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REAL TIME COMPUTING TITIT
TMPLEMENTING LINEAR FILTERING AND CONTROL ALGORITHMS.

K.J. Astrdm
C. Killstrdm

ABSTRACT.

The report covers some practical aspects on the imple~
mentation of Kalman filters and linear regulators on
smzll computers. Particular attention is given to syn-
chronization of inputs and outputs, computing time and
memory requirements. The algorithms discussed are ge-
neral purpose FORTRAN algorithms, using floating point
apithmetic. Special techniques like processing measure-
ments one-by-one, square root representation of the co-

variance matrix etc. are not discussed.

This work has been supported by the Swedish Board for
Technical Development under Contract 71-50/U33.
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1. INTRODUCTION.

The importance of software for process control and
other real time application is increasing repidly.

There are many reasons for this, e.g.

0 The cost of hardwere is decreasing rapidly while

the performance of hardware is increasing.

0 The comparatively simple algorithms (like PID)
are successively being replaced by more sophis-

ticated algorithms.

0 Progress in control theory is leading to new al-

gorithms.

Tn = university environment it is important that stu-
dents are confronted with real problems as quickly as
possible. This can be done in our real time control
and computing laboratory. The efficient use of the fa-
cilities requires, however, that a reasonable number
of well-tested algorithms are available. To achieve
flexibility the algorithms should also be general pur-
pose and written in a high 1ével language which for
practical reasons has been chosen as FORTRAN. From an
educational point of view it is also a requirement
that the algorithms meet reasoneble software require-

ments.

This report is one of a sequence which deals with real
time computations. The report is devoted to Kalman fil-
tering and linear control algorithms. It is hoped that
the results can also be of interest to industry. They
can at least be used for feasibility studies to esti~
mate computetional load and memory requirements. The
sctual code is also written in such a way that it should
be easy to transport to different computers. The algo-

rithms are actually implemented on the PDP 15/35., To



achieve flexibility we have not exploited any tricks
like processing measurements one-by-one, exploiting a
particular structure, using a triangular representa-

tion of the covariance matrix etc.

The synchronization of inputs and outputs is discussed
in Section 2. The equations for the linear regulator

algorithm are discussed in Section 3.

The implementation of the linear quadratic regulator

in the case of precomputed gain is also discussed in
this section. It is found that the algorithm requires

a code of 256 cells. The data storage for a system with
5 inputs, 5 outputs and 10 states is 704 cells of which
64 is a common area SLASK. The computing time for one

step 1s 64 m sec.

Organization of the calculations is discussed in Sec-
tion 4. Particular attention is given to the order in
which operations have to be performed, the increase

and decrease of the data base during the computations
and the possibilities to interrupt the algorithm. Sto-
rage and computing times are also given in Section k.

Tt is shown that one iteration of the algorithm inclu-
ding the solution of the time varying Riccati equation
can be done in 1.2 - 1.7 seconds for a tenth order system
with 5 inputs and 5 outputs. The code for the regulator
algorithm itself requires about 700 cells. If all neces-
sary subroutines like matrix inversion, real and inte-
ger arithmetic and diagnosis are included the algorithm
requires about 3000 cells. The data storage for a system
with 10 states, 5 inputs and 5 outputs is about 2 k of

which 1 k is a common dummy area SLASK.




Control Variable

2. SYNCHRONIZATION OF INPUTS AND OUTPUTS.

When implementing any control algorithm on & digital
computer many variables are by necessity discontinuous.
To avoid confusion it is wise to decide once and for
211 if the variables ere continuous from the right or

from the left. In thisnote we adopt the convention

that all variables ere continuous from the right. See
Fig. 2.71.

N
_
Time
Fig. 2.1 - Control and measured signals for a typicel

process control system. Notice that the

control signal is discontinuous.




Another detail that often causes confusion is the de-
finition of inputs and outputs. Viewed from the pro-
cess control variebles like value settings are natural-
1y considered as inputs while the measured variables
are regarded as outputs. From the regulators (computers)
point of view it is, however, natural to consider the
measured variables as inputs and the control variebles
as outputs. We will therefore mostly use the words
measured signal y and control signal u to avoid confu-
sion. When we use input and output we will refer this
to the process, i.e. input = control variable u and

output = measured variable y.

There are basically two different weys to implement

the control algorithms:

o Case A. In this situation the measured variebles
y are read at time t and the control veriable
u(t+1) to be set at time t+1 is computed from
y(t).

) Case B. The measured variables are read at time
+ and the control variables are evaluated as
quickly as possible and set at time t where T
is the smallest time required to do ‘the computa-

tions.

Case A has the disadvantage that the control actions
are delayed unnecessarily and case B has the disadvan-
tzge that the delay will be variable depending upon
the program. Changes in the progrem and in the priori-
ties will thus result in & variable delay. If the de-
lay is critical this means that the result will be

sensitive to changes in programming.

Notice that the software requirements are different
in the two cases.In case A the order of the computa-

tions is not crucizl while in case B the computations




should be arranged in such a way that the amount of
computations required to compute the control variable
from the output is as small as possible. Updating of
state variaebles and intermediate results are then con-

veniently done after the control variable is set.

Another practical detail is that there is & good rule
to read the inputs before the outputs are set out. If
this is not done there is always the risk of electri-

cal cross coupling.

Also notice theat unless the computational lag is very
small it is necessary to derive speciel equations in
case B since the regular sampled data theory assumes

that outputs are chenged at the sampling instants.

The sequence of events in the different cases will now

be consgidered in more deteil.

Cese é.

The sequence of events is as follows:

1. Read measured varieble y(t).

2. Set control variable u(t) computed during pre-

vious sampling interval.

3. Compute the control variable u(t+1) to be execu-
ted at time t+1 based on past data and the mea-

surement y(t).

4, Wait.

This case is illustrated in Fig. 2.2.
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Pig. 2.2 - Illustration of the synchronizetion of in-
puts and outputls in case A.
Case R N
in the case B the sequence of events are:
1. Read measured variable y(t).
2. Compute control vaerizble ult), i.e. the cutput
to be executed in the interval (t,t+1).
. 3. Set the control variable u(t) at +ine tdr.
b, Update the necessary veriables.
5. Wait.
See Fig., 2.3.
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3. THE LINEAR REGULATOR ALGORITHM.

The sequence of events in case A was discussed in the
previous section. The appropriate equations for the
linear regulator which ere valid in this case are gi-

ven in [11. We have:

x(t+1]t) = o (t41])x(t]t=1) + T(Blult) +
s KOO [y(t) = y(tlt-1)] (3.1)
gt t=1) = 8CEIx(t|t=-1) (3.2)
WCE+1) = = Lt+Dx(t+1]t) (3.3)
K(t) = [o(t+l3t)P(E)0  (£) + R (£)] -
CTe (P67 (1) + Ry(t)]7 (3.4)
P(t+1) = oCE+13E)PCEI¥T (E+13E) + R (1) -
- Ry, (K () (3.5)
y(t+13t) = o(t+tyt) = K(tde(t) (3.6)

We will now discuss different ways to organize the

computations described by these equations.




3.1. Precomputed Filter Gain 1,

We first observe that the filter gains can be precom-
puted. If this is done we see that in order to do the
computations it is necessary to have a data set con-

taining the system parameters

o(t+13t), r(t), 6 (t), K(t), L({t+1)

the measurement

y(t)

the control variable

u(t)

and the state variable

x(£]t-1)

The calculations thus require a data set of

N = nx(nx+2nu+2ny+1) + o, ¢t ny

parameters.

The equations can be implemented by the algorithms
GLIRE1 and GLISY1 given in Appendices A and B. The
subroutines have been compiled on PDP 15/35 by the
FORTRAN V12D compiler and require 116 resp. 140 cells.

Computing times are shown in Appendix C. Cf. ref. [2%.
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3.2. Precomputed Filter Gain 2.

If the gain K is precomputed additionel savings in
storage and computing time can be obtained if it is
observed that the equations (3.1), (3.2) and (3.3)

can be rewritten as

i(t+1|t) = [o(t+13t) = K(t)e<t)]£(t|t—1) +
ult)
+[r(t) K(t) ] (3.7)
v(t)
Q(t+1) = - Lt+D)x(t+1]t) (3.8)

Hence if ¥(t+13;t) = o(t+13t) = K(t)e(t) is precompu-
ted it is only necessary to have & data set consisting

of the system parameters
y(t+13t), r(t), K(t), L(t+1)
and

xCtlt=1), y(t), ult)

The computeations thus require & data set consisting
of

N = nx(nx+2nu+ny+1) +n, ot ny

parameters.

The equations can be implemented with the algorithm

GLISY1 previously given.
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The filter gain can also be computed in real time as
the process develops. In comparison with the previous
schemes this is in essence & trade off between compu-
ting time and storage. The equation (3.4) implies

that to compute the filter gein in real time it is al-
so necessary to compute the covariance P of the esti-
mation error in real time. This will give some addi-
tional advantages because in each step of the calcu-
lations there is an estimete of the covariance of the

measurement error available, namely
R, = 6 (t)P(t)68 (t) + R,(t) (3.9)

This implies that in each step of the calculations it
is possible to test if the measurement y(t) is reason-
ebly close to its estimated value §(tltm1). Under the
Geussian assumption the conditionel distribution of
y(t) given data observed up to time t-1 is thus Gaus-
sian with mean ;(tlt—1) and the covariance Ry given
by (3.9).

It is then possible to answer several statistical prob-
lems. Two cases will be considered. In the first case
it is assumed that the most likely failure mechanism

is that & break-down in the whole transmission chan-
nel for the measurements or an A/D failure is the

most likely error. This means that the crucial prob-
lem is to accept or reject the whole measuremet vec-
tor. In the other case the individual measurements

will be accepted or rejected.
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All measurements accepted or rejected.

The random variable

t = elr 1o (3.10)
y

where

e = y(t) - y(t[t-1 : (3.11)

is thus x2 with n, degrees of freedom. Suitable test

levels are found in tebles over the x2 distribution.

If & measurement is rejected the equations for up-
deting the state estimate and the covariance should
be changed to

XCe+1]t) = oCt+l3t)x(t|t=1) + r(t)ult) (3.12)
P(+41) = o (t+13E)P(£)0 (t+15t) + R, (T) (3.13)
If the filter gain is computed in real time is thus
necessary to have a data set consisting of the system
parameters

o(t+15t), r(t), o(t), L{t+1), R,‘(‘t)9 R12(t), Rz(t)
and the

P(£), K(t), x(t|t-1), ult), y(t)

A data set of

- 2
Ny = nx[3nx+2nu+3ny+1] +n, o+ ny + ny (3.14)

parameters is thus required. If we consider that the
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covariance matrices P(t), R1(t) and Rz(t) are symmet-~

ric, only a date set of

ny[ny+3] (3.15)

~of -~

N2 = nX[ZnX+2nu+3ny+2] + n, +

parameters is required. The increase in the data set

compared with precomputed filter gain 2 is thus

B 1
AN2 = nx[nx+2ny+1] + 5 ny[ny+1]

parameters.

Individual measurements accepted or rejected.

If the disturbances and the initial state are Gaussian
the conditional probability distribution of the out-
come of a single measurement is normal with mean value
yi(tlt—1) and covariance (Ry)ii where (Ry)ii is the
ii:th element of the matrix Ry given by (3.9). A suit-
able test quantity is thus

t; = ey /YR g i=1,2, «..,n (3.16)

which is normal (0,1). At each step of the iteration
all test quantities {t,, 1 =1, 24 euuy ny} are thus
evaluated. The filter gain K(t) is then computed ac-
cording to (3.4), where the matrices 8(t), qu(t) and
RQ(t) have been reduced to consider only the accepted
measurements. The columns of K(t) corresponding to re-
jected measurements are then put zero. This is faster

than double indexing!
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L. ORGANIZATION OF THE PROGRAM FOR THE TIME VARYING
FILTER.

Knowing the algorithms we will now discuss the orga-

nization of the code.

Reauirements.

Before going into the details we will first state some

general requirements.

o The program will typically be used in an environ-
ment where several filters are implemented in the
same computer. It is therefore desirable to have

2 code which can be shared among many loops.

o The data base (state) of the algorithm will grow
and shrink during the computations. To avoid un-
necessarily large storage we are willing to comp-
romize by making the code nonreentrant. The main
gain in storage'is obtained by putting three 13x13

matrices in the common block SLASK.

0 The azlgorithm will be implemented on the PDP 15/35.
Tt should be easy to transport the algorithm to
other computers. We are, however, willing to make
provisions that the FORTRAN code is compiled ef-
ficiently on the PDP 15/35.

0 The numericel properties of the discrete Ricecati
equation are not sufficiently well explored. Rea-
sonable error estimates are not available. There
are only two critical parts in the algorithm, so=
lution of a system of linear equations and teking
the difference between matrices. The linear equa-
tion solver cen be checked by testing the pivot

element. It is desireble to have access of this
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test quantity outside the algorithm. Another
possibility to test the overall result is to
check the metrix P for symmetry. This will, how-
ever, require additional computing time and sto-

rage.

Subroutines or inline code.

The mejor computational load is to solve the Riccati
equations (3.5), (3.6) and to compute the gain K gi-
ven by (3.4). The computations involved are matrix
additions end multiplications and solution of linear
equations. One problem is then if these operations
should be made as subroutines or if they should be
coded in-line. The trade-offs will naturally be machine
dependent., The following analysis will be based on the
FORTRAN V12D compiler of PDP 15/35. Since all argu-
ments are given in detail it is, however, easy to find
the changes if other compilers are used. It is also
believed thet the results are typical for many medium

sized computers.

The FORTRAN stetements for matrix additon

DO 10 I=1,N
DO 10 J=1,M
10 C(I,J) = A(I,J)+B(I,J)

is compiled in to & code consisting of 37 cells. The

subroutine

SUBROUTINE MAD (A,B,C,N,M)
DIMENSION A(1,1), B(1,1), C(1,1)
DO 10 I=1,N
DO 10 J=1,M

10 C(T,J) = A(I,J) + B(I,D)
RETURN
END
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is compiled in a code consisting of 54 cells. The

subroutine cell

CALL MAD (A,B,C,N,M)

is compiled in & code consisting of 2+2x5 = 12 cells.
We thus find that from the point of view of minimi-
zing the code it is adventageous to use & metrix ad-
dition subroutine if more than two matrix additions
are made in the program. For more complicated opera-
tions like matrix multiplication and solution of 1li-
near equations where the code is very much longer
than the code for a subroutine call the critical 1li-

mit is much lower.

Timing considerations.

We have thus found that from the point of view of
storage it is often advantageous to use subroutines.
However, the computing time will obviously increase
when inline code is replaced by subroutines and sub-
routine calls. We thus have an example of the typical
tpade~off between storage and computing time. To find
the orders of magnitude involved we will again consi-
der the matrix addition. The time consuming part of

the matrix addition are the following operations:

JMSx .SS Find address of A(I,J) 100 us
JMSx , S8 Find address of B(I,J) 100 us
JMSx . S8 Find address of C(I,J) 100 us
JMSx .AG Floating load A 40 ps
JMSx AT Floating add 200 ys

JMSx .AH Floating store C 40 ps
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The major loop of the metrix addition code thus re-

quires at least 580 us.

A subroutine call requires U42+18x(NUMBER OF ARGUMENTS)
us which in the particuler case means 132 us. We thus
find that the increase in time is very modest (only
1.2% increase for 5x5 matrices and 0.2% for 10x10 mat-
rices). Notice, however, that the trade-off may be

different for a computer with floating point hardware.

In summary we thus find thet by introducing a matrix
addition subroutine a saving in memory is made if more
than three additions are made and that the increase in
computing time is modest. For more complex operations
like matrix addition and solution of linear equations
the savings are even greater. We can thus conclude
that it seems reasonable to use subroutines for the
matrix operation. Notice, however, that we can loose

e bit because operations like D=AxB+C can be coded ef-

ficiently like

DO 10 I=1,N
DO 10 J=1,M
R=C(I,J)

DO 11 K=1,L
11 R=R+A(I,L)xB(L,J)
10  D(I,J)=R

while it requires two subroutine calls if matrix add
and matrix multiply are the only available matrix rou-

tines.
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Four diffevrent cases.

Having found that it is advantageous to use subrou-
tines we will now procede to discuss more details of
the code. We have previously found that two cases are
of interest namely when the whole measurement vector
is eccepted or rejected and when the individual mea-
surements are accepted and rejected. Since many ex-
pressions are symmetric it is also of interest to see
if this can be explored. Notice, however, that the
use of symmetry means that ordinary matrix routines
cannot be used. We will thus quite arbitrarily consi-

der four cases.

1. All measurements accepted or rejected. Symmetry
is not exploited. RUDY.

2. Seme as 1 but symmetry is exploited. RUDY2.

3. The individual measurements accepted or rejected,

Symmetry is not exploited. RUDY1.

b, Same as 3 but symmetry is exploited. RUDY3.

RUDY,

In the case that the whole measurement vector is accep-
ted or rejected and the symmetry is not exploited the

code can be organized as follows:

1. Enter system parameters to be used in the compu-~
tations done during the interval (t,t+1), i.e.
o(t+13t), T(t), 6(t), R1(t), R12(t), Rz(t) and
L(t+1). (Notice L(t+1)!)

2. Enter the measurement y(t), the control signal

u(t), and the state x(t]t-1), P(t).
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Compute the residuals

g(t) - 8()x(t]t=1)

1

e(t) = y(t) = y(t]t=-1)
Compute the covariance of residuals

T
Ry = B(EIP(£)0 (£) + R,(t)

Compute
T -1
t = e () Ry e(t)

and test if t is lerger than the test level. Let
the indicator IND = 1 if measurement rejected,
and IND = 0 if measurement accepted. IND = 2 if
R, singular or close to singular or if decompo-

y
sition impossible.

Compute filter gain
- T -1
K(t) = [o(t+13t)P(L)e " (t) + Rw(t)]RV

Update state estimate

K(tle(t)

X - if IND=0
x(t+1|t) = o(t+1;t)x(tlt=1) + T(t)u(t) + |

0
if IND=1

Compute output to be used during the next inter-

val
Wt+1) = = LG+ x(E+1] t)

Update covariance of state estimate
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®(t+1;t)P(t)WT(t+1;t) + R1(t) -

- Ry, (DX (1) iF IND = 1
PCt+1) = o
@(t+1;t)P(t)®T(t+1;t) + R1(t)

if IND = 0
Y(t+13t) = o(t+13t) - K(t)o(t)

Notice that there are certain restrictions in the or-
der in which the computations can be done. The step

9 can, however, be done before step 7.

Notice the way in which the deta base shrinks and
grows. To avoid repetition of calculation it is de-
sirable to store Ry from step 4 or rather its triean-
gular decomposition since it will be used also in 6
to compute K. We have the choice of storing either

oP or 0P which appear in steps 4, 6 and 9. Since the
computation of ¢P is more time consuming we decide

to stor ¢P. This gquantity is computed in step 6 and
it is also needed in step 9. It is also necessary to
store K obtained in step 6 to avoid repeating the
calculation of K in step 9. We thus find that in or-
der to avoid unnecessary repetition of computations
it is necessary to store three matrices. An analysis
of step 9 also shows theat this step can be computed
without additional storage. Notice that these argu-
ments are based on the assumption thet computing time
is more important than storage. Notice, however, that
if it is assumed that K is stored it is not possible
to evaluate step 9 with less than two additionel dum-
my matrices. We can thus conclude that three dummy
matrices are required in order to carry out the cal-
culations. This number makes it possible to do the
calculations efficiently and it ceannot be decreased

even if we are willing to sacrifice computing time.
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In our PDP 15/35 we have & common block SLASK for
dummy matrices consisting of 1024 cells. The meximum
system order that can be used is thus n, = 13. With
this number 1014 cells of the common block slask is
used. The actual code for the algorithm is now straight-
forward. See the subroutine RUDY in Appendix D. On the
FORTRAN V12D compiler the FORTRAN program compiles to

a code consisting of 721 cells. This includes the sub-
routine MADD which consists of 83 cells. If all sub-
routines required are included the code requires a to-
tal of 2993 memory locations. A list of the storage
locations required by the different routines is shown
in Table 4.1. The data storage depends on the dimen-
sions of the system. The number of parameters are gi=-
ven by (3.14).

£
Subroutine Number ©

cells

RUDY 638
DESYM Triangular Decomposition Sym. Metr. 497
SOLVS Solution of triangular equation 297
NORM Matrix norm 134
MMULT Metrix multiply 112
SCAPRO Scalar product 265
ABS Absolute value T4
SQRT Square roat 58
RELEAE Real arithmetic 546
INTEAE Integer arithmetic 76
DOTSS Address to indexed variables Th
SPMSG Stop and pause messages 59
OTSER Object time system error 60
MOVE Move an array 25
. DA Address of argument in subroutine jump 39
.CB Normalize 16
MADD Matrix add and subtract __ 83
2993

Teble 4.1 - The number of memory locations reguired

for the subroutine RUDY and all system

end library routines.
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The total code for the algorithm thus requires 2993
cells. The number of cells required to store the data
will depend on the size of the matrices. The number
of elements to be stored are given in Section 3. Some
examples are given in Table 4.2. It is also necessary
to havé 1024 cells for the common block SLASK. It is,
of course, possible to decrease the size of the com-
mon block SLASK if the system order n. is less thean

13 and increase the size of n, greater than 13.

Examples of execution times are given in Table 4.3.
The number of control variables n, is one, but the
influence of n. can be neglected. Note that the ave-

u
rage addition and multi.oication time is 200 us.
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RUDY2.

The program RUDY exploits the fact that certain mat-
rices are symmetric in order to obtain diagnostics.

To save computing time and storage the diagnostics

can be eliminated and we can compute one half of the
symmetric matrices. This is done in the algorithm
RUDY? shown in Appendix E. This algorithm is shorter
than RUDY because there is no computation of diagnos-
tics ERR. The code for RUDY2 compiles into 684 cells.
Subroutine MADD is not used by RUDY2, which means that
RUDY? is comparable to RUDY plus MADD. If all subpro-
grams, Table 4.1, are included the algorithm requires
2956 cells. The number of cells required to store the
data is shown in Table 4.2. The program also requires
1024 cells for the common block SLASK. Examples of exe-

cution times are given in Table 4.4.

RUDY? is coded so that the required data set is given
by (3.14%). It is possible to decrease the data set ac-
cording to (3.15) by a slight modification of the code.

RUDY1 and RUDY3.

The program for the case that individual measurements
are rejected is organized in the same way as RUDY.
These are two versions which differ in the way the
symmetry of the matrices are exploited. The program
where symmetry is exploited for diagnosis 1s called
RUDY1. See Appendix F. The program where symmetry is
exploited to save computations and memory is called
RUDY3. See Appendix G. RUDY1l requires 889 memory lo-
cations while RUDY3 requires 826. The number of cells
for RUDY1l includes MADD, while RUDY3 does not use MADD.
The computing times for the different algorithms are
shown in Table 4.5 and Table 4.6.
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APPENDIX A

SUBROUTINE GLIRE1CA,BK,C»AL,X,U,Y,NX,NU,NY)

COMPUTES THE NEW STATE ESTIMATE XE(T+1) AND THE NEW CONTROL

UCT+1) FROM XE(T) AND Y(T) FOR THE GENERAL LINEAR REGULATOR
XE(T+1)=A#XE(T)Y+B#U(T)I+Kx(Y(T)-CxXE(T)) ’ ‘
UCT+1)=-LeXE(T+1)

CAN ALSO BE USED AS A PURE KALMAN FWLTER’BY PUTTING NU=0Q
AUTHOR KJ ASTROM 1971-07-22

A~ MATRIX OF ORDER NX#*NX

BK-MATRIX OF ORDER NX#(NU+NY) CONCATENATION OF B AND K

C~ MATRIX OF ORDER NY#NX

AL-GAIN MATRIX ~-L OF ORDER NU=NX., NOTICE -L. -
X- STATE ESTIMATE XEC(T) OF DIMENSION NX, RETURNED AS XE(T+1)
U- CONTROL VECTOR OF DIMENSION NU, RETURNED AS THE NEW CONTROL
Y- MEASUREMENT VECTOR OF ORDER NY

NX-NUMBER OF STATES (MAX 64 GLISY )

NU-NUMBER OF CONTROL VARIABLES, NU=0 {F PURE KALMAN FILTER
NY-NUMBER OF MEASUREMENTS (MAX(NU+NY)=64)

UE-DUMMY VECTOR OF DIMENSION NU+NY CONCATENATION OF U
AND Y-C#XE STORED IN DUM7 OF THE COMMON BLOCK /SLASK/.
THE LAST FIELD DUM8 OF /SLASK/ CONTAINS XE AND THE FIRST
768 CELLS ARE NOT USED.

SUBROUT INES REQUIRED
GLISY

DIMENSION A(1,1),BK(1,1),C01,1),ALC1,1),XC1),U01),Y (1)
DIMENSION UE(64),DUMY(384),DUMB(64)

COMMON /SLASK/DUMY,UE,DUMS
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APPENDIX B

SUBROUTINE GLISYL(A,B,C,X,U,Y,NX,NU,NY)

COMPUTES THE NEW STATE X(T+1) AND THE NEW OUTPUT Y(T+1) FROM
XCT) AND UC(T) FOR THE SYSTEM

XCT+L)=A#X(T)+B=U(T)

Y(T+1)=C#X(T+1)

AUTHOR KJ ASTROM 1971-07-22

A= MATRIX OF ORDER NX#NX

B~ MATRIX OF ORDER NX=NU

C~ MATRIX OF ORDER NY#NX

X—= STATE VECTOR X(T) OF DIMENSION NX, RETURNED AS X(T+1)

U- INPUT VECTOR U(CT) OF DIMENS|ON NU

Y- OUTPUT VECTOR Y(T+1) OF DIMENS|ON NY

NX-NUMBER OF STATES (MAX 64 SEE SECOND DIMENSION STATEMENT)

NU-NUMBER OF [INPUTS (NO MAX)

NY-NUMBER OF QUTPUTS (NO MAX). PUT NY=0 IF COMPUTATION OF Y(T)
SHOULD RE SKIPPED. '

XO0-DUMMY VECTOR OF DIMENSION NX CONTAIN|NG THE
THE NEW STATE VECTOR X(T+1), STORED {N DUM8 OF
THE COMMON BLOCK /SLASK/. THE FIRST 896 CELLS OF /SLASK/
ARE NOT USED.

SUBROUTINES REQUIRED
NONE

DIMENSION AC1,1),B01,1),C01,1),X(1),U(1),Y(1)
DIMENSION X0(64),DUMY(448)

COMMON /SLASK/ DUMY, X0
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APPENDIX C

Computing time for GLISY 1 on PDP 15/35

n n, ny Execution time
(m sec)

3 2 10.1

3 0 8.2

1 1 10.3
10 1 1 28.6
20 1 1 90.9
40 1 1 315.7
10 5 1 35.5
10 1 5 36.7
10 5 5 43.5
40 3 2 336.4

Computing time for GLIRE 1 on PDP 15/35

n, n, ny Execution time Execution time when nu:O
(m sec) (m sec)
4 3 2 14.9 10.1
1 1 13.0 10.9
10 1 1 33.2 29 .4
20 1 1 98.3 91.0
40 1 1 330.4 317.1
10 5 1 47.8 29.1
10 1 5 49 .1 45.3
10 5 5 6L . L 45.6
40 3 2 372 .9 331.5

Note that the average addition and multiplication time on PDP 15/35
is about 200 ups.
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APPENDIX D

SUBROUTINE RUDY(A,B,C,AL,R1,R21,R2,P,X,U,Y,NX,NU,NY,EPS,TEST,
1 IND,ERR)

STATE ESTIMATION USING KALMAN FILTER,

THE FACT THAT SOME MATRICES ARE SYMMETRIC 1S NOT CONSIDERED.
IF THE MEASUREMENT VECTOR DIFFERS T0OO MUCH FROM THE ESTIMATE,
THE MEASURFEMENTS ARE REJECTED. '
AUTHOR, KJ ASTROM/C KALLSTROM 1971-11-15.

A- SYSTEM MATRIX OF ORDER NX#NX,
B- SYSTEM MATRIX OF ORDER NX#NU,
C- SYSTEM MATRIX OF ORDER NY#NX,
AL- FEED BACK MATRIX ~L OF ORDER NU#NX,
Ri- STATE NOISE COVARIANCE OF ORDER NX#NX,
R21- STATE/MEASUREMENT COVARIANCE OF ORDER NY#NX.
R2- MEASUREMENT NOISE COVARITANCE OF ORDER NY=NY.
P- COVARIANCE OF ESTIMATION ERROR P(T) OF ORDER NX=NX,
. RETURNED AS P(T+1).
X- STATE ESTIMATE X(T) OF DIMENSION NX, RETURNED AS STATE
ESTIMATE X(T+1).
U- CONTROL VECTOR OF DIMENSION NU, RETURNED AS
THE NEW CONTROL.
Y- MEASUREMENT VECTOR OF DIMENSION NY, RETURNED CONTAINING
THE RESIDUALS Y-C#X(T).
NX~ NUMBER OF STATES (MAX 13, MIN 2).
NU~- NUMBER OF CONTROL VARIABLES (MAX 13, MIN 0). PUT NU=0
, IF PURE KALMAN FILTER.
NY- NUMBER OF MEASUREMENTS (MAX 13.MIN 1).
EPS- TEST QUANTITY TO DECIDE F C#P#CT+R2 IS SINGULAR.
TEST~ TEST QUANTITY TO DECIDE IF THE MEASUREMENT VECTOR SHOULD
BE REJECTED.
IND- IS RETURNED 1 IF THE MEASUREMENT VECTOR IS REJECTED
2 |F C#P*CT+R? IS SINGULAR
0 OTHERWISE
ERR- SYMMETRY ERROR OF P(T+1},

THE LAST 1014 CELLS OF THE COMMON BLOCK /SLASK/ ARE USED.

SUBROUTINE REQUIRED
MMULT
MADD
NORM
DESYM
SOLVS

DIMENSION A(1,1),B(1,1),C(1,1),AL(1,1),R1(1,1),
1 R21(1,1),R2(1, 1), X(1),UC1),Y(1),P(1,1)

COMMON/SLASK/IDUM(10),51(13,13),82(13,13),53(13,13)
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APPENDIX E

SUBROUTINE RUDY2(A,B,C,AL,R1,R21,R2,P,X,U,Y,NX,NU,NY,EPS,TEST,
1 IND)

STATE ESTIMATION USING KALMAN FILTER.,

THE FACT THAT SOME MATRICES ARE SYMMETRIC IS CONSIDERED.

IF THE MEASUREMENT VECTOR DIFFERS TO0O MUCH FROM THE ESTIMATE,
THE MEASUREMENTS ARE REJECTED. :
AUTHOR, KJ ASTROM/C,KALLSTROM 1971-11-15,

A- SYSTEM MATRIX OF ORDER NX#NX.

B- SYSTEM MATRIX OF ORDER NX%NU,

C- SYSTEM MATRIX OF ORDER NY®NX,

AL- FEED BACK MATRIX -L 0OF ORDER NU#NX,

R1- STATE NOISE COVARIANCE OF ORDER NX=NX.

R21- STATE/MEASUREMENT COVARIANCE OF ORDER NY#NX,

R2- MEASUREMENT NOISE COVARIANCE OF ORDER NY#NY.

P~ COVARIAMCE OF ESTIMATION ERROR P(T) OF ORDER NX#NX,
RETURNED AS P(T+1),

X- STATE ESTIMATE X(T) OF DIMENSION NX, RETURNED AS STATE
ESTIMATE X(T+1).

U- CONTROL VECTOR OF DIMENSION NU, RETURNED AS
THE NEW CONTROL.

Y- MEASUREMENT VECTOR OF DIMENSION NY, RETURNED CONTAINING
THE RESIDUALS Y-=C#X(T).

- NX- NUMBER OF STATES (MAX 13, MIN 1),

NU- NUMBER OF CONTROL VARIABLES (MAX 13, MIN 0). PUT NU=0
IF PURE KALMAN FILTER.,
NY- NUMBFER OF MEASUREMENTS (MAX 13,MIN 1).
EPS- TEST QUANTITY TO DECIDE |F C#P%CT+R2 1S SINGULAR,
TEST- TEST QUANTITY TO DECIDE IF THE MEASUREMENT VECTOR SHOULD
BE REJECTED, ' '
IND- IS RETURNED 1 |F THE MEASURFMENT VECTOR IS REJECTED
2 |IF C#P#CT+R2 IS SINGULAR
0 OTHERWISE

THE LAST 1014 CELLS OF THE COMMON BLOCK /SLASK/ ARE USED. -

SUBROUTINE REQUIRED
MMULT
NORM
DESYM
SOLVS

DIMENSION A(1,1),B(1,1),C(1,1),AL(1,1),R1(1,1),
1 R21(1,1),R2(1,1),X(1),UC1),Y(1),P(1.,4)

COMMON/SLASK/IDUM(10),51(13,13),52(13,13),83(13,13)
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APPENDIX F

SUBROUTINE RUDY1(A,B,C,>AL,R1,R21,R2,P,X,U,Y,NX,NU,NY,EPS,
1 TEST, INDSERR, 1Y)

STATE ESTIMATION USING KALMAN FILTER,
THE FACT THAT SOME MATRICES ARF SYMMETRIC IS NOT CONSIDEREN,
IF ANY MEASUREMENTS DIFFER TOO MUCH FROM ESTIMATION
THEY ARE REJECTED.

AUTHOR, KJ ASTROM/C.KALLSTROM 1971-11-15,

A- SYSTEM MATRIX OF ORDER NX#NX,

B- SYSTEM MATRIX OF ORDER NX=NU,

C- SYSTEM MATRIX OF ORDER NY#NX,

AL- FEED BACK MATRIX =L OF ORDER NU#NX.

Ri- STATE NOISE COVARIANCE OF ORDER NX%NX.

R21- STATE/MEASUREMENT COVARIANCE OF ORDER NY#NX.

R2- MEASUREMENT NOISE COVARIANCE OF ORDER NY#NY,

P- COVARIANCE OF ESTIMATION ERROR P(T) OF ORDER NX#NX,
RETURNED AS P(T+1),

X-" STATE ESTIMATE X(T) OF DIMENSION NX, RETURNED AS STATE
ESTIMATE X(T+1).

U- CONTROL VECTOR OF DIMENSION NU, RETURNED AS
THE NEW CONTROL.

Y- MEASUREMENT VECTOR OF DIMENSION NY.

NX- NUMBER OF STATES (MAX 13, MIN 1),

NU- NUMBER OF CONTROL VARIABLES (MAX 13, MIN 0). PUT NU=0
IF PURE KALMAN FILTER.

NY~ NUMBER OF MEASUREMENTS (MAX 13,MIN 1).

EPS~- TEST QUANTITY TO DECIDE IF C#P%CT+R2 IS SINGULAR,

TEST- TEST QUANTITY TO DECIDE IF ANY MEASUREMENTS SHOULD
BE REJECTED.

IND- RETURNED 1 |F ALL MEASUREMENTS ARE REJECTED

: 2 IF Cx#P#CT+R2 |S SINGULAR

' 0 OTHERWISE

ERR- SYMMETRY ERROR OF P(T+1).

lY- VECTOR OF NIMENSION NY CONTAINING THE SUBSCRIPTS
OF THE ACCEPTED MEASUREMENTS,

THE LAST 1014 CELLS OF THE COMMON BLOCK /SLASK/ ARF USED.

SUBROUTINE REQUIRED
MMULT
" MADD
NORM
DESYM
SOLVS

DIMENSION A(1,1), B(1,1),C(1,1),AL(1,1),R1(1,1),R21(1,1),
1 R2(1,1),X(1),U(1),Y(1),P(1,1),1Y(1)

COMMON/SLASK/IDUM(10),81(13,13),S2(13,13),53(13,13)
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APPENDIX G

SUBROUTINE RUDY3(A,B,C,AL,R1,R21,R2,P,X,U,Y,NX,NU,NY,EPS,
1 TEST, IND, 1Y)

STATE ESTIMATION USING KALMAN FILTER.

THE FACT THAT SOME MATRICES ARE SYMMETRIC 1S CONSIDERED.
[F ANY MEASUREMENTS DIFFER TOO MUCH FROM ESTIMATION

THEY ARE REJECTED.

AUTHOR, KJ ASTROM/C. KALLSTROM 1971-11-15.

A- SYSTEM MATRIX OF ORDER NX#NX.
B- SYSTEM MATRIX OF ORDER NX#NU,
C- SYSTEM MATRIX OF ORDER NY#NX.
AL- FEED BACK MATRIX -L OF ORDER NU=NX,
R1- STATE NOISE COVARIANCE OF ORDER NX*NX,
R21- STATE/MEASUREMENT COVARIANCE OF ORDER NY#NX.
R2- MEASUREMENT NOISE COVARIANCE OF ORDER NY#NY.
P- COVARIANCE OF ESTIMATION ERROR P(T) OF ORDER NX#NX,
RETURNED AS P(T+1).
X- STATE ESTIMATE X(T) OF DIMENSION NX, RETURNED AS STATE
ESTIMATE X(T+1).
U~ CONTROL VEGTOR OF DIMENSION NU, RETURNED AS
THE NEW CONTROL.
Y- MEASUREMENT VECTOR OF DIMENSION NY.
NX- NUMBER OF STATES (MAX 13, MIN 1).
NU- NUMBER OF CONTROL VARIABLES (MAX 13, MIN 0). PUT NU=0
|F PURE KALMAN FILTER. ,
NY- NUMBER OF MEASUREMENTS (MAX 13,MIN 1),
EPS- TEST QUANTITY TO DECIDE IF C#P#CT+R2 1S SINGULAR.
TEST- TEST QUANTITY TO DECIDE IF ANY MEASUREMENTS SHOULD
BE REJECTED.
IND- RETURNED 1 |F ALL MEASUREMENTS ARE REJECTED
2 |F C#P#CT+R2 IS SINGULAR
0 OTHERWISE
[Y- VECTOR OF DIMENSION NY CONTAINING THE SUBSCRIPTS
OF THF ACCEPTED MFASUREMENTS.

THE LAST 1014 CELLS OF THE COMMON BLOCK /SLASK/ ARE USED.

SUBRROUTINE REQUIRED
MMULT
NORM -
DESYM
SOLVS

DIMENSION A(1,1), B(1,1),C(1,1),AL(1,1),R1(1,1),R21(1,1),
1 R2(1,1),X(1),U(1),Y(1),P(1,1),1Y (1)

COMMON/SLLASK/1DUM(10),51(13,13),52(13,13),83(43,13)
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SURROUT INE RUDY(AyB,C;AL»R1,921,R?»PPX,U;YyNYyNUyNYyEPSsTEST;
1 IND, FRR)

STATE ESTIMATION USING KALMAN FILTER.

THE FACT THAT SOME MATRICES ARE SYMMETRIC 1S NOT CONSIDERED.
If THE MEASUREMENT VECTOR DIFFERS TN MUCH FROM THE ESTIMATE,
THE MEASUREMENTS ARE REJECTED.

AUTHOR, KJ ASTROM/C KALLSTROM 1971-11-15.

A= SYSTEM MATRIX OF ORNER NX®NX.

B~ SYSTEM MATRIX OF NDRNER NX#NU,

C- SYSTEM MATRIX OF ORDER NY=NX,

AL- FEED BACK MATRIX =L OF ORDER NU#NX.

R1- STATF NOISE COVARIANCE OF NRNER NX#NX.

Ro4 - STATE/MEASUREMENT COVARIANCE OF ORDER NY%NX.

RP?- MEASUREMENT NOISE COVARIANCE OF ORDER NY#NY.

p- COVARIANCE OF ESTIMATION ERROR P(T) OF ORDER NX#NX,
RETURNED AS P(T+1).,

¥~ STATE ESTIMATE X(T) OF NIMENS|ON NX, RETURNED AS STATE
ESTIMATE X(T+1).

U~ CONTROL VECTOR OF DIMENSION NU, RETURNED AS
THE NEW CONTROL.

Y- MEASUREMENT VECTOR OF DIMENSION NY, RETURNED CONTAINING
THE RESIDUALS Y-C#X(T).

NX- NUMBEFR OF STATES (MAX 13, MIN 2).

NU- NUMBER OF CONTROL VARIABLES (MAY 13, MIN 0). PUT NU=D
IF PURE KALMAN FILTER.

NY- NUMBER OF MEASUREMENTS (MAX 13, MIN 1),

EPS- TEST QUANTITY TO DECIDE IF CxP#CT+R2 IS SINGULAR.

TEST- TEST QUANTITY TO DECIDE IF THE MEASUREMENT VECTOR SHOULD
BE REJECTED.

IND- |5 RETURNED 1 {F THE MEASURFMENT VECTOR IS RFEJECTED

5 |F CxP%CT+R2 1S SINGULAR
0 OTHERWISE
FRR~ SYMMETRY ERROR OF P(T+1),

THE LAST 1014 CELLS OF THE COMMON RLOCK /SLASK/ ARE USED.

SUBROUT INE RFQUIRED
MMULT
MADD
NORM
DESYM
SOLVS

CC1,9), AL {1, 1), RI(L,1)

DIMENSITON AC1,1).B(1 ,
) 1), UC1) Y (1), PO, 10

1) )
1 R21(1,1),R2(1, (

s 1
» X
CDMMUN/SLASK/!DUM(lD),91(13f13)yS?(13a13),93(13,13)

|S5=13
d=-1 .
IND=0

EVALUATE RESIDUALS Y-CxX(D)

DO 2 1=1,NY

Y(l):Y(l)nSCAPRD(C(lyl);NY,X(i)yj.NX)
CALL MOVE(Y(1),53(1,1),NY+NY)

Y AND THE FIRST COLUMN OF 53 NOW CONTAINS THE RESIDUALS
Y-CrX(T)
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EVALUATE MEASUREMENT COVARIANCE C#PRP#CT+R?
CALL MMULT(P,CsS2,NX,NX,NY, NX,NY,0,1)
CALL MMULTEC,S2,S1 ,NY, NX,NY,NY, 1S,0,0)
CALL MADD(S1,R2,S1:NY,NY,0)

S1 NOW CONTAINS C#P#CT+R?

CALL NORM(S1,NY, 1S, ANORM)
EP=ANORM#EPS

CALL DESYM(S1,S2,NY,EP, IRANK, 1S)

S2 NOW CONTAINS THE TRIANGULAR DECOMPOSITION OF CxPxCT+R2
FFCERANK=NY) 4,654

IND=1

GO TO 8

TEST IF MEASUREMENTS CLOSE TO ESTIMATES

CALL 50LVS(S2,53,51,NY,1,15)
RETEST”SCAPRO(SZ(lpl)91;81(1;1)91;MY)

CALL MMULTCA,P,ST,NX,NXSNX,NX,NX,0,0)
S1 NOW CONTAINS AxP

IF(R) 10,20,20

IND=IND+1

GO TO 30

COMPUTE FILTER GAIN KT=(C#P#CT+R2)(=1)#(C#PT#AT+R21)
CALL MMULT(C,ST,P,L,NY,NX,NXNY,I15,0,1)
CALL MADD(R21,P,P,NY,NX,0)

P NOW CONTAINS C#PT#AT+R21

CALL SOLVS(S2,P,S8,NY,NX, 1S)

S3 NOW CONTAINS KT

UPDATE STATE X=AxX+BxU+K# (Y~CuX) OR X=h#X+Rx#U
DO 38 I=1,NX
R=SCAPROCACT 1) NX, X (1), 1, NX)

[FINU)Y 34,34,32
R=R+SCAPRO(BC], 1), NX,U(1),1, N
[FCIND)Y 36,36,38
R=R+SCAPRO(SI (1, 1) ,1,Y (1), 1,NY)
5201,1)=R

CALL MOVEALS201,1),X(1) s NX+NX)

FFONUDY 44,44,40

COMPUTEF NEW CONTROL Us=zAL#X

DO 42 I=1,Ny
UCT)=5CAPROCALCT 1) s NUSX (L)Y s 1, NX)

FECINDY 50,50,60
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UPDATE COVARIANCE PzA#P#(A-K*C)T+R1~-R12+KT F IND=0

CALL MMULT(R21,S3,P,NX,NY,NX,NY,15,1,0)
P NOW CONTAINS R12#KT

CALL MMULT(S3,C,S2,NX,NY,NX, [S,NY,1,0)
CALL MADD(A,S2,52,NX,NX,1)

S2 NOW CONTAINS A-K#xC

CALL MMULT(S1,52,S3,NX,NX,NX, 15,15,0,1)
CALL MADD(S3,P,P,NX,NX,1)

P NOW CONTAINS A#P#(A-K=C)T-R12%KT

GO TO 562

UPDATE COVARIANCE P=A#P#AT+R1 [|F IND=1 OR IND=2
CALL MMULT{S1,AsP,NXSNX,NX, IS, NX,0,1)

CALL MADD(R,R1,P,NX,NX,0)

P ONOW CONTAINS A%Px(A-K#C)T+R1-R12«KT OR AxPxAT+R1

COMPUTE SYMMETRY ERRODR OF P(T+1) DEFINED AS
FRR = NORM(P-PT)/NORM(P+PT) AND SYMMETRIZE P(T+1)

Kz=NX=-1

DO 70 1=15K
Fl=l=+1

no 70 J=11.NX
R=PCIl,J0)
RR=P(J, 1)
Q1=(R+RRY /2.
Rr=R-RR

PO, =01
Pld,1)=01
S101,J)Y=0Q2
S1(Jd, 12)=-0Q7

DO 72 1=1,NX
S1Ci,1)=0.

CALL NORM(S1,NX,15,Q1)
CALL NORM(P,NX,NX,Q2)
ERR=Q1/(02+032)

RETURN
END
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SUBROUTINE RUDY1(A,B,C,ALR1,R21,R2,P, X, U,Y,NX,NU,NY,EPS,
1 TEST, INDSFRR, 1Y)

STATE ESTIMATION USING KALMAN FILTER.
THE FACT THAT SOME MATRICES ARF SYMMETRIC 1S NOT CONSIDERED.
IFANY MEASUREMENTS DIFFER TOO MUCH FROM ESTIMAT|ON
THEY ARE REJECTED.

AUTHOR, KJ ASTROM/C.KALLSTROM 1971-11-15,

A~ SYSTEM MATRIX OF ORDER NX#NY,
R~ SYSTEM MATRIX OF ORDER NXs=NU,
C— SYSTEM MATRIX OF ORDFR NY#NY,
AlL- FEED BACK MATRIX -L 0OF ORDFER NU#NX.
R1- STATE NOISE COVARIANCE OF ORDER NX®NY.
Rzi—- STATE/MEASUREMENT COVARIANCFE OF ORDFER NY®NYX.
R2- MEASUREMENT NOISE COVARIANCE 0OF ORDER NY#NY,
P- COVARIANCE OF ESTIMATION ERROR P(T) OF ORDER NYX#NX,
RETURNED AS P(T+1).
X= STATE ESTIMATE X(T) QF DIMENSION NX, RETURNFD AS STATE
ESTIMATE X(T+1).
U= CONTROL VECTOR OF DIMENSION NU, RETURNED AS
THE NEW CONTROL .
Y= MEASUREMENT VECTOR OF DIMENSION NY,
NX= NUMBER OF STATES (MAX 43, MM 13,
NU- NUMBER OF COMTROL VARIARLES (MAX 13, MIN 0). PUT NU=zp
IF PURE KALMAN FILTER,
NY-= NUMBER OF MEASURFEMENTS (MAXY 13,MIN 1),
FPS= TEST QUANTITY TO DECIDE IF CPsCT+R?2 1S SINGULAR.
TEST= TEST QUANTITY TO DECIDE IF ANY MEASUREMENTS SHOULD
BE REJECTED.
IND= RETURMED 1 IF ALL MFASUREMENTS ARF REJECTED
2 AF C#P=CT+R2 |5 SINGULAR
0 OTHERWISE
ERR=- SYMMETRY ERROR OF P{T+1),.
Y= VECTOR OF DIMENSION NY CONTAINING THE SURSCRIPTS
OF THF ACCEPTED MFASUREMENTS,

THE LAST 1014 CELLS OF THE COMMON RBLOCK /SLASK/ ARE USED.

SURROUTINE REQUIRED
MMULT
MADD
NORM
DESYM
SOLVS

o

VIMENSTON AC1,1), B(1,1),C01,1),AL(1,1),R1¢1,1),R21(1,1),
R2(1,1) X1, U001, Y (1), P(1,1), 1Y (1)

[

COMMON/SLASK/ZIDUM(10),81€(43,13),52(13,13),53(13,13)

NTI

[T
L

op]

! i
| |

INTTHALTZE 1Y AND EVALUATE RESIDUALS Y=C#X(T)

DO 2 I=1,NY
IY(1)y=0
YOI =Y (1) =SCAPROCCCI 1), NY, X (1) ,1,NX)

Y NOW CONTAINS THE RESIDUALS Y-C#X(T)

FVALUATE MEASUREMEMT COVARIANCE CepPsCT+R?
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CALL MMULTOR,C, S0, NN RNY s NX , NY , 0,10
CALL MMULTOC,S1,S2sNY X, NYL,NY, [S,0,0)
CALL MADD(RZ,82,52,NY, MY, 0)

S2 NOW CONTAIMNS CxPsCT+RP
TEST WHAT MEASUREMENTS SHOULD BE ACCEPTED

l1=0

DO 6 1=1,NY

RaY (l)y=Y (i) /5201, 1)
LF(R=-TESTY4, 4,6
I

LYcrid =1

YCI1)=Y o)

CONTINUE
fFCtdi14,14,8
NY1=11

THE VECTOR 1Y CONTAINS THE INDICES OF THE ACCERTED MEASUREMENTS,

NY1 1S THiE NUMBER OF ACCEPTED MEASUREMENTS AND THE NYL FIRST
COMPONENTS OF Y CONTAINS RESIDUALS OF ACCEPTED MFASUREMENTS

COLLAPSE 872

DO 10 I=1,NY1
Pr=gyY Qo)

DO 10 Jd=1,KMY1
SNERRAY
S50, D =sS2011,Jd)

S3 NOW CONTAINS COLLAPSED C#PxCT+R2, |,F., THOSE FLEMENTS THAT
CORRESPOND TO ACCEPTED MEASUREMENTS

CALL NORM({SI,NYL, 15, ANORM)
EP=ANORM*EPS
Call DESYMISE,S2,NYL,EP, [RANK,[S)

S2 NOW CONTAINS THE TRIANGULAR DECOMPOS|TION OF
COLLAPSED C#Pu(CT+R2

FFCITRANK-NY1I) 12,164,172

IaD=2

GO TO 16

IND=1

CALL MMULTCA,P, ST NXSNX, MY, NX,NX, 0,0

S1 NOW CONTAINS AP

FECINDY20,205 30

COMPUTE COLLAPSED FILTER QAN

DO 22 I=1,MY1

Pi=1YCl)

Do 22 J=1,NMX

POL, D) =SCARPROCC O A, NY ST, , IS, NXD)+R21 011, )
CALL SOLYS(S2,P>53,NY4,NX, 18)

5% NOW CONTAINS COLLAPSED KT

UPDATE STATE




37
34
36
3R

e

no 38 f=1,MX

R=SCAPROCACT 1), NX, X{1),1,NX)
[F(NUY3Z4,34,32
R=R+SCAPRO(BCO], 1), NX, U1y, 1, NiJ)
[FCOIND) 36, 36,38
SR+SCAPROCSE(L, 1)1, Y (1)L, NY1)
S2(1,1=R

CAaLL MOVE(S204,1),X01), NX+NX)

FEONU) 50,50,40
COMPUTE MNEW CONTROL UsAL#X

ng 42 1=1,NU
UCTI=SCAPROCAL CHed) s NULX 01D 51, NXO

ECINDYS2,52,60

2 1,19
LL ?UVF(?O(I»B)952(2;1),?“35 FS-7)

DO 54 I=1,NY1

Pi=1Y ()

DO 54 J=1.,NX

S201, =530, 00

S2 NOW CONTAINS KT OF FuULL RANK

UPDATE COVARIANCE PzA#Pe(A~-K#C)IT+R1-R12%KT IF IND=0O
Cabl MMULTIRZ24,52,P, NXSNY,NX,NY, 1S,1,0)

P NOW CONTAINS R12%KT

C/\!L MM [*(Q?D(:’S\S!NXI'\‘Y9!\'XP 'SpNYrioﬂ)
CALL MADD(A,S3,52,NX,NX,1)

S2 NOW CONTAINS A-KxC

CALL !‘“‘AUL ] (SiﬁSZPSByNX!NX9NX9 18; ‘(3’091)
CalLL MADD(S3Z,P,P,NX,NX,1)

P NOW CONTAINS A#P#(A=K#C)T=R12#KT

GO TO a2

UPNATE COVARIANCE PzA#P2AT+R1 IF IND=1 OR IND=2
CALL MMULT (ST, A, P, NX,NXSNXs IS, NX,0,9)

CALL MADD(P,R1,P,NX,NX,0)

P ONOW CONMTAINS A%Pe(A-K%0)T + Ri - Ri2xKT NR
A¥PRAT + R1

COMPU"F SYMMETRY ERROR OF P(T+1) DEFINFD AS
ERR = NORM(P~PT)/NORM(P+PT) AND SYMMETRIZE P(T+1)

K=NX-1

Do 70 =1,k
Fli=t=+1

DO 70 J=11,NX
R=P(1,.J)

RR=FP CJ, 1)




70
e

)

O1=(R+RRY /2,
Q2=R-RA

PO, Jr=01
POJs 1) =01
St Jr=02
St(dsdy=-07

No 72 T=4,MNX
ST 1) =0,

CALL NORM(SL,NX,15,01)
CALL NORMP,NX,NX,02)
FRR=Q1/(N2+02)

RETURN
END
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SUBROUT INE RUDY?(A»B»CsAL,Rl,R21;R?,P,YPU,Y;NX,NU,NY;EPSyTFST,
1 INDD

STATE ESTIMATION USING KALMAN FILTER.

THE FACT THAT SOME MATRICES ARE SYMMETRIC 1S CONSIDERED.

\F THE MFASUREMENT VECTOR DIFFERS TOD MUCH FROM THE ESTIMATE,
THE MEASUREMENTS ARE REJECTED.

AUTHOR, KJ ASTROM/C.KALLSTROM 1971-11~-15.

A- SYSTEM MATRIX OF ORDER NX#NX.

B— SYSTEM MATRIX OF ORDER NXxNU.

C- SYSTEM MATRIX OF ORDER NY#NX.

AL- FEFD BACK MATRIX =L OF ORDER NUs=NX,

R1- STATE NOISF COVARIANCE OF ORDER NMX#NX.

RO1- STATE/MEASUREMENT COVARTANCE DF ORDER NY#NX.

RP?- MEASUREMENT NOISE COVARIANCE OF ORDER NY#NY.

P- COVARIANCE OF ESTIMATION ERROR P(T) OF ORDER NXsNX,
RETURNED AS P(T+1).

¥- STATE ESTIMATE X(T) OF DIMENSION NX, RETURNED AS STATE
ESTIMATE X(T+1).

U=~ CONTROL VECTOR OF DIMENSION NU, RETURNED AS
THE NEW CONTROL.

Y- MEASUREMENT VECTOR OF DIMENS[ON NY, RETURNED CONTAINING
THE RESIDUALS Y-C*X(T).

NY- NUMBER OF STATES (MAX 13, MIN 1).

NU- NUMBER OF CONTROL VARIABLES (MAX 1%, MIN 0). PUT NU=0
IF PURE KALMAN FILTER.

NY- NUMBER OF MEASUREMENTS (MAX 13, MIN 1.

EPS~ TEST QUANTITY TO DECIDE IF CxPaCT+R?2 1S SINGULAR,

TEST~ TEST QUANTITY TO DECIDE IF THE MEASUREMENT VECTOR SHOULD
BE REJECTED.

IND= 1S RETURNED 1 IF THE MEASUREMENT VECTOR IS REJECTED

o IF Ca#PxCT+R2 1S SINGULAR
0 OTHERWISE

THE LAST 1014 CELLS OF THE COMMON BLOCK /SLLASK/ ARE USED.
SURROUTINE REQUIRED

MMULT

NORM

DESYM

SOLVS

DIMENS ON A(l?j)?B(j91)}C(171))AL(1"1)FRl(l’i)?
1 R21(191)yR2(1,1)yX(l)yU(j)yY(j);P(ﬂ91)

COMMON/SLASK/IDUM(TD),81(13,13)p92(13;13)»§3(13,13)

195=13

R=-1.

IND=0

EVALUATE RESIDUALS Y=C#xX(T)

no 2 1=1,NY

Y(l)zY(l)mSCAPRO(C(Iyl),NY,X(l)pl,NX)

CALL MOVE(Y(1),S3(1,1),NY+NY)

Y AND THE FIRST COLUMN OF S3 NOW CONTAINS RESIDUALS Y-C#X(T)
EVALUATE MEASUREMENT COVARIANCE CxP=CT+R2

CALL MMULT (P, 0, S2, NX, NX,NY S NX MY, 051)




o

C
C

f

r
C
40
42

DO 4 1=1,NY
NO 4 J=1,NY
RR=R2 (1, ) +SCAPROCCCT, 1), NY,S2(1,d)s1,NX)
S1(1,J)=RR
S1(J, 1) =RR

S1 NOW CONTAINS Cu#P#CT+R2

CALL NORM(SL,NY,[S, ANORM)
EP=ANORMs#EPS

CALL DFS‘Y‘V‘(SJ‘!QQ)’\!Y’FPQ | RANK IS)

S2 NOW CONTAINS THE TRIANGULAR DECOMPOSITION OF C#P#CT+R2
FFCITRANK=NY) 6,8,6

IND=1

GO TO 1D

TEST IF MEASUREMENTS CLOSE TO ESTIMATES

CALL SOLVS(S2,S3,S1,NY,1,15)
Rz=TEST~-SCAPRO(S3(1,1)51,51(1,1),1,NY)

CALL MMULTCASP,ST,NX,NX,NX,NX,NX,0,0)
S1 NOW CONTAINS AxF

JF(R)Y 12,220,720

IND= IND+1

GO TO 30

COMPUTE FILTER GAIN KT=(C#P#CT+R2)(=1) = (CxPTxAT+R21)
CALL MMULT(C,S1,P,NY,NX,NX,NY,15,0,1)
DO 22 1=1,NY

No 22 J=1,NX

P(l,)=R21¢1, )+P L)

P NOW CONTAINS C#PT#AT+R21

CALL SOLVS(S2,P,S3,NY,NX,|S)

S3 NOW CONTAINS KT

UPDATE STATE XzA#X+B#U+K#(Y~-CxX) OR X=AxX+BxU
DO 3R |=1,NX
R=SCAPROCACT 1), NX, X (L)1, NX)

[F(NU) 34,34,32
R=R+SCAPRO(BCI, 1), NX,UCL) 1, NU)
I[FCIND)Y 36,36,38
R=R+SCAPRO(SI(1,1),1,YC(1),1,NY)
S2¢1,12)=R

CALL MOVE(S2(1,1),X(1),NX+NX)

FFAONUY 44,44,40

COMPUTE NEW CONTROL U=sAL#X

DO 42 1=1,NU
U =SCAPROCAL I, 1) » NU,X (1), 1, NX)
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FECIND)Y 50,50560
UPDATE COVARIANCE P=A#P#(A-K#C)YT+R1=-R12#KT {F IND=0

CALL MMULT(S3,C,S2,NX,NY,NX, |S,NY,1,0)
DO 52 1=1,NX

DO 52 J=1,NX

Szl D=a01,d)~-5201,d)

S2 NOW CONTAINS A-K=xC

DO 54 1=1,NX

DO b4 d=1,NX
RR=R1(I,J)+SCAPRO(SL(1,4),15,82(J,1), IS5, NX)~
1SCAPROC(R21 (1, 1), 1,53 (1,J)Y,1,NY)

PC1,J)=RR

PCJs 1) =RR

P NOW CONTAINS A#P#(A-K#C)T+R1=-R12#KT

GO TO 99

UPNATE COVARIANCE P=A#P2AT+R1 |F IND=1 OR |ND=z2
DO 62 1=1,NX

DO 62 J=1,NX
RR=SCAPRO(SLCI,1) s IS, ACI L) NXSNXO+RL T, )
P(1,J)=RR

PCJ, 1) =RR

P NOW CONTAINS A#P#AT+R1

RETURN
END
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SUBROUTINE RUDYZ(ASB,C,AL,RL,R21,R2, P X, U, Y NX, NUSNY,EPS,
1 TEST, INDS 1Y)

STATE ESTIMATION USING KALMAN FILTER,

THE FACT THAT SOME MATRICES ARF SYMMETRIC IS CONSIDERED,
FFANY MEASUREMENTS DIFFER T0O0 MUCH FROM ESTIMATION

THFEY ARE RFEJECTED.

AUTHOR, KJ ASTROM/C. KALLSTROM 1971-11-15.

A~ SYSTEM MATRIX OF ORDER NX#NX.
A= SYSTEM MATRIX OF ORDER NXsNLU,
= SYSTEM MATRIX OF ORDER NY#NX,
Al - FEFED BACK MATRIX =L 0OF ORDER NMUsNX,
R1- STATE NOISF COVARIANCE OF ORDER NX#NX.
R21~ STATE/MEASUREMENT COVARIANCF OF ORDER NY#NX,
Ro— MEASUREMENT NDISE COVARIANCE OF ORDER NY#NY,
P~ COVARIAMCE OF ESTIMATION ERROR P(T) OF DORDER NX#NX,
RETURNED AS P(T+1),
Y- STATE ESTIMATE X(T) OF DIMENSION NX, RETURNED AS STATE
ESTIMATE X{T+1).
U= CONTROL VFCTOR OF DIMENSION NU, RETURNED AS
THE NEW CONTROL.
Y- MEASUREMENT VECTOR OF DIMENSION NY,
NX= NUMBER OF STATES (MAX 13, MIN 1).
NU- NUMBER OF CONTROL VARIABLES (MAX 13, MIN 0). PUT NU=0
IF PURE KALMAN FI1LTER.
NY=- NUMBFR OF MEASUREMENTS (MAX 13,MIN 1).
ERPS— TEST QUANTITY TO DECIDE F CxP#CT+R? IS SINGULAR,
TEST~ TEST QUANTITY TO DECIDE 1F AMY MEASUREMENTS SHOULD
BE REJECTED.
IND= RETURNMED 1 1F ALL MEASUREMENTS ARE REJECTED
2 |F C#PsCT+R2 1S SINGULAR
0 OTHERWISE
Y- VECTOR OF DIMENSION NY CONTAINING THE SUBSCRIPTS
OF THE ACCEPTED MEASUREMENTS,

THE LAST 1014 CELLS OF THE COMMON RLOCK /SLASK/ ARE USED.
SUBROUTINE REQUIRED

MMLUIE T

NORM

DESYHM

SOLVS

DIMENSION A(1,1)s BC1,1),C0L 1), ALCI, 1), R1IC1,1),R21(1,1)
1 R 1), Xy, U1y, Yy ,Pp i1y, 1Y (1)

COMMON/SLASK/ZtDUMCT0) 51 (13,13),52(13,13),53(13,13)

1S=13
PAND=(

INITHALIZE 1Y AND EVALUATE RESIDUALS Y-C#X(T)
DO 2 1=1,NY

PYoh)=n

YOI )Y () =SCAPROCC U] 1), MY, XC1) 1 NY)

Y ONOW CONTAINS THE RESIDUALS Y-C#X(T)

FVALUATE MEASUREMENT COVARITANCE C#P#CT+R2

CALL MMULT (P;C;SlI{\\;X;NX;;\!Ys}NXy[\‘Y;0,91 )




¢
¢
¢

DO 4 I=1,NY
DO 4 Jd=1,NY
RR=R2 (1, J)+SCAPROCCCI, 1)y NY,S1(1,J),1.,NX)
S201:J)=RR
S20J, 1) =RR

S2 NOW CONTAINS C#P#CT+R2
TEST WHAT MEASUREMENTS SHOULD RE ACCEPTED

f1=0

DO 8 1=1,NY

RY ()Y (1)Y/5201, 1)
TFA(R-TESTYAL 6,8
fi=11+1

tyCidti=|

YOiiy=Y o)

CONT INUE
[Foti)ie,16,10
NY1=11

THE VECTOR 1Y CONTAINS THE INDICES OF ACCERPTED MEASUREMENTS,
NY1 15 THE NUMBER OF ACCERPTED MEASUREMENTS AND THE NY1 FiRST
COMPONENTS OF Y CONTAINS RESIDUALS OF ACCEPTED MEFASUREMENTS

COLLAPSE S?

DO 12 t=1,NY1
Pl=iY o)

DO 12 J=1.NYd
NNESR AND
SECEH, D =82011,Jd)

S3 NOW CONTAINS COLLAPSED C#Px0T+R?

CALL NORM(SI,NY1, 1S, ANORM)
FRP=ANORM®EPS
CALL DESYM(SE,52,NY1,EP, TRANK, IS)

S2 NOW CONTAINS THE TRIANGULAR DECOMPOSITION OF
COLLARPSED C#Ps{T+R?

FFCIRANK=NY1)14,18,14

fND =2

GO TO 18

IND=1

CAabLL MMULTCOA,P,ST,NX,NYX,NX,NX,NX,0,0)

S1 NOW CONTAINS AxP

[FOINDY2D 20530

COMPUTE COLLAPSED FILTER GAIN

PO 22 1=1,MY1

Fr=1Yt)

Do 22 J=1,NX

PO, 3 =SCAPROCCOTT 1) NYLS1(J, 1) IS NXDYFR210 0 )
CALL SDOLVS(S2,P,83,NY1,NX,1|S5)

S3 NOW CONTAINS COLLAPSED KT

UPDATE STATE




30

32
34
36
38

C

54

oy

O 20 QL

Ty o

G

("4
60

DO 38 1=1,NX
R=GCAPROCACT, 13 NX, XO1),1.NX)
[FINUY34,34,32
R=R+SCAPROCBCI 1), NX,UC1),1,NU)
IFCIND)Y 36, 365 38
R=R+SCAPRO(S3(1,1)5,1,Y(1),1,NY1)
52(1,1)=R

CALL MOVE(S2(1,1),XC1), NX+NX)

[FONUY B0,50,40
COMPUTE NEW CONTROL U=ALxX

DO 42 1=1,NU
UCT)=SCAPROCAL G, 1), NU,X 1)1, NX)

IFCINDIB2,52,60
S2(1,1)=0.
CALL MOVE(S2(1,1),52(2,1),2#]85%]8-2)

DO 54 t=1,NY1
Fi=1Y ()

DO %4 J=1,NX
S2CH 1, dy=53C},.)

S2 NOW CONTAINS KT OF FULL RANK
UPDATE COVARIANCE PzA#Px(A-K*(C)T+r1-R12%KT |F IND=0
CALL MMULT(S2,C0,S3, NXsNY,NX, [S,NY.1,0)

DO 56 1=1,NX
DO 56 J=1,NX
ST, D=a01,d)-535C1H.0)

S5 NOW CONTAINS A-K=C

DO 58 I=1,NX

DO B8 J=i,N¥X

RR=ER1CT, I +SCAPROCSL O] ,10 . 15,8304, 1), IS, NX) -
1 SCAPROCRZ21 (4510 51,5201,d)1,NY)

PO, Jd)=RR

PCJ, 1)=RR

PONOW CONTAITMNS A#P#(A-K#C)T + R1 - R12#KT
GO TO 99

DO 62 1=1,NX

DO 62 J=1,NX
RR=SCAPROCSL A5 1S, A0, 1) S NXGNXY+RT O, J)
PC1,J)=RR

PCJ, 1) =RR

P NOW CONTAINS A#P®AT + R1

RETURN
END
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SUBROUT INE

SUBROUT INE
AUTHOR, C.

A- MATRIX
B~ MATRIX
C- MATRIX
N- NUMRER
M- NUMBER

MIN~- PUT MIN=0 1F C=A+B AND MIN=1

MADDCAB,C N, M, MIN)

T0O COMPUTE

KALLSTROM 1971-02-04.

oF
OF
oF
0F
OF

ORDER N#M.
ORDER N=M,
ORDER N#M,
ROWS (NO MAX,MIN 1),

C=A+RBR OR C=zA-R.

COLUMNS (ND MAX.MIN 1).

SURROUTINE REQUIRED

NON

E

DIMENSTON AC1,1),B01,1),001,1)

DO 10 =1,
DO 10 J=t1,

N
M

IF(MINY 14,14,12
COl,J)=ACT,)-BCI,D)

GO TO 10

CCl,d=A01,U03+BCT,J)

CONTINUE

RETURN
END

I F

C=A-B,
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SUBROUT INE GLISY1(A,B,C,X,U,Y,NX,NU,NY)

COMPUTES THE NEW -STATE X(T+1) AND THE NEW OUTPUT Y(T+1) FROM
XCT)Y AND U(T) FOR THE SYSTEM :
XCT+1)=A#X(T)+B=U(T)
Y(T+1)=C#X(T+1)

AUTHOR KJ ASTROM 1971-07-22

A~ MATRIX OF ORDER NX#NX
B~ MATRIX OF ORDER NX#NU

L~ MATRIX OF ORDER NY#NX

X= STATE VECTOR X(T) OF DIMENSION NX, RETURNED AS X(T+1)
U~ INPUT VECTOR U(T) OF DIMENSION NU

Y- OUTPUT VECTOR Y(T+1) OF DIMENSION NY

NX-NUMBER OF STATES (MAX 64 SEE SECOND DIMENS!ION STATEMENT)

NU-NUMBER OF INPUTS (NO MAX)

NY-NUMBER OF OUTPUTS (NO MAX). PUT NY=0 IF COMPUTATION OF Y(T)
- SHOULD BE SKIPPED.

X0-DUMMY VECTOR OF DIMENSION NX CONTAINING THE
THE NEW STATE VECTOR X(T+1). STORED IN DUM8 OF
THE COMMON BLOCK /SLASK/, THE FIRST 896 CELLS OF /SLASK/
ARE NOT USED.

SUBROUTINES REQUIRED
NONE

DIMENSION AC1,1),B(1,1),C(1,1),X(1),UC1),Y (1)
DIMENSION X0(64),DUMY(448)

COMMON /SLASK/ DUMY, X0

DO 10 I=1,NX
XOCI)=SCAPROCACI,1),NX,X(1),1,NX)+SCAPRO(B(|,1), NX,UC1),1,NU)
CALL MOVE (XO0(1),X(1),NX+NX)

IF(NY) 99,99,12
DO 14 [=1,NY

YCI)=SCAPROCC (I, 1), NY, XL1),1,NX)

RETURN
END
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SUBROUTINE GLIRELCA,BK,C,AL, XU, Y,NX,NU,NY)

COMPUTES THE NEW STATE ESTIMATE XE(T+1) AND THE NEW CONTROL

UCT+1) FROM XE(T) AND Y(T) FOR THE GENERAL LINEAR REGULATOR
XE(T+1)=A*XE(T)+B#U(TY+K# (Y(T)~CxXE(T))
UCT+1)=-L#XE(T+1)

CAN ALSO BF USED AS A PURE KALMAN FILTER BY PUTTING NU=0

AUTHOR KJ ASTROM 1971-07-22

A= MATRIX OF ORDER NX#NX

BK-MATRIX .0OF ORDER NX%(NU+NY) CONCATENATION OF B AND K

C- MATRIX OF ORDER NY#NX

AL-GAIN MATRIX -L OF ORDER NU#NX. NOTICE -L.

X- STATE ESTIMATE XE(T) OF DIMENSION NX, RETURNED AS XE(T+1)

U- CONTROL VECTOR OF DIMENSION NU, RETURNED AS THE NEW COMTROL

Y- MEASUREMENT VECTOR OF ORDER NY

NX-NUMBER OF STATES (MAX 64 GLISY )

NU-NUMBER OF CONTROL VARIABLES, NU=0 IF PURE" KALMAN FILTER
NY-NUMBER OF MEASUREMENTS (MAX(NU+NY)=64)

UE-DUMMY VECTOR OF DIMENSION NU+NY CONCATENATION OF U
AND Y-CxXE STORED IN DUM7 OF THE COMMON BLOCK /SLASK/.
THE LAST FIELD DUM8 OF /SLASK/ CONTAINS XE AND THE FIRST
768 CELLS ARE NOT -USED.

SUBROUTINES REQUIRED
GLISY

DIMENSION A(1,1),BK(1,1),C(1,21),AL(1,1),X(1),U(1),Y(1)
DIMENSION UE(64),DUMY(384),DUMB(64)

COMMON /SLASK/DUMY,UE,DUMS
FF(NU) 10,10,11 -
CALL MOVE(U(1),UE(1),NU+NU)

DO 12 |=1,NY .

11=NU+1 '
UECI1)=Y ([ )Y=SCAPRO(C(T,1),NY,X(1),1,NX)
CALL GLISY1(A,BKs»AL,X,UE,U,NX,NU+NY,NU)

RETURN
END




