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Abstract

This thesis studies the computational complexity and polynomial-time approx-
imability of a number of discrete combinatorial optimization problems involving
labeled trees and strings. The problems considered have applications to compu-
tational molecular biology, pattern matching, and many other areas of computer
science.

The thesis is divided into three parts. In the �rst part, we study some
problems in which the goal is to infer a leaf-labeled tree from a set of constraints
on lowest common ancestor relations. Our NP-hardness proofs, polynomial-time
approximation algorithms, and polynomial-time exact algorithms indicate that
these problems become computationally easier if the resulting tree is required to
comply with a prespeci�ed left-to-right ordering of the leaves.

The second part of the thesis deals with two problems related to identifying
shared substructures in labeled trees. We �rst investigate how the polynomial-
time approximability of the maximum agreement subtree problem depends on
the maximum height of the input trees. Then, we show how the running time of
the currently fastest known algorithm for the alignment between ordered trees
problem can be reduced for problem instances in which the two input trees are
similar and the scoring scheme satis�es some natural assumptions.

The third part is devoted to radius and diameter clustering problems for
binary strings where distances between strings are measured using the Ham-
ming metric. We present new inapproximability results and various types of
approximation algorithms as well as exact polynomial-time algorithms for cer-
tain restrictions of the problems.
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Chapter 1

Introduction

This thesis studies a number of discrete combinatorial optimization problems of
the form:

Given a set S of objects, compute an object that summarizes the
information contained in S in the best way possible.

A wide range of combinatorial optimization problems involving di�erent kinds of
objects and using di�erent de�nitions of �the best way possible� �t the descrip-
tion above. We refer to problems of this general type as consensus problems,
and algorithms for solving or approximating consensus problems as consensus
algorithms. Three important categories of consensus problems are those whose
respective goals are:

1. To merge two or more labeled trees into one larger tree so that no (or as
little as possible) branching information is lost.

2. To identify a subtree contained in all members of a set of labeled trees.

3. To �nd a representative that resembles all of the strings in a given set.

Some problems from the �rst category considered here are the maximum
3-leaf constraints consistency problem (M3LC), the ordered 3-leaf constraints
consistency problem (O3LC), and the maximum ordered 3-leaf constraints con-
sistency problem (MO3LC). In these problems, the objective is to combine a set
of overlapping, rooted, binary trees having precisely three labeled leaves each
into one distinctly leaf-labeled tree; applications can be found in the construc-
tion of evolutionary trees. Another problem which can be classi�ed as belonging
to the �rst category is the alignment between ordered trees problem where two
given node-labeled, ordered trees S and T have to be augmented with nodes
labeled by the blank symbol until they both become isomorphic to (when node
labels are ignored) some larger tree U in such a way that parts of S and T which
are alike correspond to the same nodes in U. E�cient algorithms for comput-

1



2 Chapter 1. Introduction

ing alignments between trees may be useful in computational molecular biology,
software construction, change detection in structured data, chemical structure
analysis, information retrieval, pattern matching, and automated natural lan-
guage translation systems.

An example of a consensus problem from the second category is the maxi-
mum agreement subtree problem (MAST). Given a set of rooted, unordered, leaf-
labeled trees, MAST asks for a tree with the maximum possible number of leaves
contained in all of the input trees. The primary use of MAST is to compare a set
of alternative evolutionary trees for a �xed set of objects, obtained by using dif-
ferent tree construction methods or di�erent sets of data. Another example of a
consensus problem from the second category is the tree inclusion problem which
can be formulated as a special case of the alignment between trees problem.

The Hamming center problem (HCP) is a consensus problem from the third
category. The input to HCP is a set S of binary strings of equal length, and
the objective is �nd a binary string (not necessarily in S) that minimizes the
maximum Hamming distance to the strings in S. In a generalization of HCP
called the Hamming p-radius clustering problem (HRC), the representative is
not just one string, but a set of strings. A related problem where the objec-
tive is to partition the input strings into p groups so that the maximum of
the group diameters is minimized is named the Hamming p-diameter cluster-
ing problem (HDC). HCP, HRC, and HDC have applications to coding theory,
computational molecular biology, and clustering.

1.1 Thesis Objectives

The general goal of this thesis is to contribute to the understanding of what
makes certain consensus problems solvable by e�cient algorithms and others in-
tractable. For this purpose, a number of speci�c, well-de�ned problems involving
labeled trees and strings are studied from a computational complexity point of
view.

The computational resource that we focus on here is time. When measuring
the e�ciency of an algorithm, we are concerned with the asymptotic behavior
of its worst-case running time as the size of its input tends to in�nity. An
algorithm is said to be e�cient if its asymptotic worst-case running time is
upper bounded by a polynomial in the size of its input, and a problem is called
e�ciently solvable if it can be solved by an e�cient algorithm. From here on,
an algorithm's asymptotic worst-case running time is normally just referred to
as its running time.

For each problem considered, if it is e�ciently solvable, we try to provide an
exact algorithm with as low running time as possible. On the other hand, if a
problem can be shown to be NP-hard1, we look for polynomial-time approxi-

1If a problem is NP-hard then it is highly unlikely that an e�cient, exact algorithm for
solving it can ever be constructed; see [10, 32, 49, 90, 105].



1.2 Organization of Thesis 3

mation algorithms with as good approximation factors as possible, and attempt
to �nd matching lower bounds on the polynomial-time approximability. For the
problems which are NP-hard, we also try to clarify whether any non-trivial re-
strictions lead to simpler problems which we can solve exactly in polynomial
time, or at least obtain better polynomial-time approximation factors for.

1.2 Organization of Thesis

The thesis is divided into three parts that may be read separately. Each part
is in turn divided into two self-contained chapters treating one or two speci�c
problems in detail, as outlined below.

Part I: Inferring Leaf-Labeled Trees from LCA Constraints

Chapter 2 The maximum LCA constraints consistency problem (MLC)
The maximum 3-leaf constraints consistency problem (M3LC)

Chapter 3 The ordered 3-leaf constraints consistency problem (O3LC)
The maximum ordered 3-leaf constraints consistency problem

(MO3LC)

Part II: Identifying Shared Substructures in Labeled Trees

Chapter 4 The maximum agreement subtree problem (MAST)

Chapter 5 The alignment between ordered trees problem

Part III: Clustering under the Hamming Metric

Chapter 6 The Hamming center problem (HCP)

Chapter 7 The Hamming p-radius clustering problem (HRC)
The Hamming p-diameter clustering problem (HDC)

Every chapter begins with an introduction which formally de�nes the inves-
tigated problems, argues why the problems are worth studying (Motivation),
provides some background information (Previous Results), and brie�y describes
the new results that will be presented in that chapter (Our Contributions). The
last section of every chapter (Concluding Remarks) summarizes our results and
discusses related open questions.

The reader is assumed to possess a basic knowledge of algorithm theory and
computational complexity equivalent to that covered by the widely used text-
books [32] and [105]. Some knowledge of approximation algorithms for NP-hard
problems will also be helpful; good introductions to this subject can be found in
the books [10, 63, 128].
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1.3 Main Results

Here, we list the main results presented in this thesis along with references to
where they have been published.

Part I: Inferring Leaf-Labeled Trees from LCA Constraints

• A new proof that the maximum LCA constraints consistency problem
(MLC) and the maximum 3-leaf constraints consistency problem (M3LC)
are NP-hard.

(Theorem 2.2 and Corollary 2.3 in Section 2.3; published in [67]. A more
complicated NP-hardness proof for MLC was published in [53], but it is not
reproduced here since the result follows directly from the NP-hardness of
M3LC. M3LC was independently proved to be NP-hard by Bryant in [21].)

• MLC and M3LC (as well as their weighted versions) can be approximated
within a factor of 3 of the optimum in polynomial time.

(Algorithm Approximation A in Section 2.4.1; published in [53].)

• A better polynomial-time approximation factor than the above can be
obtained for instances of M3LC (and its weighted version) in which the
optimal solution contains a large number of the input constraints.

(Algorithm Approximation B in Section 2.4.2; an older version containing
some minor errors was published in [53].)

• An algorithm for maintaining the union of a set of closed intervals under
a sequence of deletions from the set.

(Theorem 3.5 in Section 3.3; published in [52].)

• A polynomial-time algorithm for the ordered 3-leaf constraints consistency
problem (O3LC) which is in general asymptotically faster than the cur-
rently fastest known algorithms for the corresponding problem for un-
ordered trees.

(Algorithm Fast O3LC in Section 3.4; published in [52].)

• The maximum ordered 3-leaf constraints consistency problem (MO3LC)
can be solved in cubic time.

(Theorem 3.11 in Section 3.5; preliminary version published in [52].)

Part II: Identifying Shared Substructures in Labeled Trees

• The maximum agreement subtree problem (MAST) can be approximated
within a factor of (n/ log n) in O(kn2) time, where k is the number of input
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trees and n is the total number of di�erent leaf labels.

(Algorithm Simple MAST-Approx in Section 4.2.)

• If P6=NP then MAST cannot be approximated within a factor of nε for
any constant ε where 0 ≤ ε < 1

2 in polynomial time, even for instances
containing only trees of height 2. An even stronger inapproximability result
holds if ZPP6=NP.

(Theorem 4.2 in Section 4.3; published in [53].)

• MAST restricted to instances where both the number of input trees and
the maximum height of at least one tree are bounded by constants can be
approximated within a constant factor in polynomial time.

(Theorem 4.3 in Section 4.4; published in [53].)

• The running time of the algorithm of Jiang, Wang, and Zhang [70] for the
alignment between ordered trees problem can be reduced for instances in
which the two input trees are similar and the scoring scheme satis�es some
natural assumptions. In particular, if there exists an optimal alignment
with at most d blank symbols and d is known in advance, the problem can
be solved in O(n · (log n + ∆3) · d2) time, where n is the number of nodes
in the largest input tree and ∆ is the maximum degree of the trees.

(Algorithms Fast Score and Unspeci�ed d in Sections 5.6 and 5.7; published
in [68].)

Part III: Clustering under the Hamming Metric

• Several restrictions of the Hamming center problem (HCP) can be solved
exactly in polynomial time.

(Corollary 6.6 in Section 6.3; published in [50].)

• A randomized (4
3 + ε)-approximation algorithm for HCP, where ε can be

selected to be any constant > 0.

(Theorem 6.14 in Section 6.5; published in [50].)

• The Hamming p-radius clustering problem (HRC) and the Hamming p-
diameter clustering problem (HDC) are NP-hard to approximate within a
factor of 2− ε for any constant ε > 0.

(Theorem 7.5 in Section 7.3.1; published in [51].)

• An inapproximability result for the version of HDC in which the constraint
on the number of produced clusters is relaxed.

(Theorem 7.6 in Section 7.3.2 published in [51].)
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• HDC is NP-hard for every �xed p ≥ 3.

(Corollary 7.7 in Section 7.3.2 published in [51].)

• Several restrictions of HRC and HDC can be solved exactly in polynomial
time.

(Corollary 7.13 in Section 7.4; published in [51].)

• Approximation algorithms for HRC and HDC.

(Algorithms Farthest-Point Clustering and HRC Approximation Scheme
in Sections 7.5.1 and 7.5.2; published in [51]. Algorithm HRC Randomized
PTAS in Section 7.5.3 was obtained by combining the randomized PTAS
of Ostrovsky and Rabani [101] and the PTAS of Li, Ma, and Wang [91].)

• An approximation algorithm for HRC which approximates the p-radius
within a factor of (1 + ε) for any constant 0 < ε < 1 by slightly increasing
the number of output strings. Its running time is polynomial as long as
the p-radius is not too large.

(Theorem 7.22 in Section 7.6; published in [51].)
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Chapter 2

Inferring Unordered Trees

from Lowest Common

Ancestor Constraints

In this chapter, we study an optimization problem related to evolutionary tree
construction called the maximum LCA constraints consistency problem (MLC)
in which a set of constraints on lowest common ancestor relations is given and the
goal is to construct an unordered, leaf-labeled tree which maximizes the number
of satis�ed constraints. Special attention is paid to the case called the maximum
3-leaf constraints consistency problem (M3LC) where each of the input LCA
constraints involves three leaves only.

2.1 Introduction

We begin with some de�nitions.
Let S be a �nite set of elements. A lowest common ancestor constraint

on S (LCA constraint on S) is a constraint of the form {i, j} < {k, l}, where
i, j, k, l ∈ S, which speci�es that the lowest common ancestor of i and j is a
proper descendant of the lowest common ancestor of k and l. An LCA constraint
of the form {i, j} < {i, k} is called a 3-leaf constraint on S or a rooted triple on S,
and is written as ({i, j}, k) for short.

A tree whose leaves are labeled by elements in S in such a way that no two
leaves have the same label is said to be distinctly leaf-labeled by S. When S is
used to distinctly label the leaves of a tree R, each leaf of R is identi�ed with its
corresponding element in S. Therefore, the elements of S are commonly referred
to as leaves1. A rooted, unordered tree which is distinctly leaf-labeled by S and

1In some applications, the elements of S are called species.
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an LCA constraint on S which is satis�ed in the tree are consistent with each
other. See Figure 2.1 for two examples. Note that a 3-leaf constraint ({i, j}, k)
uniquely determines the relative topology of i, j, and k in any unordered tree
which is consistent with it; conversely, any rooted, unordered, binary tree with
three distinctly labeled leaves corresponds to a unique 3-leaf constraint.

l

i j

k

i j

k

Figure 2.1: The tree on the left is one of several unordered trees with four leaves
consistent with the LCA constraint {i, j} < {k, l}. The tree on the right is the unique
unordered tree with three leaves which is consistent with the 3-leaf constraint ({i, j}, k).

Aho, Sagiv, Szymanski, and Ullman [3] studied the following problem which
we call the LCA constraints consistency problem (LC):

The LCA constraints consistency problem (LC)

Instance: Finite set S, set T of LCA constraints on S.

Output: A rooted, unordered tree with leaves distinctly labeled by S which
is consistent with all of the constraints in T , if one exists; otherwise,
null.

They also studied the special case where each constraint is a 3-leaf constraint:

The 3-leaf constraints consistency problem (3LC)

Instance: Finite set S, set T of 3-leaf constraints on S.

Output: A rooted, unordered tree with leaves distinctly labeled by S which
is consistent with all of the constraints in T , if one exists; otherwise,
null.

LC and 3LC can be turned into optimization problems:

The maximum LCA constraints consistency problem (MLC)

Instance: Finite set S, set T of LCA constraints on S.

Output: A rooted, unordered tree with leaves distinctly labeled by S which
is consistent with as many of the constraints in T as possible.
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The maximum 3-leaf constraints consistency problem (M3LC)

Instance: Finite set S, set T of 3-leaf constraints on S.

Output: A rooted, unordered tree with leaves distinctly labeled by S which
is consistent with as many of the constraints in T as possible.

Throughout this chapter, we let n denote the cardinality of the set of leaves
and m the number of constraints, i.e., n = |S| and m = |T | in the problem
de�nitions above. Observe that m = O(n4) in MLC, and m = O(n3) in M3LC.

As an example, let S = {a, b, c, d} and T =
{
({a, b}, c), ({a, c}, d), ({c, d}, b)

}
be an instance of M3LC. There is no tree which is consistent with all of T and
whose leaves are distinctly labeled by S (as can be veri�ed by applying the
algorithm of Aho et al. described in Section 2.2), but each of the unordered
trees shown in Figure 2.2 is consistent with two constraints in T . Hence, this
problem instance has three optimal solutions.

a b

c

d

a b c d

a c

d

b

Figure 2.2: T = {({a, b}, c), ({a, c}, d), ({c, d}, b)}. The �rst tree is consistent with
({a, b}, c) and ({a, c}, d), the second tree is consistent with ({a, b}, c) and ({c, d}, b),
and the third tree is consistent with ({a, c}, d) and ({c, d}, b).

2.1.1 Motivation

Aho, Sagiv, Szymanski, and Ullman introduced LC and 3LC in [3]. Their mo-
tivation for studying these problems originated from a problem in the theory of
relational databases in which an SPJ-expression is given and the goal is to con-
struct an equivalent SPJ-expression containing the minimum possible number of
join operators (see [3] for details). Their proposed solution represents the given
SPJ-expression by a tableau A, transforms A into an equivalent minimum row
tableau A′, and then constructs an SPJ-expression from A′; in the important
special case of simple tableaux, an e�cient algorithm for solving LC can be used
to e�ciently construct SPJ-expressions from row-optimized tableaux in the last
step.
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3LC and M3LC are also of interest because of their connection to the con-
struction of evolutionary trees2. Reliable methods for determining evolutionary
history are of fundamental importance to biology because before the mechanisms
of evolution can be explained, its e�ects must be examined and well understood.
By inferring evolutionary trees for di�erent sets of species, biologists can deduce
in which order and at what rate genetic changes have taken place, which yields
clues about the causes of evolution. Secondly, classi�cations of species based on
their evolutionary history are indicative and meaningful, and help scientists or-
ganize and exchange information. Note that the �species� do not necessarily have
to be distinct biological species; they may be entire populations or categories of
species, or any other entities assumed to have been subjected to an evolution-
ary process such as proteins, nucleic acids, languages, chain letters, or medieval
manuscripts [15, 18, 23, 92, 111]. Therefore, �elds like historical linguistics also
need good methods for constructing evolutionary trees.

To describe evolutionary relationships with trees is an old idea. Long before
the present-day theories of molecular biology, Charles Darwin, Edward Blyth,
Ernst Haeckel, and other 19th century natural scientists compared the devel-
opment of di�erent species originating from a common ancestor to a branching
tree. Initially, biologists built evolutionary trees from data based on observ-
able morphological features (and intuition). Later, biochemical data and results
from molecular sequence comparisons became popular as well. The assump-
tions behind what distinguishes good optimization criteria vary according to
the particular application, the hypothesized model of evolution, and the type
of available data3, which explains why so many kinds of evolutionary trees and
methods for reconstructing evolutionary history have been invented. No sin-
gle method appears to work well all the time; hence, many di�erent methods
are still commonly used. Roughly, existing techniques for inferring evolutionary
trees can be divided into:

Character-state methods: Represent each object by a vector of character
states and look for a tree that clusters objects with a lot in common.

Distance-based methods: Compute the evolutionary distance between every

2An evolutionary tree (or a phylogenetic tree) is an unordered, leaf-labeled tree that de-
scribes how a set of objects produced by some evolutionary process are believed to be related.
The objects are represented by leaves and common ancestors by internal nodes so that the
branching structure of the tree re�ects the assumed evolutionary relationships. Sometimes
weights are assigned to the edges to illustrate evolutionary distance, i.e., estimates of the time
taken for an ancestral object to evolve into other objects. In some settings, the data does not
uniquely determine a root, which leads to unrooted (as opposed to rooted) trees. Here, we
concentrate on unweighted, rooted trees.

3For instance, the parsimony principle (which says that one should attempt to minimize
the number of state changes induced by the constructed tree) is often used when treating
morphological data but may be less appropriate for DNA sequence data. This is because DNA
sequence positions do not evolve independently and because changes during evolution in DNA
are much more frequent than changes in morphological characters, implying that many back
substitutions should be expected.
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pair of objects, then try to build an edge-weighted tree which complies
with these values.

Maximum likelihood methods: View evolution as a stochastic process and
use statistical methods to �nd the most probable tree.

Consensus methods: Combine a set of (possibly con�icting) trees into one
�nal tree.

Comprehensive surveys of the �rst three types of methods can be found
in [92, 111, 122, 130]. Many evolutionary tree construction algorithms belonging
to these three categories have been implemented in PHYLIP [44] (a package
of computer programs available for free on the Internet) and in a commercial
software package called PAUP∗ [121]. The fourth category refers to methods
such as the quartet approach (see [81] for a recent survey), rooted triple-based
methods [71, 72], and methods based on splits/clusters contained in the input
trees (see Section 6.2 in [21]) which all take as input a set of evolutionary trees,
obtained by some other tree inference method, and output a single tree which
summarizes the branching information in the input trees. The rationale for using
consensus methods to infer new trees is that although computationally expensive
tree construction methods such as maximum likelihood or maximum parsimony
are infeasible for large sets of objects, they can be applied to obtain highly accu-
rate trees for smaller, overlapping subsets of the objects which can subsequently
be merged into one tree for all the objects by using less computationally inten-
sive techniques. Ideally, the optimization criteria for determining the �nal tree
should be selected in accordance with the assumed model of evolution to guar-
antee the practical relevance of the optimal solution. But before this is possible,
one must learn about the underlying combinatorial problems.

This is where 3LC and M3LC come in. Given a set T of rooted, binary
evolutionary trees where each tree contains exactly three leaves (for example,
obtained by Sibley-Ahlquist-style DNA-DNA hybridization experiments [71] or
by maximum likelihood methods), the problem of constructing a rooted, un-
ordered tree consistent with all of T (if one exists) is precisely 3LC. However,
data obtained experimentally often contains errors, implying that there prob-
ably will not exist a tree consistent with all of T . Since a single erroneous
tree in the input results in the algorithms for 3LC returning the null tree, the
optimization version (M3LC) is perhaps even more important for real applica-
tions. Therefore, we are especially interested in the computational complexity
and polynomial-time approximability of M3LC.

2.1.2 Previous Results

Aho, Sagiv, Szymanski, and Ullman [3] presented an algorithm for solving LC
which runs in O(mn log n) time. For 3LC, its running time is O(mn). The
algorithm returns a tree of minimum height which is consistent with all of the
input constraints, if such a tree exists.
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Henzinger, King, and Warnow [62] showed how to solve the special case 3LC
more e�ciently. Assuming that m = Ω(n), their adaptation of the algorithm
of Aho et al. runs in O(mn1/2) time (deterministic version), or in O(m log3 n)
expected time (randomized version). Henzinger et al. also gave a deterministic
algorithm for 3LC with running time O(m+n2 log n). It is asymptotically faster
than the deterministic algorithm above if m = ω(n3/2 log n), but does not always
construct a tree of minimum height.

M3LC was �rst proved to be NP-hard by Bryant in [21].

The analog of 3LC for unrooted trees is called the quartets consistency prob-
lem (QC). In QC, the input is a set Q of resolved quartets (unrooted, leaf-labeled
trees each having 4 leaves and no nodes of degree 2), and the goal is to �nd an
unrooted, leaf-labeled tree which is consistent with all of the quartets in Q, if one
exists. The maximum quartets consistency problem (MQC) is the optimization
version of QC. 3LC and M3LC can be viewed as the restrictions of QC and MQC
to instances where all the given quartets have one leaf in common, corresponding
to the root [116]. For a brief discussion of how the computational complexity
results for 3LC and M3LC compare to those known for QC and MQC, see the
footnote in Section 2.5. For further references on quartets, see [81].

2.1.3 Our Contributions

We provide a new proof for the NP-hardness of M3LC and MLC. Then, since
no algorithm can solve MLC or M3LC exactly in polynomial time unless P=NP,
we present two polynomial-time approximation algorithms called Algorithm Ap-
proximation A and Algorithm Approximation B. The �rst one approximates both
MLC and M3LC within a constant factor, and the second one yields a better ap-
proximation factor for instances of M3LC in which the optimal solution contains
a large number of the input constraints. To be more precise, we show that:

• MLC and M3LC (as well as their weighted versions) can be approximated
within a factor of 3 of the optimum in O((m + n) log n) time.

(Algorithm Approximation A in Section 2.4.1.)

• M3LC (and its weighted version) can be approximated in the following
way. An approximate solution consistent with a subset of the input con-
straints whose total weight is at least W − nt, where W is the total
weight of all input constraints and t is the minimum total weight of con-
straints needed to remove in order to achieve consistency, can be con-
structed in min

{
O(mn2 + n3 log n), O(n4)

}
time, or with high probability

in min
{
O(mn log3 n), O(n3 log n)

}
time.

(Algorithm Approximation B in Section 2.4.2.)

To our knowledge, these are the only results on the polynomial-time approxima-
bility of MLC and M3LC that have ever been published.
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The rest of this chapter is organized as follows. We review existing algorithms
for LC and 3LC in Section 2.2. In Section 2.3, we investigate the computational
complexities of MLC and M3LC. We present Algorithm Approximation A and
Algorithm Approximation B in Section 2.4. Finally, in Section 2.5, some open
problems are discussed.

2.2 Preliminaries

Below, we describe the algorithms of Aho, Sagiv, Szymanski, and Ullman [3]
and Henzinger, King, and Warnow [62] since they form the basis for the approx-
imation algorithm given in Section 2.4.2 and the exact algorithm in Section 3.4.

2.2.1 The Algorithm of Aho, Sagiv, Szymanski, and Ull-

man

The algorithm of Aho et al. [3] for LC partitions the leaves in S into blocks using
the set of input constraints T . The blocks are chosen so that each block consists
of all leaves that will be descendants of (or equal to) one child of the root in
the tree being constructed. To partition the leaves, the algorithm looks for the
largest possible set of blocks obeying the rules:

(1) If {i, j} < {k, l} is an input constraint then i and j are in the same block4.

(2) If {i, j} < {k, l} is an input constraint and k and l are in the same block
then i, j, k, l are all in this block5.

For 3LC, only one rule is needed:

(1′) If ({i, j}, k) is an input constraint then i and j are in the same block.

If the number of blocks is at least two, the algorithm recursively constructs a
tree for each block, attaches these trees to a common parent node, and returns
the resulting tree. When recursing on a block, only constraints consisting entirely
of leaves in that block are considered; all other constraints are ignored.

Otherwise, there is just one block. If the block consists of a single leaf i, the
algorithm returns a tree with one leaf labeled by i. If the block contains more
than one leaf, the algorithm aborts its execution and returns the null tree since
no tree can be consistent with all of the constraints (see [3] for proofs).

4This is because for any i, j, k, l ∈ S, if {i, j} < {k, l} is an input constraint then the lowest
common ancestor of i and j cannot be at the root of the tree (otherwise, it could not be a
proper descendant of the lowest common ancestor of k and l), so i and j cannot belong to two
di�erent blocks.

5Similarly to the above, for any i, j, k, l ∈ S, if {i, j} < {k, l} is an input constraint then
either k and l must be in di�erent blocks or all four leaves must belong to the same block.
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In [3], Aho et al. explained how their algorithm for LC can be implemented
to run in O(mn log n) time. They also showed that when restricted to 3LC, it
can be implemented to run in O(mn) time as follows.

For any subset L of leaves in S, let G(L) be the undirected graph with vertex
set L and edge set E(L), where E(L) is the set of edges induced by rule (1′)
applied to the set of constraints on leaves entirely contained in L, i.e., if there
is a constraint ({i, j}, k) and i, j, k ∈ L, then edge {i, j} is included in E(L).
Now, the connected components of G(L) represent the blocks of leaves that L is
partitioned into by rule (1′).

Thus, given an instance (S, T ) of 3LC, the algorithm builds G(S) and cal-
culates the connected components C1, ..., Cq of G(S). If q ≥ 2, it then makes
q recursive calls to itself on instances (S1, T1),...,(Sq, Tq), where for 1 ≤ p ≤ q,
Sp is the set of leaves in Cp, and the sets T1, ..., Tq are obtained by scanning T
(for each ({i, j}, k) ∈ T , if all of i, j, and k belong to the same Sp then ({i, j}, k)
is placed in Tp; otherwise it is deleted).

At each of the O(n) recursion levels, the total time required to build all
graphs and to �nd their connected components is O(m). Scanning the con-
straints to compute the sets Tp also takes O(m) time on each level. Therefore,
this implementation has a running time which is O(mn).

2.2.2 The Algorithm of Henzinger, King, and Warnow

The running time of the algorithm of Aho et al. for 3LC as stated is O(mn);
Henzinger et al. [62] subsequently improved its e�ciency. By employing an
auxiliary data structure consisting of two graphsU andD described below and an
algorithm for the deletions-only dynamic graph connectivity problem that keeps
track of the connected components in a graph under a sequence of edge deletions,
they speeded up two bottlenecks in Aho et al.'s algorithm: (1) determining
which of the input constraints contain leaves from a speci�ed block only, and
(2) �nding the connected components of the graphs G(S1), G(S2), ..., G(Sq) (i.e.,
recomputing the connected components of the graph G(S) after a set of edges
has been deleted).

The undirected graph U and the directed graph D are de�ned as:

• U = (S, E) with vertex set equal to the input set of leaves S, and where
for each constraint ({a, b}, c) in T , the edges {a, b} and {b, c} are in E.

• D = (S′, A), where for each constraint ({a, b}, c) in T , the vertices {a, b}
and {b, c} are in S′ and the directed edge {a, b} → {b, c} is in A.

Current blocks of leaves in the algorithm of Aho et al. correspond to current
yellow components in U . At the beginning, all edges of U are colored yellow.
During the course of the algorithm, D is used to �nd edges of U that are colored
red. Checking if coloring an edge red results in a yellow component being split
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into two yellow components is done with a dynamic graph connectivity algorithm
which uses some internal data structure to represent U .

A maximal vertex in D is a vertex with no outgoing edges. A red edge of U
whose endpoints are in di�erent yellow components is called a separable red edge.

Each input constraint is represented by a directed edge in D. Hence, deleting
a vertex in D and its incident edges corresponds to deleting one or more of the
input constraints. Consider an input constraint ({a, b}, c). In the algorithm of
Aho et al., it is deleted when b and c no longer belong to the same block; in the
algorithm of Henzinger et al., the vertex {b, c} and the directed edge {a, b} →
{b, c} are deleted from D and the edge {b, c} is deleted from U when {b, c}
becomes a separable red edge in U , i.e., when b and c belong to di�erent yellow
components for the �rst time.

Algorithm Fast 3LC

Input: An instance of 3LC.

Output: A rooted, unordered tree R of minimum height which is consistent with
all of the constraints, if one exists; the null tree, otherwise.

1 Construct U and D.

2 Color all edges in U yellow and initialize the dynamic graph connectivity
algorithm.

3 Create the root of R. Initialize components information.

4 for each maximal vertex {x, y} in D do

If {x, y} is a yellow edge in U then color it red, delete it in the dynamic
graph connectivity data structure, and query the dynamic connectivity
algorithm �are x and y connected?�; if �no� then update components in-
formation and R.

endfor

5 For each old yellow component Ci, if |Ci| > 1 and Ci was not split into at
least two components during step 4 in this iteration then return the null tree.

6 If |Ci| = 1 for every yellow component Ci then return R.

Otherwise, �nd all separable red edges and delete these edges from U and the
corresponding vertices (plus their incident edges) from D.

7 Go to step 4.

End Fast 3LC

Figure 2.3: Henzinger, King, and Warnow's adaptation of the algorithm of Aho, Sagiv,
Szymanski, and Ullman.

Henzinger et al.'s algorithm is outlined in Figure 2.3. The tree constructed
by the algorithm is denoted by R. If a yellow component C splits into c yellow
components C1, C2, ..., Cc in one iteration of the algorithm, then the node in R
corresponding to C will have c children corresponding to C1, C2, ..., Cc, respec-
tively. The algorithm keeps information about the current yellow components so
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that new nodes can be created and attached to their correct parent nodes when
updating R in step 4. We omit the implementation details here.

Updating R in step 4 also includes checking the new yellow components to
see if any of them consist of a single vertex v. If this is the case, then the
corresponding node in R is labeled by v.

In any given iteration of the algorithm, the yellow components of U right
before the execution of step 4 are called old. When step 5 is reached, if an old
yellow component consisting of more than just one leaf was not split into two or
more new yellow components then the algorithm gives up since some constraints
involving the leaves in that component contradict each other.

To �nd the separable red edges e�ciently, Henzinger et al. extended an idea
from [39]. In step 4, if the dynamic graph connectivity algorithm reports that x
and y are not connected any longer then the yellow component C that previously
contained both x and y has been split into two. The number of vertices in at
least one of the two resulting components must be less than or equal to half of
the number of vertices in C; such a component is called lesser. When C is split
into two, a lesser component can be discovered by searching in U from x and y,
alternating between the two searches until one component is completely visited.
This is then used in step 6, where it would be too time-consuming to locate the
separable red edges by traversing all the yellow components in every iteration.
Instead, the algorithm only searches in newly created yellow components which
are lesser; this way, each edge is visited at most O(log n) times in total until it
becomes a separable red edge and is deleted from U .

Henzinger et al. employed two di�erent algorithms for dynamic graph con-
nectivity. The �rst one [37, 47] is deterministic and allows each update and
connectivity query to be performed in O(n1/2) and O(1) time, respectively,
whereas the second one [61] is randomized and allows each update to be carried
out in O(log3 n) amortized expected time and each query in O(log n/ log log n)
time. All other operations in Henzinger et al.'s algorithm take a total of O(n +
m + M ·log n) time, where M is the initial number of edges in the constructed
graph U . Since M = O(m), the 3LC algorithm can thus be implemented to run
in O(n + mn1/2) time (deterministically), or in O(n + m log3 n) expected time
(randomized).

We note that the running time can be improved simply by substituting the
used algorithms for dynamic graph connectivity with more recent ones. It su�ces
to use a decremental dynamic graph connectivity algorithm since all updates
are edge deletions. Furthermore, the number of edges in U is bounded not only
by O(m), but also by O(n2) because |S| = n, so M = min

{
O(m), O(n2)

}
. In

general, we have the following theorem.

Theorem 2.1 Given an algorithm for decremental dynamic graph connectivity
which takes u(n) amortized time per update and answers each connectivity query
in q(n) time, Henzinger et al.'s algorithm for 3LC can be implemented to run in
O(n + m + M ·(logn + u(n) + q(n))) time, where M = min

{
O(m), O(n2)

}
.
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For example, if we use the deterministic algorithm for fully dynamic graph
connectivity due to Holm, de Lichtenberg, and Thorup [65] with u(n)=O(log2 n)
and q(n) = O(log n/ log log n), we obtain a deterministic algorithm for solving
3LC whose running time is min

{
O(n + m log2 n), O(m + n2 log2 n)

}
. Alterna-

tively, we can take the randomized algorithm for fully dynamic graph connec-
tivity of Thorup [127] with u(n) = O(log n(log log n)3) amortized expected time
and q(n) = O(log n/ log log log n) to get a randomized algorithm for 3LC with
min

{
O(n + m log n(log log n)3), O(m + n2 log n(log log n)3)

}
expected running

time. A specialized randomized algorithm for decremental dynamic graph con-
nectivity by Thorup [126] is even more e�cient if U initially contains many
edges; if M = Ω(n(log n log log n)2), then u(n) = O(log n) amortized expected
time and q(n) = O(1), resulting in an algorithm with min

{
O(n + m log n),

O(m + n2 log n)
}

= min
{
O(m log n), O(m + n2 log n)

}
expected running time

for these special instances of 3LC.

In [62], Henzinger et al. also presented a variant of the above algorithm
which solves 3LC in O(m + n2 log n) time. It constructs trees which are binary,
and hence not necessarily equivalent to the trees of minimum height constructed
by the algorithm of Aho et al. The main di�erence is that in each iteration,
at most one new yellow component is discovered so that R is extended with at
most two new nodes. In step 4, rather than processing each edge individually
(i.e., deleting it in the dynamic graph connectivity data structure and testing
if its endpoints still are connected), the algorithm �rst deletes all those edges
using a special batch deletion algorithm and then asks for one new component.
Not all newly created yellow components are discovered immediately; thus, a
component which is reported as �new� does not need to have been caused by the
most recent batch of edge deletions. As before, R is updated and a lesser yellow
component is identi�ed in order to �nd separable red edges later on. Step 5 is
modi�ed to return the null tree if no new component was reported in step 4.

2.3 MLC and M3LC are NP-Hard

In this section, we prove that MLC and M3LC are NP-hard problems6.

Denote the decision problem versions of MLC and M3LC by MLC(D) and
M3LC(D), respectively. Here, a positive integer D is also given as part of the
input, and the output is the answer to the question �Does there exist a rooted,
unordered tree that is consistent with D of the input constraints?�.

6The NP-hardness proof for M3LC given here was published in 2001 [67] in response to an
open question from 1999 [53]. Unknown to us at that time, M3LC had already been proven
to be NP-hard by Bryant in 1997 [21]. Nevertheless, we have decided to include our proof
from [67] here since alternative reductions (Bryant's proof uses a reduction from the feedback

arc set problem to M3LC whereas we reduce from cyclic ordering to M3LC) may be helpful,
e.g., for proving inapproximability results for M3LC in the future.
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To determine the computational complexity of M3LC(D), we will use a re-
sult of Galil and Megiddo [48] stating that the following problem (listed as
problem MS2 in [49]) is NP-complete.

Cyclic ordering

Instance: Finite set A, collection C of ordered triples (a, b, c) of distinct
elements from A.

Question: Is there a one-to-one function f : A → {1, 2, ..., |A|} such that,
for each (a, b, c) ∈ C, we have either f(a) < f(b) < f(c), or f(b) <
f(c) < f(a), or f(c) < f(a) < f(b)?

We are now ready for the main result of this section.

Theorem 2.2 M3LC(D) is NP-complete.

Proof: M3LC(D) is in NP since verifying if there exists a rooted tree that is
consistent with a given subset of T can be done in polynomial time with the
algorithm of Aho et al. (see Section 2.2).

To show the NP-hardness of M3LC(D), we provide a polynomial-time re-
duction from cyclic ordering to M3LC(D). Given an instance (A, C) of cyclic
ordering, let S = A ∪ {x0, x1, x2, ..., x|C|} and let D = |A|·(|A|−1)

2 + 2 · |C|. For
each a, b ∈ A with a 6= b, include the two constraints ({x0, a}, b) and ({x0, b}, a)
in T . Next, for every i in {1, 2, ..., |C|}, add to T the three constraints ({xi, a}, b),
({xi, b}, c), and ({xi, c}, a), where (a, b, c) is the ith ordered triple in C. Observe
that at most one of ({x0, a}, b) and ({x0, b}, a) and at most two of ({xi, a}, b),
({xi, b}, c), and ({xi, c}, a) can be consistent with any rooted tree, so the number
of constraints in T that can be satis�ed at the same time must be ≤ D.

Claim: (A, C) has a cyclic ordering if and only if there exists a rooted tree
that is consistent with D of the constraints in T .

Proof of claim: Suppose the answer to the cyclic ordering instance is yes.
Then there exists a one-to-one function f : A→ {1, 2, ..., |A|} such that for each
ordered triple (a, b, c) ∈ C, we have either f(a) < f(b) < f(c), or f(b) < f(c) <
f(a), or f(c) < f(a) < f(b). We can construct a rooted tree consistent with
D constraints as in Figure 2.4. (If f(αi) < f(βi) < f(γi) for the ith ordered
triple in C, then ({xi, αi}, βi) and ({xi, βi}, γi) are consistent with the tree in
Figure 2.4. Also, for each pair a, b ∈ A with a 6= b, exactly one of ({x0, a}, b)
and ({x0, b}, a) is consistent with the tree. Thus, the tree is consistent with
2 · |C| + |A|·(|A|−1)

2 of the constraints in T .)

Conversely, suppose there exists a rooted tree R consistent with |A|·(|A|−1)
2 +

2 · |C| of the constraints. At most |A|·(|A|−1)
2 constraints of type ({x0, a}, b)

and at most 2 · |C| constraints of type ({xi, a}, b) with i 6= 0 can be consistent
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x0 x1

f    (|A|)-1

x|C|

f    (1)

f    (2)-1

-1

Figure 2.4: This tree is consistent with D constraints.

with R, so R must be consistent with precisely this many constraints of each
type, respectively. |A|·(|A|−1)

2 constraints of the former type can only be satis�ed
if the subtree of R induced by A∪{x0} is a rooted caterpillar tree whose root is
the parent of a leaf and an internal node, and one of the two leaves at maximum
distance from the root is labeled x0 (otherwise, for some pair a, b ∈ A, neither
({x0, a}, b) nor ({x0, b}, a) would be consistent with R). For each a ∈ A, let
f(a) be the number of internal nodes on the path from a to x0 in the subtree
of R induced by A ∪ {x0}. Next, because of the constraints of the second type,
for every ordered triple (a, b, c) ∈ C, exactly two of the three corresponding
constraints in T are consistent with R (if, for some ordered triple, just one
constraint was consistent with R, then the number of constraints of this type
consistent with R could not add up to 2 · |C|). Therefore, either (1) a is closer to
x0 than b is to x0 and b is closer to x0 than c is to x0, implying f(a) < f(b) < f(c),
or (2) b is closer to x0 than c is to x0 and c is closer to x0 than a is to x0, implying
f(b) < f(c) < f(a), or (3) c is closer to x0 than a is to x0 and a is closer to x0

than b is to x0, implying f(c) < f(a) < f(b).

Hence, M3LC(D) is NP-complete. 2

Corollary 2.3 MLC(D) is NP-complete.

Proof: MLC(D) is in NP because the algorithm of Aho et al. can check any
given subset of the LCA constraints for consistency in polynomial time. MLC(D)
is NP-hard since it admits a direct reduction from M3LC(D); just replace each
3-leaf constraint ({a, b}, c) in the given instance by {a, b} < {a, c}. 2
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2.4 Polynomial-Time Approximation Algorithms

for MLC and M3LC

The approximation algorithms in this section also work for the natural gener-
alizations of MLC and M3LC in which a positive weight w(c) is associated to
each input constraint c, and the objective is to construct a rooted tree which is
consistent with a subset of the constraints of maximum total weight.

If no weights have been assigned to the constraints, they are all assumed to
have weight 1.

2.4.1 Algorithm Approximation A

In this subsection, we give a constant-factor approximation algorithm for MLC
and M3LC which runs in polynomial time.

De�nition 2.4 For an LCA constraint {i, j} < {k, l}, where all of the four
leaves are di�erent, k and l are said to have an upper occurrence in the constraint,
and i and j are said to have a lower occurrence in the constraint. For a 3-leaf
constraint ({i, j}, k), i and j are said to have a lower occurrence in the constraint
and k is said to have an upper occurrence in the constraint.

De�nition 2.5 The total weight of upper (lower) occurrences for a leaf l is the
sum of the weights of all constraints in which l has upper (lower) occurrences.

We immediately obtain the following lemma.

Lemma 2.6 In any instance of MLC/M3LC, the sum of all leaves' total weight
of upper occurrences is at least one third (exactly one half if all constraints
contain four di�erent leaves) of the sum of all leaves' total weight of upper and
lower occurrences.

Proof: Denote the sum of all leaves' total weight of upper occurrences by
Y and the sum of all leaves' total weight of upper and lower occurrences by
X . Let A be the set of 3-leaf constraints in T , and let B be the set of LCA
constraints in T with four di�erent leaves. For every constraint c ∈ T , let w(c)
be the weight of c. If c ∈ A, then it contributes w(c) to Y and 3w(c) to X .
Otherwise, c ∈ B and hence contributes 2w(c) to Y and 4w(c) to X . Therefore,
Y =

∑
c∈A

w(c) +
∑

c∈B

2w(c) and X =
∑
c∈A

3w(c) +
∑

c∈B

4w(c). Now,



Y ≥

∑
c∈A

w(c) + 4
3 ·

∑
c∈B

w(c) = 1
3 · X

Y ≤ 3
2 ·

∑
c∈A

w(c) + 2·
∑
c∈B

w(c) = 1
2 · X

which shows that 1
3 ·X ≤ Y ≤

1
2 ·X . If all constraints have four di�erent leaves

then A = ∅ and Y = 1
2 ·X . 2
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In particular, Lemma 2.6 implies that given a nonempty set of constraints,
there always exists a leaf for which the total weight of its upper occurrences
divided by the total weight of its upper and lower occurrences is ≥ 1

3 . This is
used by Algorithm Approximation A, shown in Figure 2.5, to obtain a factor 3
approximation algorithm for MLC/M3LC.

Algorithm Approximation A

Input: An instance of MLC or M3LC.

Output: A rooted, unordered tree which is consistent with a subset of the con-
straints whose total weight is at least one third (at least one half if
all constraints contain four di�erent leaves) of the total weight of all
constraints.

1 REMAINING← T

2 LEAV ES ← S

3 R← a rooted tree consisting of a single, unlabeled node v

4 while REMAINING 6= ∅ do

4.1 Pick a leaf ` in LEAV ES which achieves the maximum ratio between
its total weight of upper occurrences and its total weight of upper and
lower occurrences in the constraints in REMAINING.

4.2 L← the set of constraints in REMAINING which contain `

4.3 REMAINING← REMAINING \ L

4.4 LEAV ES ← LEAV ES \ {`}
4.5 Extend R by adding two children to v; label the �rst child by ` and

set v to the second child.

endwhile

5 Extend R by adding |LEAV ES| children to v, label them uniquely with ele-
ments in LEAV ES, and return R.

End Approximation A

Figure 2.5: A polynomial-time 3-approximation algorithm for MLC/M3LC.

Theorem 2.7 Algorithm Approximation A constructs a tree which is consistent
with a subset of the constraints whose total weight is at least one third (at least
one half if all constraints contain four di�erent leaves) of the total weight of all
the constraints in O((m + n) log n) time.

Proof: By Lemma 2.6 and the choice of ` in step 4.1, the ratio between the total
weight of upper occurrences and the total weight of upper and lower occurrences
for ` in the constraints in REMAINING is at least one third. All constraints
in L in which ` has an upper occurrence are consistent with R by the construction
of R. Thus, every time the algorithm has performed step 4.5, R is consistent
with a subset of T \ REMAINING whose total weight is at least one third of
the total weight of all the constraints in T \REMAINING.
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To implement steps 4.1 and 4.4 e�ciently, we arrange LEAV ES in a prior-
ity queue ordered by the ratio between the total weight of their upper occur-
rences and the total weight of their upper and lower occurrences in constraints
in REMAINING. All priority queue operations (creating the priority queue,
selecting the `'s, and updating the priority queue after step 4.3) take a total of
O((n + m) log n) time.

To implement steps 4.2 and 4.3, we lexicographically sort T four times ac-
cording to four cyclic permutations of the four leaves in each constraint. For
i = 1, ..., 4, the ith permutation puts the ith leaf as the �rst, the (i + 1)st (in
the cyclic order) as the second, etc. Next, four search trees are built based on
the sorted lists. Using the search trees, we can �nd L in REMAINING and
remove it from REMAINING in O(|L| log n) time. We conclude that steps 4.2
and 4.3 take a total of O((m + n) log n) time, including the preprocessing. 2

The rooted tree produced by Algorithm Approximation A has the form of
a linear chain with singular leaves pending, where only the last internal node
on the chain can have degree larger than two. Algorithm Approximation A can
be used to obtain a more balanced tree by modifying it to return the subset of
input constraints which are satis�ed by the constructed tree instead of the tree
itself; a rooted tree of minimum height consistent with at least one third of the
input constraints is then obtained in O(mn log n) time by running the algorithm
of Aho et al. (see Section 2.2) on the instance consisting of these constraints.

The absolute approximation factors of three and two, respectively, for Algo-
rithm Approximation A are worst-case optimal since any tree can satisfy at most
one of the three constraints ({a, b}, c), ({b, c}, a), and ({c, a}, b), and therefore
at most one third of the constraints from a sequence ({ai, bi}, ci), ({bi, ci}, ai),
({ci, ai}, bi), i = 1, ..., k; similarly, for the case in which all constraints con-
tain four di�erent leaves, the sequence {ai, bi} < {ci, di}, {ci, di} < {ai, bi},
i = 1, ..., k, causes a lower bound of two.

However, if the quality of an approximation is measured relative to the to-
tal weight of constraints consistent with an optimal solution, polynomial-time
approximation algorithms with better approximation factors might exist. If the
minimum number of constraints necessary to delete in order to build a tree for the
remaining constraints is small and the number of constraints is high compared
to the number of leaves, an approach di�erent from that of Algorithm Approxi-
mation A can be more useful. In the next subsection, we give an approximation
algorithm for M3LC with better relative performance than 3 in such cases.

2.4.2 Algorithm Approximation B

Here, we present a polynomial-time approximation algorithm for M3LC which is
based on the algorithm of Aho et al. (see Section 2.2). We analyze its worst-case
performance and explain how to implement it with the techniques of Henzinger et
al. (also described in Section 2.2).
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High-level description of Algorithm Approximation B

Our approximation algorithm for M3LC called Algorithm Approximation B
mimics the algorithm of Aho et al. for 3LC with two modi�cations:

• In Algorithm Approximation B, the graphs G(L) are edge-weighted. Every
time a graph G(L) is built for some subset L of S, we set the weight of each
edge in E(L) equal to the total weight of the constraints which induce it.

• Whenever the algorithm of Aho et al. is stuck at a non-divisible subset L of
the set of leaves and has to return the null tree, AlgorithmApproximation B
�nds a minimum weight edge cut of G(L) with respect to the current set of
constraints. Next, the edges of the min-cut are deleted from G(L) and the
resulting connected components of G(L) are computed. Consequently, the
constraints that induce the edges of the min-cut are also deleted7. Approx-
imate trees for the new components are then constructed and connected
by a common parent node.

Worst-case performance of Algorithm Approximation B

Let (S, T ) be an instance of M3LC, and let R be the tree produced by Algo-
rithm Approximation B on (S, T ). De�ne t as the minimum total weight of
constraints needed to remove from T such that there exists a rooted tree consis-
tent with all remaining constraints.

Lemma 2.8 The total weight of constraints in T which are not consistent
with R is at most height(R) times t.

Proof: Let J be a subset of T with minimum total weight (i.e., equal to t) such
that there exists a rooted tree which is consistent with all constraints in T \ J .

Suppose that Algorithm Approximation B at some stage looks for a min-cut
in a currently connected component A. Let TA be the subset of T consisting of
constraints with all three leaves belonging to the set of vertices in A, and let JA

equal J ∩ TA.
Assume that deleting the set of edges corresponding to constraints in JA

would not disconnect A. Then even more constraints belonging to TA than
just JA would have to be deleted in order to disconnect A. Let i be the �rst
recursion level at which the vertices of A are placed in at least two di�erent com-
ponents by the algorithm of Aho et al. when applied to the instance (S, T \ J).
Since this is the �rst time that the vertices in A are separated, the algorithm will
not delete any constraints in TA until after it has reached recursion level i (recall
that the algorithm deletes constraints only when their leaves are contained in
di�erent components). Thus, all constraints in TA except those in JA remain

7By the construction of G(L), each constraint contributes to just one edge, so deleting an
edge in G(L) corresponds to deleting one or more constraints from T .
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when reaching recursion level i, and the assumption above implies that the ver-
tices belonging to A would still be connected. Contradiction. Hence, A will be
split into at least two components if JA is deleted.

Clearly, the weight of a min-cut of A is less than or equal to the total weight
of JA. Now, it is su�cient to observe that the subsets JA for distinct A's on
the same recursion level of Algorithm Approximation B are pairwise disjoint so
that on each recursion level, the total weight of deleted constraints which are
not consistent with R is ≤ t. 2

Since height(R) ≤ n, we have:

Theorem 2.9 Algorithm Approximation B constructs a rooted tree which is
consistent with a subset of the constraints in T whose total weight is greater
than or equal to W −nt, where W is the total weight of all the input constraints.

Note that the number of constraints in T might be cubic in n and that
Algorithm Approximation B yields a better approximation factor than Algo-
rithm Approximation A for M3LC whenever t < 2W

3n , i.e., when the optimal
solution contains a large number of the input constraints.

Implementing Algorithm Approximation B

Algorithm Approximation B can be implemented by modifying steps 1 and 5 in
the algorithm of Henzinger et al. (see Section 2.2). The result is displayed in
Figure 2.6. Whenever a minimum weight edge cut is computed in step 5, those
edges are deleted from U and the dynamic graph connectivity data structure.
Also, the corresponding vertices and their incident edges are deleted from D.

To �nd minimum weight edge cuts in step 5, we can use a deterministic algo-
rithm by Nagamochi and Ibaraki [98] or Stoer and Wagner [118], or a randomized
Monte Carlo-algorithm by Karger [79].

Let M be the initial number of edges in the graph U . As pointed out in Sec-
tion 2.2, M = min

{
O(m), O(n2)

}
follows directly by the construction of U . The

next lemma provides a lower bound on M which is used below when analyzing
the running time of Algorithm Approximation B.

Lemma 2.10 M ≥ m
n .

Proof: Partition the m input constraints into n sets T1, ..., Tn by placing each
constraint of the form ({ · , · }, x) into Tx. By the pigeonhole principle, at least
one of the resulting sets contains ≥ m/n constraints; let Tk be such a set.
Initially, there is at least one edge in U for each constraint in Tk (e.g., the edge
{a, b} if ({a, b}, k) ∈ Tk). Thus, M ≥ |Tk| ≥ m

n . 2
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Algorithm Approximation B

Input: An instance of M3LC.

Output: A rooted, unordered tree which is consistent with a subset of the con-
straints whose total weight is greater than or equal to W − nt, where
W is the total weight of all input constraints and t is the minimum
total weight of constraints needed to remove to achieve consistency.

1 Construct U and D. Assign weights to the edges in U . The weight of an
edge {a, b} in U is equal to the sum of the weights of constraints of the form
({a, b}, ·).

2 Color all edges in U yellow and initialize the dynamic graph connectivity
algorithm.

3 Create the root of R. Initialize components information.

4 for each maximal vertex {x, y} in D do

If {x, y} is a yellow edge in U then color it red, delete it in the dynamic
graph connectivity data structure, and query the dynamic connectivity
algorithm �are x and y connected?�; if �no� then update components in-
formation and R.

endfor

5 For each old yellow component Ci, if |Ci| > 1 and Ci was not split into at least
two components during step 4 in this iteration then �nd a minimum weight
edge cut of Ci with respect to currently yellow edges, delete the edges in the
cut, and update components information and R.

6 If |Ci| = 1 for every yellow component Ci then return R.

Otherwise, �nd all separable red edges and delete these edges from U and the
corresponding vertices (plus their incident edges) from D.

7 Go to step 4.

End Approximation B

Figure 2.6: Using the techniques of Henzinger et al. to implement Algorithm Approx-

imation B.

Theorem 2.11 Algorithm Approximation B can be implemented to run in

1. min
{
O(mn2 + n3 log n), O(n4)

}
time, or

2. min
{
O(mn log3 n), O(n3 log n)

}
time, giving a solution that with high

probability8 attains the approximation factor stated in Theorem 2.9.

Proof: A minimum weight edge cut of U can be computed deterministically in
O(Mn + n2 log n) time [98, 118] or with high probability in min

{
O(M log3 n),

O(n2 log n)
}
time [79]. In the worst case, this has to be done n− 1 times. Thus,

the calls to the min-cut procedure take a total of O(Mn + n2 log n) · O(n) =

8With high probability means with probability greater than (1 − 1
nc ) for some constant

c > 1.
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O(Mn2+n3 log n) or min
{
O(M log3 n), O(n2 log n)

}
·O(n) = min

{
O(Mn log3 n),

O(n3 log n)
}
time, respectively. All other operations are performed as in the

algorithm of Henzinger et al., and therefore take O(n + m + M log2 n) time if
we use the deterministic algorithm for dynamic graph connectivity of Holm et
al. [65] by the comments following Theorem 2.1.

In the deterministic case, the total running time of Algorithm Approxima-
tion B is O(Mn2 + n3 log n) + O(n + m + M log2 n) = O(Mn2 + n3 log n) =
min

{
O(mn2 + n3 log n), O(n4)

}
.

In the randomized case, the total running time becomes min
{
O(Mn log3 n),

O(n3 log n)
}
+O(n+m+M log2 n). Since O(Mn log3 n)+O(n+m+M log2 n) =

O(Mn log3 n + m), which is O(Mn log3 n) by Lemma 2.10, and O(n3 log n) +
O(n + m + M log2 n) = O(n3 log n), we see that the total running time is
min

{
O(mn log3 n), O(n3 log n)

}
.

To ensure that Algorithm Approximation B succeeds with high probability
in the randomized case, we utilize an ampli�ed version of Karger's minimum
weight edge cut algorithm [79] running in min

{
O(M log3 n), O(n2 log n)

}
time

and having success probability at least 1 − 1
n3 (the success probability can be

ampli�ed from at least 1 − 1
n to at least 1 − 1

nc for any constant c > 1 with-
out increasing the asymptotic running time by making c independent calls to
the min-cut algorithm and selecting the best solution found; the probability of
the min-cut algorithm failing all c times is ≤ 1

nc ). During its execution, Algo-
rithm Approximation B calls the ampli�ed min-cut algorithm d times, where
d ≤ n − 1. Let Ai denote the event that the ith call fails. Algorithm Ap-
proximation B fails if and only if the ampli�ed min-cut algorithm fails one or
more times; hence, the probability that Algorithm Approximation B fails is

Pr

[
d⋃

i=1

Ai

]
≤

d∑
i=1

Pr[Ai] ≤ (n− 1) · 1
n3 < 1

n2 . 2

2.5 Concluding Remarks

The fastest known algorithm for LC is still the one by Aho et al. [3] with
O(mn log n) running time. In Section 2.2, we observed that 3LC can be solved
in min

{
O(n + m log2 n), O(m + n2 log2 n)

}
time with the algorithm of Hen-

zinger et al. [62] by substituting the used decremental graph connectivity algo-
rithm with a more e�cient one by Holm et al. [65].

We have given a new proof for the NP-hardness of MLC and M3LC in
Section 2.3, and then, in Section 2.4, shown that MLC and M3LC and their
weighted versions can be approximated within factor of 3 of the optimum in
O((m + n) log n) time (Algorithm Approximation A). Moreover, M3LC and its
weighted version can be approximated as follows: An approximate solution con-
sistent with a subset of the input constraints whose total weight is at least W−nt,
where W is the total weight of all input constraints and t is the minimum to-
tal weight of constraints needed to remove in order to achieve consistency, can
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be constructed in min
{
O(mn2 + n3 log n), O(n4)

}
time, or with high proba-

bility in min
{
O(mn log3 n), O(n3 log n)

}
time (Algorithm Approximation B).

Here, Algorithm Approximation B has a better approximation ratio than Algo-
rithm Approximation A for instances of M3LC with t < 2W

3n .

The main open problem concerns the approximability of MLC and M3LC.
Our Algorithm Approximation A approximates both problems within a constant
factor in polynomial time, but we do not know whether it is possible to �nd a
polynomial-time approximation scheme (PTAS) for either of them. Even if the
problems are MAX SNP-hard, implying that no PTAS exists unless P=NP [8],
it might still be useful to �nd polynomial-time algorithms with better approx-
imation factors than Algorithms Approximation A and Approximation B. Spe-
cial cases of the problems might be easier to approximate; for example, we believe
that it is possible to construct a PTAS for the restriction of M3LC to complete
instances in which the input contains one 3-leaf constraint for each cardinality 3
subset of the leaves9.

Semple and Steel [110] have independently developed a heuristic for combin-
ing a set of rooted, unordered leaf-labeled trees with overlapping leaf sets which
uses the same basic idea of �nding minimum weight edge cuts in the graphs G(L)
as our Algorithm Approximation B, with some modi�cations. However, no ap-
proximation factor for their algorithm in terms of how many of the input trees
that are consistent with the output tree was given in [110] as their main focus
was on proving how well nestings shared by all the input trees can be preserved
(and some other related properties) rather than trying to maximize the number
of consistent 3-leaf constraints in the output tree.

The other open question is: How much can the asymptotic running times of
Algorithm Approximation B and the exact polynomial-time algorithms for LC
and 3LC be improved? The running time of Algorithm Approximation B is cur-
rently dominated by the time it takes to compute minimum weight edge cuts in
undirected graphs. If faster algorithms for computing min-cuts are invented, the
e�ciency of Algorithm Approximation B can be improved accordingly. Faster
algorithms for decremental dynamic graph connectivity will not help the asymp-
totic running time of Algorithm Approximation B unless faster min-cut algo-
rithms are also employed. On the other hand, by Theorem 2.1, faster algorithms

9The motivation for this is as follows. In the quartets consistency problem (QC), the input
is a set Q of resolved quartets (unrooted, leaf-labeled trees each having 4 leaves and no nodes
of degree 2), and the goal is to �nd an unrooted, leaf-labeled tree which is consistent with
all of the quartets in Q, if one exists. The maximum quartets consistency problem (MQC)
is the optimization version of QC, and complete MQC is MQC restricted to instances where
one quartet for each cardinality 4 subset of the leaves is included in Q. QC is NP-hard [116],
and although MQC is MAX SNP-hard in general [69, 116] and complete MQC remains NP-
hard [69], complete MQC admits a PTAS [69]. In contrast, 3LC can be solved exactly in
polynomial time by the algorithms described in Section 2.2. Thus, since 3LC seems so much
easier than QC, it would be surprising if complete M3LC was much harder to approximate
than complete MQC. Therefore, we conjecture that complete M3LC has a PTAS as well.
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for decremental dynamic graph connectivity will directly improve the running
time of the algorithm of Henzinger et al. for 3LC.



Chapter 3

Inferring Ordered Trees

from Rooted Triples

We now consider the problem of inferring an ordered, leaf-labeled tree from a
set of rooted triples, where in addition to the input set of rooted triples, a
given left-to-right ordering is imposed on the leaves. We call this problem the
ordered 3-leaf constraints consistency problem (O3LC). As in Chapter 2, we are
also concerned with the corresponding maximization problem, here termed the
maximum ordered 3-leaf constraints consistency problem (MO3LC).

The algorithms for inferring ordered trees presented in this chapter are in
general more e�cient than the corresponding fastest known algorithms for infer-
ring unordered trees. In fact, our algorithm for MO3LC runs in polynomial time
whereas the analogous maximization problem for unordered trees is NP-hard (as
proved in Chapter 2).

An essential part of our algorithm for O3LC is an algorithm for maintaining
the union of a set of closed intervals under a sequence of deletions from the set.
Therefore, in this chapter we also develop an e�cient decremental interval union
algorithm.

3.1 Introduction

Let S be a �nite set of elements. A 3-leaf constraint on S, also referred to as a
rooted triple on S, is a constraint of the form ({i, j}, k), where i, j, k ∈ S, which
speci�es that the lowest common ancestor of i and j is a proper descendant of the
lowest common ancestor of i and k1. A rooted tree whose leaves are distinctly
labeled by elements in S (i.e., no two leaves have the same label) and a 3-leaf

1Or equivalently, that the lowest common ancestor of i and j is a proper descendant of the
lowest common ancestor of j and k.

31
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1

3

2 2 3

1

Figure 3.1: Let O be the ordering 1, 2, 3. The tree on the left complies with O and is
consistent with the 3-leaf constraint ({1, 2}, 3). The tree on the right is consistent with
the constraint ({2, 3}, 1) and Note that no tree can satisfy the constraint ({1, 3}, 2) and
comply with O at the same time.

constraint on S which is satis�ed in the tree are said to be consistent with each
other.

The leaf ordering of a rooted, ordered, leaf-labeled tree is the sequence of
labels obtained by scanning its leaves from left to right.

Next, we de�ne two computational problems called O3LC and MO3LC, sim-
ilar to the problems 3LC and M3LC studied in Chapter 2. The di�erence is that
in O3LC and MO3LC, the leaf ordering of the constructed tree is required to
comply with a speci�ed ordering. See Figure 3.1 for an example.

The ordered 3-leaf constraints consistency problem (O3LC)

Instance: Finite set S, set T of 3-leaf constraints on S, ordering O of S.

Output: A rooted, ordered tree with leaves distinctly labeled by S whose
leaf ordering equalsO and which is consistent with all of the constraints
in T , if one exists; otherwise, null.

The maximum ordered 3-leaf constraints consistency problem
(MO3LC)

Instance: Finite set S, set T of 3-leaf constraints on S, ordering O of S.

Output: A rooted, ordered tree with leaves distinctly labeled by S whose
leaf ordering equals O and which is consistent with as many of the
constraints in T as possible.

Henceforth, we assume without loss of generality that the elements of S
are named {1, 2, ..., n} and that the given ordering O is precisely the sequence
1, 2, ..., n. (Any given instance can be transformed into an instance of this type
by relabeling before running our algorithms.)
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As in Chapter 2, we denote the number of constraints in T by m. It follows
from the problem de�nitions that m = O(n3) for O3LC and MO3LC.

3.1.1 Motivation

Applications of 3LC and M3LC (the unordered versions of O3LC and MO3LC)
were discussed in Section 2.1.1. We study O3LC and MO3LC primarily because
they are special cases of 3LC and M3LC which turn out to be more e�ciently
solvable. As mentioned in Chapter 2, it is not always possible to construct a
rooted tree which is consistent with all of the 3-leaf constraints in a given set since
some constraints may contradict each other. In such cases, an algorithm which
produces a tree consistent with as many of the 3-leaf constraints as possible is
more useful. Unfortunately, to construct an unordered tree for the maximum
number of 3-leaf constraints was proved to be NP-hard in Section 2.3, implying
that no e�cient algorithm for this problem exists unless P=NP. However, if we
are given the leaf ordering of the �nal tree in advance, the situation improves
drastically: dynamic programming can be applied to solve MO3LC in polynomial
time, as we will see later in this chapter.

In certain evolutionary tree construction situations, it may be possible to
determine or accurately estimate the leaf ordering of a planar embedding of the
true tree by taking into account other kinds of data such as the geographical
distributions of the species or data based on some measurable quantitative char-
acteristic (average life span, size, etc.) which can be sorted to obtain a linear
ordering of the species. O3LC and MO3LC might also arise in graph drawing
applications where a leaf-labeled tree has to be inferred from a set of 3-leaf con-
straints and additional restrictions are placed on the leaves (for example, that
they must be ordered alphabetically) for ease of presentation.

3.1.2 Previous Results

No algorithms or computational complexity results for O3LC and MO3LC can
be found in the literature since these problems have not been studied before. For
known results related to 3LC, M3LC, and the corresponding quartet consistency
problems QC and MQC, please refer to Chapter 2 and the references therein.

As for the problem of maintaining the union of a set Y of closed intervals
under a sequence of deletions from Y, a general, fully dynamic interval union
algorithm which also supports insertions of new intervals into Y was given by
Cheng and Janardan in [26]. Their algorithm allows interval insertions and
deletions be carried out in O(log n) time and the list of intervals in the union
to be reported in O(k) time, where n is the number of intervals currently in Y
and k is the current number of maximal nonoverlapping intervals in the union
of Y. However, since we only need a decremental interval union algorithm in
our algorithm for O3LC and the algorithm of Cheng and Janardan is somewhat
complicated, we will provide a simpler solution for the decremental case.
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3.1.3 Our Contributions

We observe that in the algorithm of Henzinger et al. [62] for 3LC (see Section 2.2),
if the tree being constructed is required to have a speci�ed leaf ordering then
yellow edges and yellow components in the auxiliary graph U can be represented
as closed intervals and maximal nonoverlapping intervals in their union, respec-
tively. Coloring yellow edges of U red thus corresponds to deleting intervals from
a given set of closed intervals, which allows us to implement the decremental dy-
namic graph connectivity computations needed in the algorithm of Henzinger
et al. with a (faster) decremental interval union algorithm. We develop such a
decremental interval union algorithm and use it to obtain an algorithm called
Algorithm Fast O3LC which solves O3LC in O((m + n) log n) time.

Given a set Y of M closed intervals on the real line, our decremental interval
union algorithm uses O(M log M) time for preprocessing, and then maintains the
union of Y under a sequence of δ interval deletions in O(δ log M +M +kδ log M)
time, where kδ is the �nal number of maximal nonoverlapping intervals in the
union. After each deletion, the newly created maximal nonoverlapping intervals
in the union can be listed without increasing the asymptotic time complexity.
The interval intersection query (i.e., given an interval q, which maximal nonover-
lapping intervals in the union of the current Y intersect q?) can be answered in
O(log M +R) time, where R is the number of maximal nonoverlapping intervals
in the union to report.

We also give a dynamic programming-based algorithm for MO3LC which
runs in O(n3) time.

In Section 3.2, we recall the de�nitions of segment trees, interval trees, and
interval tries and state some useful facts about these data structures. In Sec-
tion 3.3, we describe our decremental interval union algorithm which is the basis
of Algorithm Fast O3LC presented in Section 3.4. We present the cubic-time
algorithm for MO3LC in Section 3.5. Section 3.6 summarizes our results and
proposes some generalizations of the considered problems.

3.2 Preliminaries

The decremental interval union algorithm in Section 3.3 uses segment trees,
interval trees, and interval tries. Below, we brie�y review these three data
structures and state some known facts from [94] and [102].

3.2.1 Segment Trees

The segment tree is a data structure for storing a set of intervals on the real
line R along with some additional information.

Let Y be a set of intervals on R whose endpoints belong to a set U =
{xi}ni=1 ⊂ R, where xi < xi+1 for all i = 1, 2, ..., n− 1. Denote by (xi, xi+1) the
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open interval from xi to xi+1 and let [xi, xi] denote the point xi. The segment
tree for Y with respect to U is a balanced binary search tree of depth O(log n)
with 2n + 1 leaves corresponding to (from left to right) the intervals (−∞, x1),
[x1, x1], (x1, x2), [x2, x2], ..., (xn,∞) called its atomic segments.

Every node u of the segment tree is associated with a node list NL(u). To de-
scribe NL(u), we �rst de�ne xrange(u) as follows. If u is a leaf, xrange(u) is sim-
ply the corresponding atomic segment. If u is an internal node, let xrange(u) =
xrange(l) ∪ xrange(r), where l and r are the left and right child of u. Now,
de�ne NL(u) as {I ∈ Y | xrange(u) ⊆ I & xrange(parent(u)) 6⊆ I}.

The following is proved in [94] (see also [33] or [107]).

Fact 3.1 [94] A segment tree for a set of M intervals with both endpoints in
a subset U of R of size n can be constructed in O(M log n) time. An interval
with both endpoints in U can be inserted into or deleted from the segment tree
in O(g(M) log n) time, where g(M) is the time required to insert or delete an
interval from a node list of size M . Every interval in Y is stored in at most two
di�erent node lists at each level of the tree, i.e., in a total of O(log n) di�erent
node lists. Furthermore, given an interval I in Y, all nodes u with I ∈ NL(u)
can be found in O(log n) time.

In our application, we will use a modi�ed segment tree in which we only need
to keep track of how many intervals from Y that belong to each node list and
do not have to worry about which ones they are. Hence, rather than explicitly
storing the node lists, we employ node counters ; the value NC(u) of the node
counter for a node u is de�ned as the cardinality of the corresponding node
list NL(u), if we were keeping it. Every deletion from or insertion into NL(u)
corresponds to decreasing or increasing NC(u) by one, which can be done in
O(1) time. Thus, we have g(M) = O(1).

3.2.2 Interval Trees

The interval tree is a kind of binary search tree for storing a set Y of intervals
whose left endpoints belong to a �xed �nite subset U of R. It allows intervals to
be deleted from Y as well as new intervals with left endpoints in U to be inserted
into Y in logarithmic time. It can report all intervals in Y with nonempty
intersection with a given query interval; such a request is called an interval
intersection query.

The following fact summarizes what we need to know about interval trees
for our purposes. For a description of how information is stored in interval
trees, how interval trees are constructed and updated e�ciently, how queries are
handled, etc., see [33], [94], or [107].
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Fact 3.2 [94] Suppose that the left endpoints of the intervals in a set Y belong
to a subset U of R of size n and |Y | = M . An interval tree Q of depth O(log n)
for Y can be constructed in O(n + M log nM) time. Each insertion into Y of
an interval with left endpoint in U and each deletion from Y can be performed
by Q in O(log M + log n) time. The interval intersection query is supported by
Q in O(log n + R) time, where R is the number of reported intervals.

3.2.3 Interval Tries

The interval trie is another data structure for maintaining a set Y of intervals un-
der a sequence of insertions and deletions. It requires that all interval endpoints
have integer coordinates between 1 and a �xed number n. The interval trie can
be employed to e�ciently answer stabbing queries in which a query point q is
given and the object is to return a list of all intervals in Y that contain q. The
next fact, following from [102], characterizes interval tries.

Fact 3.3 [102] Let Y be a set of M intervals with both endpoints in {1, 2, ..., n}.
For any constant ε > 0, there is an interval trie for Y which allows each insertion
into Y and each deletion from Y to be performed in O(logε n + log log n) time
and which answers the stabbing query in O( log n

ε·log log n + R) time, where R is the

number of reported intervals. It can be constructed in O(n· log n
ε·log log n + M · logε n)

time.

The parameter ε can be chosen to get the desired tradeo� between update
time and query time.

3.3 A Decremental Interval Union Algorithm

Here we present an algorithm for maintaining the union of a set Y of closed
intervals under a sequence of deletions from Y.

For the rest of this section, let M be the number of intervals in Y at start, and
let s1, ..., sδ be the sequence of intervals to delete from Y, where all of s1, ..., sδ

initially belong to Y. Denote by U the set of endpoints of the intervals in Y ;
clearly, |U| ≤ 2M . The maximal nonoverlapping intervals covered by Y are
called interval union components.

The �rst step of our method consists of the construction of a segment tree W
for Y. Since |U| = O(M), W can be constructed in O(M log M) time by Fact 3.1.

For e�ciency, we use node counters (denoted by NC) instead of the standard
node lists NL, as explained at the end of Section 3.2.1. Recall that NC(u) for
a node u of W is de�ned as the cardinality of NL(u). Additionally, for each
node u of W , we set a special bit r(u) to 1 if and only if all NC counters along
the path from the root of W to u, including NC(u), are set to zero. We can
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determine the initial values of r(u) for all nodes of W by traversing W in a
top-down fashion in time proportional to the size of W , i.e., in O(M) time. The
usefulness of the r-bits stems from the next lemma.

Lemma 3.4 For any leaf w of W , r(w) = 0 if and only if the atomic segment
corresponding to w is covered by an interval union component.

Proof: Let p be the path in W from the root to w. If r(w) = 0 then there
exists a node t on p with NC(t) > 0. Since xrange(t) ⊆ I for some interval I
in Y and xrange(w) ⊆ xrange(t), it follows that xrange(w) is covered by I and
thus by one of the interval union components. If r(w) = 1 then since every node
in the tree whose xrange overlaps with xrange(w) lies on p and therefore has
its NC counter set to zero, xrange(w) is not contained in any interval in Y. 2

Next, we augment each leaf w of W with two pointers which point to the
left and right neighbor of w, de�ned as the predecessor of w and the successor
of w in the consecutive left-to-right ordering of W 's leaves. This can be done in
O(M) time.

Besides the segment tree W , we use an interval tree Q in order to maintain
the interval union components of the current Y. The set of left endpoints of
intervals to be stored in Q is a subset of the set U of all endpoints of intervals
in Y, and hence O(M). We can �nd the interval union components for the
initial Y in O(M log M) time by sorting all endpoints in Y and using a standard
sweep-line technique. By Fact 3.2, we can then construct Q and insert the initial
interval union components in O(M log M) time.

In total, the preprocessing steps described above take O(M log M) time.

Deleting the interval s1 from Y may a�ect the current interval union compo-
nents, as illustrated by the example in Figure 3.2. W and Q need to be modi�ed
accordingly; see Figure 3.3. To update W and Q, we proceed as follows.

To begin with, we locate the O(log M) nodes of W whose node lists would
contain s1 if we were keeping them, and decrease their NC counters by one.
This can be done in O(log M) time by Fact 3.1. If, for some node u, NC(u)
drops to 0 and r(parent(u)) = 1, we set r(u) to 1 and update r(w) for the
descendants w of u in a top-down and left-right fashion. We also produce the
list LL(u) of consecutive leaf-descendants w of u for which r(w) becomes 1 due
to the updating (LL(u) can be empty). Next, we concatenate the lists LL(u)
in the order of the ranges of the nodes u and let L denote the resulting list.
The updating of the r(w)'s as well as the construction of the list L take time
proportional to the number r1 of nodes that got their r(w)-bit set to 1 for the
�rst time.

We then �nd the interval union component C that s1 belongs to by queryingQ
with s1. Let x be the left neighbor of the leaf in W corresponding to the left
endpoint of C and let y be the right neighbor of the leaf in W corresponding to
the right endpoint of C. We insert x �rst in L, and similarly, insert y last in L.
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1 2 3 4 5 6 7 8

Figure 3.2: The union of the intervals {[1, 2], [2, 8], [4, 5], [5, 7], [6, 7], [8, 8]} is a single
interval union component C = [1, 8]. Deleting the interval [2, 8] results in C being split
into three interval union components: [1, 2], [4, 7], and [8, 8].

Now, Lemma 3.4 implies that for any pair of consecutive leaves a, b in L that
are not neighbors of each other, the right neighbor of a and the left neighbor
of b yield a new interval union component. Hence, we delete C from Q and
insert the new interval union components into Q. Let k0 be the number of
interval union components of the initial Y, and let k1 be the number of interval
union components after the deletion of s1. The interval intersection query takes
O(log M) time (there is exactly one interval union component with nonempty
intersection with s1), and each deletion and insertion takes O(log M) time by
Fact 3.2. Thus, updating Q takes O(log M + log M + (k1 − k0 + 1) logM) =
O((k1 − k0 + 1) log M) time.

We conclude that we can update W and Q to maintain the union of the
set of intervals resulting from the deletion of s1 from Y in O(log M + r1) and
O((k1 − k0 + 1) log M) time, respectively.

The next interval deletions are handled similarly. We de�ne ri and ki for
i = 2, ..., δ in the same way as we de�ned r1 and k1 above. It follows that the

sum
δ∑

i=1

ri is bounded from above by the size of W , i.e., O(M). Furthermore, by

telescoping, we have

δ∑
i=1

(ki − ki−1 + 1) = kδ − k0 + δ < kδ + δ.

Summarizing, we obtain the main result of this section:
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Figure 3.3: The segment tree for the example in Figure 3.2 after the deletion of the
interval [2, 8]. A�ected nodes are shaded, and changes in NC counters and r-bits are
italicized. Here, L = ((−∞, 1), (2, 3), [3, 3], (3, 4), (7, 8), (8,∞)), so the left and right
endpoints of the new interval union components to be inserted in Q are given by [1, 1]
and [2, 2], [4, 4] and [7, 7], and [8, 8] and [8, 8].
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Theorem 3.5 Let Y be a set consisting of M closed intervals on the real line.
After O(M log M) time preprocessing, the union of Y can be maintained under
a sequence of δ interval deletions in O(δ log M + M + kδ log M) time, where
kδ is the �nal number of interval union components. After each deletion, the
newly created interval union components can be listed without increasing the
asymptotic time complexity. The interval intersection query can be answered
in O(log M + R) time, where R is the number of interval union components to
report.

If we only need to answer stabbing queries and all endpoints of the intervals
in Y belong to a set {1, 2, ..., n}, the result can be improved by replacing the
interval tree Q with an interval trie. By Fact 3.3, we obtain the following variant
of the result.

Theorem 3.6 Let Y be a set of M closed intervals with both endpoints in
{1, 2, ..., n}. For any constant ε > 0, the following holds. After O(M log nM+
n· log n

ε·log log n + M · logε n) time preprocessing, the union of Y can be maintained

under a sequence of δ interval deletions in O(n + δ(log n+ logε n) + kδ(logε n+
log log n)) time, where kδ is the �nal number of interval union components. After
each deletion, the newly created interval union components can be listed without
increasing the asymptotic time complexity. The stabbing query can be answered
in O( log n

ε·log log n ) time.

3.4 Algorithm Fast O3LC

In this section, we give an algorithm for O3LC which runs in O((m + n) log n)
time. It combines the algorithm of Henzinger, King, and Warnow [62] for 3LC
described in Section 2.2 with our decremental interval union algorithm from
Section 3.3.

Recall that given a set S = {1, 2, ..., n} and a set T of 3-leaf constraints
on S, the algorithm of Henzinger et al. constructs a rooted, unordered tree R
whose leaves are distinctly labeled by S and which is consistent with all of the
input constraints in T , if such a tree exists. It uses an auxiliary data structure
consisting of two graphs U and D de�ned as:

• U = (S, E) whose vertex set is the input set of leaves S = {1, 2, ..., n}, and
where for each constraint ({a, b}, c) in T , the edges {a, b} and {b, c} are
in E.

• D = (S′, A), where for each constraint ({a, b}, c) in T , the vertices {a, b}
and {b, c} are in S′, and the directed edge {a, b} → {b, c} is in A.
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All edges of U are initially colored yellow. The graph D is used for �nding
edges in U that are to be colored red; these edges correspond to vertices in D
called maximal vertices which have no outgoing edges. A separable red edge is
a red edge of U whose endpoints belong to two di�erent yellow components. A
maximal vertex in D and its corresponding red edge e in U are deleted when e
becomes a separable red edge.

The tree R is constructed level by level. During the algorithm's execution,
each current yellow component of U contains all leaves from the input set S that
will belong to the same subtree in the �nal R, rooted at one of the leaves of the
current R.

See Section 2.2 for more details on the algorithm of Henzinger et al.

For ordered trees, we make the following crucial observation.

Observation 3.7 If R′ is a rooted, ordered tree, leaf-labeled by S, then for any
two leaves a and b it holds that any subtree of R′ containing a and b must also
contain all leaves in the interval [a, b].

Below, we denote the ordered tree which we are constructing by R′. By
Observation 3.7, a yellow edge in U forces all leaves in the interval de�ned by
its two endpoints to belong to the same subtree of R′. Transitivity implies that
the set of yellow edges in U induces a set of intervals such that each of the
maximal nonoverlapping intervals in the union of these intervals contains all
leaves from S which should end up in one subtree of R′. Hence, to construct R′,
instead of maintaining the current yellow components of U as in the algorithm
of Henzinger et al., we maintain the corresponding interval union components.

Our algorithm is called Algorithm Fast O3LC and is listed in Figure 3.4. In
addition to the directed graph D de�ned above, it uses the decremental interval
union algorithm from Section 3.3 to keep track of interval union components in
the set Y of intervals induced by U, and an interval trie Z to store intervals
corresponding to edges in U that have been colored red. By |Ci| we mean the
number of leaves included in the interval union component Ci.

The algorithm continues until all interval union components have been split
into interval union components which cover a single leaf each, or until it discovers
that no ordered tree consistent with all of T exists.

Theorem 3.8 Algorithm Fast O3LC solves O3LC in O((m + n) log n) time.

Proof: If Algorithm Fast O3LC produces an ordered tree then it is consistent
with all constraints in T . To prove this, note that intervals currently in Y
covering at least two leaves correspond to current yellow edges of U in the
algorithm of Henzinger et al. By the remarks following Observation 3.7, each
current interval union component of Y contains all leaves which will belong to
one subtree of R′. Intervals in Z correspond to red edges of U ; furthermore, an
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Algorithm Fast O3LC

Input: An instance of O3LC.

Output: A rooted, ordered tree R′ which is consistent with all of the constraints,
if one exists; the null tree, otherwise.

1 Construct D.

2 Let Y = {[a, b] | {a, b} ∈ E} ∪ {[a, a] | a ∈ S} and initialize the decremental
interval union algorithm on Y. Create an (initially empty) interval trie Z for
storing a set of intervals with both endpoints in {1, 2, ..., n}.

3 Create the root of R′. Initialize components information.

4 for each maximal vertex {x, y} in D do

If [x, y] belongs to Y then delete it from Y and insert it into Z, and query
the decremental interval union algorithm �are x and y in the same interval
union component of Y ?�; if �no� then update components information
and R′.

endfor

5 For each old interval union component Ci of Y, if |Ci| > 1 and Ci was not
split into at least two components during step 4 in this iteration then return
the null tree.

6 If |Ci| = 1 for every interval union component Ci of Y then return R′.
Otherwise, for each old interval union component Ci of Y with |Ci| > 1, let
c1, c2, ..., cj be the new interval union components of Y created from Ci. For
k = 1, ..., j − 1, query Z with the median mk of the right endpoint of ck and
the left endpoint of ck+1, and delete all reported (i.e., containing mk) intervals
from Z and the corresponding vertices (plus their incident edges) from D.

7 Go to step 4.

End Fast O3LC

Figure 3.4: An algorithm for solving O3LC which combines Henzinger, King, and
Warnow's algorithm with our decremental interval union algorithm.

interval corresponds to a separable red edge if and only if it overlaps with at
least two new interval union components, i.e., if and only if it is intersected by
at least one of the medians mi, i = 1, 2, ..., k− 1. If Algorithm Fast O3LC fails
to produce an ordered tree then there is no such tree by Observation 3.7 and the
correctness of the algorithm of Henzinger et al.

The construction of the graph D takes O(m) time and the overall time taken
to determine maximal vertices is proportional to the size of D, i.e., O(m). By
Theorem 3.5, the total time used to compute all interval union components dur-
ing the course of the algorithm (including the preprocessing) is O((m+n) log n)
since M = O(m + n), log M = O(log n), δ = O(m), and kδ = n. By Fact 3.3,
the total time needed to construct Z, to perform the O(m) insertions into and
deletions from Z, and to answer the O(n) stabbing queries to Z is O(n· log n

ε·log log n +
m · (logε n + log log n) + n · log n

ε·log log n + m) = O((m + n) · log n
log log n ) (choose, e.g.,

ε = 0.5). 2
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3.5 A Cubic-Time Algorithm for MO3LC

Here, we present an algorithm for MO3LC which runs in O(n3) time. It bears
resemblance to the well-known cubic-time dynamic programming algorithms for
computing a minimum weight triangulation of a simple polygon [32] and for
recognizing which strings belong to a given context-free language [90].

We �rst introduce some new notation.

De�nition 3.9 For all i, j ∈ {1, ..., n} with i ≤ j, denote the subset of input
constraints on leaf-labels entirely in the interval {i, i + 1, ..., j} by Ti,j , and let
mi,j be the maximum number of constraints in Ti,j consistent with any ordered
tree.

De�nition 3.10 For all i, j, k ∈ {1, ..., n} with 1 ≤ i ≤ k < j ≤ n, let wi,k,j be
the number of constraints ({l1, l2}, l3) ∈ T which satisfy either

• {l1, l2} ⊆ {i, ..., k} & l3 ∈ {k + 1, ..., j}
or

• l3 ∈ {i, ..., k} & {l1, l2} ⊆ {k + 1, ..., j}.

The algorithm for MO3LC is based on the following observation. Let i, j ∈
{1, ..., n} with i < j. Consider an ordered tree R which is consistent with
the maximum number of input constraints in Ti,j . Without loss of generality,
assume that R is binary. The root of R has two children; denote the two subtrees
rooted at these nodes by R1 and R2, and let K be the label of the rightmost
leaf in R1 (see Figure 3.5). The input constraints in Ti,j can be partitioned
into three sets: Ti,K , TK+1,j , and those constraints that involve at least one
leaf label less than or equal to K and at least one leaf label strictly greater

i

R2

. . .. . .

R

R

jK K+1

1

Figure 3.5: R is an optimal ordered tree for Ti,j . The rightmost leaf in the left sub-
tree R1 is labeled K, and the leftmost leaf in the right subtree R2 is labeled K + 1.
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than K. R1 and R2 must be consistent with the largest possible number of
input constraints in Ti,K and TK+1,j , respectively, since otherwise there would
exist another tree R′ which was consistent with more constraints in Ti,j than R,
contradicting the maximality of R. Next, note that R is consistent with wi,K,j

constraints in Ti,j \ (Ti,K∪TK+1,j). We thus obtain a recursive formula for mi,j :

mi,j = mi,K + mK+1,j + wi,K,j

When calculating mi,j , we can assume that all values of wi,k,j , mi,k, and mk+1,j ,
where k ∈ {i, ..., j − 1}, have been computed already. We don't know K be-
forehand, but since it must belong to {i, ..., j − 1}, we can try all possibilities,
evaluate each resulting tree, and select the best one. This yields:

mi,j = max
k∈{i, ..., j−1}

{mi,k + mk+1,j + wi,k,j} (3.1)

Equation (3.1) leads to a dynamic programming-based algorithm for MO3LC.
It uses an auxiliary (n× n)-matrix M whose (i, j)th entry contains the k which
maximizes the value of mi,j in equation (3.1). Initially, all values of wi,k,j , where
1 ≤ i ≤ k < j ≤ n, are computed in O(n3) time as explained below. Then, for
all i ∈ {1, ..., n}, mi,i is set to 0 and M [i, i] is set to i. Next, letting l vary from
1 to n − 1, for every pair i, j ∈ {1, ..., n} with j − i = l, the algorithm �nds a
k ∈ {i, ..., j−1} that maximizesmi,k +mk+1,j + wi,k,j , stores this maximal value
in mi,j , and sets M [i, j] to k. Since every wi,k,j and every previously computed
value of mi,k or mk+1,j is accessible in constant time, this step takes a total of
O(n3) time. After all entries of M have been calculated, an optimal ordered tree
for any Ti,j can be obtained by doing a traceback in O(j − i + 1) time. (If i = j
then return a tree with a single node labeled by i. Otherwise, let k := M [i, j],
recursively construct optimal trees R1 and R2 for Ti,k and Tk+1,j , and return a
tree consisting of a root node with R1 and R2 as its children.) The algorithm
returns an optimal ordered tree for T1,n as the �nal solution.

This proves the next theorem.

Theorem 3.11 MO3LC is solvable in O(n3) time.

It remains to describe how to precompute wi,k,j for all 1 ≤ i ≤ k < j ≤ n in
O(n3) time2. By De�nition 3.10, each input constraint ({a, b}, c) with a ≤ b < c
increments by one those wi,k,j that satisfy 1 ≤ i ≤ a, b ≤ k ≤ c−1, and
c ≤ j ≤ n. Similarly, each input constraint ({a, b}, c) with c < a ≤ b increments
by one those wi,k,j that satisfy 1 ≤ i ≤ c, c ≤ k ≤ a−1, and b ≤ j ≤ n. Every
input constraint thus de�nes a rectilinear region called a constraint box in the
�nite three-dimensional space {1, 2, ..., n} × {1, 2, ..., n} × {1, 2, ..., n} whose
axes correspond to indices i, k, j of wi,k,j . If a point with coordinates (i, k, j) lies

2A naive approach will accomplish this in O(mn3) = O(n6) time, but we wish to do better.
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(1,1)

Figure 3.6: The number of rectangles that contain the query point × equals the number
of ⊕-corners minus the number of 	-corners inside the query rectangle with corners
at (1, 1) and ×.

inside a constraint box, then wi,k,j is a�ected by the corresponding constraint,
so the value of wi,k,j equals the total number of constraint boxes that contain
the point (i, k, j).

To e�ciently determine how many boxes contain any given point in the space,
we reduce the problem to a range searching problem. The strategy is to insert
�markers� for the corners of the constraint boxes, and then deduce how many
constraint boxes that contain a query point (i, k, j) by looking at the number of
markers that lie within a query box with corners at (1, 1, 1) and (i, k, j). For this
purpose, we distinguish between two types of constraint box corners, denoted
by ⊕ and 	. Figure 3.6 illustrates the idea for two dimensions. Let A⊕, A	,
B⊕, and B	 be four ((n + 1) × (n + 1) × (n + 1))-sized arrays of counters, all
initially set to zero. The A-counters keep track of the number of constraint
box corners in each point, and the B-counters are used to count how many
constraint box corners of each type that are located in the rectilinear region
stretching from (1, 1, 1) to (i, k, j) for every i, k, j ∈ {1, 2, ..., n + 1}. This way,
wi,k,j for any i, k, j with 1 ≤ i ≤ k < j ≤ n will equal B⊕[i, k, j] − B	[i, k, j].

The new range searching problem can be solved as follows. First, scan the
set of input constraints to assign correct values to the A-counters. The eight
corners of the constraint box induced by the constraint ({a, b}, c) are located at
(1, b, c), (1, b, n), (1, c− 1, c), (1, c− 1, n), (a, b, c), (a, b, n), (a, c− 1, c), and
(a, c − 1, n) if a ≤ b < c, or at (1, c, b), (1, c, n), (1, a − 1, b), (1, a − 1, n),
(c, c, b), (c, c, n), (c, a − 1, b), and (c, a − 1, n) if c < a ≤ b. However, when
handling a query point located on the boundary of some constraint box, that
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constraint should be counted as well, so constraint box corners which mark the
end of a constraint must be inserted one step farther away from the origin. More
precisely, for every input constraint ({a, b}, c), increase each of the following A-
counters by one:

A⊕[1, b, c],
A	[1, b, n + 1],
A	[1, c, c],
A⊕[1, c, n + 1],
A	[a + 1, b, c],
A⊕[a + 1, b, n + 1],
A⊕[a + 1, c, c],
A	[a + 1, c, n + 1]




if a ≤ b < c

A⊕[1, c, b],
A	[1, c, n + 1],
A	[1, a, b],
A⊕[1, a, n + 1],
A	[c + 1, c, b],
A⊕[c + 1, c, n + 1],
A⊕[c + 1, a, b],
A	[c + 1, a, n + 1]




if c < a ≤ b

Next, update the B-counters in order. Here, any strategy which ensures
that B[i, k, j−1], B[i, k−1, j], B[i, k−1, j−1], B[i−1, k, j], B[i−1, k, j−1],
B[i−1, k−1, j], and B[i−1, k−1, j−1] are taken care of before B[i, k, j] for
every (i, k, j) can be employed. By the principle of inclusion-exclusion, we have:

B⊕[i, k, j] := A⊕[i, k, j]
+ B⊕[i, k, j−1] + B⊕[i, k−1, j] + B⊕[i−1, k, j]
−B⊕[i, k−1, j−1] − B⊕[i−1, k, j−1] − B⊕[i−1, k−1, j]
+ B⊕[i−1, k−1, j−1],

where B⊕[i, k, j] is de�ned to equal 0 if at least one of the three indices is 0.
Proceed analogously for B	[i, k, j].

Finally, wi,k,j for every i, k, j with 1 ≤ i ≤ k < j ≤ n is simply equal to
B⊕[i, k, j] − B	[i, k, j].

Initializing the A- and B-counters takes O(n3) time, scanning the input
constraints and inserting all corresponding constraint box corners in the A-
counters takes O(m) = O(n3) time, and updating all B-counters takes a to-
tal of O(n3) time because the operations for each B-counter take O(1) time to
execute and there are O(n3) B-counters. Thus, the total time complexity to
calculate all wi,k,j is O(n3). (The space complexity is also O(n3) since each
index i, k, j requires O(1) words for its counters. To improve the space usage
by a constant factor, only compute B⊕[i, k, j], B	[i, k, j], and wi,k,j for indices
satisfying i ≤ k < j. Also, note that A⊕[i, k, j] can be used to hold the value of
B⊕[i, k, j] after it has been calculated because the original value of A⊕[i, k, j]
is not needed again from then on; therefore, rather than using four arrays of
counters, we can manage with only two: one for ⊕ and one for 	.) We have:

Lemma 3.12 All values of wi,k,j , where 1 ≤ i ≤ k < j ≤ n, can be precomputed
in O(n3) time.
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3.6 Concluding Remarks

The following table summarizes and compares what is known about the compu-
tational complexities of the problems studied in Chapters 2 and 3:

Problem Result Reference

LC O(mn log n) Aho et al. [3]
3LC min

{
O(n + m log2 n), Henzinger et al. [62], Holm et al. [65],
O(m + n2 log2 n)

}
and Theorem 2.13

O3LC min
{
O((m + n) log n), Theorem 3.8 and Theorem 3.11
O(n3)

}
MLC NP-hard Corollary 2.3
M3LC NP-hard Theorem 2.2; alternative proof by

Bryant [21]
MO3LC O(n3) Theorem 3.11

When m = ω( n3

log n ), the O(n3)-time algorithm for MO3LC given in Sec-
tion 3.5 is asymptotically faster than Algorithm Fast O3LC from Section 3.4.
We can run both algorithms in parallel until one of them is �nished (and if the
MO3LC algorithm �nishes �rst, check if the produced solution satis�ed all of
the constraints) in order to solve O3LC in min

{
O((m + n) log n), O(n3)

}
time.

Our algorithm for O3LC is asymptotically faster than the currently best
algorithm for 3LC if m = o(n2 log n). It is an open question whether O3LC can
be solved more e�ciently than 3LC when m = Ω(n2 log n).

It is noteworthy that MO3LC can be solved in polynomial time while M3LC
is NP-hard. In Chapter 5, we consider another problem which is NP-hard for
unordered trees yet polynomial-time solvable for ordered trees.

Our cubic-time algorithm for MO3LC can be generalized to include other
forms of lowest common ancestor constraints, e.g., constraints of the form �the
lowest common ancestor of i and j has to be a proper descendant of the lowest
common ancestor of k and l� considered by Aho et al. in [3]. In this case, equa-
tion (3.1) still holds, but the de�nition of wi,k,j needs to be modi�ed accordingly,
resulting in a slower (but still polynomial time) algorithm.

It would also be interesting to consider the more general situation where only
a partial ordering of the leaf labels is given a priori. One could look here for
e�cient algorithms for constructing ordered trees that would take advantage of
the input partial ordering as much as possible.

3By Theorem 2.1, a faster algorithm for decremental dynamic graph connectivity than the
one in [65] automatically improves the result for 3LC.
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Chapter 4

On the Approximability of the

Maximum Agreement Subtree

Problem

Given a set of rooted, unordered, leaf-labeled trees, the maximum agreement
subtree problem (MAST) asks for a tree contained in all of the input trees with
as many labeled leaves as possible. The computational complexity of MAST
restricted to instances where the number of input trees is bounded and/or the
maximum degree of the input trees is bounded has been studied previously in
the literature; here, we investigate how the polynomial-time approximability of
MAST depends on another important parameter, namely the maximum height
of the input trees.

4.1 Introduction

A tree whose leaves are labeled by elements belonging to a �nite set S in such
a way that no two leaves have the same label is said to be distinctly leaf-labeled
by S. Below, each leaf in such a tree is identi�ed with its corresponding element
in S. The lowest common ancestor of any two leaves a and b in a rooted tree T
is denoted by lcaT (a, b), and we de�ne lcaT (a, a) = a. The degree of a node u
in a rooted tree is the number of children of u, and the degree of a node u in an
unrooted tree is the number of edges incident to u. The degree of a tree T is the
maximum degree of all nodes in T .

Let S be a �nite set and let T be a rooted, unordered tree distinctly leaf-
labeled by S. For any subset S′ of S, T |S′ is the rooted, unordered tree with
node set {lcaT (a, b) | (a, b) ∈ S′ × S′} and edges de�ned so that lcaT |S′(a, b) =
lcaT (a, b) for every (a, b) ∈ S′ × S′. Algorithmically, T |S′ can be obtained by
�rst deleting from T all leaves which are not in S′ and all internal nodes without

51
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any descendants in S′ along with their incident edges, and then contracting
every edge between a node having just one child and its child (see Figure 4.1).
T |S′ is uniquely determined by S′ [40].

Given a set T = {T1, T2, ..., Tk} of rooted, unordered trees, each distinctly
leaf-labeled by S, an agreement subtree of T is a rooted, unordered tree U
such that for some S′ ⊆ S it holds that U is distinctly leaf-labeled by S′ and
U = T1|S′ = T2|S′ = ... = Tk|S′. A maximum agreement subtree of T is an
agreement subtree of T with the maximum possible number of leaves. See Fig-
ure 4.2 for an example1.

The maximum agreement subtree problem (MAST), also referred to as the
maximum homeomorphic agreement subtree problem or the maximum homeo-
morphic subtree problem (MHT) by some researchers, is de�ned as follows:

The maximum agreement subtree problem (MAST)

Instance: Finite set S, set T = {T1, T2, ..., Tk} of rooted, unordered trees,
where each Ti ∈ T is distinctly leaf-labeled by S and no Ti ∈ T has a
node of degree 1.

Output: A maximum agreement subtree of T .

In this chapter, n and k represent the cardinalities of S and T. The minimum
and the maximum of the heights of the trees in T are denoted by h and H ,
i.e., h = min{height(Ti) | 1 ≤ i ≤ k} and H = max{height(Ti) | 1 ≤ i ≤ k}.

The problem de�nition requires that no tree in T has a node with a single
child. Thus, the number of nodes in each input tree is always O(n). Also,
H = O(n). (Note that given an invalid instance I = (S, T ) with one or more
degree 1 nodes, we can replace Ti by Ti|S for all input trees in total time which
is linear in the size of I to make it valid since U is an agreement subtree of T if
and only if U is an agreement subtree of {T1|S, T2|S, ..., Tk|S}.)

An algorithm A is said to approximate MAST within a factor of f if for any
instance (S, T ) of the problem, A outputs an agreement subtree with at least
|S∗|/f leaves, where |S∗| is the number of leaves in a maximum agreement sub-
tree for (S, T ). In this case, A is also called a factor f approximation algorithm
(or just an f -approximation algorithm) for MAST.

4.1.1 Motivation

An agreement subtree represents branching structure shared by two or more
leaf-labeled trees in a given set. Hence, one of the main motivations for studying

1The data used in this example is �ctitious. Any resemblance to real-life data is purely
coincidental.
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Figure 4.1: Let T be the tree on the left. Then T |{a, c, d} is the tree shown on the
right.
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Figure 4.2: U is a maximum agreement subtree of the set of trees {T1, T2, T3}.



54 Chapter 4. On the Approximability of MAST

algorithms for constructing maximum agreement subtrees is the following: Sup-
pose a number of trees, each one describing the possible evolution of a �xed
set of biological species, have been obtained by applying di�erent tree construc-
tion methods or di�erent clustering criteria to some available data. (Another
possibility is that one such method has been used on several alternative sets
of data originating from di�erent sources or repeated experiments conducted
on one source.) Furthermore, suppose that these trees do not completely agree
because of distortions due to assumptions inherent to the methods used or be-
cause of measurement errors. It would then be informative to �nd a subtree
contained in every one of the trees with as many leaves labeled by species as
possible since such a subtree more likely represents genuine evolutionary struc-
ture in the data [45]. In this way, one would get an indication of which ancestral
relationships can be regarded as resolved and which species need to be subjected
to further experiments.

Moreover, maximum agreement subtrees can be used to measure the simi-
larity of the input trees [40, 45, 78] or to estimate a classi�cation's stability to
small changes in the data [45]. MAST-based algorithms have also been used to
prepare and improve bilingual context-using dictionaries for automated language
translation systems [28, 95].

Unfortunately, MAST is NP-hard [6] and thus cannot be solved exactly in
polynomial time in the full generality in which it was de�ned (unless P=NP). We
are therefore interested in determining whether certain special cases of MAST
admit polynomial-time algorithms. In particular, we would like to �nd out how
restricting various parameters for MAST a�ects the computational complexity.
Then, for the application mentioned above, if the method used to obtain the
trees provides su�ciently strong upper bounds on these parameters, we can be
certain that we can compute a maximum agreement subtree e�ciently even if
the number of leaves is large.

Previous research on MAST has mostly focused on restricting the number
of input trees and/or their maximum degrees (see Section 4.1.2 for a survey of
known results). However, sometimes there are thousands of trees to compare [54].
Also, many of the tree-construction methods used today do not guarantee any
upper bounds on the degrees of the produced trees [42]. Therefore, it may
be bene�cial to study the dependency of MAST's computational complexity on
other parameters besides these two. Our main goal in this chapter is to establish
how the computational complexity of MAST is related to the maximum height
of the input trees.

4.1.2 Previous Results

Various aspects of MAST and related problems have been studied in the lit-
erature. We summarize some of the algorithmic and combinatorial highlights
below.
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Most of the published results on MAST involve algorithms for the special case
k = 2. This line of research was initiated by Finden and Gordon [45] who pre-
sented a polynomial-time heuristic (not guaranteed to �nd an optimal solution)
for MAST restricted to instances consisting of two binary trees. A few years later,
Kubicka, Kubicki, and McMorris [86] gave an exact algorithm with superpolyno-
mial running time in the worst case for the unrooted maximum agreement subtree
problem (UMAST)2 for two binary, unrooted trees. Steel and Warnow [117] pre-
sented the �rst exact polynomial-time algorithms to solve MAST and UMAST
for two trees with unbounded degrees. Since then, a plethora of improvements
have been published (e.g., [28, 41, 42, 54, 73, 74, 75, 76, 77, 78, 87, 108, 119]).
The fastest currently known algorithm for MAST with k = 2, invented by Kao,
Lam, Sung, and Ting [78], runs in O(

√
D n log(2n/D)) time, where D is the max-

imum degree of the two input trees3. Note that this is O(n log n) for trees with
maximum degree bounded by a constant and O(n1.5) for trees with unbounded
degrees; incidentally, this matches the running times of the fastest algorithms
for UMAST so far: O(n log n) for two unrooted trees with maximum degree
bounded by a constant [74], and O(n1.5) for two unrooted trees with unbounded
degrees [119]. Finally, for two rooted, ordered trees, a maximum agreement
subtree can be computed in O(n log2 n) time [119].

Amir and Keselman [6] considered the more general case k ≥ 2. They proved
that MAST is NP-hard already for three trees with unbounded degrees, but
solvable in polynomial time for three or more trees if the degree of at least
one of the input trees is bounded by a constant. For the latter case, Farach,
Przytycka, and Thorup [40] gave an algorithm with improved e�ciency running
in O(kn3 + nd) time, where d is an upper bound on at least one of the input
trees' degrees; Bryant [21] proposed a conceptually di�erent algorithm with the
same running time. Bryant's approach led to a recent result in the �eld of
parameterized complexity theory stating that it is possible to determine whether
an instance of MAST has an agreement subtree with at least n − µ leaves for
any integer 0 ≤ µ ≤ n in O(kn3 + 2.270µ) time4 (see [5]).

In [6], Amir and Keselman also presented a factor 4 approximation algorithm
with O(kn5) running time for the problem of �nding a subset of S of minimum
cardinality whose removal leaves a set S̃ such that T1|S̃ = T2|S̃ = ... = Tk|S̃,
where all trees are unrooted.

Hein, Jiang, Wang, and Zhang [60] proved the following inapproximability
result: MAST with three trees with unbounded degrees cannot be approxi-
mated within a factor of 2logδ n in polynomial time for any constant δ < 1,
unless NP ⊆ DTIME[2polylog n]. This inapproximability result also holds for

2UMAST is de�ned like MAST except that all trees are unrooted and T |S′ now denotes
the tree obtained by �rst deleting from T all nodes (and their incident edges) which are not
on any path between two leaves in S′, and then contracting every node with degree 2.

3In fact, the result still holds for D equal to the smaller of the two input trees' degrees [120].
4Note that O(kn3 + 2.270µ) running time might be preferable to O(kn3 + nd) if d is

unrestricted and the number of leaves we are willing to exclude is small.
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UMAST [60]. Bonizzoni, Della Vedova, and Mauri [19] showed that it can be
carried over to the maximum isomorphic agreement subtree problem (MIT)5 re-
stricted to three trees with unbounded degrees as well, and that even stronger
bounds can be proved for MIT in the general case. Akutsu and Halldórsson [4]
and Khanna, Motwani, and Yao [82] proved lower and upper bounds on the ap-
proximability of another related problem known as the largest common subtree
problem (LCST)6.

Finally, we mention some known results of a more enumerative nature.
Kubicka, Kubicki, and McMorris [85] demonstrated that even if UMAST is re-
stricted to two binary, unrooted trees, there exist instances which have (61/4)n,
i.e., an exponential number of di�erent maximum agreement subtrees (adjusting
the idea used in their construction to two binary, rooted trees yields an analogous
exponential worst-case lower bound for MAST). In the same paper, the authors
gave lower bounds on the number of leaves in any maximum agreement sub-
tree of two binary, unrooted trees; these bounds were subsequently strengthened
(and extended to cover the case of binary, rooted trees) by Goddard and Ku-
bicki [55].

4.1.3 Our Contributions

In Section 4.2, we show how Akutsu and Halldórsson's general-purpose approx-
imation algorithm for the largest common subtree problem given in [4] can be
modi�ed to obtain a simple factor (n/ log n) approximation algorithm for MAST
whose running time is O(kn2).

Then, in Section 4.3, we prove that: (1) if P 6=NP then MAST cannot be
approximated within a factor of nε for any constant ε where 0 ≤ ε < 1

2 in
polynomial time, even for instances containing only trees of height 2; and (2) if
ZPP 6=NP then MAST cannot be approximated within a factor of nε for any
constant ε where 0 ≤ ε < 1 in polynomial time, even for instances containing
only trees of height 2. This implies that if we only restrict the maximum height
of the input trees then MAST remains hard to approximate.

On the other hand, we show in Section 4.4 that if both the number of input
trees and the height of at least one tree are bounded by constants then MAST
can approximated e�ciently. More precisely, we prove that MAST restricted
to instances with k = O(1) and h = O(1) can be approximated within a con-
stant factor in polynomial time. Furthermore, if all of the input trees' heights
are required to be bounded by a constant (H = O(1)), then MAST can be
approximated within a constant factor in O(n log n) time.

5MIT is de�ned like MAST except that when computing T |S′, nodes having just one child
are left that way, i.e., no edges are contracted.

6In LCST, the input is a set of rooted, unordered trees in which all nodes are labeled and
the same label may be assigned to more than one node, and the object is to �nd a node-labeled
tree with the maximum possible number of nodes that is isomorphic to an induced connected
subgraph in each of the input trees.
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4.2 A Polynomial-Time (n/ logn)-Approximation
Algorithm for MAST

Akutsu and Halldórsson's general-purpose approximation algorithm for the larg-
est common subtree problem from [4] can be adapted to obtain a polynomial-time
(n/ log n)-approximation algorithm for MAST. Observe that this does not con-
tradict the inapproximability result of Hein et al. [60] (see Section 4.1.2) since
n/ log n = 2log n−log log n = ω(2logδ n) for any �xed δ < 1. The resulting algo-
rithm is called Algorithm Simple MAST-Approx and is presented in Figure 4.3.

Algorithm Simple MAST-Approx

Input: An instance of MAST.

Output: An agreement subtree of T whose number of leaves is at least log n
n

times the number of leaves in a maximum agreement subtree of T .

1 Arbitrarily partition S into bn/ log nc sets S1, S2, ..., Sbn/ log nc, each of size at
most dlog ne+ 1.

2 Let Z := ∅.
3 for each subset S′

i of each set Si do

If |S′
i| > |Z| and T1|S′

i = T2|S′
i = ... = Tk|S′

i then let Z := S′
i.

endfor

4 return T1|Z.
End Simple MAST-Approx

Figure 4.3: Akutsu and Halldórsson's approximation algorithm applied to MAST.

Theorem 4.1 Algorithm Simple MAST-Approx is an n
log n -approximation al-

gorithm for MAST and can be implemented to run in O(kn2) time.

Proof: Let S∗ be the leaves in a maximum agreement subtree of T . Because
of the pigeonhole principle, at least one of the sets S1, S2, ..., Sbn/ log nc contains
≥ 1

bn/ log nc of the elements in S∗; thus, |Z| ≥ |S∗|
bn/ log nc ≥

|S∗|
n/ log n .

To implement step 3 of the algorithm, �rst construct T1|Si, T2|Si, ..., Tk|Si

for all the sets Si. Each tree Tj |Si can be obtained in O(n) time and contains at
most log n+2 leaves and hence O(log n) nodes in total since every internal node
of Tj|Si has at least two children. Next, every set Si has at most 2log n+2 = O(n)
subsets to be considered by the algorithm; each such subset S′

i can be evaluated
in O(k log n) time by checking if (T1|Si)|S′

i = (T2|Si)|S′
i = ... = (Tk|Si)|S′

i.
Thus, Algorithm Simple MAST-Approx can be implemented to run in O( n

log n ·
k · n + n

log n · n · k log n) = O(kn2) time. 2

As in [4], if at least one of the input trees is known to contain much fewer
than n leaves, the running time of Algorithm Simple MAST-Approx can be
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reduced by only considering the leaves in that tree rather than all of the leaves
in S (replace Step 1 by �Arbitrarily partition the m leaves of the smallest tree
in T into bm/ logmc sets S1, S2, ..., Sbm/ log mc, each of size ≤ dlogme+1.�) since
any leaf which belongs to S∗ must also belong to all of the input trees and, in
particular, to the smallest input tree.

4.3 MAST Restricted to Trees of Height 2 is Hard

to Approximate

Our main result in this section is the next theorem.

Theorem 4.2 For any constant ε where 0 ≤ ε < 1
2 , MAST, even if restricted

to trees of height 2, cannot be approximated within a factor of nε in polynomial
time, unless P=NP. Furthermore, for any constant ε where 0 ≤ ε < 1, MAST,
even if restricted to trees of height 2, cannot be approximated within a factor
of nε in polynomial time, unless ZPP=NP.

Proof: We �rst describe a reduction from the maximum independent set prob-
lem to MAST. Then, we show that if MAST could be approximated within a
factor of nε in polynomial time then the problem of �nding a maximum inde-
pendent set in a graph with l vertices could be approximated within a factor
of lε+o(1). Finally, we apply a known result about the inapproximability of the
maximum independent set problem to get our result.

Given a graph G = (V, E) where V = {v1, ..., vl} and E = {e1, ..., ek} with
k > 1, construct k rooted trees T1, ..., Tk on l + q labeled leaves (q is an integer
that will be speci�ed below) containing all the adjacency information about the
vertices of G as follows. For each edge ei = {va, vb} ∈ E, build a rooted tree Ti

on the set of leaves labeled by w1, ..., wl, wl+1, ..., wl+q. Let the root ri of Ti be
the parent of (l − 1) + q children, where the �rst child (�the non-leaf child�) is
a node with two children leaves labeled wa and wb, and the remaining children
of ri are leaves labeled by the elements in {wj | 1 ≤ j ≤ l + q and j 6∈ {a, b}}.
Thus, ri has exactly one pair of grandchildren, and we write GC(Ti) = {wa, wb}.
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Figure 4.4: An instance of the maximum independent set problem with l = 7, k = 8.
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Figure 4.5: The trees Ti corresponding to the graph in Figure 4.4.
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7+1
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2w w 7ww3 4
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Figure 4.6: The maximum agreement subtree of T1, ..., T8 shown above tells us that
{v2, v3, v4, v7} is a maximum independent set of the graph in Figure 4.4.

Now, let T be a maximum agreement subtree of T1, ..., Tk. Denote the set
of leaves in T by S′. We choose q large enough to guarantee that each of the
roots r1, ..., rk will correspond to the root of T , i.e., so that ri is still the root of
Ti|S′ for every i ∈ {1, ..., k}. Actually, q = 2 is su�cient. (To see this, assume
that for some i, the non-leaf child of ri turns out to be the root of Ti|S′. By the
construction above, all non-leaf children have two leaf children, so the number of
leaves in this agreement subtree can be no larger than two. But we can always
�nd an agreement subtree with three leaves by selecting ri as root and including
wl+1 and wl+2 in addition to any �xed leaf wj , where 1 ≤ j ≤ l. Contradiction.
In the same way, if any of the other descendants of ri becomes the root of Ti|S′

then the resulting agreement subtree can not be maximal.)
The root r of T has no non-leaf children because if it did, then there would

exist some x and y such that for each i, where 1 ≤ i ≤ k, GC(Ti) would
be equal to {wx, wy}. Consequently, G would only have one edge, which con-
tradicts k > 1. Thus, the children of r are m + q (= m + 2) leaves labeled
wµ1 , wµ2 , ..., wµm , wl+1, wl+2. If va is adjacent to vb in G then at most one of wa

and wb can be a child of r. Otherwise, GC(Ti) would not be equal to {wa, wb}
for any Ti, and ei 6= {va, vb} would hold for all i, contradicting the adjacency
of va and vb in G. Hence, the vertices vµ1 , vµ2 , ..., vµm form an independent
set in G. Conversely, given an independent set I in G, we can construct an
agreement subtree with |I|+ 2 leaves consisting of a root node with |I| children
distinctly labeled by {wj : vj ∈ I}, and two children labeled by wl+1 and wl+2.
By the maximality of T , m equals the cardinality of a maximum independent
set in G. Thus, an exact algorithm for MAST would immediately yield an exact
algorithm for the maximum independent set problem. See Figures 4.4�4.6 for
an example of the reduction.

The trees T1, ..., Tk can clearly be constructed from G in polynomial time.
Also, note that they are of height 2. Below, we only consider approximations
that can be carried out in polynomial time. Assume that MAST could be ap-
proximated within a factor of nε for some ε ≥ 0. Then OPT

APPR ≤ nε, where
OPT refers to the number of leaves in an optimal solution for a given instance
of MAST and APPR is the number of leaves in its approximate solution. In
particular, for the instance of MAST obtained in the reduction above, we would
have m+2

APPR ≤ (l + 2)ε, and the size of the corresponding approximate indepen-
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dent set would be APPR − 2. For APPR − 2 ≥ 1, this would imply that the
problem of �nding a maximum independent set in a graph could be approxi-
mated within a factor of m

APPR−2 ≤ 3 · m+2
APPR ≤ 3(l + 2)ε = lε+o(1). However,

Håstad proved in [66] that this problem is not approximable within:

(1) l1/2−δ for any constant δ > 0, unless P=NP; and

(2) l1−δ for any constant δ > 0, unless ZPP=NP

If ε = 1
2−τ for some constant τ > 0 then lε+o(1) = l1/2−τ+o(1) = l1/2−δ, where

δ = τ − o(1). For large enough l, δ is strictly greater than 0 since τ − o(1)→ τ
as l → ∞. Thus, from (1) it follows that if P 6= NP then no polynomial-time
algorithm can approximate arbitrary instances of MAST restricted to trees of
height 2 within a factor of nε for any constant ε with 0 ≤ ε < 1

2 .

Similarly, by (2), MAST restricted to trees of height 2 cannot be approxi-
mated in polynomial time within a factor of nε for any constant ε with 0 ≤ ε < 1,
unless ZPP=NP. 2

Engebretsen and Holmerin [36] obtained an even tighter inapproximability
result for the maximum independent set problem than the one cited above, under
the slightly stronger assumption that NP 6⊆ ZPTIME[2O(log n(log log n)3/2)] (note
that if this assumption is true, then NP 6= ZPP automatically follows). More
precisely, they showed that the maximum independent set problem cannot be ap-
proximated in polynomial time within a factor of n1−O(1/

√
log log n), where n is the

number of vertices in the input graph, unless NP ⊆ ZPTIME[2O(log n(log log n)3/2)].
This result can be used to extend Theorem 4.2 accordingly.

4.4 Approximations of MAST with O(1) Trees of
O(1) Height

We know that MAST remains hard to approximate even if we restrict the number
of input trees to any constant greater than or equal to three [60], or if we restrict
the heights of the trees to be bounded by a constant greater than or equal to two
(Theorem 4.2). The natural question arises whether or not MAST for instances
with a constant number of trees, each one of height bounded by a constant,
can be tightly approximated in polynomial time. In this section, we prove the
following theorem, which together with Theorem 4.2 yields a characterization of
the approximability of MAST restricted to instances with trees of O(1) height
(in fact, the theorem only requires that at least one of the trees' heights is
bounded by a constant). Recall that k denotes the number of input trees and
that h = min{height(Ti) | 1 ≤ i ≤ k} and H = max{height(Ti) | 1 ≤ i ≤ k}.

Theorem 4.3 MAST restricted to instances with k = O(1) and h = O(1) can
be approximated within a constant factor in polynomial time.
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Before proving Theorem 4.3, we introduce some notation. For any tree T ,
V (T ) stands for the set of nodes of T and Λ(T ) for the set of labels of the leaves
in T . Let v be a node of a rooted tree T . The subtree of T rooted at v (i.e., the
minimal subgraph of T which includes v and all of its descendants) is denoted
by T [v]. The set of children of v in T is denoted by C(v). Furthermore, by a
k-partite hypergraph H we mean a pair (V1 ∪ ... ∪ Vk, E), where V1 through Vk

are pairwise disjoint sets and E is a subset of V1 × ... × Vk. The elements of
V1 ∪ ... ∪ Vk are called vertices of H whereas the elements of E are called edges
of H. A matching of H is a subset of E in which no two edges include a common
vertex.

Given an instance of MAST, for every (v1, ..., vk) ∈ V (T1)×...×V (Tk), de�ne
Mast(v1, ..., vk) as the number of leaves in a maximum agreement subtree of the
trees T1[v1], ..., Tk[vk]. Next, de�ne Diag(v1, ..., vk) = max

{
Mast(w1, ..., wk) |

(w1, ..., wk) ∈ ({v1} ∪ C(v1))× ...× ({vk} ∪ C(vk)) − {(v1, ..., vk)}
}
. Finally, let

H(v1, ..., vk) denote the k-partite hypergraph (C(v1) ∪ ... ∪C(vk), C(v1)× ...×
C(vk)) in which each edge (w1, ..., wk) has weight equal to Mast(w1, ..., wk), and
let Match(v1, ..., vk) be the maximum weight of a matching in the hypergraph
H(v1, ..., vk).

The next lemma is a generalization of the main lemma behind the dynamic
programming approach to MAST for the case k = 2 presented in [41] and [117].

Lemma 4.4 For every (v1, ..., vk) ∈ V (T1)× ...× V (Tk),

Mast(v1, ..., vk) =



|Λ(T1[v1]) ∩ ... ∩ Λ(Tk[vk])|, if at least one of

v1, ..., vk is a leaf

max
{
Diag(v1, ..., vk), Match(v1, ..., vk)

}
, otherwise

Proof: If at least one of v1, ..., vk is a leaf ` then Mast(v1, ..., vk) equals 0
or 1 depending on whether ` occurs in all of the trees T1[v1], ..., Tk[vk], i.e.,
Mast(v1, ..., vk) = |Λ(T1[v1]) ∩ ... ∩ Λ(Tk[vk])|.

Next, if none of v1, ..., vk is a leaf then let T be a maximum agreement subtree
of T1[v1], ..., Tk[vk] and write L = Λ(T ) so that |L| = Mast(v1, ..., vk). There are
two possibilities:

1. (The Diag case.)
In at least one tree Ti, the lowest common ancestor of L lies below vi.

2. (The Match case.)
In every tree Ti, vi is the lowest common ancestor of L.

In the �rst case, T is also a maximum agreement subtree of any set of trees
T1[x1], ..., Tk[xk], where each xi belongs to the set of nodes on the path from
vi to the lowest common ancestor of L in Ti. Thus, we have Mast(v1, ..., vk) =
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1 kvv v2

Figure 4.7: (The Diag case.) Here, T is also a maximum agreement subtree
of T1[v1], T2[z], ..., Tk[vk], where z is a child of v2. Hence, Mast(v1, v2, ..., vk) =
Mast(v1, z, ..., vk).

v1 kvv2

Figure 4.8: (The Match case.) T has three children, each of which is the root of a
maximum agreement subtree for a set of trees T1[w1], ..., Tk[wk], where wi is a child
of vi for all 1 ≤ i ≤ k. Mast(v1, ..., vk) is given by the maximum weight of a matching
in H(v1, ..., vk).

Mast(w1, ..., wk) for some (w1, ..., wk) ∈ ({v1} ∪ C(v1))× ...× ({vk} ∪ C(vk)) −
{(v1, ..., vk)}. This case is illustrated in Figure 4.7.

In the second case, illustrated in Figure 4.8, for every i ∈ {1, ..., k} the
elements in L are descendants of at least two of Ti[vi]'s children. Since T is an
agreement subtree of T1[v1], ..., Tk[vk], the partition of L into disjoint, nonempty
sets each consisting of descendants of one of vi's children is identical for all
trees Ti[vi]. Hence, the elements of L can be partitioned into L1, ..., Lq with
q ≥ 2 such that for each j ∈ {1, ..., q}, T |Lj is a maximum agreement subtree of
a set of trees T1[w1], ..., Tk[wk], where wi ∈ C(vi) for all 1 ≤ i ≤ k. Denote the
k-tuple (w1, ..., wk) ∈ C(v1)× ...×C(vk) of ancestors of Lj by Γj . Observe that
Mast(Γj) = |Lj| for every j ∈ {1, ..., q} and that because L1, ..., Lq are disjoint,
Γ1, ..., Γq are also disjoint. Thus, {Γ1, ..., Γq} is one of the matchings in the k-
partite hypergraph H(v1, ..., vk). By the de�nition of H(v1, ..., vk), the weight
of this matching equals Mast(Γ1) + ... + Mast(Γq) = |L1| + ... + |Lq| = |L|.
Moreover, it is a maximum weight matching since otherwise there would exist an
agreement subtree of T1[v1], ..., Tk[vk] with more than |L| leaves, contradicting
the maximality of T . Therefore, Mast(v1, ..., vk) = Match(v1, ..., vk).

Finally, we note that in the Diag case, Match(v1, ..., vk) ≤ |L|, and similarly,
in the Match case, Diag(v1, ..., vk) < |L|. Thus, the lemma follows. 2
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Lemma 4.4 implies that we could compute Mast(v1, ..., vk) exactly for any k-
tuple (v1, ..., vk) in V (T1)× ...×V (Tk) if we knew the values of Mast(w1, ..., wk)
for all (w1, ..., wk) ∈ ({v1} ∪ C(v1))× ...×({vk} ∪ C(vk)) − {(v1, ..., vk)}. Hence,
to compute the number of leaves in a maximum agreement subtree of T1, ..., Tk,
we could employ dynamic programming to calculate all values of Mast in a
bottom-up manner, e.g., by evaluating the k-tuples in V (T1) × ... × V (Tk) in
increasing order in the lexicographic ordering O of V (T1)× ...×V (Tk) where the
nodes in each V (Ti) are postordered (�x an arbitrary left-to-right ordering of
the children of each node to obtain a well-de�ned postordering). The resulting
algorithm (Algorithm Compute Mast) is listed in Figure 4.9.

Algorithm Compute Mast

Input: An instance of MAST.

Output: The number of leaves in a maximum agreement subtree of T .

1 Let O be the lexicographic ordering of V (T1) × ... × V (Tk), where the nodes
in each V (Ti) are ordered according to postorder.

2 for each (v1, ..., vk) ∈ V (T1)× ...× V (Tk) in increasing order in O do

Compute Mast(v1, ..., vk) by using the expression in Lemma 4.4.

endfor

3 return Mast(r1, ..., rk), where ri is the root of Ti for 1 ≤ i ≤ k.

End Compute Mast

Figure 4.9: A dynamic programming algorithm for computing all values of Mast.

However, the running time of Algorithm Compute Mast may be very large
for two reasons.

First of all, there are O(nk) k-tuples in V (T1) × ... × V (Tk). For most of
these, Mast equals zero because there is no leaf which is contained in all of the
subtrees rooted at that k-tuple. Therefore, most k-tuples do not contribute to
the Mast values of other k-tuples. In the proof of Lemma 4.6 below, we will
show that the number k-tuples with Mast strictly greater than 0 is bounded
by n(H + 1)k, allowing the running time to be reduced correspondingly by only
considering these k-tuples.

Secondly, and more problematically, we cannot expect to be able to com-
pute the exact value of Match(v1, ..., vk) in the expression for Mast(v1, ..., vk)
in Lemma 4.4 in polynomial time since �nding a maximum weight matching in a
k-partite hypergraph is NP-hard already for the special case with k = 3 and all
weights set to 1 [49, 105]. For this reason, we rely upon a greedy, polynomial-time
algorithm for approximating Match(v1, ..., vk), which in turn yields an approx-
imation of Mast(v1, ..., vk). The performance and running time of the greedy
algorithm are given by the next lemma.
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Lemma 4.5 Let H = (V, E) be a k-partite hypergraph with positive integer
weights. A matching of H with total weight within a factor k of the maximum
can be constructed in O(|V |+ k|E|+ |E| log |E|) time.

Proof: Compute a maximal matching M of H with the following greedy al-
gorithm. Initially, let M be the empty set. Repeat until E is empty: �nd the
heaviest edge e in E, remove e from E, add e to M , and delete from E all edges
which overlap e. Finally, return M .

To analyze the greedy algorithm's performance, let M∗ be a maximum weight
matching of H. For any edge f ∈ M∗, f is eventually removed from E by the
greedy algorithm due to some overlapping edge e being selected for inclusion
in M ; we say that f is accounted for by e and write f ∈ A(e) (if f itself belongs
to M then f is accounted for by f). Note that f must be accounted for by some
edge in M since at least one vertex in f is in an edge of M . Now, whenever an
edge e is added to M by the algorithm, every edge that remains in E has weight
less than or equal to weight(e). Furthermore, e can overlap at most k edges
in M∗, so the total weight of the edges in M∗ that remain in E at that point
and overlap e is less than or equal to k · weight(e), i.e.,∑

e∗∈A(e)

weight(e∗) ≤ k · weight(e)

Summing over all edges in M gives us

∑
e∈M

∑
e∗∈A(e)

weight(e∗) ≤ k ·
∑
e∈M

weight(e)

The left-hand side equals
∑

e∗∈M∗
weight(e∗), so weight(M) ≥ 1

k · weight(M∗).

To implement the greedy algorithm, scan the edges in E once to produce
a list L(v) for every vertex v ∈ V of all edges in E incident to v. This takes
O(|V |+k|E|) time. Next, sort the edges in E according to nonincreasing weights
in O(|E| log |E|) time and store them in a doubly linked list. Then, when an
edge is to be added to M , select the �rst element e in the sorted list and locate
all edges which overlap e using the L(v)-lists with v ∈ e. For each such edge,
checking if it still belongs to the sorted list and in that case deleting it takes
O(1) time, so this step takes a total of O(k|E|) time. Therefore, the running
time of the greedy algorithm is O(|V |+ k|E|+ |E| log |E|). 2

By modifying Algorithm Compute Mast and applying Lemma 4.5, we obtain
the following:
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Lemma 4.6 Mast(r1, ..., rk), where ri is the root of Ti for 1 ≤ i ≤ k, can be
approximated within a factor of kh in O(2k ·n(H + 1)k ·(log n + k log H)) time,
where h = min{height(Ti) | 1 ≤ i ≤ k} and H = max{height(Ti) | 1 ≤ i ≤ k}.

Proof: For any (v1, ..., vk) ∈ V (T1)× ...×V (Tk), denote by s(v1, ..., vk) the size
of the set Λ(T1[v1]) ∩ ... ∩ Λ(Tk[vk]). Clearly, Mast(v1, ..., vk) ≤ s(v1, ..., vk),
and in particular, if at least one of the vi's is a leaf then Mast(v1, ..., vk) =
s(v1, ..., vk). For every leaf j, we can determine all k-tuples (v1, ..., vk) for which
j ∈ Λ(T1[v1]) ∩ ... ∩ Λ(Tk[vk]) by �nding the nodes on the path of length ≤ H
from the leaf j to the root in each Ti, i = 1, ..., k. It follows that the number of
such k-tuples is ≤ (H + 1)k. Consequently, the set L of all k-tuples for which
s(v1, ..., vk) > 0 has size not exceeding n(H + 1)k. To generate L, we sort the
pointers to the leaves by their labels in O(n log n) time for each of the k trees
and then list the elements of L (including repetitions) by following appropriate
tree paths, using a total of O(kn log n + |L|·k) time.

For every k-tuple (v1, ..., vk) not in the set L, we have Mast(v1, ..., vk) = 0
since Mast(v1, ..., vk) ≤ s(v1, ..., vk). For every (v1, ..., vk) ∈ L where at least
one of v1, ..., vk is a leaf, s(v1, ..., vk) = 1 and Mast(v1, ..., vk) = 1. To e�-
ciently compute approximations of Mast(v1, ..., vk) for the rest of the k-tuples
in L, we �rst build a balanced search tree SL for L (without repetitions of
k-tuples) with respect to the lexicographic ordering O. Then, we follow the
scheme of Algorithm Compute Mast but only evaluate k-tuples which belong
to L (we can traverse SL to enumerate them in the correct order). For every
k-tuple (v1, ..., vk) in L, we apply the greedy algorithm described in Lemma 4.5
to approximate Match(v1, ..., vk) in the hypergraph HL(v1, ..., vk), de�ned as
the hypergraph H(v1, ..., vk) restricted to edges in L.

To construct the HL-hypergraphs, we augment each k-tuple (v1, ..., vk) in L
with a list E(v1, ..., vk). Any (w1, ..., wk) ∈ L may occur as an edge in the HL-
hypergraphs only for HL(v1, ..., vk) where vi is the parent of wi for i = 1, ..., k,
i.e., at most once. Hence, when (w1, ..., wk) has been evaluated, if none of
the nodes w1, ..., wk is a root, we �nd (v1, ..., vk) and then store the k-tuple
(w1, ..., wk) and the approximate value of Mast(w1, ..., wk) in E(v1, ..., vk) us-
ing SL. Because of the ordering O, when the algorithm later on needs to ap-
proximate Match(v1, ..., vk), E(v1, ..., vk) contains all edges in HL(v1, ..., vk) and
their approximate weights.

We can employ a similar technique to obtain the Diag-values. Equip each
k-tuple in L with a list D, and whenever some k-tuple (w1, ..., wk) has been
evaluated, store the approximate value of Mast(w1, ..., wk) in the D-lists of the
at most 2k−1 di�erent k-tuples in {v1, w1}× ...×{vk, wk}−{(w1, ..., wk)} where
for i = 1, ..., k, vi is the parent of wi (let vi equal wi if wi is the root of Ti),
using SL. Then, when the algorithm has to evaluate a k-tuple (v1, ..., vk), its
D-list contains approximate Mast-values of all k-tuples in ({v1} ∪ C(v1))× ...×
({vk} ∪ C(vk)) − {(v1, ..., vk)}, and by the de�nition of Diag, Diag(v1, ..., vk)
can be obtained by taking the maximum value in its D-list.
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We now prove by induction on h that the approximation factor of this
method is kh. First observe that all non-optimal values obtained in the Mast-
computations are due to approximations of Match. Thus, the returned solution
di�ers from the optimum only if it uses one or more approximate Match-values.
This immediately implies that if h = 0 then Mast(r1, ..., rk) is computed ex-
actly. Next, for h > 0, assume inductively that kh−1-approximations of every
Mast(w1, ..., wk), where wi ∈ V (Ti)−{ri} for 1 ≤ i ≤ k, are available. Let Tj be
a tree in {T1, ..., Tk} with height h. By the induction hypothesis, we have kh−1-
approximations of the weights of all edges in the hypergraphHL(v1, ..., rj , ..., vk)
for any (v1, ..., rj , ..., vk) ∈ V (T1)×...×{rj}×...×V (Tk). We subsequently obtain
an approximation of Match(v1, ..., rj , ..., vk) which is within a factor of kh of the
optimum when using Lemma 4.5. It follows that Diag(v1, ..., rj , ..., vk) for any
(v1, ..., rj , ..., vk) ∈ V (T1) × ... × {rj} × ... × V (Tk), and hence Mast(r1, ..., rk),
is approximated within a factor of kh.

Finally, we analyze the running time. To generate L takes O(kn log n+|L|·k)
time, where |L| ≤ n(H +1)k as shown above, and to build SL takes O(|L| log |L|)
time. Denote the number of edges in HL(v1, ..., vk) by e(v1, ..., vk). Then
HL(v1, ..., vk) has at most k · e(v1, ..., vk) vertices. Since the HL-hypergraphs
have no more than |L| edges in total (recall that each k-tuple in L appears as
an edge in at most one HL-hypergraph), we have

∑
(v1,...,vk)∈L

e(v1, ..., vk) ≤ |L|.

By Lemma 4.5, the time required to construct all HL and approximate all
Match-values is therefore bounded by

O(k + log |L|) · |L|
+

∑
(v1,...,vk)∈L

O
(
k · e(v1, ..., vk) + k · e(v1, ..., vk) + e(v1, ..., vk) log e(v1, ..., vk)

)

which is O((k+log |L|)·|L| + k|L| + k|L| + |L|·log n) = O(|L| log |L|). Creating
the D-lists takes a total of O((k + 2k · log |L|) · |L|) time, and the time needed
to scan all the D-lists (to �nd maximum values) is proportional to the sum of
their lengths, which is O(2k · |L|); thus, the Diag computations take a total of
O(2k·|L| log |L|) time. Adding everything together, we see that the total running
time is O(2k ·|L| log |L|) = O(2k ·n(H + 1)k ·(log n + k log H)). 2

To compute an actual approximate maximum agreement subtree and not just
the number of leaves it contains, extend the modi�ed Algorithm Compute Mast
in the proof of Lemma 4.6 in the following way. Associate an initially empty list
M(v1, ..., vk) to each k-tuple (v1, ..., vk) in L. When Mast(v1, ..., vk) is computed,
insert pointers to the k-tuples which contribute to the value of Mast(v1, ..., vk)
into M(v1, ..., vk). (If at least one of v1, ..., vk is a leaf then M(v1, ..., vk) is left
empty. Otherwise, if the approximate value of Diag(v1, ..., vk) is greater than or
equal to the approximate value of Match(v1, ..., vk) then insert a pointer to a k-
tuple in the expression for Diag yielding the maximum value of Mast(v1, ..., vk);
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if the approximate value of Diag(v1, ..., vk) is less than the approximate value
of Match(v1, ..., vk) then insert pointers to all k-tuples which are edges in the
selected matching of HL(v1, ..., vk).) After Mast(r1, ..., rk) has been calculated,
the set S′ of elements in an approximate maximum agreement subtree can be
reconstructed by following pointers in the M -lists, starting at M(r1, ..., rk). Fi-
nally, return the tree T1|S′ as the solution.

The additional time needed to build all of the M -lists and to follow pointers
to obtain S′ is O(|L| log |L|), and the time required to construct T1|S′ is O(n), so
the total running time is still O(2k·n(H +1)k·(log n+k log H)). Since k = O(1),
h = O(1), and H = O(n) imply that this expression is a polynomial in n and
that kh is a constant, we have just proved Theorem 4.3.

If we also require the height of every input tree to be bounded by a constant
(i.e., H = O(1)) then the asymptotic running time is only O(n log n) since
(H + 1)k is O(1).

Corollary 4.7 MAST restricted to instances with k = O(1) and H = O(1) can
be approximated within a constant factor in O(n log n) time.

We end this section with the observation that an algorithm of Berman [17]
based on local search can be used to approximate maximum weight matchings in
k-partite edge-weighted hypergraphs in polynomial time7. The resulting approx-
imation factor is k+1

2 , which beats the approximation factor of k of the greedy
algorithm described in Lemma 4.5; however, its running time can be much slower
than that of the greedy algorithm. Thus, we can improve the approximation fac-
tor in Lemma 4.6 to (k+1

2 )h if we are willing to sacri�ce some additional running
time.

4.5 Concluding Remarks

Below, we summarize how restricting the parameters h, H , and k a�ects the
computational complexity of MAST. The �rst table lists hardness results, and
the second one shows how well we can approximate MAST in polynomial time.

Arrows indicate when a result follows directly from another by generalization
(for example, MAST restricted to instances with H = 2 and k = 3 is NP-hard,

7Given a d-claw free graph (i.e., a graph in which no vertex has d neighbors which form
an independent set) G = (V, E) and a function w : V → R+, the algorithm in [17] �nds
an independent set I such that w(I∗)/w(I) ≤ d/2, where I∗ is an independent set which
maximizes w(I∗). Consider the vertex-weighted graph GH formed from a k-partite edge-
weighted hypergraph H by representing each hyperedge in H by a vertex with the same weight,
and including an edge between two vertices in GH if and only if the corresponding hyperedges
in H intersect. Any independent set in GH corresponds to a matching of H. Furthermore, if
a hyperedge e in H overlaps k + 1 hyperedges then at least two of them must overlap e in the
same vertex in H and therefore be neighbors in GH, so no set of k + 1 neighbors of e in GH
can constitute an independent set, i.e., GH is (k + 1)-claw free.
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so the more general case with H = 2 and k = O(1) cannot be any easier)
or by specialization (e.g., the O(1)-approximation algorithm for the case with
h = O(1) and k = O(1) still works for the more restricted case with h = 2 and
k = O(1)). Note that since h ≤ H , any upper bound imposed on H implies
an upper bound on h. Thus, although the case with H = O(1) and k = 3 is
NP-hard, it admits a polynomial-time O(1)-approximation algorithm.

Negative results k = 3 k = O(1) k unrestricted

H = 2 NP-hard NP-hard Hard to
(Amir and approximate

Keselman [6] 8) (←) (Theorem 4.2)
H = O(1) NP-hard NP-hard Hard to

approximate
(↑) (↖) (↑)

H unrestricted Hard to Hard to Hard to
approximate approximate approximate

(Hein et al. [60]) (←) (← or ↑)

Positive results k = 3 k = O(1) k unrestricted

h = 2 O(1)-approx. O(1)-approx. n/ logn-approx.
(↘) (↓) (↓)

h = O(1) O(1)-approx. O(1)-approx. n/ logn-approx.
(→) (Theorem 4.3) (↓)

h unrestricted n/ logn-approx. n/ logn-approx. n/ logn-approx.
(→) (→) (Theorem 4.1)

We conclude that only restricting the heights of the input trees or the number
of input trees is not enough to render e�cient approximation algorithms with
small approximation factors possible. However, MAST restricted to instances
where the height of at least one of the input trees and the number of input
trees are known to be upper bounded by constants can be approximated within
a constant factor in polynomial time.

We also remark that other techniques for approximating MAST might be
useful for instances in which the maximum agreement subtree is known to con-
tain many leaves. For example, consider the problem of �nding a subset of S
of minimum cardinality whose removal leaves a set S̃ such that T1|S̃ = T2|S̃ =
... = Tk|S̃. This problem is supplementary to MAST in the sense that an exact
algorithm for one of the two problems automatically yields an exact algorithm for

8A closer inspection of the proof of Amir and Keselman in [6] reveals that the NP-hardness
holds even if the problem is further restricted to H = 2 since all trees constructed in the
reduction have height 2.
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the other, but approximation factors are not preserved9. In [6], Amir and Kesel-
man gave a polynomial-time, factor 4 approximation algorithm for supplemen-
tary UMAST; we note that given an instance (S, T ) of UMAST, removing a 4-
approximate solution to the supplementary problem from S provides an approx-
imate solution to the original problem which has at least n−4(n−m) = 4m−3n
leaves, where m is the number of leaves in a maximum agreement subtree. There-
fore, this method yields a good approximation for UMAST if m is known to be
large: e.g., if m ≥ 0.95n then 4m−3n ≥ 0.8n. We further note that the approx-
imation algorithm for supplementary UMAST can be turned into a polynomial-
time, factor 3 approximation algorithm for supplementary MAST10, and that
given an instance (S, T ) of MAST, removing a 3-approximate solution to sup-
plementary MAST from S provides an approximate solution to MAST with at
least n− 3(n−m) = 3m− 2n leaves. As above, this results in a good approxi-
mation factor for MAST if m is large: e.g., if m ≥ 0.95n then 3m− 2n ≥ 0.85n;
indeed, this method gives a constant approximation factor for MAST whenever
m ≥ 0.67n.

Finally, we list some open problems related to the approximability of MAST
suitable for further research.

1. Our results in this chapter show that MAST restricted to instances with
h = 2 and k = 3 can be approximated in polynomial time within a factor
of 32 = 9. For this special case, is it possible to construct a polynomial-time
approximation scheme (PTAS), or at least a polynomial-time approxima-
tion algorithm with better approximation factor than 9? If so, can the same
techniques be applied to obtain tighter approximations for other cases of
MAST as well?

2. MAST restricted to instances with H = 1 can be solved exactly in poly-
nomial time with a trivial algorithm. On the other hand, only requiring
that h = 1 does not help to make the problem easier to solve since the
inapproximability results of Theorem 4.2 can be extended to cover this
case11. The NP-hardness proof of Amir and Keselman [6] can be modi�ed

9The same situation occurs for the maximum independent set problem (MIS) and its �sup-
plement�, the minimum vertex cover problem (MVC). MIS cannot be approximated within a
factor of l1/2−δ , where l is the number of vertices in the input graph, for any constant δ > 0
in polynomial time unless P=NP [66], whereas MVC can be trivially approximated within a
factor of 2 by �nding a maximal matching in the graph and outputting the set of matched
vertices [49, 105, 128].

10Instead of constructing the set S4 of all 4-element subsets of S which do not induce identical
topologies in all of the input trees and then greedily computing an approximate minimum cover
of S4 (see [6]), construct the set S3 of rooted triples on S which are not consistent with all
the input trees and return a 3-approximate minimum cover of S3.

11In the proof, also construct a rooted tree Tk+1 consisting of a root node attached to
l + 2 leaves labeled by w1, ...,wl, wl+1, wl+2. Clearly, Tk+1 has height 1. Furthermore, any
maximum agreement subtree of T1, ..., Tk is also a maximum agreement subtree of T1, ..., Tk+1,
and vice versa. Thus, the inapproximability results hold even if h = 1 and H = 2.
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in a similar way to show that MAST restricted to h = 1 and k = 4 is
NP-hard. But what happens to the computational complexity of MAST
when h = 1 and k = 3? Is the problem still NP-hard, or does it become
possible to solve exactly in polynomial time?

3. What is the computational complexity of the maximum agreement subtree
problem for rooted, ordered trees? Sung [119] showed that MAST for two
rooted, ordered trees can be solved in O(n log2 n) time, which is less than
the running times of the currently fastest algorithms for two rooted, un-
ordered trees and for two unrooted trees (see Section 4.1.2). Moreover, as
shown in Chapters 2 and 3, the maximum 3-leaf constraints consistency
problem is NP-hard for unordered trees but becomes solvable in polyno-
mial time for ordered trees. Also, the problem of computing an optimal
alignment between two node-labeled trees which we study in Chapter 5
is NP-hard for unordered trees, yet polynomial-time solvable for ordered
trees. We conjecture that MAST for ordered trees can also be solved in
polynomial time even though MAST for unordered trees is NP-hard. If,
however, MAST for ordered trees turns out to be NP-hard, can it be ef-
�ciently approximated even if the trees are allowed to have unbounded
degrees and the parameters h, H , and k remain unrestricted?





Chapter 5

Fast Optimal Alignment

between Two Labeled,

Ordered Trees

Jiang, Wang, and Zhang [70] proposed the concept of an alignment between two
node-labeled, rooted trees as a way to measure their similarity and to identify
parts of the trees which are alike. They presented an algorithm for computing
an optimal alignment between two node-labeled, ordered trees, but left it as
an open question to determine whether its running time can be improved. We
show that the answer is �yes� for problem instances where the two input trees
are similar, i.e., where the score of an optimal alignment between them is high,
under some natural assumptions on the scoring scheme.

5.1 Introduction

In this chapter, a tree is said to be labeled if each node in the tree is labeled
by a symbol from a �xed �nite set Σ or by a special blank symbol '−' which
we assume does not belong to Σ. An ordered tree is a rooted tree in which the
left-to-right order of the children of each node is signi�cant.

An insert operation on a labeled, rooted tree adds a new node u, labeled by
the blank symbol '−'. The operation either:

(1) turns the current root of the tree into a child of u and lets u become the
new root;

or

73
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(2) makes u the parent of a subset of (if the tree is unordered) or consecutive
subsequence of (if the tree is ordered) children1 of an existing node v, and
u a child of v.

Figure 5.1 shows an example of an insert operation.

Let S and T be two rooted trees, labeled by Σ. An alignment between S
and T is a tree obtained by �rst performing insert operations on S and T so
that the two resulting trees S′ and T ′ are isomorphic when labels are ignored
and then overlaying S′ on T ′. In addition, it is required that no node of the
alignment corresponds to two nodes s′ ∈ S′ and t′ ∈ T ′ which are both labeled
by blank symbols. The score of the alignment is the sum of the scores of all pairs
of aligned nodes, where the score of a pair of nodes is determined by a given
function µ de�ned on Σ′ × Σ′ \ {(−,−)} with Σ′ = Σ ∪ {−}. See Figure 5.2
for an example.

An optimal alignment between a pair of labeled, rooted trees is an alignment
between them achieving the highest possible score2.

From here on, we assume that Σ and µ have been �xed beforehand so that
µ is not part of the actual input. Also, we consider ordered trees only; thus, we
focus on the following problem3:

The alignment between ordered trees problem

Instance: Two labeled, ordered trees S and T .

Output: An optimal alignment between S and T under the scoring func-
tion µ.

For any tree S, |S| represents the number of nodes in S. The degree of
a node u in a rooted tree is the number of children of u and is denoted by
deg(u). The degree of a rooted tree S is the maximum degree of all nodes in S
and is denoted by deg(S). Given an instance (S, T ) of the alignment between
ordered trees problem, we write m = min{|S|, |T |} and n = max{|S|, |T |}, and
let ∆ = max{deg(S), deg(T )}.

1Observe that subsets and consecutive subsequences can consist of zero elements.
2In [70], Jiang, Wang, and Zhang de�ned an optimal alignment as one with the lowest

possible score.
3We would have preferred to call it the tree alignment problem (in analogy to the string

alignment problem), but this name is already in use for another optimization problem, de�ned
in, e.g., [10, 58, 111]. See also Section 6.1.1.
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Figure 5.1: An insert operation of type (2). The new node becomes the parent of a
consecutive subsequence of children of the node labeled by a, and then becomes a child
of that node.
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Figure 5.2: Let Σ = {a, b, c, d, e} and de�ne the scoring function µ as follows: for every
x, y ∈ Σ with x 6= y, let µ(x, x) = 3, µ(x, y) = −1, and µ(x,−) = µ(−, x) = −2. Then
the score of the alignment in (c) between the two labeled trees shown in (a) and (b) is
equal to 2.

5.1.1 Motivation

Many areas of computer science use labeled, ordered trees to represent hierarchi-
cally structured information. It is sometimes necessary to measure the similarity
between two or more such trees or to �nd parts of the trees which are similar:

• In computational molecular biology, labeled ordered trees can be used to
describe RNA molecules' secondary structures [112], allowing researchers
investigating, e.g., evolutionary relationships between RNA molecules to
obtain additional clues by measuring and comparing the similarities of
their secondary structure trees [29]4. Also, when trying to determine the

4This seems especially helpful when the strings representing the primary structures of the
molecules cannot be reliably aligned, as in the case of pRNA and mrpRNA studied in [29]. In
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secondary structure of a given RNA molecule, it is useful to look for fre-
quently recurring patterns among a set of candidate secondary structures
obtained by simulating the folding process of the molecule [89]. Further-
more, likely locations of certain regulatory sequences in a DNA molecule
can be revealed by �nding occurrences of particular patterns in the sec-
ondary structure of the corresponding mRNA. For example, [38] employed
a method based on energy-scoring functions and a simple mRNA secondary
structure matching criterion to predict where in twelve di�erent bacterial
genomes that rho-independent transcription terminators occur; if the sec-
ondary structure of the RNA is known, algorithms for identifying more
complex patterns in the secondary structure trees may facilitate the search
for other important regions.

• The ability to detect changes in electronic documents and structured data
is crucial for information management and data archiving applications.
Often, the entire history of modi�cations made to a data �le is unavailable
but snapshots of previous versions of the �le can be obtained and then
analyzed and compared to the current version [25]. Hence, algorithms for
comparing labeled, ordered trees in order to �nd changes between di�er-
ent versions of hierarchically structured documents such as LaTeX- and
SGML-�les have been developed [25, 129].

• In software construction, the source code of computer programs (or dif-
ferent versions of one program) can be represented by labeled, ordered
trees and then compared in order to identify syntactic di�erences between
them [132]. Algorithms for �nding correspondencies between labeled, or-
dered trees thus provide a useful tool for programmers and software main-
tainers who need to know where in the source code structural changes have
been made between di�erent versions, or for a team of programmers who
want to merge their work5.

A related application is described in [14]. Suppose a computer program
controlling an industrial process has been running for some time and that
the program has to be updated. However, the current values of counters
and certain other variables need to be preserved, e.g., to monitor when
various hardware components require maintenance. Rather than restart-
ing the program from scratch and manually assigning the old values to
the relevant variables during execution or modifying their initial values di-
rectly in the source code by hand before recompiling the program (indeed
a tedious task if there are thousands of counters, many with similar names,

general, if the RNA molecules to be compared have evolved for a long time, methods that also
take into account secondary structure information are potentially more accurate than those
that only rely upon the primary structure [100].

5Instead of computing the di�erences between versions, it may be more practical (when
possible) to let the programming environment keep track of the modi�cations which have been
made, for example by using techniques such as the ones described in [9]. (This can save a lot
of time if the trees are very large and correspondencies have to be reported many times.)
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and perhaps even some with identical names, occurring in di�erent blocks
of the program), it would be desirable to automatize this step by identi-
fying parts of the program which remain unchanged so that information
can be transferred from the old version of the program to the new version
easily. For this purpose, the algorithms given in [14] attempt to �nd pairs
of matching nodes among two labeled, rooted trees representing the two
versions being compared.

• By comparing various subtrees or subforests of a labeled, ordered tree rep-
resenting a computer program, one can locate fragments of the source code
which are identical to each other. Detecting and replacing such �clones�
by, e.g., subroutines or macros may improve the structure of (and thus
decrease the maintenance costs of) software [11].

• Compilers need mechanisms for automatic error recovery to be able to
report more than just one error per run when analyzing the source code of
a computer program. To select the best way to recover from an encountered
syntactic error so that the parsing process can continue, a compiler can
measure the similarity between the erroneous part of the program and
various valid replacements by using comparison algorithms for strings as
well as for the corresponding labeled, ordered parse trees [124].

Practical uses of comparing labeled, unordered trees can be found in such ap-
parently unrelated disciplines as chemical structure analysis, image recognition,
and information retrieval in next-generation database systems (see the refer-
ences in [70, 113]). Also, identifying structural similarities in pairs of labeled,
unordered trees representing sentences expressed in two di�erent languages (e.g.,
English and Japanese) to build an example base or to extract translation pat-
terns is useful in the preparation of automated natural language translation
systems [95].

The applications listed above employ a variety of techniques and heuristic
matching rules; it might be possible to improve the performance of some of these
methods by incorporating alignments between trees. In any case, it is advanta-
geous to have many methods to choose from since alternative ways of measuring
the similarity between labeled trees or alternative criteria for matching nodes
may be suitable in di�erent contexts. Hence, algorithms for computing optimal
alignments between trees are valuable because of the generality and �exibility
provided by the freedom of the programmer to select the scoring function µ as
appropriate.

Moreover, in practical applications, it is preferable to have algorithms which
execute e�ciently. The fastest known algorithms for computing optimal align-
ments between trees have lower time complexity than the fastest known algo-
rithms for another measure of similarity called the tree edit distance [124], both
for unordered trees whose degrees are bounded by a constant [70, 133] and for
ordered trees whose degrees are much smaller than their depths [70, 134].



78 Chapter 5. Fast Optimal Alignment between Two Labeled, Ordered Trees

Further motivation for studying the alignment between ordered trees problem
comes from the fact that it generalizes some well-known combinatorial problems.
For instance, the special case in which all internal nodes of the trees have exactly
one child6 is known as the string alignment problem, and the special case of the
string alignment problem where the scoring function satis�es µ(x, x) = 1 and
µ(x,−) = µ(−, x) = µ(x, y) = 0 for every x, y ∈ Σ with x 6= y is the longest
common subsequence problem (LCS) [58]. These two problems have been studied
extensively because of their numerous applications to computer science, molec-
ular biology, abstract algebra, speech recognition, dendrochronology, and many
other �elds [58, 106, 111, 115, 130, 131]. As an example, the indispensable
UNIX utility diff for comparing two text �les interprets each line of the in-
put �les as one symbol and then applies an LCS-based algorithm [115]. Given
the extreme usefulness of algorithms for solving the string alignment problem
and LCS, e�cient algorithms for the more general problem should also be useful.
The maximum (ordered) re�nement subtree problem [60], the smallest common
(ordered) supertree problem [99], and the (ordered) tree inclusion problem [83] are
other noteworthy problems which can be cast as special cases of the alignment
between (ordered) trees problem (see [60] and [70]).

The algorithm presented in this chapter is designed to e�ciently solve in-
stances of the alignment between ordered trees problem where S and T are
similar, meaning that an optimal alignment between S and T has a high score.
The motivation for this is that in many applications, the two input trees be-
ing compared can be assumed to be closely related and therefore do not di�er
greatly (for example, if only a few changes have been made between two versions
of an electronic document). Then, an algorithm that just considers alignments
without a lot of blank symbols and mismatches can compute an optimal align-
ment more e�ciently than an algorithm which does not make this assumption.
For the special case of string alignments, Section 12.2 of [58] lists several ex-
amples where two or more very similar strings need to be compared and where
the speedups obtained by exploiting bounded di�erence methods are of great
practical importance.

5.1.2 Previous Results

Jiang, Wang, and Zhang [70] generalized string alignments to alignments between
labeled trees and gave an algorithm for the alignment between ordered trees
problem with O(|S| · |T | ·∆2) running time.

Jiang et al. [70] also observed that although the score of an optimal alignment
between two strings and their edit distance are equivalent notions (see, e.g., [58,
106, 111, 130]), the score of an optimal alignment between two trees (ordered
or unordered) and their tree edit distance [124] are not. In fact, they provided

6More formally, the restriction of the alignment between ordered trees problem to instances
with ∆ = 1 and where no insert operation may result in a node with degree > 1.
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a polynomial-time algorithm for computing an optimal alignment between two
labeled, unordered trees when ∆ = O(1) (and showed the latter problem to
be MAX SNP-hard if at least one of the input trees is permitted to have an
arbitrary degree), whereas computing the tree edit distance for two labeled,
unordered trees is MAX SNP-hard even if ∆ = O(1) [133].

The standard algorithm for the special case of string alignments runs in
O(mn) time, where m and n are the lengths of the two input strings [58, 106,
111, 130]. By modifying the algorithm as described in Section 3.3.4 of [111] (see
also Section 12.2 of [58]), an optimal alignment between two strings of length n
can in fact be computed in O(nf) time under certain assumptions on the scoring
scheme, where f is the di�erence between the score of two identical strings of
length n and the optimal score of the two input strings.

5.1.3 Our Contributions

Inspired by the fast method for computing an optimal alignment between two
similar strings described in Section 3.3.4 of [111], we present an algorithm for
the alignment between ordered trees problem which is faster than the algorithm
of Jiang et al. when the score of an optimal alignment between the two input
trees is high and the scoring scheme satis�es some natural assumptions.

We �rst give an algorithm called Algorithm Fast Score which computes the
score of an optimal alignment between S and T in O(n · (log n + ∆3) · d2) time
if an optimal alignment with at most d blank symbols exists and d is speci�ed
in advance. The main idea behind Algorithm Fast Score is to speed up the
algorithm of Jiang et al. by only considering what we call d-relevant pairs of
subtrees and subforests. Next, we present a more general algorithm called Algo-
rithm Unspeci�ed d for when no upper bound on d is provided which computes
the score of an optimal alignment in O(n · (log n + ∆3) · f2) time, where (as-
suming that the scoring scheme satis�es certain properties) f is the di�erence
between the highest possible score for any alignment between two trees having a
total of |S|+ |T | nodes and the score of an optimal alignment between S and T .
Furthermore, if there exists an optimal alignment between S and T with b blank
symbols and O(b) node pairs of the form (x, y), where x 6= y, then (under some
slightly stronger assumptions on the scoring scheme) Algorithm Unspeci�ed d
runs in O(n · (log n+∆3) · b2) time, even if b is not known in advance. In partic-
ular, if the degrees of both input trees are bounded by a constant, the running
times stated above reduce to O(n log n · d2), O(n log n · f2), and O(n log n · b2),
respectively.

In Section 5.2, we describe the algorithm of Jiang et al. from [70]. Then,
in Section 5.3, we de�ne the new concept we call d-relevance. In Section 5.4,
we show how to test whether a given pair of subtrees or subforests is d-relevant,
and in Section 5.5, we describe an e�cient method for enumerating all d-relevant
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pairs of subtrees. Next, we present and analyze Algorithm Fast Score and Al-
gorithm Unspeci�ed d in Sections 5.6 and 5.7. In Section 5.8, we summarize our
results and discuss some open problems.

5.2 The Algorithm of Jiang, Wang, and Zhang

The algorithm of Jiang, Wang, and Zhang [70] for aligning two labeled, ordered
trees is based on the standard dynamic programming algorithm for the string
alignment problem which calculates the scores of optimal alignments between
pairs of pre�xes (or symmetrically, su�xes) of the two input strings in bottom-
up order by using a two-dimensional table to store the computed scores, and
then, when the table is complete, performs a traceback to obtain an optimal
alignment (see, e.g., [58, 106, 111, 130]). The algorithm of Jiang et al. computes
and stores the scores of optimal alignments between pairs of ordered subtrees
of S and T and between pairs of ordered subforests of S and T in a bottom-up
fashion. After the algorithm is �nished, an actual optimal alignment between S
and T can also be recovered by doing a traceback.

Some notation is necessary to describe the algorithm in more detail.

De�nition 5.1 For an ordered tree S and a node u of S, let S[u] denote the
ordered subtree of S rooted at u (i.e., the minimal subgraph of S which includes u
and all of its descendants). Let deg(u) be the degree of u, and denote the children
of u by u1, ..., udeg(u) according to their left-to-right order. S(u, i, j) refers to
the ordered subforest S[ui], ..., S[uj], and S(u) is short for S(u, 1, deg(u)). The
number of nodes in a subtree or subforest S∗ is denoted by |S∗|. Finally, deg(S)
is de�ned as the maximum degree of all nodes in S.

Thus, S(u) is the complete ordered forest obtained by removing u and all
edges incident to u from S[u]. Also observe that S(u, i, i) = S[ui].

De�nition 5.2 The score of an optimal alignment between two subtrees or two
subforests S∗ and T∗ is denoted by D(S∗, T∗).

To obtain a bottom-up ordering of the subtrees and subforests suitable for
dynamic programming, the nodes in an ordered tree with n nodes are numbered
1 through n according to postorder so that D(S[|S|], T [|T |]) will contain the
score of an optimal alignment between S and T . Henceforth, Θ represents the
empty tree and gS(u) is the label of node number u in the labeled tree S.

The next lemma forms the basis of the algorithm of Jiang et al.

Lemma 5.3 Let S and T be two labeled ordered trees with u ∈ S and v ∈ T .
Then:
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1. D(Θ, Θ) = 0

D(S[u], Θ) = D(S(u), Θ) + µ(gS(u),−), D(S(u), Θ) =
deg(u)∑
q=1

D(S[uq], Θ)

D(Θ, T [v]) = D(Θ, T (v)) + µ(−, gT (v)), D(Θ, T (v)) =
deg(v)∑
q=1

D(Θ, T [vq])

2. D(S[u], T [v]) =

max




D(S(u), T (v)) + µ(gS(u), gT (v))

D(S[u], Θ) + max
1≤q≤deg(u)

{
D(S[uq], T [v])−D(S[uq], Θ)

}

D(Θ, T [v]) + max
1≤q≤deg(v)

{
D(S[u], T [vq])−D(Θ, T [vq])

}

3. For any j and l such that 1 ≤ j ≤ deg(u) and 1 ≤ l ≤ deg(v),

D(S(u, 1, j), T (v, 1, l)) =

max




D(S(u, 1, j − 1), T (v, 1, l)) + D(S[uj], Θ)

D(S(u, 1, j), T (v, 1, l− 1)) + D(Θ, T [vl])

D(S(u, 1, j − 1), T (v, 1, l− 1)) + D(S[uj], T [vl])

µ(gS(uj),−) + max
1≤q<deg(l)

{
D(S(u, 1, j − 1), T (v, 1, q − 1)) +

D(S(uj), T (v, q, l))
}

µ(−, gT (vl)) + max
1≤q<deg(j)

{
D(S(u, 1, q − 1), T (v, 1, l− 1)) +

D(S(u, q, j), T (vl))
}

Proof: See [70]. 2

The algorithm of Jiang et al. (Algorithm Score) is displayed in Figure 5.3. As
the various values of D(S∗, T∗) are computed using the recurrences in Lemma 5.3,
they are stored in a data structure which allows them to be retrieved in O(1)
time from then on.

Algorithm Score employs an auxiliary procedure called Procedure 1 (not
shown here) that takes as input two subforests of the form S(u, i, deg(u)) and
T (v, k, deg(v)), where at least one of i and k is equal to 1, and then computes
D(S(u, i, j), T (v, k, l)) for all j and l such that i ≤ j ≤ deg(u) and k ≤ l ≤ deg(v)
by repeatedly applying Lemma 5.3.3. Note that for every pair of subtrees S[u]
and T [v], although the algorithm computes D(S(u, i, j), T (v)) for all 1 ≤ i ≤
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j ≤ deg(u) and D(S(u), T (v, k, l)) for all 1 ≤ k ≤ l ≤ deg(v), it does not need
to compute the values of D(S(u, i, j), T (v, k, l)) for all 1 ≤ i ≤ j ≤ deg(u) and
1 ≤ k ≤ l ≤ deg(v).

Each call to Procedure 1 is proved in [70] to take O((deg(u) + deg(v)) ·
deg(u) · deg(v)) time, and the total running time of the algorithm is shown to
be O(|S| · |T | ·∆2).

Algorithm Score

Input: Two labeled ordered trees S and T .

Output: The score of an optimal alignment between S and T .

D(Θ, Θ) := 0

for u := 1 to |S| do
Initialize D(S[u], Θ) and D(S(u), Θ) according to Lemma 5.3.1.

endfor

for v := 1 to |T | do
Initialize D(Θ, T [v]) and D(Θ, T (v)) according to Lemma 5.3.1.

endfor

for u := 1 to |S| do
for v := 1 to |T | do

for i := 1 to deg(u) do

Call Procedure 1 on S(u, i, deg(u)) and T (v).

endfor

for k := 1 to deg(v) do

Call Procedure 1 on S(u) and T (v, k, deg(v)).

endfor

Compute D(S[u], T [v]) as in Lemma 5.3.2.

endfor

endfor

return D(S[|S|], T [|T |])
End Score

Figure 5.3: The algorithm of Jiang, Wang, and Zhang.

By adding a traceback step at the end, the algorithm can be extended to
return an alignment corresponding to the optimal score without increasing the
asymptotic running time7. Hence, Jiang et al. proved the following result.

Theorem 5.4 The alignment between ordered trees problem can be solved in
O(|S| · |T | ·∆2) time.

7An optimal alignment can be recovered by recalculating the terms on the right-hand side
of Lemma 5.3 for each pair of subtrees or subforests encountered during the traceback to
determine which of the possibilities that resulted in the highest score; alternatively, one can
modify the algorithm to also record information about how each value D(S∗, T∗) is obtained
as it is computed, e.g., by saving pointers.
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5.3 d-Relevance

5.3.1 d-Relevant Pairs of Subtrees

Before de�ning the new concept of d-relevance, we need to introduce some no-
tation.

De�nition 5.5 Let S be a labeled ordered tree and u a node of S. S[u] stands
for the ordered subtree of S obtained when removing from S the subtree S[u]
and (if u is not the root of S) the edge between u and the parent of u. Next,
L(S[u]) denotes the set of leaves in S that are to the left of the leaves of S[u].

Recall that the number of nodes in S is denoted by |S|. The cardinality of
the set L(S[u]) is denoted by |L(S[u])|.

We are now ready to de�ne what we mean by a d-relevant pair of subtrees,
a d-descendant, and a d-ancestor.

De�nition 5.6 Let d be a positive integer. For two ordered trees S and T
containing two nodes u and v respectively, the pair of subtrees (S[u], T [v]) is
called d-relevant if and only if both of the following conditions hold:

• ||S[u]| − |T [v]|| ≤ d

• ||L(S[u])| − |L(T [v])|| ≤ d

De�nition 5.7 Let d be a positive integer, and let T be an ordered tree contain-
ing two nodes v and w. T [w] is called a d-descendant of T [v] if w is a descendant
of v and |T [v]| − |T [w]| ≤ d. Symmetrically, T [w] is called a d-ancestor of T [v]
if w is an ancestor of v and |T [w]| − |T [v]| ≤ d.

De�nitions 5.6 and 5.7 are illustrated in Figure 5.4.

The following important lemma implies that if a pair of subtrees (S[u], T [v])
is not d-relevant then any alignment between S and T which consists of an
alignment between S[u] and T [v] and an alignment between S[u] and T [v] must
contain more than d blank symbols. Thus, if only alignments with at most
d blank symbols for some speci�ed value of d are of interest (as in the case
of Algorithm Fast Score given in Section 5.6), we can limit our attention to
d-relevant pairs.

Lemma 5.8 Let S and T be labeled ordered trees, let u and v be two nodes
belonging to S and T respectively, and let A be an alignment between S and T
consisting of an alignment between S[u] and T [v] and an alignment between S[u]
and T [v]. If A uses at most d blank symbols then (S[u], T [v]) is

(
d+||S|−|T ||

2

)
-

relevant for S and T .
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S: T:

u

v

w

Figure 5.4: In this example, (S[u], T [v]) is 3-relevant, (S[u], T [w]) is 2-relevant, and
T [w] is a 2-ancestor of T [v].

Proof: Let d1 be the total number of insert operations performed on S and
d2 the total number of insert operations performed on T to obtain A. Denote by
d′1 and d′2 the number of insert operations performed on S[u] and T [v] respec-
tively to construct the alignment between S[u] and T [v]. Clearly, d′1 ≤ d1 and
d′2 ≤ d2.

First, consider the alignment between S[u] and T [v]. By the above, d′1 insert
operations on S[u] su�ce to obtain a tree isomorphic to T [v] with d′2 nodes
inserted, so |S[u]| + d′1 = |T [v]| + d′2, i.e., |S[u]| − |T [v]| = d′2 − d′1 ≤ d′2 ≤
d2 ≤ max{d1, d2}. In the same way, |T [v]|− |S[u]| ≤ d1 ≤ max{d1, d2}. Thus,
we have ||S[u]| − |T [v]|| ≤ max{d1, d2}.

Next, because S[u] and T [v] are aligned, |L(S[u])| + d′′1 = |L(T [v])| + d′′2
for some d′′1 ≤ d1 and d′′2 ≤ d2. This yields |L(S[u])| − |L(T [v])| = d′′2 −
d′′1 ≤ d′′2 ≤ d2 ≤ max{d1, d2} and |L(T [v])| − |L(S[u])| ≤ max{d1, d2}. Thus,
||L(S[u])| − |L(T [v])|| ≤ max{d1, d2}.

Now, since d1+d2≤d and |S|+d1 = |T |+d2, it follows that d1 ≤ d+(|T |−|S|)
2

and d2 ≤ d+(|S|−|T |)
2 . Hence, max{d1, d2} ≤ d+||S|−|T ||

2 . 2

For ease of presentation, we will use the somewhat weaker result implied by
Lemma 5.8 that if A uses at most d blank symbols then (S[u], T [v]) is d-relevant
for S and T . (Note that here d+||S|−|T ||

2 ≤ d.)

The next three lemmas are used to derive an upper bound on the number of
d-relevant pairs.
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Lemma 5.9 For any positive integer d, if the two pairs of subtrees (S[u], T [v])
and (S[u], T [w]) are d-relevant for two ordered trees S and T , and w is an
ancestor (or, descendant) of v in T , then T [w] is a 2d-ancestor (or, 2d-descendant)
of T [v].

Proof: Let w be an ancestor of v in T . Since (S[u], T [v]) and (S[u], T [w]) are
d-relevant, we have ||S[u]| − |T [v]|| ≤ d and ||S[u]| − |T [w]|| ≤ d, and hence
|S[u]| − |T [v]| ≤ d and |T [w]| − |S[u]| ≤ d. Then it follows that |T [w]| − |T [v]| =
(|T [w]| − |S[u]|) + (|S[u]| − |T [v]|) ≤ d + d = 2d.

The proof for the case where w is a descendant of v is analogous. 2

Lemma 5.10 Let d be a positive integer. For any node u of an ordered tree S,
the number of d-ancestors of S[u] is at most d.

Proof: Assume that the number of d-ancestors of S[u] is greater than d. Then
there exists a d-ancestor S[u′] whose root u′ is located at distance greater than
d from u. But this would imply |S[u′]| − |S[u]| > d, which is a contradiction. 2

Lemma 5.11 Let d be a positive integer and let {(S[u], T [vi])}li=0 be a sequence
of distinct d-relevant pairs in two ordered trees S and T such that vi is not a
descendant of vj for any 0 ≤ i, j ≤ l. Then l ≤ 2d.

Proof: We may assume without loss of generality that the sequence of nodes
{vi}li=0 is ordered in accordance with the left-to-right ordering in T . Since
(S[u], T [vl]) is d-relevant, it holds that ||L(S[u])| − |L(T [vl])|| ≤ d, giving us
|L(T [vl])| − |L(S[u])| ≤ d and thus −|L(T [vl])| + |L(S[u])| ≥ −d. On the other
hand, |L(T [vl])| − |L(T [v0])| ≥ l. Hence, if l > 2d then |L(S[u])| − |L(T [v0])| =
(|L(S[u])| − |L(T [vl])|) + (|L(T [vl])| − |L(T [v0])|) > (−d) + 2d = d, which
contradicts the d-relevance of (S[u], T [v0]). 2

By combining Lemmas 5.9�5.11, we obtain an upper bound on the number
of d-relevant pairs of subtrees.

Theorem 5.12 Let d be a positive integer. For any two ordered trees S and T
and a node u of S, the number of distinct d-relevant pairs of subtrees in which
u participates is O(d2).

Proof: Let {(S[u], T [vi])}li=0 be a maximal sequence of distinct d-relevant pairs
of subtrees for two ordered trees S and T such that for each 0 ≤ i ≤ l there
is no d-relevant pair (S[u], T [v]), where v is a descendant of vi. It follows from
Lemma 5.9 that for each d-relevant pair (S[u], T [w]), it either belongs to the
sequence or T [w] is a 2d-ancestor of a member in the sequence. Hence, the
number of d-relevant pairs in which u participates is at most (2d + 1) · (l + 1)
by Lemma 5.10. Finally, it is su�cient to observe that l cannot exceed 2d by
Lemma 5.11. 2

Corollary 5.13 For any positive integer d and two ordered trees S and T , there
are O(m · d2) d-relevant pairs of subtrees for S and T , where m = min{|S|, |T |}.
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5.3.2 d-Relevant Pairs of Subforests

The algorithm of Jiang et al. computes scores not only between pairs of subtrees
of the input trees, but also between certain pairs of subforests. Therefore, we
need to generalize the concepts of d-relevance, d-descendants, and d-ancestors
for pairs of nodes inducing full subtrees to include pairs of subforests of the form
(S(u, i, j), T (v, k, l)).

De�nition 5.14 Let S(u, i, j) be an ordered subforest in a labeled ordered
tree S. S(u, i, j) stands for the ordered subtree of S obtained when remov-
ing from S the forest S(u, i, j) and all edges incident to S(u, i, j). L(S(u, i, j))
denotes the set of leaves in S that are to the left of the leaves of S(u, i, j).

The number of nodes in S(u, i, j) is denoted by |S(u, i, j)| and the cardinality
of L(S(u, i, j)) by |L(S(u, i, j))|.

De�nition 5.15 Let d be a positive integer. For two ordered trees S and T
containing nodes u and v respectively, the pair of ordered subforests (S(u, i, j),
T (v, k, l)) is called d-relevant if and only if both of the following conditions hold:

• ||S(u, i, j)| − |T (v, k, l)|| ≤ d

• ||L(S(u, i, j))| − |L(T (v, k, l))|| ≤ d

De�nition 5.16 Let d be a positive integer, and let T be an ordered tree con-
taining two nodes v and w. T (w, k′, l′) is called a d-descendant of T (v, k, l) if
w is a descendant of v, T (w, k′, l′) is contained in T (v, k, l), and |T (v, k, l)| −
|T (w, k′, l′)| ≤ d. Symmetrically, T (w, k′, l′) is called a d-ancestor of T (v, k, l)
if w is an ancestor of v, T (v, k, l) is contained in T (w, k′, l′), and |T (w, k′, l′)| −
|T (v, k, l)| ≤ d.

The de�nition of d-relevance for pairs of subforests yields the next lemma,
analogous to Lemma 5.8.

Lemma 5.17 Let S and T be labeled ordered trees, let S(u, i, j) and T (v, k, l)
be two ordered subforests in S and T respectively, and let A be an alignment
between S and T consisting of an alignment between S(u, i, j) and T (v, k, l) and
an alignment between S(u, i, j) and T (v, k, l). If A uses at most d blank symbols

then (S(u, i, j), T (v, k, l)) is
(

d+||S|−|T ||
2

)
-relevant for S and T .

The proofs of the next three lemmas are analogous to the corresponding
proofs of Lemmas 5.9�5.11.

Lemma 5.18 For any positive integer d, if the two pairs of subforests (S(u, i, j),
T (v)) and (S(u, i, j), T (w)) are d-relevant for two ordered trees S and T , and
w is an ancestor (or, descendant) of v in T , then T (w) is a 2d-ancestor (or,
2d-descendant) of T (v).
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Lemma 5.19 Let d be a positive integer. For any node u of an ordered tree S,
the number of d-ancestors of the form S(w) of the forest S(u) is at most d.

Lemma 5.20 Let d be a positive integer and let {(S(u, i, j), T (vq)}lq=0 be a
sequence of distinct d-relevant pairs in two ordered trees S and T such that vq′

is not a descendant of vq′′ for any 0 ≤ q′, q′′ ≤ l. Then l ≤ 2d.

By combining Lemmas 5.18�5.20, we obtain an upper bound on the number
of d-relevant pairs (S(u), T (v, k, l)) and (S(u, i, j), T (v)) like in Theorem 5.12
and Corollary 5.13.

Theorem 5.21 Let d be a positive integer. For any two ordered trees S and T
and a node u of S, the number of distinct d-relevant pairs of the form (S(u, i, j),
T (v)) is O(d2 · (deg(S))2). Symmetrically, for any node v of T , the number of
distinct d-relevant pairs of the form (S(u), T (v, k, l)) is O(d2 · (deg(T ))2).

Corollary 5.22 For any positive integer d and two ordered trees S and T , there
are O(n · d2 ·∆2) d-relevant pairs of subforests of the form (S(u), T (v, k, l)) and
(S(u, i, j), T (v)) for S and T , where n = max{|S|, |T |} and ∆ = max{deg(S),
deg(T )}.

5.4 Testing for d-Relevance

In this section, we show how to preprocess S and T in linear time so that any
pair of subtrees or subforests of S and T can be tested for d-relevance in constant
time.

First, compute |S[u]| and |L(S[u])| for all u ∈ S. Figure 5.5 demonstrates
how this can be done recursively in O(|S|) time by using the Euler tour tech-
nique [125]. The algorithm is started by calling Euler Tour (root, 0). As the
values of |S[u]| and |L(S[u])| for various nodes u are computed, store them in a
tree Ŝ which is isomorphic to S and equipped with auxiliary data �elds.

Next, augment each node u of Ŝ with an integer array s of size deg(u) + 1
for storing the cumulative sums (from left to right) of the sizes of the subtrees
rooted at the children of u. To assign values to the entries of s, set s[0] := 0

and for q := 1 to deg(u) let s[q] := s[q− 1] + |S[uq]| so that s[i] =
i∑

q=1
|S[uq]| for

any i ∈ {1, ..., deg(u)}. The total time needed to �ll in the s-arrays for all nodes
in S is

∑
u∈S

O(deg(u)) = O(|S|).

Then, compute |T [v]| and |L(T [v])| for all v ∈ T in O(|T |) time in the same
way as for S and store them in a tree T̂ . Augment each node of T̂ with an
integer array t de�ned analogously as the s-arrays and assign values to them in
O(|T |) time.



88 Chapter 5. Fast Optimal Alignment between Two Labeled, Ordered Trees

Algorithm Euler Tour

Input: Node u, integer left.

Output: Integer sumNodes, integer sumLeaves.

|L(S[u])| := left

sumNodes := 1

if u is a leaf then

sumLeaves := 1

else

sumLeaves := 0

for all children w of u in left-to-right order do

sN, sL := Euler Tour (w, left + sumLeaves)
sumLeaves := sumLeaves + sL
sumNodes := sumNodes + sN

endfor

endif

|S[u]| := sumNodes
return sumNodes, sumLeaves

End Euler Tour

Figure 5.5: The Euler tour algorithm for computing |S[u]| and |L(S[u]|) for all u ∈ S.

After having constructed Ŝ and T̂ as above, all the information required to
determine whether a given pair of subtrees or subforests is d-relevant is immedi-
ately available. To test a pair (S[u], T [v]) or (S(u, i, j), T (v, k, l)) for d-relevance
in constant time, we simply check if the conditions in De�nition 5.6 or De�ni-
tion 5.15 are satis�ed by using the values of |S[u]|, |T [v]|, |L(S[u])|, and |L(T [v])|,
or |S(u, i, j)|, |T (v, k, l)|, |L(S(u, i, j))|, and |L(T (v, k, l))|:

• For a subtree S[u], the values of |S[u]| and |L(S[u]) can be obtained directly
from Ŝ.

• For a subforest S(u, i, j), |L(S(u, i, j))| equals |L(S[ui])| and we can obtain
|S(u, i, j)| from node u's s-array in Ŝ by using the formula s[j] − s[i − 1]
since for any i, j ∈ {1, ..., deg(u)} with i < j, we have

s[j]− s[i− 1] =
j∑

q=1

|S[uq]| −
i−1∑
q=1

|S[uq]| =
j∑

q=i

|S[uq]| = |S(u, i, j)|

We summarize the above in the next theorem.

Theorem 5.23 Let S and T be two ordered trees. After O(|S|+ |T |) time pre-
processing, any given pair of subtrees (S[u], T [v]) or pair of subforests (S(u, i, j),
T (v, k, l)) can be tested for d-relevance in O(1) time.
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5.5 Enumerating the d-Relevant Pairs of Subtrees

In order to improve on the quadratic running time of the algorithm of Jiang et
al., we need an e�cient method to enumerate all d-relevant pairs of subtrees.
We cannot a�ord to test all of the O(|S| · |T |) possible pairs for d-relevance
individually; instead, we proceed as follows.

First, we compute Ŝ and T̂ in O(|S| + |T |) time as described in Section 5.4
so that the values of |S[u]| and |L(S[u])| for any u ∈ S and the values of |T [v]|
and |L(T [v])| for any v ∈ T are accessible in O(1) time. We then traverse T̂ .
At each node v, we fetch the values of |T [v]| and |L(T [v])|, and insert the
point (|T [v]|, |L(T [v])|) into a standard data structure for two-dimensional range
search, e.g., a layered range tree [33, 107]. The construction of the data structure
takes O(|T | · log |T |) time. Then, for each u in S, we query the range search data
structure with the square centered at (|S[u]|, |L(S[u])|) having side length 2d
(note that a point (x, y) lies inside this square if and only if ||S[u]| − x| ≤ d
and ||L(S[u])| − y| ≤ d). Each such query takes O(log |T |+ r) time, where r is
the number of reported points. Since each of the reported points is in one-to-
one correspondence with a node v such that the pair (S[u], T [v]) is d-relevant,
r = O(d2) holds by Theorem 5.12.

Next, we build and lexicographically sort the list of all O(|S| · d2) d-relevant
pairs of subtrees in O(|S| · d2 · log |S|) time.

Putting everything together, we obtain the next theorem.

Theorem 5.24 Given two ordered trees with at most n nodes each and a pos-
itive integer d, a lexicographically sorted list of all d-relevant pairs of subtrees
can be constructed in O(n log n · d2) time.

5.6 Algorithm Fast Score

Our Algorithm Fast Score for computing the score of an optimal alignment
between two labeled, ordered trees S and T is displayed in Figure 5.6. It works
under the assumption that there exists an optimal alignment which uses at most
d blank symbols, for some speci�ed positive integer d.

First, Algorithm Fast Score constructs Ŝ and T̂ and a list of all d-relevant
pairs of subtrees of S and T . According to Theorem 5.23 and Theorem 5.24,
this preprocessing takes O(n log n · d2) time. The scores for all pairs containing
an empty subtree or subforest are also precomputed, which takes O(|S|+ |T |) =
O(n) time.

We then modify the algorithm of Jiang et al. to only evaluate scores for
d-relevant pairs of subtrees and d-relevant pairs of subforests. (By Lemmas 5.8
and 5.17, the other pairs correspond to alignments using more than d blank sym-
bols and can therefore be ignored.) Whenever one of the formulas in Lemma 5.3.2
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Algorithm Fast Score

Input: Two labeled ordered trees S and T , positive integer d.

Output: The score of an optimal alignment between S and T (assuming there
exists an optimal alignment with at most d blank symbols).

Construct Ŝ and T̂ as described in Section 5.4 and construct a lexicographically
sorted list L of all d-relevant pairs of subtrees as described in Section 5.5.

D(Θ, Θ) := 0

for u := 1 to |S| do
Initialize D(S[u], Θ) and D(S(u), Θ) according to Lemma 5.3.1.

endfor

for v := 1 to |T | do
Initialize D(Θ, T [v]) and D(Θ, T (v)) according to Lemma 5.3.1.

endfor

for all d-relevant pairs of subtrees (S[u], T [v]), determined by traversing L,
do

for i := 1 to deg(u) do

if (S(u, i, deg(u)), T (v)) is d-relevant then

Call Procedure 1′ on S(u, i, deg(u)) and T (v).

endif

endfor

for k := 1 to deg(v) do

if (S(u), T (v, k, deg(v))) is d-relevant then

Call Procedure 1′ on S(u) and T (v, k, deg(v)).

endif

endfor

Compute D(S[u], T [v]) as in Lemma 5.3.2, only considering d-relevant
pairs on the right-hand side of the expression.

endfor

return D(S[|S|], T [|T |])
End Fast Score

Figure 5.6: The fast algorithm for computing the score of an optimal alignment between
two ordered trees which uses at most d blank symbols.

or Lemma 5.3.3 is to be applied, we test each of the components on the right-
hand side for d-relevance. If the test is positive, we fetch the score for that pair
(by the bottom-up ordering, it has been evaluated by this time); otherwise, we
set the score to minus in�nity. Procedure 1′ referred to in Figure 5.6 is the same
as Procedure 1 with such tests for d-relevance included. Now, any given pair
of subtrees or subforests can be tested for d-relevance in O(1) time by using Ŝ
and T̂ as explained in Section 5.4. We conclude that the cost of determining
the score of an optimal alignment for a d-relevant pair on the left-hand side in
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Lemma 5.3 by using the scores of optimal alignments for d-relevant pairs occur-
ing on the right-hand side increases by at most a factor of O(1). Hence, each
call to Procedure 1′ still takes O((deg(u)+deg(v)) ·deg(u) ·deg(v)) time. In the
following, we denote the running time of one call to Procedure 1′ by P1′.

For each d-relevant pair of subtrees (S[u], T [v]), the algorithm tests deg(u)
and then deg(v) pairs of subforests for d-relevance and makes at most this many
calls to Procedure 1′. Next, it evaluates D(S[u], T [v]) by testing deg(u)+deg(v)
pairs of subtrees and one pair of subforests on the right-hand side of the relation
in Lemma 5.3.2 for d-relevance. Thus, each d-relevant pair of subtrees con-
tributes O(deg(u) · (O(1)+P1′)+ deg(v) · (O(1)+P1′)+ (deg(u)+ deg(v)+ 1) ·
O(1)) = O((deg(u) + deg(v))2 · deg(u) · deg(v)) to the total running time. Sum-
ming over all d-relevant pairs of subtrees, we see that the entire main loop takes∑
d-relevant pairs of

subtrees (S[u], T [v])

O((deg(u) + deg(v))2 · deg(u) · deg(v))

= O(∆3 ·
∑

d-relevant pairs of

subtrees (S[u], T [v])

deg(u))

= O(∆3 ·
∑

u∈S

∑
v ∈ T and

(S[u], T [v])
is d-relevant

deg(u))

= O(∆3 ·
∑

u∈S

d2 · deg(u))

= O(∆3 · d2 · n)

time by using Theorem 5.12 and the fact that
∑

u∈S

deg(u) = n.

Including the preprocessing, the total running time is O(n log n · d2 + n +
∆3 · d2 · n) = O(n · (log n + ∆3) · d2), which gives us the main theorem of this
section.

Theorem 5.25 If there exists an optimal alignment between S and T which
uses at most d blank symbols and d is given, we can compute its score in O(n ·
(log n + ∆3) · d2) time.

We remark that Algorithm Fast Score can be modi�ed to return an optimal
alignment without increasing the asymptotic running time by adding a traceback
step just like for the algorithm of Jiang et al. (see Section 5.2). Thus, we can
solve the alignment between ordered trees problem in O(n · (log n + ∆3) · d2)
time if there exists an optimal alignment between S and T which uses at most
d blank symbols and d is known in advance.

Also note that if ∆ = O(1) then the running time of Algorithm Fast Score
becomes O(n log n · d2).
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5.7 Algorithm Unspeci�ed d

Here, we extend our Algorithm Fast Score from Section 5.6 to compute the score
of an optimal alignment between the two input trees even if no upper bound on
the number of blank symbols in an optimal alignment is given. We show that
under some natural assumptions on the scoring scheme, the resulting method
is faster than the algorithm of Jiang et al. for problem instances consisting of
similar trees (i.e., instances in which the score of an optimal alignment is high).
The technique we employ stems from Section 3.3.4 in [111], where it is applied to
compute the score of an optimal alignment between two strings of equal length
by using an algorithm which only evaluates a band of speci�ed width around the
main diagonal of the dynamic programming matrix.

As before, write m = min{|S|, |T |} and n = max{|S|, |T |}. The algorithm of
Jiang et al. runs in O(m · n · ∆2) time, regardless of the number of insertions
required by an optimal solution (see Section 5.2). On the other hand, by The-
orem 5.25, Algorithm Fast Score runs in O(n · (log n + ∆3) · d2) time, where d
is the maximum number of insertions allowed. Thus, Algorithm Fast Score is
asymptotically faster than the algorithm of Jiang et al. if d is small8. The draw-
back is that Algorithm Fast Score needs a value of d to be speci�ed beforehand;
the running time may be much worse than that of the algorithm of Jiang et al.
if no su�ciently strong upper bound on d is known9. One way to overcome this
di�culty is by running Algorithm Fast Score with successively larger values of
d until a certain stop condition is satis�ed, as explained below.

Let M be maximum value of µ(s, t) over all pairs of symbols (s, t) belonging
to Σ × Σ, and let B be maximum value of µ(s, t) over all pairs (s, t) in (Σ ×
{−}) ∪ ({−} × Σ), i.e., all pairs where precisely one of s and t is equal to the
blank symbol. Assume that M > 0 and B ≤ 0.

Lemma 5.26 For any positive integer d, if an alignment between S and T uses

at least d+1 blank symbols then its score is at most (d+1)·B + m+n−(d+1)
2 ·M .

Proof: Let A be an alignment between S and T with at least d + 1 blank
symbols. Then the total number of nodes in S and T which can be paired o�
with each other is at most |S|+ |T | − (d + 1). The maximum possible score of A
is achieved when all such pairs of nodes have score M ; thus, the score of A is at
most (d + 1)·B + |S|+|T |−(d+1)

2 ·M . 2

For any positive integer d, let Dd be the value returned by Algorithm Fast
Score on input (S, T, d). As d increases, Dd increases or remains the same while

8More precisely, if d = o

�q
m·∆2

log n+∆3

�
.

9For example, just plugging in the trivial upper bound d = |S| + |T | ≤ 2n does not help
here.
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the value of (d + 1)·B + m+n−(d+1)
2 ·M decreases because B ≤ 0 and M > 0.

Thus, by gradually increasing d, Dd eventually becomes larger than or equal to
(d + 1)·B + m+n−(d+1)

2 ·M . This yields a useful stop condition because when it
occurs, Lemma 5.26 ensures that all alignments containing more blank symbols
than the current value of d will have scores which are lower than or equal to Dd

and therefore do not need to be considered.

The algorithm is called Algorithm Unspeci�ed d and is listed in Figure 5.7.
Initially, it sets d to (n −m) + 1 since all alignments between S and T use at
least n −m blank symbols. It then �nds the score of an optimal alignment by
doubling d until the stop condition is satis�ed.

Algorithm Unspeci�ed d

Input: Two labeled ordered trees S and T .

Output: The score of an optimal alignment between S and T .

d := n−m + 1

Dd := Fast Score(S, T, d)

while Dd < (d + 1)·B + m+n−(d+1)
2

·M do

d := d · 2
Dd := Fast Score(S, T, d)

endwhile

return Dd

End Unspeci�ed d

Figure 5.7: An algorithm for computing the score of an optimal alignment between
two ordered trees when no upper bound on the number of blank symbols is provided.

We now analyze the running time of Algorithm Unspeci�ed d. Denote the
algorithm's �nal value of d by d̃. The �rst call to Algorithm Fast Score takes
O(n · (log n + ∆3) · (n−m +1)2) time, the second one O(n · (log n + ∆3) · (2(n−
m + 1))2) time, etc., and the last one O(n · (log n + ∆3) · d̃2) time. Since

x2 + (2x)2 + (4x)2 + (8x)2 + ... + d̃2 = x2 ·
log2(

d̃
x )∑

i=0

(2i)2 =
4d̃2 − x2

3
,

the running time is O(n · (log n + ∆3) · (d̃2 − (n−m + 1)2)).

We then proceed as in [111] to obtain a nontrivial upper bound on d̃ in terms
of m, n, M , B, and s, where s is the score of an optimal alignment between S
and T . When the algorithm stops, there are two possibilities:
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• If Dd̃ = Dd̃/2 then s = Dd̃/2. The inequality Dd̃/2 < ( d̃
2 + 1) ·B +

m+n−( d̃
2 +1)

2 ·M (due to the algorithm not �nishing in the previous iteration)

then implies that d̃ < 2(m+n)M−4s
M−2B − 2.

• If Dd̃ > Dd̃/2 then any optimal alignment contains > d̃
2 blank symbols so

that by Lemma 5.26, s ≤ ( d̃
2 + 1)·B + m+n−( d̃

2 +1)

2 ·M . Rearranging gives

us d̃ ≤ 2(m+n)M−4s
M−2B − 2.

Thus, in both cases we have the upper bound

d̃ ≤ 2
(

(m + n)M − 2s

M − 2B
− 1

)
(5.1)

The score of an optimal alignment between S and T is at most m · M .
Therefore, s ≤ m+n

2 ·M . By inequality (5.1), if the score of an optimal alignment
between S and T is high (so that s is close to m+n

2 ·M) then d̃ is small. Assuming
that M − 2B is a constant, we can express the running time of Algorithm Un-
speci�ed d as follows.

Theorem 5.27 If M−2B is a constant and B ≤ 0, M > 0 then Algorithm Un-
speci�ed d computes the score of an optimal alignment between S and T in
O(n · (log n + ∆3) · f2) time, where f = m+n

2 ·M − s and s is the score of an
optimal alignment between S and T .

We also note the following:

Corollary 5.28 If there exist constants α, β, and γ such that α > 0, β ≤ 0,
γ ≤ α and for every x, y ∈ Σ with x 6= y it holds that µ(x, x) = α, µ(x,−) =
µ(−, x) = β, and µ(x, y) = γ, and if there exists an optimal alignment between S
and T with b blank symbols and O(b) node pairs of the form (x, y) with x 6= y,
then Algorithm Unspeci�ed d runs in O(n · (log n + ∆3) · b2) time.

Proof: Write s = b · β + q · γ + m+n−b−2q
2 · α, where q is the number of node

pairs (x, y) with x 6= y and x, y ∈ Σ. Combining this with inequality (5.1) yields

d̃ ≤ 2
(

b(α−2β)+2q(α−γ)
α−2β − 1

)
. Now, q = O(b) implies that d̃ = O(b). 2

In particular, if ∆ = O(1) then the running times given in Theorem 5.27 and
Corollary 5.28 reduce to O(n log n · f2) and O(n log n · b2), respectively.

Finally, as mentioned at the end of Section 5.6, it is possible to modify
Algorithm Fast Score (and hence also Algorithm Unspeci�ed d) to return an
optimal alignment by performing a traceback with no increase in the asymptotic
running time.
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5.8 Concluding Remarks

We have introduced the concept of d-relevance in order to speed up the algorithm
of Jiang et al. for instances of the alignment between ordered trees problem
where the two input trees are similar.

The next table summarizes the running times of the algorithms described in
this chapter; su�cient conditions for the respective asymptotic upper bounds on
the running times to hold are also listed.

Algorithm Condition Running time Reference

Jiang et al. � O(m · n ·∆2) [70]; see also
Section 5.2.

Fast Score There exists O(n · (log n + ∆3) · d2) Theorem 5.25
an optimal
alignment with
≤ d blank
symbols and
d is given.

Unspeci�ed d M − 2B is a O(n · (log n + ∆3) · f2), Theorem 5.27
constant and where f = m+n

2 ·M − s
B ≤ 0, M > 0. and s is the score of

an optimal alignment.
Unspeci�ed d µ satis�es O(n · (log n + ∆3) · b2), Corollary 5.28

µ(x, x) = α, where b is the smallest
µ(x,−) = β, number such that
µ(−, x) = β, there exists an optimal
and µ(x, y) = γ alignment with b blank
for all x, y ∈ Σ symbols and O(b) node
with x 6= y, pairs of the form (x, y).
where α, β, γ
are constants
such that
α > 0, β ≤ 0,
and γ ≤ α.

We note that if the conditions in Theorem 5.27 are satis�ed, then Algo-
rithm Unspeci�ed d is faster than the algorithm of Jiang et al. if, for example,
∆ = o( m

log3 n
) and m+n

2 ·M = s + O(log n). In certain other cases, the algo-
rithm of Jiang et al. is faster. By running both algorithms in parallel, executing
them one step at a time and alternating between them until one of them is
�nished, we can calculate the score of an optimal alignment between S and T
in min{O(m · n · ∆2), O(n · (log n + ∆3) · f2)} time. Similarly, if the condi-
tions in Corollary 5.28 are satis�ed then this technique yields a running time of
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min{O(m · n ·∆2), O(n · (log n + ∆3) · b2)}.
We also note that the value of n ·(logn+∆3) ·d2 is much larger than m ·n ·∆2

when d is close to its upper bound m + n. Thus, we would like to know: Is it
possible to lower the time complexity of Algorithm Fast Score, especially the
exponent 2 of d?

It remains to demonstrate the practical usefulness of alignments between
trees. We believe that some of the applications listed in Section 5.1.1 can ben-
e�t greatly from using alignments, something which should be investigated by
implementing the algorithms described in this chapter, evaluating the quality
and relevance of the solutions they produce, and comparing them to existing
methods.

Our method does not seem immediately adaptable to unordered trees. In-
deed, the proof of Lemma 5.11 relies on having a �xed left-to-right ordering on
the nodes. It is an interesting open problem whether a substantial speedup in
the construction of optimal alignments between two similar labeled, unordered
trees whose degrees are bounded by a constant is achievable.

Another issue worth exploring is if there exist any nontrivial polynomial-time
approximation algorithms for the alignment between unordered trees problem
when at least one of the two input trees can have arbitrary degree. This question
was posed by Jiang et al. in [70] (where the authors proved the problem to be
MAX SNP-hard) but has not yet been answered.

Finally, a few comments on generalizations. Many of the extensions of the
string alignment problem discussed in [58, 106, 111, 130] can be carried over
directly to the alignment between trees problem. As an example, letting the in-
put contain more than two trees results in the multiple alignment between trees
problem10. Other extensions include computing optimal local alignments (for
�nding substructures of S and T with high similarity), using scoring schemes
with non-constant gap weights, allowing non-�xed alphabets (e.g., where Σ is
allowed to grow with the size of the input), and computing suboptimal align-
ments11. However, although the alignment between trees problem is easy to ex-
tend by examining famous variants of the string alignment problem, it is much
harder to extend the algorithm of Jiang et al. with the various re�nements of
the standard dynamic programming algorithm for the string alignment problem

10A potential di�culty here is how to de�ne the score of a multiple alignment between trees
in a good way. The sum-of-pairs (SP) scoring function for multiple string alignments (de�ned
as the sum of the scores of all induced pairwise string alignments) is a popular scoring scheme
which can be generalized to alignments between trees in a straightforward manner and which
may be practical because of its simplicity.

11As pointed out in [58], an �optimal� string alignment is only optimal with respect to a
given objective function, and is not necessarily the most biologically relevant one. Therefore,
it is sometimes useful to generate a candidate set of nearly optimal alignments which is then
evaluated by some additional criteria.
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which have been proposed. For example, we do not know if any divide-and-
conquer technique similar to the one developed by Hirschberg for reducing the
space complexity (see [58, 106, 111, 130]) can be applied to the algorithm of
Jiang et al.
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Chapter 6

Approximation Algorithms for

the Hamming Center Problem

The Hamming center problem (HCP) for a set S of binary strings, each of
length n, is to �nd a binary string of length n (not necessarily in S) that is
close to every one of the strings in S, where distances between strings are mea-
sured using the Hamming metric. HCP is known to be NP-hard [46]. In this
chapter, we describe some exact polynomial-time algorithms for special cases of
HCP as well as some approximation algorithms for the general case.

6.1 Introduction

We start by introducing some notation and de�ning the problem studied in this
chapter. Let {0, 1}n be the set of all strings of length n over the alphabet {0, 1}.
For any α ∈ {0, 1}n, we use the notation α[m] to refer to the symbol placed at the
mth position of α, where m ∈ {1, ..., n}, and we let α[i..j] represent the substring
of α starting at position i and ending at position j, where i, j ∈ {1, ..., n} and
i < j. The Hamming distance between two strings α1, α2 ∈ {0, 1}n is the number
of positions in which the strings di�er, and is denoted by dH(α1, α2).

The Hamming center problem (HCP) is:

The Hamming center problem (HCP)

Instance: Finite set S = {α1, ..., αk} with S ⊆ {0, 1}n for some positive
integer n.

Output: A string β ∈ {0, 1}n which minimizes the value of max
αi∈S

dH(αi, β).

101
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HCP is referred to as the minimum radius problem in [46], the closest string
problem in [57, 88, 91], and the Hamming p-radius clustering problem (HRC)
with p = 1 in Chapter 7 of this thesis.

Given an instance S of HCP, the smallest possible value of max
αi∈S

dH(αi, β)

over all strings β ∈ {0, 1}n is called the radius of S, and is denoted by r. Any
β ∈ {0, 1}n which attains this optimal value is called a center of S, or a 1-center
of S. It follows from the de�nitions above that k ≤ 2n and r ≤ n for any instance
of HCP.

Observe that although some instances of HCP only have one 1-center (for
example, if S consists of the n di�erent strings of length n with exactly n−1 zeros
and 1 one then the only optimal solution is the string of n zeros), some instances
may have exponentially many alternative 1-centers (for example, if S consists of
the two length n strings 000...0 and 111...1 where n is a positive even integer,
there are

(
n

n/2

)
1-centers, which is exponential since

(
n

n/2

)
> 2n

n+1 ).

An algorithm A is said to approximate HCP within a factor of f if for any
instance of the problem, A outputs a β′ ∈ {0, 1}n such that max

αi∈S
dH(αi, β

′) ≤
f · r. In this case, A is also called a factor f approximation algorithm (or just
an f -approximation algorithm) for HCP. From here on, optimal solutions to
instances of HCP will be denoted by β, and approximate centers computed by
our approximation algorithms by β′.

The Hamming distance function dH satis�es the relations listed in Fact 6.1
below (see, e.g., p. 274 in [22]). Hence, dH is a metric on {0, 1}n and dH is
therefore also known as the Hamming metric.

Fact 6.1 [22] Let n be any positive integer. Then, for all x, y, z ∈ {0, 1}n,

• dH(x, y) ≥ 0, with equality if and only if x = y.

• dH(x, y) = dH(y, x).

• dH(x, y) ≤ dH(x, z) + dH(z, y) (�the triangle inequality�).

6.1.1 Motivation

A fundamental concept in coding theory is the covering radius of a code [27].
Given a set S ⊆ {0, 1}n, called the set of code words, the covering radius of S
is de�ned as the smallest integer % such that all strings in {0, 1}n are within
Hamming distance % of some code word belonging to S. The covering radius is
a basic geometric parameter of a code which measures its quality. For example,
if a code is used for data compression, the covering radius is a measure of the
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maximum distortion [16, 27], and if the code is used for error correction, the
covering radius gives the maximum weight of a correctable random error [27].
A related concept is the covering radius of a lattice in Euclidean space, which has
applications to quantization and to coding for the Gaussian channel [27, 30, 31].

For any S ∈ {0, 1}n, it holds that r + % = n [27, 46, 80]. Hence, the decision
problem version of the Hamming center problem1 is computationally equivalent
to the problem of deciding whether the covering radius of a given code is less
than a given integer.

The Hamming center problem (and in particular, its generalization to larger
constant-size alphabets than {0, 1}) also has applications to computational mo-
lecular biology and data mining.

When classifying biomolecular sequences, consensus representatives are use-
ful. For example, the around 100000 di�erent proteins in humans can be divided
into 1000 (or less) protein families, which makes it easier for researchers to un-
derstand their structures and biological functions [58]. A lot of information
about a newly discovered protein may be deduced by establishing which family
it belongs to. Here, it is more e�cient to compare the sequence of the new
protein (where the sequence of a protein is a string over the 20-letter amino
acid alphabet [58, 106, 111, 130]) with representatives for various families than
with individual family members. As another example, given a set S of k related
sequences, one way to �nd other similar sequences is by computing a represen-
tative for S and then using the representative to probe a genome database. The
representative should resemble2 all sequences in the given set S, and must be
chosen carefully. For instance, the sequence s that minimizes the sum of all pair-
wise distances between s and elements in S is biased towards similar sequences
that occur frequently in S, so if the experiments used to obtain S lead to certain
sequences being overrepresented then s will not re�ect the true diversity of S.
Using a 1-center as representative can help avoid this problem [13].

Another connection between the Hamming center problem and computa-
tional molecular biology is the following. In a problem termed the phylogenetic
alignment problem or the tree alignment problem [10, 58, 111] (not to be con-
fused with the problem studied in Chapter 5!), we are given an unrooted tree T
distinctly leaf-labeled by a set L of strings, and the object is to determine a
labeling of T 's internal nodes so that the induced edge weights are small. (Next,
one can derive a multiple alignment that is consistent with the fully labeled
tree, and then remove all strings corresponding to internal nodes to obtain a
good multiple alignment for L [58].) HCP is the special case of the phylogenetic

1The decision problem version of HCP is de�ned in the same way as HCP, except that it
also takes as input a positive integer D, and the output is the answer to the question �Is the
radius of S less than or equal to D?�.

2Depending on the application, the di�erence between strings is sometimes measured in
terms of edit distance, which also takes insertions and deletions into account, rather than
Hamming distance, which just considers substitutions.
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alignment problem in which T is a star graph with k leaves, each leaf is labeled
by a string from S, the function used to determine the weight of an edge is the
Hamming metric, and the optimization criterion is that the maximum weight of
all edges in T should be minimized.

A classical problem in operations research and computational geometry is
the smallest enclosing circle problem3: Given k points in the plane, �nd the
smallest circle that encloses them. In other words, the objective is to �nd a
point β which minimizes the maximum of all Euclidean distances between β
and the given points. See Figure 6.1 for an example. This problem may arise
when deciding where to build an emergency facility (e.g., a �re station or a
hospital) so that the worst-case response time to some speci�ed points on a map
is minimized [107]. The Hamming center problem can be regarded as the analog
of the smallest enclosing circle problem in which the number of dimensions is
unrestricted, each coordinate of the input points and the returned solution is
required to be 0 or 1, and distances are measured using the L1 metric. (This
also motivates the use of the terms center and radius for HCP.)

2

α4

α5
α3

α1

α 2

α4

α5
α3

α1

α

β

Figure 6.1: An instance of the smallest enclosing circle problem (left) and its optimal
solution (right).

6.1.2 Previous Results

Frances and Litman [46] proved that the decision problem version of the Ham-
ming center problem is NP-complete via a reduction from 3SAT.

As for polynomial-time approximations, there exists a trivial 2-approximation
algorithm for HCP (described in Section 6.2) which is essentially a special case

3The smallest enclosing circle problem is sometimes called the minimum spanning circle

problem or the 2D-Euclidean center problem.
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of Gonzalez' farthest-point clustering algorithm [56] (see Section 7.5.1). Ben-
Dor, Lancia, Perone, and Ravi [13] showed that randomized rounding can be
used to obtain approximate solutions to HCP which are close to the optimal
with high probability for instances where the radius is large compared to the
input size (for instances where the radius is small, their method may yield poor
approximations). Then, two groups of authors independently gave randomized
(4
3 + ε)-approximation algorithms for HCP, where ε can be selected to be any
constant > 0; the one by G�asieniec, Jansson, and Lingas [50] (to be described
in this chapter) is guaranteed to run in polynomial time if r is at least superlog-
arithmic in k or if r = O(1) (for other instances, this method still achieves an
approximation factor of 4

3 + ε with high probability but the running time may
be exponential in the size of the input), whereas the algorithm by Lanctot, Li,
Ma, Wang, and Zhang [88] runs in polynomial time for all r. This was followed
by a polynomial-time approximation scheme (PTAS) for HCP by Li, Ma, and
Wang [91].

Gramm, Niedermeier, and Rossmanith [57] studied the parameterized com-
plexity of HCP and proved that if an upper bound R on r is provided then HCP
can be solved in O(kn+kRR+1) time. Hence, HCP can be solved in O(kn) time
if r is known in advance to be less than or equal to a given constant. In [57],
Gramm et al. also showed that HCP restricted to instances with k = 3 can be
solved in O(n) time.

Below, we brie�y describe some known results for other, related problems.
The closest substring problem is: Given a set {α1, ..., αk} of binary strings of

length n and a positive integer L with L ≤ n, output a string β ∈ {0, 1}L mini-
mizing r such that for every input string αi, there exists a length L substring γi

of αi with dH(γi, β) ≤ r. Li, Ma, and Wang [91] gave a PTAS for the closest
substring problem based on their PTAS for HCP.

The R-mismatch problem is: Given a set of strings {α1, ..., αk} of length n
and positive integers L and R, (if possible) output a string β of length L and
an integer m such that dH(αi[m..(m + L − 1)], β) ≤ R for all 1 ≤ i ≤ k.
Gramm, Niedermeier, and Rossmanith [57] showed that the R-mismatch problem
is solvable in O(kL+(n−L)kRR+1) time which in linear in the size of the input
if R = O(1).

The distinguishing string selection problem is: Given a set G of �good� strings
of length n, a set B of �bad� strings of length at least n, and two integers rG, rB,
output a string β (if one exists) such that minαi∈G dH(αi, β) ≥ rG and such that
for every αj ∈ B, there exists a length n substring γj of αj with dH(γj , β) ≤ rB.
Deng, Li, Li, Ma, and Wang [34] gave a PTAS for the problem which, for any
given constant ε > 0, �nds a string β′ of length n such that for every αi ∈ G,
dH(αi, β

′) ≥ (1 − ε)·rG and such that for every αj ∈ B, there exists a length n
substring γj of αj with dH(γj , β

′) ≤ (1 + ε) ·rB . Gramm, Niedermeier, and
Rossmanith [57] showed how to solve the special case where all strings in B have
length n and rB = O(1) exactly in polynomial time.
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The generalization of HCP to the problem of �nding p centers is called the
Hamming p-radius clustering problem (HRC). It is treated in depth in Chapter 7,
where several new results are presented.

Finally, we comment on the smallest enclosing circle problem mentioned
above. According to [93], it was posed by Sylvester [123] in 1857. After the �rst
algorithm for the problem had been suggested, a great number of people tried to
�nd increasingly e�cient algorithms (see [93] for references) until Megiddo [93]
�nally settled the issue in 1982 by showing how to solve it in O(k) time, matching
the lower bound of Ω(k). Unfortunately, the methods used to solve the smallest
enclosing circle problem, its generalizations to higher dimensions, and other vari-
ants listed in, e.g., the survey by Agarwal and Sharir [2] do not appear to work
directly for HCP due to the discreteness of {0, 1}n. Therefore, the techniques
developed for HCP are quite di�erent.

6.1.3 Our Contributions

The main result of this chapter is a randomized (4
3 +ε)-approximation algorithm

for HCP with success probability at least 1
2 , where ε can be selected to be any

constant greater than 0. Its running time is guaranteed to be polynomial if
r ≥ 12.7 ln(4k)

ε3 or if r = O(1). It was originally published in [50], and although
its performance has subsequently been surpassed by that of the PTAS of Li,
Ma, and Wang [91] (which is deterministic and can approximate HCP within a
factor of 1+ε for any constant ε > 0 in polynomial time), we include the original
version of our algorithm here.

The rest of the chapter is organized as follows. First, we describe the trivial
factor 2 approximation algorithm for HCP in Section 6.2. Then, in Section 6.3,
we provide an integer programming formulation of HCP which can be used to
obtain exact solutions in nO(k) time, which is polynomial in the input size if
k = O(1). We also note that if n = O(log k) or if r = O(1) then exhaustive
search �nds exact solutions in polynomial time. Next, in Section 6.4, we analyze
the method of randomized rounding applied to the linear programming relax-
ation of our integer programming formulation of HCP. We show that it yields
approximate solutions which are close to the optimum with high probability if
r �

√
4n lnn and k � n2, or if the minimum generalized distance between the

optimal solution of the relaxed version of the instance and a string in the instance
is large. Finally, in Section 6.5, we present our randomized (4

3 +ε)-approximation
algorithm for HCP.

6.2 A Very Simple 2-Approximation Algorithm

Consider the following approximation algorithm:
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Given an instance {α1, ..., αk} of HCP, set the approximate solu-
tion β′ to αl, where l is chosen arbitrarily from {1, ..., k}.

It can immediately be shown to yield a constant approximation factor:

Theorem 6.2 The above algorithm approximates HCP within a factor of 2.

Proof: Let β be an optimal solution to the given instance. For every i in
{1, ..., k}, the inequality dH(αi, β

′) ≤ dH(αi, β)+dH(β, β′) holds due to Fact 6.1
and dH(αi, β) + dH(β, β′) = dH(αi, β) + dH(β, αl) ≤ r + r = 2r holds by the
de�nition of r. 2

The algorithm has been discovered independently by many researchers. It can
be regarded as a special case of Gonzalez' farthest-point clustering algorithm [56]
with the parameter p set to 1 (see Section 7.5.1).

6.3 Integer Programming Formulation and Op-

timal Solutions in Polynomial Time for Re-

stricted Cases

The Hamming center problem is equivalent to a special case of the integer pro-
gramming problem. Any given instance {α1, ..., αk} of HCP, where αi ∈ {0, 1}n
for 1 ≤ i ≤ k, can directly be expressed as a system of k linear inequalities as
follows.

Let x1, ..., xn be 0 − 1-variables representing the n consecutive positions of
a center β of {α1, ..., αk} and let y be an integer variable corresponding to the
(unknown) radius of the instance. For i = 1, ..., k, let the ith inequality be∑

αi[m] = 0
1 ≤ m ≤ n

xm +
∑

αi[m] = 1
1 ≤ m ≤ n

(1− xm) ≤ y

The left-hand side of inequality i equals the Hamming distance between αi and β.
(For each position m, if αi[m] = 0 then the sum is incremented by one if and
only if xm = 1, and conversely, if αi[m] = 1 then the sum is incremented by one
if and only if xm = 0.) The constraint �≤ y� ensures that dH(αi, β) is smaller
than or equal to the radius.

Next, the above system of inequalities can be transformed into the form
Ax ≤ b, where A is a (k×n)-matrix with every entry belonging to the set {−1, 1},
x is the (n× 1)-vector (x1, ..., xn) of 0− 1-variables, and b is a (k × 1)-vector of
expressions involving y. The scalar product of any pre�x of any row in A with
a 0 − 1-vector of the same length is neither less than −n nor greater than n.
Therefore, we can solve the transformed system of k inequalities by a dynamic
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programming procedure, proceeding in stages [104]. In stage l, we compute the
set Wl of all (k×1)-vectors which can be expressed as

∑l
m=1 cmzm, where cm is

the mth column of A and zm ∈ {0, 1}. Since the cardinality of Wl cannot be
larger than (2n + 1)k and there are n stages, this procedure takes a total of
O((2n + 1)k · k · n) time. Next, for each v ∈ Wn, solve the inequality v ≤ b in
O(k) time to identify a v∗ which yields the smallest possible value of y (i.e., equal
to the given instance's r). A center β for the given instance is then obtained
by setting β[m] = z∗m for 1 ≤ m ≤ n, where v∗ =

∑n
m=1 cmz∗m. The whole

algorithm uses O((2n + 1)k ·k·n + (2n + 1)k ·k + n) = nO(k) time.

We have just proved the next theorem.

Theorem 6.3 HCP is solvable in nO(k) time.

On the other hand, if n = O(log k) then exhaustive search can be employed
to �nd a center in polynomial time. Each candidate center can be evaluated in
O(k · n) time, so generating and testing all of the 2n binary strings of length n
takes O(2n · k · n) = kO(1) time.

Theorem 6.4 HCP restricted to instances with n = O(log k) is solvable in kO(1)

time.

Alternatively, an optimal solution can be obtained by exhaustive search as
follows.

Theorem 6.5 HCP is solvable in O(r · nr+1 · k) time.

Proof: Choose an l arbitrarily from {1, ..., k}. Then, with R initially set to
zero and increasing by one after each iteration, evaluate the

∑R
j=0

(
n
j

)
= O(nR)

strings in {0, 1}n within Hamming distance R of αl until a string with Hamming
distance at most R to every string in S has been discovered (some optimal
center β will be evaluated when R reaches r since dH(αl, β) ≤ r). The running
time for this method is

∑r
R=0 O(nR) · O(k · n) = (r + 1) · O(nr) · O(k · n) =

O(r · nr+1 · k). 2

We summarize the above in a corollary.

Corollary 6.6 The following are solvable in polynomial time:

• HCP restricted to instances with k = O(1).

• HCP restricted to instances with n = O(log k).

• HCP restricted to instances with r = O(1).
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6.4 Randomized Rounding

By relaxing the integer constraints on the 0 − 1-variables x1, ..., xn in the in-
teger programming formulation of HCP described in Section 6.3, thus allowing
each variable xm to assume a real number in the interval [0, 1], we get a linear
programming problem that can be solved in polynomial time by standard meth-
ods [109]. Randomization can then be applied to the solution of the relaxed
problem to obtain an approximate 0− 1-solution β′ to the original problem.

We use the following randomized rounding scheme:

For each m, where 1 ≤ m ≤ n, set β′[m] to 1 with probability x̂m

and to 0 with probability 1 − x̂m, where x̂m is the value assigned
to xm in the optimal solution to the relaxed linear program.

Cherno� bound techniques described in, e.g., Chapter 11 in [63] or Chapter 4
in [96] can be applied to analyze this method. We proceed as in the analysis
of the randomized rounding scheme for the lattice approximation problem given
on pp. 449�450 in [63]. Denote the probability of an event A by Pr[A] and the
expectation of a random variable X by E[X ]. We will use the following two
variants of the Cherno� bound.

Fact 6.7 [63] Let X1, ..., Xn be a sequence of independent 0−1 random variables
such that Pr[Xm = 1] = pm and Pr[Xm = 0] = 1− pm for every m ∈ {1, ..., n}.
De�ne Y =

∑
Xm so that E[Y ] =

∑
pm. Then:

1. Pr
[
|Y −E[Y ]| >

√
4n lnn

]
≤ 1

n2 , and

2. For any ε ∈ [0, 1], Pr
[
|Y −E[Y ]| > ε·E[Y ]

]
≤ 2 exp(−0.375·ε2·E[Y ]).

To simplify things later on, we introduce the following terminology.

De�nition 6.8 For any two z1, z2 ∈ [0, 1]n, the generalized distance between z1

and z2 is

dG(z1, z2) =
n∑

m=1

|z1[m]− z2[m]|

Also, de�ne β̂ ∈ [0, 1]n to be the vector (x̂1, ..., x̂n) obtained from the optimal
solution to the relaxed version of the instance. Note that max

αi∈S
dG(αi, β̂) ≤ r.
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Lemma 6.9 Given an instance S of HCP, let β′ be the approximate solution
computed by our randomized rounding scheme. Then the maximum Hamming
distance between β′ and any string in S is at most:

1. r +
√

4n lnn with probability ≥ 1− k
n2 , and

2. r(1 + ε) for any ε ∈ [0, 1] with probability ≥ 1 − k · 2 exp(−0.375 ·ε2 ·w),
where w is the minimum generalized distance between a string in S and β̂.

Proof: Select an i ∈ {1, ..., k}. For each m, where 1 ≤ m ≤ n, let Xm be the
random variable that has the value 1 if αi[m] = 0 and the randomized rounding
scheme sets β′[m] to 1, or if αi[m] = 1 and the randomized rounding scheme
sets β′[m] to 0; otherwise, Xm = 0. Then

E[Xm] =

{
x̂m, if αi[m] = 0
1− x̂m, if αi[m] = 1

Hence, E[Xm] = dG(αi[m], β̂[m]). Now, Y =
∑

Xm is a random variable repre-
senting the Hamming distance between αi and β′. By linearity of expectation,
E[Y ] = E

[∑
Xm

]
=

∑
E[Xm], which is equal to the generalized distance

between αi and β̂. This implies that E[Y ] ≤ r, so

Pr
[
dH(αi, β

′) > r +
√

4n lnn
]

= Pr
[
Y > r +

√
4n lnn

]
≤ Pr

[
Y > E[Y ] +

√
4n lnn

]
≤ Pr

[
|Y −E[Y ]| >

√
4n lnn

]
≤ 1

n2

by Fact 6.7.1 and

Pr
[
dH(αi, β

′) > r(1 + ε)
]

= Pr
[
Y > r(1 + ε)

]
≤ Pr

[
Y > E[Y ]·(1 + ε)

]
≤ Pr

[
|Y −E[Y ]| > ε·E[Y ]

]
≤ 2 exp(−0.375·ε2·E[Y ])
≤ 2 exp(−0.375·ε2·w)

by Fact 6.7.2 together with w = min
αj∈S

dG(αj , β̂) ≤ dG(αi, β̂) = E[Y ].

Since the previous argument can be repeated for all i ∈ {1, ..., k},

Pr

[
max
αi∈S

dH(αi, β
′) > r +

√
4n lnn

]
= Pr

[ ⋃
αi∈S

(
dH(αi, β

′) > r +
√

4n lnn
)]

≤
∑

αi∈S

Pr
[
dH(αi, β

′) > r +
√

4n lnn
]

≤ k · 1
n2



6.5 A Randomized ( 4
3

+ ε)-Approximation Algorithm 111

and we have Pr

[
max
αi∈S

dH(αi, β
′) ≤ r +

√
4n lnn

]
≥ 1− k

n2 .

In the same way, Pr

[
max
αi∈S

dH(αi, β
′) ≤ r(1 + ε)

]
≥ 1− 2 exp(−0.375·ε2·w). 2

Corollary 6.10 Given an instance S of HCP, let β′ be the approximate solution
computed by our randomized rounding scheme. Then the following holds:

1. For any positive q, if r ≥ q·
√

4n lnn then the maximum Hamming distance
between β′ and any string in S is at most r(1+ 1

q ) with probability≥ 1− k
n2 .

2. If the minimum generalized distance w between a string in S and the

optimal relaxed solution is at least ln(4k)
0.375ε2 then the maximum Hamming

distance between β′ and any string in S is at most (1+ε)r with probability
≥ 1

2 .

In other words, the method of randomized rounding is likely to yield nearly
optimal solutions if the radius r is substantially larger than

√
4n lnn and k is

substantially smaller than n2, or if the minimum generalized distance w is su�-
ciently large.

6.5 A Randomized (4
3 + ε)-Approximation Algo-

rithm

In this section, we present a randomized algorithm that for any instance of HCP
and any constant ε > 0 returns a solution which with probability at least 1

2 is
within a factor of (4

3 + ε) of the optimum. The running time depends exponen-
tially on 1/ε, but if ε is �xed then the running time is polynomial in n and k as
long as r is superlogarithmic in k or r = O(1). Thus, we will assume that ε is a
constant which has been speci�ed in advance.

Recall that r is de�ned as

r = min
β∈{0,1}n

(max
αi∈S

dH(αi, β))

where β refers to an optimal solution to the given instance. The approxi-
mate solution found by our algorithm is called β′, and we denote the value
of max

αi∈S
dH(αi, β

′) by r′.

We �rst describe the algorithm and then analyze its approximation factor.
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Description of the algorithm

First of all, calculate the diameter d of the instance, de�ned as the maximum
over all Hamming distances between any two of the input strings, i.e.,

d = max
αj∈S

(max
αi∈S

dH(αi, αj)).

Next, compute 12.7 ln(4k)
ε3 using the speci�ed value of ε. If d < 12.7 ln(4k)

ε3 then let

the algorithm branch to Case 1 below to obtain β′; if d ≥ 12.7 ln(4k)
ε3 then branch

to Case 2 to obtain β′.

Case 1: d < 12.7 ln(4k)
ε3

Note that r ≤ d (since r ≤ min
αj∈S

(max
αi∈S

dH(αi, αj)) ≤ d). Find an exact solution

by exhaustive search, using the method described in the proof of Theorem 6.5.
Let β′ be the solution found.

This takes O(r · nr+1 · k) = O(nd+2 · k) time.

Case 2: d ≥ 12.7 ln(4k)
ε3

The second case is divided into two subcases: d ≤ 4
3r and d > 4

3r.

At this stage, the algorithm cannot know which subcase holds for the given
instance since r is still unknown. To get around this, the algorithm runs both
procedures described below, evaluates the two approximate solutions obtained,
and chooses the better one as the �nal approximate solution β′.

Subcase 2a: d ≤ 4
3r

Set β′ to αl, where l is chosen arbitrarily from {1, ..., k}.

Subcase 2b: d > 4
3r

Rearrange the αi's so that dH(α1, αk) = d. Then, normalize the strings as
follows:

old_α1 := α1

for m := 1 to n do
if α1[m] = 1 then
for i := 1 to k do αi[m] := 1− αi[m]

In this way, the new α1 will be the string 0n, where 0m for any positive integer m
denotes the string consisting of exactly m 0s. The transformation does not
change any of the pairwise Hamming distances because whenever some position
in a string is changed, the corresponding position in every other string is changed
as well. Next, let some permutation σ : {1, ..., n} → {1, ..., n} act on the columns
of the strings so that the d positions of αk that contain 1s end up at αk[1..d]
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(see Figure 6.2). This operation does not a�ect the pairwise Hamming distances
either.

α1

αk

α2

β

0 0 0 0 0 . . . 0

0 0 0 0 0 . . . 0
1 1 0 1 0 . . . 0

n-d

β

0 0 0 0 0 . . . 0
0 1 0 0 1 . . . 1

1 1 1 1 1 . . . 1

d

β [1 . . d] [(d+1) . . n]

Figure 6.2: After normalization, α1 and αk are two strings that are the farthest apart.
They di�er at precisely positions 1..d.

Now consider the 0− 1-integer programming problem corresponding to the nor-
malized instance with the integer constraints relaxed as described in Section 6.4.
Add constraints which force the last n − d positions of any valid solution to
be 000..0. Let ρ be an optimal solution to this problem, and set γ to that
αi[1..d] 0n−d, i = 1, ..., k, which minimizes the generalized distance between γ
and ρ. Next, apply the randomized rounding scheme from Section 6.4, and call
the obtained solution µ. Let β′ be the one of the two strings γ, µ with the small-
est maximum distance to the strings αi, i = 1, ..., k. At this point, β′ always
contains 0s on its last n− d positions (see Figure 6.3).

β
,

0 0 0 0 0 . . . 0
β

,
β

,
[1 . . d] [(d+1) . . n]

Figure 6.3: For Subcase 2b, the last n−d positions of β′ are 0s.

Finally, β′ needs to be transformed back to the original instance. Apply σ−1

to β′ and then perform:

for m := 1 to n do
if old_α1[m] = 1 then

β′[m] := 1− β′[m]

and Subcase 2b is done.
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Algorithm analysis

The only operation that might take more than polynomial time to perform is
the exhaustive search in Case 1. Hence, for instances with d ≥ 12.7 ln(4k)

ε3 , the
algorithm always runs in polynomial time.

Next, we prove that in all cases, r′ ≤ (4
3 + ε) r with probability ≥ 1

2 .

Case 1: d < 12.7 ln(4k)
ε3

The algorithm �nds an exact solution, so r′ = r.

Subcase 2a: d ≥ 12.7 ln(4k)
ε3 and d ≤ 4

3

Since r′ ≤ d ≤ 4
3r, we are done.

Subcase 2b: d ≥ 12.7 ln(4k)
ε3 and d > 4

3

First, we observe that an optimal solution β can not have a lot of ones in the
last n− d positions.

Lemma 6.11 β[(d+1)..n] contains less than 1
3r ones.

Proof: Suppose that β[(d+1)..n] contains ≥ 1
3r ones. Since dH(α1, β) ≤ r,

β[1..d] must contain ≤ 2
3r ones. Similarly, dH(αk, β) ≤ r implies that β[1..d]

contains ≤ 2
3r zeros. But this would mean that d ≤ 2

3r + 2
3r = 4

3r, which is a
contradiction since d > 4

3r. 2

Next, de�ne ζ to be a string in {0, 1}n with zeros on the last n − d positions
that minimizes the value of max

αi∈S
dH(αi, ζ).

Lemma 6.12 max
αi∈S

dH(αi, ζ) ≤ 4r
3 .

Proof: Let ξ be the concatenation of the �rst d symbols of β and the string con-
sisting of n−d zeros, i.e., ξ = β[1..d] 0n−d. From the de�nitions and Lemma 6.11,
we see that

max
αi∈S

dH(αi, ζ) ≤ max
αi∈S

dH(αi, ξ) ≤ max
αi∈S

(dH(αi, β) + dH(β, ξ)) ≤ r +
1
3
r =

4r

3
.

2

Lemma 6.13 If d ≥ 12.7 ln(4k)
ε3 then r′ ≤ (1+ 3ε

4 )·max
αi∈S

dH(αi, ζ) with probability

at least 1
2 .
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Proof: We have

r′ = max
αi∈S

dH(αi, β
′) ≤ max

αi∈S
(dG(αi, ρ)+dG(ρ, β′)) ≤ (max

αi∈S
dH(αi, ζ))+dG(ρ, β′).

Let w be the minimum generalized distance between ρ and αi[1..d] 0n−d, where
i = 1, ..., k. If w is at most 3ε

8 d, then

dG(ρ, β′) ≤ dG(ρ, γ) ≤ 3ε

8
d ≤ 3ε

4
r =

3ε

4
·max
αi∈S

dH(αi, β) ≤ 3ε

4
·max
αi∈S

dH(αi, ζ)

since d = dH(α1, αk) ≤ dH(α1, β) + dH(β, αk) ≤ 2r.

Otherwise, w satis�es w > 3ε
8 d > ln(4k)

0.375(3ε
4 )2

, and the lemma follows from the

relation max
αi∈S

dH(αi, β
′) ≤ max

αi∈S
dH(αi, µ) and the second part of Corollary 6.10

along with a slight modi�cation to account for the constraint requiring zeros on
the last n−d positions of the solution and with ε set to 3ε

4 . 2

Now, it is easy to verify that in Subcase 2b, we achieve the approximation
factor stated earlier. Because of d ≥ 12.7 ln(4k)

ε3 , it follows from Lemma 6.12 and
Lemma 6.13 that

r′ ≤ (1 +
3ε

4
) · 4r

3
= (

4
3

+ ε) r

holds with probability ≥ 1
2 .

This concludes Subcase 2b. We have thus proved the main theorem of this
section.

Theorem 6.14 The approximate center β′ returned by the algorithm is within
distance (4

3 + ε) r of all strings in S with probability ≥ 1
2 . If the diameter d of

the input instance satis�es d ≥ 12.7 ln(4k)
ε3 then the algorithm runs in polynomial

time. If d < 12.7 ln(4k)
ε3 then β′ is actually an optimal solution, and the algorithm

runs in O(r · nr+1 · k) = O(n
12.7 ln(4k)

ε3 +2 · k) time.

Note that since d ≥ r, if r ≥ 12.7 ln(4k)
ε3 then the algorithm is guaranteed to run

in polynomial time. On the other hand, if r = O(1) then the running time is
also polynomial.

Finally, we remark that the success probability can be ampli�ed from ≥ 1
2 to

≥ 1 − (1
2 )c for any positive integer c by running the algorithm independently

c times and selecting the best one of the obtained approximate solutions. (The
probability that the algorithm fails to produce any approximate solution which
is good enough is ≤ (1− 1

2 )c = (1
2 )c.)
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6.6 Concluding Remarks

We have shown that HCP can be solved exactly in polynomial time if restricted
to instances with k = O(1) (Theorem 6.3), or n = O(log k) (Theorem 6.4), or
r = O(1) (Theorem 6.5). In the general case, HCP can be approximated within
a factor of two in polynomial time (Theorem 6.2). The method of randomized
rounding yields good approximations for instances of HCP in which r is large
compared to

√
4n lnn, or k is small compared to n2, or the minimum generalized

distance between the optimal solution of the relaxed version of the instance and a
string in the instance is large (Corollary 6.10). Our main result was a randomized
approximation algorithm for HCP that for any given constant ε > 0 returns a
solution which with probability at least one half is within a factor of (4

3 + ε) of
the optimum, and whose running time is polynomial if r ≥ 12.7 ln(4k)

ε3 or r = O(1)
(Theorem 6.14).

After reading about the randomized, polynomial-time (4
3 +ε)-approximation

algorithm of Lanctot et al. [88], we realized that a minor modi�cation to our
algorithm will actually make it run in polynomial time for all instances of HCP.
The idea is to change Case 1 (d < 12.7 ln(4k)

ε3 ) so that instead of �nding an exact
solution (which might take exponential time), we let the algorithm look for
an approximate solution within the (4

3 + ε)-bound using only polynomial time.
More precisely, let the approximate solution for Case 1 be the best of the two
approximate solutions obtained from the following subcases:

• Return αl, where l is chosen arbitrarily from {1, ..., k} (i.e., the same
method as for Subcase 2a). If d ≤ 4

3r then this gives r′ ≤ d ≤ 4
3r.

• Transform the instance as for Subcase 2b and let ζ be a string in {0, 1}n
with zeros on the last n−d positions that minimizes max

αi∈S
dH(αi, ζ). Find ζ

by testing all of the 2d < (4k)
12.7·ln(2)

ε3 strings in {0, 1}n with zeros on the
last n − d positions. The number of strings which have to be tested is
polynomial in k since ε is constant, and each such string can be evaluated
in O(kn) time; therefore, the time required is polynomial in n and k.
Transform ζ back to the original instance and return ζ. If d > 4

3r then
r′ = max

αi∈S
dH(αi, ζ) ≤ 4r

3 by Lemma 6.12.

As for further improvements on the polynomial-time approximability of HCP,
there is not much left to be done. The PTAS of Li, Ma, and Wang [91] can
approximate HCP within a factor of 1 + ε for any constant ε > 0 in polynomial
time; furthermore, it is deterministic and works for strings over any constant-size
alphabet. However, it has a high time complexity and may be di�cult to use in
practice (see p. 159 in [91]). Therefore, the main open problem concerning HCP
is to �nd a simpler PTAS whose running time is upper bounded by a polynomial
of smaller degree than the one in [91].



Chapter 7

Hamming p-Radius and
p-Diameter Clustering

Here, we consider the Hamming versions of two classical clustering problems.
The �rst one, the Hamming p-radius clustering problem (HRC), is the natural
generalization of HCP (the problem we studied in detail in Chapter 6) where
instead of �nding one binary string β of length n which is close to all of the
input strings, we want to �nd p binary strings {β1, ..., βp} of length n such
that every input string is close to at least one string in the set {β1, ..., βp}.
The second problem we consider is called the Hamming p-diameter clustering
problem (HDC). It is the related problem in which the objective is to partition
the input strings into p groups so that the maximum of the group diameters is
minimized.

We extend our investigation of the computational complexity of HCP to
HRC and HDC, leading us to new inapproximability results, exact polynomial-
time algorithms for certain restrictions of the problems, and various types of
approximation algorithms.

7.1 Introduction

As in Chapter 6, let {0, 1}n be the set of all strings of length n over the alpha-
bet {0, 1}. For any α ∈ {0, 1}n, we use the notation α[m] to refer to the symbol
placed at the mth position of α, where m ∈ {1, ..., n}. The Hamming distance
between two strings α1, α2 ∈ {0, 1}n is the number of positions in which the
strings di�er, and is denoted by dH(α1, α2).

The Hamming p-radius clustering problem (HRC) is de�ned as:

117
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The Hamming p-radius clustering problem (HRC)

Instance: Finite set S = {α1, ..., αk} such that S ⊆ {0, 1}n for some positive
integer n, positive integer p with p ≤ k.

Output: A set {β1, ..., βp} ⊆ {0, 1}n which minimizes the value of

max
αi∈S

min
1≤q≤p

dH(αi, βq) (7.1)

Such an optimal set {β1, ..., βp} of strings is called a p-center set of S or a
p-center of S. The corresponding value of (7.1) is called the p-radius of S, and is
denoted by r. The de�nitions imply that p ≤ k ≤ 2n and r ≤ n. Note that HRC
restricted to instances with p set to 1 is the Hamming center problem (HCP),
the problem which was studied in detail in the previous chapter.

Radius clustering is also called minmax radius clustering or central clustering
in the literature [63]. The corresponding problem for graphs is often termed the
p-center problem [63, 103].

The Hamming p-diameter clustering problem (HDC) is de�ned on the same
set of instances as HRC. However, the goal is de�ned di�erently:

The Hamming p-diameter clustering problem (HDC)

Instance: Finite set S = {α1, ..., αk} such that S ⊆ {0, 1}n for some positive
integer n, positive integer p with p ≤ k.

Output: A partition of S into p disjoint subsets S1, ..., Sp which minimizes
the value of

max
1≤q≤p

max
αi,αj∈Sq

dH(αi, αj) (7.2)

The minimum value of (7.2) is called the p-diameter of S, and is referred to
by d. A partition of S into p disjoint subsets which achieves this minimum value
is called a p-cluster set of S, and each element of a p-cluster set of S is a p-cluster
of S. Again, from the problem de�nitions it follows that p ≤ k ≤ 2n and d ≤ n.
For any subset S′ of S, the 1-diameter of S′ is the value of max

αi,αj∈S′
dH(αi, αj).

Diameter clustering is sometimes called minmax diameter clustering or pair-
wise clustering [63].

An algorithm A is said to approximate HRC within a factor of f if for any
instance of the problem, A outputs a set B′ = {β′

1, ..., β
′
p} ⊆ {0, 1}n such that

max
αi∈S

min
β′

q∈B′
dH(αi, β

′
q) ≤ f · r. Similarly, an algorithm A is said to approximate

HDC within a factor of f if for any instance of the problem, A outputs a parti-
tion {S′

1, ..., S
′
p} of S such that max

1≤q≤p
max

αi,αj∈S′
q

dH(αi, αj) ≤ f · d. An algorithm
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which approximates HRC/HDC within a factor of f is also called a factor f ap-
proximation algorithm (or just an f -approximation algorithm) for HRC/HDC.
We say that a problem is NP-hard to approximate within a factor of f if it
cannot be approximated within a factor of f by any polynomial-time algorithm
unless P=NP.

7.1.1 Motivation

A clustering problem is a computational problem in which the elements of a
given set have to be divided into groups so that all elements within a group
are similar to each other. Important applications of algorithms for clustering
problems have turned up in operations research, pattern recognition, data min-
ing, concept learning, statistical data analysis, astrophysics, and data compres-
sion, and more recently, in the automatic classi�cation of web pages and in the
study of gene expression data in computational molecular biology (see below
and [1, 2, 7, 101] for references). In each such application, a given practical
problem is modeled as a speci�c, well-de�ned clustering problem which is then
solved exactly, or approximately if an exact solution cannot be obtained. The
most appropriate measure of similarity and objective function to use depend on
the application at hand and the nature of the elements that are being analyzed.
For instance, the Hamming metric has been used as the measure of similarity
in applications involving elements represented as binary strings of equal length;
examples include compressing correlated bitmaps [20], automatic script identi-
�cation from scanned images (e.g., distinguishing between Arabic, Armenian,
Burmese, etc.) [64], reconstructing unknown Boolean functions from incomplete
sets of samples [97], and gene expression analysis [114].

There is a vast literature on algorithms and computational complexity results
for clustering problems in the graph theoretic and �xed-dimensional geometric
settings (see, e.g., [7, 10, 24, 35, 56, 59, 63, 103, 128] and [1, 2, 7, 10, 43, 56, 63,
101], respectively), but not as much is known about the polynomial-time solvabil-
ity of geometric clustering problems where the dimension is unrestricted [101].
Our goal in this chapter is to determine the computational complexities of the
two unrestricted dimensional clustering problems that use the Hamming metric
and the general-purpose criteria corresponding to minimizing expression (7.1)
or (7.2) on p. 118 as their objective function, i.e., HRC and HDC.

In many applications, the number of clusters that need to be produced is
relatively small [101]. On the other hand, p might be large in certain pattern
matching applications; a system for Chinese character recognition, for example,
would need to be able to discriminate between thousands of characters. We are
therefore interested in the computational complexities of HRC and HDC both
when p is small and when p is unrestricted.

HRC generalizes the Hamming center problem from Chapter 6. Hence, an-
other potential use for HRC (and HDC) is the application described in Sec-
tion 6.1.1 in which an unbiased representative (i.e., an unbiased consensus string)
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for a given set S of k related biomolecular sequences has to be computed, e.g.,
to categorize other sequences later on, or to probe a database in order to dis-
cover similar sequences. It can be extended directly to the problem of computing
p > 1 representatives for S, where p� k. Here, the p representatives can be the
members of a p-center set of S, or simply p sequences from di�erent p-clusters
of S.

HRC can be viewed as a facility location problem where p facilities have to
be assigned to locations in {0, 1}n. However, since any p-center of a given set S
induces a partition of S (as explained in Section 7.2), we can think of HRC as a
clustering problem as well. Indeed, in this chapter, we use the name the Ham-
ming p-radius clustering problem rather than the Hamming p-center problem to
emphasize the close relationship to the Hamming p-diameter clustering problem.

7.1.2 Previous Results

Many computational complexity results related to p-radius and p-diameter clus-
tering in the graph theoretic and geometric settings have been published previ-
ously; see [1, 2, 10, 35, 43, 56, 63, 101, 103, 128] and the numerous references
therein. Below, we mention the ones that are the most relevant for this chapter.

Both the p-radius and the p-diameter clustering problems on edge-weighted,
complete, undirected graphs are NP-hard to approximate within a factor of 2−ε
for any ε > 0 even if the edge weights satisfy the triangle inequality (see [10, 63,
128]). Feder and Greene [43] proved that the p-radius and p-diameter clustering
problems in the plane under the L2 metric are NP-hard to approximate within
a factor of 1.822 and 1.969, respectively; moreover, they proved that under the
L1 metric and the L∞ metric, the problems are NP-hard to approximate within
a factor of 2− ε for any ε > 0.

Gonzalez' farthest-point clustering algorithm [56] can be used to obtain an
approximation factor of 2 in polynomial time for p-radius and p-diameter cluster-
ing problems whenever the used distance function satis�es the triangle inequality;
see Theorem 8.14 in [63] for a short proof. Fact 6.1 immediately implies that
HRC and HDC are polynomial-time approximable within a factor of 2 (details
are given in Section 7.5.1).

Some of the few known clustering results which are speci�cally tied to the
Hamming metric are listed next.

Frances and Litman [46] proved that HRC is NP-hard already for p = 1
(incidentally, this suggests that HRC is at least as hard as the corresponding p-
radius clustering problem on an edge-weighted, complete, undirected graph since
the latter can be solved exactly in polynomial time by exhaustive search when
restricted to any constant p). Li, Ma, and Wang [91] gave a polynomial-time
approximation scheme (PTAS) for HRC restricted to p = 1. See Chapter 6 for
other known results on HRC with p = 1.
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The Hamming p-median clustering problem (HMC) is de�ned on the same
set of instances as HRC and HDC, but its objective is to �nd a set {β1, ..., βp} ⊆

{0, 1}n which minimizes the value of
k∑

i=1

min
1≤q≤p

dH(αi, βq). It is solvable in O(kn)

time for p = 1 by setting position m of the solution to majority(αi[m])k
i=1 for

every 1 ≤ m ≤ n, but NP-hard for every �xed p ≥ 2 [84]. Ostrovsky and
Rabani [101] provided a randomized PTAS for HMC restricted to p = O(1), and
showed how it can be used to obtain randomized polynomial-time approximation
schemes for p-median clustering problems with p = O(1) in certain other metric
spaces.

7.1.3 Our Contributions

In this chapter, we derive several new results concerning the polynomial-time
solvability and approximability/inapproximability of HRC and HDC. We outline
our results below.

Section 7.2 demonstrates that while the p-diameter of a set of binary strings
is not necessarily equal to its p-radius, it is always within a factor of two.

In Section 7.3, we prove not only that HRC and HDC are NP-hard in the
general case1, but that both HRC and HDC are in fact NP-hard to approximate
within a factor of 2 − ε for any constant ε > 0. We also consider another kind
of approximation of HDC obtained by relaxing the constraint on the number
of produced clusters (but still requiring that none of their 1-diameters exceed
the p-diameter of the instance) and show that it is NP-hard to approximate the
number of clusters within a factor of pk1/7−ε for any constant ε > 0. As a
corollary, we obtain that HDC is an NP-hard problem already for p = 3.

Restricted cases of HRC and HDC are studied in Section 7.4. We prove that
HRC can be solved exactly in polynomial time if k = O(1), or if p = O(1)
and n = O(log k), or if p = O(1) and r = O(1). We prove that HDC is solvable
in polynomial time if p = O(1) and k = O(log n), or if p = 2. The techniques
we use are based on integer programming, exhaustive search, and breadth-�rst
search.

In Section 7.5, we �rst observe that an approximation factor of two for the
general case of HRC and HDC can be achieved in O(pkn) time by using Gon-
zalez' farthest-point clustering algorithm [56]. It follows from our inapprox-
imability result mentioned above that this is the best possible polynomial-time
constant approximation factor for the unrestricted versions of HRC and HDC,
unless P=NP. We then provide a (deterministic) approximation scheme which
approximates HRC within a factor of (1 + ε) for any given constant ε, where
0 < ε < 1, in kO(p/ε) ·2O(rp/ε) ·n time, which is polynomial for problem instances
with p = O(1) and r = O(log(k + n)). Next, we combine the randomized PTAS

1As pointed out earlier, HRC was �rst proved to be NP-hard even if restricted to p = 1
in [46].
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of Ostrovsky and Rabani [101] for the Hamming p-median clustering problem
with the PTAS of Li, Ma, and Wang [91] for HRC restricted to p = 1 to obtain
a randomized PTAS for HRC restricted to p = O(1) that has a high success
probability.

Finally, in Section 7.6, we give an approximation algorithm for HRC which
approximates the p-radius within a factor of (1+ε) for any constant 0 < ε < 1 at
the expense of a slight increase in the number of output strings: it produces at
most (1+ ln k) · p strings that together approximate a p-center set. This twofold
approximation algorithm runs in O((k ·2r)2/ε · (n + k) ·k · log n) time, which is
polynomial whenever r = O(log(k + n)) even if p is unbounded.

Our conclusions and some open problems related to HRC and HDC are pre-
sented in Section 7.7.

7.2 Preliminaries

HRC and HRC are de�ned for the same set of instances, but the p-radius r
and the p-diameter d of a set of binary strings are in general di�erent, as the
following example illustrates.

Example 7.1

Consider the instance S = {00010000, 00100000, 01000000, 10000000, 11110000,
11111111} with p = 2.

An optimal solution to HRC is {β1 = 00000000, β2 = 11110101} with r = 2.

On the other hand, an optimal solution to HDC is
{
S1 = {00010000, 00100000,

01000000, 10000000, 11110000}, S2 = {11111111}
}
with d equal to 3. 2

Let (S, p) be an instance of HRC/HDC. A p-center set {β1, ..., βp} of S with
p-radius r induces an approximate p-cluster set {S̃1, ..., S̃p} of S with diameter d̃
(for i = 1, ..., k, if βq is the string in the p-center closest to αi with the lowest
index then let αi ∈ S̃q). In the same way, a p-cluster set {S1, ..., Sp} of S with
p-diameter d induces an approximate p-center set {β̃1, ..., β̃p} of S with radius r̃

(for q = 1, ..., p, let {β̃q} be a 1-center set for the set of strings belonging to Sq).

Example 7.2

Let S be the instance in Example 7.1.

The approximate 2-cluster set induced by {β1, β2} is
{
S̃1 ={00010000, 00100000,

01000000, 10000000}, S̃2 = {11110000, 11111111}
}
, so the corresponding value

of d̃ is 4.

An approximate 2-center set induced by {S1, S2} is {β̃1 = 01010000, β̃2 =
11111111}, which implies r̃ = 3. 2
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The next lemma shows that an approximate solution to HDC induced by an
optimal solution to HRC is within a factor of two of optimum, and vice versa.
Moreover, it shows that the p-diameter of a set of binary strings is always less
than or equal to twice its p-radius.

Lemma 7.3 Given an instance of HRC/HDC, de�ne r, r̃, d, and d̃ as above.
Then:
(a) r̃ ≤ 2r; (b) d̃ ≤ 2d; (c) r ≤ d ≤ 2r

Proof: By de�nition, we have (1) r ≤ r̃ and (2) d ≤ d̃. Also, (3) r̃ ≤ d
because setting β̃q to an arbitrary string in Sq for each q ∈ {1, ..., p} gives an
approximate p-center set with radius less than or equal to d. Next, since the
Hamming distance function obeys the triangle inequality (see Fact 6.1), the
distance between two strings αi, αj that end up in the same S̃q must be less
than or equal to dH(αi, βq) + dH(βq, αj) ≤ 2r, so it holds that (4) d̃ ≤ 2r.

Now, (a) follows from (3), (2), and (4); (b) follows from (4), (1), and (3).
Finally, (c) follows from (1), (3), (2), and (4). 2

7.3 HRC and HDC are NP-Hard to Approximate

In this section, we prove that both HRC and HDC are NP-hard to approximate
within any constant factor smaller than two. We also prove that for any constant
ε > 0, it is NP-hard to split S into at most pk1/7−ε disjoint clusters whose 1-
diameters do not exceed the p-diameter of S. It follows from the reduction we
use to prove the latter result that solving HDC exactly is NP-hard for every
�xed p ≥ 3.

7.3.1 NP-Hardness of Approximating the p-Radius and

the p-Diameter

The starting point for proving the hardness results in this subsection is the re-
duction in [43] from vertex cover for planar graphs of degree at most three to
the p-radius and p-diameter clustering problems in the plane under the L1 met-
ric2. We �rst show that all points in the resulting instance of the corresponding
p-clustering problem as well as the points in an approximate p-center can be
required to lie on an integer grid whose size is polynomial in the size of the in-
put planar graph, giving us the following technical strengthening of Theorem 2.1
in [43].

2The p-radius clustering problem in the plane under the L1 metric is the following: Given
a �nite set S of points in the plane, �nd a set P of p points in the plane that minimizes
max
s∈S

min
u∈P

d1(s, u), where d1 is the L1 distance. The p-diameter clustering problem in the plane

under the L1 metric is de�ned analogously.
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Lemma 7.4 The p-radius and p-diameter clustering problems in the plane un-
der the L1 metric for a �nite set S of points, where the points in S lie on an
integer square grid whose size is polynomial in |S| and where the approximate
solution to the radius version is required to lie on the grid, are NP-hard to
approximate within a factor of 2− ε for any constant ε > 0.

Proof: The reduction in [43] embeds an instance of vertex cover for planar
graphs of degree at most three in the plane by replacing each edge with a path
composed of an odd number of unit-length edges. The midpoints of these unit-
length edges form an instance I of p-radius or p-diameter clustering in the plane
which admits a solution with p-radius 0.5 or p-diameter 1, respectively, if and
only if the embedded graph has a vertex cover of size p. The key observation
is that the distance between the midpoints of any two nonadjacent edges is at
least 2 in case of the L1 metric (see Figure 7.1). It follows that �nding an
approximate solution to I within any factor smaller than 2 is as hard as �nding
an exact solution, yielding the NP-hardness of approximating the p-radius and p-
diameter clustering problems in the plane under the L1 metric within any factor
smaller than 2. For further details concerning the reduction, see [43] or [63].

Consider the smallest square box B with sides parallel to the x- and y-
axes which contains the embedded graph constructed in the reduction. Since
the graph can be assumed to be connected, the length of a side of the box is
O(l), where l is the number of points in the instance of the radius or diameter
clustering problem in the plane. Note that l has to be polynomial in the size n
of the original vertex cover instance [43]. We conclude that the size of the box
is polynomial in n.

Form a uniform point grid within B such that the distance between nearest
neighbors in the grid is δ, where 0 < δ ≤ 0.01. Move each of the midpoints in I
to its nearest grid point. Such a movement changes the relative distance between
two midpoints by at most 2δ. Adding the requirement that an approximate p-
center must also lie on the grid can further increase the radius by at most δ. It
follows that I admits a clustering with p-radius 0.5 or p-diameter 1, respectively,
if and only if the resulting instance I ′ of clustering on the grid admits a solution
with p-radius ≤ (0.5 + δ) + δ = 0.5 + 2δ or p-diameter ≤ 1 + 2δ. It also follows
that I has p-radius at least 1 or p-diameter at least 2 if and only if I ′ has p-
radius ≥ 1 − 2δ or p-diameter ≥ 2 − 2δ. Now, if the p-radius of I ′ could be
approximated within 2− 12δ then the p-radius of I could be computed exactly
since (0.5 + 2δ) · (2 − 12δ) < 1− 2δ. Similarly, if the p-diameter of I ′ could be
approximated within 2−6δ then the p-diameter of I could be computed exactly
since (1 + 2δ) · (2− 6δ) < 2− 2δ.

Since δ can be selected arbitrarily close to 0 and I ′ can be constructed in
time which is polynomial in n for any �xed δ, it is su�cient to transform the
grid to an integer grid by rescaling by 1/δ in order to obtain the theorem in both
cases. 2
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Figure 7.1: The L1 distance between two edge midpoints (shown as �lled circles) is 1
if the edges are adjacent, and ≥ 2 otherwise.

By embedding the L1 metric on an integer square grid into the Hamming
metric, we obtain the main result of this subsection.

Theorem 7.5 HRC and HDC are NP-hard to approximate within a factor of
2− ε for any constant ε > 0.

Proof: Let S be a set of points on an integer square grid of size W ×W, where
W is bounded by some polynomial in |S|. For each s ∈ S, denote the x- and
y-coordinates of s by sx and sy, respectively. Encode each s ∈ S by the binary
string e(s) of length 2W composed of sx consecutive 1's followed by W − sx

consecutive 0's, then sy consecutive 1's, and �nally, W−sy consecutive 0's. Then,
for any two points s′ and s′′ in S, their L1 distance is the absolute di�erence in
x-coordinates plus the absolute di�erence in y-coordinates, which is equal to the
Hamming distance between their encodings e(s′) and e(s′′) (see Figure 7.2 for
an example). This observation, together with Lemma 7.4, yields the theorem
for HDC.

Next, consider an approximate solution {a1, ..., ap} to HRC for the strings
e(s), s ∈ S. For q = 1, ..., p, transform aq to a′

q having the form 1l0W−l1m0W−m

for some l, m ≤ W by moving all the 1's contained in the left half of aq to the
beginning of the left half, and all the 1's in the right half of aq to the beginning
of the right half. The resulting set of strings {a′

1, ..., a
′
p} is a solution which is at

least as good as {a1, ..., ap}. Also, it can be directly decoded into a set of grid
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dH= 7

1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0

1 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0

(3,7)

(5,2)

d = 71

Figure 7.2: The L1 distance between any two points in S equals the Hamming distance
between the two encoding strings.

points {g1, ..., gp} such that a′
q = e(gq) for q = 1, ..., p. Lemma 7.4 now gives us

the theorem for HRC. 2

7.3.2 NP-Hardness of Approximating HDC in Terms of

the Number of Clusters

Let G be an undirected graph. A partition of G into q cliques is a partition of
the set of vertices of G into disjoint subsets V1, ..., Vq such that for j = 1, ..., q,
the subgraph of G induced by Vj is a complete graph. The minimum clique
partition problem is: Given an undirected graph G, �nd a partition of G into
as few cliques as possible. A partition of G into q cliques induces a coloring
with q colors of the complement graph G of G and vice versa since two vertices
in G are nonadjacent (i.e., can be assigned the same color) if and only if they
are adjacent in G. Thus, known inapproximability results for minimum graph
coloring [12] imply that for any constant ε > 0, the problem of �nding an
approximate solution to the minimum clique partition problem consisting of at
most p·|V |1/7−ε cliques, where |V | is the number of vertices in the input graph G
and p is the number of cliques in an optimal solution, is NP-hard.

By a reduction from the minimum clique partition problem to HDC, we
obtain:

Theorem 7.6 For any constant ε > 0, the problem of �nding a partition of a
set of k binary strings of length O(k2) into at most pk1/7−ε disjoint clusters such
that each cluster has 1-diameter not exceeding the p-diameter is NP-hard.
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Proof: Given an instance G of the minimum clique partition problem, let |V |
denote the number of vertices in G and construct an undirected graph G′ with
2|V | vertices by augmenting G with |V | new vertices and then, for every vertex v
appearing in G, adding edges between v and new vertices until v gets degree |V |
in G′. Enumerate the edges of G′ from 1 to m, where m = O(|V |2). For every
vertex v in G, form a binary string s(v) of length m such that there is a 1 on the
ith position of s(v) if and only if the ith edge of G′ is incident to v. Note that for
any pair of vertices v1, v2 in G, the Hamming distance between s(v1) and s(v2)
is 2|V | − 2 if they are adjacent, otherwise it is 2|V |. Therefore, any partition
of G into p cliques yields a p-cluster set of the resulting strings whose maximum
1-diameter is less than or equal to 2|V | − 2, and conversely, any q-cluster set of
the resulting strings whose maximum 1-diameter is less than or equal to 2|V |−2
trivially yields a partition of G into q cliques. The theorem follows from the
inapproximability result cited above, with k = |V |. 2

As for the corresponding approximation problem for HRC (i.e., producing
a larger set of approximate centers such that each input string is within the
p-radius of at least one of them), we doubt whether it is as hard to approximate.
Indeed, if we weaken the requirement of being within the p-radius by a multi-
plicative factor of 1 + ε, then the problem admits a logarithmic approximation
in polynomial time if r = O(log(k + n)), as shown in Section 7.6.

We also note the following. The partition into cliques problem is: Given an
undirected graph G and a positive integer p, is it possible to partition G into
p cliques? The partition into cliques problem is NP-complete for every �xed
p ≥ 3 (see [49]), so the reduction in the proof of Theorem 7.6 also implies:

Corollary 7.7 HDC is NP-hard for every �xed p ≥ 3.

7.4 Polynomial-Time Optimal Solutions for Re-

stricted Cases

Although HRC and HDC are NP-hard in general by the result of Frances and
Litman [46] and Corollary 7.7 above, certain special cases of HRC and HDC
(e.g., HRC restricted to instances with p = k and HDC restricted to instances
with p = 1 or p = k) can be solved by trivial algorithms. Here, we investigate
some other, more interesting cases of HRC and HDC which can be solved in
polynomial time.

Recall from Section 6.3 that HRC with p = 1 can be expressed as a spe-
cial case of the integer programming problem which is solvable in nO(k) time
(Theorem 6.3). We �rst show that HRC can be solved in (pn)O(k) time for
p > 1.

Theorem 7.8 HRC is solvable in (pn)O(k) time.
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Proof: Let (α1, ..., αk, p) be a given instance of HRC, where αi ∈ {0, 1}n for
1 ≤ i ≤ k and p ∈ {1, ..., k}. For each of the O(pk) ways to partition the k strings
into p subsets {S1, ..., Sp}, construct p instances of HRC with p set to 1 such
that for 1 ≤ q ≤ p, instance q consists of the strings in subset Sq. Then use the
method of Theorem 6.3 to solve each instance optimally, and let the value of
the current partition equal the maximum of the p resulting 1-radii. As the �nal
solution, return the set of 1-centers of a partition that yields the smallest value.

To prove the correctness of this method, consider an optimal p-center set
{β1, ..., βp}. It induces a partition {S̃1, ..., S̃p} of {α1, ..., αk} where for 1 ≤ i ≤ k,
αi ∈ S̃q if βq is the string in the p-center closest to αi with the lowest index.
Let r be the p-radius. By the de�nition of a p-center set, dH(αi, βq) ≤ r for
all αi ∈ S̃q. Thus, the distance between an optimal 1-center of S̃q and a string
in S̃q cannot be greater than r. All partitions of the input strings, including
{S̃1, ..., S̃p}, are tested, so an optimal solution will be found.

The method takes a total of O(pk) ·O(p) · nO(k) = (pn)O(k) time. 2

We conclude that HRC with k = O(1) can be solved exactly in polynomial
time.

Exhaustive search over all possible p-centers results in a kO(p)-time algorithm
when n = O(log k) because there are (2n)p candidate solutions, each of which
can be evaluated in O(kpn) time. We have:

Theorem 7.9 HRC restricted to instances with n = O(log k) is solvable in
kO(p) time.

Exhaustive search over sets of strings of increasing distance to the input
strings can also be used to obtain an optimal solution, as the next theorem
shows.

Theorem 7.10 HRC is solvable in O(r · kp+1 · npr+1 · p) time.

Proof: Initialize a counter R to zero. Repeat the following until a solution B
has been found, incrementing R by one after each iteration: For every car-
dinality p subset {γ1, ..., γp} of the set of input strings S, evaluate all di�er-
ent sets of the form {y1, ..., yp} where for 1 ≤ q ≤ p, yq ∈ {0, 1}n and yq is
within Hamming distance R of γq; if there exists such a set {y1, ..., yp} satisfying
maxαi∈S min1≤q≤p dH(αi, yq) = R then let B := {y1, ..., yp}.

To see that this method always �nds an optimal solution, let {β1, ..., βp} be
any p-center set of S. As in the proof of Theorem 7.8, it induces a partition
{S̃1, ..., S̃p} of {α1, ..., αk} where for 1 ≤ i ≤ k, αi ∈ S̃q if βq is the string in
the p-center closest to αi with the lowest index. Now, for 1 ≤ q ≤ p, if S̃q is
nonempty then de�ne γ̂q to be the string in S̃q with lowest index; note that
dH(γ̂q, βq) ≤ r, and furthermore, γ̂q 6∈ S̃j for all j 6= q. Next, for 1 ≤ q ≤ p, if
S̃q is empty then de�ne γ̂q to be any element in S which is di�erent from all γ̂j
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de�ned so far and set βq to γ̂q (if S̃q is empty then βq can be replaced by any
string in {0, 1}n without a�ecting the value of (7.1) in the de�nition of HRC
on p. 118). The resulting set {β1, ..., βp} is a p-center set of S which will be
evaluated at some point when R has reached r and the subset {γ̂1, ..., γ̂p} is
considered.

In every iteration, there are
(
k
p

)
= O(kp) subsets of S to consider. There are

R∑
j=0

(
n
j

)
= O(nR) strings in {0, 1}n within Hamming distance R of any string

in S, and each candidate solution can be evaluated in O(kpn) time, so the total
running time is

∑r
R=0 O(kp+1 · npR+1 · p) = O(r · kp+1 · npr+1 · p). 2

One of the main di�erences between HDC and HRC is that the former does
not involve strings outside the input set S. For this reason, it seems simpler
to solve exactly than HRC does3. It can be solved in O(k2n + pkk2) time by
precomputing all Hamming distances between pairs of strings in S and then
doing an exhaustive search, which immediately yields the following result.

Theorem 7.11 HDC restricted to instances with k = O(log n) is solvable in
nO(log p) time.

Finally, we observe that the Hamming 2-diameter clustering problem admits
a rather straightforward polynomial-time algorithm.

Theorem 7.12 HDC restricted to instances with p = 2 is solvable in O(k2n)
time.

Proof: Let d be a candidate value for the 2-diameter of S. Form a graph G
whose vertices are in one-to-one correspondence with the input strings, and
connect a pair of vertices by an edge whenever the Hamming distance between
the corresponding strings is less than or equal to d. The problem of partitioning S
into two subsets whose 1-diameters are at most d is now equivalent to the problem
of partitioning G into two cliques; the latter problem in turn reduces to 2-coloring
the complement graphG of G (see Section 7.3.2). A 2-coloring of G (if one exists)
can be found in O(k2) time by breadth-�rst search. To determine the smallest
possible d for which a 2-coloring of G exists, use the procedure just described
for di�erent values of d, generated by a binary search. Calculating all pairwise
Hamming distances requires O(k2n) time, but this can be done before starting
the search for d. The total running time is O(k2n + k2 ·log n) = O(k2n). 2

The results of this section are summarized in the next corollary. It generalizes
Corollary 6.6.

3However, as for approximations in terms of the number of clusters, it might be more
di�cult, as indicated by the results in Sections 7.3.2 and 7.6.
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Corollary 7.13 The following are solvable in polynomial time:

• HRC restricted to instances with k = O(1).

• HRC restricted to instances with p = O(1) and n = O(log k).

• HRC restricted to instances with p = O(1) and r = O(1).

• HDC restricted to instances with p = O(1) and k = O(log n).

• HDC restricted to instances with p = 2.

7.5 Approximation Algorithms for HRC & HDC

In this section, we describe three approximation algorithms. The �rst one works
for both HRC and HDC, whereas the second and third are more specialized and
work only for HRC.

7.5.1 A Polynomial-Time 2-Approximation Algorithm for

HRC and HDC

We apply Gonzalez' farthest-point clustering algorithm [56] to HRC and HDC,
respectively, as shown in Figure 7.3 to obtain an approximation factor of two for
both problems. This algorithm can be viewed as an extension of the 2-approx-
imation algorithm for HRC restricted to p = 1 given in Section 6.2.

Algorithm Farthest-Point Clustering

Input: An instance of HRC or HDC.

Output: An approximate solution which is within a factor of 2 of the optimum.

1 Set B to {αl}, where αl is an arbitrary string in S.

2 for q := 2 to p do

Augment B by a string α ∈ S that maximizes minβ′∈B dH(α, β′), i.e.,
a string that is as far away as possible from the strings already in B.

endfor

3 (HRC) return B.

(HDC) Assign each string in S to a closest member in B and return the
resulting clusters.

End Farthest-Point Clustering

Figure 7.3: Gonzalez' farthest-point clustering algorithm applied to HRC and HDC.

By Fact 6.1, the Hamming distance function satis�es the triangle inequality.
Therefore, by the proof of Theorem 8.14 in [63], Algorithm Farthest-Point Clus-
tering yields an approximate solution to HRC or HDC that is always within a
factor of two of the optimum.
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We can implement the algorithm by updating the Hamming distance from
each string outside B to the nearest string in B after each augmentation of B.
To update and then compute a string in S farthest from B takes O(kn) time in
each iteration; hence, we obtain the next theorem.

Theorem 7.14 HRC and HDC can be approximated within a factor of two in
O(pkn) time.

Theorem 7.5 implies that if P 6=NP then this is the best constant approxi-
mation factor for the unrestricted versions of HRC and HDC achievable by any
algorithm running in polynomial time. Interestingly, Algorithm Farthest-Point
Clustering does not even consider any strings outside the input set S.

7.5.2 An Approximation Scheme for HRC

Here, we present an algorithm that for any given constant ε, where 0 < ε < 1,
approximates HRC within a factor of (1 + ε), and show that its running time is
polynomial if p = O(1) and r = O(log(k +n)). The algorithm is partly based on
the idea used in the PTAS for HRC restricted to p = 1 by Li, Ma, and Wang [91].

Our algorithm is called Algorithm HRC Approximation Scheme and is shown
in Figure 7.4.

Algorithm HRC Approximation Scheme

Input: An instance of HRC, positive number ε < 1.

Output: An approximate solution which is within a factor of (1 + ε) of the
optimum.

1 Let R := min{d 1+ε
2ε
e, k} and set C to the empty set.

2 for each subset S′ of S with exactly R strings do

Compute the set Q consisting of all positions m, 1 ≤ m ≤ n, on which
all strings in S′ contain the same symbol. Set P to {1, ..., n} \Q.
For every possible f : P → {0, 1}, let qf be the string in {0, 1}n which
agrees with the strings in S′ on all positions in Q and contains f(j) on
each position j ∈ P . Augment C by qf .

endfor

3 Let Cp be the set of all cardinality p subsets of C.
4 Test every set in Cp and return a B ∈ Cp that minimizes max

1≤i≤k
min
c∈B

dH(αi, c).

End HRC Approximation Scheme

Figure 7.4: An approximation scheme for HRC.

For instances of HRC with k ≤ d 1+ε
2ε e, Algorithm HRC Approximation

Scheme will �nd an exact solution since C contains all possible strings which
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can belong to a p-center. To prove that the algorithm attains the speci�ed ap-
proximation factor for the remaining cases (i.e., when k > d 1+ε

2ε e), we need the
next lemma. It follows from Lemma 2.1 in [91] together with the part of the
proof of Lemma 2.5 in [91] which uses enumeration to �nd an optimal completion
of the string obtained from Lemma 2.1.

Lemma 7.15 For any subset U of S, there is a c in C such that

max
α∈U

dH(α, c) ≤ (1 +
1

2R− 1
) · min

β∈{0,1}n
max
α∈U

dH(α, β)

Theorem 7.16 For any given ε, where 0 < ε < 1, Algorithm HRC Approxima-
tion Scheme approximates HRC within a factor of (1 + ε) in kO(p/ε) · 2O(rp/ε) ·n
time.

Proof: To prove the correctness and the claimed approximation factor of Algo-
rithm HRC Approximation Scheme, consider an optimal p-center {β1, ..., βp}
of S. Partition S into disjoint subsets U1 through Up such that for all 1 ≤ q ≤ p
and any α ∈ Uq, βq has minimum Hamming distance to α among β1, ..., βp. By
Lemma 7.15, the set Cp constructed in Step 3 contains a set {β′

1, ..., β
′
p} such that

for all 1 ≤ q ≤ p and any α ∈ Uq, the Hamming distance between α and β′
q is

at most 1 + 1
2R−1 times the radius of Uq. Thus, Algorithm HRC Approximation

Scheme yields a solution within 1+ 1
2R−1 of the optimum. Now, for all instances

of HRC with k > d 1+ε
2ε e, we have R = d 1+ε

2ε e ≥
1+ε
2ε and 1 + 1

2R−1 ≤ 1 + ε. (If
k ≤ d 1+ε

2ε e then the algorithm returns an exact solution.)

To derive an upper bound on the running time of AlgorithmHRC Approxima-
tion Scheme, �rst observe that each of the sets P in Step 2 has size at most r·R so
that for each subset S′ considered, at most 2rR strings of the form qf are added
to C, taking O(Rn + 2rRn) = O(2rRn) time. Hence, |C| ≤ kR2rR, and C can be
constructed in O(kR2rRn) time. Consequently, Cp is of size at most kRp2rRp and
its construction from C takes O(kRp2rRpn) time. Each set in Cp can be tested in
O(kpn) time. The total running time is therefore O(kRp+1 · 2rRp · p · n), which
is bounded by kO(p/ε) · 2O(rp/ε) · n since R ≤ d 1+ε

2ε e < 1+ε
2ε + 1 = 1+3ε

2ε < 2
ε

and p ≤ k. 2

Corollary 7.17 Algorithm HRC Approximation Scheme yields a polynomial-
time approximation scheme for HRC restricted to instances with p = O(1) and
r = O(log(k + n)).

7.5.3 A Randomized PTAS for HRC with p = O(1)

Ostrovsky and Rabani [101] provided a randomized polynomial-time approxima-
tion scheme for the Hamming p-median clustering problem (see Section 7.1.2)
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restricted to p = O(1). In this subsection, we show that a modi�cation to the
evaluation phase of their algorithm makes the algorithm work for HRC, too. To
be more precise, we apply the PTAS of Li, Ma, and Wang [91] for HRC restricted
to p = 1 to obtain a randomized PTAS for HRC restricted to p = O(1) whose
success probability increases with increasing k.

Preliminaries

Let An,m(q) be the probability distribution on the (m×n)-matrices over {0, 1} in
which the entries are independent, identically distributed random 0−1-variables
with Pr[1] = q. For any (m×n)-matrix A over {0, 1} (henceforth also referred to
as a linear transformation from {0, 1}n to {0, 1}m) and vector x ∈ {0, 1}n, Ax is
the vector in {0, 1}m obtained by multiplying A and x (modulo 2). Ostrovsky
and Rabani [101] proved the following.

Lemma 7.18 [101] For every γ > 0 there exists a λ > 0 such that for every ε,
0 < ε ≤ 1

8 , and all integers k, n, and l with l ∈ {1, ..., n}, the following holds:

Let S ⊆ {0, 1}n with |S| = k. Let m = λ ln k/ε4, and let A be
a random matrix drawn from An,m(ε2/l). Then with probability
at least 1 − k−γ , for all x, y, z ∈ S with l ≤ dH(y, z) ≤ 2l, if
dH(Ax, Ay) ≤ dH(Ax, Az) then dH(x, y) ≤ (1 + 8ε) · dH(x, z).

De�nition 7.19 A tournament is a directed graph in which there is exactly
one directed edge between each pair of vertices. An apex of a tournament is a
vertex of maximum outdegree.

The next lemma was stated without proof in [101].

Lemma 7.20 Let a be an apex of a tournament T , and let c be any vertex in T .
Then there is a directed path of length at most 2 from a to c.

Proof: Denote the maximum outdegree of T by M . Let B be the set of vertices
of T which are reachable by following one directed edge from a, i.e., |B| = M .

Assume that there is no directed path of length ≤ 2 from a to c. Then each
directed edge between c and a vertex in {a} ∪ B must originate from c, which
means that the outdegree of c is at least M +1. This contradicts the maximality
of a. 2

The algorithm

The algorithm is called Algorithm HRC Randomized PTAS and is listed in Fig-
ure 7.5. It is substantially based on the approach used in [101] for approximat-
ing the Hamming p-median clustering problem. The only di�erence between the
PTAS of [101] and Algorithm HRC Randomized PTAS is the evaluation phase;
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Algorithm HRC Randomized PTAS

Input: An instance of HRC with p = O(1), positive constants γ, ε, and f .

Output: An approximate solution which is within a factor of (1 + 8ε)2 · (1 + f)
of the optimum with probability at least 1− 2·k−γ .

Set λ to the constant in Lemma 7.18 (depends on γ).

m := λ · ln(k + p)/ε4

for each l ∈ {1, ..., n} do

Draw a random matrix from An,m(ε2/l) and call it A(l).

endfor

for all (ls,t)1≤s<t≤p ∈ {1, ..., n}(
p
2) do

for all choices of (ci,j)
i6=j
1≤ i,j ≤ p ∈ ({0, 1}m)p(p−1) do

(S1, ..., Sp) := (∅, ..., ∅)
for x ∈ S do

Construct a tournament T over vertex set {1, ..., p} as follows:
for 1 ≤ i < j ≤ p do

if dH(A(li,j)x, ci,j) ≤ dH(A(li,j)x, cj,i) then

Let ij be an edge of T .

else

Let ji be an edge of T .

endif

endfor

Compute an apex a of T .
Sa := Sa ∪ {x}

endfor

for q := 1 to p do

B′
q := PTAS(Sq, f)

endfor

cost := max
1≤q≤p

{max
α∈Sq

dH(α, B′
q)}

endfor

endfor

return The {B′
1, ..., B

′
p} which induces the smallest cost.

End HRC Randomized PTAS

Figure 7.5: The randomized PTAS of Ostrovsky and Rabani, modi�ed to approximate
HRC restricted to p = O(1).

whereas it is easy to compute the exact cost of each candidate clustering for the
Hamming p-median problem, it is NP-hard for HRC (see below).

To understand the general idea behind the algorithm, �rst consider the case
p = 2. The initial part of the algorithm generates a set of n linear transfor-
mations from {0, 1}n to {0, 1}m, where m = O(log k), which are applied to the
input strings later on to reduce the number of dimensions. (Note that the el-
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ements of {0, 1}m can be enumerated in polynomial time.) In the main loop,
for every possible projection (c1,2, c2,1) in ({0, 1}m)2 of a 2-center in ({0, 1}n)2,
the original strings are partitioned into two sets (S1, S2); a string is placed in S1

or S2 depending on if its projection is closer to the string c1,2 or the string c2,1,
with ties broken arbitrarily. By enumerating over all elements in ({0, 1}m)2,
some (c̃1,2, c̃2,1) in the reduced space which is the image of an optimal solution
(β1, β2) in the original space will be encountered. Denote the partition of S in-
duced by (c̃1,2, c̃2,1) by (S̃1, S̃2). Now, if the linear transformation would preserve
all relations between pairwise distances between strings, every string in S̃1 would
be closer to β1 than to β2. This is not true in general though, but Lemma 7.18
guarantees that we can select a linear transformation from An,m(ε2/l1,2) at ran-
dom, where l1,2 is the distance between β1 and β2, so that for any string x

which is placed in S̃1, the distance between x and β1 is at most (1 + 8ε) times
the distance between x and β2 with high probability. Thus, even if x is placed
in the �wrong� set, this does not worsen the quality of the approximation too
much. Since the actual distance between β1 and β2 is unknown, all possible
values for l1,2 are tried.

For p > 2, the algorithm enumerates over all possible pairwise distances
in the original space between cluster centers as well as over all elements in
({0, 1}m)p(p−1). For some choice of distances and some element (c̃1,2, c̃1,3, ...,
c̃p,p−2, c̃p,p−1) in ({0, 1}m)p(p−1), each string c̃i,j corresponds to the projec-
tion in {0, 1}m of βi using the linear transformation associated with the length
dH(βi, βj), where {β1, ..., βp} is an optimal p-center in {0, 1}n. (For a linear
transformationA(l), Lemma 7.18 can be applied to pairs of cluster centers (βi, βj)
which satisfy l ≤ dH(βi, βj) ≤ 2l. Thus, one linear transformation is employed
for each pair of cluster centers, i.e.,

(
p
2

)
linear transformations at a time.) To

decide in which clusters to place the input strings, a tournament T among clus-
ter centers is constructed for every x ∈ S; for each pair of centers (i, j), the edge
between vertices i and j in T is directed away from the center whose projec-
tion is closer to the projection of x. Then, x is assigned to a cluster Sq only if
no vertex in T has more outgoing edges than vertex q. Again, for the correct
choice of distances between cluster centers, Lemma 7.18 ensures that with high
probability, pairwise distances in the reduced spaces are not greatly distorted.
Assume that x is placed in S̃a but that the cluster center which is closest to x
is βc. By Lemma 7.20, there is a path of length at most two from a to c in T , so
at most two applications of Lemma 7.18 are needed to obtain an upper bound
on dH(x, βa) in terms of dH(x, βc).

Since the algorithm enumerates over many possible solutions in order to
�nd the best one, a method for evaluating the quality of a proposed clustering
is also required. Unfortunately, it is NP-hard to calculate the 1-radius (in the
original space) of each cluster S̃q [46]. Furthermore, the algorithm should output
p binary strings that approximate the p-center of the instance. Therefore, for
each computed partition of S into (Sq)

p
q=1, we run the PTAS for HRC with

p = 1 by Li, Ma, and Wang [91] p times. For any constant f > 0 and S′ ⊆ S,
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PTAS(S′, f) returns an approximate 1-center in polynomial time whose dis-
tance to every string in S′ is less than or equal to the 1-radius of S′ multiplied
by (1 + f).

Algorithm analysis

If p, f , γ, and ε are constant, the total running time of Algorithm HRC Random-
ized PTAS is polynomial since there areO(np(p−1)/2) sets of pairwise distances to
try, the number of choices for (ci,j)

i6=j
1≤ i,j ≤ p is bounded by O(2m·p(p−1)) = O(kC)

where C is a constant less than p(p−1)λ/ε4, each tournament can be constructed
in polynomial time, and each call to PTAS(S, f) takes polynomial time when f
is constant.

Next, we show that every solution returned by the algorithm is close to
the optimum with high probability, despite the inexactness introduced by the
projection from {0, 1}n into {0, 1}m and the approximations of 1-centers.

Theorem 7.21 Let f be a constant, 0 < f < 1. For every γ > 0 and ε, where
0 < ε ≤ 1

8 , Algorithm HRC Randomized PTAS approximates HRC restricted to
p = O(1) within a factor of (1 +8ε)2 · (1 + f) with probability at least 1− 2·k−γ

in polynomial time.

Proof: Let λ be the constant in Lemma 7.18, let {β1, ..., βp} be an optimal
p-center set for the given instance, and consider the iteration of the algorithm in
which ls,t = dH(βs, βt) for all 1 ≤ s < t ≤ p. One of the choices of (ci,j)

i6=j
1≤ i,j ≤ p

tried by the algorithm is when each ci,j is precisely A(li,j)βi (where li,j is set to
equal lj,i for j < i); denote the partition of S obtained for this (ci,j)

i6=j
1≤ i,j ≤ p by

(S̃1, ..., S̃p).
By Lemma 7.18, it holds that for any x ∈ S, if dH(A(li,j)x, A(li,j)βi) ≤

dH(A(li,j)x, A(li,j)βj) then dH(x, βi) ≤ (1 + 8ε) · dH(x, βj) with probability at
least 1− k−γ . Suppose that the algorithm places x in some cluster S̃a, and that
βc is closest to x among {β1, ..., βp}. Since a is an apex of T , Lemma 7.20 implies
that there is a path in T from a to c of length at most 2. If the path has length 2,
let b be its middle vertex. By the construction of T , dH(A(la,b)x, A(la,b)βa) ≤
dH(A(la,b)x, A(la,b)βb) and dH(A(lb,c)x, A(lb,c)βb) ≤ dH(A(lb,c)x, A(lb,c)βc). Oth-
erwise, if the path has length 1, set b equal to c; if the path has length 0, then
let a = b = c. Thus, with probability at least 1− (k−γ + k−γ) we have that

dH(x, βa) ≤ (1 + 8ε) · dH(x, βb) ≤ (1 + 8ε)2 · dH(x, βc).

For each 1 ≤ q ≤ p, let B̃q be an optimal 1-center for S̃q and let B̃′
q be the

approximate 1-center computed by PTAS(Sq, f). Because

max
x∈S̃q

dH(x, B̃′
q) ≤ (1 + f) ·max

x∈S̃q

dH(x, B̃q) ≤ (1 + f) ·max
x∈S̃q

dH(x, βq),
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the solution returned by Algorithm HRC Randomized PTAS has a cost which
is less than or equal to

max
1≤q≤p

max
x∈S̃q

dH(x, B̃′
q) ≤ (1 + f) · max

1≤q≤p
max
x∈S̃q

dH(x, βq)

≤ (1 + f) · (1 + 8ε)2 ·max
x∈S

min
1≤q≤p

dH(x, βq)

with probability at least 1− 2·k−γ . 2

7.6 A Relaxed Type of Approximation of HRC

We now show how to �nd, for any given constant ε with 0 < ε < 1, a set L of at
most O(p log k) strings of length n such that for each string in S there is at least
one string in L within distance (1 + ε) · r. This yields a twofold approximation
algorithm for HRC with O((k·2r)2/ε ·(n + k)·k·logn) running time.

Let ε be a given constant, 0 < ε < 1. Given an instance of HRC, compute R
and the set C as in Algorithm HRC Approximation Scheme in Section 7.5.2. If
k ≤ d 1+ε

2ε e then for every c in C, de�ne S(c) to be the set of all strings in S within
Hamming distance r of c; there exists a set of p such sets that covers all of S
because C contains an exact p-center. If k > d 1+ε

2ε e then for every c in C, de�ne
S(c) to be the set of all strings in S within Hamming distance (1+ 1

2R−1 ) ·r of c;
by Lemma 7.15, there exists a set consisting of p such sets, covering all of S.
Also note that by the proof of Theorem 7.16, if k > d 1+ε

2ε e then
1

2R−1 ≤ ε.
Now, if r is known, construct S(c) for all c ∈ C and run the classical greedy

approximation algorithm for minimum set cover (see [63] or [128]) on the instance(
S, {S(c) | c ∈ C}

)
to �nd a set of at most (1 + ln k) · p sets of the form S(c)

covering S, and return the corresponding elements of C as the solution. Other-
wise, perform a binary search to �nd the smallest possible r; for each candidate
value of r, construct a new instance of minimum set cover by recomputing the
sets S(c) using this value of r, run the greedy minimum set cover algorithm, and
test whether the size of the resulting cover is ≤ (1 + ln k) · p.

Recall from the proof of Theorem 7.16 that |C| ≤ kR2rR and that C can be
constructed in O(kR2rRn) time. The instance of minimum set cover for a given
value of r can be constructed in O(|C|kn) time and the greedy minimum set
cover algorithm can be implemented to run in O(|C|k2) time. Since the binary
search for the optimal value of r takes O(log n) iterations and R < 2

ε , we obtain
the following theorem.

Theorem 7.22 For any constant 0 < ε < 1, in O((k ·2r)2/ε ·(n + k) ·k · log n)
time we can �nd a set L of at most (1 + ln k) · p strings such that each string
in S is within Hamming distance (1 + ε) · r of at least one string in L.

The time bound in Theorem 7.22 is polynomial in n and k for every �xed ε
as long as r = O(log(k + n)).
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7.7 Concluding Remarks

In this chapter, we have proved that the unrestricted versions of HRC and HDC
cannot be approximated within any constant factor less than two in polynomial
time, unless P=NP (Theorem 7.5). On the other hand, an approximation factor
of two in polynomial time is always achievable for both problems (Theorem 7.14).

We have also proved that it is possible to compute exact solutions or approx-
imate solutions with better approximation factors than two in polynomial time
for several restrictions of HRC and HDC, as summarized below. Arrows show
when a more general algorithm can be used on a restricted case (for example,
HDC with p = 2 and k = O(log n) can be solved exactly in polynomial time
either according to Theorem 7.11 or Theorem 7.12).

HRC with r = O(1) r = O(log(k + n)) r unrestricted
p = O(1)
n = O(log k) Exact solution Exact solution Exact solution

(↓ or →) (→) (Theorem 7.9)
n unrestricted Exact solution PTAS Randomized

PTAS
(Theorem 7.10) (Corollary 7.17) (Theorem 7.21)

HDC p = 2 p = O(1) p unrestricted

k = O(log n) Exact solution Exact solution 2-approximation
(↓ or →) (Theorem 7.11) (↓)

k unrestricted Exact solution 2-approximation 2-approximation
(Theorem 7.12) (→) (Theorem 7.14)

In addition to the above, HRC with k = O(1) and unrestricted p is solvable
exactly in polynomial time (Theorem 7.8).

Furthermore, we have proved that HRC with r = O(log(k + n)) and unre-
stricted p can be approximated within a factor of (1+ε) for any constant ε > 0 in
polynomial time if the number of output strings is allowed to increase by a factor
of at most (1 + ln k) (Theorem 7.22). Relaxing the number of allowed clusters
in an approximate solution to HDC seems less likely to help, though, since it is
NP-hard for any constant ε > 0 to split the input strings into ≤ pk1/7−ε disjoint
clusters whose 1-diameters do not exceed the p-diameter of the given instance
(Theorem 7.6).

The reduction we employed to prove Theorem 7.6 and Corollary 7.7 is gen-
eral enough to be of use for proving hardness results for other types of Hamming
clustering problems as well. For example, consider the Hamming p-sum of diam-
eters clustering problem (HSC) which is de�ned on the same set of instances as
HRC and HDC and where the objective is to partition S into p disjoint subsets
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S1, ..., Sp so that the value of
p∑

q=1
max

αi,αj∈Sq

dH(αi, αj) is minimized. We can prove

that HSC is NP-hard by reducing from the clique problem (given an undireced
graph G and a positive integer C, does G have a clique of size C?) as follows4:
Given G = (V, E) and C, construct G′ and a set S of |V | binary strings of
length O(|V |2) as in the proof of Theorem 7.6. Set p = |V | − C + 1. Recall
that for any pair of vertices v1, v2 in G, the Hamming distance between their
encoding strings s(v1) and s(v2) is 2|V | − 2 if v1 and v2 are adjacent, otherwise
it is 2|V |. Therefore, if G has a clique of size C then S can be partitioned into
p subsets whose sum of diameters is 2|V | − 2 (1 subset with diameter 2|V | − 2
and |V | − C subsets with diameter 0), and if G has no clique of size C then for
any partition of S into p subsets, the sum of diameters must be strictly greater
than 2|V | − 2.

We remark that HSC can be approximated within a constant factor in poly-
nomial time with the algorithm of Charikar and Panigrahy [24] and that HSC
restricted to p = 2 can be solved exactly in polynomial time with the algorithm
of Hansen and Jaumard [59]. The computational complexity status of HSC re-
stricted to p = O(1) is still open; we conjecture that HSC is NP-hard for every
�xed p ≥ 3.

We now discuss some other open questions.

The PTAS of Li, Ma, and Wang [91] for HRC restricted to p = 1 does not
seem readily adaptable to p = O(1). By Theorem 7.21, there exists a randomized
PTAS for this case, but it is an open question whether a deterministic PTAS
can be constructed. If not, is there any (deterministic) polynomial-time approx-
imation algorithm for HRC restricted to p = O(1) with a better approximation
factor than two at all? Also, since the smallest value of p which makes HDC
NP-hard is 3 (Corollary 7.7 and Theorem 7.12), we would like to know if there
exists any polynomial-time approximation algorithm for HDC restricted to p = 3
with a better approximation factor than two.

Is it possible to design more e�cient approximation algorithms for HRC and
HDC by taking into account the speci�c distribution of the input? Such algo-
rithms might be useful in practical applications related to computing unbiased
representatives, e.g., for protein data (see Sections 6.1.1 and 7.1.1).

Another problem worthy of closer examination is the following simultane-
ous generalization of HRC and the closest substring problem de�ned in Sec-
tion 6.1.2: Given a set S = {α1, ..., αk} of binary strings of length n and a
positive integer L with L ≤ n, output a set of strings {β1, ..., βp} ⊆ {0, 1}L

4Compare this reduction to the reduction used in [35] to prove that the p-sum of diameters
clustering problem on a complete, undirected graph whose edge weights satisfy the triangle
inequality is NP-hard to approximate within 2 − ε for any ε > 0.
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minimizing r such that for every αi ∈ S, there exists a length L substring γi

of αi with min
1≤q≤p

dH(γi, βq) ≤ r. All we currently know is that this problem has

to be at least as hard as both HRC and the closest substring problem.
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