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Abstract—Feedback control is increasingly being applied in
server systems to make them more robust and efficient. This in-
cludes managing quality of service, minimizing power consump-
tion, and adapting to varying workloads. Successful adaptation
and control in turn relies on accurate tracking of workload
variations and timely detection of changes in the computing
infrastructure. Given that server systems are inherently event
based, it is natural to consider event-based control and estimation
schemes for them. As a prototypical problem, we study a
single server system with time-varying arrival rate and derive
optimal switching rules for the service rate. The goal is to
keep the response time within bounds while minimizing the
energy consumption of the server. We also design an event-based
estimator of the server states using a particle filter approach.
Finally, we outline some research challenges related to event-
based control and information fusion in server systems.

I. INTRODUCTION

Within large server systems such as cloud computing plat-

forms there is a need to handle workload variations and to

adapt to unpredictable structural changes. The idea of the

self-adaptive or elastic cloud [1], [2] is to handle the time-

varying supply and demand of computing resources using

feedback. The goal is to provide just the right amount of

resources at all times, so that the operational cost is minimized,

while still delivering good performance to the customers.

This can be viewed as a classical feedback control loop (see

Fig. 1), where the server system is the plant under control

and the adaptation mechanism is the controller. Workload

variations and temporary hardware failures are viewed as

disturbances that should be countered by adjustments in the

resource provisioning. Server performance can be measured
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Fig. 1. Automatic resource provisioning in a server system.

by, e.g., average or Xth percentile response times, throughput,

utilization, and power usage. One way to perform the actual

resource adjustments is to scale the number of virtual machines

that run the server software in question.

The control loop in Fig. 1 looks fairly conventional, but

if we zoom in, some interesting features can be noted. The

arrows that connect the different blocks in the diagram do

not represent continuous signals but rather discrete events.

Measurement information is available only when something

happens in the system, e.g., when a new job arrives to the

server or when a request is completed. Likewise, the resources

are typically quantized and can only be set at fixed levels. To

deal with these special features, we must turn to control and

estimation techniques that can handle discrete events rather

than continuous signals. In the past two decades there has been

much theoretical development in both event-based control and

event-based estimation, e.g., [3]–[12]. Little of the research so

far has however focused on event-based techniques for server

systems.

Previous research on control of server systems in particular

has been conducted along two more or less separate lines.

Within operations research and queueing theory, controlled

server systems have been modeled and optimized using the

theory of Markov decision processes [13], [14], typically

assuming fixed model parameters. Within control engineer-

ing and soft real-time computing, servers have often been

modeled as low-order transfer functions, obtained either from

system identification or using fluid-flow approximations of the

queueing dynamics [15]. It is however well known that servers

exhibit nonlinear dynamics and require other performance

metrics than classical control systems [16]. In the last decade,

a large number of control structures and design methods

have then been applied and evaluated, see [17] for a survey.

Striking a middle path, a few researchers have combined

queueing models with stochastic control theory, e.g., [18]. The

main idea is that the plant model should capture both the

random discrete events and the integrator-like queue length

dynamics. The resulting stochastic differential equations share

some similarities to those that arise in event-triggered control

of first-order stochastic systems [3].

In the literature on controlled queueing systems it is usually

assumed that the system parameters are known and that the

system states are directly accessible for feedback [14]. In

real servers, it can be difficult to access internal queues
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Fig. 2. Event-based information fusion in a server system.

for measurements and to have a-priori knowledge of service

time distributions and other system parameters. Therefore

estimators are needed. A common approach in practice is to

measure relevant events and quantities over fixed time intervals

and calculate averages using exponential smoothing [19].

An alternative to exponential smoothing and similar win-

dowing techniques is to use event-based information fusion.

Similar to a Kalman filter, the general idea is to estimate

states and parameters of the server system using a model of

the system together with various asynchronous measurements.

The basic idea is illustrated in Fig. 2. Known inputs to the

system are, e.g., the control commands from the Adaptation

Mechanism in Fig. 1, while the unknown inputs represent, e.g.,

customer arrivals that cannot be directly measured. Combining

a-priori model knowledge with measurements, the Information

Fusion system needs to take all types of events (and also the

absence of events) into account when forming its estimates of

parameters and states.

The event-based information fusion problem is challenging

due to the non-linear behavior of the system and because

new information is only available at discrete events. One

promising approach to tackle the problem is to use particle

filters [20], [21], which is a family of Monte Carlo-based

inference methods that have gained much attention in recent

years. Applying particle filters for estimation in server systems

is however not straightforward. New dynamical system models

need to be developed, and the filters need to be adapted

to handle event-based rather than time-based measurements.

Another challenge is to weigh together the information from

many different types of events in an optimal way.

In the rest of this paper, we study a simple but prototypical

system, modeled as a single-server queue with a time-varying

arrival rate and an adjustable service rate. Being a gross

simplification of real server systems, the model is still rich

enough to offer some control and estimation challenges. In

Section II the system model is given and some basic properties

are analyzed. In Section III we derive optimal event-based

switching rules for the service rate, given complete knowledge

of system parameters and states. In Section IV we design an

event-based estimator for the system based on particle filtering.

Conclusions are given in Section V.

II. A SIMPLE MODEL OF A SERVER SYSTEM

As a starting point for our investigation, we consider a

single server with a compute-intensive workload, modeled as

λ(t) µ(t)

q(t)

Fig. 3. M/M/1 server model with queue length q(t), time-varying arrival rate
λ(t) and adjustable service rate µ(t).

an M/M/1 queueing system1 (see Fig. 3). Jobs arrive according

to a Poisson process with time-varying intensity2 λ(t). Jobs

are served in FIFO order with exponentially distributed service

times with an adjustable service rate of µ(t). The queue length,

including the job currently being served, is denoted q(t).
Different from standard queueing models, we explicitly

model the dynamics of the varying arrival rate. Any Markov

model could be used, but we here assume that λ(t) evolves

according to a bounded random walk with incremental vari-

ance σ2
λ and lower and upper bounds λmin and λmax. To match

the time-varying demand, we allow the service rate to be set

to any value in a discrete set, µ(t) ∈ {µ1, µ2, . . . , µM}.

The control objective two-fold: to keep the job response

times in check and to minimize the power consumption of the

server. According to Little’s Law [13], the average response

time is proportional to the average queue length (as long as the

system is not overloaded). Hence, we can focus on controlling

the queue length rather than the response time of the server,

which greatly simplifies the problem. The conflicting goals of

having a short queue and using as little energy as possible is

captured in a cost function

J = E
t

{

max(0, q(t)− qtol) + c(µ(t))
}

(1)

where qtol is the maximum tolerable queue length and c(µ) is

a positive and increasing discrete function that describes the

operational cost of each service rate. To quantify how well

the queue length regulation works in practice, we will look

at the 99th percentile of q, denoted q99%. The 99th percentile

indicates that the queue length will stay below this value 99%

of the time.

As a basic scenario in the paper, we assume that the arrival

rate can vary between λmin = 0.5 and λmax = 1.5 with an

average rate of change σλ = 0.05. The tolerable queue length

is given as qtol = 20, which is also the assumed target for q99%.

We further assume that the server can operate at two different

rates, µ1 = 1 and µ2 = 2, and that the power consumption is

proportional to the service rate in each mode.

Using a fixed rate of µ1 = 1 can clearly lead to overload

situations since the traffic ρ = λ/µ may at times exceed 1. The

situation is illustrated in Fig. 4, where it can be seen that even

a short overload interval can lead to large queue buildups.

Running a long simulation (10, 000 time units) reveals that

q99% > 100, which is not acceptable. On the other hand, using

1“M/M/1” is according to Kendall’s notation referring to a queueing system
with memoryless arrivals, memoryless service times, and one server [13].

2To simplify the notation, throughout this paper we shall assume that time
is unitless.



µ2 = 2 gives much shorter average queue lengths as seen in

Fig. 5. A long simulation reveals q99% = 9, which is well

below the target. The downside is that the server always runs

at maximum speed, consuming twice as much power as in the

previous case. It is hence natural to seek service rate switching

rules that optimize the criterion (1). This will be studied in the

next section.

III. OPTIMAL EVENT-BASED SWITCHING

A. Discrete Markov Model for Dynamic Programming

To derive optimal switching rules for the server we first

discretize the system dynamics in both time and space and

then apply dynamic programming. The Markov state of the

system is given by x =
[

λ q
]T

, where

λ ∈ {λmin, λmin +∆λ, . . . , λmax}
q ∈ {0, 1, . . . , qmax}

The bounded random walk of λ is discretized using a simple

Euler approximation with interval h. The probability of the

queue evolving from length i to j, assuming fixed values of

λ, µ during the interval h, is given by

Pij(h) = e−(λ+µ)h

[

ρ
j−i

2 Ij−i(ah) + ρ
j−i−1

2 Ij+i+1(ah)

+ (1− ρ)ρj
∞
∑

k=j+i+2

ρ−k/2Ik(ah)

] (2)

where a = 2
√
λµ and Ik is the modified Bessel function of the

first kind of order k, see [13], [22]. Using value iteration, the

optimal stationary control policy µ(x) can then be calculated.

Applying the method to our example server with two service

levels, µ ∈ {1, 2}, we discretize the model with ∆λ = 0.05,

h = 1, and qmax = 40 and then calculate the optimal policy

when the running cost is chosen as c(µ) = 4µ. The cost

function was tuned to achieve q99% = 20. The resulting

switching law is shown in Fig. 6. It can be seen that both

the arrival rate and the queue length affect the optimal choice

of the service rate: At lower arrival rates longer queues can
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Fig. 4. Simulation of the server with fixed service rate, µ = 1.
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Fig. 5. Simulation of the server with fixed service rate, µ = 2.
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Fig. 6. Optimal switching policy for two service levels, µ ∈ {1, 2}, when
q lim = 20. The low service rate is used below the line and the high rate
above the line.
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Fig. 7. Simulation of the server using the switching policy in Fig. 6.
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Fig. 8. Optimal switching policy for four service levels, µ ∈ {0.1, 1, 2, 3},
when q lim = 20. The lowest rate is used in the bottommost region, the
highest rate in the uppermost region, and the intermediate levels in the two
bands inbetween.
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Fig. 9. Simulation of the server using the switching policy in Fig. 8.

be tolerated, and vice versa. A simulation of the server with

the control policy is shown in Fig. 7. It is seen that the queue

is controlled to be shorter than 20, but that switches can be

quite frequent in some intervals. A long simulation reveals

that the average service rate (and hence power consumption)

is µ̄ = 1.12, which is a great savings compared to µ2 = 2.

The method can easily be extended to handle more service

levels, without increasing the dimensional complexity of the

dynamic programming problem to be solved. Assuming four

service levels, µ ∈ {0.1, 1, 2, 3}, and the running cost c(µ) =
0.4µ (again tuned to achieve q99% = 20) we obtain the control

policy in Fig. 8. It is seen that the server either operates at

its lowest rate (at the botton) or the highest rate (at the top),

except around a quite small band in the middle where the

intermediate levels are used. A simulation of the multi-rate

policy is shown in Fig. 9. Again, the target q99% = 20 is kept,

the power consumption is now even lower (µ̄ = 0.87), but

server rate changes are now extremely frequent, which may

not be realistic for real server systems.

B. Limiting the Switching

In the examples above we saw that optimal control laws

can generate many switches. This is undesirable if service

rate changes are expensive; if it means, e.g., starting up or

closing down virtual servers, migrating tasks, etc. In reality

these operations can take considerable amounts of time, during

which no new control actions can be taken. We will therefore

consider different ways to limit the switching.

The most straightforward way to achieve fewer switches is

to incorporate an explicit cost per switching event in the cost

function. In general, we can let the server running cost c be a

function of both the old rate, µold, and the new rate, µ. The

modified cost function then becomes

J = E
t

{

max(0, q − q lim) + c(µold, µ)
}

(3)

To keep track of the switching cost in the dynamic program-

ming, the Markov state needs to be extended accordingly;

x =
[

λ q µold

]T
. The downside of this method is that

the real switching delay is ignored in the model.

Returning to the case with two service rates, we design the

running cost as

c(µold, µ) =

{

2µ, µold = µ

2µ+ 1, µold 6= µ
(4)

to achieve q99% = 20. As a result we obtain a switching rule

that depends on µold, see Fig. 11.

We see that the switching cost introduces hysteresis in the

control law. To switch to the higher service level, we need to

cross the higher threshold (indicated by µold = 1) and vice

versa. A corresponding simulation is shown in Fig. 12, where

the reduction in the number of switches is clearly visible. A

long simulation shows that µ̄ = 1.39, so the reduced switching

comes at the price of higher power consumption.

There may however still be switches arbitrarily close in

time—something that is not realizable in a real system. An-

other option, which may better reflect reality, is to model

the actual switching delay in the server, thereby introducing

an indirect switching cost. One possible model is shown in

Fig. 10. Here, a change in µ makes the system go from the

Normal to the Transit state, where the server must stay until

the time T (µold, µ) has passed. The transition delay does make

the dynamic programming problem slightly more complicated,

but it does not make the discrete state space larger compared

to having a simple switching cost.

Again considering the case with µ ∈ {1, 2}, we remove

the explicit switching cost by setting c(µold, µ) = 2µ and at

c(µ) c(µold, µ)

µ 6= µold

Transit.t > T (µold, µ)

Normal Transit

Fig. 10. Modelling service rate switching delays using two discrete modes.
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Fig. 11. Optimal switching policy with hysteresis for two service levels,
µ ∈ {1, 2}, when q lim = 20 and using the switching cost c(µold, µ) =
2µ + 1(µold 6= µ). The high rate is used after the upper curve has been
crossed in the upward direction, and the low rate is used after the lower
curve has been crossed in the downward direction.
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Fig. 12. Simulation of the server using the switching policy in Fig. 11.

the same time introduce a switching delay of T = 10. This

yields the switching policy in Fig. 13. Again can we see that

there is hysteresis that will limit the switching. This behavior

is also visible in the simulation in Fig. 14. Now switches are

guaranteed not to occur closer than 10 time units apart, which

gives room to shut down or start up virtual machines, migrate

jobs, etc. Keeping the target q99% = 20, the price is again a

slightly higher power consumption, µ̄ = 1.34.

IV. EVENT-BASED ESTIMATION

We now turn to the problem of estimating states and param-

eters in server systems using event-based measurements. There

are several general challenges: The amount of generated events

can be massive, events can be generated at very different time-

scales, and also the absence of events gives some information

about the system that should ideally be taken into account.

It may be too costly run the estimation algorithm at every
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Fig. 13. Optimal switching policy with hysteresis for two service levels,
µ ∈ {1, 2}, when q lim = 20 and using a switching delay T = 10. The high
rate is used after the upper curve has been crossed in the upward direction, and
the low rate is used after the lower curve has been crossed in the downward
direction.
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Fig. 14. Simulation of the server using the switching policy in Fig. 13.

measurement event, invoking the need of designing additional

triggers for the estimator itself.

Estimation in server systems are today often handled using

exponential smoothing and other windowing techniques that

operate over fixed time intervals [19]. As a general technique

to tackle non-linear estimation problems for dynamical sys-

tems, particle filters have gained much popularity in recent

years [20], [21]. We propose to extend and adapt this method

to handle event-based estimation in server systems. Merging

several kinds of different measurements from various sources

in the same filter, we refer to this as event-based information

fusion.

The general idea of particle filtering is to approximate the

(non-Gaussian) state probability distribution of the unknown

states (or parameters) by a cloud of particles. Each particle

represents one hypothesis about the current state of the system.

The larger number of particles being used, the better the

accuracy of the filter will be. As the particle count goes
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Fig. 15. Estimation of the server arrival rate from response times using an event-based particle filter or a standard averaging periodic filter.
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Fig. 16. Estimation of the server queue length from response times using an event-based particle filter or a standard averaging periodic filter. Note the different
time scale from Fig. 15.

to infinity, the behavior of an optimal Bayesian estimator is

approached. Of course, increased accuracy comes at the price

of heavier on-line computations.
For a standard discrete-time model, the basic procedure to

be executed every time step is:

1) Simulate the particles forward one time step according

to the nonlinear stochastic model.

2) Given the measurement in the current time step, assign

weights to the particles based on their statistical likeli-

hood.

3) Resample the particle cloud based on their weights, so

that hypotheses that are more likely are kept while less

likely ones are discarded.

Resampling can be performed in a multitude of ways; one of

the simpler algorithms is systematic resampling (e.g., [21]),

which we employ here. More details on the procedure above

can be found in our companion paper [23].
We now return to the server system example with time-

varying arrival rate and adjustable service rate. In the previous

section we assumed that both the queue length q and the arrival

rate λ were exactly known at all times. To make the problem

more interesting (and also more realistic) we will now assume

that only the output of the server can be observed. More

specifically, we will have information about each departing

job from the system, including its response time. The service

rate µ is assumed known, while q and λ have to be estimated.

(A different setup, where q and µ should be estimated is

considered in [23].)
Using some basic facts from queueing theory [13], we can

use the response time measurement events in three comple-

mentary ways in our information fusion algorithm:

• Assuming λ < µ, i.e., that the server is not overloaded,

the departure process has the same statistical properties

as the arrival process. The time between two consecu-

tive output events is then exponentially distributed with

parameter λ.

• The response time in an M/M/1 system with queue length

q is Erlang distributed with shape q and rate µ.

• It is possible to conclude that the server has been idle if

the response time is smaller than the time between the

two latest departure events.

In our implementation of the event-based particle filter we

use N = 100 particles. Between each output event, we forward

simulate the distribution of λ and q using Markov model

in Section III.A. At the event, we assign a likelihood of

measurement to every particle using the statistical properties

listed above. Then we calculate the sample mean estimate of

λ and q, and finally we resample the particle cloud.

A simulation of the server and the particle filter is illustrated

in Figures 15 and 16. In this simulation we let the actual arrival

rate be slowly time-varying rather than random to make the

results more visible in the plots.

As a comparison we have also implemented simple, periodic

averaging filters for both parameters: The arrival rate is cal-

culated as the number of departures during the interval, and

the queue length is calculated as the average response time

during the interval times the service rate. For both of these

averages, there is a trade-off between the noise level and the

time interval. For the arrival rate we choose 10 time units,

and for the queue length (which has much faster dynamics)

we choose 0.5 time units.

In the figures it can be seen that both the periodic and



event-based filters manage to track the server states, while

the periodic filter either has larger variance (in case of λ)

or is slower at tracking the transient behavior (in the case

of q). A long simulation (10, 000 time units) reveals that the

absolute integrated tracking error is around 10% smaller for

the event-based filter for the given setup. However, the periodic

averaging filters require much less on-line computations than

the particle filter, making it hard to declare a clear winner in

this example.

V. CONCLUSION

We have studied a simple but non-standard queueing model

of a single server with dynamical input and output rates

and described by example how tools such as dynamic pro-

gramming and particle filters can be used to obtain event-

based switching rules and observers. Event-based techniques

hold the promise of lower resource consumption and higher

responsiveness, but more thorough analysis, simulations as

well as real implementations are needed to draw conclusions

about the magnitude of such benefits. Dynamic programming

is for complexity reasons limited to a few state variables, so

approximations are needed for more complicated scenarios.

Real servers and real traffic show more complex behavior

than the simple M/M/1 model studied in this paper. A natural

method extension would be to let the particle filter estimate a

larger number of server and traffic parameters, including the

computational efficiency of the server. Of course, the estima-

tion and control schemes must also be tested and evaluated in

real server systems.

There are also general theoretical challenges for particle

filter design, e.g., on how to combine the information from

various types of events (and lack of events) in an optimal

way.
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