
and also due to (L10) one must have n : q (0, p). using this dependency on
tþ and the thermodynamic relation (110) the terms in the inequality which
still must be dealt with is

oH:'' o#:o'

Ad)
-o Arþ - gradg . q,lo + tr (TD) >o

where ,þ : tþ (0, p) atd where A1þ I A0 - -,tt must hold.

16



Flom (101) we have

¡1: _ptrD

Combining (112) and (118), yietds

o'fft o- grade .qlo +rr (TD) >o

(113)

T:-?I+f-(D);
T: TE+TD

where TE is the equilibrium pressure defined as TE : -prwhich is indepen-
dent of velocity gradients, and TD is the dynamic stress which is determined
by the velocity gradients.

- grad? .q/0>0"(Q'H.4")

(114)

(115)

(116)

(117)

(120)

(121)

or with

" ((n#* t") ") * tr (rDo) - gradg .q,t0>0 (11s)

Since D must be allowed to be a.rbitra"ry the equilibrium pressure TE can be
defined by the thermodynamic relation

rE: _tH, (11e)

This is reasonable since the mechanical dissipation hardly can be active for
a equilibrium pressure. Due to the pressure TE being defined as TE : -pr
the thermodynamic relation (11g) can be e><pressed as

"Ad)P: P"*
op

where Helmholt's free energy tþ can be a function of the temperature d en
mass density p only, i.u. ,þ: ú(e,p). That is, the Helmholtls free energy
is not 'allowed' to depend on, for exampre, the ternperature gradient. Due
to the restricted dependence on tþ and the thermodynamic relation (120) for
the thermodynamic p essure, it is directly concluá.ed that the equilibrium
pressure only can depend on the same quantities, i.e.

TE : fu @, p)
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The term including the heat flux in the inequality i.e. -grad0 .qf 0 can
be assured to fullfll the inequality (120) by choice of an odd function of g,
where g :grad0, such as

q(0, p,D, g) : -t @,p, D) gradd (122)

where the material parameter { (d, p, D) must be non-negative. This means
that thermal dissipation will be included in the model having the magnitude

e'å:;T : srad? . (Ë (0, p,D) grad1) l0 (123)

So far our restriction and thermodynamic relations imposed by the second
axiom of thermodynamics are

,þ : ,þ (0, p); n : T (9, p);
q : q(0, p,D, S) ; TE : fu @, p)

TD : To (e,p, D, g) ; e @,p, D) > o

and the introduced thermodynamic relations are

(r24)

(125)

The only term left to be analyzed in the inequalþ (11S) is tr(fDO) > O

where the constitutive dependent stress was assurned to have'the gáneral
dependency TD :TD (0,p,D,g). One possible choice is simply

TD:l(trD)I*2pD (126)

where À and þL carr be firnctions of the temperature I and the mass density
p. The temperature gradient g is omitted by two rnain reasons.. The first
is due to the second axiom of thermodynamics, since it is realized that the
condition tr(TD) ) 0 is very difficult to satisfy when T is allowed to be
a function of g mainly due to g being an odd function and therefore the
symmetric part of the velocity gradient D cannot be arbitra¡y. The second
reason is due to the assumed material symmetry condition (isotropy). It has
been previously pointed out that the only symmetric first order tensor is the
zero vector, that is the assumed material isotropy also reject the proposed
dependence of a temperature gradient on the stress. Indeed, and isotropic
material assumption can be obtained by letting the stress tensor depend on

H : -r, and rt : ?r: ,'#t
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two different second order tensors as T : f- (D, N), i.e. compâre (64), where
the tensor N can be chosen as: N = ggg. However, there will stil be serious
problems involved in satisfying the second axiom of thermodynamics for this
special choice.

Due to the above restrictions imposed by material symmetry and due to
the second axiom of thermodynamics, the dynamical part of the stress tensor
TD will be of the reduced form

TD : TD (0, p,D)
It turn out that the material parameters À and p in (126) cannot be cho-
sen arbitrary due to the second axiom of thermodynamics. The following
discussion will be devoted to this certain restriction for À and ¡1.

Consider the stress pov/er tr(TD) written as

tr (TD):tr ((-pIÀ (trD)I + 2pD)D)

(127)

(128)

(130)

(132)

where (73) has been used. The symmetric part of the velocity gradient D
can be decomposed by help from the deviator D', ffi

D:D'+](tro)r (129)

which is (59) repeated. Noting also that the use of (23) and (bg) combines
to yield

T : T' - pI : -pI+n(trO) I + 2p"D'

Combining (12S) and (129), gives

tr (TD) :tr ((-rr+/c (rrD) t + z¡n') (o' * å (t.D) Ð) (131)

i.e.

tr (TD) : tr (-rlD'+rc (trO)ID' + zp,D'D')

rt' (-rI$ (trD) r+/r (rrD) I] (trD) r + 2¡-rD'!(rrD) r)

By observing that trD' :0, i.e. compare the derivation leading to (g2), and
also, in general, that tr(D'D') + 0, one is left with the terms

rr (TD) : tr (-rr$ (tro)r+rc (tro) r$ (tro) r+zpD'D') {rss)

19



By noting that the following three identities holds

-tr (rrf (rrD) r) : -prrD

tr (rc (trD)r$ (trD)r) : o (tro)2

tr(z¡tO'O):2pt (O'O')
it is clear that (133) simplifies to

tr (TD) : -ptrD*rc (trD)2 -t2¡-r,tr (O'O') (137)

Due to the second axiom of thermodynamics the stress po\Mer must be greater
or equal to zero, i.e. tr(TD) > 0. To examine this condition for the thermo-
dynarnic pressure p the inequality (114) will be considered i.e.

o'ffit o- gradd ' qlo +tr (TD) >o

(134)

(135)

(136)

(138)

(140)

(141)

(r42)

Combining (137) and (138) gives

,'ffrro+(-rtrD+rc ltro)2 * 2p,tr(o'o')) - gradd . q,/e>0 (l3e)

And it is again concluded that the thermodynamic pressure satisfies the
second axiom of thermodynamic as long as the Helmholz,s free energy is
defined from

where trD is arbitrar¡ i.e.

which has already been noticed.. The term _gradl.qld has also been tackled
which resulted in the restriction for the constitutive relation for q, i.e. the
relation (120),

At last we are ready to consider the last requirement imposed bv the sec-
ond axiom of thermodynamics. That is the terms rc (trD)2 and,2¡t,,tu(D'D')
in the inequality (139). For a fluid one generally accept that dissipation can
occul due to internal friction. That is, one is interested in satisfying the
condition

,p*ZZT.: rc(trD)2 *Z¡:rcr (o'o') > o
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Since both the terms trD and the deviator D' is quadratic terms all negative
values a¡e canceled out. Therefore it is suffi.cient to assure that the material
parameters taking non-negative values, i.e.

plO and rc10 (143)

or equally

¡t>0 and À+?p>0 (L44)

This means that

^ 
> -?p and p, > 0 (145)

Since tlne gd]fff. is nonnegative this pa,rt of the stress power neve contributes
to an increase of the kinetic energy of the system. The result that the increase
of the kinetic energ-y of the system is equal to the mechanical power input
minus the total stress po\¡/er, is due to Stokes in 1851. That is, pànprt -
/"tr(TD) : 2* I, Èpir.*, compaxe previous chapters.

1-.8 Navier-Stokes equations
By using the derived expressions in previous section the Navier-Stokes equa-
tions will be developed.

The mass balance is

Þ+Paiv(x) :o (146)

The momentum balance can be written

pit: divT + pb; T : Tr (1'4T)

and the energ-y balance as

pè : tr (TD) -div (q) + pr (148)

One may choose the following general assumptions for the fluid

e : e(0,p);
T'Ð : Tu (0, p); TD : To (0, p,D) : (149)

q : q.(0, p,D, g)

Due to the second axiom of thermodynamics the following choice is made for
the heat flux

q : -€ (0, p,D) gradá (150)
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where

t(0, p,D) >
And the d¡mamical part of the stress tensor is the assumption

(151)

(152)

(153)

where

TD:À(tro)l+2p,D

)'> -?u and u) 0

according to the second axiom of thermodynamics.
Ald for the thermodynamic pressure one may choose

TE : -pI

.. ô*+__r[grad*]*^- ðt 
I

.0pþ: At f grad (P) '*

,-ou --- æ,grad(t) 'i.
Hence, the balance laws can be written as

0p_
æ,div(P>i) 

:g

ai<
o A, + p fgrad x]* : divT * pb

,# *pgrad (r) . * : tr (TD) -div (q) + pr

where p can be assumed to be recoverable a,nd therefore not subjected to any
restrictions from the second axiom of thermodynamics, compare previous
sections.

The caloric equation of state is the assumption

e:C(p)o

(154)

(155)

Noting that we have the following relation between material derivatives and
the spatial derivatives

(156)

(157)

(158)

(15e)

(160)

(161)
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Due to T : TE + TD the stress is constituted as

1': -pI*À(trD)I+zpD (162)

Note that the symmetric part of the velocity gradient is D :å (f, + f-,,t), i.".
the expression for D is equally D:å (srua i<+ (grad x)t).

By combining the assumptions (f6Z), (155) and (150) with the balance
principles (159), (160) and (161), and also noting that the restrictions im-
posed by the second axiom of thermodynamics, i.e. (151) and (153) must
hold, one obtain the following governing equations:

The mass density is governed by the mass balance equation, i.e.

ff*o*q,,o) 
:o (163)

The velocity frelds can be calculated with the momentum balance equation
where the constitutive relation fro the stress has been inserted to yield the
so-called generalized Navier-Stokes equation for fluids with bulk viscosity, i.e.

a*
p 

A, + p lsrad x]*: div (-pI+À (trD) I +2p,D) + pb (164)

The temperature field is governed by the energy equation together with the
constitutive relation for the heat flux and the constitutive relation for the
caloric equation of state, i.e.

o"X* pCsrad(d) * : -ptrD*rc(tro)2 *Z¡.r,tr(o'o') (165)

-div (Àgrad?) + pr

These three equations, i.e. (163), (16a) and (165), constitute the so-called
Navier-Stokes equations.

1.9 Incompressible fluids
An incompressible fluid is defined as a fluid having constant mass density,
i.e.

þ:0
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By considering the mass balance, that is

þ+pdiv(x) :0 (167)

It is clear that incompressibility, i.". þ:0, requires that

div(x) : g (163)

Flom (lff) we also conclude that

trD: -! (169)

An incompressible fluid therefore must f"ffll
trD:0 (170)

The generalized Navier-stokes equation (164) therefore reduces to
a*

, A, * p [grad x]* : div (-pI + zp,D) + pb (121)

due to (170), which is the so-called Navier-Stokes equation for a incompress-
ible fluid.

1-.10 Compressible fluid lyith no bulk viscosity
The generalized Navier-Stokes equation (164) can be approximated by as-
suming the so-called Stokes condition which is a relation between the two
material coefficients À and p, as

À+frp:o (LTz)

which means that the thermodynamic pressure and the mean mechanical
pressure is identical since the bulk viscosity rc is identical to zero in this case,
compare (102).

Fïom the generalized Navier-Stokes equation (164) and the assumption
(I72), one obtain a description of a compressibte fluid with no bulk viscosity,
i.e.

A)i
ofr *p[$ad x] * : div (-rr-frø(trD) r+ zþLD) + pb (123)

by dividing this with p, as

A*. /'t' ^ \
fi + [grad *]x : div 

l-Ït-g-(trn)r + z,ro) + u ÍT4)

where k : p/p, which is the so-called lcinemati,c ui,scositg.


