
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Computational Methods for Hybrid Systems

Hedlund, Sven

1999

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Hedlund, S. (1999). Computational Methods for Hybrid Systems. [Licentiate Thesis, Department of Automatic
Control]. Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/446dbd75-02de-4ce0-b18c-77d0cbc6831c

Computational Methods for
Hybrid Systems

Sven Hedlund

Department of Automatic Control
Lund Institute of Technology

Lund, September 1999

Department of Automatic Control
Lund Institute of Technology
Box 118
S-221 00 LUND
Sweden

ISSN 0280–5316
ISRN LUTFD2/TFRT--3225--SE

c&1999 by Sven Hedlund. All rights reserved.
Printed in Sweden by Universitetstryckeriet,
Lund University, Lund 1999

Acknowledgments

Acknowledgments

This work has been supported by the EU/Esprit longtime research
projects FAMIMO, Fuzzy Algorithms for Multiple Input Multiple Out-
put systems and H2C, Heterogeneous Hybrid Control.

I am very happy to work at the Department of Automatic Control
in Lund, being surrounded by a lot of people that I admire for their
brains as well as for their hearts. A special thanks to my supervisors,
Anders Rantzer and Karl-Erik Årzén for always having time and being
optimistic.

Having got the fortunate opportunity to study in various countries,
I want to thank all of those who worked on their doctoral theses at
Electrical Engineering, University of Newcastle, Australia during my
master thesis — you made me first interested in further academic
research. I also want to thank prof. Tetsuya Iwasaki at the Department
of Control and Systems Engineering, Tokyo Institute of Technology,
and the students of his lab for their great hospitality during my stay
in Japan.

I thank you my mother and my brother, the most solid supports of
my life. Thank you for putting up with spontaneous lectures about au-
tomatic control when my enthusiasm becomes too big. Gunnar Blomén,
you inspire me as the connoisseur of the art of living. Thank you Jonas
Svensson — you still live in my memory.

3

4

Introduction

This thesis mainly contains two different computational approaches
for the analysis and synthesis of nonlinear systems. Each of these
approaches is presented in a conference paper that describes parts
of the theory and algorithms. MATLAB commands implementing the
algorithms have been developed and the manuals for these are included
herein as well.

The thesis consists of this introduction and four publications (cf.
References on page 10):
Paper I S. Hedlund and M. Johansson “A Toolbox for Computational

Analysis of Piecewise Linear Systems”

Manual I PWLTool — A Matlab Toolbox for Analysis of Piecewise Lin-
ear Systems

Paper II S. Hedlund and A. Rantzer “Optimal Control of Hybrid Sys-
tems”

Manual II A Matlab Tool for Optimal Control of Hybrid Systems

Motivation

Hybrid systems are systems that involve interaction between discrete
and continuous dynamics. Such systems have been studied with grow-

5

Introduction

ing interest and activity in recent years. One reason for the interest
is that modeling and simulation of a complex system often require a
combination of mathematical models from a variety of engineering dis-
ciplines. The structure of such submodels can be very different, some
can be discrete and some continuous.

Very often, the same phenomenon can be described either by a dis-
crete model or a continuous one, depending on the context and purpose
of the model [Antsaklis and Nerode, 1998]. Consider for example an in-
door asynchronous discrete-event driven thermostat, which discretizes
temperature information as {too cold, normal, too hot}. The tempera-
ture of the room is translated into these representations in the ther-
mostat and the thermostat’s response is translated back to electrical
currents which control the furnace, air conditioner, blower, etc.

There are several reasons for using hybrid models to represent the
dynamic behavior of interest. Reduction of complexity is accomplished
in hybrid systems by incorporating models of dynamic processes at
different levels of abstraction; for example, the thermostat in the above
example sees a very simple model of the complex heat flow dynamics.
Another example of complexity reduction is the approximation of a
nonlinear system. The system can be split into a number of simpler
systems (e.g. linear) that are switched between. This rather common
approach in modeling physical phenomena is used in Paper I.

The frameworks that are used to study hybrid systems can be
broadly divided into two categories: One category contains those sys-
tems that extend the traditional event-driven models to include con-
tinuously evolving variables, such as hybrid automata from computer
science. The other category is based on traditional continuous systems
that are extended to include discrete dynamics, such as the systems
used in Paper II.

The need for methods of controlling hybrid systems is motivated by
a vast number of examples, such as vehicle transmission systems, com-
puter disk drives, constrained robotic systems, flexible manufacturing
systems, sampled-data systems, intelligent highway systems, air traf-
fic management systems, and various systems with relays, switches,
and hysteresis.

Further general information about hybrid systems and related is-
sues is found in the references of the papers of this thesis.

6

Model Specification

Model Specification

This thesis presents computational methods for two different kinds of
systems. The model that is used in the first approach is a piecewise
linear system that can be represented as{

ẋ � Aix + ai + Biu

y � Cix+ ci + Diu
for x ∈ Xi. (1)

Here, {Xi}i∈I ⊆ Rn is a partition of the state space into a number of
closed (possibly unbounded) polyhedral cells.

The model (1) can be regarded as a hybrid system: the cell index
may be viewed as a discrete state variable whose value changes when
the continuous state hits a cell boundary. The discrete state plays,
however, a very passive role in this case and the methods presented in
Paper I and Manual I should rather be considered as tools for nonlinear
systems without discrete modes. A more applicable hybrid extension
of this model is discussed in [Johansson, 1999].

In this thesis the piecewise linear systems undergo various kinds of
analysis based on piecewise quadratic Lyapunov functions. The anal-
ysis includes stability tests, L2-gain, and output energy estimation.
The tools also admit synthesis based on optimal control using piece-
wise quadratic cost functions: there are means of computing bounds on
the value function and extracting the corresponding feedback control
law.

In addition to being well suited for the analysis of piecewise lin-
ear systems such as linear systems with actuator limitations or gain-
scheduled systems, this approach also could be used for approximation
of nonlinear functions. One difficulty that has to be dealt with in the
case of nonlinear approximation, however, is how to choose the poly-
hedral cell partition.

The model that is used in the second approach is a nonlinear hybrid
system: {

ẋ(t) � fq(t)(x(t), u(t))
q(t) � ν(x(t), q(t−), µ (t))

(2)

where x(t) ∈ X ⊂ Rn is the state vector, u(t) ∈ Ωu ⊂ Rm is a con-
tinuous input signal of the system. There is also a discrete input,

7

Introduction

µ (t) ∈ Ωµ , which allows for the selection between N different sys-
tem modes, q(t) ∈ Q � {1, 2, . . . , N}. The notation q(t−) is used for the
left-hand limit of q at t. Sq,r is a set (parameterized by q and r) such
that switching from mode q to r is possible when x ∈ Sq,r ⊆ X .

The main issue that is addressed for this kind of systems is to find
a value function that gives the minimum of the cost

J(x0, q0) �
∫ t f

t0

lq(x, u)dt+
M∑

k�1

s(x(tk), q(t−k), q(t+k)) (3)

subject to (2) while bringing the system from an initial state (x0, q0)
at time t0, to a final state (xf , qf) at time t f , where the end time, t f ,
is free. Here, M is an arbitrary finite number of switches occurring at
times t0 < t1 < t2 < . . . < tM < t f and s(x, q, r) > 0 is an associated
cost for switching from discrete state q to r, the continuous part being
x just before the switch.

Though the value function also could be used for assessing stability
for the system (by using e.g. the time to reach the final state as cost
function), the focus is on control synthesis.

The main advantage of approach II is that it can handle a large
class of nonlinear hybrid systems. Even for this approach however,
there are difficulties involved in the choice of the statespace being con-
sidered: one of the main goals is to estimate the optimal cost for bring-
ing the system from an initial state, (x0, q0) to a final state, (xf , qf),
given that the continuous part of the state trajectory, x(t), remains in
X . Since the algorithm for solving this problem searches for a function
that meet a set of inequalities in a mesh of points in X , it is desirable
to keep X as small as possible. Many control problems do not expe-
rience state constraints that are of significant importance, leading to
X � Rn. The challenge is then to approximate X by a small region
that still encloses the optimal trajectory for the original problem.

Both of the approaches above are currently limited in the size and
complexity of the problems that can be addressed. Dealing with sys-
tems that have more than three continuous states could be painful
concerning the computational time. There exist however ideas for fur-
ther investigation on how to improve the speed.

8

Future work

Future work

Future work will be directed towards the hybrid models of the second
approach in this thesis. Many interesting issues related to the optimal
control of hybrid systems remain to be investigated. Some possible
research extensions are listed below.

• Refinement of the grid around an optimal trajectory. As men-
tioned above, the complexity makes it difficult to compute the
value function in a space with many states. If computing the
value function in a single point rather than in a large subset of
X�Q, it should be sufficient to compute the value function along
the optimal trajectory, keeping the problem at a reasonable size.
Since the optimal trajectory is not known on beforehand, it is
desirable to have an algorithm that starts using a sparse grid in
a large region and then gradually refine the solution around the
optimal trajectory.

• “Clever’’ discretization of u. The original system (2) is continuous
in u. To get a numerical solution of the optimal control problem,
u has to be discretized. The problem thus becomes reformulated
to optimal control under a finite (small) number of discrete in-
put signals. How should the discretization be chosen to render a
value function that is close to the value function of the original
problem?

• Finding an upper bound of the value function. Integration of
the cost function during simulation does not provide an accurate
estimate of the cost, since the granularity of the state space mesh
makes it hard to decide when the final point is reached. Is there
a better way of finding a relevant true upper bound?

• Compare the LP formulation with fixed point iterations. In Pa-
per II, the value function of an optimal control problem is com-
puted by reformulating a Bellman type inequality to a linear pro-
gramming problem. In [Bardi and Capuzzo-Dolcetta, 1997], it is
shown how to solve the Bellman equation of a purely continuous
problem by means of fixed point iteration. This method should
apply to hybrid systems as well, and a comparison between the

9

Introduction

LP formulation and the fixed point iteration formulation should
be made.

• Testing the methods on real applications. One of the industrial
partners of the H2C consortium is Daimler-Benz. The methods
above will be tested on problems provided by this partner.

References

Antsaklis, P. J. and A. Nerode (1998): “Hybrid control systems: An
introductory discussion to the special issue.” IEEE Transactions
on Automatic Control, 43:4, pp. 457–460. Special issue on hybrid
systems.

Bardi, M. and I. Capuzzo-Dolcetta (1997): Optimal Control and Vis-
cosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhauser
Boston.

Hedlund, S. and M. Johansson (1999a): “PWLTool — A Matlab
toolbox for analysis of piecewise linear systems.” Report TFRT-7582.
Department of Automatic Control, Lund Institute of Technology,
Lund,Sweden.

Hedlund, S. and M. Johansson (1999b): “A toolbox for computational
analysis of piecewise linear systems.” In Proceedings of European
Control Conference. Karlsruhe.

Hedlund, S. and A. Rantzer (1999): “Optimal control of hybrid sys-
tems.” In IEEE Conference on Decision and Control. Phoenix.

Johansson, M. (1999): Piecewise Linear Control Systems. PhD thesis
TFRT-1052, Dept. of Automatic Control, Lund Institute of Technol-
ogy, Box 118, S-221 00 Lund, SWEDEN.

10

Paper I

A Toolbox for
Computational Analysis of
Piecewise Linear Systems

Sven Hedlund and Mikael Johansson

Abstract

This paper reports the development of a Matlab toolbox for
computational analysis of piecewise linear systems. The analysis
is based on piecewise quadratic Lyapunov functions, which are
computed via convex optimization. In this way, exponential sta-
bility and system performance can be assessed. The toolbox also
supports efficient simulation of systems with discontinuous dy-
namics and sliding modes. A set of intuitive commands for de-
scribing piecewise linear systems is included, making the analysis
routines easily accessible also for the inexperienced user.

1. Introduction

As performance demands on modern control systems increase, con-
trollers are required to work over large operating ranges where as-
sumptions on linear dynamics are no longer valid. Successful design
and tuning of such controllers are strongly dependent on the possibility
of analyzing the effects that arise away from equilibrium conditions.
An interesting class for studying such problems is the class of piece-
wise linear systems. It captures the effects of saturations and state

11

Paper I. A Toolbox for Computational Analysis of PWL Systems

constraints, and is also a good candidate for studying hybrid control
systems (cf. [Sontag, 1996]). Moreover, many popular control schemes,
such as gain scheduling and fuzzy logic controllers, can be well mod-
eled by piecewise linear systems (cf. [Årzén et al., 1998]).

Recently, it has been shown how stability and performance of piece-
wise linear systems can be assessed using Lyapunov functions that are
piecewise quadratic [Johansson and Rantzer, 1996]. Such Lyapunov
functions can be computed via convex optimization in terms of linear
matrix inequalities (LMIs). The approach gives a drastic reduction
of conservatism compared to approaches based on a single quadratic
Lyapunov function[Corless, 1994], while computations remain compar-
atively efficient.

This paper gives an overview of a MATLAB toolbox for computa-
tional analysis of piecewise linear systems. The main purpose of the
paper is to show how simple the toolbox, WLP T L, makes experiment-
ing with piecewise linear systems. For a detailed description of usage,
the reader is referred to the manual [Hedlund and Johansson, 1999].

WLP T L is available free of charge upon request from the authors.

2. Model Representation

The toolbox handles piecewise affine systems on the form{
ẋ � Aix+ ai + Biu

y � Cix + ci + Diu
for x ∈ Xi. (1)

Here, {Xi}i∈I ⊆ Rn is a partition of the state space into a number of
closed (possibly unbounded) polyhedral cells (cf. e.g. Fig. 1), and I is
the index set of the cells. In order to allow rigorous analysis of smooth
nonlinear systems, the toolbox allows the system dynamics to lie in the
convex hull of a set of piecewise affine systems, see [Johansson, 1999].
This is e.g. useful for the analysis of fuzzy Takagi-Sugeno systems.

For convenient notation, we introduce

Āi �
[

Ai ai

0 0

]
C̄i � [Ci ci] x̄ �

[
x

1

]
12

2. Model Representation

Table 1. Commands for building a PWL system.

command description

setpwl initialize PWL object

addregion define polyhedral region

addynamics define system dynamics

getpwl extract PWL object

A large part of the analysis results will be concerned with (global)
properties of equilibria. We therefore let I0 ⊆ I be the set of indices
for the cells that contain the origin, and I1 ⊆ I be the set of indices for
cells that do not contain the origin. We will assume that ai � 0, ci � 0
for i ∈ I0.

The cells are represented by matrices Ḡi that satisfy

Ḡi x̄ � 0, if and only if x ∈ Xi (2)

Here, the vector inequality z � 0 means that each entry of z is non-
negative. We recognize this as the halfspace representation of a polyhe-
dron. It is also necessary to specify matrices F̄i � [Fi fi] with fi � 0
for i ∈ I0 that satisfy

F̄i x̄ � F̄j x̄ for x ∈ Xi ∩ Xj . (3)

These matrices are used to parameterize the Lyapunov function can-
didate to be continuous across cell boundaries. The WLP T L handles a
piecewise linear (PWL) system as an object. The basic commands for
building a PWL system are listed in Table 1. Having partitioned the
state space and used the functions for entering data into MATLAB, the
system is aggregated into a single record that is passed on to functions
for analysis and simulations.

The command setpwl initializes the PWL object and should be
run first. When this is done, one will typically define the entire sys-
tem by repeatedly calling addynamics and addregion. The command
addynamics is used to specify the matrix variables (as given by (1))
corresponding to the dynamics in a certain region of a PWL system. An
identifier is returned for future reference to the dynamics. The com-
mand addregion lets the user enter the region specific data (Ḡi- and

13

Paper I. A Toolbox for Computational Analysis of PWL Systems

x1

x2

X1

X2

X3

X4

Figure 1. Partitions of the flower example.

F̄i-matrices) and via the references returned by addynamics specify the
dynamics in the region. By specifying several system matrices in one
region, one indicates that the dynamics lies in the convex hull of these
systems. When all matrices are entered, the PWL object is extracted
by getpwl. In addition to linking several dynamics to one region, it is
also possible to link several regions to the same dynamics. (This could
sometimes be useful to save some data space and typing effort.)

EXAMPLE 1—THE FLOWER SYSTEM

The following system, whose partition is illustrated in Figure 1, has
been used in [Johansson and Rantzer, 1996] in order to demonstrate
the flexibility of piecewise quadratic Lyapunov functions.

ẋ �

A1x �

[−0.1 1

−5 −0.1

]
x x ∈ X1 ∪ X3

A2x �
[−0.1 5

−1 −0.1

]
x x ∈ X2 ∪ X4

The following lines of code defines the “flower system”.

% Initialize the PWL object
setpwl([]);

% Enter A-matrices
A1 = [-0.1 1; -5 -0.1];

14

3. Describing Polyhedral Partitions

A2 = [-0.1 5; -1 -0.1];
% Set up dynamics

d1 = addynamics(A1);
d2 = addynamics(A2);

% Enter G- and F-matrices
G1 = [1 1 0; -1 1 0];
G2 = [1 -1 0; 1 1 0];
G3 = [-1 -1 0; 1 -1 0];
G4 = [-1 1 0; -1 -1 0];
F1 = ...
F2 = ...
...

% Define cells
addregion(G1, F1, d1);
addregion(G2, F2, d2);
addregion(G3, F3, d1);
addregion(G4, F4, d2);

% Extract PWL object
pwlsys = getpwl;

We will return to this example later to assess global exponential
stability of the origin.

3. Describing Polyhedral Partitions

Defining all the data that the computational engine of WLP T L needs
can be far from easy for the inexperienced user. It is therefore desire-
able to relieve the user from this task. In this section, we describe a
set of user-friendly commands for specifying piecewise linear systems
that automatically computes the constraint matrices, Gi and Fi, used
by WLP T L .

The toolbox currently supports partitions induced by global hyper-
planes and simplex partitions (see [Johansson, 1999] for precise defi-
nitions, and more elaborate explanations), but the layered structure of
the toolbox makes it easy to add support for other types of partitions.

1 Describing Hyperplane Partitions

Specifying a hyperplane partition essentially consists of defining the
generating hyperplanes, introducing the cells by stating which gener-
ating hyperplanes that bound the cell, and giving the affine dynamics

15

Paper I. A Toolbox for Computational Analysis of PWL Systems

Table 2. Commands for defining hyperplane partitions.

Command Description

setpart Initialize partition data structure

addhp Add hyperplane

addati Specify affine dynamics

addhcell Define hyperplane cell

getpart Retrieve partition data structure

part2pwl Convert to generic data structure

valid within each region. Table 2 specifies a number of commands that
support these steps.

The command setpart intializes a new partition, and should be
issued prior to defining the partition components. In order to indicate
the type of partition, setpart takes the argument 'h' for hyperplane
partitions and 's' for simplex partitions.

The commands addhp and addati define generating hyperplanes
and affine dynamics respectively. Both commands return an identifier
for later reference. Cells are subsequently defined using the command
addhcell, which takes two arguments. The first argument specifies
the bounding hyperplanes (using their identifiers returned by addhp),
and the second argument specifies the dynamics valid in the region
(using the identifiers returned by addati). The sign of the hyperplane
reference indicates on “what side” of the hyperplane the cell is located.

The command getpart returns a data structure that describes the
partition. Finally, the command part2pwl computes the data required
by the computational engine pwltools. The computations performed
by part2pwl are explained in [Johansson, 1999].

We illustrate the commands on a simple relay feedback system.

EXAMPLE 2—A RELAY FEEDBACK SYSTEM

Consider a linear system under relay feedback
ẋ � Ax + Bu

y � C x

u � −sign(y).

16

3. Describing Polyhedral Partitions

Table 3. Commands for defining simplex partitions.

Command Description

setpart Initialize partition data structure

addvtx Add vertex

addray Add ray

addati Specify affine dynamics

addscell Define simplex cell

getpart Retrieve partition data structure

part2pwl Convert to generic data structure

The relay feedback induces a piecewise linear system with two regions,
separated by the switching hyperplane C x � 0. The following lines of
MATLAB code define the relay system using hyperplane partitions.

% Initialize hyerplane partition
setpart('h');

% Define boundary hyperplanes
switch_plane = addhp([C 0]);

% Dynamics \dot{x}=Ax+B and \dot{x}=Ax-B
d_on = addati(A,-B);
d_off= addati(A,B);

% Introduce cells
X_1 = addhcell(switch_plane, d_on);
X_2 = addhcell(-switch_plane, d_off);

% Retrieve data structure
part = getpart;

% Transform to pwl data structure
pwlsys = part2pwl(part);

2 Describing Simplex Partitions

The specification of a simplex partition is very similar to the defini-
tion of a hyperplane partition. The main difference is that (general-
ized) simplices are defined by vertices (“points”) and rays (“directions”)
rather than the equations for its bounding hyperplanes (cf. [Johans-
son, 1999]). The commands for building simplex partitions are shown
in Table 3. A new simplex partition is initialized by the command
setpart('s'). A (generalized) simplex in Rn is defined by n+1 vertices
or rays. Vertices and rays are defined by the commands addvtx and

17

Paper I. A Toolbox for Computational Analysis of PWL Systems

addray. Both commands return an identifier for later reference. As in
the hyperplane case, the dynamics are defined by the command addati.
The cells of the partition are defined by the command addscell, which
takes three arguments. The first two arguments are lists of vertex and
ray references respectively, while the last argument specifies the dy-
namics valid within the region. The total number of vertex and ray
references sums to n + 1, and at least one extreme point of the cell
is a vertex. Once all cells are defined, the command getpart retrieves
a data structure describing the partition, and the command part2pwl
transform this information into the data required by pwltools. We
return to Ex. 1 to demonstrate the commands.

EXAMPLE 3—FLOWER SYSTEM – SIMPLEX DESCRIPTION
% Initialize simplex partition

setpart('s');
% Define vertices and rays

v1 = addvtx([0 0]);
r1 = addray([1 1]);
r2 = addray([-1 1]);
r3 = addray([-1 -1]);
r4 = addray([1 -1]);

% Set-up dynamics
d1 = addati(A1);
d2 = addati(A2);

% Define cells
X_1 = addvcell([v1],[r1 r2],d1);
X_2 = addvcell([v1],[r2 r3],d2);
X_3 = addvcell([v1],[r3 r4],d1);
X_4 = addvcell([v1],[r4 r1],d2);

% Retrieve partition data structure
part = getpart;

% Transform into pwltools data structure
pwlsys = part2pwl(part);

4. Simulation of Piecewise Linear Systems

Simulation is one of the most important tools for evaluating new con-
trol strategies, in academia as well as in industry. Although there
has been a strong development of general-purpose simulation environ-
ments during the last 20 years, simulation of systems with switching

18

4. Simulation of Piecewise Linear Systems

and discontinuous dynamics is still poorly supported by most software
packages. In the context of piecewise linear systems, problems may

eij

xh

Āi x̄h

Āj x̄h

x(t)

Xi
Xj

Figure 2. Sliding mode surface.

occur when the vector fields are discontinuous across cell boundaries.
If the flow in two neighboring cells point toward their common bound-
ary, cf. Fig. 2, the state goes through a number of infinitely fast mode
changes that cause most simulators to ‘get stuck’. The nature of these
fast mode changes has been studied by several researchers, see [Fil-
ippov, 1988; Utkin, 1977]. In general, the net effect of the fast mode
switches is a constrained motion along the swithing surface, referred
to as a sliding motion. The dynamics of the sliding motion can be
uniquely defined for simple boundaries, while intersecting boundaries
may cause uniqueness problems. Figure 3 gives an overview of how

WLP T L handles simulations. Before starting, some preparatory com-
putations are made. During the initialization phase, 1 , each region
is assigned a number of pointers to the neighboring regions to allow
for efficient switching. In addition, each surface separating the regions
undergo sliding mode analysis. Define eij to be the normal vector of the
hyperplane between Xi and Xj directed from Xi to Xj , cf. Fig. 2. The

19

Paper I. A Toolbox for Computational Analysis of PWL Systems

Yes

Find the region

current state
that includes the

Do sliding mode No

simulation engine
Initialize

apply
as sliding mode cond.

Simulate as long

the boundary is hit
Simulate until

conditions apply?

4

3

2

5

1

Figure 3. Schematical description of simulation algorithm for systems with
sliding modes.

surface then contains a sliding mode if there exist an x such that

Ḡi x̄ � 0

Ḡj x̄ � 0

eT
ij Āi x̄ > 0

−eT
ij Āj x̄ > 0

(4)

This is an LP problem, the result of which is patched up for each
boundary into one single matrix. The first step of the actual simula-
tion is to find the initial region, 2 , i.e. if starting in x0, find i such
that Ḡi x̄0 � 0. During the first visit to 2 , the Gi-matrices have to
be tested one by one. Thanks to the initialization phase, however, this
is avoided when entering next time. Having found the right region,
the simulation is started, 3 , and proceeded until the boundary is hit.
When a boundary is hit, one must check whether to enter the sliding
mode state, 4 . This is done by first looking up into the sliding mode

20

4. Simulation of Piecewise Linear Systems

Table 4. Simulation related commands.

command description

findsm detect sliding modes

pwlsim simulate PWL system

matrix whether the surface contains a sliding mode. If it does, the con-
ditions (4) are checked for the specific entry point. Having entered the
sliding mode state, 5 , The resulting equivalent dynamics is computed
according to Filippov’s convex definition [Filippov, 1988]:

ẋ �

Āi x̄, x ∈ Xi

Āj x̄, x ∈ Xj

λ (x)Āi x̄ + (1− λ (x))Āj x̄, x ∈ Xi ∩ Xj

where λ (x) is the solution to

eT
ij

(
λ (x)Āi x̄+ (1− λ (x))Āj x̄

) � 0

Currently, WLP T L does not support sliding mode on intersecting hy-
perplanes.

Table 4 lists the commands that are available for detecting sliding
modes and simulating pwl systems with sliding modes. The command
findsm searches all the boundaries between cells and informs the user
of between which cells sliding modes are possible. This is of course
interesting from a stability analysis point of view. Knowing that most
uncontrolled systems do not exhibit sliding modes, however, this com-
mand can sometimes give a first warning if the system is not modelled
in an appropriate way.

A trajectory can be simulated from a given initial state with pwlsim.
The outputs from this function are, in addtition to the time vector and
matching state vectors, the times when cell switching occured and the
corresponding cells that have been visited.

EXAMPLE 4—RELAY SYSTEM WITH SLIDING MODE

Returning to the relay feedback system of Ex. 2, we now consider the

21

Paper I. A Toolbox for Computational Analysis of PWL Systems

−2 −1 0 1 2 −5

0

5

−5

0

5

x
2

x

x 3

0 5 10 15 20
−2

0

2

t

x 1

0 5 10 15 20
−5

0

5

t

x 2

0 5 10 15 20
−5

0

5

t

x 3

Figure 4. Limit cycle with sliding trajectory. The vertical dashed lines in the
right part indicate time instances for the mode selection.

following nonminimum phase system from [Johansson, 1997]:

ẋ �
−3 1 0

−3 0 1

−1 0 0

 x +
 1

−2

1

u

y � [1 0 0] x

It is assumed that A and B have been entered before executing the code
of Ex. 2.

% Search for sliding modes
findsm(pwlsys);

Sliding mode detected on boundary between
cell 1 and 2.

% Simulate the system
x0 = [1 -1 0]';
[t, x, te] = pwlsim(pwlsys, x0, [0 20]);

The above code establishes that the system exhibits a sliding mode
on the switching surface. Simulating the system using the command
pwlsim, one can see how the system tends to a limit cycle with sliding
mode, see Figure 4.

22

5. Computation of Piecewise Quadratic Lyapunov Functions

Table 5. Commands for stability analysis.

command description

qstab quadratic stability analysis

pqstab piecewise quadratic analysis

pqstabs d.o. taking sliding into accout

5. Computation of Piecewise Quadratic Lya punov
Functions

In WLP T L , stability of pwl systems is proved with the aid of piecewise
quadratic (pwq) Lyapunov functions. This is less conservative than the
commonly used global quadratic approach and the toolbox makes it
possible to prove stability for pwl systems that do not admit quadratic
Lyapunov functions.

The F-matrices as defined by Eq. (3) are used to force continuity
of the Lyapunov function. It is parameterized by a symmetric matrix,
T , as follows

V(x) � x̄T F̄ T
i T F̄ix̄ x ∈ Xi, i ∈ I.

This structure allows the usual constraints on V(x) (positive definite-
ness and decrement along the system trajectories) to be expressed as
a set of LMIs [Johansson, 1999].

The commands provided for stability analysis are shown in Table 5.
The command pqstab searches for a pwq Lyapunov function as de-
scribed above. If there exist a piecewise quadratic Lyapunov function,
pqstab returns a three dimensional array, a vector of matrices, where
matrix no. i corresponds to F̄ T

i T F̄i of eq. (5). The command qstab tries
to find a global quadratic Lyapunov function (V(x) � xT Px). This is of
course conservative, but qstab uses the state space partitioning struc-
ture to relax the constraints on the Lyapunov function. In addition,
the simplicity of a globally quadratic function often makes it a natural
choice for a first attempt.

The LMI:s stated in pqstab for the decreasing condition are only
valid for systems without any sliding modes. The command pqstabs is
slightly modified to be able to handle the sliding mode case.

23

Paper I. A Toolbox for Computational Analysis of PWL Systems

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 5. Simulation of the flower system (solid line) and level curves of a
pwq lyapunov function (dashed).

EXAMPLE 5—FLOWER SYSTEM — STABILITY ANALYSIS
We now try to prove stability of the flower system (Ex. 1).
% Search for sliding modes

findsm(pwlsys);
There are no sliding modes.

% Since there are no sliding modes, use pqstab
pqstab(pwlsys);
Lyapunov function was found.

Level surfaces of the lyapunov function are plotted together with a
simulated trajectory (using pwlsim as shown in Ex 4) in Fig. 5.

6. Performance Analysis and Control Design

Having utilized the Lyapunov function machinery for assessing stabil-
ity, it can be used in a similar way for other computations. WLP T L

supports performance analysis and control design. Table 6 lists the
commands available. All of these commands estimate an upper and/or
a lower bound on a certain performance property. If the estimates
are too coarse, the results can be refined by further refinement of the
state space partitions. The command iogain computes an upper bound
on the L2 induced input output gain of a pwl system. The command
pqobserv computes a lower and an upper bound on the integral of the
output energy for a given initial state, x(0).

24

7. Summary

Table 6. Commands for performance analysis and control design.

command description

iogain L2 gain computation

pqobserv Output energy estimation

optcstlb Lower cost for LQG problem

pwlctrl Derive piecewise LQG controller

optcstub Estimate cost achieved by pwlctrl

There are three commands related to controller synthesis. The op-
timal control problem for piecewise linear systems (while bringing the
system to x(∞) � 0 from an arbitrary initial state, x(0)) can be defined
to minimize the cost

J(x0, u) � ∫∞0 (
x̄T Q̄i(t) x̄ + uT Ri(t)u

)
dt

(Here i(t) is defined so that x(t) ∈ Xi(t).) A lower bound, on the min-
imum achievable J is computed by optcstlb The command pwlctrl
creates a pwl controller based on the results from optcstlb. A vector
of matrices representing the state feedback used in different regions
is returned. Having applied the controller given from above, optcstub
returns an upper bound on the resulting optimal cost.

7. Summary

This paper has presented a MATLAB toolbox for analysis of piecewise
linear systems, a class of nonlinear systems that appears frequently in
control theory, e.g. in hybrid systems and linear systems with various
constraints. The analysis is based on piecewise quadratic Lyapunov
functions, which are computed via convex optimization. In this way,
exponential stability and system performance can be assessed for this
class of nonlinear systems. The toolbox also supports efficient simula-
tion of systems with discontinuous dynamics and sliding modes.

WLP T L makes it simple to experiment with piecewise linear sys-
tems. The authors provide it free of charge upon request, with a refer-
ence manual [Hedlund and Johansson, 1999] and additional examples.

25

Paper I. A Toolbox for Computational Analysis of PWL Systems

Acknowledgements

This work was supported by the Esprit LTR project FAMIMO and TFR
project 95-759.

8. References

Årzén, K.-E., M. Johansson, and R. Babuska (1998): “A survey on fuzzy
control.” Technical Report. Esprit LTR project FAMIMO Deliverable
D1.1B.

Corless, M. (1994): “Robust stability analysis and controller design
with quadratic Lyapunov functions.” In Zinober, Ed., Variable
Structure and Lyapunov Control, Lecture notes in Control and
Information Sciences, chapter 9, pp. 181–203. Springer Verlag.

Filippov, A. F. (1988): Differential Equations with Discontinuous
Righthand Sides. Kluwer, Dordrecht.

Hedlund, S. and M. Johansson (1999): “PWLTool — A Matlab tool-
box for analysis of piecewise linear systems.” Report TFRT-7582.
Department of Automatic Control, Lund Institute of Technology,
Lund,Sweden.

Johansson, K. H. (1997): Relay Feedback and Multivariable Control.
PhD thesis ISRN LUTFD2/TFRT--1048--SE, Department of Auto-
matic Control, Lund Institute of Technology, Lund, Sweden.

Johansson, M. (1999): Piecewise linear control systems. PhD thesis
ISRN LUTFD2/TFRT--1052--SE, Lund institute of technology.

Johansson, M. and A. Rantzer (1996): “Computation of piecewise
quadratic Lyapunov functions for hybrid systems.” Report ISRN
LUTFD2/TFRT–7459–SE. Department of Automatic Control, Lund
Institute of Technology, Lund,Sweden.

Sontag, E. (1996): “Interconnected automata and linear systems: A
theoretical framework in discrete time.” In Alur et al., Eds., Hybrid
Systems III: Verification and Control, pp. 436–448. Springer, NY.

Utkin, V. I. (1977): “Variable structure systems with sliding modes: A
survey.” IEEE Transactions on Automatic Control, 22:2, pp. 212–
222.

26

Manual I

PWLTool
A Matlab Toolbox for Analysis of

Piecewise Linear Systems

Sven Hedlund and Mikael Johansson

1. Introduction

This manual describes a MATLAB toolbox for computational analysis
of piecewise linear systems. Key features of the toolbox are modeling,
simulation, analysis, and optimal control for piecewise linear systems.
The simulation routines detect sliding modes and simulate equivalent
dynamics [Hedlund and Johansson, 1999]. The analysis and design
are based on computation of piecewise quadratic Lyapunov functions
[Rantzer and Johansson, 1997a]. The computations are performed us-
ing convex optimization in terms of linear matrix inequalities (LMIs).
This version of the toolbox requires the LMI control toolbox [Gahine
et al., 1995].
The structure of this manual is as follows. Section 2 describes the
model representation, i.e. how a piecewise linear (PWL) system is de-
fined in this toolbox. Certain structures of the PWL systems allow the
systems to be defined in a more automated fashion. These systems, in
the sequel referred to as Structured PWL (sPWL) systems, are handled
by an additional set of commands described in Section 3. Section 4 lists
all the commands (with explanations) of the WLP T L in two groups.

27

Manual I. PWLTool, A Matlab Toolbox for PWL Systems

x1

x2

X1

x2 � 2

x2 � −2x1 + 4

x2 � −2

x2 � −2x1 − 4

Figure 1. Example of a polyhedron in R2.

The first subsection contains the generic PWL commands, the second
subsection describes the additional sPWL commands. Section 5 con-
tains some examples of how to use the toolbox.

Appendix 7 describes the data structure of a PWL object in MATLAB.

2. Piecewise Linear (PWL) Systems: Model Description

The toolbox is based on piecewise linear systems on the form{
ẋ � Aix+ ai + Biu

y � Cix + ci + Diu
for x ∈ Xi. (1)

Here, {Xi}i∈I ⊆ Rn is a partition of the state space into a number of
closed (possibly unbounded) polyhedral cells, see Figure 1, and I is
the index set of the cells. In order to allow rigorous analysis of smooth
nonlinear systems, the toolbox allows the system dynamics to lie in
the convex hull of a set of piecewise affine systems, see [Johansson
and Rantzer, 1997]. This is e.g. useful for the analysis of fuzzy Takagi-
Sugeno systems [Takagi and Sugeno, 1985].
For convenient notation, we introduce

Āi �
[

Ai ai

0 0

]
C̄i � [Ci ci] x̄ �

[
x

1

]
28

2. Piecewise Linear (PWL) Systems: Model Description

A large part of the analysis results will be concerned with (global)
properties of equilibria. We therefore let I0 ⊆ I be the set of indices
for the cells that contain the origin, and I1 ⊆ I be the set of indices for
cells that do not contain the origin. We will assume that ai � 0, ci � 0
for i ∈ I0.

The cells are represented by matrices Ḡi that satisfy

Ḡi x̄ � 0, if and only if x ∈ Xi (2)

Here, the vector inequality z � 0 means that each entry of z is non-
negative. We recognize this as the halfspace representation of a polyhe-
dron, where each row of Ḡi corresponds to one halfspace. The Ḡ-matrix
for the polyhedron of Fig. 1 e.g. would be

Ḡ1 �

0 −1 2

−2 −1 4

0 1 2

2 1 4

In addition to defining the regions of different dynamics, the G-matrices
tell the WLP T L how to partition the Lyapunov functions that are used
for the system analysis. A consequence of this is that one will some-
times divide the state space in to smaller cells than the ones implied
by the system dynamics in order to increase the flexibility of the Lya-
punov function candidate [Rantzer and Johansson, 1997a].
For the analysis of PWL systems, it is also necessary to specify matrices
F̄i � [Fi fi] with fi � 0 for i ∈ I0 that satisfy

F̄i x̄ � F̄j x̄ for x ∈ Xi ∩ Xj . (3)

These matrices are used to parameterize Lyapunov functions that are
continuous across cell boundaries. 1

1The computations in [Johansson and Rantzer, 1996; Rantzer and Johansson, 1997b]
use an additional matrix Ei. This matrix is derived directly from the corresponding
Gi -matrix, and is therefore not requested from the user.

29

Manual I. PWLTool, A Matlab Toolbox for PWL Systems

Note that the F-matrices are not a part of the PWL system definition
itself, they are merely a computational aid in the system analysis such
as stability, input output gain etc. Consequently, the simulation of a
PWL system does not require these matrices.

Also note that Eq. (3) does not uniqely define the F-matrices. A more
detailed description of the matrices can be found in [Johansson, 1999].
For the inexperienced user, who might find it difficult to create appro-
priate F-matrices, Section 3 presents means to overcome this problem.

30

3. Structured Piecewise Linear Systems — A User-friendly Concept

3. Structured Piecewise Linear (sPWL) Systems — A
User-friendly Concept

As described in the previous section, it may be non-trivial to find the
F-matrices for a system to be analyzed. Moreover, even if one can find
matrices that satisfy the definition (3), they might not be the best
ones in utilizing the piecewise structure of the Lyapunov functions.
Thus it is desirable to be able to generate a good choice of F-matrices
automatically.

When making the first attempts to analyze a PWL system, it is often
natural to partition the state space in certain ways. For example when
there is a need for approximating a general nonlinear function without
considering a particular structure of the nonlinearity, one might as
a first “quick and dirty” attempt grid the statespace using a set of
hyperrectangles. Doing this, it is desirable to generate the G-matrices
in a more automated fashion, since all the cells are similar in nature.

The toolbox supports automatic generation of region dependent matri-
ces for two classes of PWL systems. These systems, called Structured
Piecewise Linear (sPWL) systems, are constrained in the kind of state
space partitions that are allowed, but cover many cases and have the
advantage of making the construction of G- and F-matrices easy.

The classes that are supported in the sPWL package are called Hy-
perrectangle partitions and Simplex partitions. In a hyper rectangle
partition, each state is split by a number of parallel hyperplanes, cf
Fig. 2a. These planes build a set of hyperrectangles, the outermost
rectangles extending to infinity. In a simplex partition, cf Fig. 2b, all
cells are simplices, i.e. polyhedra that in an n-dimensional space are
bounded by n+ 1 vertices, some of which extend to infinity.

31

Manual I. PWLTool, A Matlab Toolbox for PWL Systems

a) b)

x1x1

x2x2

Figure 2. The special structures that are supported in sPWL package: a)
Hyperrectangle partitions, b) Simplex partitions

4. Command Reference

The PWL package consists of the functions listed in Table 1-4.

1 The Added Structured PWL (sPWL) Package

Many of the commands of the sPWL package have a corresponding
command in the model construction part of the generic PWL package.
It is important not to mix up the two packages, however, since they
use different data structures in MATLAB. The link between them is
part2pwl, that converts the entered sPWL system to a generic WLP T L

obejct. The interconnection between the packages is shown in Fig. 3.

As told in section 3, there are two kinds of sPWL systems. The com-
mands that are in common for both structures are listed in Table 5,
while Table 6 lists the commands that are specific to a certain struc-
ture.

All of the above commands will be described in detail on the following
pages. Not to mix up the model construction commands, the sPWL
commands have been marked with an (s).

2 The input vector ‘‘options’’

Several of the commands included in WLP T L use the LMI Control
Toolbox to solve the feasibility problem (find a solution to the LMI sys-
tem A(x) < 0) or the linear objective minimization problem (Minimize
cT x subject to A(x) < 0). The commands of the LMI Control Toolbox

32

4. Command Reference

Table 1. Model Construction

Command Description

setpwl Initialize the PWL system

addynamics Add system dynamics

addregion Add system region

getpwl Extract the PWL system

Table 2. Model Analysis and Control Design

Command Description

qstab Quadratic stability (global)
pqstab Piecewise quadratic stability

pqstabs pqstab with sliding mode

pqobserv observability

optcstlb optimal cost, lower bound

optcstub optimal cost, upper bound

iogain input output gain

use a general structure to give access to certain control parameters,
which consists of a five-entry vector. Every command in WLP T L that
(as a part of its task) solves LMI:s like these also has this input pa-
rameter, which is passed to the corresponding LMI Control Toolbox
function. The parameter is named options and consists of the follow-
ing elements [Gahine et al., 1995]:

• options(1) sets the desired relative accuracy on the optimal
value (cT x) when addressing the linear objective minimization
problem. It is not used for the feasibility problem.

• options(2) sets the maximum number of iterations allowed to
be performed by the optimization procedure (100 by default).

• options(3) sets the feasibility radius. Setting options(3) to a
value R > 0 further constrains the decision vector x � (x1, . . . , xN)

33

Manual I. PWLTool, A Matlab Toolbox for PWL Systems

Table 3. Graphic Visualization

Command Description

pwleval evaluate PWL function

pwllevel plot PWL function

pwqeval evaluate PWQ function

pwqlevel plot PWQ function

Table 4. Simulation

Command Description

pwlsim Simulate PWL system

findnb Find neighbouring cells

findsm Find possible sliding modes

Table 5. The general commands of the sPWL package

Command Description

setpart Initialize partition data structure

addati Specify affine dynamics

getpart Retrieve partition data structure

part2pwl Convert to pwltools data structure

to lie within the ball

N∑
i�1

x2
i < R2,

i.e. the Euclidean norm should not exceed R. The feasibility ra-
dius is a simple means of controlling the magnitude of solutions.
The default value is R � 109.

• options(4) helps speed up termination. When set to an integer
value J > 0, the code terminates when a certain minimizer (eg.

34

4. Command Reference

Construction Commands

part2pwl

sPWL Object

General PWL System

Structured PWL System

PWL Object

Computational
Engine

The sPWL Package

Construction Commands

The Generic PWL Package

Figure 3. How the extra package for generating sPWL systems relates to the
rest of the toolbox

Table 6. The structure specific commands of the sPWL package

Hyperplane description Simplex description

Command Description Command Description

addhp Add hyperplane addvtx Add vertex

addray Add ray

addhcell Define hyperplane cell addscell Define simplex cell

cT x for the linear objective minimization problem) does not de-
crease by more than one percent in relative terms during the last
J iterations. This parameter, whose default value is 10, trades
off speed vs. accuracy.

• options(5) = 1 turns off the trace of execution of the optimiza-
tion procedure. Default value is options(5) = 0.

35

Manual I. PWLTool, A Matlab Toolbox for PWL Systems

Setting options(i) to zero is equivalent to setting the corresponding
control parameter to its default value. Consequently, there is no need
to redefine the entire vector when changing just one control parameter.

In each command that accepts options as an input, this input is op-
tional. If the vector options is omitted, WLP T L searches for the func-
tion pwloptions that should return a vector on the format described
above. Writing one’s own pwloptions is useful when doing many dif-
ferent computations requiring the same accuracy. If there exists no
pwloptions, the default vector of the LMI Control Toolbox will be used.

36

4. Command Reference

addati (s)

Purpose
Specify the matrix variables corresponding to the dynamics in a certain
region of an sPWL system.

Synopsis
dyn = addati(A, a, B, C, c, D)

Description
addati2 defines new dynamics in the piecewise linear system currently
described. The output dyn is an identifier that can be used for subse-
quent reference to this dynamics as for instance when connecting it to
the corresponding region using addhcell or addscell. The arguments
are matrices (and vectors) in the affine system{

ẋ � Ax + a + Bu

y � C x + c + Du

All arguments except A can be omitted. If there is a specified argument
that appears to the right of omitted arguments in the list, the omitted
arguments must be replaced by empty matrices ([]) as place holders.

See Also
setpart, addhcell, addscell, getpart

2addati is an abbreviation of “add affine time invariant dynamics”. This is of course
what is done by the command addynamics as well. Another name must, however, be
chosen to avoid name conflicts.

37

Manual I. PWLTool, A Matlab Toolbox for PWL Systems

addhcell (s)

Purpose
Add a new cell to the hyperrectangle partition currently described.

Synopsis
reg = addhcell(hprefs, UsedDynamics)

Description
addhcell defines a new cell in the hyperrectangle partition, combining
those (previously entered) hyperplanes that should bound the cell.

Parameters
• hprefs is a vector of indices to the hyperplanes that bounds

the cell, each index being an identifier returned by the function
addhp. Each of the indices could be either positive or negative
depending on which side of the hyperplane the cell is situated.
Using hp (from addhp) without a minus sign as an index in the
vector means that the cell lies at the same side of the hyperplane
as the normal of the plane, i.e. if the plane was defined as

hpeq
[

x

1

]
� 0, then hpeq

[
x

1

]
≥ 0

should hold for all points, x, that belong to the cell. Using -hp as
an index in the vector means that the cell is on the opposite side
of the hyperplane normal.

• UsedDynamics is a reference to one or several dynamics specifi-
cations that shall be used in the region. This corresponds to the
identifier dyn that is returned from addati. If several dynam-
ics specifications shall be used in one region, UsedDynamics is a
vector of corresponding identifiers.

• reg is a label for future reference to the cell.

See Also

addhp, setpart, addati, getpart

38

4. Command Reference

addhp (s)

Purpose
Add a hyperplane that shall be used as a boundary of one or several
cells.

Synopsis
hp = addhp(hpeq)

Description
addhp defines a hyperplane that shall be used as a cell boundary.
The input parameter hpeq is an (n + 1)-dimensional vector (in the
n-dimensional space) containing the coefficients for the equation of
the hyperplane such that

hpeq
[

x

1

]
� 0

on the surface.

The output hp is an identifier that is used for subsequent reference to
the plane when connecting several planes to cells, using addhcell

See Also
addhcell, setpart, addati, getpart

39

Manual I. PWLTool, A Matlab Toolbox for PWL Systems

addray (s)

Purpose
Add a ray that shall be used as a boundary for several cells in a simplex
partition.

Synopsis
ray = addray(rdir)

Description
addhp defines a ray that shall be used as a cell boundary. The input pa-
rameter rdir is an n-dimensional vector (in the n-dimensional space)
pointing in the direction of infinite extension.

The output ray is an identifier that is used for subsequent reference
to the ray when connecting several rays and vertices to cells, using
addscell

See Also
addvtx, addscell, setpart, addati, getpart

40

4. Command Reference

addregion

Purpose
Specify the matrix variables for a certain region of a PWL system.

Synopsis

addregion(G, F, UsedDynamics)

Description
addregion defines a new region in the piecewise linear system cur-
rently described and links it to some dynamics.

Parameters
The matrix G, corresponding to Ḡ in (2), specifies the boundaries of
the region. It is an (m� n+ 1)-matrix, such that the inequality

Ḡ

[
x

1

]
� 0

holds for all x within the region (cf. Eq. 2). Each row of these matrices
corresponds to a hyperplane on the region boundary.

F, corresponding to F̄ in (3), is constructed in a way such that

F̄

[
x

1

]
is continuous between all regions. The F̄-matrices are not needed for
simulation (cf. Section 2). When only doing simulations, the input F
can be replaced with an empty matrix ([]) as a place holder.

UsedDynamics is a reference to the dynamics that shall be used in the
region. This corresponds to the identifier dyn that is returned from
addynamics. If several dynamics specifications shall be used in one
region, UsedDynamics is a vector of corresponding identifiers.

See Also

adddynamics, getpwl, setpwl

41

Manual I. PWLTool, A Matlab Toolbox for PWL Systems

addscell (s)

Purpose
Add a new cell to the simplex partition currently described.

Synopsis
reg = addscell(vtxrefs, rayrefs, UsedDynamics)

Description
addscell defines a new cell in the simplex partition by combining those
(previously entered) vertices and rays that should bound the cell.

Parameters
• vtxrefs is a vector of indices to the vertices that bound the cell,

each index being an identifier returned by the function addvtx.

• rayrefs is a vector of indices to the rays that bound the cell, each
index being an identifier returned by the function addray.

• UsedDynamics is a reference to one or several dynamics specifi-
cations that shall be used in the region. This corresponds to the
identifier dyn that is returned from addati. If several dynam-
ics specifications shall be used in one region, UsedDynamics is a
vector of corresponding identifiers.

• reg is a label for future reference to the cell.

As shown in section 3, the number of entries in vtxrefs and rayrefs
must sum up to (n+ 1) in an n-dimensional space. There must be at
least one entry in vtxrefs.

See Also

addray, addvtx, setpart, addati, getpart

42

4. Command Reference

addvtx (s)

Purpose
Add a vertex that shall be used as a corner of several cells in a simplex
partition.

Synopsis
vtx = addvtx(vtxcor)

Description
addvtx defines a vertex that shall be used as a corner of several cells.
The input parameter vtxcor is the coordinate of the vertex.

The output vtx is an identifier that is used for subsequent reference
to the ray when connecting several vertices and rays to cells, using
addscell

See Also
addray, addscell, setpart, addati, getpart

43

Manual I. PWLTool, A Matlab Toolbox for PWL Systems

addynamics

Purpose
Specify the matrix variables corresponding to the dynamics in a certain
region of a PWL system.

Synopsis
dyn = addynamics(A, a, B, C, c, D)

Description
addynamics defines new dynamics in the piecewise linear system cur-
rently described. The output dyn is an identifier that is used for sub-
sequent reference to this dynamics when specifying the corresponding
region using addregion. The arguments are matrices (and vectors) in
the affine system {

ẋ � Ax + a+ Bu

y � C x + c + Du

All arguments except A can be omitted. If there is a specified argument
that appears to the right of omitted arguments in the list, the omitted
arguments must be replaced by empty matrices ([]) as place holders.
Those of the arguments that are omitted, will be replaced by zero-
matrices of appropriate dimensions.

See Also
addregion, getpwl, setpwl

44

4. Command Reference

findnb

Purpose
Find the neighbors of the regions of a PWL system.

Synopsis
whereto = findnb(pwlsys)

Description
findnb searches all the Ḡ matrices of pwlsys and generates the matrix
whereto such that whereto(i,j) contains the number of the region
that lies behind the boundary defined by the i:th row of Gj .

See Also

findsm

45

Manual I. PWLTool, A Matlab Toolbox for PWL Systems

findsm

Purpose
Find possible sliding modes of a PWL system.

Synopsis
slide = findsm(pwlsys, whereto)

Description
findsm searches the piecewise linear system pwlsys for possible sliding
modes. findsm returns a square matrix, slide, where slide(i,j) � 1
iff there exist a sliding mode for any x on the boundary between region
i and j. The input matrix whereto, which contains information about
neighboring regions as given by findnb, is optional. If it is already
computed by findnb, those calculations that have already been made
can be avoided in this function.

See Also
findnb

46

4. Command Reference

getpart (s)

Purpose
Get the internal description of an sPWL system

Synopsis
part = getpart

Description
Having entered the description of a given structured piecewise linear
system using the commands for defining the dynamics and the state
partition, the internal representation is obtained with the command

part = getpart

This MATLAB representation of the sPWL system can be converted to
the generic WLP T L format using part2pwl. The system can also be ex-
tended by calling setpart and iterating the system building commands
again.

See Also
setpart, part2pwl, getpwl3

3The command getpwl is a generic PWL command.

47

Manual I. PWLTool, A Matlab Toolbox for PWL Systems

getpwl

Purpose
Get the internal description of a PWL system

Synopsis
pwlsys = getpwl

Description
After completing the description of a given piecewise linear system
with addynamics and addregion, its internal representation pwlsys is
obtained with the command

pwlsys = getpwl

This MATLAB representation of the piecewise linear system can be for-
warded to WLP T L functions for subsequent processing.

See Also

setpwl, addynamics, addregion

48

4. Command Reference

iogain

Purpose
Compute an upper bound on the L2 induced input output gain of a
PWL system.

Synopsis
[gamma, P, NoLMIs, NoVars] = ...

iogain(pwlsys, inp, outp, options)

Description
iogain computes an upper bound on the L2 induced input output gain
of the piecewise linear system pwlsys, by finding a minimal γ that
satisfies the inequality∫ τ

0
eye2dt ≤ γ 2

∫ τ

0
eue2dt ∀τ > 0 (4)

For a MIMO system inp and outp allows the user to specify the input
and output signals of interest. The default values are 1. options is an
optional five-entry vector of control parameters (cf. section 2).
iogain returns gamma � γ . P is a matrix resulting from the LMI calcu-
lations (as outlined in [Rantzer and Johansson, 1997a]). NoLMIs is the
number of LMI:s needed to solve the problem. NoVars is the number
of decision variables needed for the LMI:s.

49

Manual I. PWLTool, A Matlab Toolbox for PWL Systems

optcstlb

Purpose
Compute a lower bound on the optimal cost.

Synopsis

[lb, P, NoLMIs, NoVars] = optcstlb(pwlsys, Q, R, x0, options)

Description
The optimal control problem for piecewise linear systems is (while
bringing the system to x(∞) � 0 from an arbitrary initial state, x(0))
to minimize the cost

J(x0, u) �
∫ ∞

0

([
x

1

]T

Q̄i(t)

[
x

1

]
+ uT Ri(t)u

)
dt (5)

Here i(t) is defined so that x(t) ∈ Xi(t) and

Q̄i(t) �
[

Qi(t) 0

0 0

]
if i(t) ∈ I0 (6)

optcstlb computes a lower bound, lb, on the minimum achievable
value of J(x0, u). optcstlb also returns P which is a matrix resulting
from the LMI calculations (as outlined in [Rantzer and Johansson,
1997a]). NoLMIs is the number of LMI:s needed to solve the problem.
NoVars is the number of decision variables needed for the LMI:s.

Parameters
• pwlsys is the piecewise linear system.

• Q, R are three dimensional matrices defining the cost function
such that Q̄i � Q(:,:,i) and Ri � R(:,:,i).

• x0 is the initial state, x(0).
• options is an optional vector of control parameters (cf. Sec. 2).

See Also

pwlctrl, optcstub

50

4. Command Reference

optcstub

Purpose
Compute an upper bound on the optimal cost when applying a PWL
control law to a PWL system.

Synopsis
[ub, O, NoLMIs, NoVars] = optcstub(pwlsys, Qub, x0, options)

Description
optcstub computes and returns an upper bound, ub, on the optimal
cost when applying a piecewise linear control law computed by optcstlb
and pwlctrl. The result is an upper bound on the minimum achiev-
able value of the cost function (cf. Eqs. (5) and (6) on the previous
page) applying the control law given by Eq. (7) on page 56. The func-
tion optcstub also returns O that is a matrix resulting from the LMI
calculations (as outlined in [Rantzer and Johansson, 1997a]). NoLMIs
is the number of LMI:s needed to solve the problem. NoVars is the
number of decision variables needed for the LMI:s.

Parameters
• pwlsys is the piecewise linear system.

• Qub is a matrix defining a cost function. This matrix is computed
by pwlctrl.

• x0 is the initial state, x(0).
• options is an optional five-entry vector of control parameters (cf.

Section 2).

See Also
optcstlb, pwlctrl

51

Manual I. PWLTool, A Matlab Toolbox for PWL Systems

part2pwl (s)

Purpose
Derive a PWL description from partition data.

Synopsis
pwlsys = part2pwl(part)

Description
part2pwl converts the structured PWL system part to an generic PWL
representation, pwlsys, that can be forwarded to WLP T L functions for
subsequent processing.

See Also

setpart, getpart, getpwl4

4The command getpwl is a generic PWL command.

52

4. Command Reference

pqobserv

Purpose
Compute bounds on the observability of a PWL system.

Synopsis
[observ, O, P, NoLMIs, NoVars] = ...

pqobserv(pwlsys, x0, outp, options)

Description
pqobserv computes a lower and an upper bound on the integral of the
output energy, ∫ ∞

0
eye2dt,

when u � 0 and the initial state of the piecewise linear system pwlsys
is given by x0. For systems with multiple output signals, the optional
parameter outp specifies the output signal of interest. The default
value is 1. options is an optional five-entry vector of control param-
eters (cf. section 2).
observ = [lower upper] is a vector consisting of two entries: the lower
and the upper bound. O, and P are matrices resulting from the LMI cal-
culations (as outlined in [Rantzer and Johansson, 1997a]). NoLMIs is
the number of LMI:s needed to solve the problem. NoVars is the num-
ber of decision variables needed for the LMI:s.

53

Manual I. PWLTool, A Matlab Toolbox for PWL Systems

pqstab

Purpose
Search for a piecewise quadratic lyapunov function to verify stability
of a PWL system, assuming that there are no sliding modes.

Synopsis
[P, NoLMIs, NoVars] = pqstab(pwlsys, options)

Description
pqstab tries to find a piecewise quadratic lyapunov function to ver-
ify stability of the piecewise linear system, pwlsys. If there exist a
piecewise quadratic lyapunov function, it can be written

V(x) �
[

x

1

]T

P̄i

[
x

1

]
, x ∈ Xi, where P̄i �

[
Pi 0

0 0

]
if i ∈ I0

P will in that case be a vector of matrices such that P(:,:,i)� P̄i. If no
lyapunov function exist, pqstab will return an empty matrix, P = [].
NoLMIs is the number of LMI:s needed to solve the problem. NoVars
is the number of decision variables needed for the LMI:s. options is an
optional five-entry vector of control parameters (cf. section 2).

See Also
qstab, pqstabs

54

4. Command Reference

pqstabs

Purpose
Search for a piecewise quadratic lyapunov function, taking the possi-
bility of sliding modes into account, to verify stability of a PWL system.

Synopsis
[P, NoLMIs, NoVars] = pqstabs(pwlsys, options)

Description
pqstabs tries to find a piecewise quadratic lyapunov function to ver-
ify stability of the piecewise linear system, pwlsys. If there exist a
piecewise quadratic lyapunov function, it can be written

V(x) �
[

x

1

]T

P̄i

[
x

1

]
, x ∈ Xi, where P̄i �

[
Pi 0

0 0

]
if i ∈ I0

P will in that case be a vector of matrices such that P(:,:,i)� P̄i. If no
lyapunov function exist, pqstabs will return an empty matrix, P = [].
NoLMIs is the number of LMI:s needed to solve the problem. NoVars
is the number of decision variables needed for the LMI:s. options is an
optional five-entry vector of control parameters (cf. section 2).
pqstabs first uses findsm to check whether there exist any sliding
modes. If there are no possible sliding modes, pqstabs calls pqstab
and return the result. Otherwise it extends the LMI:s to also include
sliding modes.

See Also
qstab, pqstab, findsm

55

Manual I. PWLTool, A Matlab Toolbox for PWL Systems

pwlctrl

Purpose
Create a PWL controller based on the results from a minimization of
a cost function as given by optcstlb.

Synopsis
[pwlc, L, Qub] = pwlctrl(pwlsys, Q, R, P)

Description
Having split the state space into certain regions, optcstlb uses that
partition to give a lower bound on the optimal cost for any control law.
pwlctrl uses information from optcstlb to compute a piecewise linear
control law that achieves a low cost.

The control law is

u(t) :� L̄i

[
x

1

]
x ∈ Xi (7)

and pwlctrl returns a representation of the closed loop system, pwlc,
and a three dimensional matrix, L, such that L(:,:,i) � Li. Qub con-
sists of data that is needed to compute an upper bound on the optimal
cost (using optcstub) when implementing this control law.

If several dynamics are linked to one region, the controller will be
based on the nominal (first linked) dynamics of each region.

Parameters
• pwlsys is the piecewise linear system.

• Q, R are three dimensional matrices defining the cost function
such that Q̄i � Q(:,:,i) and Ri � R(:,:,i).

• P is the P matrix resulting from optcstlb.

See Also

optcstlb, optcstub

56

4. Command Reference

pwleval

Purpose
Evaluate a vector field and an output vector of a piecewise linear func-
tion.

Synopsis
[xd, y, reg] = pwleval(pwlsys, x, u)

Description
pwleval finds the region, Xi, that x belongs to and evaluates xd and y
according to

xd � Aix+ ai + Biu for x ∈ Xi (8)
y � Cix+ ci + Diu (9)

It also returns reg, which is the number of the region where x is
located. pwlsys contains the PWL system to be evaluated. x and u is
the state vector and input vector respectively.

See Also
pwllevel, pwqeval

57

Manual I. PWLTool, A Matlab Toolbox for PWL Systems

pwllevel

Purpose
Plot the level surfaces of a second order piecewise linear function.

Synopsis
[Z, x1, x2] = ...

pwllevel(pwlsys, A, K, parea, resol, linespec, V)

Description

pwllevel plots the level surfaces of a second order global or piecewise
quadratic function. It returns a matrix containing the function values

Z � K Āi

[
x

1

]
(10)

The vectors x1 and x2, that specify the grid points used for x1 and x2

respectively, can be used with the MATLAB function mesh to plot the
entire PWL function.

Parameters
• For a piecewise linear function pwlsys contains a description of

those regions that correspond to different linear functions. When
plotting a global linear function, pwlsys can bet set to [].

• A represents the function to be plotted. If A is a three dimensional
array, then for each region, i, the function A(:,:,i)*[x; 1] is
evaluated. For a global linear function, A is a (two dimensional)
matrix such that the function A*x (or A*[x; 1]) is evaluated. If
A is an empty matrix, [], the first dynamics of each region in
pwlsys will be used.

• If K is a scalar, vector component number K (of A*x) will be plot-
ted. If K is a row vector, [k1 k2], several state variables can be
weighted together, such that the resulting plot is
K*A(:,:,i)*[x; 1]. If K is an empty matrix, the first vector com-
ponent will be plotted.

58

4. Command Reference

• parea = [xmin, xmax, ymin, ymax] sets scaling for the x- and
y-axes on the plot.

• resol = [resx1 resx2] is an optional parameter that specifies
the resolution of the grid that is used when evaluating the linear
function. These numbers specify at how many instances the state
variables x1 and x2 respectively will be used. If any of the param-
eters linespec or V are specified though resol is not, resol must
be replaced by an empty matrix ([]) as place holder.

• The level surfaces are normally drawn black and solid. The op-
tional character string linespec allows you to specify another
color and line type in the same format as the MATLAB plot func-
tion. To omit the plot (when using this function to get the function
values in Z), use the color ’n’ (none).

• V is an optional parameter that is used to plot length(V) contour
lines at the values specified in vector V

See Also
pwleval, pwqlevel

59

Manual I. PWLTool, A Matlab Toolbox for PWL Systems

pwlsim

Purpose
Simulate a PWL system.

Synopsis
[t, x, te, regidx] = pwlsim(pwlsys, x0, tspan)

Description
pwlsim simulates the piecewise linear system, pwlsys, from the initial
state x0. The system will be simulated from time t0 to t f inal which is
specified in tspan = [t0 tfinal].

pwlsim returns data as follows. Each row in the solution array x corre-
sponds to a time returned in column vector t. regidx is a vector that
contains the regions entered during simulation and te contains the
corresponding entry times.

Additional information on the simulation can be found in [Hedlund
and Johansson, 1999].

60

4. Command Reference

pwqeval

Purpose
Evaluate a piecewise quadratic function.

Synopsis
[y, reg] = pwqeval(pwlsys, Q, x)

Description
pwqeval finds the region, Xi, that x belongs to and evaluates

y �
[

x

1

]T

Q̄i

[
x

1

]
for x ∈ Xi (11)

It also returns reg, which is the number of the region where x is
located.

Parameters
• For a piecewise quadratic function pwlsys contains the regions

that correspond to different functions. To plot a global quadratic
function, pwlsys can be set to [].

• Q represents the function to be evaluated according to Eq. 11, i.e.
Q(:,:,i) � Q̄i. For a global quadratic function, Q is a matrix
such that the function values are given by xT Qx.

• x is the state vector

See Also

pwqlevel, pwleval

61

Manual I. PWLTool, A Matlab Toolbox for PWL Systems

pwqlevel

Purpose
Plot the level surfaces of a second order quadratic function.

Synopsis
[Z, x1, x2] = pwqlevel(pwlsys, Q, parea, resol, linespec, V)

Description
pwqlevel plots the level surfaces of a second order global or piecewise
quadratic function. It returns a matrix containing the function values

Z �
[

x

1

]T

Q̄i

[
x

1

]
(12)

The vectors x1 and x2 specify the grid points used for x1 and x2 re-
spectively. These vectors can be used with the MATLAB function mesh
to plot the entire quadratic function.

Parameters
• For a piecewise quadratic function pwlsys contains a description

of those regions that correspond to different quadratic functions.
When plotting a global quadratic function, pwlsys is set to [].

• Q represents the function to be plotted. For a global quadratic
function, Q is a matrix such that the function values are given by
xT Qx. For a piecewise quadratic function, Q is a vector of matrices
such that Q(:,:,i) � Q̄i and the function values of region i are
given by Eq. 12.

• parea = [xmin, xmax, ymin, ymax] sets scaling for the x- and
y-axes on the plot.

• resol = [resx1 resx2] is an optional parameter that specifies
the resolution of the grid that is used when evaluating the
quadratic function. These numbers specify at how many instances
the state variables x1 and x2 respectively will be used. If any of

62

4. Command Reference

the parameters linespec or V are specified though resol is not,
resol must be replaced by an empty matrix ([]) as place holder.

• The level surfaces are normally drawn black and solid. The op-
tional character string linespec allows you to specify another
color and line type in the same format as the MATLAB plot func-
tion. To omit the plot (when using this function to get the function
values in Z), use the color ’n’ (none).

• V is an optional parameter that is used to plot length(V) contour
lines at the values specified in vector V

See Also
pwqeval, pwllevel

63

Manual I. PWLTool, A Matlab Toolbox for PWL Systems

qstab

Purpose
Search for a global quadratic lyapunov function to verify stability of a
PWL system.

Synopsis
[P, NoLMIs, NoVars] = qstab(pwlsys, options)

Description
qstab tries to find a global quadratic lyapunov function to verify sta-
bility of the piecewise linear system, pwlsys. If there exist a global
quadratic lyapunov function, V(x), then P is the stability matrix such
that V(x) � xT Px. If no Lyapunov function exist, the function will re-
turn an empty matrix, P = []. NoLMIs is the number of LMI:s needed
to solve the problem. NoVars is the number of decision variables needed
for the LMI:s. options is an optional five-entry vector of control param-
eters (cf. section 2).

See Also

pqstab

64

4. Command Reference

setpart (s)

Purpose
Initialize the description of an sPWL system

Synopsis
setpart(part)

Description
setpart is called before starting the description of a structured piece-
wise linear system. The function could be called in three ways

• setpart('h') creates a new hyperrectangle partition.

• setpart('s') creates a new simplex partition.

To add on to an existing structured piecewise linear system, use the
syntax

setpart(part)

where part is the internal representation of the existing system. Sub-
sequent system building commands will then add new dynamics and
partitions to part.

See Also

addhcell, addscell, addati, getpart

65

Manual I. PWLTool, A Matlab Toolbox for PWL Systems

setpwl

Purpose
Initialize the description of a PWL system

Synopsis
setpwl(pwlsys0)

Description
Before starting the description of a new piecewise linear system with
addynamics and addregion, type

setpwl([])

to initialize its internal representation.

To add on to an existing piecewise linear system, use the syntax

setpwl([pwlsys0])

where pwlsys0 is the internal representation of this piecewise linear
system. Subsequent addynamics and addregion will then add new dy-
namics and regions to the initial piecewise linear system pwlsys0.

See Also

getpwl, addynamics, addregion

66

5. Examples of Usage

5. Examples of Usage

In order to clarify the usage of the WLP T L commands, two examples
are presented in this section. These examples contain the complete
code, i.e. one should be able to reproduce the results (when having ac-
cess to WLP T L) by entering the lines marked with the MATLAB prompt
(>>) into MATLAB.

Having presented two complete examples using the general PWL pack-
age, we will show a simpler way to enter some of the system matrices
of the first example using the sPWL package

1 The Flower System

In this example, we will study the piecewise linear system

ẋ(t) �
{

A1x(t), x2
1(t) − x2

2(t) ≥ 0

A2x(t), x2
1(t) − x2

2(t) < 0

A1 �
[−ε αω
−ω −ε

]
A2 �

[−ε ω
−αω −ε

]
C1 � C2 � [1 0] (13)

where α � 5, ω � 1, and ε � 0.1. We will do simulations and analyze
the stability and observability of the system.

PWL System Initialization First we must enter the PWL system
according to Eqs. (1) - (3).

>> A1 = [-0.1, 5; -1, -0.1]; % Enter matrices describing
>> A2 = [-0.1, 1; -5, -0.1]; % the dynamics

>> a = [];

>> B = [];

>> C1 = [1 0];
>> C2 = [1 0];

67

Manual I. PWLTool, A Matlab Toolbox for PWL Systems

>> G1 = [1 -1; 1 1]; % Enter the regions
>> G2 = [-1 1; 1 1];
>> G3 = [-1 1; -1 -1];
>> G4 = [1 -1; -1 -1];

>> F1 = [G1; eye(2)];
>> F2 = [G2; eye(2)];
>> F3 = [G3; eye(2)];
>> F4 = [G4; eye(2)];

>> setpwl([]); % Set up PWL system

>> dyn1 = addynamics(A1, a, B, C1);
>> dyn2 = addynamics(A2, a, B, C2);

>> addregion(G1, F1, dyn1);
>> addregion(G2, F2, dyn2);
>> addregion(G3, F3, dyn1);
>> addregion(G4, F4, dyn2);

>> pwlsys = getpwl; % Extract PWL system

Simulation Having entered the system properly, we can make a
simulation. In this example we will simulate a trajectory starting in
x(0) � (1 0)′.
>> [t, xv] = pwlsim(pwlsys, [1 0]', [0 40]); % Simulate

>> hold on; % Plot
>> plot(xv(:,1), xv(:,2)); % phase plane
>> plot([-1 1],[-1 1],'k:');
>> plot(-[-1 1],[-1 1],'k:');
>> grid on

The result of this is shown in Fig. 4.

Stability Analysis Judging from the simulation, it seems as if the
PWL system is stable. We will now try to prove the stability of this

68

5. Examples of Usage

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4. Simulation and cell partition of flower system

system. Let us first try to find a global quadratic Lyapunov function:

>> P = qstab(pwlsys)

The P matrix returned from this function is an empty matrix, which
indicates the nonexistence of a global quadratic Lyapunov function.
Our next move is to look for a piecewise quadratic Lyapunov function.

>> P = pqstab(pwlsys)

This time we succeed and the P structure returned by the function
contains a set of four matrices, where each matrix corresponds to one
of the four regions that build our system. We can now plot the level
surfaces of the Lyapunov function

>> pwqlevel(pwlsys, P, [-1 1 -1 1], [], 'k--');

and the result is shown in Fig. 5

69

Manual I. PWLTool, A Matlab Toolbox for PWL Systems

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 5. Level surfaces of the Lyapunov function

Observability Analysis The “degree of observability” can be mea-
sured by the amount of output energy

∫∞
0 eye2dt that is generated for

different values of the initial state x(0). This amount can be estimated
from a set of LMI:s thanks to the structure of the systems under con-
sideration. WLP T L allows us to compute bounds on the integral of the
output energy corresponding to a trajectory from a given initial state:

>> x0 = [1 0]';
>> observ = pqobserv(pwlsys, x0)

The function returns

observ =

0.6025 2.5060

which is a lower and an upper bound respectively on the output energy
when using an initial state x(0) � (1, 0)′. This is a valid but very coarse
estimation, which depends on the state space being divided into (too)

70

5. Examples of Usage

few regions. Splitting up the state space more will lead to narrower
bounds (e.g. 32 regions will confine the estimation to [1.78, 1.88].), cf.
[Rantzer and Johansson, 1997a].

2 Sliding mode system

In this example we will show the capability of WLP T L to handle sliding
modes. The system that is used for this purpose is

ẋ(t) �
{

A1 x(t), x1(t) > 0

A2 x(t), x1(t) ≤ 0

A1 �
 0 1 0

0 0 1

−1 −2 −1

 A2 �
 0 −2 1

0 −1 −1

−1 −2 −3

(14)

PWL System Initialization We start by entering the system as in
the former example.

>> A1 = [0 1 0; 0 0 1; -1 -2 -1];
>> A2 = [0 -2 1; 0 -1 -1; -1 -2 -3];

>> G1 = [1 0 0];
>> G2 = [-1 0 0];

>> F1 = [0 0 0; eye(3)];
>> F2 = [G2(1,:); eye(3)];

>> setpwl([]);

>> dyn1 = addynamics(A1);
>> dyn2 = addynamics(A2);

>> addregion(G1, F1, dyn1);
>> addregion(G2, F2, dyn2);

>> pwlsys = getpwl;

71

Manual I. PWLTool, A Matlab Toolbox for PWL Systems

Simulation Before simulating the system we try to find a piecewise
quadratic Lyapunov function. Being aware of possible sliding surfaces
of this system we use pqstabs this time. One could of course always use
use this function instead of pqstab. When the system is known not to
exhibit sliding modes, however, one can save some computational load
by using pqstab.

>> [P, NoLMIs, NoVars] = pqstabs(pwlsys);

When the function is called with the PWL system as the only input
parameter, pqstabs will display its computations. Among other text
we will find

Possible sliding mode between region(s) no
2 - 1

which indicates that the vector fields of the system are such that sliding
modes are possible. A nonempty P is returned and we conclude that
the system is stable. We simulate the system when starting in x(0) �
(1 2 3)′.

>> x0 = [1 2 3]'; % initial state for simulation
>> [t, x, te] = pwlsim(pwlsys, x0, [0 20]);

% simulate for 20 time units
>> plot(t, x); % plot the results
>> hold on;
>> V = axis; % mark region transitions
>> for lp = 1:length(te);
>> plot([te(lp) te(lp)], [V(3) V(4)], 'k:');
>> end

and the result is shown in Fig. 6. The function pwlsim also returns the
points of time where region transitions have occurred. Looking into
Fig. 6, one can easily see when the system has been sliding (when
x1(t) is zero, e.g. around four time units). Let us examine the state
space trajectory in a three dimensional plot as well.

72

5. Examples of Usage

0 2 4 6 8 10 12 14 16 18 20
−4

−3

−2

−1

0

1

2

3

4

Figure 6. Trajectories from sliding mode simulation

>> plot3(x(:,1), x(:,2), x(:,3), 'LineWidth', 2);

>> hold on;
>> patch([0 0 0 0 0]-0.05, [-1 -1 1 1 -1]*5, ...

[-1 1 1 -1 -1]*5, [0.95 0.95 0.95]);
>> ee = 0.05;
>> plot3([0 0]+ee, [0 0], [-1 1]*5, 'k--');
>> plot3([0 0]+ee, [-1 1]*5, ...

-min(5, max(-5, 2*[-1 1]*5)), 'k--');

The result is shown in Fig. 7. To be able to see where the system is
sliding, we have added a wall between the two regions of this system.
One can see that the trajectory gets stuck on this surface at a couple
of points and slide for a while before escaping.

3 The Flower System using the sPWL package

As seen from the examples of this section, the system initialization in
the generic PWL package requires the user to enter F-matrices that

73

Manual I. PWLTool, A Matlab Toolbox for PWL Systems

−5

−4

−3

−2

−1

0

1

2

3

4

5 −5
−4

−3
−2

−1
0

1
2

3
4

5

−5

0

5

Figure 7. Three dimensional plot from sliding mode simulation

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

X1

X2

X3

X4

r1

r2r3

r4

Figure 8. Simplex partitioning of the flower example.

are used for Lyapunov computations. In these examples, as well as in
many others, this effort can be avoided by using the sPWL package.
We will show below how to apply the package on the flower system.

The Simplex Interpretation The state space partitioning, with
regions X1 – X4, of the flower system is shown in Figure 8.

Instead of defining those regions by entering the G-matrices, we will

74

5. Examples of Usage

now use the simplex notation. Each simplex of Fig. 8 is unbounded
and can be represented by one vertex (the origin) and two rays point-
ing in the directions of the region boundaries (denoted r1 – r4 in the
figure). Thus, the model construction code of the flower example can
be replaced by the following code. (It is assumed that the dynamics
matrices already have been defined.)

>> setpart('s'); % Set up sPWL system
% using simplices

>> v1 = addvtx([0 0]); % Enter the origin as a
% vertex

>> r1 = addray([1 -1]); % Enter the rays
>> r2 = addray([1 1]);
>> r3 = addray([-1 1]);
>> r4 = addray([-1 -1]);

>> d1 = addati(A1, a1, B1, C1); % Add the dynamics
>> d2 = addati(A2, a2, B2, C2);

>> addscell([v1],[r1 r2],d1); % Connect the dynamics
>> addscell([v1],[r2 r3],d2); % to regions
>> addscell([v1],[r3 r4],d1);
>> addscell([v1],[r4 r1],d2);

>> part = getpart; % Extract sPWL system
>> pwlsys = part2pwl(part); % Transform to PWL system

The Hyperplane Interpretation In addition to the simplex inter-
pretation, the partitions of the flower system can be seen as consisting
of hyperplane intersections. Figure 9 shows how the system can be
defined. Hyperplane h1 has the normal direction n1, i.e. n1x > 0 on
the upper right side of the plane. The normal direction of hyperplane
h2 is n2.

>> setpart('h'); % Set up sPWL system
% using hyperplanes

75

Manual I. PWLTool, A Matlab Toolbox for PWL Systems

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

X1

X2

X3

X4

h1 h2

n1n2

Figure 9. Hyperplane partitioning of the flower example.

>> h1 = addhp([1 1 0]); % Enter the hyperplanes
>> h2 = addhp([1 -1 0]);

>> d1 = addati(A1, a1, B1, C1); % Add the dynamics
>> d2 = addati(A2, a2, B2, C2);

>> addhcell([h1 h2], d1); % Connect the dynamics
>> addhcell([h1 -h2], d2); % to regions
>> addhcell([-h1 -h2], d1);
>> addhcell([-h1 h2], d2);

>> part = getpart; % Extract sPWL system
>> pwlsys = part2pwl(part); % Transform to PWL system

Note that the flower example is rather special — the simplex descrip-
tion and the hyperplane description are in general not applicable to
the same problems.

76

6. References

6. References

Gahine, P., A. Nemirovski, A. Laub, and M. Chilali (1995): LMI Control
toolbox user’s guide. The MathWorks, inc.

Hedlund, S. and M. Johansson (1999): “A toolbox for computational
analysis of piecewise linear systems.” In Proceedings of European
Control Conference. Karlsruhe.

Johansson, K. H. and A. Rantzer (1996): “Global analysis of third-order
relay feedback systems.” Technical Report TFRT–7542. Department
of Automatic Control, Lund Institute of Technology. Submitted for
journal publication.

Johansson, M. (1999): Piecewise Linear Control Systems. PhD thesis
TFRT-1052, Dept. of Automatic Control, Lund Institute of Technol-
ogy, Box 118, S-221 00 Lund, SWEDEN.

Johansson, M. and A. Rantzer (1997): “Piecewise quadratic Lyapunov
functions for hybrid systems.” In Proceedings of European Control
Conference. Brussels.

Rantzer, A. and M. Johansson (1997a): “Piecewise linear quadratic
optimal control.” In Proceedings of American Control Conference.
Albuquerque. Submitted for journal publication.

Rantzer, A. and M. Johansson (1997b): “Piecewise linear quadratic op-
timal control.” Technical Report ISRN LUTFD2/TFRT--7569--SE.
Department of Automatic Control. To appear in IEEE Transactions
on Automatic Control.

Takagi, T. and M. Sugeno (1985): “Fuzzy identification of systems and
its applications to modeling and control.” IEEE Transactions on
Systems, Man and Cybernetics, 15:1, pp. 116–132.

77

Manual I. PWLTool, A Matlab Toolbox for PWL Systems

7. Data Structure

The PWL systems that this toolbox was designed for can be quite com-
plex, i.e. they can contain many regions with different dynamics. Re-
gions and dynamics can also be interconnected in several ways: one
type of dynamics can appear in several regions (the flower system in
Section 5 is a simple example of this), but one might also want to
specify several dynamics for one region. The latter situation would
typically appear when bounding a nonlinearity between two piecewise
linear functions.

Since it is not desirable to store the same information in two differ-
ent places, pointers are used to link dynamics to regions. A schematic
view of the data structure used in WLP T L is shown in Fig. 10. The
total piecewise linear system is represented as a MATLAB-struct that
is called pwlsys for future reference. The matrices describing the dy-
namics (Ai, ai, Bi, Ci, ci, and Di) are collected into one struct. The
struct pwlsys contains an array of such structs that holds all the dy-
namics of the system. In a similar manner the matrices connected to
the state space partition (Gi, and Fi) are collected into one struct. In
addition, this struct contains two other elements. It contains a vector,
Idx, that points to the dynamics-array, and thus tells which dynamics
(possibly several dynamics sets) that is valid in this particular region.
I also contains a flag, co, that is set if the region contains the origin.
The struct pwlsys contains a vector of all these regionstructs of the
system.

78

7. Data Structure

pwlsys

...
...

...
...

...
...

A(1) a(1) B(1) C(1) c(1) D(1)

A(2) a(2) B(2) C(2) c(2) D(2)

A(3) a(3) B(3) C(3) c(3) D(3)

A(4) a(4) B(4) C(4) c(4) D(4)

A(6) a(6) B(6) C(6) c(6) D(6)

A(7) a(7) B(7) C(7) c(7) D(7)

A(5) a(5) B(5) C(5) c(5) D(5)

...
...

...
...

G(2) F(2) co(2) Idx(2)

G(3) F(3) co(3) Idx(3)

G(4) F(4) co(4) Idx(4)

G(5) F(5) co(5) Idx(5)

G(1) F(1) co(1) Idx(1)

DynamicsRegion

Figure 10. Schematic view of the data structure used for representing a PWL
system in MATLAB

79

Paper II

Optimal Control of Hybrid Systems

Sven Hedlund and Anders Rantzer

Abstract

This paper presents a method for optimal control of hybrid
systems. An inequality of Bellman type is considered and every
solution to this inequality gives a lower bound on the optimal value
function. A discretization of this “hybrid Bellman inequality” leads
to a convex optimization problem in terms of finite-dimensional
linear programming. From the solution of the discretized problem,
a value function that preserves the lower bound property can be
constructed. An approximation of the optimal feedback control law
is given and tried on some examples.

1. Introduction

Hybrid systems are systems that involve interaction between discrete
and continuous dynamics. Such systems have been studied with grow-
ing interest and activity in recent years. One reason for the interest
is that modeling and simulation of a complex system often require a
combination of mathematical models from a variety of engineering dis-
ciplines. The structure of such submodels can be very different, some
can be discrete and some continuous.

Very often, the same phenomenon can be described either by a dis-
crete model or a continuous one, depending on the context and purpose
of the model [Antsaklis and Nerode, 1998]. Consider for example an

81

Paper II. Optimal Control of Hybrid Systems

asynchronous discrete-event driven thermostat, which discretizes tem-
perature information as {too hot, too cold, normal}.

Practical control systems typically involve switching between sev-
eral different modes, depending on the range of operation. Even if the
dynamics in each mode is simple and well understood, it is well known
that automatic mode switching can give rise to unexpected phenomena.

Basic aspects of hybrid systems were treated in [Ezzine and Had-
dad, 1989], [Grossman et al., 1993], and [Utkin, 1977]. For stability
analysis, see [Branicky, 1998; Johansson, 1999] and references therein.
The reformulation of an optimal control problem in terms of linear
programming has previously been used for continuous time systems
in [Rantzer, 1999] and [Rantzer and Johansson, 1997] and is closely
connected to ideas of [Vinter and Lewis, 1978]. Related methods were
discussed for discrete systems in [Bertsekas and Tsitsiklis, 1996] and
on an abstract level for hybrid systems in [Branicky and Mitter, 1995].

This paper presents a novel computational approach to optimal
control of hybrid systems, based on ideas from dynamic programming
and convex optimization. Discretization of Bellman’s inequality gives
a lower bound on the optimal cost in terms of linear programming. A
control law which is used for simulation is constructed from the lower
bound. The results are demonstrated in some examples.

2. Problem Formulation

Define a hybrid system as{
ẋ(t) � fq(t)(x(t), u(t))
q(t) � ν(x(t), q(t−), µ(t))

(1)

where x(t) ∈ X ⊂ Rn is the state vector, u(t) ∈ Ωu ⊂ Rm is a
continuous input signal of the system. There is also a discrete input,
µ (t) ∈ Ωµ , which allows for the selection between N different system
modes, q(t) ∈ Q � {1, 2, . . . , N}. The notation q(t−) is used for the
left-hand limit of q at t. Sq,r is a set (parameterized by q and r) such
that switching from mode q to r is possible when x ∈ Sq,r ⊆ X . The
time argument, t, will often be omitted in the sequel for readability.

82

3. Lower Bounds on Optimal Cost

The optimal control problem is to minimize the cost function

J(x0, q0) �
∫ t f

t0

lq(x, u)dt+
M∑

k�1

s(x(tk), q(t−k), q(t+k)) (2)

subject to (1) while bringing the system from an initial state (x0, q0)
at time t0, to a final state (xf , qf) at time t f , where the end time, t f ,
is free. Here, M is an arbitrary finite number of switches occurring at
times t0 < t1 < t2 < . . . < tM < t f and s(x, q, r) > 0 is an associated
cost for switching from discrete state q to r, the continuous part being
x just before the switch. Note that s(⋅) > 0 removes the problem of
infinitely many jumps in a finite interval.

The framework developed in this paper would also allow the num-
ber of continuous states to vary with the discrete mode according to
ẋq(t) � fq(t)(xq(t), uq(t)), where xq(t) ∈ Xq ⊂ Rn(q), uq(t) ∈ Ωuq ⊂
Rm(q). The usage of the system description (1), however, will hopefully
prevent the reader from getting stuck on details.

3. Lower Bounds on Optimal Cost

PROPOSITION 1
Let Vq : X @→ R, q � 1, 2, . . . , N be a set of continuous, piecewise C 1

functions that satisfy

0 ≤ �Vq(x)
�x

fq(x, u) + lq(x, u)
∀x ∈ X , u ∈ Ωu, q ∈ Q (3)

0 ≤ Vr(x) − Vq(x) + s(x, q, r)
∀x ∈ Sq,r q, r ∈ Q : q 6� r (4)

0 � Vqf (xf) (5)

where fq(x, u) gives the dynamics of a hybrid system according to (1),
lq(x, u) and s(x, q, r) define a cost function for the system according to
(2). Then, for every (x0, q0), Vq0(x0) gives a lower bound on the cost for

83

Paper II. Optimal Control of Hybrid Systems

optimally bringing the system from (x0, q0) to (xf , qf), x(t) ∈ X ∀t ∈
[t0, t f].
Remark 1. Rather than having one single value function, V(x), as
would be the case for a purely continuous system, the proposition gives
a set of value functions, Vq(x), where q is the initial value of the dis-
crete mode. Note that these functions give the cost for optimal trajec-
tories that are allowed to switch modes — the index q only implies
that trajectories starting in mode q are considered.

It is of course possible to think of Vq(x) as one single function,
parameterized by x and q. For consistent notation, however, Vq(x) has
been chosen instead of V(x, q).
Proof. Let û(⋅) and µ̂(⋅) be control signals that drive the system from
(x0, q0) at time t0 to (xf , qf) at time t f � tM+1. Let q̂(t) denote the
mode trajectory resulting from µ̂(t) and define xk � x(tk), x−k � x(t−k),
and q̂k � q̂(t), tk ≤ t < tk+1. Then

J(x0, q̂0) �
M∑

k�0

∫ tk+1

tk

lq̂k(x, û)dt+
M∑

k�1

s(x−k , q̂k−1, q̂k) ≥

M∑
k�0

∫ tk+1

tk

−�Vq̂k(x)
�x

fq̂k(x, û)dt+

+
M∑

k�1

{
Vq̂k−1(x−k) − Vq̂k(x−k)

} �
M∑

k�0

{
Vq̂k(xk) − Vq̂k(xk+1)

}+
+

M∑
k�1

{
Vq̂k−1(xk) − Vq̂k(xk)

} �
Vq̂0(x0) − Vq̂M (xM+1) � Vq̂0(x0)

Also the optimal value function, VP
q (x) will meet the the constraints

84

4. Discretization

(3)-(5), under appropriate interpretation of �Vq(x)/�x. Hence the in-
equalities do not introduce any conservatism in the lower bound.

4. Discretization

Utilizing a computer to solve (3)-(5) for a specific control problem, a
straight forward approach is to grid the state space to require the in-
equalities to be met at a set of evenly distributed points in X . This
approximation will, however, not guarantee a lower bound on the op-
timal cost, unless the nature of fq and Vq between the grid points is
taken into consideration.

In the case of a two-dimensional continuous state space, introduce
the notation

xjk � xf + jhe1 + khe2

X jk � {xjk + θ 1he1 + θ 2he2 : 0 ≤ θ i ≤ 1}
X̂ jk � {xjk + θ 1he1 + θ 2he2 : −1 ≤ θ i ≤ 1}

(f jk
q)i � min

x∈X̂ jk ,u∈Ωu

(fq(x, u))i

(f jk
q)i � max

x∈X̂ jk ,u∈Ωu

(fq(x, u))i

(ljk
q)i � min

x∈X̂ jk ,u∈Ωu

(lq(x, u))i
V jk

q � Vq(xjk)
∆iV jk

q � (Vq(xjk + hei) − Vq(xjk))/h
∆−iV jk

q � (Vq(xjk) − Vq(xjk − hei))/h

where e1 and e2 are unit vectors along the coordinate axes, and h is
the grid size.

Introduce new vector variables, λ jk
q ∈ Rn for (j, k, q) such that xjk ∈

85

Paper II. Optimal Control of Hybrid Systems

X jk

X̂ jk

x1

x2

xjk x(j+1)k

xj(k+1)

Figure 1. Illustration of X jk and X̂ jk .

X , q ∈ Q. The inequalities (3)-(5) can then be replaced by

0 ≤(λ jk
q)1 + (λ jk

q)2 + l jk
q (6)

(λ jk
q)tit ≤ (f jk

q
)tit∆iV jk

q i � −2,−1, 1, 2 (7)
(λ jk

q)tit ≤ (f
jk
q)tit∆iV jk

q i � −2,−1, 1, 2 (8)
0 ≤ V jk

r − V jk
q + s(xjk, q, r) ∀xjk ∈ Sq,r (9)

0 � V00
qf

(10)

where (6)-(8) form a combination of backward and forward difference
approximations of (3).

For x � xjk +θ 1he1+θ 2he2 ∈ X jk, define the interpolating function

Vq(x) � (1− θ 1)(1−θ 2)V jk
q + θ 1(1− θ 2)V (j+1)k

q

+ (1−θ 1)θ 2V j(k+1)
q + θ 1θ 2V (j+1)(k+1)

q (11)

The following result applies.

THEOREM 1—DISCRETIZATION IN R2

If V jk
q satisfy (6)-(10) for all q ∈ Q and for all grid points xjk ∈ X ⊂ R2

such that X jk intersects X , then the interpolating function Vq defined

86

4. Discretization

by (11) satisfies (3)-(5) and, for every (x0, q0), Vq0(x0) is a lower bound
of J(x0, q0).
Remark 1. Any function that meet the constraints, even the trivial
choice Vq(x) � 0, is a lower bound on the true cost. Thus, to yield
useful bounds, Vq(x) need to be maximized subject to (6)-(10). The
maximization could be carried out in either one point, (x0, q0), or sev-
eral points, (x, q) ∈ X � Q, simultaneously.

For the original, non-discretized problem, the result of a maximiza-
tion of Vq(x) is always identical to the optimal cost, regardless if the
maximization is done at a particular initial state, or by summing the
values at several initial states.

However, for the discretized problem, different choices of maximiza-
tion criteria may lead to different results. Fortunately, experience from
examples shows that the difference between the results of a single-
point and a multi-point maximization is often small, making it possible
to compute the value function in a large subset of X � Q solving one
LP.

Remark 2. The restriction x(t) ∈ X in the optimal control problem is
essential. It may happen that for some initial states x0 there exist no
admissible solutions inside X . Then the maximization of Vq0(x0) can
lead to arbitrarily large values.

Remark 3. The theorem is easily extended to Rn. Define j � (j1 , j2 , . . . , jn)
and exchange jk for the new multi-index j in the above inequalities.
The limits of all summations and enumerations should also be ad-
justed.

Proof. Assume that x ∈ X jk. Noting that ∆1V jk
q � ∆−1V (j+1)k

q , ∆2V jk
q �

∆−2V j(k+1)
q , the inequalities (6)-(8) taken at grid points jk, j(k + 1),

(j + 1)k, and (j + 1)(k+ 1) give

0 ≤ fq1(x, u)∆1V jk
q + fq2(x, u)∆2V jk

q + lq(x, u) (12)
0 ≤ fq1(x, u)∆1V j(k+1)

q + fq2(x, u)∆2V jk
q + lq(x, u) (13)

0 ≤ fq1(x, u)∆1V jk
q + fq2(x, u)∆2V (j+1)k

q + lq(x, u) (14)
0 ≤ fq1(x, u)∆1V j(k+1)

q + fq2(x, u)∆2V (j+1)k
q +

+ lq(x, u) (15)

87

Paper II. Optimal Control of Hybrid Systems

The gradient of Vq is given by

�Vq

�x
�
[
(1−θ 2)∆1V jk

q + θ 2∆1V j(k+1)
q

(1−θ 1)∆2V jk
q + θ 1∆2V (j+1)k

q

]T

and thus, adding (12)-(15) weighted with (1−θ 1)(1−θ 2), (1−θ 1)θ 2,
θ 1(1 − θ 2), and θ 1θ 2 respectively proves that (3) is met for x. The
inequality (4) is met since Vq is a convex combination of grid points
that all meet (9), and (5) is the same condition as (10).

Note a special case in which the computational load of the local
optimizations in Theorem 1 is lightened: if fq(x, u) � hq(x) + gq(x)u
and lq(x, u) � oq(x)+mq(x)u while Ωu � [−1, 1], then u can be entirely

eliminated from (6)-(8) by replacing f jk
q

, f
jk
q , and l jk

q with hjk
q ± g jk

q
,

h
jk
q ±gjk

q , and ojk
q ±mjk

q respectively. This will double the set of equations
(6)-(8), but the functions hq, gq, oq, and mq are optimized over X̂ jk

solely.

5. Computing the Control Law

Provided that the lower bound, Vq, is a good enough approximation of
the optimal cost, the optimal feedback control law can be calculated as

û(x, q) � argmin
u∈Ωu

{
�Vq

�x
fq(x, u) + lq(x, u)

}
µ̂(x, q) � argmin

µ∈Ωµ tx∈Sq,ν

{Vν (x) + s(x, q,ν)}
(16)

where ν � ν(x, q, µ). Thus, the continuous input, û, is computed in
a standard way. The discrete input, µ̂ , is chosen such that switching
occur whenever there exist a discrete mode for which the value function
has a lower value than the cost of the value function for the current
mode minus the cost for switching there.

Consider the true optimal value function, V P
q . For those (x, q, r)

where the optimal trajectory requires mode switching, the inequality
(3) will turn to equality i.e. V P

q � V P
r + s(x, q, r) (this will be shown

88

6. Examples

in Ex. 1). A consequence of this is that for (16) to describe correct
switching between the modes, s(x, q, q) has to be defined as s(x, q, q) �
ε > 0 (rather than the real cost s(x, q, q) � 0). For V P

q , the proper
control law is achieved as ε approaches 0+. A small value of ε suffices,
however, for numerical computations.

Integration of (2) along a simulated trajectory based on (16) will
provide an upper bound on the optimal cost. The better the control law,
the better the estimate.

6. Examples

EXAMPLE 1—A CAR WITH TWO GEARS

Consider the system{
ẋ1 � x2

ẋ2 � gq(x2)u, q � 1, 2 tut ≤ 1
(17)

where gq(x) is plotted in Fig. 2. This could be seen as a crude model
of a car, u being the throttle, gq(x) the efficiency for gear number q.

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

g1(x) g2(x)

x

Figure 2. Gear efficiency at various speeds.

The problem is to bring (17) from xi � (−5, 0), qi � 1 to xf � (0, 0),
qf � 1 in minimum time. Torque losses when using the clutch calls for

89

Paper II. Optimal Control of Hybrid Systems

an additional penalty for gear changes. Thus, the components of (2)
have been chosen as l1(x, u) � l2(x, u) � 1, s(x, 1, 2) � s(x, 2, 1) � 0.5.

The problem is plugged into the machinery of Section 4 and Vq(x)
is maximized over a region −5.5 ≤ x1 ≤ 1.0, −0.5 ≤ x2 ≤ 3.0.

The result is shown in Figure 3 and 4 where xi and xf also have
been marked. The functions look rather similar, since the cost for
changing gears is only 0.5. One can see that V1 has a threshold along
the line x2 � 1. Figure 2 reveals that the first gear is almost useless
for high speeds, leading to V1 � V2 + 0.5 for x2 > 1. This is the cost
for using the second gear optimally after a gear switch.

Studying Fig. 5, where V1−V2 is plotted, the strategy for changing
gears is even more obvious: there is only one discrete mode allowed
under optimal control when the difference hits its maximum distance.
In conformity with previous reasoning, V1 − V2 � 0.5 for x2 > 1, indi-
cating the need for a change of gears when using the first gear at high
speed. Analogously, the second gear should be avoided, starting with
zero speed.

A simulation of the controlled system is shown in Fig. 6, where the
initial point is marked with a square. The state trajectory coincides
with the one of a professional rally-driver with lousy brakes. In the
beginning, maximum throttle is used on the first gear (solid line).
When the speed roughly reaches the point of equal efficiency between
the gears (x2 � 0.5), they are switched in favor of the second gear
(dashed line). At half the distance, the gas pedal is lightened to use
the braking force of the engine. In the end, the first gear is used again
before the origin is hit. As seen in the figure, the granularity of the
discretization grid (h � 0.18) prevents the solution from hitting the
exact origin.

EXAMPLE 2—ALTERNATE HEATING OF TWO FURNACES

Since the industrial power fee is determined by the highest peak of the
season [Ericsson, 1997], it is desirable to spread the power consumption
evenly over time. This is handled by load control, which means that
the available electrical power is altered between different loads of the
mill.

In this example, the temperature of two furnaces should be con-

90

6. Examples

−6 −5 −4 −3 −2 −1 0 1 2 −1

0

1

2

3

0

1

2

3

4

5

6

7

8

9

10

x1

x2

V1

Figure 3. Plot of V1 . The initial point, xi , is marked with a vertical dashed
line, the final point, xf , with a solid line.

−6 −5 −4 −3 −2 −1 0 1 −1

0

1

2

3

0

1

2

3

4

5

6

7

8

9

10

x1

x2

V2

Figure 4. Plot of V2.

trolled by alternate heating. The system has two continuous states
that correspond to the temperature of the furnaces and is given by

91

Paper II. Optimal Control of Hybrid Systems

−6
−5

−4
−3

−2
−1

0
1

2 −1
−0.5

0
0.5

1
1.5

2
2.5

3

−0.5

0

0.5

x1

x2

V1 − V2

Figure 5. The difference between V1 and V2 .

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

0

0.5

1

1.5

2

x1

x2

Figure 6. Phase portrait of a simulation. The solid line shows where gear
number one has been used, the dashed line shows the second gear. The initial
point is marked with a square.

92

6. Examples

ẋ � fq(x), where

f1(x) �
[
−x1 + u0

−2x2

]
f2(x) �

[
−x1

−2x2 + u0

]

f3(x) �
[
−x1

−2x2

]

Thus, there are three discrete modes: q � 1 means that the first fur-
nace is heated, q � 2 means that the second furnace is heated, q � 3
corresponds to no heating. The cost function to be minimized is

J(x0, q0) �
∫ ∞

t0

2∑
i�1

(xi − ci)2e−tdt+
M∑

k�1

be−tk

where the desired stationary temperature values are c1 � 1/4, c2 �
1/8 and the cost for switching the power is b � 1/1000. Since the
furnaces can only be fed by a fixed amount of energy, u0, it is impossible
to keep them stationary at the desired temperature. Hence, the time
weighting, e−t, is necessary to get a bounded cost function.

If Vq(x, t) is defined as the cost for starting in (x, q) at time t, then
the continuous part of the general time dependent Bellman inequality
can be written

�Vq(x, t)
�t

+ �Vq(x, t)
�x

fq(x, u, t) + lq(x, u, t) ≥ 0 (18)

Rewriting the functions like Vq(x, t) � e−tṼq(x) and lq(x, u, t) � e−tl̃q(x, u)
for the furnace example,
(18) becomes

−Ṽq(x) + �Ṽq(x)
�x

fq(x, u) + l̃q(x, u) ≥ 0 (19)

Thus, the time dependence introduced in Bellman’s inequality cancels
and techniques similar to those presented above apply.

The optimal control results in a limit cycle as seen in Figure 7. The
figure, that contains the phase portrait of the continuous states, shows

93

Paper II. Optimal Control of Hybrid Systems

how the temperature of one furnace always decreases as the other one
is heated. By alternate heating, the temperatures first climb up to,
and above the set-point and then both furnaces are turned off and the
state drifts towards the origin. This procedure is then repeated over
and over again, making the trajectory enclose the desired steady state
(marked with a circle in the figure). The trajectory has been dashed
for t ∈ [0, 2.8] to make the limit cycle clear.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

x1

x2 q � 2

q � 1

q � 3

Figure 7. Phase portrait of the continuous states under optimal control when
u0 � 0.8. The mode number, q, has been marked for the limit cycle

Figure 8 shows what happens when the power supply is insufficient
for driving both furnaces. Mode 3 is not entered since the temperature
set-points are never reached.

7. Summary

An extended version of Bellman’s inequality was discretized in this
paper to compute a lower bound on the optimal cost function, using
linear programming. Based on these computations, an approximation
of the optimal control feedback law was derived.

Hybrid systems combine discrete and continuous dynamics. The
analysis should therefore contain techniques that are well suited for
computer science as well as control theory. The emphasis in this paper

94

8. References

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

x1

x2

q � 1

q � 2

Figure 8. Phase portrait of the continuous states under optimal control when
u0 � 0.4.

is on the continuous part, the discrete part consisting of a few system
modes. At the other end of the hybrid spectrum, where purely discrete
systems are found, X will reduce to a single point. The first inequality
of proposition 1 will then be superfluous. The set of inequalities given
by (4), possibly large depending on Q, should be met for Sq,r � {xf }.
The resulting LP formulation solves the shortest-paths problem on a
non-negatively weighted, directed graph — a problem that is usually
attacked using Dijkstra’s algorithm.

A set of MATLAB commands has been compiled by the authors to
make it easy to test the above methods and implement the examples.
The LP solver that is used is “PCx”, developed by the Optimization
Technology Center, Illinois. The MATLAB commands and a manual of
usage are available free of charge upon request from the authors.

8. References

Antsaklis, P. J. and A. Nerode (1998): “Hybrid control systems: An
introductory discussion to the special issue.” IEEE Transactions
on Automatic Control, 43:4, pp. 457–460. Special issue on hybrid
systems.

95

Paper II. Optimal Control of Hybrid Systems

Bertsekas, D. P. and J. N. Tsitsiklis (1996): Neuro-dynamic Program-
ming. Athena Scientific.

Branicky, M. (1998): “Multiple Lyapunov functions and other analysis
tools for switched and hybrid systems.” IEEE Transactions on
Automatic Control, 43:4, pp. 475–482. Special issue on hybrid
systems.

Branicky, M. S. and S. K. Mitter (1995): “Algorithms for optimal
hybrid control.” In Proceedings of the 34th Conference on Decision
& Control. New Orleans.

Ericsson, L. (1997): Dynamic Load Control, Power Peak Shaving
Applied to a Foundry. Lic Tech thesis, Dept. of Industrial Electrical
Engineering and Automation, Lund Institute of Technology, Box
118, S-221 00 Lund, SWEDEN.

Ezzine, J. and A. H. Haddad (1989): “Controllability and observability
of hybrid systems.” Int. J. Contr., 49, June, pp. 2045–2055.

Grossman, R., A. Nerode, A. Ravn, and H. Rischel (1993): “Models for
hybrid systems: Automata, topologies, controllability, observability.”
In Hybrid Systems, pp. 317–356. Springer.

Johansson, M. (1999): Piecewise Linear Control Systems. PhD thesis
TFRT-1052, Dept. of Automatic Control, Lund Institute of Technol-
ogy, Box 118, S-221 00 Lund, SWEDEN.

Rantzer, A. (1999): “Dynamic programming via convex optimization.”
In Proceedings of the IFAC World Congress. Beijing.

Rantzer, A. and M. Johansson (1997): “Piecewise linear quadratic
optimal control.” In Proceedings of American Control Conference.
Albuquerque. Submitted for journal publication.

Utkin, V. I. (1977): “Variable structure systems with sliding modes.”
IEEE Transactions on Automatic Control, AC-22, pp. 212–222.

Vinter, R. B. and R. M. Lewis (1978): “A necessary and sufficient
condition for optimality of dynamic programming type, making no
a priori assumptions on the controls.” SIAM Journal on Control and
Optimization, 16:4, pp. 571–583.

96

Manual II

A Matlab Tool for Optimal Control
of Hybrid Systems

Sven Hedlund and Anders Rantzer

1. Introduction

This report presents a set of MATLAB functions for the analysis and
synthesis of a class of hybrid systems. The report is organized as fol-
lows: Section 2 defines the problems that this tool is designed for.
Section 3 gives an overview of the available commands and the main
ideas behind the computations. Few details are presented in this sec-
tion, the purpose is to give the user enough understanding to be able
to utilize the full functionality of the tools. Readers interested in the
theory behind the computation are referred to [Hedlund and Rantzer,
1999]. Section 4 gives a complete description of the MATLAB commands
of this tool, while Section 5 demonstrates the usage in some examples.

1 Disclaimer

This software and the accompanying files are distributed “as is” and
without any warranties expressed or implied. Bug reports and sugges-
tions about improvements sent to sven@control.lth.se are appreci-
ated.

97

Manual II. A Matlab Tool for Optimal Control of Hybrid Systems

2. Problem Formulation

Define a hybrid system as{
ẋ(t) � fq(t)(x(t), u(t))
q(t) � ν(x(t−), q(t−), µ (t−))

(1)

where x(t) ∈ X ⊂ Rn is the state vector, u(t) ∈ Ωu ⊂ Rm is a con-
tinuous input signal of the system. There is also a discrete input,
µ (t) ∈ Ωµ , which allows for the selection between N different system
modes, q(t) ∈ Q � {1, 2, . . . , N}. Sq,r is a set (parameterized by q and
r) such that switching from mode q to r is possible when x ∈ Sq,r ⊆ X .
The time argument, t, will often be omitted in the sequel for readabil-
ity.

The optimal control problem is to minimize the cost functional

J(x0, q0, u(⋅), µ (⋅)) �
∫ t f

t0

lq(x, u)dt+
M∑

k�1

s(x(t−k), q(t−k), q(t+k)) (2)

subject to (1) while bringing the system from an initial state (x0, q0)
at time t0, to a final state (xf , qf) at time t f , where the end time, t f ,
is free. Here, M is an arbitrary number of switches occurring at times
t0 < t1 < t2 < . . . < tM < t f and s(x, q, r) is an associated cost for
switching from discrete state q to r, the continuous part being x just
before the switch.

Sec. 4 will show that this MATLAB tool also handles exponential time
weighting of the cost function.

3. Understanding the Tools

The commands available for solving the control problem are listed in
Table 1. There are three main groups of programs: a group of four
commands that in various ways approximate the value function of a
hybrid optimal control problem, one command for deriving a control
signal from the value function, and four commands for simulating hy-
brid systems. The last two programs listed in the table are used by the
other programs.

98

3. Understanding the Tools

Table 1. Commands for optimal control of hybrid systems.

command description

ohlows Compute a lower bound on the value function,
single-point maximization

ohlowes Compute a lower bound on the value function of
an exponential time weighting problem, single-
point maximization

ohlowm Compute a lower bound on the value function,
multi-point maximization

ohlowem Compute a lower bound on the value function of
an exponential time weighting problem, multi-
point maximization

ohctrl Compute a control signal, based on an approx-
imation of the value function

ohsim Simulate controlled system

ohsimf Simulate controlled system, fixed time step

ohsime Simulate controlled system with exponential
time cost function

ohsimef Simulate controlled system with exponential
time cost function, fixed time step

crop Crops a multi dimensional array

linprog Specifies what LP solver to use in the lower
bound computation programs

ohsf “oh simulation file”, used by ohsim

ohsfe “oh simulation file”, used by ohsime

1 Approximations of the Value Function

Define the value function, V L
q (x) as

V L
q0
(x0) � min

u∈Ωu , µ∈Ωµ
J(x0, q0, u, µ) (3)

99

Manual II. A Matlab Tool for Optimal Control of Hybrid Systems

Then, any set of functions Vq : X =→ R, q � 1, 2, . . . , N that satisfy

0 ≤ ∂ Vq(x)
∂ x

fq(x, u) + lq(x, u)
∀x ∈ X , u ∈ Ωu, q ∈ Q (4)

0 ≤ Vr(x) − Vq(x) + s(x, q, r)
∀x ∈ Sq,r q, r ∈ Q : q �� r (5)

0 � Vqf (xf) (6)

(with the specifications in (1) and (2)) is a lower bound on V L
q (x)1

[Hedlund and Rantzer, 1999]. This is a hybrid version of the well known
Bellman inequality.

Since the inequalities (4)-(6) are linear constraints on Vq(x), maxi-
mization of Vq0(x0) subject to the inequalities is an LP problem.

2 Discretization

Using a computer to find a value function that satisfies (4)-(6) for a
specific control problem, a straightforward approach is to grid the state
space to require the inequalities to be met at set of evenly distributed
points in X . Let e1, e2, . . . , en denote the unit vectors along the coor-
dinate axes and define the discretization vector h ∈ Rn such that hi

(the i:th component of h) is the distance between the grid points in
the direction of ei. A small part of a discretization in R2 around a grid
point xp is shown in Fig. 1.

Each of the value function commands applies a discretization grid like
this to X . The commands handle sets, X , that are hyperrectangles in
Rn, and the user specifies the granularity of the grid by the input
vector N ∈ Zn such that the k:th component of N is the number of
grid points in the direction of ek.

An arbitrary discretization of (4)-(6) will not render a cost function
that is guaranteed to be a lower bound on the optimal cost if the nature
of fq and Vq between the grid points is not taken into consideration.

1Note that the value function, V L
q0
(x0), is the cost for driving the system optimally

to the final point when starting in mode q0, not necessarily staying in this mode. This
is the cost when switching is allowed.

100

3. Understanding the Tools

e1

e2

xp

xp + h2e2

xp + h1e1

Figure 1. Illustration of the discretization grid in R2.

The value function commands can be set to use a method (that is
presented in [Hedlund and Rantzer, 1999]) for preserving the lower
bound property . For each grid point, xp, this method requires the
extremal values of fq and lq in a neighborhood of xp as follows:

Define the hyperrectangle X̂ p surrounding grid point xp as

X̂ p � {xp +
n∑

i�1

θ ihiei : −1 ≤ θ i ≤ 1}. (7)

An illustration of this set in a two dimensional space is shown in Fig. 2.

e1

e2

xp

xp + h2e2

xp + h1e1

X̂ p

Figure 2. Illustration of X̂p in R2.

101

Manual II. A Matlab Tool for Optimal Control of Hybrid Systems

For each grid point, xp, the value function commands then need

f p
q
(u) �min

x∈X̂p
fq(x, u) (8)

f
p
q(u) �max

x∈X̂p
fq(x, u) (9)

lp
q(u) �min

x∈X̂p
lq(x, u) (10)

to form the discretized inequalities. (The extrema should be computed
component wise in the vectors.)
Note that the MATLAB functions presented above can be called without
requiring the true bound property, often rendering a plausible value
function without forcing the user on a tricky hunt of local extrema. In
addition to being more difficult to specify, the discrete inequalities that
render a true lower bound sometimes can be conservative, leading to
a value function that is far from the optimal one.

The extremal values of (8)-(10) still depend on a continuous parame-
ter, namely u. The continuous control signal has to be discretized by
the user in a tradeoff between accuracy and computational speed. The
reason for leaving this burden to the user instead of automatically grid-
ding the problem in u (as was done for x), is that reflections about the
structure of the problem might lead to clever gridding and a reduction
of the computational load.

Consider e.g. the analysis of some system with Ωu � [−1, 1]. A standard
gridding might have led to the approximation Ωu � {−1,−0.8,−0.6, . . . ,
1}. Having realized that it is a minimum time problem that will result
in bang-bang control, however, the obvious choice is Ωu � {−1, 1}.

3 Single-point vs. Multi-point Maximization

Instead of computing the value function in one single point, (x0, q0),
it is desirable to get an estimate for the value function in a larger
subset of X in one go. This is what ohlowm and ohlowem try to do, by
maximizing Vq(x) in several grid points simultaneously. The region
that contains the grid points for which Vq is maximized, denoted O ,
will of course have to obey O ⊆ X .

102

3. Understanding the Tools

Fig. 3 illustrates the two maximization alternatives in R2. The optimal
state trajectories have also been plotted, which raises another issue:
the choice of X . The aim of this MATLAB tool is to minimize the value

e1

e2

x0

xf xf

O

XX

a) b)

Figure 3. Various choices of maximization in R2 with corresponding optimal
state trajectories. a) Single point maximization. b) Region maximization.

function (2) subject to the dynamics in (1), where one of the constraints
is on the continuous state: x(t) ∈ X . Many control problems do not
experience state constraints that are of significant importance, leading
to X � Rn. Since the discretization gives an LP consisting of a number
of inequality constraints for each grid point, however, it is desirable
to keep X as small as possible. The computationally best option when
doing a single-point maximization would be to make X only just big
enough to contain the optimal trajectory — an option that is difficult in
practice since the trajectory is not known in advance. If X is chosen too
small, a problem that differs from the original one is solved, leading to
a higher cost. Moreover, there might not even exist a trajectory from x0

to xf in X , i.e. there is no feasible solution. The problem of estimating
the value function in several points simultaneously requires several
state trajectories to stay in X , which may make the choice of X even
more difficult.

For the original, partly continuous, problem, the result of a maximiza-
tion in two different points, (xa, qa) and (xb, qb) would be the same,
regardless of whether they were maximized simultaneously or one by
one. The value function of the discretized problem, however, is coupled
between the grid points: if the discrete version of (4)-(5) holds in every
grid point in X , then there is in general a tradeoff between the value

103

Manual II. A Matlab Tool for Optimal Control of Hybrid Systems

of Vqa(xa) and Vqb(xb). Thus, ohlowm and ohlowem, that maximize the
sum of Vq(x) in the grid points of a user specified “optimization re-
gion”, O ⊆ X , in general give values that are lower than those that
would result from maximizing each point separately. Experience from
examples tells, however, that the difference is rather small, leaving
the above disadvantage beaten by the benefit of receiving the value
function in a large region solving one LP.

4 Exponential Time Weighting

The methods presented above, also can be used for problems with ex-
ponential time weighting of the cost function. Define the cost function
Je(x0, q0, u(⋅), µ (⋅)) as

Je(x0, q0, u(⋅), µ (⋅)) �
∫ ∞

t0

l̃q(x, u)e−atdt+
M∑

k�1

s̃(x(t−k), q(t−k), q(t+k))e−atk

(11)

where a ∈ R+. (The other parameters are defined analogously to (2).)
If Vq(x, t) is defined as the cost for starting in (x, q) at time t, then the
continuous part of the general time dependent Bellman inequality can
be written

∂ Vq(x, t)
∂ t

+ ∂ Vq(x, t)
∂ x

fq(x, u, t) + lq(x, u, t) ≥ 0 (12)

Rewriting the functions like Vq(x, t) � e−atṼq(x) and lq(x, u, t) �
e−atl̃q(x, u), (12) becomes

−aṼq(x) + ∂ Ṽq(x)
∂ x

fq(x, u) + l̃q(x, u) ≥ 0 (13)

Thus, the time dependence introduced in the Bellman inequality can-
cels and techniques similar to those presented above apply. The func-
tion ohlowes and ohlowem implement a discretized version of (13). The
former function perform a single-point maximization, the latter one a
multi-point maximization.

104

4. Command Reference

5 Computing the Feedback Control Law

Provided that the lower bound, Vq, is a good enough approximation of
the optimal cost, the optimal feedback control law can be calculated as

û(x, q) � argmin
u∈Ωu

{
∂ Vq

∂ x
fq(x, u) + lq(x, u)

}
µ̂(x, q) � argmin

µ∈Ωµ ex∈Sq,ν

{Vν (x) + s(x, q,ν)}
(14)

where ν � ν(x, q, µ). Thus, the continuous input, û, is computed in
a standard way. The discrete input, µ̂ , is chosen such that switching
occur whenever there exist a discrete mode for which the value function
has a lower value than the cost of the value function for the current
mode minus the cost for switching there. The function ohctrl, that
uses (14) to compute the control signal in a mesh of points, will in
most practical cases take the result from ohlowm or ohlowem as input.

6 Simulation

The simulation commands take a hybrid system with a cost function
and the associated control law as input and return the resulting trajec-
tories, x(t), q(t), u(t), and J(t) or Je(t). The basic functions for simu-
lations are ohsim and ohsime, but there also exist faster, less accurate
fixed time step size versions, ohsimf and ohsimef.

4. Command Reference

This section describes the commands in detail. Being very similar to
each other, some of the commands of Table 1 are grouped into the same
entry on the following pages. The commands ohsf and ohsfe are not
found in this section, since they are of little interest to the standard
user.

Note that all of the input parameters that are vectors, should be en-
tered as column vectors.

105

Manual II. A Matlab Tool for Optimal Control of Hybrid Systems

crop

Purpose
To crop a multi dimensional array.

Synopsis
[Vc, xvc] = crop(V, xv, NewX)

Description
Having computed a value function, V, using ohlowm or ohlowem, the
function crop is useful for extracting the relevant data of V as is ex-
plained below. The input parameter V and xv, that are outputs from
the value function computing commands, contain the following:

xv The input parameter xv is a struct of vectors that gives informa-
tion about the discretization. xv{k} is a vector with N(k) equidis-
tant points in the ek direction such that xv{k}(1)=xmin(k) and
xv{k}(N(k))=xmax(k).

V is an (n + 1)-dimensional matrix that corresponds to the value
function as follows. Let a grid point xp be defined by its index-
vector p=[p1, p2, ..., pn]' (all the indices are positive inte-
gers) such that
xp �[xv{1}(p1), xv{2}(p2), ..., xv{n}(pn)]'. Then,
Vq(xp) �V(p1, p2, ..., pn, q)

Thus, a lower bound on the value function, Vq(x), is returned for all x ∈
X . Since the maximization of Vq(x) is performed over a smaller region
O ⊆ X (cf. Section 3), the value function that ohlowm and ohlowem
return is of little use for x ∈ X\O . The input parameter NewX allows
the user to remove x ∈ X\O :

NewX = [xmin; xmax] newX is the X -region that should be kept in the
cropped matrix. xmin is a vector where each component is the
lowest value of the corresponding state in NewX, xmax is a vector
containing the highest values of x in newX.

106

4. Command Reference

The output parameters Vc and xvc are the cropped versions of V and
xv respectively.

See Also

ohlowm, ohlowem

107

Manual II. A Matlab Tool for Optimal Control of Hybrid Systems

linprog

Purpose
Let the user specify what LP solver to use.

Synopsis
[x, z] = linprog(A,b,c)

Description
The command linprog is called by the value function commands
(ohlowm, ohlows, ohlowem, and ohlowes) to solve linear programs. The
default file linprog.m forwards the LP solving request to the MATLAB

program PCx.2 The user may want to rewrite linprog to call another
LP solver.

Parameters
The input parameters are a matrix, A, and two column vectors, b and
c. The output parameter x is the vector that minimizes cT x subject
to Ax ≤ b. The output parameter z is the vector that solves the dual
problem of maximizing bTz subject to AT z � c, z ≤ 0.

See Also

ohlowm, ohlows, ohlowem, ohlowes

2PCx has been developed at the Optimization Technology Center,
http://www-fp.mcs.anl.gov/otc/Tools/PCx/index.html (valid in August, 1999)

108

4. Command Reference

ohctrl

Purpose
Derive a feedback control law from a value function approximation.

Synopsis

[U, Q] = ohctrl(f,l,s,uv,V,xv,swtol)

Description
ohctrl derives a feedback control law from a value function approxi-
mation returned by ohlowm or ohlowem.

Parameters
f The string f contains the name of an m-file that describes a sys-

tem of differential equations such that f(x, q, u) gives the dy-
namics of fq(x, u) in (1).

l The string l contains the name of an m-file on the form l(x, q, u)
with the input parameters corresponding to the parameters of ei-
ther lq(x, u) in (2) or l̃q(x, u) in (11).

s The string s contains the name of an m-file on the form
s(x, q1, q2) with the input parameters corresponding to the
parameters of either s(x, q1, q2) in (2) or s̃(x, q1, q2) in (11).

uv is a column vector that contains all possible values of u. The
control signal u is continuous in the original problem, but the
user has to approximate it by a discrete set (cf. 2). Use an empty
vector (uv = []) as a place holder if there is no continuous input.

V is an (n + 1)-dimensional matrix that corresponds to the value
function as follows. Let a grid point xp be defined by its index-
vector p=[p1, p2, ..., pn]' (all the indices are positive inte-
gers) such that
xp �[xv{1}(p1), xv{2}(p2), ..., xv{n}(pn)]'. Then,
Vq(xp) �V(p1, p2, ..., pn, q)

109

Manual II. A Matlab Tool for Optimal Control of Hybrid Systems

xv is a struct of vectors that gives information about the discretiza-
tion. xv{k} is a vector with N(k) equidistant points in the ek

direction such that
xv{k}(1)=xmin(k) and xv{k}(N(k))=xmax(k).

swtol compensates for numerical inaccuracy. Discrete mode switching
from qi to qj will be enforced if Vj −Vi+(1−swtol) ⋅ s(x, i, j) ≤ 0.
If not specified, this parameter is given the default value 0.01.

U The output parameter U is an (n + 1)-dimensional matrix that
represents the control law for u such that u � u(x, q). Defining
xp as above, the control law is u(xp, q) �U(p1, p2, ..., pn, q)

Q The output parameter Q is an (n + 1)-dimensional matrix that
represents the switching strategy. Defining xp as above,
Q(p1, p2, ..., pn, q1)� q2 implies switching to mode q2 from
(xp, q1).

See Also
ohlowm, ohlowem

110

4. Command Reference

ohlowem & ohlowes

Purpose
Compute a lower bound on the value function of a problem with a cost
function that has exponential time weighting.

Synopsis

[V, xv, W] = ohlowem(f, l, s, a, uv, O, XQ, N, tb)
[V, xv, W] = ohlowes(f, l, s, a, uv, xq0, XQ, N, tb)

Description
Both of these two commands, compute an approximation of the value
function implied by (11). ohlowes computes the cost for bringing (1)
from (x0, q0) to (xf , qf), while ohlowem computes the value function
for a region, {(x, q) : x ∈ O , q ∈ Q}3. The commands can be forced to
bound the value function from below.

Parameters
The parameters that are not found below are described under ohlowm
and ohlows

l The string l contains the name of an m-file that corresponds
to l̃q(x, u) in (11). The input parameters are the same as for l
described under the ohlow-commands.

s The string s contains the name of an m-file of the switching such
that s(x, q1, q2) corresponds to s̃(x, q1, q2) in (11)

a is the exponential time weight a in (11).
V The structure of the output parameter V is the same as for V

returned by ohlowm and ohlows. The difference is that the matrix
V that is returned by ohlowem and ohlowes corresponds to Ṽq

in (13).
See Also

ohlows, ohlowm, linprog

3Cf. Section 3 for further details.

111

Manual II. A Matlab Tool for Optimal Control of Hybrid Systems

ohlowm & ohlows

Purpose
Compute a lower bound on the value function

Synopsis
[V, xv, W] = ohlowm(f, l, s, uv, O, xqf, XQ, N, tb)
[V, xv, W] = ohlows(f, l, s, uv, xq0, xqf, XQ, N, tb)

Description
Both of the two commands, in the sequel referred to as the ohlow-
commands, compute an approximation of the value function implied by
(2). ohlows computes the cost for bringing (1) from (x0, q0) to (xf , qf),
while ohlowm computes the value function for a region, {(x, q) : x ∈
O , q ∈ Q}4. Both commands can be forced to bound the value function
from below.

Parameters
f The string f contains the name of an m-file with the hybrid dy-

namics corresponding to fq(x, u) in (1). This m-file should take at
least three input arguments depending on the input tb. If tb� 0,
then f is a system of differential equations such that f(x, q, u)
gives the dynamics of fq(x, u). If tb �� 0, then f will have to ac-
cept five input parameters, f(x, q, u, h, vmode). The two ad-
ditional parameters h and vmode are needed to compute a true
lower bound and should allow the ohlow-commands to request
various outputs from f: the n-dimensional vector h, that the com-
mands provides upon calling f, corresponds to the granularity of
the discretization grid (cf. Section 2), such that h(k) is the dis-
tance between the grid points in the ek-direction.

4Cf. Section 3 for further details.

112

4. Command Reference

The parameter vmode choose the output according to the following
table:

vmode Desired output

−1 minx∈X̂p fq(xp, q, u)
+1 maxx∈X̂p fq(xp, q, u)

It is convenient to allow f and l to take a variable number
of input arguments when computing true bounds. If they are
programmed to return the nominal (non-extremal) values when
called with only three input parameters, they can be used by
ohctrl and the simulation programs as well.

l The string l contains the name of an m-file that corresponds
to lq(x, u) in (2). This m-file should take at least three input
arguments depending on the input tb. If tb� 0, the structure of
l is l(x, q, u) analogously to the function f. If a true bound
is requested, i.e. tb �� 0, l should accept four input parameters,
l(x, q, u, h). The parameter h is the same as described for the
input f. Note that l does not require the input “vmode”, since this
function should only return minx∈X̂p lq(xp, q, u).

s The string s contains the name of an m-file for the switching such
that s(x, q1, q2) corresponds to s(x, q1, q2) in (2)

uv is a column vector that contains all possible values of u. The
control signal u is continuous in the original problem, but the
user has to approximate it by a discrete set (cf. 2). Use an empty
vector (uv = []) as a place holder if there is no continuous input.

xq0 = [x0; q0] for ohlows where (x0, q0) is the initial state.

O specifies the region of maximization, O ⊆ X , for the multi-point
maximizing function ohlowm (cf. Section 3). O = [omin; omax],
where omin is an n-dimensional vector where each component is
the lowest value of the corresponding state in O and omax is a
vector containing the highest values of x in O .

xqf = [xf; qf] where (xf , qf) is the desired final state. Since the
problem is discretized into a mesh of points, the final state that
is used in the algorithm will become the grid point that is closest

113

Manual II. A Matlab Tool for Optimal Control of Hybrid Systems

to (xf , qf). Note that choosing XQ and N such that the final state
appears in an exact grid point often leads to considerably better
results (see also the example of Section 5).
A set of several acceptable final states can be specified by re-
placing the variable xqf with a function isfinal([x; q]) that
for any possible state (x, q) returns a non-zero value if (x, q) is
contained in the set of final states.

XQ = [xmin; xmax; Q] where xmin is an n-dimensional vector where
each component is the lowest value of the corresponding state in
X , xmax is a vector containing the highest values of x in X , and
Q is the number of discrete modes.

N allows the user to specify the granularity of the discretization
grid. N is an n-dimensional column vector such that N(k) is the
number of grid points in the direction of ek.

tb is used to choose whether to compute a true lower bound (tb �� 0)
or not (tb� 0)

xv The output parameter xv is a struct of vectors that gives informa-
tion about the discretization. xv{k} is a vector with N(k) equidis-
tant points in the ek direction such that xv{k}(1)=xmin(k) and
xv{k}(N(k))=xmax(k).

V is an (n + 1)-dimensional matrix that corresponds to the value
function as follows. Let a grid point xp be defined by its index-
vector p=[p1, p2, ..., pn]' (all the indices are positive inte-
gers) such that
xp �[xv{1}(p1), xv{2}(p2), ..., xv{n}(pn)]'. Then,
Vq(xp) �V(p1, p2, ..., pn, q)

W W is an (n+1)-dimensional matrix that reflects the dual variables
of the solution to the LP that is solved. W(p1, p2, ..., pn, q) is
an aggregation of the dual variables involved in the discretization
of (4) for the state (xp, q), where xp is defined as in the description
of V.

See Also
ohlowes, ohlowem, linprog

114

4. Command Reference

ohsim & ohsimf

Purpose
Simulate a controlled hybrid system.

Synopsis
[t,x,q,u,J] = ohsim(f,l,s,U,Q,xv,xq0,tspan,xqf,rxftol)
[t,x,q,u,J] = ohsimf(f,l,s,U,Q,xv,xq0,dt,tspan,xqf,rxftol)

Description

ohsim and ohsimf simulate a hybrid system using the feedback control
law returned by ohctrl. The difference between the commands is that
ohsim calls an ODE solver in MATLAB, while ohsimf uses a fixed time
step to allow faster (and less accurate) simulations.

Parameters
f The string f contains the name of an m-file that describes a sys-

tem of differential equations such that xdot = f(x, q, u) gives
the dynamics of fq(x, u) in (1).

l The string l contains the name of an m-file that describes a cost
such that l(x, q, u) corresponds to lq(x, u) in (2).

s The string s contains the name of an m-file that describes a cost
such that s(x, q, u) corresponds to sq(x, u) in (2).

U is an (n+ 1)-dimensional matrix returned by ohctrl that gives
the control law for u.

Q is an (n+ 1)-dimensional matrix returned by ohctrl that gives
the switching strategy.

xv is a struct of vectors that gives information about the discretiza-
tion of the control laws contained in U and Q. This is the same
parameter as the one used in ohctrl.

xq0 = [x0; q0] for ohlows where (x0, q0) is the initial state.

dt is the fixed time step used by ohsimf.

115

Manual II. A Matlab Tool for Optimal Control of Hybrid Systems

tspan The parameters tspan, xqf, rxftol set various stopping cri-
teria. tspan is a vector specifying the interval of integration
[t0; tfinal]. No simulation time will pass tfinal. The sim-
ulation could, however, finish earlier if the final point, xqf =
[xf; qf] is reached. It is considered to be reached when q �qf
and xf− rxftolh ≤ x ≤ xf + rxftolh, where h ∈ Rn is a vector
representing the grid size (cf. Sec. 2). If rxftol is omitted, the
default value 0.5 is used. If xqf is omitted, then the time is used
as the only stopping criterion. A set of several acceptable final
states can be specified by replacing the variable xqf with a func-
tion isfinal([x; q]) that for any possible state (x, q) returns a
non-zero value if (x, q) is contained in the set of final states.

xqf cf. tspan

rxftol cf. tspan

t The output vectors x, q, u, and J contain the trajectories of the so-
lution. Each entry of these vectors correspond to a time returned
in the column vector t.

x is a vector that contains the trajectory of the continuous state, x.
Each entry in x corresponds to a time in t.

q is a vector that contains the trajectory of the discrete mode, q.
Each entry in q corresponds to a time in t.

u is a vector that contains the trajectory of the control signal u.
Each entry in u corresponds to a time in t.

J is a vector that contains the accumulated cost along the solution
trajectory. Each entry in J corresponds to a time in t.

See Also

ohctrl, ohsime, ohsimef

116

4. Command Reference

ohsime & ohsimef

Purpose
Simulate a controlled hybrid system, the control of which has been
derived from a cost function with exponential time weighting.

Synopsis
[t,x,q,u,Je] = ohsime(f,l,s,a,U,Q,xv,xq0,tspan)
[t,x,q,u,Je] = ohsimef(f,l,s,a,U,Q,xv,xq0,dt,tspan)

Description
ohsime and ohsimef simulate a controlled hybrid system, for which the
control law returned by ohctrl has been derived from a cost function
on the form (11). The difference between the commands is that ohsime
calls an ODE solver in MATLAB, while ohsimef uses a fixed time step
to allow faster (and less accurate) simulations.

Parameters
The input parameters are described below. The output parameters are
the same as the output from ohsim and ohsimf.

f The string f contains the name of an m-file that describes a sys-
tem of differential equations such that f(x, q, u) gives the dy-
namics of fq(x, u) in (1).

l The string l contains the name of an m-file that describes a cost
such that l(x, q, u) corresponds to l̃q(x, u) in (11).

s The string s contains the name of an m-file that describes a cost
such that s(x, q, u) corresponds to s̃q(x, u) in (11).

a is the exponential time weight a in (11).
U is an (n+ 1)-dimensional matrix returned by ohctrl that gives

the control law for u.

Q is an (n+ 1)-dimensional matrix returned by ohctrl that gives
the switching strategy.

117

Manual II. A Matlab Tool for Optimal Control of Hybrid Systems

xv is a struct of vectors that gives information about the discretiza-
tion of the control laws contained in U and Q. This is the same
parameter as the one used in ohctrl.

xq0 = [x0; q0] for ohlows where (x0, q0) is the initial state.

dt is the fixed time step used by ohsimef.

tspan = [t0; tfinal] is a vector specifying the interval of integration.

See Also

ohctrl, ohsim, ohsimf

118

5. Examples

5. Examples

In order to clarify the usage of the commands in this report, two exam-
ples are presented in this section. These examples contain the essential
code, i.e. one should be able to reproduce similar results by entering
the lines marked with the MATLAB prompt (>>) into MATLAB. Some of
the figures are drawn using certain line types or contain lines that
were added to make the discussion about certain phenomena clearer.
The code for this pedagogic bonus has been omitted below.

1 A car with two gears

Consider the system{
ẋ1 � x2

ẋ2 � kq(x2)u, q � 1, 2 eue ≤ 1
(15)

where kq(x) is plotted in Fig. 4. This could be seen as a crude model
of a car, u being the throttle, kq(x) the efficiency for gear number q.

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

k1(x) k2(x)

x

Figure 4. Gear efficiency at various speeds.

The problem is to bring (15) from xi � (−5, 0), qi � 1 to xf � (0, 0),
qf � 1 in minimum time. Torque losses when using the clutch calls for
an additional penalty for gear changes. Thus, the components of (2)
have been chosen as l1(x, u) � l2(x, u) � 1, s(x, 1, 2) � s(x, 2, 1) � 0.5.

119

Manual II. A Matlab Tool for Optimal Control of Hybrid Systems

We start by writing the functions that define the system: fq is entered
into the file car_f.m, lq into car_l.m, and finally s into car_s.m. We
will not compute a true lower bound in this example. The extremal
computations that would be needed for true bound purposes are in-
cluded in the files anyway, to show how this could be done.

car_f.m

function y = car_f(x,q,u,h,vmode);
if (nargin > 3)

%%% perform extremal computations %%%
nx2 = x(2)-h(2); % min value of x2 over a square
xx2 = x(2)+h(2); % max value of x2 over a square
if (q==1)

if (vmode == -1) % component-wise minimization
y = [nx2; 1*sigmf(xx2, [-5, 0.5])*u];

elseif (vmode == 1) % component-wise maximization
y = [xx2; 1*sigmf(nx2, [-5, 0.5])*u];

end;
elseif(q==2)

if (vmode == -1) % component-wise minimization
y = [nx2; 1*sigmf(nx2, [5, 0.5])*u];

elseif(vmode == 1) % component-wise maximization
y = [xx2; 1*sigmf(xx2, [5, 0.5])*u];

end;
end;

else
%%% use the nominal value %%%

if (q==1)
y = [x(2); 1*sigmf(x(2), [-5, 0.5])*u];

elseif(q==2)
y = [x(2); 1*sigmf(x(2), [5, 0.5])*u];

end;
end;

120

5. Examples

car_l.m

function y = car_l(x,q,u,h);
% For this example, l is the same regardless of the input.
na = nargin; % dummy-line to allow variable number of

% inputs
y = 1;

car_s.m

function y = car_s(x, q1, q2);
y = (q1˜=q2)*0.5; % The cost for switching is 0.5

Having entered these functions, we are ready to call ohlowm to get an
approximation of the value function. Note that this is a minimum time
problem that will lead to bang-bang control, which means that we save
computational time by letting Ωu � {−1, 1}.

>> uv = [-1; 1];

>> xf = [0;0];
>> qf = 1;
>> xqf = [xf; qf];

>> xmin = [-6.5; -1.5];
>> xmax = [5; 5.5];

>> omin = [-5.5; -0.5];
>> omax = [1; 3.0];
>> O = [omin; omax];

>> N = [53;41];

>> odx = [+0.0865; -0.0750]; % put the origin in a
>> xmin = xmin + odx; % grid point
>> xmax = xmax + odx;
>> Q = 2;
>> XQ = [xmin; xmax; Q];

121

Manual II. A Matlab Tool for Optimal Control of Hybrid Systems

>> [V,xv] = ohlowm('car_f','car_l','car_s',uv,O,xqf,XQ,N,0);
>> [Vc,xvc] = crop(V,xv,O);

The three lines commented “put the origin in a grid point” are there to
make the final state appear in a grid point. (E.g. having 53 equidistant
grid points in the e1 direction, ranging from x1 � −6.5 to x1 � 5,
simple calculations show that adding 0.0865 will make one of the points
appear at x1 � 0.) Experience tells that placing the final state in an
exact grid point often leads to considerably better results.

The value functions are plotted by typing

>> figure;
>> mesh(xvc{1},xvc{2},Vc(:,:,1)');
>> title('V_1');
>> xlabel('x1')
>> ylabel('x2')

>> figure;
>> mesh(xvc{1},xvc{2},Vc(:,:,2)');
>> title('V_2');
>> xlabel('x1')
>> ylabel('x2')

and the result is shown in Figure 5 and 6 where xi and xf also have
been marked. The functions look rather similar, since the cost for
changing gears is only 0.5. One can see that V1 has a threshold along
the line x2 � 1. Figure 4 reveals that the first gear is almost useless
for high speeds, leading to V1 � V2 + 0.5 for x2 > 1. This is the cost
for using the second gear optimally after a gear switch.

We also compute a control law and use it in simulations

>> [U,Q] = ohctrl('car_f','car_l','car_s',uv,Vc,xvc);

>> x0 = [-5;0];
>> q0 = 1;
>> xq0 = [x0; q0];

122

5. Examples

−6 −5 −4 −3 −2 −1 0 1 2 −1

0

1

2

3

0

1

2

3

4

5

6

7

8

9

10

x2

V
1

x1

Figure 5. Plot of V1. The initial point, xi, is marked with a vertical dashed
line, the final point, xf , with a solid line.

−6 −5 −4 −3 −2 −1 0 1 −1

0

1

2

3

0

1

2

3

4

5

6

7

8

9

10

x2

V
2

x1

Figure 6. Plot of V2 .

123

Manual II. A Matlab Tool for Optimal Control of Hybrid Systems

>> tend = 8;
>> [tv,xv2,qv] = ...

ohsim('car_f','car_l','car_s',U,Q,xvc,xq0,[0;tend],xqf);

The trajectory is plotted by typing

>> figure;
>> plot(xv2(:,1),xv2(:,2));
>> title('Phase plane');
>> xlabel('x_1');
>> ylabel('x_2');
>> grid;

and the result is shown in Fig. 7, where the initial point is marked with
a square. The state trajectory coincides with the one of a professional
rally-driver with lousy breaks. In the beginning, maximum throttle is
used on the first gear (solid line). When the speed roughly reaches the
point of equal efficiency between the gears (x2 � 0.5), they are switched
in favor of the second gear (dashed line). At half the distance, the gas
pedal is lightened to use the breaking force of the engine. In the end,
the first gear is used again before the origin is hit. As seen in the
figure, the granularity of the discretization grid (h1 � 0.22, h2 � 0.18)
prevents the solution from hitting the exact origin.

Information about the optimal trajectory can also be found in the dual
variables. Note that the following code makes a single point maximiza-
tion.

>> [Vs,xvs,Ws] = ...
ohlows('car_f','car_l','car_s',uv,xq0,xqf,XQ,N,0);

>> Nxmin = [-6; -0.5];
>> Nxmax = [1; 3];
>> NX = [Nxmin; Nxmax];
>> [Ws,xvs] = crop(Ws,xvs,NX);

>> figure;
>> mesh(xvs{1},xvs{2},Ws(:,:,1)');
>> title('W_1');

124

5. Examples

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

0

0.5

1

1.5

2

Phase plane

x
1

x 2

Figure 7. Phase portrait of a simulation. The solid line shows where gear
number one has been used, the dashed line shows the second gear. The initial
point is marked with a square.

>> xlabel('x1');
>> ylabel('x2');

>> figure;
>> mesh(xvs{1},xvs{2},Ws(:,:,2)');
>> title('W_2');
>> xlabel('x1');
>> ylabel('x2');

The optimal trajectory is easily found in Figs. 8 and 9. W1 shows where
the first gear is used, and W2 where the second is used.

2 Alternate heating of two furnaces

Since the industrial power fee is determined by the highest peak of the
season, it is desirable to spread the power consumption evenly over

125

Manual II. A Matlab Tool for Optimal Control of Hybrid Systems

−6

−4

−2

0

2 −0.5
0

0.5
1

1.5
2

2.5
3

0

0.05

0.1

0.15

0.2

x2

W
1

x1

Figure 8. Plot of W1. The initial point, xi , is marked with a vertical dashed
line, the final point, xf , with a solid line.

time. This is handled by load control, which means that the available
electrical power is altered between different loads of the mill.

In this example, the temperature of two furnaces should be controlled
by alternate heating. The system has two continuous states that cor-
respond to the temperature of the furnaces and is given by ẋ � fq(x),
where

f1(x) �
[
−x1 + u0

−2x2

]
f2(x) �

[
−x1

−2x2 + u0

]

f3(x) �
[
−x1

−2x2

]
Thus, there are three discrete modes: q � 1 means that the first fur-
nace is heated, q � 2 means that the second furnace is heated, q � 3
corresponds to no heating. The cost function to be minimized is

J(x0, q0) �
∫ ∞

t0

2∑
i�1

(xi − ci)2e−tdt+
M∑

k�1

be−tk

126

5. Examples

−6

−4

−2

0

2 −0.5
0

0.5
1

1.5
2

2.5
3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

x2

W
2

x1

Figure 9. Plot of W2.

where the desired stationary temperature values are c1 � 1/4, c2 �
1/8 and the cost for switching the power is b � 1/1000. Since the
furnaces can only be fed by a fixed amount of energy, u0, it is impossible
to keep them stationary at the desired temperature. Hence, the time
weighting, e−t, is necessary to get a bounded cost function.

We start by writing the functions that define the system: fq is entered
into the file fu_f.m, lq into fu_l.m, and finally s into fu_s.m.

fu_f.m

function y = fu_f(x,q,u)
u0 = 0.8; % 0.8 will make the system enter mode 3 sometimes,

% 0.4 prevents it
switch (q)
case 1, % Heating furnace no. 1

y = [-x(1)+u0; -2*x(2)];
case 2, % Heating furnace no. 2

y = [-x(1); -2*x(2)+u0];
case 3, % No heating

y = [-x(1); -2*x(2)];

127

Manual II. A Matlab Tool for Optimal Control of Hybrid Systems

end;

fu_l.m

function y = fu_l(x,q,u)
y = (x(1)-0.25)^2+(x(2)-0.125)^2;

fu_s.m

function y = fu_s(x, q1, q2);
y = (q1˜=q2)*0.001; % The cost for switching is 0.001

With these functions, we are ready to call ohlowem. Note that we have
no continuous input, u, in this example.

>> uv = [];
>> omin = [-0.05; -0.05];
>> omax = [0.40; 0.20];
>> O = [omin; omax];
>> xf = [0.25; 0.125];
>> qf = 3;
>> xqf = [xf; qf];
>> xmin = [-0.10; -0.10];
>> xmax = [0.50; 0.30];
>> Q = 3;
>> XQ = [xmin; xmax; Q];
>> N = [21; 21];
>> [V, xv] = ohlowem('fu_f','fu_l','fu_s',1,uv,O,XQ,N,0);
>> [Vc, xvc] = crop(V,xv,O);

The control law is derived and simulation is performed by calling
ohsime this time

>> [Um, Qm] = ohctrl('fu_f','fu_l','fu_s',uv,Vc,xvc);

>> x0 = [0; 0];
>> q0 = 3;
>> xq0 = [x0; q0];

128

5. Examples

>> tend = 6;
>> [tv,xv2,qv] = ...

ohsime('fu_f','fu_l','fu_s',1,Um,Qm,xvc,xq0,[0;tend]);

and the result is plotted in Fig. 10, which shows a time plot of the
states and Fig. 11, which shows a phase portrait. The figures clearly
show how the temperature of one furnace always decreases as the other
one is heated. By alternate heating, the temperatures first climb up to,
and above the set-point and then both furnaces are turned off and the
state drifts towards the origin. This procedure is then repeated over
and over again, making the trajectory enclose the desired steady state
(marked with a circle in the phase portrait). The trajectory has been
dashed for t ∈ [0, 3.5] in Fig. 11 to make the limit cycle clear.

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

t

State trajectory

0 1 2 3 4 5 6
0.5

1

1.5

2

2.5

3

3.5

m
od

e

t

Mode

Figure 10. Time plot of the trajectories in the furnace example.

129

Manual II. A Matlab Tool for Optimal Control of Hybrid Systems

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Figure 11. Phase portrait of the trajectories in the furnace example.

6. References

Hedlund, S. and A. Rantzer (1999): “Optimal control of hybrid sys-
tems.” In IEEE Conference on Decision and Control. Phoenix.

130

