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PREDICTING THE SERVICE LIFE OF CONCR"ETE EXPOSED TO FROST
ACTION THROUGH A MODELLING OF THE WATER ABSORPTION PRO.
CESS IN THE AIR.POR,E SYSTEM

G. FAGERLUND
Division of Building Maærials, Lund Instituæ of Technology
Box 118, 5-221 00 Lund, Sweden

1. Frost destruction. The criticat water absorption. The service life

I.1 THE CRITICAL SIZE

A completely waûer saturated cement paste volume is severely damaged by frost if its
size exceeds a certain critical volume [1]. The critical size depends on the lowest tempe-
rature used in the æst and it depends on the salt concentrations outside and inside the
volume [2].It also is, to a certain extent, dependent of the freezing rate [3]. One can use
the concept critical thicløess of a thin slice of the paste or one can use the critical dia-
mzter of a spherical piece of the paste. Normally however, one uses the concept critical
spacing factor \pwhich is the thickest water-saturated cement paste shell surroun-
ding an air-pore. The spacing factor is a geometrical entity that is calculaæd on basis of
the geometrical model shown in Figure 1. Thus, all air-filled airpores are supposed to

have the same diameter Q defined by:

þ=6lc¡; (1)

Where a is the specific surface of the air-filled portion of the air-pore system. This is
defined by the tot¿l surface,/volume ratio of all pores that a¡e large enough not to stay
air-filled.Then, the spacing factor L is; [4]:

Y = {3lal.{ 1,4[Vn/a+t1 1/A-t t

Where Vn is the volume fraction of cement paste (no air-pores included) and a is the

volume of air-filled air-pores. The geometrical model behind E4-(].2) is too simplif,red.
A more general, statistical, spacing factor L'in which consideration can also be taken to
the size distribution is derived in [5]. The fbllowing general equation is valid:

a. { l+L'. a+L'2.cr([u] t/tul Z) +1,33.L'3.o(tulo/[u] 2 ] = Ç (3)

V/here [u]¡ is the i:th statisúcal moment of the size distribution of air-filled air-pores.

This spacing factor implies that all points in the cement paste are with a certain probabi-
lity located within the disønce L'from the periphery of the nearest air-filled air-pore.
The probability that the whole cement paste volume is protected increases with increa-

(2)
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ility is 63 Vo. When C--2,3 the probabi-
th on the pore size distribution, as does

also on the probability that all parts
spacing factor defined bV Eq (2) is of

re water; [6]. The value for freezing in pre-

water, 
bably it is a bit lower than for freezing in

(4)

Figure 1: The geometrical air-pore/cement paste model on which the Powers'spacing
factor is based; [4]

1.2 THE CRITICAL WATER ABSORPTION

The air-pores will not stay ai¡-hlled but will take up water by a slow air dissolution-dif-
fusion process that is described below. This meansìhat the rêsidual spacing factor
between pores that are still air-filled will increase with increasing time of ùater storage
of the concrete. The relation between the residual spacing factor L, and the degree of=

water-filling of the air-pore system can be calculated by Eq (2) when the residual speci-
fic surface c. and the residual air volume q of pores that are not water-filled to such
large extent that they cannot accomodate all water that is expelled from the surrounding
cement paste shell, are known. a. is calcul ted by:

fmax

fu = Itî)'Øntz)r3'dr
r
a,mtn

Where f(r) is the frequency function of pore radii. ru,rrrin is the radius of the smallest
air-filled pore that cannot accomodate any expelled water. Such a pore might be a com

pletely water-filled pore or a pore that is water-filled to such an extent that the residual
madebyPowerst4]allair-poreswereincludedintheva-

lues a and C[in F4¡Q). Thus, Powers did not consider rhar that some air-pores actually
become water-filled due to the Thè critical powers
spacing factor-assumTg_ all air m for freezing in
pure water and about 0,18 mm 6].
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air volume is smaller thangVo of the freezable water contained in the water-filled ce-
ment paste shell surrounding the pore. In these cases water has to move to another, coar-
ser pore. r*o is the radius of the largest air-pore. F,q (4) implies that a smaller pore is
always water-filled before a larger pore-

The residual pore surface A. is:
rmax

Ar = [ tî)'+n'rL'd,
r
a,mln

Then, the residual specifTc surface of the porúon of the air-pore system that is súll air-
filled, c. is:

a , = A./a,

As a consequence of the gradual reduction in the residual air-pore volume and speci-
fic surface the residual spacing L. between the air-pores increases; see 4 Q) and (3).

Lr= {3lo-r}.{ 1,4.tvp/ar+tl1/3-l I e.a)
Hypothetical examples of the changes in ar, o , and L. are shown ín Figure 2 tbr two

types of the air-pore system; a fine-porous and a coarse-porous.

(5)

(6)

b)

I
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Figure 2: Hypothetical air-pore distributions and the influence of a gradual water-tìlling
on; (i) the residual volume, a. of pores that can still act as recipients for ex-

' pelled water; (ii) the specif,rc surface of such pores, a ,; (iii) the spacing tac-
tor for ai¡-frlled pores. (a) Fine-porous system. (b) Coarse-porous system.
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Frost destruction occurs when the degree of water-filling is so high that the critical

spacing is exceeded (L¿LçB).Then, the residual air-pore volume is smaller than

ar,CR. This means that there exists a critical degree of saturation Sa,CR of the air-pore

system:

Sa,CR = 1- a",çp/ao (0<Su,6p<1) Q)

There also exists a critical degree of saturation SCR of the entire material, capillary

pores and gel pores included in the definition of S. They are always water-filled before
ihe air-porés start to take up water; see paragraph 2. Therefore, Sçp is defined:

SCR=l-q,CRÆtot (O<SçBcl) (8)

Where P¡o, is the total pore volume in the concrete. Thus, by knowing the total air-

pore volume and by measuring the weight gain of a concrete stored in water for a_long
iime the gradual wâær absorptìon in the air-pores can be followed. By also investigating
the pore lize distribution one can find relaúons between the pore size and the rate of
watèr absorption. The relation between the two degrees of saturation is:

Sa,CR=1- Ptot(1-S6p)/ao (9)

Where ao is the air-pore volume when all air-pores are actually air-filled. Two ex-

amples of the determination of the critical degree of saturation by tieeze/thaw experi-
ments are shown in Figure 3; [71.

E"/Eo En./Es

1,01 (ol

tep= 9.t

S

reß = 1s.6

ß x
0t_
0.5 0,6 0,7 0,8 0.9 

s 
1.0

0.50.5

1.00.80.6 o,7 0,9

Figure 3: Example of determinations of the critical degree of saturation SCR. Slag ce-

ment concretes with slag conænt 40 7o and ilc-raúo 0,45; [7].
(a) Air content 4,2 Vo. (b) Air content 5,4 7o.



The service lit'e of a representative unit volume inside the concrctc is cnded when
Sr(t) exceeds the critical degree of saturation of the air-pore system Sa,CR which is

supposed to be independent of time; at least for mature concrete.
The value of Sa,CR can be calculaæd theoretically according to the principles descri-

bed above, provided the value Lçp of the critical spacing factor is known. Another
possibility is to determine the value of S6p and Su,çp experimentally. Suitable met-
hods a¡e described in [8].

The time function Su(t) is calculaæd theoretically according to the principles descri-

bed below, or it is measured experimentally by successive weighings of specimens that
a¡e stored for a long time in water. The most rational method is to make an experimental
water absorption test for a limiæd space of time (e.9.2 weeks) and then extrapolate the
water absorption function until the extrapolated value of S¿(t) reaches the value of
Sa,CR. The time when this happens is a sort oLpotential service ltfe,tpwhich is defi-
ned:

Su(5)=Su,çp or S(b)=SCn (1 1)

As will be shown below the long term absoqption can be described by an equation of
the following type:

Su(5)=B.tC or s(b)= A+B'tc

5
1.3 THE SERVICE LIFE

The water absorption process is time-dependent:

Sa = Sa(t)

b=[Su,CR nllC
5=t(Sçp-A)/n 1 

l/c =[(SCR- 1 +uJptot)/B] l/C

(10)

(12\

(14.a)

(14.b)

Where the coeff,rcient B, and also to a certain extent the exponent C, is a function of
the air-pore size distribution. The coefficient A is the degree of saturation of the entire
pore system when all pores exept the air-pores are water-filled. Thu.s:

A=l-aoÆtor (13)

Then, the poæntial service life,.assuming eq (12) is valid for the absorption, is estima-
ted by one of the following expressions:

Princip calcu basis of in-
formation the si air-pores. In
practise it ritical (Su,6B or
SCn) by freezelthaw experiments and the coefficients A,B and C by a short-term water
absorption experiment.
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2. The capillary absorption process

When a piece of pre-dried concrete is placed in contact with a free water surface it im-
mediately starts to take up water. A more or less sharp water front penetrates the concre-
te; below the front, the gel and capiltary pores are saturated, above the front, the water
content is almost the same as it was initially. ln reality, when the water front has advan-
ced a bit, there will be a diffusion of water from the front which makes this more blunt.
As long as only the first few centimeters for ordinary concrete, or millimeters for dense
concretes, are regarded the idea of a moving front is however acceptable. The water ab-

sorption rate qc tkg/(m2.s)l during this period is given by the following formula:

qc=kl(2.tIl2) (15)

Isolated coarser pores that a¡e connected to finer continuous pores cannot become

water-filled during a capillary process if they are coarser than about 0,1 pm. This can be
shown easily by the geometrical model tn Figure 4.The coarse spherical pore is connec-
ted to finer pores by a narrow bifurcation pore. The model is a good representation of an
isolaæd air-pore in a web of fine capillary pores in a cement paste.

When the water front in pore 1 reaches the coarse pore, the capillary pressure, which
is inversely proportional to the radius of the water meniscus, must be reduced if water
should enterthe coarse pore. The capillary pressure in the bifurcation pore2 is however
maintained on the high level. Therefore, the bifurcation pore immediaæly sucks water
from the coarse pore. The meniscus will therefore not be able to enter the coarse pore. It
will remain at its entrance. When the bifurcation pore is full, the fine pore 3 starts to fill
by sucking water both downwards and upwards. The coarse pore will continue to be air-
filled as long as the capillary pressure is higher in the surrounding tìne pore system. An
air bubble will therefore be enclosed in the coarse pore.

Figure 4: Geometrical pore model illustrating the enclosure of air-bubbles in coarser
pores during a capillary water uptake process.

The air bubble is under pressure; see the next section. Theretbre, it will be compres-
sed. The relation between the compressed volume V1 and the initial volume Vo is calcu-

lated by Boylet law:



Vo'Po = Vl.Pt (16)

Po is 105 Pa (the ordinary atmospheric pressure). P1 is given by the Laplace law:

Pt = Po +2.olr (17)

Where o is the surface tension between water and air (0,O74 N/m) and r is the bubble
radius.

The volumes Vo and V1 are:

Vo = (4nl3)R3

V1 = (4æl3)F

(t8)

(te)

Where R is the radius of the coarse pore. Then, the pressure P1 is:
pt = U05 +(2olR).(Vo/v1¡l/31 (20)

- Inserting this equation in Eq (16), gives the following relation between the volume of
the compressed bubble and the volume of the sphericalþore:

lvl/vol1/3.[vo/Vt - t] = zo4tos.n¡ eD

This means that bubbles in smaller pores will immediately become almost totally
compressed which is shown by the following calculation:

R= 0,05 pm: V1/Vo = 0,006 = 4 Vo

R= 0,10 pm: V1/Vo = 0,018 = 2 7o

R= 1,00 pm: V1/Vo =0,32 =32 Vo

R= 10 pm: V1A/o = 0,87 = 87 Vo

This means that all pores with diameters smaller than about 0,1 pm (gel pores and ca-
pillary pores) are completely compressed and water-filled already during the water ab-
s.orption process. Larger isolaæd põres remain air-filled and stay !o for shorær or longer
times.

3. The gradual water absorption in the air-pore system

3.1 THE BASIC MECHANISM

An air bubble, which becomes enclosed in a coarse pore during the capillary water ab-
solption process, is exposed to an internal over-pressure ÂP that is inversely proportio-
nal to its radius:

AP=2.olr e2)
Where o is the surface tension air-water and r is the radius of the spherical bubble.

The total pressure is:
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P = Po+2.o/r

Where Po is the ordinary atmospheric pressure. The solubility of air in water is pro-

portional to the air pressure. Hence, the bubble will gradually dissolve. Bubbles that arc
small enough will be dissolved in the pore water surrounding them already a short time
after the capillary process ended. The size of these bubbles can be estimated by compar-
ing the amount of air inside the bubble with the water volume needed to dissolve all that
air. The total air mass inside a bubble of size r is:

m = p 1.Ønl3).r3

(r7.a)

(23)

Where p 1 is the density of the compressed air. This is directly proportional to the

pressure of the air. Hence:

p1=po(Po+2.o/r)Æo Q4)

Where p6 is the density of air at 1 atrn. po= !,25 kg/rn3 at +10oC. The "extra" solu-

bility Âs of air in water which has become pre-saturated with air at the normal atmosp-
heric pressure is:

Âs = 3.t0-2ltÆokg/m3 (25)

Where 3.L0-2Pois the solubility of ai¡ at pressure 1 Pa and lOoc. This extra solubili-
ty due to the increased pressure can be used for dissolving air in the bubble. By inserting
Eq(22), (17.a) and (25) in eq (23) it is possible to calculate the water volume V* nee-

ded to dissolve all air in the bubble of size r:

Vw = Ø.n13).42.[ + Po/ÂP].r3 (26)

The porosity of the cement pasæ shell surrounding the bubble is of the order of size
40 to 60 Vo.Tlte cement paste volume needed in order to t¿ke care of the dissolved air is
therefore about twice as large as the volume given by eq (26). Thus, the thickness t (m)
of the cement paste shell needed in order to rapidly dissolve an air bubble at +10oC is:

¡={[I+2.42.(l+P./AP)] 1/3-1 ].r ={ [ 1+84(1+6,8.105.r)] 113 -1¡¡ (27)

The average spacing between airpores is probably shorter the smaller the bubble- An

average spacing of 100 pm is assumed. This means that t=50 [m. Then, according to eq

(27) bubbles with a radius of about 7 pm will dissolve rapidly at +10 oC. At other tem-
peratures the air solubility is different. For the temperatures 0 oC and +20 oC the coetTi-
cient 42 in eq (26) and (27) is changed to 33 and 52 respectively. This does, however,
not very much change the size of the rapidly dissolved bubble.

Coa¡ser bubbles will not dissolve directly but will stay air-filled for a long time. Air
will disappear only gradually due to diffusion through the pore water to larger pores or
to the surface. Due to this diffusion the bubble becomes smaller and smaller making the
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inærnal pressure higher. The dissolution rate will therefore increase with time. However,
since the cross section of diffusion decreases with the reduction of the bubble size, the
increase in dissolution rate is not directly proportional to the over-pressure. It might
even be constant during the whole process; see pÍuagraph3.3.2. The dissolved aii migra-
tes_through the pore water to larger air bubbles having ã lower internal pressure and, ñ-
nally, to the surface of the material. The dissolution rate depends on the dit'fusivity of air
in the pore water and is therefore a function of the water/biñder ratio and, since ditterent
binders create different pore structures, it is also a function of the type of binder-

Many diffusion processes in concrete can be described by a ditïusion coefficient ô

(m2ls) which is a simple function of the Vc-rario:
ô=kl'(w/c)n:kl.(w/c)2

Alternatively, it is a function of the capillary porosity, P.:

ô= kz+k3.P.n =k3.P.2

k1, k2, k3 and n are empirical coefficients deærmined by the diffusivity of air in pore
water.

The raúe of dissolution will also be a function of the length of the diffusion path.
Hence, an air bubble that is very close to the surface of the concrete ought to be water-
filled before a similar bubble in the interior of the concrete. The dissolution will, howe-
ver, nof occur as a moving boundary process. Since all bubbles are over-saturated with
air, a local dissolution will occur simultanously in the pore water surrounding each
bubble. The dissolved air will move to a neighbouring pore with a lower prelsure and
from there to the next pore and so on. Finally, it reaches the surface. Therbfore, due to
this inter-bubble diffusion and due to the extremely large number of bubbles, the disso-
lution will probably occur rather homogeneously withiñ a zone of a certain thickness.
This zone is probably considerably thicker than the so called critical thickness which is a
measure of the largest material volume which is not harmed by frost even when frozen
in a completely water saturated condition. The critical thickness is only about 0,3 to 0,5
mm for concreæ [6].

Seen over a larger material volume, there will of course be a cerøin gradient in air
concentration in the pore water from the surface of the concrete inwards, due to the fact
that diffusion to the surface must occur. This requires a gradient. In the normal, practical
case, however, it is the outmost millimeters or cèntimeters of the concrete that is most
interesting and this zone can be approxim ataly lr.eatÊd as a "non-gradient'' zone; at least
when it comes to an analysis of the inter-bubble diffusion.

3.2 TTTE GLOBAL DIFFUSION

The global diffusion rate in the maærial as a whole will, due to the inter-bubble diffu-
sion, be a function of the air or bubble content. The larger the air content" the lower the
inær--bubble spacing and the larger the rate of air-diffuiion and water-hlling of the
bubbles. The inær-bubble spacing L can be described by the Powers'equation:

L= {3/cr}.{ 1,4[Yrla+l ]l/3-1]

(28)

(2e)

(30)

Where, a is the specific surface of the air-pore system, Vn is the volume fraction of
cement paste (air pores excluded) and a is the air volume as a fraction of the concrete
volume.
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As a first approximation, the global diffusivity of dissolved air is therefore described

by a function of the following type:

ô = ôo. (wlc)21 {[3/ør]. u,4(vnla+t¡ 1/3- t1 ¡ (31)

ó/ó-.1 lc.

The constant ôo depends on the fineness of the pore structure. It might be a tunction

of the type of cement and the type of mineral admixture used.
pq (3i) is plotted in Figure 5. fne rate of air diffusion from the air bubbles will incre-

ase ririth incrêasing air coñtent and increasing Vc-ratio. In the real case, a higher air vo-
lume will, howevei, be favourable since it will take a longer time before the critical di-
stance is exceeded. Hence, the service life is increased.

02

(5ó
Air conlent, 7"

Figure 5: Theoretical effect of the w/c-ratio and air content on the diffusion coefficient
of dissolved air through the pore water; eq (30) and (31). The amount of mix-

ing water is supposed to be 180 kg/m3 in all mixes.

In Figure 6 ,the observed values of the coefficient r'¡ describing the slow rate of water
absorption during the long term storage of slag cement concretes in water is plotted ver-

sus the air content. q is defined by ÂS = q.log(time) where ÂS is the increase in the

total degree of saturation of the concrete. The general shape of the curves are similar to
those predicted by eq (31) and shown rn Figure 5;viz- the water absorption rate increa-
ses with increasing air content.

The total amount of air Q Gg) transferred over the distance Ax (m) during the time in-

ærval Ât (s) is described by:

Q = õ.A.^t.ÂclÂx G2)

rilhere A is the cross section of flow (m2) and Âc is the difference in concentration of

dissolved air (kg/m3) over the dist¿nce Åx (m). The concentration gradient Âc is propor-
tional to the gradient in ai¡ pressure and therefore, according to eq (22) and seen over a
larger material volume and cross section, approximately inversely proportional to the

vlc
0.60

0.ó0

0.s0

0.40
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gradient in the "average size" r- of the remaining air bubbles over the distance Áx.

Âc= constant.o[1/rm,1-rm,2f (33)

Where r-,2 ând t.,1 ate the "average bubble radü" at distance x and and x+Âx from
the surface. The "average bubble radius" is the radius of a fictive bubble staying in equi-
librium with the air concentration of the sunounding pore water. The constant in eq (33)
describes the relation at equilibrium between air pressure and amount of dissolved ãir.
For the concentration difference of dissolved air between the free concrete surface and

the pore water inside the concrete on the distance Âx from the surface the following ex-
pression is valid:

^c 
= constant.o/rm,1 ß4)

o I tr"r¿,. 
.1",*i .. '). 

7

Figure ó: Experimentally deærmined rates of the water absorption during 30 days in
concretes made with slag cements and varying air content; [7]. The "coeftici-
ent of air-void filling", q. It is defined by the relation ¡5 = q.log(time).

The cross section A for the global diffusion is, as a first approximation, considered to
be directly proportional to the volume fraction of the sum of capitlary pores and air
bubbles in relation to the total cement pasûe volume, air bubbles included. Thus, the fine
gel pores are not supposed to take part in the diffusion of air. Then, A is:

4 = [w/c-0,39.þ+a.1000/c] llwlc+0,32+a.1000/cl (35)

Where p is the degree of hydration and a is the volume in m3 of air bubbles in 1 m3
of the concrete. No consideration is taken to the interfaces between aggregate grains and
cement paste.

With this equation and eq (33) or eq (34) inseræd in eq (32) the total air transport
over the distance Âx in I m2 of the concrete cross section can be estimated. A general
equation for this global diffusion is:

q= -Ed2cldx2 (36)

Where q is the flux of dissolved air ftg/m2.s). The main problem in using this general

z-ß2

6
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equation or the numerical eq(32) is that is difficult to estimate the concentration gradi-
ent dc/dx. Probably, however, as said above in 3.1, it is not always necessary to deal
with ttre global difÎusion since most of the water absorption in the bubbles occur due to
local inæi-bubble diffusion between neighbouring bubbles. This diffusion goes from
smaller to larger bubbles as shown in the next paragraph.

3.3 THE LOCAL DIFzuSION BETV/EEN NEIGHBOURING AIR-PORES

3.3.I Pressures andvolum¿ changes
Let us consider two neighbouring bubbles with the radii 11 and r2 (r1<r2). Directly after

the capillary uptake has ceased the radii of the bubble mensci in the pores are 11,o and

r2,o. According to Boyle's law those radii a¡e:

ri= { r¡,o2 [ri,o+2. o tP ollll 
3

Where i stands for either I or 2. ri,o I ri for large values of ri. Diffusion starts from

pore 1 to pore 2.The air volume in pore 1 diminishes and the air volume in pore 2 incre-
ases. Afæi a cert¿in time the new radii âre 11,¡ and r2,r. The initial air masses in pore I

and2are m1 and m2 where m1/m2=[r1lr2)3.After a certain time of diffusion ]'m1 is
lost from pore 1 and transferred to porc 2. Then Boyle's law gives:

Pore I:
P o+2o I r 1,o= { Po+2o / 11,1 }. { r 1,y'r1,o } 

3. t/{ t -y)

Pore 2:

P o+2o / r 2'= {P o+2 o h 2,¡l 
. 
{ r 2 ¡h 2. 6 } 

3. t I t t + { r 1t r 2)3 
-T)

Air continues to flow to pore 2 even after all water that was initially contained in pore
2 has been displaced. The increased pressure in pore 2 is taken care of by curved meni-
sci in the entrance to capillaries leading into pore 2. After this has happened the fol-
lowing relation is valid for pore 2:

P o r e 2 : P o+2c / r 2,o=P 2,¡' { r 2l r 2,013' U lL + 1r ! r 2)3' ^l)

The pressures in the bubbles a¡e:

Pore I: P1= Po+2olr1,1

Pore 2:P2=Po+2sh2,¡ for r2,¡1r2
'P2=PZ,t for r2,t=r2

Air will flow from pore I until the pressure in pore 2 equals the pressure in pore l.
This condition is only valid when all water in pore 2 has been displaced. Before that, a
transfer of air from pore I to pore 2 will always lead to a higher pressure increase in
pore I than in pore2leading to a continued flow. By equaling eq (38) and (39.b) one
obtains the following equation for the mocimum fraction of air that can flow from pore
I to pore 2:

(37)

(38)

(39.a)

(3e.b)

(40)

(41.a)

(41.b)
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y <{[Po+2olr 
1 ,¡Jl[(Po+ 2o)tr2,).(rr,otr2)37 - I] lr2lr )3 (42)

Where r1,t is a function of y. From eq (38) the following relation between 11,, and Iis
obtained:

Po.11,r3+2o.r1,t2=r1,o3 1Y o*zotr1,o ) { l-ï } (43)

This equation must be solved numerically. The initial bubble radii 11,o and r2,o in eq
(42) and (43) are functions of the pore sizes 11 and 12. The relation is given in eq (37).

Eq(42) shows that there is a maximum amount of air that can flow from pore I to
pore 2. This amount is a function of the relative pore size (r 1h2) and a function of the
absolute pore sizes (r1 and r2).Itis clear from eq (42) that the amount of air that can
flow from a smaller to a larger bubble increases with increased sizc ratio between the
two bubbles.

The volume changes of the bubbles and the net volume changes ÂVare:

Pore l:^Vl= -{.1,o3-rl, r3!.+.nt3 (44)

Pore 2: LY2=+{r1,,3-r1, o3l+.ntZ for r2,¡<r2 (45-a)

LYZ- +{r23-r1,o3¡+ntZ for r2,¡=r2 (45.b)

ÂV=ÂVI+ÂV2 (46)

The pressure in pore I will, at the start, always be higher than in pore 2. IVhen the
pores are small the pressure in pore 1 maintains a higher value even after all water in
pore 2 has been displaced by the air arriving. Small bubbles will therefore vanish com-
pletely. Air from small pores can move to pores of almost all sizes without being stop-
ped by too large a pressure increase in the larger pores. Air in larger pores, on the other
hand, that are not very much larger; thè pressure in the
latter ssure in the smaller pore. Large pores can, however,
be co are very much larger.

The volume changes and the pressures a¡e best shown by a numerical example:
Example: 11=100 ¡¡n, 12=400 pm

F4 (37) gives:

11,o=99,51 pm. 12,o=399,50 ¡tm

Pore I: Eq (38), (40) and (M) give:

T4,25: 11,r=90,3 pm. P1,¡=1,016.105 pa. 
^Vl--1,043,L0-12 

m3

T{,50: 11,1=78,9 pm. P1,1=1,019.td pa. ÂV1=-2,¡69.p-12 
^3

y4,75: 11,¡=62,5 ¡tm. P1,¡=1,024.105 Pa. ÂV1=-3,193.16-12 ro3

1e1,0O: rl,r={. Pl,t=trivial. 
^YF-4,125.10-12m3



14
Pore 2: Eq (39), (41) and (45) give:

y4,25: r2,o=400 pm. P2,¡=1,004.105 pa. AV2=a1,ffi4.L0-12 m3

')e0,50: P2,¡=1,008't05 Pa.

1eQ,lJ¡ -"-

1=1:

P2,¡=I,Ol2't05 Pa. -"-

P2,¡=1'015'td Pa- -"-

In this case, the pressure is always higher in pore 1. The bubble in pore I will va-
nish completely. The total volume reduction due to the air transfer is:

y4,25: ÂV=-0,04. 10- 12 m3

Td),50: ÂV=-1,07.rc-12

1=Q,fJ¡ LY=-2,1g'1g-L2

Fl: Ltl=-3,12.1g-I2
Thus, there is a gradual decrease in volume. The total volume reduction when
bubble t has disappeared is 3,12. L0-1214,I2.L0-I2=75 Vo ofthe initial volume of
the dissolved bubble in pore 1.

The analysis performed above shows that there is a complicated network of local ex-
changes of air from smaller to adjacent larger bubbles. Besides, air that is displaced
from one pore to a neighbouring larger pore will soon leave this for a still larger pore
and so on. This process can hardly be described by other than statistical methods or
computer simulations assuming a random distribution in space of the spherical air pores.
It is quite clear, however, that there is a gradual coarsening of the remaining air-filled
pore system; the smallest air-bubbles being lost at firsr The biggest bubbles are lost
only afær a very long time.

It is also quiæ clear that there would be a gradual water-filling of bubbles even if
there was no diffusion at all of air from those dissolved bubbles to the surface of the
concrete. On the contrary, there must be a diffusion of water from. the surface to the inte-
rior of the concrete. This depends on the fact that there is a net volume reduction when
air is dissolved and transferred to larger bubbles. This water uptake due to numerous
local air transfers occuring simultaneously over the entire concrete body explains the ob-
servation that the long term absorption rate in concrete stored in water seems to be inde-
pendent of the thickness of the specimen as long as this is not too large, [9]. This also
means that the gradient in air concentration of the pore water from the interior to the sur-
face might be rather small even in cases where a large amount of the smallest air
bubbles are lost due to dissolution and water absorption. In the long run, however, when
also the largest bubbles are lost, there must be a global gradient in concentration of dis-
solved air towards the surface.

The driving potential for diffusion of dissolved air from pore to pore is rather small,
especially for the largest bubbles. For a pore system, as that treated in the example
above, the air-pressure gradient is only about 1000 Pa leading to a gradient in dissolved
air of about 2,5.10-4 kg/tn3 which is only I Vo ofthe the amount of dissolved air at nor-
mal pressure. Of course, the gradient is larger for smaller bubbles.

3.3.2 Rate of local diffusion
The rate of the local diffusion between neighbouring pores can be determined by

eq (32) if reasonable values of the concentration difference Âc, the cross section of flow
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A and the inter-pore spacing Âx are inserted. For the inter-pore dift'usion between a
small bubble with radius 11,o and an adjacent larger bubble with radius r2,o the con-

centration difference is according to eq(25):

Ác = s'2o[l/r1,o-1/r2,oJ.r kg/m3 (47)

Where s is the solubility of air in water. It is 2,4.10-7 kg/m3 at +20oC and I Pa. r is a
correction factor that takes care of the changes in the air pressure in the pores caused by

the air transfer, viz. the initial pressures 2olr will not be maintained. r is a function of
the pore sizes. For large pores r =1. For small pores it is about 2.

The effecúve cross section of flow A is

A = n.rr.r2 (48)

The reason why the pore radii 11 and 12 have been inserted and not the bubble radii

11,s and r2,o is that the diffusion of air through the water phase inside the relatively

coarse air-pore is supposed to be much more rapid than the diftision through the dense
capillary pore system.

The inter-bubble spacing is L. Then, the total air flow is:

Q=ô'Ât'æ'r1.r2.s'2o[l h1,o-Lh2,o].r/L tkgl (49)

The diffusion coefficient ô [m2ls] of air in ha¡dened cement paste is not very well

known. For air in bulk water at +25 oC it is 2.10-9 
^4r.In 

cement paqte it is probably

decreased by a factor 100 or even more. A value of 10-11 
^2lt 

is selected. The distance

L between pores varies from pore to pore. An average value of 3fi) pm is selected. This
is probably a bit too high for small bubbles but a bit too small for large bubbles. The

surface tension o is 0,074 N/m.
When those values and the solubility of air are inserted the following expression is

obtained:

Q=3,9.10-15'rl.r2.[/r1,o-1/r2,oì.r.Ât tkg] (50)

This equation can be used for a rough estimate of the time needed to empty a pore.
The same example as above is used.

Examplc: 11=100 pm, r2=4QQ p¡¡
The total amount of air in pore I is:

Q=L,25.4.n(100.t9-613ß = 5,23.:o-12 tkgl
The coefficient r is about 1.

Insertion in eq (50) gives:

5,23. t0-t2=1,p. 16- I 5. 100. I 0-6.4*. rO-6t t/ 1 00, I 0-6_ lr4r., O-61.Â t

The time needed to empty pore I is: At = 1240 hours = 52 days.
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If the diffusivity was only L0-I2 
^Zlr,which 

is quite possible, the times needed
should be increased by a factor 10 to 520 days. However, according to eq (50) there is
an inverse proportionality between the size of the recipient bubble and the time needed
to empty the smaller bubble. Therefore, the times should have been somewhat shorter
had the recipent bubbles been larger tha¡r the value 400 ¡rm assumed in the example.

The calculation indicaæs that the time to fill the air-pore system is quite long, especi-
ally for dense concretes and./or concretes with coa¡se air-bubble systems. Air-pore
systems that are very fine will, however, rapidly become inactivated by water. It takes

about 70 times as long to empty a bubble contained in a pore with radius 100 ¡rm as a

bubble in a pore with radius 10 pm. Their volume ratio is however 1000. The time nee-
ded is evidently not proportional to the volumes. This mainly depends on the fact that
the cross section of diffusion increases with the bubble size at the same time as the leng-
th of the diffusion path has been supposed to be constant.

A complication with e.q (49) is that the bubble size in pore 1 decreases as air is lea-
ving ; it changes from r1,o to .1,t. Therefore, the over-pressure in pore I increases with

time. This is, however, approximately taken care of by the coefficient r. Besides, the ef-
fective cross section of air flow becomes a bit lower than the value rl.ryr2assumed in
eq (49).The net effect probably is that the flow from pore 1 is relatively constant during
the whole process and fairly well described by eq (49). The complication is avoided in
the model which will now be described.

In the real maærial, diffusion does not take place between individual pores as calcula-
ted above. There will be a sort of average local diffusion governed by a diffusion coeffi-
cient that is a function of the dc-ratio and the air content. A diffusion coefficient of the

type shown in eq (31) could perhaps be used. The value ô o is not known. It might be

estmated from measurements of saturated gas flow through water-saturated concrete. It
is supposed to be the same for diffusion from all pores.

Further on, the radius 12 is supposed to be infinite corresponding to a free water surtà-

ce or to the meniscus in a pore that is very much larger than 11. Ditttsion is supposed to

be symmetrical within a material sphere surrounding the bubble. The radius of this sphe-
re, or the length of the flow path, is L.

Then, the general equation for the flux of air q'tkglsl from a bubble with radius 11 is:

g' = &{ (L+r1)r1,¡' 4Í{Ll. Ác = &{ (L+r1)r1.4nlLl.s.2olr1,,
Or:
q'= õ { (L+r 1). 4nlLl.s.2o

(51.a)

(s1.b)

Where ô is the bulk diffusion coefficient of air in pore water; s is the solubilty of air.

Itis2,4.10-7 kg/(m3.pu)l at a pressure of I Pa and +20"C.In eq (51) it is assumed that
the resistance to diffusion is just as high in the absorbed water phase inside pore I as it
is in the cement paste.

It is reasonable to assume that the diffusion path increases with increasing size of the
bubble being emptied; c.f. eq (30), which shows that there is an inverse proportionality
between the speciirc surface of the pore and the average spacing provided the total
bubble volume under consideration is constant. The following assumtion is made:

L=Ê'rl wheree>1 (s2)
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Thus, the diffusion path increases linearily with the bubble size. Then, eq (51) can be

written:

q'= õ.[l+Uef.4n.s.Zo Ikg/s] (s3)

The rate of flow of air from a certain bubble is therefore approximately independent

of its size and is only dependent of the ratio e between the length of the diffusion path
and the pore size. The application of eq (53) is shown by trvo examples. The diffusivity
is supposed to be l0-11 

^Zlt.The 
coefficient e = 5. Thus:

9'= 5,6.10-18 kgsl
Exømple f : Pore radius 10 pm

L=5.10=50 ¡rm. The toral amount of air (see above) = 5,23'16-15 tkgl.
The time required ß 0,25 hours.

Examplc 2:Pore radius 100 m

Þ500 pm. The tot¿l amount of air = 5,23.t0-12 ttgl
The time required is 259 hours or Il days

The time required is directly proportional to the bubble volume; viz.\(53) implies
that the rate of air flow from a bubble in kg per second is independent of the bubble size.

It is a constant which is a function of the diffusion coefficient ô , the ratio of diffusion
path to the bubble radius, e,, the solubility of air in water, s, and the surface tension, o:

9'= constântl tkgsl (54)

It might be that the diffusion coefficient in the water phase inside pore 1 is much hig-
her than the diffusion coefficient in the cement paste. In such a case e.q (53) is modified
to:

q'= ô[ 1 + Uef.r y4n s.2ol r 1,, (s5)

This equation is much more difficult to handle since it implies that the rate of water-
filling of the air-pore is not a const¿nt but a function of the actual degree of saturation of
the pore. It must be solved numerically. For the smallest air-pores, at least, eq (53) and
(54) can be used without too much error. For those pores, which are also the most im-
portant for frost resistance, the diffusion path outside the pore is much larger than the
diffusion path inside the pore. Besides, most of the air-pore volume is filled before the
difference between the pore radius 11 and the bubble radius 11,, becomes very large.

4. The water absorption in model air-pore systems

4.l INTRODUCTION
In a real air-pore system there are air-bubbles of all sizes varying from about 5 pm to
500 pm ot more. Therefore, the simple solution performed above in which only a two-
bubble system is regarded is too simplihed. Such an analysis does however show that air
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will be transferred from every pore irrespectively of its size to larger pores in the neigh-
bourhood. Certainly, the pore will also recieve air from smaller adjacent pores. This is
the case especialyîor thê larger pores. Therefore, it might be a ceitain delay before the
pore will bè "a net exporteC'õf air migrating to still larger pores, or to the surface. Two
different models for a description of this water-filling process is treated below. Only
Model 1 is treaæd in this paper:

Model /: It is assumed that every pore starts to absorb water already when the capillary
process is ended in its sunoundings. The rate of air diffusion from a pore expressed
in terms of kg per second and the raæ of water-filling of a pore is supposed to be the
same for all pores; c.f.eq (54). Thus, a smaller pore is always compleæly filled befo-
re a larger one, but the water absorption is going on simultaneously in all pores. This
model implies that the total water content in the air-pore system is not only distribu-
ted among the smallest pores but that all air-pores contain more or less water. Model
I is a non--equilibrium model; the toøl free energy of the air-water system is higher
than in Model2.

Model2: T\e net diffusion process ben¡¿een all air-pores in the system is such that a
co¿ìrser pore will not start to take up water until the next smaller pore is completely
waær-frlled. This model implies that the total waær content in the air-pore system is
only distributed among the smallest pores while the coarser part of the pore system is
completely air-filled (apart from a thin water meniscus along the periphery). Model
2 is the most plausible model from a thermodynamical point of view since it corre-
sponds to the lowest free energy level of the sysæm.

4.2 II/ODE,L I: ABSORPTION IN ALL BUBBLES SIMULTANEOUSLY

4.2.1Theory
[æt us consider an air-pore distribution curve f(r); see Figure 2. This distribution could
be just a mathematical expression describing the shape of the real distribution curve but
not the absoluæ level of this. A fictitious air-pore volume Vu'calculated by this distribu-

tion is:
oo

Y a'= I Ønßyê.f(r).dr trn3l

=10 pm

The lower limit 10 tun is supposed to
ady during the capillary process.

*î" distribution F(r) is found by

va = J @ß. ¡.P.F(r) dr trn3l

=10 Um

The relation between the two distributions is:

F(r) = f(r).VulVu'

be the smallest pore that is not waær-filled alre-

utilizing the real air-pore volume Vu:

(s7)

(s6)

(s8)
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In the following f(r) is used. The average pore radius r.,¡ in the interval Ár is defined:

.m,i = (r1+ri*1)/2 [m]

The initial volume of air in one bubble of this size is:

v1(r*,i) = 14rl3).(r-,i)3 [rn3]

The initial weight of this air is:

Q1(rp,i) = V1(rr¡,i).po tkgl

(se)

(60)

(61)

(62)

(63)

(64)

(65)

Where ps is the density of air at normal pressure and at the actual temperature.

The number of pores with radius .rn,i in the inærval Âr is:

Õ(r-,i) = f(rm,i).Âr

The initial volume of air in all those bubbles is:

v'(rm,Ð = @(rm,i)'(4'7rl3)'rm,i3 tkgl

The time needed to completely empty each one of these bubbles is:

t(rrrr,i) = Qt(r-,i) lq'- @J q).(4n13).(r*,i)3 tsl

Where q'is the raæ of air diffusion from the bubble in kg/s. q'is a function of the dif-
fusion coefficient of the cement paste but not of the bubble size; see eq (51). Therefore,
it depends on the total aþore volume, the dc-ratio the type of binder etc; see eq (31).
The time needed to empty an air bubble is directly proportional to the bubble volume.

The time process of air diffusion is schematically shownrn Figure 7.The total air
volume that has diffused in the concrete during the time 0 to t(r*,1) corresponding to

the time it takes to completely frll the smallest bubbles (rro,1) is:

v' 
1 =t(r-, 1 ). { V'(rm, I )/t(rrn, 1 )+v' (r^,2) I t(r 

^.2)+ 
" " "" " " "'+

+V'(rr,n)/t(r-,n) [*3]

The total amount of air that has diffused afær time t(rm,i) is:

V'i=V'(rm,1)+V'(r-,2)+....+V'(r*,i_1)+t(r*,¡).{ V'(r,o,i)/t(rrn,i)+..........+

+V'(r-,n/t(r-,¡)) [*3] (66)

The total volume of air transported from the air bubbles, V'i is evidently a time func-



20
tion; V'¡=V'[t(r-,i)] =V'(t).

After a very long time the total airpore system is water-filled. Then, the volume of air
that has diffused equals the total initial air content in the air-pore system Vu':

v'n = v'(r-,1) + v'(r-,2) +....-..+ V'(rnr,n) =V'u t*31 (67)

The real volume of air t¡ansferred in the real air-pore system is obtained by multiply-
ing eq (65), (66) and (67) by the factor Vu/V; where Vu is the real air-pore volume; see

eq (5S)- The water volume Vw (Ð that has been taken up by the material at time t of dif-
fusion is supposed to be equal to the volume at normal pressure of diffused air V'(t):

vw (r) = v'(r) [*3] (6s)

The mass of water taken up at time t is:

wwiÐ = vw (r).1ü)o tkgl (69)

The degree of water-filling at úme t, or the "real" degree of saturation Su(t), of the en-

tire aþore sysæm is:

Su(t) = Vw'(ÐA/a [m3lm3] (70)

The " effective" degree of saturation" Su(\ )s¡¡ after time 5=t(rn ;) is defined as the

degree of saturation when only water in completely waær-fîlled air-pores, i.e. pores with
radii smaller than rmj, are considered. The effective degree of saturation is

jj
Sa(5)efr = {> v'ill Vu' = {I V'i}.S¿(5)A/w'(tj) QL)

The effective degree of saturation can also be obtained analytically from the air-pore
dist¡ibution. The volume Vw,i'of totally waær-filled pores with radii smaller than

r1(pm) is:

ri

vw,i'= J @rl3).ri3.f(r).dr (72)

=10

The radius can be substituæd by the corresponding time q required to fill completely

the pore with radius ri. Ee (64) gives the relation between the radius and the time. The

final result is:

,.113I
vw,i'=Y.J r1t¡.tll3.at Q3)

-10
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Where the constant Y is:

Y = [( 1/3 1 13 
¡, ça¡¡213).ïq' I p of 13 = 0, I 28. [q' t p 

o15 
t 3

V'(m.3¡

V'(m,21

(74)

The function f(Q is the radius distribution function in which r has been substituted by
t

ri :ËlTatmg
can c

pore system_and consequently the time p
A simplification made in the derivatio

constant. In real
This means that
cross section of ase in proportion to the decrease in bubbte
size; see eq (51). In t"-{tE,.thg cross section is ahoìt ionsrant and determined by the 

-

radius of tle p_ore itself. This leads to a too high clculaæd rate of air diffusion. The two
effects probably compensate each other fairly-we[.

r

Figure 7: Graphical representation of Model 1 of water absorption in the air-pore
system.

!J.2 Exponential function of pore radius
Th" pgl_fize_di_stribution can be determined by means of m
(e.g..AS!M C4tl) oI by automatic image .nalyses of thin s
nated surfaces. The observed one- or nvó- imensional porethree eomeric laws. From
them

A re distribution in a fair
mannef $:

c(m,31

f(r) = a1.ln b/br (7s)
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high value 0,587 of the exponenl It might also depend, to some extent, on the values
chosen for the diffusion coefficient. The values suggested might be too large.

The effective degree of saturation defined by eq (71) can be calculated analyúcally
utilizing F,q(73) and (74). The following relation for the volume of completely water-fiI-
led pores is valid for the actual type of distribution:

\tl3 Lt3

Vw,i'= Y.J {ln b¡U[3'q'l( n'po)) ¡.1 ¡1l346t ¡l/3 ]'dt
:10

(82)

Where the constant Y is given bV Eq (7a). This equation can be solved analytically
giving the relation between suction time and the effective degree of saturation of the air-
pore system.

1oe (rl

lv 2 34veeks 
i,iJäï. 

loyeors

Figure 9: The real degree of saturation of the air-pore system versus the water storage
time for two different diffusivities of air transport through pore water. Exponential fre-
quency function. Absorption according to Model 1; [Eq (81)].

The effective degree of saturation is obtained by dividing the values Vw,i'by the total

air-pore volume Vu'. The relation between the real a¡rd the effective degrees of satura-

tion are plotted in Figure /0. The relation is almost linear in a log-1og scale and inde-
pendent of the specific surface of the pore system- The following relation is valid:

Sa,eff = 0,918.Sa1,45

105rol

(83)

This means that a considerable fraction of the absorbed water is contained in pores
that a¡e coarser than the colmpletely water-filled hner pores which is shown by the fol-
lowing example:

Example: The effective degree of saturation is only 0,34 when the real degree of
saturation is 0,50. This means that only 68 7o of the water is contained in comple-
tely water-filled pores and the rest in coarse, partly air-hlled pores.

I
t
I
I

10/,ui l.u !r/ iM
-[ 

=16fl.u¡,

--ó = ldf,m2js
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4.2.3 Power function of pore ra"dii
An alternative frequency function of pore radii is:

f(r) = a2.{ lhb - ur."*b}

Figure 10: Relation between the real and the effective degrees of saturation of the air-
Pgre sys,tem. Exponential frequency function. Absorption according to
Model 1.

(84)

Where a2 is a constant which is determined by the total air-pore volume. b is a con-
stant that gives the shape of the distribution. Ímax is the radius of the largest pore. The
poy.er function gives a much more wide distribution than does the exponential function.

The tot¿l airpore volume is (for a2=L):

Y;= [nt3]. tb(4-b)l .{.**4-b-.rnin4-b} (S5)

The tot¿l surface area is:

A^' = [4nt3] tb(3-b)1. {.*o3-b - r*io3-b } (86)

The specific surface is Au'lVu'.

In Figure I I the real degree of saturation is plotted versus the parameter t.q7po for
some air-pore sy-stems with different specific area.. The relation is fairly linear in a log-
log scale- Therefore, the same type of ielatir n as Eq (79) canbe used: '

Su(t) = B'.[t.q7pop' for 0,1<Su(t)<0,6 (87)

The coefficients B'and C' arelisæd in TABLE 2. Nore: p e in Eq (87) musr be ex-

pressed in kg/pm3.
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TABLE 2:The coefficients B'a¡rd C'in Eq (87).

Specific surface (mm- 1¡ C'B'

50

30
10

1,47.10-2

2,89.10-3

4,84.10-5

0,208

0,280

0,46s

A general equation is:

-0,49

Su(t) = 1,33' 10-8'a o3'58.[t.q'lpo¡ 
1,46'(ao)

Where oo is expressed in rn.-l.
so

(88)

loe loft
{q .t l/9"

Figure I I: The real degree of saturation of the air-pore system versus the water storage
time expressed in terms of the parameter t q'lpo- Power function of pore ra-
dius. Absorption according to Model 1; tEq(88)1.

In Figure 12 the real degree of saturation is plotted versus the suction time for two
diffusivitiesi ô=10-l | 

^2ltand 
ô=10-12 

^2lr.The 
power function distribution evident-

aær absorption tha¡r does the exponential distribution
two examples. The examples also show that the shape
large effect on the rate by which it becomes water-fil-

Example f .' Two concretes with different types of the air-pore system are compa-
red. The specific surface of the pore system is the same, 30 mm-1. This means that
the mean value of the pore radius is the same (100 pm) but the median pore radius
and the shape of the volume size distribution is different; see above. The diffusivi-
ty of air diffusion is ô=10-11 

^2/t. 
The time needed to reach a real degree of sa-

turation of 0,5 is calculaæd-

lot

l0

/
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* Exponential function: Eq (S 1.a) gives: t = 7 ,5.1d sec : 9 days for Su = 0,5.

* Power function: Eq (SS) gives: t = 2,2.107 sec : 260 days for Sa = 0,5

Example: The same as above but the specific surface is only t0 mm-1.
* Exponentiolfu.nction: Eq (81.a) gives: t= 5,2.107 sec = 600 days Tor Sa = 0,5.

*Power function: F,q (8S) gives: t = 108 sec= t 160 dnys for Sa=0,5.

1 2 34reeks 6m lyeor 
f¡r"fll 

æ 50¡to.cs

Figure 12:'[he real degree of saturation of the air-pore system versus the water storage
time for two different diffusivities of air transport through pore water. Power
frequency function. Absorption according to Model 1.

5. Experimental results

In [7] a series of capillary absorption tests of concretes made with slag cements are pre-
sented. Four different cements made of a blend of the same clinker and the same ground
granulated blast furnace slag were tested. The slag content was 0 7o,15 Vo ,40 Vo and
65 Vo- The w/c-ratio was 0,45 in all concretes. The nominal air contents of the concrctes
were 2 Vo (non-ur entrained), 4,5 Vo and 6 Vo.The real air content differed a bit from the
nominal values.

The air-pore structure of some of the concretes was determined by automatic image
analysis- The water absorption was followed up to 30 days. The degree of saturatioñ of
the air-pore system versus the time was analyzed according to Eq (12). The results are
lisæd in Table 3. A measure of the absorption rate is obtained by-calculating the time
needed for a certain fraction of the airpore system to become water-filled. Fbr Sa=0,50
this time is k),5. It is calculated by:

t0,5 = [0,S131l/C (8e¡

All results of the calculations for the individual concretes are listed in TABLE 4. In
Table 3 the mean values and the spread in the coefficients B and C are listed tbr each ce-
ment type separately but including all concretes with the same cement but with different
air co_ntents. The spread in the results is not so large. It is a general trend that the expo-
nent C increases with the slag content. The coefficient B is more constant. Thereforè,
the time needed for a certain degree of water-filling of the airpore system decrease.s con-

so (fl

I-1= 
qþii' cr.=50

--- ó = lorzmz/s
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TABLE 4: Results of capillary absorption tests of slag cement concretes. The total test
time is 30 days.

slag content

(7o)

alr

(7o)

c[o

^.-l

B tEq (12)l C tEq (12)l b,s
(sec.)

16

36

45

2,r
4,5

6,2

0

6,55.10-3

6,22.r0-3
6,31.10-3

0,253
0,238
0,244

2,8.r07

1,0.108

6,1.107

15

23

54

44

2,0

4,1

5,9

g,g4.r0-3

7,16.10-3

7,47.r0-3

o,238
0,247

o,248

r,4.107

2,g.LO7

23'ro7

40

52

40

55

52

))
4,2

5,4

4,2

6,8

6,24.r0-3
5,85.10-3

4,71.10-3

5,59.10-3

6,32.r0-3

0,277

0,268

0,286
o,274

0,272

7,5.106

1,6.107

1,2.107

1,3.107

9,5.106

65

26

43

50

49

1,8

3,3

4,5

6,0

6,28.10-3

6,85.10-3

7,55.10-3

5,50.10-3

o,281
0,277

0,268
o,289

5,8.106

5,3.106

6,2'106

6,0.106

Average 6,67.r0-3 0.264 1,3.107 1)

1) Based on the average values of all values of B and C

TABLE 5: The úme needed to water-fill 30, 50 and 70 7o of the airpore system. The cal-
culation is based on the mean coefficients of B and C from TABLE 4.
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Slag
content(v") b,3

time (days)

b,5 4,7

2550
960
4s0
220

640
240
130
70

80
30
20
10

0
15
40
65
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6. Summary

Frost damage occurs when a certain critical water content in the pore system of the con-
crete is transgressed. Below the critical water content no harm is caused when the conc-
rcte fueezes; above the critical value severe damage occurs. Therefore, the residual servi-
ce life of concrete that is exposed to frost action is coupled to the future moisture condi-
tions inside the concrete. The critical absorption is individual for each concrete and de-
pends on its water-cement ratio, its air content, its air-pore structure etc. It is almost in-
dependent of the number of freezelthaw cycles and the frenzing rate but it is to a certain
extent dependent of the minimum freezing temperature.

The critical water content is a "fracture value" that is individual tbr every concrete. It
does always coffespond to a certain absorption in the so called air-pores by which is
meant pores that are coarse enough not to take part in the capillary absorption process.
Therefore, in order to make a prediction of the future service life possible one has to be
able to predict the long ærm absorption in the air-pore system.

In this report a theoretical and quantitative analysis is made of the absorption process
in air-pores within a concrete that is permanently stored in water. The absorption de-
pends on the dissolution of air from air-bubbles that became enclosed in the air-pores al-
ready during the first rapid capillary absorption process. The dissolved air moves by dif-
fusion to larger air-bubbles and, finally, to the surface of the specimen. This process is
very slow, especially for coarse air-bubbles .

Two main models for the absorption process are imaginable. Only model I is treated
in the paper:

Model l: According to which water absorption takes place simultanously in bubbles
of all sizes. It leads to a rather rapid waær absorption process, the smallest bubbles
being lost at first but the coarser bubbles also absorbing water t'rom the onset of water
storage-
Model2: According to which a coa¡ser bubble does not start to absorb water until the
next smaller bubble is completely filled. This model is the most plausible one from a
thermodynamical point of view. It leads to a considerably slower absorption rate than
Model 1 and, thus, to a longer service life.

F4uations for calculation of the water absorption in an arbritary air-pore system are
provided. Two types of frequency curves of the pore radius are investigated in detail; (a)
exponenúal functions; (b) power functions. Diagrams for the prediction of the absorp-
tion-time curves in such pore systems are provided.

The absorption rate is found to be very much depending on the shape of the pore size
distribution; the exponential function giving much more rapid absorption at a given ave-
rage specific surface of the air-pore system.

Experimental long term water absoqptions for 15 concretes are presented. The agree-
ment between the theoretical absorption curves and the observed is tàirly good.
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