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Abstract

A new chemical reactor, the Alfa Laval Plate Reactor, is being developed
by Alfa Laval, a Swedish world-leading heat exchanger company. The plate
reactor combines the high-heat-transfer capabilities of plate heat exchang-
ers with the efficient mixing and reaction control typical of microreactors.
With this new concept, highly exothermic reactions can be produced us-
ing more concentrated reactants and more accurate temperature control.
This will reduce the reaction time and the need for downstream separa-
tion, thus saving energy and reducing the impact on the environment.
The focus of this thesis is to develop and apply control methods to

take advantage of the full potential of the novel plate reactor concept.
A nonlinear model of the reactor is derived based on first principles to
conduct a system analysis and enable model-based control. The physical
model allows a detailed investigation of the potential control inputs and
how the process design and choice of inputs may affect the control design.
Two control concepts are examined, decentralized control using multi-

loop PID controllers and centralized control using Model Predictive Con-
trol. The concepts are evaluated and compared in terms of design methods,
performance and practical aspects. A cooling system is designed and exper-
imentally verified, where a mid-ranging control structure is implemented
to increase the operating range of the hydraulic equipment.
The start-up control problem is challenging due to process uncertainty,

highly nonlinear dynamics and input and temperature constraints. The
dynamics and the constraints are easily captured by the process model in
the optimization problem. The open question is how to address the process
uncertainty. Here, robustness to uncertainty is achieved by introducing
state-space constraints in the optimization formulation, which decrease
the sensitivity of the optimal solution. The start-up control problem has
been approached from two sides, a time-driven continuous approach and
an event-driven hybrid approach.
Some of the results are specific for the plate reactor, but many parts

may be generalized to other applications, for example the decentralized
and centralized control design, the start-up/transition control design and
use of mid-ranging control to handle two-input one-output systems.

5





Acknowledgments

In the very first month of my PhD studies, I participated in a CPDC course
on patent rights. The two-day course was concluded with a visit to Alfa
Laval in Lund. There Tommy Norén introduced us to a new reactor tech-
nology concept. Even though he couldn’t say too much, due to the patents
being filed at the time, he was incredibly enthusiastic about this project
and couldn’t stop himself from preaching about its promising potential.
From that moment I had the pleasure to work on the Alfa Laval Plate
Reactor project for three years.
Joining this international project as a fresh PhD student was very in-

teresting and challenging. My supervisor Per Hagander has been my main
support and we have had many long and rewarding discussions about the
project and research in general. I am very grateful for all the time he
has given me. He has very elegantly guided me from the initial months
as a newbie up till now, giving me more and more freedom and respon-
sibility along the way. Tore Hägglund, my co-supervisor, has taught me
many valuable things about process control in general and PID control in
particular. Krister Forsman from Perstorp AB was the opponent for my
Licenciate Thesis and after the interesting disccusions there, he joined
Per and Tore as co-supervisor. His comments and opinions, based on his
long experience of process control in industry, have been most helpful.
My time at the department have indeed been joyful, which you can

probably all see on my big smile. I am very fond of the trinity of the PhD
program; the research, the courses and the teaching, which constitutes a
well-balanced mixture. However, it is the people at the department that
elevates this job from good to great, with the coffee breaks, Christmas
parties, Ultimate Frisbee sessions, floor hockey and last but not least,
all the rewarding discussions with my colleagues, whom I can go to with
any questions. Thank you all! Johan Åkesson has been a great mentor for
me and his MPC knowledge and algorithms were essential for the award-
winning article at IFAC in Prague, for which he deserves a credit. This
past year we have been working closely together on the reactor start-up
optimization and our collaboration there has been the most interesting
and rewarding time as a PhD student. My roommate Tomas Olsson de-

7



Acknowledgments

serves a special thanks for the patience when answering all my questions
on control and non-control topics. Another significant person is Anders
Robertsson, who always has time for everyone and an interest to help.
I have also enjoyed the numerous hikes and board game sessions with
Johan Bengtsson. Peter Alriksson has been a reliable source on estima-
tion issues. I have had many interesting discussions with Ola Slätteke
about process control, mid-ranging and MPC. I appreciated the collabora-
tion with Stéphane Velut and Maria Karlson on the mid-ranging paper.
I am also grateful to Per-Ola Larsson for reading and commenting my
manuscript.
Within the Plate Reactor project I had the pleasure of working with

experts from many different fields outside the control area, whom I all
would like to thank. The discussions have been rewarding and given me an
extensive view of chemical processes, heat transfer and reaction kinetics
as well as splendid dinners and project meetings. In particular I would
like to acknowledge Tommy Norén, Barry Johnson, Ian Reynolds, Fabrice
Chopard, Sébastien Elgue and Kasper Höglund from Alfa Laval.
One part of the project included experiments on the process in the

laboratory at Alfa Laval in Lund and in Tumba. There I appreciated the
help of Bengt Göland and Michel Granath in Lund and Robert Geiding in
Tumba.
My very first steps towards a PhD career was taken at University

of California in Santa Barbara (UCSB), where I took graduate classes in
control engineering during my undergraduate exchange year. It would not
have been possible without the influential help from Karl Johan Åström
and Petar Kokotovic to overcome the bureaucratic obstacles. I also want
to thank Anders Åberg, who inspired and supported me to pursue a PhD,
while supervising my master’s thesis.
This project has been partially funded by the Centre of Process Control

and Design, CPDC, the Swedish Foundation for Strategic Research, SSF
and by Alfa Laval AB. The workshops and meetings of CPDC has been
interesting and my gratitude goes to Bernt Nilsson, the coordinator of
CPDC. For the experimental part, there was a generous equipment grant
from National Instruments.
For the last two years I have been involved in the European network of

excellence HYCON and their funding is gratefully acknowledged. Within
this network, I would especially like to thank Olaf Stursberg, Sebastian
Engell, Cesar de Prada and Christian Sonntag for interesting meetings.
Finally I would like to thank my non-controlled friends and family, for

all the fun we have in terms of sailing, skiing, hikes and parties. A special
thanks to my sunshine Elin for her love and support during this time.

8



Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1 Background and Motivation . . . . . . . . . . . . . . . . 11
1.2 Outline and Contributions of the Thesis . . . . . . . . . 15

2. The Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1 Process Description . . . . . . . . . . . . . . . . . . . . . 19
2.2 Inputs and Outputs . . . . . . . . . . . . . . . . . . . . . 24
2.3 Objectives for Process Operation . . . . . . . . . . . . . 27
2.4 Process Design . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5 Operating Modes . . . . . . . . . . . . . . . . . . . . . . 34
2.6 An Outline of Control System Design . . . . . . . . . . . 37

3. Modeling and Analysis . . . . . . . . . . . . . . . . . . . . . . 39
3.1 Modeling and Simulation . . . . . . . . . . . . . . . . . . 39
3.2 Model Analysis . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Control Variable Selection . . . . . . . . . . . . . . . . . 53

4. Process control . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Optimization of Stationary Operation . . . . . . . . . . 63
4.4 Feedback Control . . . . . . . . . . . . . . . . . . . . . . 64
4.5 Decentralized Control . . . . . . . . . . . . . . . . . . . . 65
4.6 Centralized Control . . . . . . . . . . . . . . . . . . . . . 86
4.7 Recommendations on the Process Design . . . . . . . . 110
4.8 Summary, Comparisons and Conclusions . . . . . . . . 111

5. Start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.2 Dynamics and Problem Motivation . . . . . . . . . . . . 117

6. Start-up: Dynamic Optimization . . . . . . . . . . . . . . . 126
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 126

9



Contents

6.2 Dynamic Optimization . . . . . . . . . . . . . . . . . . . 127
6.3 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.4 The Optimization Problem . . . . . . . . . . . . . . . . . 131
6.5 Feedback Control . . . . . . . . . . . . . . . . . . . . . . 142
6.6 Simulation with Feedback Control . . . . . . . . . . . . 145
6.7 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . 147
6.8 Summary and Conclusions . . . . . . . . . . . . . . . . . 150

7. Start-up: A Hybrid Approach . . . . . . . . . . . . . . . . . 152
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.3 Start-up Conditions . . . . . . . . . . . . . . . . . . . . . 153
7.4 Start-up Modes . . . . . . . . . . . . . . . . . . . . . . . 156
7.5 The Hybrid Controller . . . . . . . . . . . . . . . . . . . 158
7.6 Feedback Control of the Reactor Temperature . . . . . . 164
7.7 Simulation of Hybrid Start-up . . . . . . . . . . . . . . . 166
7.8 Summary and Conclusions . . . . . . . . . . . . . . . . . 171
7.9 Comparison between Start-up Methods . . . . . . . . . . 171

8. The Utility System: Design, Control and Experiments . 175
8.1 Hydraulic and Thermodynamic Design . . . . . . . . . . 175
8.2 Mid-ranging Control Structure . . . . . . . . . . . . . . 179
8.3 Control Design and Tuning . . . . . . . . . . . . . . . . 181
8.4 Experiments on the Utility System . . . . . . . . . . . . 184
8.5 Control System Hardware . . . . . . . . . . . . . . . . . 186
8.6 Disturbances and Process Variations . . . . . . . . . . . 187
8.7 Experimental Results . . . . . . . . . . . . . . . . . . . . 189
8.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

9. Constraint handling in Mid-ranging Control . . . . . . . 194
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 194
9.2 Mid-ranging Control of a Bio-reactor . . . . . . . . . . . 197
9.3 Analysis of Standard Anti-windup . . . . . . . . . . . . 200
9.4 Modified Anti-windup Scheme . . . . . . . . . . . . . . . 203
9.5 Mid-ranging Control of a Cooling System . . . . . . . . 206
9.6 Stability and Performance Analysis . . . . . . . . . . . . 212
9.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

10. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
10.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
10.2 Suggestions for Future Work . . . . . . . . . . . . . . . . 219

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

10



1

Introduction

1.1 Background and Motivation

Chemical Reactions

Chemical reactions occur everywhere in our everyday life, for example,
in the human body, in cell phone batteries, in a rocket engine and in
the pharmaceutical and chemical industry. The reactions, see e.g. [Lev-
enspiel, 1999], can be divided into homogeneous and heterogeneous re-
actions, where the homogeneous reaction takes place in a single phase,
whereas the heterogeneous reaction involves at least two phases, such as
oil and water.
The reaction rate does often depend on the concentrations of the re-

actants and the temperature. In many cases, the temperature depen-
dency is exponentially, as described by the Arrhenius law. Furthermore,
some reactions absorb or release heat during operation, and are then
called endothermic and exothermic reactions, respectively. To maintain
an endothermic reaction, heat must be supplied into the reactor system,
whereas for the exothermic reaction, heat must be removed to avoid ex-
cessive reactor temperatures. This characteristic of the reaction will have
an important implication on the reaction dynamics, as an exothermic re-
action may lead to a self-accelerating reaction rate. From linear systems
theory, a self-accelerating reaction corresponds to the system having un-
stable poles.

Chemical Reactors

There are several different types of chemical reactors, see e.g. [Denbigh
and Turner, 1971]. They are usually divided into batch and continuous
reactors, see Figure 1.1. In batch reactors, the reactants are added all
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Chapter 1. Introduction
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Figure 1.1 Ideal reactor types from [Levenspiel, 1999]. The plug flow and mixed
flow reactor have, after an initial start-up, a steady-state flow during operation,
whereas the batch reactor has no in- or outflows during operation, only filling and
emptying at the end of each production cycle.

at once and after a certain time the entire reactor is emptied and the
product goes to downstream processing. The key concept is the produc-
tion cycle of repeated filling and emptying operations with a production
time from minutes to days. The batch reactor has uniform composition
everywhere in the reactor, but the composition changes with time. In a
semi-batch reactor, one or many reactants are added continuously during
the production cycle, instead of being added all at once initially. This small
continuous feeding improves the conditions for control of temperature or
quality, as the small feed has a limited impact on the entire batch, but
increases the production time. One specific application for semi-batch re-
actors is production of exothermic reactions. The heat release from the
reaction may be overwhelming, unless one of the reactants is added in a
small continuous feed, to enable the heat transfer to be controlled more
accurately.
In continuous reactors, such as the plug flow and mixed flow reactor,

there is a continuous flow of reactants and products at the inlet and outlet
of the reactor. The key concept is the continuous operation, which may be
maintained for several weeks or months between each stop. This means
that the flow through this type of reactors is in steady-state most of the
time. In the plug flow reactor, the fluid passes through the reactor with no
mixing of earlier and later entering fluid. The composition changes along
the plug flow reactor, creating a composition profile along the reactor.
The mixed flow reactor has the same composition everywhere within the
reactor and at the exit.
Batch reactors are typically used for small to medium scale production,

due to their flexibility and low capital cost. For medium to large scale
production, continuous reactors are preferred, due to lower operating cost,
improved conditions for automatic control and greater consistency of the
operating conditions and quality [Denbigh and Turner, 1971].

12



1.1 Background and Motivation

Chemical reactors can also be classified using two other categories,
tank reactors and tubular reactors. The batch, semi-batch and mixed flow
reactors are considered tank reactors, as ideally their composition and
temperature is regarded to be the same throughout the reactor. The plug
flow reactor belongs to the type of tubular reactors as its composition
varies along the reactor length.
Figure 1.1 shows the ideal version of each reactor type. Industrial re-

actors can be far more complex, with non-ideal mixing, heat transfer, or
reaction.

The Plate Reactor Concept

The synthesis of fine chemicals or pharmaceuticals, widely carried out
in batch or semi-batch reactors, are often strongly limited by constraints
related to the dissipation of heat generated by the reactions. A common
solution is to dilute the chemicals, that is, to reduce the concentrations,
thus ensuring that the reaction rate and the heat release is within the
heat transfer capacity of the reactor. After the reaction stage, the solvent
is removed in a separation stage to provide a high-concentrated prod-
uct with good quality. This separation process is both time and energy
consuming, thus very expensive. The dilution also increases the reaction
time, since the reaction is operated at lower concentrations, which limits
the production rate.
To reduce these problems, the Plate Reactor project was initiated by

Alfa Laval AB in 2002. Its objective is to design new types of reactors
through process intensification (PI), where new methods and equipment
are developed with the goal of allowing cleaner and more energy-efficient
production in smaller reactors. The reduction in size also leads to in-
creased safety with smaller amounts of hazardous chemicals being in
use at each time. The field of PI has been an active research area since
the 1980’s, see for example [Ramshaw, 1995], [Green et al., 1999] and
[Stankiewicz and Moulin, 2000]. One example of PI innovation is the com-
pact heat exchanger, which has been widely successful in many applica-
tions. However, attempts to use heat exchangers as chemical reactors, to
utilize their high heat transfer capacity, have had limited success due
to the poor micro-mixing conditions. In the 1990’s, research on heat ex-
changer reactors, to overcome these problems, was started at the BHR
Group Limited [Phillips et al., 1997] and also at Alfa Laval AB [Nilsson
and Sveider, 2000].
A new concept of heat exchange reactors, the Alfa Laval Plate Reactor

is being developed by Alfa Laval AB, [Alfa Laval AB, 2006], [Bouaifi et al.,
2004], [Andersson et al., 2004] and [Prat et al., 2005]. The plate reactor
combines the high-heat-transfer capabilities of the plate heat exchanger
with the efficient mixing and reaction control typical of microreactors into

13



Chapter 1. Introduction

Figure 1.2 Heat transfer performance and mixing performance for the plate re-
actor and other kinds of chemical reactors. Courtesy of Alfa Laval AB.

a single unit. This allows complex chemical reactions to be performed with
a very accurate thermal control. Therefore the plate reactor appears par-
ticularly well suited for process intensification, as it allows at the same
time an increase of reactant concentration and a reduction of and solvent
consumption. This leads to reduced need of down-stream separation, re-
sulting in large savings in time, energy and money. The high heat transfer
capacity enables the reaction to be operated at higher temperatures than
before, which may reduce the time to reach complete reaction from hours
to minutes. This leads to improved productivity, but may also improve
quality as there is less time for by-product formation. The intensified pro-
duction, due to the improved heat transfer and micro-mixing means that
the plate reactor can replace larger conventional reactors, thus reducing
plant size and investment costs. Figure 1.2 shows the heat transfer and
micro-mixing capacities of different type of reactors.
Of the ideal reactor types in Figure 1.1, the plate reactor can be roughly

approximated with the plug flow reactor, but with a more complex geom-
etry.

14



1.2 Outline and Contributions of the Thesis

Aim of this Thesis

The aim of this thesis is to develop and investigate control methods to
achieve safe, efficient and robust production, and to be able to exploit the
full potential of the plate reactor.
This research was initiated in a very early phase of the Plate Reactor

project to allow for process and control design in parallel. This work has
been carried out within the framework of the Center for Process Control
and Design1 (CPDC).

1.2 Outline and Contributions of the Thesis

Contributions

The main contributions presented in this thesis are:

• Design and control of a multi-purpose cooling system, with experi-
mental verification of the efficient temperature control.

• Development of a nonlinear dynamical model of the plate reactor
from first principles, to allow system analysis and model-based con-
trol and to gain deeper understanding of the physics behind the
process.

• A thorough investigation of potential control inputs and how the
process design and choice of control inputs may affect the control
design.

• Efficient process control of the plate reactor using either decentral-
ized control in the form of multi-loop PID controllers or centralized
control in the form of Model Predictive Control. The two control
structures are evaluated and compared.

• A novel approach how to achieve a safe and robust reactor start-up
using dynamic optimization.

• A hybrid approach to the reactor start-up problem that transforms
the problem into an event-driven sequence, which increases the ro-
bustness.

Some of the contributions are not restricted to the plate reactor appli-
cation, but may be useful within the general area of process control, for
example, the evaluation of decentralized and centralized control and the
examples of mid-ranging control design.

1www.control.lth.se/cpdc
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Chapter 1. Introduction

Outline of the Thesis

Chapter 2 presents the plate reactor process, its construction, concept
and configurations. The process inputs and outputs are briefly described.
The objectives of the production are defined and possible reactor configu-
rations are presented.

Chapter 3 derives a nonlinear process model based on first principles.
The model is used for a thorough process analysis, which facilitates the
selection of the process inputs for feedback control.

Chapter 4 presents different methods for feedback control of the plate re-
actor at nominal operation. Decentralized multi-loop PID controllers and
centralized control using MPC are designed.

Chapter 5 describes the start-up control problem and presents the spe-
cial dynamics associated with the start-up. A few motivating examples
indicate the need for robust start-up methods.

Chapter 6 describes a start-up method based on dynamic optimization,
where robustness is achieved by introducing constraints on the reactant
concentrations.

Chapter 7 describes a hybrid approach to the start-up control problem.
The start-up sequence is divided into several modes, where each transi-
tion between these modes is coupled to a condition on the process state,
thus rendering the start-up event-driven.

Chapter 8 presents the utility system that provides the reactor with
cooling water at a desired flow rate with a desired inlet temperature. The
process design and control of the utility system are described and experi-
mental results are reported.

Chapter 9 discusses constraint handling in mid-ranging control. Poten-
tial problems are highlighted and a modified control structure is pro-
posed, which may improve the performance when operating close to the
constraints. The method is verified in experiments.

Chapter 10 concludes the thesis with a brief summary of the results and
some suggestions for future work.
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2

The Process

2.1 Process Description

In this thesis, the following reaction is considered,

A+ B → C + D. (2.1)

The substance A is the primary reactant and the substance B is the sec-
ondary reactant, which is injected into the main flow of reactant A at
multiple injection points along the reactor. The desired product is sub-
stance C. Substance D is another product, with a constant stoichiometric
relationship to C.
The plate reactor is based on a modified plate heat exchanger design.

It consists of reactor plates, inside which the reactants mix and react,
and utility plates, inside which a cooling or heating fluid flows. There is
one utility plate on top and one below each reactor plate. The utility fluid
is often water, but may be replaced depending on the reaction. In this
thesis, exothermic reactions are studied, thus the utility fluid often cools
the reactor, even though it may in some rare cases be used for heating. In
the sequel, the utility plates and the utility flow will also be referred to
as cooling plates and cooling flows, respectively.
In Figure 2.1 the plate reactor is shown from two different angles. The

left figure illustrates the first rows of the reactor plate. The primary reac-
tant A flows into the reactor from the upper left inlet. Between the inlet
and the outlet, the reactants are forced by inserts to flow in horizontal
channels of changing directions. The flow inserts are specifically designed
to enhance the micro-mixing and guarantee good heat transfer capacity,
see Figure 2.2, and are patented in [Alfa Laval patent, 2001] and [Alfa
Laval patent, 2002]. The dashed vertical lines of Figure 2.1 illustrate how
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Figure 2.1 Left: A schematic of a few rows of a reactor plate. Reactant A is injected
at top left and reactant B is injected at multiple sites along the reactor. Y1 and Y2
are internal temperature measurements used for process control and supervision.
The cooling water flows from top to bottom in separate cooling plates. Right: The
plate reactor seen from the side, with the reactor part in the middle and cooling
plates on each side.

the cooling water flows on each side to the reactor plate. The right figure
in Figure 2.1 shows the plate reactor from the side with cooling plates
on each side of the reactor plate. Reactant B can be injected in arbitrary
places along the reactor, typically at the beginning and middle of the reac-
tor. Temperature, pressure or conductivity sensors can be mounted inside
the reactor, for example after each injection point, for process monitoring
and control.
The design concept for the reactor allows for great flexibility in adapt-

ing the process for new reaction schemes. The type of inserts and the
number of plates in the reactor plate can be adjusted to provide the res-
idence time appropriate for the chosen reaction. In Figure 2.3 a configu-
ration with three reactor plates is shown. The process fluid enters from
the top and flows through three reactor plates. The cooling water enters
at lower left and exits at upper left. If the reaction needs a catalyst, it can
be mounted on the flow inserts.
A pilot-scale prototype of the plate reactor is seen in Figure 2.4. The

simulations and experiments carried out in this thesis are based on the
size and properties of this prototype unit, however, all methods developed
here are generic for a reactor of any size. With three reactor plates (the
grey-white plates), the residence time is around 90 seconds at a nominal
flow rate of 50 L/h. In this thesis, we primarily consider one single reactor
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2.1 Process Description

Figure 2.2 A drawing of the flow inserts and the flow channels shown in Fig-
ure 2.1. Here the fluid enters from top right and the small arrows indicate the flow
direction. From [Alfa Laval patent, 2002]

plate, thus a reactor with a residence time of 30 s.
To more easily investigate the applicability of new reaction schemes

to the plate reactor concept, a lab-scale version of the reactor has also
been developed at Alfa Laval, see Figure 2.5. There are currently several
companies running test experiments on the lab-scale reactor such as the
international pharmaceutical company AstraZeneca and the Swedish spe-
cialty chemicals company Perstorp AB. Alfa Laval are also collaborating
with the french chemical company Arkema within the LIFE-project1 of
the European Union to demonstrate and evaluate the continuous plate
reactor technology. The tests are still in an early stage and further tests
on the larger pilot-scale reactor are scheduled for end of 2007 and 2008.

1http://ec.europa.eu/environment/life/index.htm
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Figure 2.3 A flow scheme of the plate reactor system. The process fluid enters
from above into the first reactor plate. The cooling water enters from lower left and
exits at the upper left. Courtesy of Alfa Laval AB.

Figure 2.4 A test unit of the plate reactor with three reactor plates connected
in series as in Figure 2.3. Note the temperature sensors along the side of one of
the reactor plates. The thin cooling plates are mounted onto the reactor plates and
are not visible in the photo. There are support plates between each cooling plate -
reactor plate - cooling plate combination. Courtesy of Alfa Laval AB.

22



2.1 Process Description

Figure 2.5 One version of a Plate Reactor, PR37, used for initial testing of new
reactions, or as a production unit for small flow production, mainly pharmaceuticals.
Courtesy of Alfa Laval AB.

Reactions

Several different types of chemical reactions have been tested in the plate
reactor, such as liquid-phase exothermic irreversible reactions, liquid-phase
exothermic reversible reactions and liquid/liquid exothermic reactions for
immiscible flows (cf. oil and water). There have also been tests on liq-
uid/gas reactions. The reaction kinetics can differ many orders of mag-
nitude from one reaction to another. The operation of the plate reactor
is generally aimed at fast reactions. Slower reactions may require a very
long reactor length to achieve acceptable conversion, which would make a
semi-batch reactor more suitable. Furthermore, the operation of the plate
reactor is aimed at exothermic or endothermic reactions, to take advan-
tage of the improved heat transfer capacity. The standard reaction used
in this thesis is the oxidation of sodium thiosulfate Na2S2O3 by hydrogen
peroxide H2O2, which is a fast, exothermic, second-order2 and liquid-phase
reaction,

2Na2S2O3 + 4H2O2 → Na2S3O6 +Na2SO4 + 4H2O. (2.2)

The reaction rate can be described by the Arrhenius law [Prat et al., 2005],

r = k0e
Ea
RTr cAcB , (2.3)

2Second order, since the reaction rate depends on the concentrations of A and B.
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where Tr is the reactor temperature, R is the universal gas constant,
cA is the concentration of sodium thiosulfate, cB is the concentration of
hydrogen peroxide, k0 = 2 ⋅ 107 m3/(mol s) is the pre-exponential factor,
Ea = 68200 J/mol is the activation energy and ∆H = −1.172 ⋅ 106 J/(mol
Na2S3O6) is the heat of reaction.

Cooling/Heating

To further increase the flexibility of operation, it is possible to have sep-
arate utility flows - with different temperatures - to cool or heat selected
parts of the reactor. The utility plates are then divided into several com-
partments, each having an individual inlet temperature. These compart-
ments will in the sequel be referred to as cooling zones. For some reactions
it may be beneficial to cool most of the reactor, but reduce cooling in the
last section to improve the conversion.
Figure 2.1 shows that the cooling water flow is vertical and the reac-

tor flow is horizontal, which creates a cross-flow heat exchange pattern.
However, the temperature of the cooling water is almost constant for each
horizontal reactor row, which allows the heat exchange pattern to be ap-
proximated as concurrent in the process model.
To ensure that the utility flow (usually water) entering the reactor has

the desired temperature and flow rate, a utility system has been designed
and tested experimentally, see Chapter 8 for further details.

2.2 Inputs and Outputs

The aim of this section is to briefly present the input and output variables
of the plate reactor, to provide an overview of how the inputs affect and
the outputs reflect the properties inside the reactor. This will be used
when selecting control variables in Chapter 3. A complete list of symbols
is given in the Appendix.
Figure 2.6 shows the input and output variables for a plate reactor

configuration with two injection points and one cooling flow. The reactant
flows are often called feeds, such as feed concentration, to distinguish be-
tween the temperatures and concentrations of the inlet flows and those
inside the reactor. In most cases, the feed flows of B come from the same
storage tank, thus they have the same feed temperature TB,feed and feed
concentration cB,feed. Each additional injection point adds one degree of
freedom, the flow rate of B added through this injection point. Each ad-
ditional cooling zone adds in theory two degrees of freedom, the flow rate
and the inlet temperature, however, usually only one of these is used for
control and the other one is fixed.
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Reactor outletReactant A
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Figure 2.6 The plate reactor as a schematic tubular reactor with four inflows and
one outflow. The inputs and outputs are the temperatures, flow rates and concen-
trations of these flows. The circles with T represents internal temperature sensors.

Figure 2.6 shows ten independent input variables. When the stoichio-
metric relation between A and B is considered, one degree of freedom
is removed, since the total number of moles of B is fixed by the added
amount of A,

qA,feedcA,feed = qB,feedcB,feed = (qB1 + qB2)cB,feed, (2.4)

where the sum of the injection flows qB1 + qB2 defines the total feed flow
qB,feed.

Short Description of the Input Variables

• Feed flow rate of reactant A, qA,feed, constitutes 80% of the total flow
rate through the plate reactor. It therefore often serves as the main
control variable for varying the production rate, i.e., the amount of
product C exiting the reactor per unit time.

• Feed temperature of reactant A, TA,feed, mainly influences the tem-
perature at the inlet of the reactor. Especially useful during the
start-up phase.

• Feed concentration of reactant A, cA,feed, determines together with
qA,feed the amount of A added into the reactor.

• Feed flow rate of reactant B, qB,feed, is the total flow rate of B added
to the reactor. This flow rate constitutes 20% of the total flow rate
through the reactor. qB,feed should have a constant relationship with
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qA,feed to maintain stoichiometric conditions. This may for example
be achieved with ratio control with qA,feed as the master.

• Feed injection flow rates, qB1 and qB2, are the injection flow rates
of B at the two injection points. The sum qB1 + qB2 = qB,feed is of-
ten fixed to guarantee stoichiometric conditions. However, the flow
distribution between the injection points remains as a degree of
freedom. In the sequel, we will use the scaled control variables
uB1 = qB1/qB,feed and uB2 = qB2/qB,feed, with qB,feed as the scal-
ing factor. Thus when uB1 + uB2 = 1, stoichiometric amounts of A
and B are being fed into the reactor. The values of uB1 and uB2 can
also be seen as an injection distribution. For example uB1 = 0.45
and uB2 = 0.55, mean that 45% of the stoichiometric flow of B is
injected at the first point and the remaining 55% is added in the
second point.

• Feed temperature of reactant B, TB,feed, has only a minor influence
on the reactor temperature as the reactant B flow only constitutes
20% of the total flow.

• Feed concentration of reactant B, cB,feed, determines together with
qB,feed the amount of B added into the reactor.

• Cooling flow rate, qcool, has fast and simple dynamics to the reactor
temperature, but suffers from highly nonlinear gain, and affects the
heat transfer coefficient h.

• Inlet temperature of cooling water, Tcool, has more linear behavior
than qcool, but suffers from slower actuator dynamics.

Short Description of the Output Variables

• The production rate is defined as the product of the flow rate at
reactor outlet, qr,out, and the outlet concentration of C, cC,out. This
gives the number of moles of substance C produced per unit time.

• The outlet temperature, Tr,out, is often important for downstream
processing. Sometimes Tr,out should be high to maximize the conver-
sion of the reactants. Sometimes it should be low to inhibit further
reaction of by-products. One may then introduce a temperature con-
straint on Tr,out to emphasize that no reaction should occur after the
reactor outlet, for example if the flow enters a storage tank without
any cooling capacity.

• The outlet concentrations of A and B, cA,out and cB,out, should often
be minimized in order to avoid excessive use of either reactant, thus
reducing the need for downstream separation.
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Disturbances

During production there may be disturbances in any of the four feed flows,
see Figure 2.6, entering the plate reactor. All feed flow rates and feed tem-
peratures as well as cooling flow rates and cooling temperatures are mea-
sured on-line, thus enabling feed forward disturbance compensation. In
addition, the flow rates and some inlet temperatures will be individually
controlled with low-level feedback control, thus reducing the risk of any
disturbances entering the plate reactor. Online measurements of the feed
concentrations are, however, only available in special cases. Disturbances
in cA,feed and/or cB,feed may disrupt the stoichiometric relations between
A and B and lead to loss in productivity and conversion. The most dan-
gerous situation is when both cA,feed and cB,feed increase, thus leading to
more heat being released. The temperature sensors will detect this event
and with a model-based observer the disturbance may be estimated.
It may sometimes be difficult to find a clear distinction between a

disturbance and a process uncertainty. An example is fouling inside the
reactor, which will affect the heat transfer capacity and may be seen as
a slowly varying disturbance. Uncertainties in the heat transfer coeffi-
cient may have a similar affect on the heat transfer capacity, especially if
the coefficient is varying with the flow rates. The process uncertainties
are further discussed in connection with the start-up control problem in
Section 5.2.

2.3 Objectives for Process Operation

Before discussing how to improve the design and control of the plate reac-
tor, we have to define the performance variables of the process. In general,
there are three main objectives for the process operation of the plate re-
actor, see e.g. [Edgar and Himmelblau, 1989].

OBJECTIVE 2.1—SAFE PRODUCTION Tr < Tmax
In many applications, a constraint on the reactor temperature Tr < Tmax
can be derived from material limitations, possible by-product formation
or the boiling point for the given reactor pressure. Too high temperatures
may lead to mechanical failures, reduced product quality, or even a ther-
mal runaway situation. It is therefore of the utmost importance to fulfill
the temperature constraints.

OBJECTIVE 2.2—MAXIMIZE CONVERSION AT OUTLET, γ
It is desired to have complete conversion of the reactants A and B to the
desired product C. The focus is to maximize the outlet concentration of
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C, but without having too much excess of either reactant at the outlet.
The reactant conversions, γ A and γ B , can be defined as the ratio between
how much product that was formed and how much that could have been
formed at complete conversion,

γ A =
cC,out

cC,out + cA,out
γ B =

cC,out

cC,out + cB,out
. (2.5)

Note that the conversion is a nonlinear function of the concentrations.
If all reactant has been converted into product, that is, cA,out = 0 and
cB,out = 0, then γ A = γ B = 1, which corresponds to 100% conversion.
This is only possible in a reactor of infinite length. Another limitation for
industrial reactors, is the temperature constraint mentioned above. This
introduces the balance between high reactor temperatures to improve the
conversion and low temperatures to avoid reactor failure.

OBJECTIVE 2.3—MAXIMIZE PRODUCTION RATE, qr ⋅ cC
High conversion is not always a sufficient criteria to find an economi-
cally optimal operating point. A simple way to increase the conversion is
to decrease the flow rate, thus increasing the residence time. However,
this increase of the conversion comes at the price of reduced productivity.
Therefore, the objectives for optimal operation should include maximizing
the production rate, that is, the product of the flow rate and the outlet
concentration of the desired substance C.

OBJECTIVE 2.4—Tmin ≤ Tr,out ≤ Tmax
In some applications it may be desirable to have a minimum and/or max-
imum outlet temperature of the reactor flow to improve conditions for
downstream processing.

These four objectives will now be considered when discussing how the
process design can be optimized and what properties the process model
should capture to allow process analysis.

Characteristics of the Nominal Operating Point

Figure 2.7 plots the steady-state temperature and conversion profiles at
the nominal operating point. The process parameters are given in the Ap-
pendix. The x-axis is the normalized reactor length, where 0 defines the
reactor inlet and 1 the reactor outlet. The two vertical lines indicate the
positions and injection flow rates of reactant B, here uB1 = 0.496, i.e.,
49.6% of the total feed flow rate of B is injected in the first injection point
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Figure 2.7 The steady-state reactor temperature profile (solid), the cooling water
temperature profile (dashed), the conversion profile (dash-dot) and the injection
flow rates (vertical lines at their location). The schematic figure above illustrates
the spatial coordinates of the profiles.

and the remainder 50.4% (uB2 = 0.504) enters through the second injec-
tion point. The two injection flows create a typical temperature profile,
where a temperature maximum is formed after each injection point, due to
the heat release from the exothermic reaction. When most of the injected
B has been consumed, the heat from the reaction decreases and the tem-
perature drops due to the efficient cooling. The purpose of the cooling is
two-fold, firstly to cool so that the maximum temperatures remain below
the safety limit. Secondly, to cool the reactor flow between the injection
points to allow more reactant B to be injected downstream. The conver-
sion profile shows how much of reactant A that has been consumed along
the reactor. After the first injection point, 49.6% of the initial amount of
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A has been consumed and at the reactor outlet 97.9% has been consumed.
The temperature profile of the cooling water is almost horizontal, since
the the heat released from the reaction is absorbed by a very large cooling
flow rate.
The objectives of the process operation can now be visualized in Fig-

ure 2.7. The first objective Tr ≤ Tmax is straight forward to inspect, the
temperature profile should be below a certain constant limit. The second
objective is that the conversion profile at the reactor outlet should be max-
imized or at least larger than some limit. The third objective involves the
reactor flow rate, which is not captured by this figure. However, if the
flow rate is increased, this will change these profiles and affect the first
two objectives. The fourth and final objective is the temperature at the
reactor outlet, which corresponds to the end point of the x-axis.

2.4 Process Design

The design of chemical processes is an enormous field of research itself.
The first step is design of the reaction, where the actual chemistry needs
to be understood, i.e., chemical reaction theory. Secondly, the tempera-
ture, the pressure and the concentration, at which the reaction should
take place, should be determined. Thirdly, the process equipment, such
as pumps, valves and heat exchangers, needed to achieve these proper-
ties are designed. Fourthly, additional process equipment is designed that
will improve the quality or economy of the production, such as distilla-
tion columns or energy integration cycles. Examples of literature in this
area may be [Levenspiel, 1999], [Froment and Bischoff, 1990] and [Fogler,
1992]. Traditionally, the process design and the control design has been
done sequentially. In the recent decades, simultaneous approaches to de-
sign and control have been developed, see e.g. [Kookos and Perkins, 2001]
or [Seferlis and Georgiadis, 2004] and the references therein.

Reactor Configurations

Reactor design and choice of operating point is outside the scope of this
thesis. Nevertheless, it is very important to consider the interplay between
process design, choice of operating point and control design, to avoid de-
signs or operating points that may lead to unnecessarily hard control
problems. On the other hand, with efficient process control, it is possible
to choose designs and operating points that otherwise would be dangerous
or inefficient.
The optimal number of the injection points and cooling zones and their

locations along the reactor will vary depending on the given reaction and
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Figure 2.8 A reactor configuration with two injection points and one cooling zone.
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Figure 2.9 A reactor configuration with five injection points and one cooling zone.
Additional injection points may improve the the production rate.
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Figure 2.10 A reactor configuration with two injection points and two cooling
zones. Additional cooling zones may improve the conversion.

the temperature constraints. Figures 2.8 – 2.10 illustrate three of many
possible process configurations. There are predominantly advantages with
additional injection points and cooling zones, but there are some practical
aspects that set a limit.
Throughout the thesis, the configuration in Figure 2.8 will be used as
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the standard configuration, unless stated otherwise. However, the results
in this thesis can easily be extended to any type of configuration in terms
of injection points and cooling zones.

Multiple Injection Points

There are two main reasons for having multiple injections, improve pro-
ductivity, while respecting temperature constraints, and avoiding by-product
formation.

Improve productivity in presence of constraints It is often not fea-
sible to inject all reactant B at a single injection point, due to temperature
constraints. By distributing the injections, the heat from the exothermic
reaction will also be distributed, thus the cooling capacity can be better
utilized. This enables higher productivity as the production rate often is
limited by the available heat transfer. Figure 2.7 shows the temperature
and conversion profiles along the reactor with two injection points. The
second injection point allows an increase in the production rate with 80%
compared to the single injection case. Figure 2.11 shows the situation
with five injection points. The extra three injection points enable a fur-
ther increase in production rate by additional 25%. The additional gain
for each extra injection point becomes smaller and smaller. The disadvan-
tages with many injection points are the cost associated with more pumps
and sensors and the increased sensitivity for hardware failure. In addi-
tion, to uphold sufficient micro-mixing, there may be a lower limit on how
small flow rate each injection can have.

Improve selectivity despite by-product formation Multiple injec-
tions may also be useful when there are parallel reactions leading to by-
product formation. Assume that the following two reactions occur in the
reactor,

A+ B → C + D (2.6)
B + C → E, (2.7)

where as before C is the desired product and E is the unwanted by-
product. With this reaction scheme, maximum selectivity of C is reached
when the concentration of B is as low as possible, see e.g. [Levenspiel,
1999]. This is achieved by distributing the feed of B among multiple in-
jection points. An extreme case of this is a tubular reactor with membrane
walls, to allow continuous feed along the entire reactor, see [Cougnon et al.,
2006].
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Figure 2.11 Steady-state profiles for the reactor configuration from Figure 2.9.
The reactor temperature profile (solid), the cooling water temperature profile
(dashed), the conversion profile (dash-dot) and the injection flow rates (vertical
lines at their location).

Multiple Cooling Zones

With multiple cooling zones, it is possible to have separate cooling flows
– with different temperatures – to cool different parts of the reactor. The
concept is used for example in polystyrene plants [Vecchio and Petit, 2005],
but the flexible construction of the plate reactor simplifies the use of these
extra degrees of freedom.
With multiple cooling zones it is possible to adapt the cooling to the

current temperature profile along the reactor, thus improving conversion
or productivity, see e.g. [Smets et al., 2002; Logist et al., 2007], where
optimal steady-state temperature profiles for the reactor and the cooling
water are calculated. One example of the impact of two cooling zones is
illustrated in Figure 2.12, where the water temperature in the second
cooling zone is increased to reduce the cooling power to almost zero. This
action leads to higher reactor temperatures, which improves the conver-
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Figure 2.12 Steady-state profiles for the reactor configuration from Figure 2.10.
The reactor temperature profile (solid), the cooling water temperature profile
(dashed), the conversion profile (dash-dot) and the injection flow rates (vertical
lines at their location). Note that the two cooling zones have separate inlet temper-
atures.

sion from 97.9% to 99.2%. The decrease in cooling power can alternatively
be achieved by reducing the cooling flow rate.

2.5 Operating Modes

The plate reactor is a continuous reactor developed for manufacturing
fine chemicals and pharmaceuticals, where the reactions are mixing and
temperature sensitive, either exothermic or endothermic. The focus is on
small to medium scale production. The process will spend most of its
time in nominal operation, but there are also a few discrete operational
modes associated to the start-up and shutdown procedures. Traditional
continuous reactors are often tuned and designed for non-stop operation.
The new reactor concept may allow the plate reactor to replace batch
and semi-batch reactors for some reactions and the operation at higher
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Time 

Shutdown

Start up

Process output

Normal operation

Figure 2.13 A schematic figure of a typical sequence of operation.

temperatures may lead to reduced reaction times. A single reactor unit
may then be used for many different reactions, which may increase the
number of start-ups and shutdowns compared to traditional operation of
continuous reactors.
Furthermore, the start-up and shutdown procedures may be critical for

a successful operation, especially the start-up. In this section, the three
different operation modes of the plate reactor will be briefly described and
the type of control needed in each operating mode, see Figure 2.13. The
control at nominal operation is developed in Chapter 4 and the start-up
control is presented in Chapter 5.

Start-up Control Mode

The start-up phase has to be individually adapted to each chemical reac-
tion. In some cases it will be straightforward, but in many cases it may
probably be the most difficult part of operation for the plate reactor. The
aim is to safely bring the process from initial conditions to the desired
steady-state of nominal operation. The main challenge is that some re-
actions are difficult to start, i.e., the reactor temperature needs to be
raised to reach the ignition point, but after ignition the exothermic reac-
tion needs quickly to be cooled to prevent thermal runaways. During the
start-up, there will be transients in temperature, flow rates and concen-
trations that the control system has to deal with. The process will during
this period have a strongly nonlinear behavior, which any model-based
control has to consider.
The main control objective during start-up is to keep safe reactor tem-

peratures. Second and third in priority are the conversion during start-up
and the time to reach the nominal operating point.
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Nominal Control Mode

In the nominal control mode, the main objectives of the control system
are to ensure safe production by keeping the reactor temperature below
some given safety limit and to achieve optimal conditions inside the plate
reactor, which lead to maximum conversion. The operating point at which
this is achieved may not exactly be known in advance. Off-line calculations
can give initial suggestions, but process uncertainties may result in sub-
optimal conditions or lead to reactor temperatures that are dangerously
high and cause unnecessary process shutdowns. Instead of trial-and-error
open loop control, feedback control can adjust the input variables to com-
pensate for these uncertainties in for example valves and pumps char-
acteristics, heat transfer coefficients or reaction kinetics. Since the plate
reactor will operate most of if its time in this mode, it is crucial that the
resulting operating point gives good performance. Even a small increase in
conversion or productivity will over time give large effects on the economy
of the process.
The control system should also prevent any disturbances outside the

plate reactor to affect the input flows to the plate reactor, for example by
feed forward control or integral action through disturbance estimation.

Shutdown Control Mode

The shutdown mode is activated when the production should be halted.
It should be an orderly and safe shutdown, so that production can be
restarted easily. Emergency shutdown is a different procedure that is out-
side the scope of this work. The shutdown control sequence will have to
be designed specifically for each reaction and reactants. Normally for an
exothermic reaction it would start by closing all the inlet valves of the
secondary reactant and then after some time also close the inlet valve
of the primary reactant. When the flow rate of the secondary reactant
is stopped, a magnetic valve should be switched so that the remaining
product in the plate reactor flows into a buffer tank instead of further
down the production line. Depending on the reactants used, the system
may need to be rinsed before restart.
In many cases, it may be wise to increase cooling during shutdown

operation, to further inhibit the reaction. However, for some reactions the
solubility is highly temperature sensitive. Increased cooling may then lead
to particle formation and clogging inside the reactor. This underlines the
importance of carefully studying the reaction and the properties of the
chemicals when designing the process operations.
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2.6 An Outline of Control System Design

In this chapter, the concept of the novel plate reactor has been presented
and some aspects of its operation discussed. In the remainder of the thesis,
the focus will be on control design for the plate reactor. The methods
presented are developed for the plate reactor, but are straight-forward
applicable to general tubular reactor systems. A proper control system
design is much more than just finding the right controller parameters or
choosing the tuning method. In [Skogestad and Postlethwaite, 2005], they
present a list on suitable steps in control system design.

1. Study the system (process, plant) to be controlled and obtain initial
information about the control objectives.

2. Model the system and simplify the model, if necessary.

3. Scale the variables and analyse the resulting model; determine its
properties.

4. Decide which variables are to be controlled (controlled outputs).
5. Decide on the measurement and manipulated variables; what sen-
sors and actuators will be used and where will they be placed?

6. Select the control configuration.

7. Decide on the type of controller to be used.

8. Decide on performance specification, based on the overall objectives.

9. Design a controller.

10. Analyze the resulting controlled system to see if the specifications
are satisfied; and if they are not satisfied modify the specifications
or the type of controller.

11. Simulate the resulting controlled system, on either a computer or a
pilot plant.

12. Repeat from step 2, if necessary.

13. Choose hardware and software and implement the controller.

14. Test and validate the control system, and tune the controller on-line,
if necessary.

The authors of [Skogestad and Postlethwaite, 2005] argue that text-
books on control usually focus on steps 9 and 10, whereas many real con-
trol systems are designed based on steps 1, 4, 5, 6, 7, 13 and 14 only. They
also mention that the list should perhaps include a step 0, involving the
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Chapter 2. The Process

design of the process equipment itself. This emphasizes that collaboration
between process engineers and control engineers are essential to develop
a reliable and efficient control system.
The aim of this thesis is to approach the control design for the plate

reactor from a realistic and practical point of view, inspired by the list
above. In this chapter, the process concept and objectives have been pre-
sented (step 1). In Chapter 3, a nonlinear process model is developed from
first principles. The model is analyzed to find the process inputs most suit-
able for feedback control (steps 2-5). Chapter 4 presents decentralized and
centralized control methods within the general control structure. Different
controllers are designed and evaluated in simulations (steps 6-11). Chap-
ter 5 repeats these steps, but now applied to the more difficult start-up
control problem.
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3

Modeling and Analysis

There is a wide range of uses for dynamic models, for example, process
design, control design, operator training, process analysis, and hardware-
in-the-loop tests. In this chapter, a process model of the plate reactor is
developed primarily for analysis. The purpose is to understand the physics
of the process and how the process inputs relate to the different opera-
tional objectives defined in Section 2.3. In the list on suitable steps in
control design from Section 2.6, this chapter will deal with steps 2-5.
Models for control design will be discussed in Chapter 4.6.

3.1 Modeling and Simulation

A model of the plate reactor can be derived from first principles, with
equations for heat transfer, reaction kinetics, mass, energy, and chemical
balances, see e.g. [Froment and Bischoff, 1990].
The multiple consecutive horizontal channels inside the plate reactor

in Figure 2.1 have a very small cross-section area compared to the channel
length, and the cross-sectional temperature and concentration gradients
can be neglected. Thus, the reactor may, from a modeling point of view,
be approximated as a 1-dimensional continuous tubular reactor with in-
jections of reactant B along the reactor and a cooling jacket around the
tube.

Partial Differential Equations

The balance equations and the distributed nature of the process lead to
five partial differential equations (PDEs) for the reactor temperature Tr,
the cooling water temperature Tw and the concentrations for the reactants
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and products, cA, cB , and cC, see e.g. [Hangos and Cameron, 2001],

�Tr
�t = D e

�2T
�z2 − vr

�Tr
�z −

4h
drρcp

(Tr − Tw) +
∆H

ρrcp
r

�Tw
�t =− vw

�Tw
�z +

4h
dwρcp

(Tr − Tw)

�cA
�t = Dm

�2cA
�z2 − vr

�cA
�z − r (3.1)

�cB
�t = Dm

�2cB
�z2 − vr

�cB
�z − r

�cC
�t = Dm

�2cC
�z2 − vr

�cC
�z + r

where the reaction rate r is defined by the Arrhenius law, see (2.3). The
variable z is the position along the reactor flow channel, dr is the reactor
tube diameter, dw is the cooling jacket tube diameter and h is the heat
transfer coefficient between reactor fluid and water. The variables vr and
vw represent the fluid velocity through the reactor and the cooling jacket,
respectively. ∆H is the reaction energy term. The density and the specific
heat capacity are denoted by ρ and cp. D e and Dm are the energy and
mass dispersion coefficients, respectively. The very high flow rate of the
cooling water means that the diffusion term for Tw can be neglected. A
complete list of symbols is given in the Appendix.

Model approximations Several approximations have been made to
obtain the model in (3.1). Experiments performed at Chalmers Institute of
Technology, [Bouaifi et al., 2004] and [Andersson et al., 2004], have shown
that perfect mixing conditions are achieved already a very short distance
after injection. This implies that the inhomogeneous micro-mixing can be
disregarded and that the Arrhenius law (2.3) is a valid approximation of
the reaction kinetics.
The pressure dynamics are in this application neglected, i.e., the changes

in mass flow rate are assumed to be instantaneous. The reason is that
the flow rate of reactant A is assumed to be constant at all times and this
flow constitutes roughly 80% of the total reactor flow. The thermal iner-
tia of the metal between the reactor fluid and the water is neglected as
well as the thermal conductivity in the metal in the z-direction. The heat
transfer effect between neighboring reactor flow channels are neglected.
Constant values of the density, specific heat capacities and heat trans-
fer coefficients have been assumed. The density and heat capacity of the
reactor fluid is approximated to the values of the cooling water.
Experiments performed at Alfa Laval have shown that the flow in-

side the reactor can be viewed as close to plug flow [Prat et al., 2005].
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3.1 Modeling and Simulation

The deviation from a perfect plug flow may be approximated as an axial
dispersion along the reactor. The dispersion depends on the flow channel
geometry, back mixing, stagnant zones, fluid properties such as viscosity,
the flow rate and the molecular diffusion. In [Levenspiel, 1999], two model
approximations for axial dispersion are presented, the dispersion model
and the tanks-in-series model. In the dispersion model, all contributions
to intermixing of the fluid may be described by the axial dispersion co-
efficient D . This coefficient is fitted based on residence time distribution
(RTD) analysis. However, the estimated value ofD from the RTD analysis
may be affected by the number of discretization points and the choice of
discretization method.
In the tanks-in-series model, the reactor is approximated with N equal

well-stirred tanks in series. The number of tanks N to be used is fitted
from RTD analysis. According to [Levenspiel, 1999], the dispersion model
has the advantage that it can be used for all kind of flow correlations of
real reactors. On the other hand the tanks-in-series model is simple and
can be extended to any arrangement of compartments. A drawback is that
the number of tanks N is fixed by the RTD analysis, which may limit the
flexibility of the model in simulations.

Simulation of the PDE Model

One part of the model analysis is to learn and understand the dynamics
of the process through simulations. To simulate the PDEs, the infinite di-
mensional system is approximated to a finite dimensional system. There
are many different methods, see e.g. [Hangos and Cameron, 2001], such
as the Finite Difference Method or the Finite Volume Method, where both
time t and space z is discretized into an set of algebraic equations. A
version of this is the Method-of-Lines, [Schiesser, 1991], where only the
spatial coordinate z is discretized and the time derivative remains con-
tinuous, thus leading to a set of ordinary differential equations (ODEs).
Other alternatives are the methods of weighted residuals, which includes
orthogonal collocation and the Galerkin method. These methods are also
known as Finite Elements Methods.
In this thesis, the PDEs are discretized with the Finite Volume Method,

using the Method-of-Lines, see Figure 3.1. The spatial derivatives are
approximated with the backward difference method, yielding a system of
ODEs. Each PDE is approximated with N = 30 control volumes, which is a
compromise between accuracy and computational complexity. In addition,
the RTD analysis of the simulated model when N = 30 indicates that the
axial dispersion may in this case be approximated with the tanks-in-series
model. However, if further accuracy of the model is required, using higher
values of N, the dispersion model should be used. The model equations
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z = 0 z = L

1 2 3 29 30

z

Figure 3.1 In the Finite Volume Method, the reactor is divided into several con-
trol volumes. Here, N = 30 control volumes are used. The PDE is integrated over
each control volume, which results in a series of ODEs. The temperature and con-
centration of each grid point is the average value of the entire control volume.

for the first control volume can be written as

dTr,1

dt
= qA,feed

Vr
TA,feed +

qB1

Vr
TB,feed −

qr,1

Vr
Tr,1

+ hAheat
ρcpVr

(Tw,1 − Tr,1) +
∆H

ρcp
k0e

Ea
RTr,1 cA,1cB,1

dTw,1

dt
= qcool
Vw
Tcool −

qcool

Vw
Tw,1 −

hAheat

ρcpVw
(Tw,1 − Tr,1)

dcA,1

dt
= qA
Vr
cA,feed −

qr,1

Vr
cA,1 − k0e

Ea
RTr,1 cA,1cB,1 (3.2)

dcB,1

dt
= qB1
Vr
cB,feed −

qr,1

Vr
cB,1 − k0e

Ea
RTr,1 cA,1cB,1

dcC,1

dt
= −qr,1

Vr
cC,1 + k0e

Ea
RTr,1 cA,1cB,1.

where the subscript ’1’ represents the variables in control volume 1. In
addition to the variables and parameters defined earlier in the PDEs
(3.1), there are some new variables and parameters associated with the
ODEs. A complete list of symbols is given in the Appendix. Vr is the
volume of one reactor control volume, Vw is the volume of one cooling
water control volume, qr is the reactor flow rate, qcool is the cooling flow
rate, qA,feed is the feed flow rate of reactant A, qB1 is the flow rate of B
into the first injection point. The inlet temperature of the cooling water
is denoted Tcool. As the PDE is approximated with N control volumes,
Tr,Tw,cA,cB and cC are all vectors of size N. The full state vector is
defined as x = [TrT Tw

T cA
T cB

T cC
T ]T of size 5N.

Implementation

The reactor model (3.2) has been implemented both in Matlab/Simulink
[Mathworks, 2007a] and in the Modelica language, [Modelica Association,
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Figure 3.2 Model validation of steady-state temperature profile with water test.
The simulated temperature profiles are from top: TA,feed = 60○C, TA,feed = 45○C,
TA,feed = 31○C and the bottom line is when TA,feed = 22○C. The experimental results
are marked with 2, F, + and ⋆, respectively.

2005] and simulated in Dymola, [Dynasim, 2001].

Model Validation

Data for the validation is taken from initial experiments in Toulouse with
the test unit shown in Figure 2.4, [Prat et al., 2005].

Steady-state validation with hot/cold water To investigate the heat
transfer capabilities, hot water was used as the process fluid A. There
were no injections along the reactor, that is, qB,feed = 0. Figure 3.2 shows
four steady-state temperature profiles for four different feed temperatures
TA,feed. In this experiment, the plate reactor can be seen as a simple
heat exchanger. The cooling inlet temperature Tcool is 13○C and qcool =
0.50 m3/h. The simulated profiles from the model have a very good agree-
ment with the experimental data.
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Figure 3.3 Model validation of steady-state temperature profile with the sodium
thiosulfate reaction. The squares represent the temperatures from the experiment.
The solid line represents the nominal model. The dashed line represents the model
with a parameter deviation of 1% in Ea and ∆H.

Steady-state validation with the sodium thiosulfate reaction

When the heat transfer capacity has been verified, the next step is to
validate the model with the sodium thiosulfate reaction. In the experiment
reported in [Prat et al., 2005], only the first injection point was used. The
feed concentrations were cA,feed = 855 mol/m3 and cB,feed = 6920 mol/m3.
Note that the feed concentrations in this experiment are much lower than
the nominal values used in this thesis, see Appendix, which will lower the
temperature maximum and shift the location of the maximum further
downstream of the injection point compared to the plots in Chapter 2.
The feed temperature and the cooling inlet temperature were both 13○C,
and the cooling flow rate qcool was 0.59 m3/h.
The simulated temperature profile is shown in Figure 3.3. There are

some differences between the simulated profile and the temperatures from
the experiment, especially in the first half of the reactor. By decreasing the
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Reactant B

Cooling water
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cA,feed

cB,feed

qA,feed

qcool

Tcool

qr,out

Tr,out

cA,out

cB,out
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T1 T2

Figure 3.4 The plate reactor as a schematic tubular reactor with four inflows and
one outflow. The inputs and outputs are the temperatures, flow rates and concen-
trations of these flows. The circles with T represent internal temperature sensors.
T1 and T2 represent the peaks of the temperature profile.

values of the model parameters Ea and ∆H with 1%, the simulation model
yielded another temperature profile, this time in better agreement with
the experiment measurements. The conclusion here is that the developed
model can in general represent the behavior of a plate reactor, but strong
nonlinearities may yield significant plant/model mismatch. It is therefore
essential that the designed controller has very good robustness towards
model uncertainty. This will be investigated in Chapters 5 – 7, where the
start-up control problem is solved despite large model uncertainty.

3.2 Model Analysis

In this section, we will analyze the process to gain physical insights and
process knowledge that will be valuable for the control system design. An
intermediate step in the analysis is to obtain information to select the
best input variables for process control.
In the following analysis, we consider a plate reactor configuration

with two injection points and one cooling zone, and the sodium thiosulfate
reaction.

Steady-State Analysis

The process inputs were briefly described in Section 2.2. The main pri-
ority of operation is safety, thus temperature control is very important
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Table 3.1 Scaled steady state gains of the linearized plate reactor model. Each
entry in the table reflects the temperature deviation [○C] from a 1% or 1○C change
in the input variable.

uB1 uB2 TA,feed TB,feed Tcool qcool qA,feed cA,feed cB,feed

T1 1.81 0 1.25 0.16 0.21 -2e-4 -0.87 0.18 1.03

T2 -0.95 0.83 0.15 0.18 1.58 -0.01 0.38 1.09 0.17

and especially control of the maximum temperatures, which often occur
after the injection points. To understand the impact of the process inputs
on the reactor temperatures, the steady-state gains from each input to
the maximum temperatures T1 and T2 after the two injection points were
computed, see Figure 3.4. The process was linearized around the nominal
operating point plotted in Figure 2.7. All gains, except from the tempera-
ture inputs, were scaled with 1% of the steady-state input value. Table 3.1
lists the scaled steady-state gains, that is, each entry in the table reflects
the temperature deviation from a 1% or 1○C change in the input variable.
First of all it can be noted that some input signals has a predominant

effect on either the first or the second temperature, i.e., there is a spa-
tial variation of the gain. For example TA,feed and cB,feed mainly affect T1,
whereas uB2, Tcool, qcool and cA,feed mainly affect T2. Figure 3.5 illustrates
the spatial dependency of some input gains. The extra high gains at the
second injection point depend on the temperature sensitive reaction there,
thus each change of the input will have a larger effect on the reactor tem-
perature there. The gain of uB1 is positive at the first, but negative at
the second injection point. This follows from the stoichiometric relation
at this specific operating point. If more B is injected at the reactor inlet,
the temperature will increase locally, but this will leave less A unreacted
flowing down to the second injection point, thus decreasing the reaction
rate and heat release there. If there had been an excess of A, uB1 would
not have a negative gain there.
Secondly, note that the table data reflects the linearized gains at a

specific operating point. The gains will vary due to the severe nonlinear-
ities of the process, e.g. the stoichiometric relations or the exponentially
temperature dependence of the reaction rate. The nonlinear effects may
cause even the slightest change of any input variable to have significant
impact on the reactor temperature. The gain of the cooling flow rate is
very small for this specific choice of operating point. If a much lower cool-
ing flow rate had been used, the gain of this process input would have
been larger, see also Figure 3.8.
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Figure 3.5 The steady state gain of uB1, uB2, TA,feed and Tcool at various positions
along the reactor.

To further illustrate the spatial effect of the different control inputs,
the steady state profiles along the reactor are studied for a wide range of
input changes. Compare with the nominal operating point from Figure 2.7.

Changes in the reactant injection distribution. Figure 3.6 shows
two different feed distributions of the reactant B. The first case is the
steady-state point when uB1 = 0.40 and uB2 = 0.60, that is, 40 % is in-
jected in the first injection point and 60% of the total flow of B is injected
in the second injection point. In the second case the feed distribution is
changed to 60/40, that is, 60% of the feed is injected at the first injection
point. The figure shows the close relationship between the injection dis-
tribution and heat release distribution, causing a significant difference in
the temperature profiles. When more reactant B is injected at the reactor
inlet, the maximum steady-state temperature increases from 75 to 108○C.
Note also that the position of the temperature maximum moves slightly
upstream. The higher concentration of B leads to faster reaction rate,
thus also higher temperature gradients.
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Figure 3.6 Steady-state temperature profiles along the reactor. The solid line
represents the case when the injection distribution of reactant B is [uB1 uB2] =
[0.40 0.60], i.e., 40% in the first injection point and 60% in the second injection
point compared to the opposite case 60/40 (dashed). Compare with Figure 2.7.

Changes in the cooling temperature. In Figure 3.7, the cooling in-
let temperature has been changed from 20○C to 40○C. Here we can see
that the change in Tcool has a limited influence on the first temperature
maximum compared to the second injection point. With more cooling, the
reaction rate is slower in the second part of the reactor, thus leading to
smaller temperature gradients and a lower conversion. Note that the cool-
ing power, the transferred power out from the reactor, is a linear function
of the temperature difference (Tr − Tcool), see Eq. 3.2, so by manipulat-
ing the cooling temperature, it is easy to control the reactor temperature
around the second temperature maximum.

Changes in the cooling flow rate. In Figure 3.8, three different cool-
ing flow rates has been used, from the nominal flow rate qcool down to
0.05 ⋅ qcool. The heat transfer from the reactor is proportional to the tem-
perature difference between the reactor fluid and the water. If a very
low cooling flow rate is used, 0.05 ⋅ qcool, the cooling water is significantly
heated by the heat release and the temperature difference, thus also the
heat transfer, decreases. To increase cooling, a higher cooling flow rate
is used, 0.2 ⋅ qcool. The higher flow rate can absorb more heat from the
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Figure 3.7 Steady-state temperature profile along the reactor when the inlet tem-
perature of the cooling water Tcool is 20○C (solid) compared to 40○C (dashed). Com-
pare with Figure 2.7. Note the shift in position of the temperature maximum.

reaction, which increases the heat transfer. The third case is the nominal
flow rate qcool. The flow rate is so high that the temperature of the cooling
water remains almost constant. There would be no use to further increase
the flow rate, since the temperature difference, thus also the heat transfer,
would remain constant. This means that the process gain of the cooling
flow rate goes to zero when the flow rate is so large that the cooling wa-
ter temperature remains almost constant. In addition, the heat transfer
coefficient h varies with the cooling flow rate, which introduces more non-
linearities, e.g. when decreasing the cooling flow rate from 1.5 m3/h to
0.2 m3/h, the heat transfer coefficient decreases with 50% [Prat et al.,
2005]. These nonlinearities may introduce difficulties when choosing the
flow rate as control input.

Changes in the feed temperature. In Figure 3.9, the feed temperature
of the primary reactant A is 10○C and 30○C, respectively. The change in
T f eed has a major impact on the first temperature maximum and almost
zero impact on the second maximum. The feed temperature can therefore
be useful to control the temperature in the first section of the plate reactor,
while not affecting the remainder of the reactor.
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Figure 3.8 Steady-state temperature profiles along the reactor when the cooling
flow rate varies from the nominal value qcool (solid), to 0.2 ⋅ qcool (dash-dot) and to
0.05 ⋅ qcool (dashed).
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Figure 3.9 Steady-state temperature profiles along the reactor when the feed
temperature TA,feed is 10○C (solid) compared to 30○C (dashed). Compare with Fig-
ure 2.7.

50
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Dynamic Analysis

For control purposes it is essential to have a thorough knowledge of the
process dynamics. The steady state information from the previous section
is simply not sufficient, especially for exothermic reactions that may lead
to unstable dynamics. It is then vital to choose control variables with
fast dynamics to allow stabilizing control actions, see for example [Stein,
2003].
The plate reactor can be approximated as a tubular reactor, which

is a distributed parameter system described by partial differential equa-
tions. In [Winkin et al., 2000] a dynamical analysis of tubular reactors is
presented within a infinite-dimensional framework. Conditions for observ-
ability, controllability and stability are derived. The nonlinear dynamics
of a non-isothermal tubular reactor with perfect plug flow has one and
only one solution, whereas with axial dispersion the system may have a
single or multiple equilibrium profiles for a given set of control signals,
[Laabissi et al., 2004]. When there exists multiple equilibrium profiles, one
equilibrium profile corresponds to the situation when no reaction occurs,
due to too low reactor temperature. Another equilibrium profile reflects
the situation when almost all reactants have converted at high reactor
temperature, which is the desired operating point for the plate reactor.
Finally, in between these profiles, there is an equilibrium profile, which
is unstable due to the exothermic reaction.
The main dynamics of the plate reactor are the fast chemical reaction

kinetics and the slower heat transfer dynamics, which leads to a poten-
tially stiff system. The residence time of 30 seconds, i.e., the flow time
from inlet to outlet, contributes significantly to the reactor dynamics, es-
pecially if an outlet variable is to be controlled with an inlet variable of
the reactor. The flow time for the cooling water is much shorter, 1 – 2
seconds due to a higher flow rate. This implies that a change in the outlet
temperature is more easily carried out by varying an inlet variable of the
cooling flow than an inlet variable of the reactor flow.
At the nominal operating point, the poles of the linearized model are all

well inside the left half plane, located predominantly along the negative
real axis. The poles and the zeros of the model depend on the discretization
method for the PDEs, here first order backward difference is used.
The data in Table 3.1 indicates what input signals to study further

for use in feedback control, for example, the low gains eliminate TB,feed
and qcool. The inputs of qA, cA,feed and cB,feed are often fixed for a certain
production rate. Figure 3.10 shows the Bode diagrams of the four most
dominant open loop transfer functions from the control inputs, includ-
ing actuator dynamics, to the reactor temperatures T1 and T2 at nominal
operating point. The inputs are scaled using the same factors as in Ta-
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Figure 3.10 Bode diagrams Left: uB1 → T1 (solid), TA,feed → T1 (dashed). Right:
uB2 → T2 (solid) and Tcool → T2 (dashed).

ble 3.1. The four control inputs have a bandwidth1 of 0.7, 0.7, 0.4 and 0.1
rad/s for uB1,uB2,TA,feed and Tcool, respectively. Nonlinear gain and input
limitations may limit the available bandwidth for feedback control. The
injection flow rates have slightly higher bandwidth, partly due to faster
actuator dynamics.
To further investigate the dynamics of the plate reactor, step responses

are plotted in Figure 3.11. The upper plots show the responses to steps in
uB1 and TA,feed and the lower plots show the responses to steps in uB2 and
Tcool. Three different responses are plotted, T1, T2 and cC,out, which is the
outlet concentration of product C. Note that these three variables have dif-
ferent spatial location along the reactor, representing the inlet, the middle
and the outlet, respectively. The flow delays between these locations are
clearly visible in the plots, 15 seconds between the two injection points
and 30 seconds from inlet to outlet.
The simulations in Figure 3.11 show only the linear dynamics around

1Here bandwidth is defined as the frequency at which the gain has dropped to 1/
√
2 of

the steady-state gain.
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Figure 3.11 Typical step responses. Upper plots: The step responses from uB1
(solid) and TA,feed (dashed) to T1,T2 and cC,out, respectively. Lower plots: The step
responses from uB2 (solid) and Tcool (dashed) to T1,T2 and cC,out, respectively. Note
the different scales on the x-axis and the y-axis.

the nominal operating point. For larger transitions, the dynamics can
show highly nonlinear behavior. One example is the dynamics during a
start-up transition, see e.g. Figure 5.3 in Chapter 5.

3.3 Control Variable Selection

The previous section on the steady-state and dynamic analysis has shown
how the different control input candidates affect the states inside the
reactor. In this section, we will briefly summarize the control input candi-
dates, their actuator dynamics and in what context they should be used.
For example, different control objectives, such as start-up or production
optimization, may require different sets of control inputs. Each control in-
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Figure 3.12 The reaction rate [mol/s] at steady-state along the reactor length.
Note the very small regions where the fast reaction actually take place.

put is associated with one of the four inflows to the reactor, see Figure 3.4.

The injection flow rates uB1 and uB2 The feed injection flow rates,
qB1 and qB2, are the injection flow rates of B at the two injection points.
The sum qB1 + qB2 = qB,feed is often fixed to guarantee stoichiometric
conditions. However, the flow distribution between the injection points
remains as a degree of freedom. In the sequel, we will use the scaled
control variables uB1 = qB1/qB,feed and uB2 = qB2/qB,feed, with qB,feed as
the scaling factor. Thus when uB1 +uB2 = 1, stoichiometric amounts of A
and B are being fed into the reactor.
The analysis shows that these injection flow rates have fast and high-

gain effect on the concentration of B, thus also on the reactor temper-
ature. The impact is spatially limited to the regions inside the reactor
where the reaction occurs, see Figure 3.12. The exponentially tempera-
ture dependence of the reaction rate may also severely limit the gain from
the injection flow rates to the reactor temperature. For low temperatures,
the reaction rate, thus also the input gain, is almost zero, but the gain
increases with temperature. Figure 3.13 plots the nonlinear relation be-
tween uB1 and T1, when there is repeated steps of uB1 from 0 to 1% of
the total flow at different temperatures. At low temperatures, almost no
part of the injected B reacts, whereas at higher temperatures, almost
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Figure 3.13 Plot of the nonlinear steady-state gain from uB1 to T1 as a function
of the reactor temperature T1. The gain is computed by performing repeated step
between uB1 = 0 and uB1 = 0.01 at increasing temperatures.

everything is consumed. The steady-state gain increases roughly 700%
from 20○C to 60○C. This nonlinear characteristic will be very important
to consider during reactor start-up, see Chapter 5.
An advantage with the injection flow rates is the fast actuator dynam-

ics. The actuator system, which includes a control valve, a flow sensor
and a low-level feedback controller, may be approximated with a first or-
der system with a time constant of roughly 1 second.
The stoichiometric relation may introduce very sharp nonlinear effects.

For example, as long as there is a shortage of B, uB1+uB2 < 1, the control
input uB2 will have a nominal impact on the reactor temperature, but
when conditions change so that there is an excess of B, i.e., uB1+uB2 > 1,
the gain to temperature drops quickly to zero.
In addition to improve the conversion and avoid shortages of any reac-

tant, it is essential to operate at stoichiometric ideal conditions, that is,
uB1 + uB2 = 1. The easiest way to achieve this is to introduce an explicit
constraint in the control system that uB1 + uB2 = 1. To implement this
constraint, a new control input is defined, the injection feed distribution
uB . Numerically uB = uB1, while uB2 is replaced by 1−uB1. For example,
uB = 0.45 represents 45% of the total injection flow being fed into the first
injection point and the remainder 55% is fed into the second injection flow.
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An increase in uB gives an increase in uB1 and a similar decrease of uB2.
The steady-state gain of uB can be viewed as the following: a 1% increase
in uB leads to an increase of T1 with 1.8○ and a similar 1.8○ decrease of
T2, compare with from Table 3.1. However, if there are some disturbances
in either the feed concentrations or feed flow rates, the sum of uB1 and
uB2 should be adjusted to regain stoichiometric relations.
The constraint uB1+uB2 = 1 will preserve stoichiometric conditions at

steady-state. Dynamically, however, the flow time of 15 seconds between
the injection points introduces complications. A change in the flow rate
at the first injection point should be followed by a corresponding change
at the second injection point first after 15 seconds, to account for the flow
delay. Otherwise the stoichiometric condition will experience a short tran-
sient. This leads to non-causal effects if uB2 should be used in feedback
control, for example, 15 seconds before any change in uB2 is made, a cor-
responding change in uB1 should be made to achieve ideal stoichiometric
conditions at all time. The injection flow rates uB1 and uB2 should be
used with care in feedback control, due to these circumstances. An alter-
native is to use model-based multivariable control to penalize operation
at non-ideal stoichiometric conditions, see Section 4.6.
To conclude, the injection flow rates uB1 and uB2 have in general a

fast, high-gain effect on the concentrations and temperatures in the re-
actor. Its fast dynamic response shows that uB1 and uB2 may be used to
quickly control the reactor temperature, which will be used during the
start-up, see Chapter 5. However, any changes in the injection flow rates
may upset the stoichiometric conditions, so they should be used with care.
With model-based multivariable control, it is easier to consider the stoi-
chiometric conditions.

The feed temperature TA,feed of the primary reactant A Feed tem-
perature of reactant A, TA,feed, mainly influences the temperature at the
inlet of the reactor, see Figure 3.5. The spatial dependence in this figure
may actually be an advantage, since its low gain and flow delay to the
temperatures at the mid-section decreases potential cross-coupling effects
of the multivariable system.
Depending on the operating region of the process, the feed flow may

need to be heated, cooled or both, compared to the ambient temperature.
In this thesis, only heating of the feed is considered. Control of the feed
temperature may be realized with an actuator system, which includes a
small heat exchanger, a control valve, a temperature sensor and a low-level
feedback controller. The feed flow may be heated by either hot water or
steam. The dynamics of the actuator system depend on the heat exchanger
and the temperature of the heating medium and may be approximated by
first order system with a time constant of 2 seconds. However, for large
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setpoint transients, the thermal inertia may cause the control valve to
saturate, which introduces dynamics similar to a rate limit.

The inlet cooling temperature Tcool and flow rate qcool These two
inputs may be manipulated to control the removal of the heat from the
reaction. The response from qcool to the reactor temperature has much
larger nonlinearities than the response from Tcool. The disadvantages with
Tcool is the slower actuator dynamics and the additional process equipment
needed compared to qcool. In this thesis, Tcool will be used as one of the
main control inputs, and qcool will be fixed to a constant value.
A more generic approach would be to use the enthalpy of the cooling

water as a control input and then use a nonlinear combination of Tcool and
qcool to achieve the desired enthalpy.
The cooling water comes from a utility system, where a number of

control valves, pumps and a heat exchanger enable accurate temperature
and flow rate control of the cooling water. The utility system, its con-
trol system and experiments are presented in Chapter 8. The actuator
system, which includes the utility system, sensors and low-level feedback
controllers, may for small set-point changes be approximated by a first
order system with a time constant of 4 seconds. However, for medium and
large set-point changes the control valve may saturate, which introduces
dynamics similar to a rate limit. A mid-ranging control structure is de-
signed to extend the operating range of the utility system and to improve
the control for large set-point transitions, see Chapters 8–9.

The other feed variables, qA,feed, qB,feed, cA,feed and cB,feed These vari-
ables are in general fixed given a desired production rate of the process.
To maintain stoichiometric conditions, the following relation is often fixed:

qA,feedcA,feed = qB,feedcB,feed (3.3)

This stoichiometric constraint and the flow delay introduce unfavorable
dynamics for these inputs to be used for feedback control of the reactor
temperature. On the other hand, they may easily be manipulated to in-
crease/decrease the overall production rate of the reactor. The feed flow
rates are realized with an actuator system, which includes a control valve,
a flow sensor and a low-level feedback controller. The feed concentrations
are often fixed to the concentrations of the storage tanks, but in some
cases it may beneficial to install additional equipment to allow the feed
concentration to be manipulated on-line.

Conclusion

The main control variable of the plate reactor is the inlet temperature of
the cooling water. This variable can effectively control the heat transfer
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Figure 3.14 Block diagram of the feedback control structure. M1 and M2 repre-
sent the actuator dynamics of the control inputs and C1 and C2 represent the local
controllers for each control input. The input signals TB,feed, qcool, cA,feed and cB,feed
may be seen as disturbances.

out from the reactor, thus enabling accurate temperature control. How-
ever, it has limited effect in the first part of the reactor, therefore at least
one additional control input is needed. The feed temperature of the re-
actant is a very suitable control input and is a very good complement to
the cooling temperature, as we will see in Section 4.5. In addition, the
injection flow rates may, if necessary, be used to increase the speed and
flexibility of the control system.
To summarize, the process inputs can be used for feedback control,

controlled to a constant set-point using feedback, open-loop controlled or
not controlled at all, see Figure 3.14. A cascade control structure is used,
where the temperatures and/or concentrations of the plate reactor are
controlled by manipulating set-points to local feedback control loops.

• The feed concentrations cA,feed and cB,feed are given by the concen-
trations in the storage tanks or they may be controlled to constant
set-points with open loop control, since in general no on-line mea-
surements are available. In rare cases, the set-points may be manip-
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ulated to vary the production rate.

• The feed flow rates qA,feed and qB,feed are controlled to constant set-
points with local feedback control. The set-points may be manipu-
lated to vary the production rate.

• The feed temperature of the secondary reactant TB,feed is the ambient
temperature from the storage tank. Its low impact on the reactor
temperature implies that it is of minor interest from control point of
view.

• The cooling water flow rate qcool is assumed to be constant, which is
achieved by balance valves of the utility system. Since the flow rate
is very large, small variations will have a very small impact.

• The remaining four control inputs, uB1,uB2,Tcool and TA,feed, have
local feedback control loops. The set-point to each of these four con-
trollers are used as manipulating variables for the control system of
the plate reactor in a cascade control structure.
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4

Process control

4.1 Introduction

The previous chapters have presented the concept, the model and the
input/output variables of the plate reactor. In this chapter, different con-
trollers are designed based on that knowledge.
For multivariable processes like the plate reactor, there are two main

control design approaches; decentralized control and centralized control.
In decentralized control, the feedback control is implemented with several
single control loops, cascade control loops or mid-ranging control loops
in parallel. In general, each control loop is designed independently or
sequentially, leaving the completed loops in the automatic mode. There
may be decoupling matrices to consider the possible cross-coupling effects
of the multivariable process. PID controllers are the most common control
components when constructing decentralized control structures.
In centralized control, the feedback control is often based on a mul-

tivariable process model. The controller utilizes all measurements and
computes all control inputs simultaneously. With the multivariable pro-
cess model, all cross-coupling effects can be handled implicitly. Examples
of centralized controllers are H∞-controllers, LQR/LQG-controllers and
MPC-controllers.
According to [Skogestad and Postlethwaite, 2005], the most important

reason to apply decentralized control is to save on the modeling effort. Ac-
curate process models are a prerequisite for applying multivariable con-
trol, whereas in decentralized control the controllers are often tuned one
at a time with a minimum of modeling effort. The tuning of a decen-
tralized controller is often easier and may even be carried out online.
Other advantages may be improved integrity and easier commissioning
and maintenance routines, for example after sensor or actuator failures,
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as the decentralized approach allows individual loops to be put in manual.
Finally, a decentralized control structure may often appear transparent
and is likely to receive acceptance from the operator. However, as the
number of objectives and cross-couplings grow, the decentralized control
structure may loose its transparency.
Centralized control may in most cases improve the control perfor-

mance, due to its ability to consider the cross-couplings between the dif-
ferent control inputs. It may also increase the flexibility in the constraint
handling, when there are limits on control inputs or outputs. These im-
provements should be compared with the cost of developing the process
model. A process model may serve many more purposes than control de-
sign alone, such as operator training, control hardware testing, soft sen-
sor development, process/control monitoring, process knowledge database
and economic optimization. On the other hand, there is a large difference
in the model complexity needed for the different purposes, for example, a
simple model for control design and a more detailed model for operator
training.

4.2 Related Work

An extensive review on nonlinear control of chemical processes is given
in [Bequette, 1991]. Numerous design methods, such as internal model
approach, feedback linearization, parameter-scheduling, differential ge-
ometry, reference system synthesis, predictive control and nonlinear opti-
mization are discussed. [Shinskey, 1996] provides a good background on
general process control and decentralized control of multivariable systems.
In [Luyben, 2001] the effect of design and kinetic parameters on the

controllability of a tubular reactor is studied. To control the maximum
temperature inside the reactor, several internal sensors are used and their
data is sent to a selector, which singles out the maximum temperature
for feedback to a PI-controller. The main advantage is the simplicity of
the feedback controller, however it is not always trivial to find a suitable
reference temperature for the reactor that gives optimal conversion. In ad-
dition, the system dynamics may change when there is switching between
different measurements for feedback control.
The paper of [Vecchio and Petit, 2005] presents control strategies for

an industrial tubular reactor for polystyrene production. A set of PI con-
trollers are implemented in a decentralized control structure and each
loop is designed one at a time. To improve the performance, the gains
of the PI controllers are determined with multivariable LQR optimiza-
tion. This approach may be seen as a weighting of the inputs of the PI
controllers based on the process model. Finally, a full multivariable con-
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troller is designed, where nonlinear reference trajectories are generated
by solving off-line a nonlinear dynamic optimization problem. The tubular
reactor has multiple cooling zones, similar to the plate reactor, and the
most suitable sensor location in each cooling zone for feedback control is
discussed.
In [Karafyllis and Daoutidis, 2002] a nonlinear control law based on

feedback linearization for a distributed parameter system is derived. The
aim is to have the maximum temperature inside the reactor follow a given
reference temperature. The manipulating variable is the cooling temper-
ature. The result is verified for both model and measurement errors. Also
here, the choice of reference temperature is not discussed.
In [Bošković and Krstić, 2002], backstepping control is applied to a

class of tubular reactors, described by nonlinear PDEs. The original PDE
model is discretized with the finite difference method to a system of high
order ODEs. The reactor is controlled around an unstable steady state pro-
file by manipulating the feed temperature and feed concentration. How-
ever, this stabilization may require very large control actions that will
prove difficult to implement in a real application.
In [Hoo and Zheng, 2001], low order models for nonlinear distributed

parameter systems are developed for control design by the Karhunen-
Loève (KL) expansion1 , the Eigenfunction (EF) method and the Singular
Value Decomposition (SVD) method. In [Zheng and Hoo, 2004], a data-
driven identification method is presented that yields a low-order model
for control design using KL expansion and the SVD method. Based on the
low-order model, a quadratic dynamic model-based controller is designed
for a tubular reactor system.
In the book of Christofides, [Christofides, 2001], nonlinear and robust

control design for distributed parameter systems is presented, based on
geometric and Lyapunov control methods. In [Dubljevic et al., 2006], pre-
dictive control is applied to a system described by linear parabolic PDEs.
A low-order model is derived from a combination of the Galerkin method
and the concept of inertial manifolds. A model predictive controller is then
designed for the reduced order model.
In [Shang et al., 2004] a novel MPC scheme is presented for control

of a quasi-linear distributed parameter system based on the method of
characteristics. The aim is to control the outlet concentration in a plug-
flow reactor along a given reference by manipulating the cooling flow rate.
The main benefit of the characteristics-based MPC is the reduced compu-
tational load compared to MPC based on finite difference approximations
of the PDEs. However, since an endothermic reaction is studied, the issue
of temperature constraints is not considered. The method is extended in

1Also known as Proper Orthogonal Decomposition
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[Shang et al., 2007] to parabolic systems, where convection dominates over
diffusion.
In [Hudon et al., 2005], an adaptive extremum seeking control law is

presented for a class of nonlinear distributed parameter systems. The con-
trol law is tested on a tubular (plug-flow) reactor with the Williams-Otto
reaction, which is a series of endothermic reactions. The main contribution
is to allow for optimal control, even in the presence of uncertainties, when
the actual optimal operating point is unknown. The method assumes that
there are a finite number of control actuators to implement the calculated
optimal cooling profile.
In [Cougnon et al., 2006] an adaptive extremum seeking control scheme

for an isothermal tubular (plug-flow) reactor is presented. To improve the
selectivity for a series of parallel reactions, the reactant is added continu-
ously along the reactor through membrane walls. Real-time optimization
and an adaptive learning technique are applied to find the unknown op-
timal operating point.

4.3 Optimization of Stationary Operation

The main operational mode of the plate reactor is steady-state operation
at the optimal operating point. This optimal operating point is often com-
puted off-line as a part of the process design procedure.
In [Smets et al., 2002] optimal control theory is used to derive open-loop

analytical solutions for the cooling temperature to maximize the perfor-
mance for a plug flow reactor. The performance criterion is defined as a
combination of minimizing the outlet concentrations of the reactants and
the global heat loss. One of the interesting results is the nearly optimal
solution where a bang-bang cooling temperature profile is used. One cool-
ing temperature is used for the first part of the reactor and after some
switching point, another cooling temperature is used. This fits very well
into the plate reactor framework, where the flexible configuration allows
several different cooling flows to be used. The work has been extended
to tubular reactors with varying dispersion in [Logist et al., 2005a; Lo-
gist et al., 2005b] and [Logist et al., 2007] presents methods for deriving
generic reference temperature profiles.
Note that these computations do not consider any disturbances or un-

certainties. To compensate for this, a feedback controller should be added,
which should track the off-line computed temperature references. Alter-
natively, the optimization may be periodically repeated on-line to find a
new operating point in the presence of various disturbances.
Assume that the nonlinear process model from Chapter 3 is given on

the form ẋ = f(x,u). The steady-state optimal operating problem may
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then be formulated as

min
u
J =min

u
c2A,out + c2B,out (4.1)

subject to

0 = ẋ =f(x,u)
umin ≤ u ≤ umax
xmin ≤ x ≤ xmax,

where possible input and state constraints are defined by umin,umax,xmin
and xmax. The cost function J is here defined as the sum of the outlet
concentrations of the two reactants A and B. By minimizing these outlet
concentrations, we also maximize the reactant conversion (2.5), see Sec-
tion 2.3. The optimization problem (4.1) is solved with the Matlab function
fmincon, [Mathworks, 2007a]. The result was shown in Figure 2.7.

4.4 Feedback Control

Control Structure

Now we focus on the control based on feedback from measurements inside
the reactor. The control is implemented by manipulating set-points usp to
low-level control loops in a cascade control structure, see Figure 4.1. The
superscript ’sp’ is sometimes omitted when the meaning is clear from the
context. The control signals v of the low-level controllers often correspond
to valve positions or pump speeds. The block called “Feedback control” can
represent either a decentralized or a centralized controller. In addition to
the input variables u designated for feedback control actions, there are
other inputs that are either controlled to a constant set-point or uncon-
trolled, compare with Figure 3.14.

Measurements and Sensor Location

The plate reactor is constructed to allow internal sensors, to improve con-
ditions for process monitoring and control. The most frequent sensors are
temperature and pressure sensors, but recent advances in the process
analytical technology (PAT) will lead to more sensors being able to be
mounted inside the reactor.
Sensor location is a very important part of the process design and is

a research field of its own, see e.g. [Harris et al., 1980]. It is important
to locate the sensors around the maximum temperatures, to give ade-
quate process information. However, the location of the maximum tem-
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Figure 4.1 Block diagram of the feedback control structure. The other inputs, not
used for feedback control, are set to constant values or may be seen as disturbances,
see Figure 3.14.

peratures may change depending on the operating point, disturbances or
plant/model mismatch, see e.g. Figures 3.3, 3.6-3.9.
When states within the reactor are not available on-line, a state esti-

mator may recreate the non-measured states, for example a Kalman filter.
This may also be interpreted as a soft sensor, where the value of interest
is computed based on the measurements, the control inputs and a process
model. With the exothermic reactions, the strong correlation between tem-
perature and concentration allows good estimation of the concentration,
based on temperature measurements. The total amount of heat released
from the reaction is also a good indication of the process state. In fact,
for some reactions the process operation may be optimized by seeking the
combination of control inputs that within the constraints maximizes the
heat release from the reaction, thus maximizing the production.

4.5 Decentralized Control

The outline for this section is as follows. The first task is to find the
most suitable input/output pairing, to avoid unnecessary cross-couplings
between the decentralized control loops. The second task is to design the
individual SISO controllers and then analyse the resulting closed loop sys-
tem. The multi-loop controller is verified in simulation for different distur-
bance scenarios. The design procedure is then repeated using alternative
input/output pairings, to see the effect of more significant cross-couplings.
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Furthermore, the section presents methods for how to extend the con-
trol structure for a general process configuration of the plate reactor and
how to take advantage of additional control inputs in the control system.
The section concludes with some remarks on how to deal with temperature
constraints.

Introduction

Let us consider a plate reactor configuration with two injection points,
one cooling zone and the sodium thiosulfate reaction. Furthermore, we
assume that a steady-state optimal operating point has been computed
with the temperature profiles plotted in Figure 4.2. Without online con-
centration measurements or a process model to develop a soft sensor (state
estimator), it is difficult to control the concentrations inside the reactor.
Therefore, we focus initially on temperature control and numerous tem-
perature sensors are available for feedback control.
It is impossible for the feedback control system to achieve perfect track-

ing of the entire temperature profile along the reactor, due to the limited
numbers of actuators and sensors along the reactor. Instead, the focus
is to control T1 and T2, the maximum temperatures after each injection
point, given the reference temperatures T ref1 and T

ref
2 . This will ensure safe

operation and lead to good performance, as the conversion highly depends
on the maximum temperature for this specific reaction.
It is assumed that the temperature sensors T1 and T2 are carefully

placed, for example, after initial experiments have shown where the max-
imum temperatures occurred.

Input/Output Pairing for Decentralized Control

The decentralized control approach does not in general consider possible
cross-coupling effects in the process. It is therefore important to wisely
choose input/output pairing, so that the amount of interaction between
the different control loops is reduced to a minimum. From Section 3.3,
we have four possible control inputs, the injection flow rates uB1 and
uB2, the feed temperature TA,feed and the cooling inlet temperature Tcool.
To emphasize the importance of maintaining stoichiometric conditions in
steady-state, the sum of the injection flow rates is fixed, uB1 + uB2 = 1.
This removes one degree of freedom and in the remainder of this section
we replace the control inputs uB1 and uB2 with the injection feed dis-
tribution uB , where uB1 = uB and uB2 = 1 − uB , see Section 3.3. For
the analysis in this section, a linearization of the nonlinear model from
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Figure 4.2 The steady-state reactor temperature profile (solid), the cooling water
temperature profile (dashed), the conversion profile (dash-dot) and the injection
flow rates (vertical lines at their location)

Chapter 3 yields the transfer function G(s),
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]
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 . (4.2)

To control T1 and T2 independently, it is sufficient to use two of the
three control variables uB , TA,feed and Tcool. An initial screening is made
based on the steady-state gains from Table 3.1. The gains show quite
clearly the impact of each process input on the reactor temperatures. To
obtain further insight what variables to choose, the Relative Gain Array
(RGA) number for different pairings is computed. For other methods, see
for example [van de Wal and de Jager, 2001]. RGA was first presented
in [Bristol, 1966] as a measure of the loop interaction in multivariable
control. An overview of the properties and interpretations of RGA is given
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in [Skogestad and Postlethwaite, 2005]. The RGA number is defined as
the norm of the difference between the RGA matrix Λ for that pairing,
and a pairing matrix. For example, the RGA matrix for the inputs TA,feed
and Tcool can be expressed as

Λ(iω ) =
[

G11 G12

G21 G22

]

. ∗

[

G11 G12

G21 G22

]−T

. (4.3)

In [Skogestad and Postlethwaite, 2005], the RGA number is defined as

RGA number(ω ) =
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
Λ(iω ) −

[

1 0

0 1

]∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
sum

, (4.4)

where the norm is the sum norm, ppAppsum =
∑

i, j pai j p and the pairing
matrix describes a diagonal pairing. The RGA number for each possible
pairing combination is computed for varying frequencies ω . If there is no
or negligible cross-coupling for this pairing, the RGA matrix will be close
to the identity matrix, thus the RGA number becomes very small. A small
RGA number indicates that this pairing is a good candidate for decentral-
ized control. The RGA number for the three best input/output pairings of
the six possible combinations are plotted as a function of frequency ω in
Figure 4.3.
It is clear that pairing TA,feed with T1 and Tcool with T2 leads to the

least cross-coupling for all frequencies. This is as expected as these control
inputs mainly affects the reactor temperature at different spatial coordi-
nates, see Figure 3.5. When the injection feed distribution uB is used in
any pairing, more cross-coupling is present as uB affects both tempera-
ture maxima due to the constraint uB1+uB2 = 1.The peak of the dash-dot
line corresponds to large cross-coupling between uB and TA,feed, and the
frequency of the peak is directly coupled with the flow time between the
reactor inlet and the second injection point.

Control Design

For feedback control design, the following inputs and outputs are used,
see Figure 4.1,

r =
[

T ref1

T ref2

]

, y =
[

T1

T2

]

, usp =
[

T
sp
A,feed

T
sp
cool

]

. (4.5)

Figure 4.4 shows the process and the controller in a flow scheme. Note
the cascade structure, where the primary temperature controllers K11 and
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Figure 4.3 The norm of the difference between the RGA matrix Λ and suitable
pairing matrix, for control variable selection. Solid line is when T1 is controlled by
TA,feed and T2 by Tcool. Dashed line is when T1 is controlled by uB and T2 by Tcool.
Dash-dot line is when T1 is controlled by TA,feed and T2 by uB .

K22 send set-points T
sp
A,feed and T

sp
cool to the local feedback controllers. Each

local controller manipulates a control valve to ensure good tracking. The
heat exchanger components (HEX) are schematic representations of the
actuator systems. In the actual process, the actuator systems may often
be more complex, see for example the detailed description of the cooling
system in Chapter 8.
A linearized input/output representation of the process with the cho-

sen inputs can be written as
[

T1

T2

]

=
[

G11 G12

G21 G22

][

T
sp
A,feed

T
sp
cool

]

, (4.6)

where the transfer functions Gii are linearizations of the nonlinear pro-
cess model from Chapter 3. For control design, low-order approximations
of the transfer functions are identified individually from a series of step
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Figure 4.4 Flow scheme of the decentralized feedback control. The controllers
K11 and K22 (see Equation 4.8) send set-points to the local feedback controllers
in a cascade loop. The controllers are indicated with the symbol TC (temperature
control).

responses on the nonlinear process model, using a least squares method
from [Wallén, 2000]. The transfer functions are approximated using mod-
els of first order plus dead-time, denoted with Ĝii.

[

G11 G12

G21 G22

]

(
[

Ĝ11 Ĝ12

Ĝ21 Ĝ22

]

=
[

1.26
2.39s+1 e

−0.75s 0.21
4.24s+1 e

−0.90s

0.156
5.73s+1 e

−12.8s 1.56
7.73s+1 e

−3.25s

]

(4.7)

Notice the time delays in the system, where the delays between TA,feed and
Tcool to the temperature after the second injection point T2 correspond to
the flow time of the reactor fluid and the cooling fluid, respectively. The
cross-coupling terms G12 and G21 are small in comparison to G11 and
G22, which emphasizes the diagonal dominance of the system matrix and
supports the chosen input/output pairing from Figure 4.3.
The decentralized control is implemented as a diagonal controller K(s),

[

T
sp
A,feed

T
sp
cool

]

=
[

K11 0

0 K22

]

︸ ︷︷ ︸

K

[

T ref1 − T1
T ref2 − T2

]

. (4.8)
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The single-input single-output (SISO) controllers K11(s) and K22(s)
are chosen to be of Proportional-Integral-Derivative (PID) type, see e.g.
[Åström and Hägglund, 2005]. There are several reasons for choosing PID
controllers, first they are easy to implement, second they can easily be
tuned online with a minimum of modeling effort, thirdly they are easily
accepted by the operators as they offer transparent control actions. An-
other alternative would for example be constrained LQ control [Pannoc-
chia et al., 2005], where a simplified model predictive control algorithm is
developed for SISO processes to allow fast sampling time and easy tuning.
The PID controllers can easily be tuned online, for example with au-

tomatic tuning using relay feedback [Hang and Åström, 2002], but here
we aim for the novel AMIGO tuning method, which involves robust loop-
shaping and optimization of the integral gain, see [Åström and Hägglund,
2005]. The AMIGO method is a Ziegler-Nichols replacement, where the
tuning rule gives the controller parameters as explicit functions of the
identified process model parameters. Assume the process is approximated
with system of first order plus dead-time

P(s) = Kp

1+ sT e
−sL, (4.9)

where Kp is the steady state gain, T is the approximated time constant
and L is the time delay. The controller parameters for a PID controller
are then

Kc =
1
Kp

(

0.2+ 0.45T
L

)

(4.10)

Ti =
0.4L+ 0.8T
L++0.1T L (4.11)

Td =
0.5LT
0.3L+ T . (4.12)

where Kc is the controller gain, Ti is the integral time and Td is the
derivative time. These functions have been developed as follows. First,
the controller parameters for 134 different processes2 are found by opti-
mizing the integral gain with a robustness constraint, the so called MIGO3

method, see [Åström and Hägglund, 2005]. Then, approximated correla-
tions (4.10 – 4.12) are found between the optimal controller parameters
and the normalized process parameters, hence the name AMIGO, which
stands for approximate MIGO design. The controller parameters can now

2The only assumption is that the process have essentially monotone step responses, which
is typically encountered in the process industry.
3MIGO = M -constrained integral gain optimization.
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be found using these explicit functions instead of having to carry out the
detailed optimization, which makes this tuning rule as easy to use as the
Ziegler-Nichols methods, but also includes the robustness properties of
the MIGO method.
The AMIGO tuning rule and the associated guidelines suggest the

following PID controllers:

K11(s) =1.30
(

1+ 1
1.68s

+ 0.69s
)

, Kc = 1.30,Ti = 1.68,Td = 0.69

(4.13)

K22(s) =0.81
(

1+ 1
6.05s

+ 2.89s
)

, Kc = 0.81,Ti = 6.05,Td = 2.89

(4.14)

In addition, the PID controllers are implemented with an anti-windup
scheme for absolute and rate constraints and a high-pass filter for the
derivative part. The temperature control of the plate reactor can be re-
alized also with pure PI controllers, but the derivative action allows a
somewhat higher integral gain Kc/Ti, which gives improved performance
during disturbances.
The open and closed loop system may now be analyzed in terms of

stability and robustness. Figure 4.5 shows the Bode plots of the open loop
compensated system. For G11(s)K11(s), the phase margin is 70.2 degrees
at 0.63 rad/s, there is an infinite amplitude margin and the delay margin
is 1.9 seconds. For G22(s)K22(s), the phase margin is 65.5 degrees at 0.23
rad/s, the amplitude margin is 10.5 at 1.77 rad/s and the delay margin
is 4.9 seconds.
The sensitivity function S is defined as the transfer function of the

closed loop system from output disturbance signals to the temperature
measurement signals T1 and T2,

S = [I+GK]−1. (4.15)

The frequency response of S is plotted in Figure 4.6. The figure shows the
singular values of the frequency response, since the closed loop system
is a MIMO system. The upper line shows the maximum singular value
and the lower line shows the minimum singular value. For more details
on frequency response for multivariable systems, see e.g. [Skogestad and
Postlethwaite, 2005]. The integral action of the PID controllers leads to
perfect attenuation of constant disturbances in steady-state. The feedback
control leads to a closed loop bandwidth around ω b = 0.2 rad/s and all
disturbances of lower frequencies will be attenuated, regardless of input
direction. The peak of the sensitivity function is around 1.23, which indi-
cates a fair amount of robustness.
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Figure 4.5 Bode plots of the compensated open loop system with G11(s)K11(s)
(solid line) and G22(s)K22(s) (dashed line).

Simulations

The PID controllers are implemented as discrete-time controllers in Mat-
lab/Simulink. The controllers are verified against the nonlinear model of
the plate reactor developed in Section 3.1, including actuator models. The
choice of sampling time is based on the cross-over frequency of the open
loop compensated system in Figure 4.5, where ω c ( 0.2−0.6 rad/s. A few
guidelines on how to select sampling time are given in [Åström and Wit-
tenmark, 1997], e.g. Tsω c ( 0.15 − 0.50. This results in a recommended
sampling time of 0.2 – 0.8 seconds. A sampling time of Ts = 0.10 s is
chosen to improve the disturbance rejection. The closed loop system is
evaluated in simulations for different disturbance scenarios. The feed-
back controller should keep the temperatures T1 and T2 at the constant
reference temperature 90○C, despite any disturbances.

Step disturbance A constant load disturbance is applied, to test the
controller and excite possible cross-couplings. The first disturbance occurs
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Figure 4.6 Magnitude plot of the sensitivity function S for the closed loop system
showing the maximum and minimum singular values σmax and σmin.

at the first injection point at t = 70 s, then later at the second injection
point at t = 160 s. In the simulation model, the disturbances d(t) are
implemented as a step function acting on the reactor temperature deriva-
tives in the 1st and 16th control volume, that is, the control volumes in
which reactant B is being injected, compare with (3.2),

dTr,1

dt
= f1(Tr,Tw, cA, cB,u) +

d1

ρcpVr
(4.16)

dTr,16

dt
= f16(Tr ,Tw, cA, cB ,u) +

d2

ρcpVr
(4.17)

d1 =
{

0 t ≤ 70 s;
100 J/s t > 70 s;

d2 =
{

0 t ≤ 160 s;
100 J/s t > 160 s;

(4.18)

where ρ and cp are the density and heat capacity of the reactor fluid and
Vr is the volume of one reactor control volume. The load disturbances d
can be viewed as a step increase of 100 J/s in the heat release. The load
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Figure 4.7 Simulated response for step disturbance steps. Upper plot: The first
load disturbance affects T1 (solid) at t = 70 s. The second load disturbance affects
T2 (dashed) at t = 160 s. The dash-dotted lines represent the uncontrolled response.
There is almost no interaction between the two control loops. Lower plot: The control
inputs TA,feed (solid) and Tcool (dashed).

disturbances would increase the reactor temperatures around 2.6○C if no
feedback control is applied.
Figure 4.7 shows the closed loop response. The interconnection be-

tween the two independent control loops is negligible. The control error
in the undisturbed control loop remains below 0.1○C during each step dis-
turbance. The integral part of each PID controller guarantees zero error
in steady-state. The AMIGO tuning gives the closed loop system fast and
well-dampened responses. The disturbance at the second injection point
is attenuated slightly slower, as the slower input dynamics and the longer
time delay of the Tcool input require a more cautious tuning of the Tcool-
controller than the TA,feed-controller.

Ramp disturbance Figure 4.8 shows another disturbance scenario,
where ramp disturbances in the feed concentrations cA,feed and cB,feed lead
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to 5% more heat being released from the reaction. This results in higher
temperatures at the injection points, where the main part of the reaction
occurs. The disturbance is implemented as

cA,feed =







cnomA,feed t ≤ 100 s;
(

1+ 0.05(t−100)
40

)

cnomA,feed 100 ≤ t < 140 s;
1.05cnomA,feed t ≥ 140 s;

(4.19)

with similar equations for cB,feed. The uncontrolled response gives reac-
tor temperatures close to 96○. With decentralized control using TA,feed and
Tcool, the temperatures remain below 91○. The increase in T1 is quickly
stopped and its control error remains constant during the ramp distur-
bance. T2 has a larger control error during the ramp disturbance, due
to warmer reactor fluid flowing down from T1 at t = 115 s acting as
an additional disturbance. When the ramp disturbances converge to their
new constant value at t = 140 s, the reactor temperatures return to their
set-points. The feed concentration disturbances do not excite any cross-
couplings as the disturbances affect both control loops simultaneously.

Another input/output pairing The step disturbance scenario from
Figure 4.7 is repeated for another input/output pairing, where T1 is now
controlled by the feed injection distribution uB and T2 is again controlled
by the cooling temperature Tcool. The control design is repeated following
the same steps described above. The purpose is to investigate how the per-
formance of the decentralized controller change when the control inputs
are more closely coupled.
Figure 4.9 shows the simulation results of the step disturbance. We

can clearly see a one directional cross-coupling between the two control
loops. When the step disturbance occurs at the first injection at t = 70 s,
the feed injection of B has to be redistributed from the first to the sec-
ond injection point, to keep the reactor temperature T1 at the reference.
The redistributed flow of reactant B will cause more heat being released
at the second injection point, thus forcing the second controller to ma-
nipulate Tcool to control T2. So this local disturbance effects both control
loops through the cross-couplings of the inputs. During the second load
disturbance the effect of the control action in cooling temperature Tcool
has a very small effect on T1, i.e., the interconnection in this direction
is very weak. The process can therefore be approximated as almost tri-
angular. To compensate for this triangular structure, a decoupler may be
designed, which may improve the performance.
The drawback with this input/output pairing is that one of the control

inputs, uB simply redistributes the heat, whereas the second control input
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Figure 4.8 Ramp disturbance in cA,feed and cB,feed, which leads to more heat being
released at both injection points simultaneously. Upper plot: T1 (solid), T2 (dashed).
Lower plot: TA,feed (solid), Tcool (dashed).

Tcool can actually increase the heat removal. Compare with the first in-
put/output pairing, where both TA,feed and Tcool can independently control
how much heat that may be absorbed or transferred away. This disadvan-
tage may also be confirmed in the ramp disturbance scenario, where the
uB − Tcool pairing has deteriorated performance.

Additional control inputs So far two of the three control inputs have
been used at the same time. However, in some cases it would be beneficial
to exploit all three inputs to control the reactor temperatures T1 and T2.
It is non-trivial how to exploit this extra flexibility within the framework
of a decentralized controller.
One example may be to start with the controller defined in (4.8), with

TA,feed and Tcool as primary control inputs, and use the injection flow dis-
tribution uB as an extra degree of freedom when either of these primary
inputs are near saturation. For example, if TA,feed decreases below some
threshold and approaches its limit, the feed of reactant B may be redis-
tributed to the second injection point, thus reducing the risk of saturation.
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Figure 4.9 Simulated response for load disturbance steps using the uB/Tcool-
pairing. Here the two control loops have a significant one-way interconnection. Up-
per plot: T1 (solid), T2 (dashed). Lower plot: TA,feed (solid), Tcool (dashed).

Extensions of the Control Structure

The flexible configuration of the plate reactor allows multiple injection
points and cooling zones. It is therefore necessary to discuss how the de-
centralized control structure may be adapted to fit various configurations,
besides the previously presented with two injection points and one cooling
zone. Furthermore, the decentralized control structure should be extend-
able to allow additional control inputs and measurements to be used.

Control structures for a general process configuration In Sec-
tion 2.4, the flexible configuration of the plate reactor was presented. So
far there have been two injection points and one cooling zone. Assume now
that the plate reactor has five injection points and five cooling zones, see
Figure 4.10. In this configuration, T1 . . .T5 denote the temperatures at the
five injection points and Tcool,1 . . .Tcool,5 denote the inlet temperatures of
the cooling water for the five independent cooling zones. With additional
injection points, it is possible to increase the throughput in steady-state
with at least 25%, since the heat transfer capacity of the reactor is better
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Figure 4.10 The plate reactor with five injection points and five independent
cooling zones.

utilized. Subsequently, 25% more heat is being removed from the reaction.
The question is now how to adapt the decentralized control scheme to this
process configuration.
The heat from the reaction at each injection point will result in a reac-

tor temperature profile with five local temperature maxima. The objective
of the feedback control is to control these temperatures to a given reference
temperature. A straight forward extension of the previous control scheme
is to close the loop around each temperature maximum and design five de-
centralized control loops, see Figure 4.11. The first temperature maximum
is controlled by the feed temperature TA,feed. The remaining temperature
maxima are controlled by the inlet temperatures of the individual cooling
zones. The inlet temperature of the last cooling zone may be manipulated
to control the outlet temperature of the reactor fluid, according to spec-
ifications from downstream processing. Each control loop will affect the
other control loops downstream, but not the loops upstream, except for
the weak cross-coupling between the feed temperature loop and the first
cooling zone loop. The injection flow rate in the first injection point is
determined to be 35% of the total feed of B, 17% in the second and third,
16% in the fourth and 15% of the total feed is added in the fifth injection
point, that is, [uB1 uB2 uB3 uB4 uB5]T = [0.35 0.17 0.17 0.16 0.15]T .
The control design is repeated following the same steps described

above. It is worth noting that the gains from the five cooling tempera-
tures to the designated reactor temperatures are roughly one-third of the
gain in previous configuration, see (4.6) and (4.7), since each cooling zone
here is smaller. In addition, the potential for interactions is larger, since
the actuators are placed closer to each other, thus having a higher impact
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Figure 4.11 Closed loop control of the reactor temperatures. The controllers are
indicated with the symbol TC (temperature control). The flow valve at each cooling
zone is a symbolic representation of an arbitrary actuator type.

on its downstream neighbors. However, the dynamics between control in-
put and controlled output is also faster, which allows for fast and accurate
temperature control. The resulting six inputs six outputs closed loop sys-
tem is analyzed as previous with the multivariable sensitivity function S
defined in (4.15). The maximum gain for all input directions is around
1.40 at 0.3 rad/s, see Figure 4.12.
The load disturbance scenario is repeated, now with step disturbances

of 100 J/s at the first and third injection point, see Figure 4.13. The lower
plot shows the control actions of the feed temperature and the different
cooling temperatures, where the subscript i in Tcool,i indicates the number
of the cooling zone starting from left in Figure 4.11. The disturbance is
quickly attenuated. The effect downstream of the disturbance is small
at the third injection point (at t = 160 s) and even smaller at the first
injection point (at t = 60 s).
The ramp disturbance scenario is also investigated, see Figure 4.14.

The control error is at most 0.2○C, which is lower than for the original
configuration. The faster input dynamics and less time delay allow more
aggressive tuning with the AMIGO method, given a fixed robustness mar-
gin in terms of the sensitivity function. In addition, the effect of the ramp
disturbance is smaller, since the feed disturbance is distributed among
five injection points instead of two injection points.

Feed-forward control The control loops in Figure 4.11 use local mea-
surements for feedback control. The configuration of the process allows
easily feed forward connections, where the temperature sensor upstream
of a control loop may provide information about incoming disturbances.
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Figure 4.12 Magnitude plot of the sensitivity function S for the closed loop system
with five injections and five cooling zones. The lines represent the maximum and
minimum singular values, σmax and σmin.

The flow time between each sensor is around 4-5 seconds, which offers
plenty of time to compensate for disturbances using feed forward signals
to improve performance. In this specific case for the plate reactor, standard
feedback control is sufficient. In addition to the feed forward signal from
the sensor, there is also a possibility of feed forward from the controller
upstream. Eventually, the decentralized control structure using feed for-
ward connections from both sensors and actuators have more resemblance
with centralized multivariable control than the original decentralized con-
trol scheme. Adding more information to each control loop may increase
the performance, but may also introduce increased sensitivity to model
uncertainty.

Considering temperature constraints So far the controller has fo-
cused on tracking given reference temperatures. For some applications,
there will be a safety constraint on the reactor temperature Tr ≤ Tmax. The
constraint can be derived from material limitations, possible by-product
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Figure 4.13 Simulated response for load disturbance steps with five injections
and five cooling zones. The disturbances enter at the first (T1) and the third (T3)
injection point, respectively.

formation or the boiling point for the given reactor pressure. Too high
temperatures may lead to mechanical failures, reduced product quality
or even a thermal runaway situation. Violations in the temperature con-
straints may provoke unnecessary and expensive emergency shutdowns.
It is non-trivial how to include temperature constraint in the decen-

tralized control structure presented above. Constraint handling in decen-
tralized control is often managed by choosing a nominal operating point
that gives a large margin to the constraint, mainly because of the lack
of reliable constraint handling. This may be very inefficient. One alter-
native is to have gain scheduling of the controller parameters, where the
controller gain increases as the temperature approaches the constraint
limit.
Another alternative is to extended the control structure with additional

control inputs. In the plate reactor application, the reactor temperatures
are normally controlled by the feed temperature and the cooling tempera-
tures. However, when a reactor temperature increases and approaches the
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Figure 4.14 Simulated response for ramp disturbance steps with five injections
and five cooling zones. The disturbance affect all five injection points simultaneously.

constraint, the control actions of TA,feed or Tcool,i are usually not sufficiently
fast. Therefore, the corresponding injection flow rate may be decreased
and that will very quickly reduce the heat release from the reaction and
the reactor temperature to avoid violating the constraint.
An example: Assume the plate reactor has five injection points and

five cooling zones. Six feedback loops are constructed as in Figure 4.11.
The nominal temperature reference is T ref = 90○C. The reactor temper-
ature is limited to Tmax = 92○C. The objective is to control the reactor
temperature at 90○ and to stay below the limit at all times.
To improve the constraint handling in the plate reactor, the injection

flow rates are also manipulated, but only when the temperature is close
to the constraint. The idea is that when the temperature increases above
a certain threshold and approaches the limit, the feed injection is quickly
decreased. Meanwhile, the ordinary temperature controller using TA,feed
or Tcool,i also takes action to decrease the temperature. As soon as the
temperature decreases below the threshold, the injection flow rate can
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slowly return to its nominal value, to ensure stoichiometric conditions in
steady-state. This behavior can be implemented with the following injec-
tion controller for uBi and Ti, where i = 1 . . . 5 corresponds to the five
injection points,

uBi = unomBi − unomBi κ
τ s+ τ + 1

τ s+ 1 ⋅max(0,Ti − T threshold). (4.20)

The injection controller is activated as soon as the reactor temperature
Ti > T threshold, where the threshold is set the 91○C, to have time to avoid
crossing the limit at 92○C. The max-operator ensures that the injection
flow remains bounded by its nominal value, uBi ≤ unomBi . The gain κ defines
the high-frequency gain and τ is the time constant with which the injection
flow rate returns to its nominal value. In this example, κ = 0.5 and
τ = 10 s. The choice of τ should be correlated to the cross-over frequency
of the temperature controller, which is ω c ( 0.20 rad/s, see Figure 4.5.
Figure 4.15 shows the closed loop response of the combined tempera-

ture control and constraint handling together with the open loop response
and the response using temperature control alone. A step disturbance of
200 J/s occurs at t = 60 s in the third injection point, i.e., the third
injection flow rate will be manipulated to improve the constraint han-
dling. The nominal flow rate unomB3 = 0.17, that is, 17% of the total feed of
B is injected here. As soon as the temperature T3 passes the threshold
at 91○C, the injection flow rate uB3 is decreased. Meanwhile, the stan-
dard feedback loop manipulates Tcool,2 to achieve temperature tracking at
T ref = 90○C. Due to these actions, the reactor temperature remains be-
low the limit, Tmax = 92○C. The following undershoot and overshoot in
temperature come from the combined actions of the two control inputs
working independently in parallel. A feed forward signal from the injec-
tion controller to the temperature controller may decrease the under- and
overshoot. The main drawback with this method is the lack of information
sharing between the two control loops. Each loop does not know what the
other loop is actuating. When operating closer to the constraints, central-
ized information becomes more and more essential. This leads us to the
centralized controllers in the next section.

Summary and Conclusions

Decentralized control may successfully control the reactor temperature
inside the plate reactor. Using system analysis and choosing the most
suitable input/output pairing, for example through RGA, may give de-
centralized control loops with lower cross-couplings, which may improve
the performance compared to other pairings. For the plate reactor, the
injection flow rates are very good for temperature control, but may up-
set the stoichiometric balances. If stoichiometric constraints are enforced,
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Figure 4.15 Constraint handling with decentralized control for a step disturbance
at the third injection point. Upper plot: Reactor temperature T3. The combination of
feedback control and constraint handling (solid). For comparison, the uncontrolled
response (dash-dot) and feedback control using only Tcool,2 (dashed). Lower plot:
Control inputs of Tcool,2 (solid) and uB3 (dashed) for the combined feedback and
constraint handling case.

the cross-couplings between the control inputs increase. The most suitable
control inputs were the feed temperature and the cooling temperatures,
which induce very little cross-coupling.
It is recommended to consider the implications of the process design on

the control design already in an early development stage. It is important
to build the process to facilitate the feedback control of the plate reactor
at stationary operation.
It is difficult to handle temperature constraints in a decentralized con-

trol structure. When operating closer to the constraints, the control actions
gets larger to avoid the constraints, which may excite cross-couplings and
even lead to instability. When temperature constraints are of great impor-
tance, other control methods that can explicitly handle constraints may
be considered, e.g. MPC. In this case, the combined temperature and con-
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straint handling controller may be replaced by a two-input single-output
MPC controller.
Finally, the decentralized control structure can be extended with ad-

ditional inputs, outputs, feed forward connections, decouplers and special
controllers handling state constraints. But then the controller has more
resemblance with a centralized controller than its original decentralized
nature. It may then be worthwhile to consider a centralized control ap-
proach to take advantage of the multivariable capabilities of e.g. a multi-
input multi-output MPC controller.

4.6 Centralized Control

In the previous section, a decentralized controller was designed using PID
controllers and evaluated in simulations. The result was good for processes
with low cross-coupling. When the inputs of the process have more cross-
coupling, the performance of the decentralized controller may decrease.
Furthermore, it is non-trivial how to extend the control structure with
additional control inputs or to handle state constraints.
The outline for this section is as follows. First, the model used for

control design is presented. Then the state and disturbance observer is
designed to achieve accurate estimation and integral action. Thereafter,
the focus is on temperature control of the plate reactor using MPC. Fi-
nally, concentration measurements enable control of the stoichiometric
conditions inside the reactor and it is demonstrated how the MPC con-
troller can be designed to combine temperature and stoichiometric control
objectives.

Introduction

In this section, an MPC controller will be designed to control the plate
reactor around a nominal operating point. A few control methods were
briefly reviewed in Section 4.2. The MPC approach is chosen, since it
may take advantage of multiple inputs multiple outputs (MIMO) models,
offers explicit handling of input and state constraints and is becoming
well known in the process industry.
MPC relies on the receding horizon principle, see e.g. [Maciejowski,

2002]. The controller solves, at each sampling instant, a finite horizon
optimal control problem. Only the first value of the optimal control vari-
able solution is applied and the remaining solution is discarded. The same
procedure is then repeated at each sampling instant, and the prediction
horizon is shifted forward one step. Hence, the name receding horizon
control.
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The MPC algorithms used in this section come from the software pack-
age MPCtools, [Åkesson, 2006]. It is free software, based on the standard
Matlab language, without any other additional toolboxes required and
has been developed at the Department of Automatic Control, Lund Uni-
versity. For scenarios with temperature constraints, the controller has
been implemented using the algorithms from the MPC toolbox in Matlab
[Mathworks, 2007b], due to its improved soft constraint handling.

Models for Control Design

There are numerous approaches to apply the MPC concept on tubular re-
actors. The main difference is what model structure to use when approx-
imating the PDEs defining the system, e.g. finite differences, the method
of characteristics [Shang et al., 2007], proper orthogonal decomposition or
the SVD method [Hoo and Zheng, 2001]. In these papers, the low-order
model approximates the PDE model and the controller is designed based
on the low-order model.
A nonlinear model of the plate reactor and the reaction kinetics was

derived from first principles in Chapter 3. At first, consider a plate reactor
with two injection points and one cooling zone. A linear MPC controller
is developed based on notations from [Maciejowski, 2002] and [Åkesson,
2003]. The nonlinear model is linearized around some nominal operat-
ing point (x0,u0). The linear system is sampled with Ts = 0.5 seconds
to a discrete-time system. The choice of sampling time is based on the
cross-over frequency of the open loop compensated system in Figure 4.5,
where ω c ( 0.2 − 0.6 rad/s. A few guidelines on how to select sampling
time are given in [Åström and Wittenmark, 1997], e.g. Tsω c ( 0.15−0.50.
This results in a recommended sampling time of 0.2 – 0.8 seconds. A
short sampling time increases the performance to reject disturbances and
follow setpoint changes. On the other hand, shorter sampling time gives
less time for computations and it may require a longer prediction horizon,
which increases the computational requirement of the MPC. This should
be compared to the decentralized controller in the previous section, where
the controller was sampled with Ts = 0.1 s, since there were no computa-
tional limitations.
The process model can be defined as

x(k+ 1) = Ax(k) +Busp(k) (4.21)

y(k) =
[

yz(k)
ya(k)

]

=
[

Cz

Ca

]

x(k) = Cyx(k) (4.22)

where x is the state vector and usp is the control input vector. The control
inputs are used as set-points to the low-level feedback controllers, hence
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the superscript ’sp’. In the rest of this section, the superscript is omitted
for clarity, when the meaning is clear from the context. The measurement
vector y is divided into yz, which is the measured controlled output vector
and ya, which is the vector with additional measured, but not controlled,
outputs.
As described in Section 3.1, the plate reactor model is discretized into

n = 30 control volumes. There are five states in each control volume, the
temperature in the reactor and in the cooling water and the concentrations
of the two reactants and one of the products. In addition, there are extra
states associated with the actuator dynamics for each control input. The
state vector x can be written as

x =
[

Tr
T Tw

T cA
T cB

T cC
T xTact

]T

, (4.23)

where Tr,Tw,cA,cB and cC are all vectors of size N and xact represents
the actuator states. The actuator models for the feed temperature TA,feed
and the feed injection flows uBi are each approximated with a first order
system, whereas the actuator for the cooling water Tcool is approximated
with a second order system. In total, the linear model has 155 states,
including the actuator models. The reactant injections are described by
injections into the 1st and 16th control volume.

State and Disturbance Estimation

In MPC, full state feedback is assumed and since the concentrations are
not possible to measure, state estimation is required. In addition, there
are process disturbances, measurement noises and model errors that need
to be considered. Traditionally, the process model is augmented with a dis-
turbance model that represents the lumped effect of plant-model mismatch
and/or unmodeled disturbances. The disturbance models have often inte-
grating states acting on the control inputs, the measured outputs, the
states of the process or any mix of these. The choice of disturbance model
is a very important part of the control design and tuning and will have
a direct impact on the transient and steady-state behavior of the closed
loop system.
In this thesis, we use the following nomenclature. When integrating

disturbances are added to the control inputs, we have an input disturbance
model. When integrating disturbances are added only to the measured
outputs we have an output disturbance model and finally if integrating
disturbances are added directly to the derivatives of the process states,
we have a state disturbance model.
In [Pannocchia and Rawlings, 2003], necessary and sufficient condi-

tions on the disturbance models to achieve offset-free model predictive
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control are derived. It is for example not sufficient to add one integrating
disturbance to each controlled output, when there are additional outputs
measured. Instead, it is required to have a number of integrating distur-
bances equal to the number of measured variables. In [Pannocchia, 2003],
different disturbance models for MPC are investigated to improve the ro-
bustness of the closed loop system. In [Åkesson and Hagander, 2003], a
disturbance observer is developed for non-square processes to provide in-
tegral action when the number of measured outputs exceeds the number
of control inputs. In addition to disturbance states on the control inputs,
the method in [Åkesson and Hagander, 2003] suggests adding disturbance
states acting on the measured – but not controlled – outputs.
The equations for the linear Kalman Filter with this disturbance model

can then be written as







˙̂x
˙̂
da
˙̂
di
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A 0 Bd
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Be

u+K(y − ŷ) (4.24)

[

ŷz

ŷa

]

=
[

Cz 0 0

Ca I 0

]

︸ ︷︷ ︸

Ce






x̂

d̂a

d̂i




 (4.25)

where x̂ is the estimated state vector, d̂a is the estimated disturbance vec-
tor acting on the measured uncontrolled output and d̂i is the estimated
disturbance vector acting on the control inputs, compare with (4.21)-
(4.22). The matrix Bd determines how the disturbance states affect the
process states, which will be different depending on the chosen distur-
bance model. Here, we consider first the input disturbance model, hence
Bd = B. The estimated measurements are divided into two vectors, the
controlled outputs ŷz and the uncontrolled outputs ŷa. The Kalman filter
gain K is given as the solution of the following Riccati equation

K = (AePCeT )(CePCeT + V)−1 (4.26)
P = AePAeT +W− (AePCeT)(CePCeT + V)−1(AePCeT ), (4.27)

where W represents the covariance of the noise on the process states
and the extra disturbance states and V represents the covariance of the
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measurement noise. Here, we choose

W =
[

0.01 ⋅ I1 0

0 100 ⋅ I2

]

, V = I3, (4.28)

where I1 and I2 have sizes matching the process states and the distur-
bance states, respectively. I3 has the size of the number of measurements.
The chosen weights on W and V emphasize that there is low noise on the
process state, high noise on the disturbance states and medium noise on
the measurements. The Kalman filter with the disturbance observer de-
scribed above is included in the MPC formulations in the software package
MPCtools [Åkesson, 2006].

Temperature Control

Similarly to the decentralized control, the temperatures after the two in-
jection points T1 and T2 are to be controlled, tracking a given reference
temperature. In addition, there are also measurements of the inlet and
outlet temperature of the cooling water, here approximated with Tw,1 and
Tw,30, where the index refers to the 1st and 30th control volume. The
feed temperature TA,feed and the cooling temperature Tcool are chosen as
control inputs. The flow scheme in Figure 4.16 shows the centralized con-
trol structure and the plate reactor. The inputs, outputs and disturbance
states are defined as

r = [T ref1 T ref2 ]T , yz = Czx = [T1 T2]T , ya = Cax = [Tw,1 Tw,30]T
(4.29)

u = [TA,feed Tcool]T , d̂a = [d̂Tw1 d̂Tw30]T , d̂i = [d̂Tfeed d̂Tcool]T ,
(4.30)

where the disturbing states d̂a and d̂i are added to the measured, but not
controlled, outputs and the control inputs, respectively.

The cost function and controller parameters The cost function for
the MPC formulation can be written as

V (k) =
Hp∑

i=1
qŷz(k+ ipk) − r̂(k+ ipk)q2Q +

Hu−1∑

i=0
q∆û(k+ ipk)q2R, (4.31)

where ŷz is the vector of the predicted controlled outputs, r̂ is the vector of
the predicted reference values and ∆û is the vector of the predicted control
input changes. Hp is the prediction horizon, Hu is the control horizon, Q
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Figure 4.16 Flow scheme of the centralized control and estimation. The MPC
controller send set-points to the local feedback controllers in a cascade loop. The
centralized controller can easily take advantage of additional measurements. Com-
pare with the decentralized control structure in Figure 4.4.

is the weighting matrix for the controlled variables and R is the weighting
matrix for the control actions.
For the temperature control of the plate reactor, we can write the cost

function as

V (k) =
Hp∑

i=1

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

[

T̂1(k+ ipk)
T̂2(k+ ipk)

]

−
[

T̂ ref1 (k+ ipk)
T̂ ref2 (k+ ipk)

]∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

Q

+

Hu−1∑

i=0

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

[

∆T̂A,feed(k+ ipk)
∆T̂cool(k+ ipk)

]∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

R

(4.32)

The prediction horizon is chosen as Hp = 100 and the control hori-
zon Hu = 30. For a complex process like the plate reactor, it is neces-
sary to choose a reasonably large prediction horizon Hp, so that all im-
portant process dynamics can be observed within the prediction window,
thus allowing the optimization to “see” the best operating point within
the prediction window. In this case the prediction window is the prod-
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uct Hp ⋅ h = 100 ⋅ 0.5 = 50 seconds, which covers the thermal dynamics,
the residence time and provides stability to the system. To reduce the
computational complexity while maintaining the length of the prediction
window, it is possible to use a longer sampling interval h. However for
good disturbance rejection property a short sampling interval is desired.
The weighting matrices for the controlled variables and the control

signals are chosen as Q = I and R = ρ ⋅ [r1 0; 0 r2]. The value of
Q corresponds to both controlled temperatures T1 and T2 being equally
important. The two control inputs TA,feed and Tcool have the same units
and may be used equally much, thus r1 = r2 = 1. The relation between
the matrices Q and R, here ρ = 10, can be seen as a move suppression
factor, defining the aggressiveness of the controller.

Constraints There are constraints on the control inputs 15○C≤ TA,feed ≤
80○C and 15○C≤ Tcool ≤ 80○C. In the actuator systems for these inputs,
there are additional limitations that may be approximated as rate limits
on the control signal, −2○C/s≤ ṪA,feed ≤ 3○C/s and −2○C/s≤ Ṫcool ≤ 1○C/s.

Analysis of the closed loop system When no constraints are active,
the MPC controller is a linear controller, which allows analysis of the
closed loop system. Figure 4.17 shows the sensitivity function S for the
closed loop system, compare with Figure 4.6 from the decentralized case.
The integral action that removes constant offsets due to disturbances and
uncertainties is clearly visible at low frequencies. All disturbances with a
frequency up to 0.18 rad/s will be attenuated. The peak of the maximum
singular value of the sensitivity function is around 1.9, which is higher
than for the decentralized controller. A more elaborate tuning may reduce
the sensitivity peak.

Simulations

Step disturbance The step disturbance scenario from (4.16-4.18) and
Figure 4.7 is repeated, now using MPC instead of the PID-based decen-
tralized controller. The MPC controller should keep the temperatures T1
and T2 at the constant reference temperature 90○C. A constant load dis-
turbance d1 is applied at the first injection point at t = 70 s, then a similar
disturbance d2 is applied at the second injection point at t = 160 s. The
disturbances can be viewed as step increases of 100 J/s in the heat release
from the reaction. The disturbances would increase the reactor tempera-
tures with roughly 2.6○C if no feedback control is applied.
Figure 4.18 shows the step disturbances response. The sampling time

of h = 0.5 s delays the control action compared to the faster sampling time
h = 0.1 s of the decentralized controller. There is a clear cross-coupling

92



4.6 Centralized Control

10
−2

10
−1

10
0

10
−2

10
−1

10
0

10
1

Frequency [rad/s]

M
ag
n
it
u
de

Figure 4.17 Magnitude plot of the sensitivity function S for the closed loop system
using MPC. The maximum and minimum singular values σmax and σmin are plotted
for all frequencies up to the Nyquist frequency of 6.28 rad/s.

between the two control inputs after each of the step disturbances. The
cross-coupling is much larger than for the decentralized controller, which
may seem counter-intuitive, considering the information advantage of the
centralized controller. The main reason for the cross-coupling is the cen-
tralized disturbance estimation and a disturbance model that poorly de-
scribes the physical disturbance. The Kalman filter uses four disturbance
states, each one representing an integrating disturbance on the two con-
trol inputs and the two measurements of the uncontrolled cooling water
temperature, see (4.24-4.25). Let us focus on the two input disturbance
states d̂i. The disturbance states on the cooling water d̂a have very limited
impact on the controlled outputs.
When a disturbance enters the system, the Kalman filter will find a

disturbance estimate d̂ that minimizes the square of the estimation error
x(k) − x̂(kpk − 1). The transients of the disturbance estimation can be
seen in Figure 4.19, where the step disturbance causes transients in both
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Figure 4.18 Simulated response for step disturbances using MPC. Upper plot:
The first step disturbance affects T1 (solid) at t = 70 s. The second step disturbance
affects T2 (dashed) at t = 160 s. Lower plot: The cross-coupling between the control
inputs TA,feed (solid) and Tcool (dashed) arise from the centralized input disturbance
estimation

disturbance estimates. In the Kalman filter, the disturbance at the first in-
jection point can be represented as a disturbance in the feed temperature
TA,feed and/or a disturbance in the cooling inlet temperature Tcool. Directly
after the step disturbance, the optimal estimate is to use both disturbance
states to represent the step disturbance, as the disturbances are modelled
as integrated white noise. These transients cause the cross-couplings seen
in the control inputs in the lower plot of Figure 4.18. Eventually, the mea-
surements from the reactor lead to the more realistic estimate, where
the disturbance state on TA,feed represents the step disturbance due to its
higher steady-state gain.
Note that the disturbance model used here is derived to achieve inte-

gral action, without considering its transient response. We will now inves-
tigate another disturbance model to obtain more insight how the choice
of disturbance model may influence the transient response of the closed
loop system.
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Figure 4.19 Disturbance estimation during step disturbances using input distur-
bance states on TA,feed (solid) and Tcool (dashed). Left plot: Step disturbance at first
injection point at t = 70 s. Right plot: Step disturbance at second injection point at
t = 160 s.

A state disturbance model Besides input disturbance models, a com-
mon choice is integrating disturbances on the measured outputs. How-
ever, for the plate reactor application, the temperature measurements are
fairly reliable, instead, integrating disturbances are added to the deriva-
tives of the reactor temperature states in the 1st and 17th control volume
where the maximum temperatures occur. The Kalman filter equations
from (4.24) – (4.25) are modified with the new disturbance model

Bd = CzT , d̂a = [d̂Tw1 d̂Tw30]T , d̂i = [d̂T1 d̂T2]T . (4.33)

The integrating disturbances acting on T1 and T2 will give offset-free
steady-state estimation on these two controlled outputs. To achieve inte-
gral action on the controlled outputs when additional measurements are
used, integrating disturbances are added to the extra measured (uncon-
trolled) outputs as described in (4.24-4.25). A closed loop analysis with
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Figure 4.20 Simulated response for step disturbances using MPC and a state
disturbance model. The first step disturbance affects T1 (solid) at t = 70 s. The
second step disturbance affects T2 (dashed) at t = 160 s. The cross-coupling between
the control inputs TA,feed (solid) and Tcool (dashed) are much lower with this type
of disturbance model.

the new disturbance model gives a sensitivity function S with a σmax = 1.6
and a cross-over frequency of 0.15 rad/s, yielding a lower σmax than with
the input disturbance model.
The step disturbance scenario is repeated, see Figure 4.20. The cross-

couplings between the control inputs are almost negligible. The control
error in the undisturbed output is at most 0.1○C during the step distur-
bances, which is similar to the performance of the decentralized controller.
This state disturbance model is very similar to the actual disturbance

applied to the process (4.16-4.18), so it should not be a surprise that this
disturbance model will estimate the step disturbances more efficiently and
with less cross-coupling. The simple truth is that the better the distur-
bance model can represent the actual disturbance, the better performance
we will get. However, the disturbance model should represent the lumped
effect of any plant-model mismatch and/or disturbance, so the open ques-
tion is what disturbance model will be best for an arbitrary disturbance
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Figure 4.21 Disturbance estimation during step disturbance using a state distur-
bance model on T1 (solid) and T2 (dashed). Left plot: Step disturbance at the first
injection point at t = 70 s. Right plot: Step disturbance at the second injection point
at t = 160 s.

or plant-model mismatch.
The estimated disturbance states d̂i are plotted in Figure 4.21. Since

the disturbance model is very similar to the actual disturbance, the es-
timation shows almost no cross-coupling between the two disturbance
states. This translates directly into an improved performance of the closed
loop control.

Ramp disturbance The ramp disturbance scenario from (4.19) is re-
peated with the MPC controller, testing both the input disturbance model
and the state disturbance model. The feed concentrations of cA,feed and
cB,feed increase linearly along a ramp during 40 s, thus increasing the
heat being released from the reaction.
For the ramp disturbance, the closed loop response with the input dis-

turbance model is slightly better than with the state disturbance model,
see Figure 4.22. The difference in T1 is negligible and the actions of the
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Figure 4.22 Ramp disturbance in feed concentrations using either input distur-
bance (no circles) or state disturbance (with circles) model. Upper plot: Reactor
temperatures T1 (solid) and T2 (dashed). Lower plot: Control inputs TA,feed (solid)
and Tcool (dashed).

control input TA,feed are almost identical. The only difference is in the dis-
turbance estimation, where the input disturbance model yields a slightly
faster response to the disturbance and the control error in T2 remains
smaller.

Alternative control inputs Now consider another pair of control in-
puts, uB and Tcool, to compare with the decentralized controller from Fig-
ure 4.9. This choice of inputs yields larger cross-couplings between the
control inputs, as the feed injection distribution uB affects the feed in-
jection both at the first and the second injection point, uB1 = uB and
uB2 = 1 − uB . The MPC controller is designed using the same steps as
described above. The tuning matrix R is set to [10 0; 0 10], after that
a scaling factor of 80 has been introduced on uB to compensate for the
different units and gains of the inputs.
The state disturbance model is used to achieve offset-free estimation
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Figure 4.23 Simulated response for step disturbances using MPC. Upper plot:
T1 (solid) and T2 (dashed). Lower plot: The feed injection distribution uB (solid)
and the cooling temperature Tcool (dashed). The disturbance at T1 leads to a small
redistribution of the injection flow, from the first to the second injection point.

and integral action in steady-state. The input disturbance model would,
for these inputs, give poor performance as it will represent disturbances
very inefficiently. For example, an increase in the heat release at T1 may
be represented as a disturbance on uB , but that estimated disturbance
will also affect T2.
The closed loop response during the step disturbance is plotted in Fig-

ure 4.23. The cross-coupling between the inputs is clearly seen in the lower
plot. The disturbance forces a decrease in uB , that is, more reactant is be-
ing redistributed from the first to the second injection point. Subsequently,
Tcool has to decrease to compensate for the increased heat release at the
second injection point. The MPC controller can anticipate the effects of
the control actions and there is for example no extra transient when the
warmer reactor fluid flows down towards the second injection point, as
for the decentralized controller in Figure 4.9.
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Multiple injection points and cooling zones To increase the pro-
ductivity of the plate reactor, additional injection points may be used, see
e.g. Figure 4.10 where the reactor has five injection points and five cool-
ing zones. In this configuration, T1 . . .T5 denote the temperatures at the
five injection points and Tcool,1 . . .Tcool,5 denote the inlet temperature of
the cooling water for the five independent cooling zones. The additional
cooling zones may improve the steady-state performance, but the main
advantage is to allow a more flexible feedback control.
A MPC controller is designed with the feed temperature and the five

cooling temperatures as control inputs. Integrating disturbances are added
to the derivatives of the five controlled temperature states, i.e., a state
disturbance model where Bd = CzT . Step disturbances are applied at the
first and third injection point, similar to a 100 J/s increase in heat release
from the reaction. The closed loop response is plotted in Figure 4.24. The
disturbance at T1 propagates down to T2, but is heavily attenuated. The
disturbance at T3 can also be seen in the downstream temperature T4,
but it is also quickly dampened.

Improving the response using additional inputs The previous sec-
tion showed that the temperatures in the plate reactor can be accurately
controlled using the feed temperature TA,feed and the cooling temperatures
Tcool,1 . . .Tcool,5. This set of control inputs may be sufficient in most oper-
ating conditions. However, these control inputs have somewhat slow input
dynamics and especially when temperature constraints are present, ad-
ditional control means may be necessary. Here we will present a method
how the feed flow rates can be used in feedback control, to improve the
dynamic response.
The feed flow injections uB1 . . .uB5 determines the amount of reactant

B being injected at each feed point. The response from feed flow rate
to the reactor temperature is fast, see the model analysis in Section 3.2.
By including the feed flow injections in the MPC controller design, the
controller is given additional inputs to improve the temperature control of
the plate reactor. In decentralized control, it is non-trivial how to extend
the control structure with additional inputs. The largest challenge there
is to introduce constraint handling in such a way that the different control
loops with different control objectives do not interact and cause oscillations
or instability. With a multivariable process model, the MPC controller
can anticipate the interactions between the different control inputs. The
challenge here is to find a suitable cost function and weighting matrices,
to achieve the desired closed loop behavior.
The stoichiometric relation between A and B requires that the feed

flows of A and B maintain a constant ratio. Whenever the feed flow rate
of B is changed in any injection point, this stoichiometric balance may be
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Figure 4.24 Simulated response for step disturbances using MPC with 5 injection
points and 5 cooling zones. Upper plot: The disturbances affect T1 and T3 directly
and propagates down to T2 and T4, respectively. Lower plot: The feed temperature
and the cooling temperatures are changed to compensate for the step disturbances.

temporarily upset. Therefore, input targets to uB1 . . .uB5 are added to the
MPC cost function (4.32), that is, we introduce the cost term ppusp

B,feeds −
uB,feedspp2, where the vector uspB,feeds are the nominal values of the five
injection flows at the linearization point. This leads to the feed flow rates
being at their nominal values in steady-state, but may during transients
be used for feedback control. The cost function of the MPC controller may
now be formulated as the following.

V (k) =
Hp∑
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, (4.34)
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where T̂ is a vector with the controlled temperatures and T̂ref is the cor-
responding reference vector. The vector ûtemps represents the original in-
puts, the feed temperature and the five cooling temperatures, and the
vector ûB,feeds represents the feed flow rates uB1 . . .uB5. A scaling factor
of 80 has been introduced on uB1 . . .uB5 to compensate for the different
units compared to the temperature inputs. The weighting matrices are
defined as

Q =
[

Q1 0

0 Q2

]

=
[

1 ⋅ I5x5 0

0 0.1 ⋅ I5x5

]

(4.35)

R =
[

R1 0

0 R2

]

=
[

10 ⋅ I5x5 0

0 0.01 ⋅ I5x5

]

. (4.36)

With this choice of Q and R, we emphasize the temperature tracking over
the input targets of uB,feeds. Furthermore, the feed flow rates are cheap to
use transiently, as R2 < R1, but in steady-state the feed flow rates return
to their input targets.
Figure 4.25 shows the closed loop system during a step disturbance

at the first injection point. The reactor temperature is here controlled by
manipulating a combination of TA,feed and uB1, where uB1 gives the fast
effect and TA,feed deals with the slow and steady-state effect. The input
targets for the feed flow rates will force uB1 to return to its nominal refer-
ence value and stoichiometric conditions in steady-state. The temperature
response from Figure 4.24 is plotted for comparison, where only the feed
temperature is used as control input. The temperature response is clearly
faster using the feed flow rates as additional control inputs. The only
drawback is that the change in feed flow rate causes a brief imbalance in
the stoichiometric conditions. By varying the weighting matrices R2 and
Q2, it is possible to adjust how much the controller should use the feed
flow rates for the transient response. In addition, the weighting matrix Q2
determines how fast the feed flow rates should return to their set-points.
The control concept presented above can be viewed as mid-ranging

control. In [Allison and Isaksson, 1998], different designs and applications
of mid-ranging control are presented, for example, MPC implementations.
More information on mid-ranging control is also given in Chapter 9.

Temperature constraints Let us now consider temperature constraints
in the plate reactor. The scenario was introduced in Figure 4.15, where
the decentralized controller was adapted to consider temperature con-
straints. A 200 J/s step disturbance is applied at the third injection point
at t = 60 s. The MPC controller is designed as before with 11 inputs using
the cost function in (4.34) and the weighting matrices in (4.35 - 4.36). The
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Figure 4.25 Simulated response for a step disturbance in T1 (solid). Upper plot:
By using the feed injection flow rates uB1 . . .uB5 as additional inputs, the speed of
the temperature control can be improved. The response in T1 from Figure 4.24 (dash-
dot) is plotted for comparison. Lower plot: The feed injection input uB1 (dashed)
quickly decreases the reaction rate. Eventually, uB1 returns to its nominal value,
while TA,feed (solid) compensates for the increased injection feed again.

objective is to stay below the maximum temperature limit of Tmax = 92○C.
Similar to the decentralized case, the threshold for constraint handling is
chosen with some margin, i.e., the reactor temperature is limited to 91○C
in the MPC formulation. The closed loop response is plotted in Figure 4.26.
When the disturbance pushes the process over the threshold, the controller
implements very aggressive control actions, showing its non-linear behav-
ior. The temperature response in T3 experiences an undershoot, which is
magnified by the nonlinear dynamics of the process. If the controller is
tested on the linear process model, the undershoot is much smaller. Af-
ter the undershoot, the controller dynamics are once again linear and the
convergence to the desired temperature reference can be tuned by varying
the weighting matrices Q and R.

Summary and conclusions of the temperature control Tempera-
ture control of the plate reactor has been implemented with a centralized
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Figure 4.26 Simulated response for step disturbances in T3 with temperature
constraints. Upper plot: The reactor temperature T3 (solid) and the uncontrolled re-
sponse (dash-dot). The horizontal line indicates the temperature constraint. When
the temperature passes the threshold of 91○C, it triggers the nonlinear action from
the MPC controller. Lower plot: The feed injection input uB3 (dashed) quickly de-
creases the reaction rate and then slowly returns to its nominal value, while Tcool,2
(solid) compensates for the increased injection feed again.

MPC controller. The centralized controller takes advantage of a multivari-
able process model to anticipate the cross-couplings of the process. How-
ever, it has been demonstrated that cross-couplings may appear through
the disturbance estimation instead. The choice of disturbance model is
important, since the transient of the disturbance estimates will affect the
closed loop response.
The overall performance of the centralized controller is similar to the

decentralized controller. The low computational effort of the decentralized
controller allows fast sampling, which improves its response to distur-
bances. The main benefit with centralized control is its improved flexibil-
ity in the constraint handling. When the reactor temperature approaches
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its limit, the quick response of the injection flow can easily be combined
with the feed and cooling temperature inputs. When a control input is sat-
urated, the centralized control structure allows other inputs to be used.
The main drawbacks are the increased complexities in terms of implemen-
tation, reduced transparency to the operator and a more difficult tuning
procedure.

Concentration Control

In this section, we will extend the control objective to also consider concen-
tration control. More specifically, in addition to the temperature control
previously presented, the aim is now to also control the stoichiometric
conditions inside the plate reactor. The main motivation comes from dis-
turbances in the feed concentrations or feed flow rates.
Consider a plate reactor system with two injection points and one cool-

ing zone. There are four manipulated inputs, uB1,uB2,TA,feed and Tcool.

Estimation The temperature control of the plate reactor has been based
on temperature measurements from sensors inside the reactor. A Kalman
filter uses the measurement information to estimate the process states
and disturbance states to achieve integral action in the temperature track-
ing.
When the stoichiometric conditions are considered, temperature mea-

surements are no longer sufficient. To get consistent estimations for the
concentration control, some measurements of the concentrations are re-
quired to achieve observability, see e.g. [Winkin et al., 2000], where condi-
tions for controllability and observability for tubular reactors are derived.
In this case, we consider measurements of the outlet concentrations of
reactants A and B, cA,30 and cB,30, where the index 30 indicates the con-
centration in the last control volume of the process model. In total, we have
14 measurement signals, ten temperature sensors in the reactor, two tem-
perature sensors at the inlet and outlet of the cooling water, respectively,
and finally the two outlet concentration sensors.
To achieve integral action, a state disturbance model is used, that is,

disturbance states are added to each derivative of the 14 measured states,
Bd = CyT , compare with Eqs. (4.22) and (4.24).

Cost function and controller tuning The cost function now has two
separate objectives, temperature control and stoichiometric control. The
former objective defines the nominal operating point at T ref = 90○C, which
ensures good conversion. The latter objective is defined as minimizing
the difference between the outlet concentrations of the reactants A and
B, cA,30 − cB,30. When the concentration difference is zero, stoichiometric
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conditions are achieved. The MPC cost function from (4.34) is modified to
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. (4.37)

Note that the new control objective removes the necessity of the target
set-points from (4.34) for the feed flow inputs.
The weighting matrices are defined as

Q =
[

Q1 0

0 Q2

]

=
[

1 ⋅ I2x2 0

0 1

]

(4.38)

R =
[

R1 0

0 R2

]

=
[

10 ⋅ I2x2 0

0 1.5 ⋅ I2x2

]

. (4.39)

With this choice of Q, we have equal concern of temperature and stoichio-
metric deviations. A scaling factor of 80 has been introduced on uB1 and
uB2 to compensate for the different units compared to the temperature
inputs. The choice of R indicates that the feed flow inputs are cheaper to
use than temperature inputs. However, the optimization problem is more
complex than that. If the feed flow inputs are used to control the tempera-
ture, they may cause an imbalance in the stoichiometry, which introduces
an additional cost. Therefore, the controller will mainly use the feed flow
inputs to control the stoichiometry and the temperature inputs to control
the reactor temperatures.
By adjusting the relationship between Q1 and Q2, we can arbitrarily

shift the focus of the controller from temperature to stoichiometric control
or vice versa.

Simulation The combined temperature and stoichiometric control is
evaluated in closed loop simulations for ramp and step disturbances. The
temperature references are as before T ref1 = T ref2 = 90○C. At t = 20 s,
the ramp disturbance from (4.19) is repeated, but now the feed concen-
tration of reactant A decreases with 5%, while cB,feed remains constant.
This leads to a shortage of A and an excess of B. At t = 150 s, a tem-
perature step disturbance from (4.17) is applied at the second injection
point, corresponding to a sudden increase in the heat release of 100 J/s.
In the open loop response, the feed concentration disturbance leads to a
shortage of A at the second injection point and T2 decreases to 83○C, due
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to the decreased heat release from the reaction. The excess of B leads to
a drop in conversion γ B (2.5) to 94%, while the shortage of A increases
γ A to 99%. With the temperature control alone, the temperature effect
of the feed disturbance can be quickly attenuated, but the differences in
conversion will remain.
The closed loop response with temperature and stoichiometric control

is plotted in Figures 4.27 – 4.30. When the feed concentration of A de-
creases at t = 20 s, the MPC controller quickly increases the feed tempera-
ture to compensate for the reduced heat release at the first injection point.
Figure 4.30 shows the four most important estimated disturbance states,
the disturbances acting on T1, T2, cA,30 and cB,30. The feed concentration
disturbance at t = 20 s is estimated using all four disturbance states.
The temperature effect of the disturbance is described as a temperature
disturbance in T1 and T2 and the concentration effect of the disturbance
is described as a concentration disturbance in cA,30 and cB,30. Note the
different times when the disturbance states are affected, which are given
by the flow delays in the reactor. For example, the disturbance states on
cA,30 and cB,30 remain zero until 30 seconds after the actual disturbance
enters the reactor.
When the feed disturbance reaches the second injection point, a short-

age of A appears and the heat release is reduced much more than at
the first injection point. The controller therefore raises the cooling tem-
perature to 37○C. Meanwhile, the estimated disturbances on the outlet
concentrations lead to a decrease in the feed flow rate uB2 at the second
injection point to remove the excess of B and regain stoichiometric condi-
tions, which are reached around t = 120 s when γ A and γ B both converge
to 98.1%.
A step disturbance enters the system at t = 150 s, increasing the

heat release at the second injection point with 100 J/s. The cooling tem-
perature is quickly lowered, but as the disturbance has no effect on the
stoichiometric conditions, the feed injections are unchanged. There is a
small cross-coupling between the cooling and feed temperature after the
step disturbance, however, note the different scales on the left and right
y-axis of Figure 4.28.
There are some additional remarks on the stoichiometric control. The

measurements of the outlet concentrations give a long dead-time, equal
to the flow time, before the feed disturbance can be estimated. For this
specific disturbance, it would be beneficial to have the concentration mea-
surements directly in the feed flows or at the reactor inlet. That would sig-
nificantly improve the transient response and the concentration measure-
ments would then act as feed-forward signals. The outlet concentrations
should still be measured to capture the effect of any other disturbance or
uncertainty inside the reactor.
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Figure 4.27 Combined temperature and stoichiometric control. The reactor tem-
perature at the first (solid) and the second (dashed) injection point.
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Figure 4.28 Combined temperature and stoichiometric control. Upper plot: Feed
flow injections uB1 (solid) and uB2 (dashed) are manipulated to preserve stoichio-
metric conditions. Lower plot: Feed temperature TA,feed (left axis, solid) and cooling
temperature Tcool (right axis, dashed) are focused on the temperature tracking. Note
the different scales on the temperature inputs.
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Figure 4.29 Combined temperature and stoichiometric control. Conversion of re-
actant A and B, γ A (solid) and γ B (dashed) at the reactor outlet. When the feed
concentration cA,feed decreases at t = 20 s, the conversion drops after another 30 s,
which corresponds to the flow time.
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Figure 4.30 Disturbance state estimation in the combined temperature and sto-
ichiometric control. Upper plot: Disturbance states acting on Ṫ1 (solid) and Ṫ2
(dashed). Lower plot: Disturbance states acting on ċA,30 (dashed) and ċB,30, nor-
malized with cA,feed and cB,feed, respectively.
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Maximize Conversion

Another alternative control objective can be to focus entirely on the maxi-
mization of the reactant conversion, (2.5). This corresponds to minimizing
the outlet concentrations of the reactants A and B. The MPC cost function
may then be defined as

V (k) =
Hp∑
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The references for the outlet concentrations are set to zero, as we wish all
reactants to be converted into product. To achieve complete conversion of
the sodium thiosulfate reaction, the reactor temperature is increased as
high as possible, to the maximum allowed temperature Tmax. This means
that the nominal operating point will have active temperature constraints
and the temperature tracking problem will be changed to keeping the pro-
cess at the maximum temperature. This control objective was presented
in more detail in [Haugwitz et al., 2007a].

4.7 Recommendations on the Process Design

With the flexible process configuration of the plate reactor, it is recom-
mended to consider control design and possible loop interactions already
on the process design phase. By designing the process to have a suitable
number and location of actuators and sensors, it will be easier to find
controllers that have inputs with low cross-coupling.
An example is shown in Figure 4.31, where the reactor has five in-

jection points and one cooling zone. From Section 2.4, we know that the
steady-state performance may be increased by using additional injection
points. Furthermore, it is possible in steady-state optimizations to find an
operating point where the five injection flow rates, the feed temperatures
and the cooling temperature give a temperature profile with five local tem-
perature maxima and very good steady-state performance, see Figure 2.11.
However, it may be difficult to find decentralized feedback control loops
that can achieve accurate temperature control and good disturbance rejec-
tion of all five temperature maxima. The feed temperature TA,feed and the
cooling temperature Tcool are not sufficient to independently control the
five temperature maxima. With these inputs only the two highest tem-
perature maxima may be controlled, leaving the remaining three maxima
uncontrolled. If the individual injection flow rates are used as manipu-
lated inputs, the stoichiometric conditions will introduce cross-couplings,
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T T TT T T TT
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Reactant A

Reactant B

Cooling water

Figure 4.31 The plate reactor with five injection points and one cooling zone.
The five temperature maxima may be controlled using any of the seven available
inputs, but stoichiometric relations may introduce cross-couplings between some of
the inputs.

remember the RGA analysis previously in this chapter. Centralized con-
trol is less sensitive, since the multivariable process model can describe
and anticipate the cross-couplings introduced by this process design.
Regardless of decentralized or centralized control approach, it is recom-

mended to consider the implications of the process design on the control
design already in an early development stage. For example, with addi-
tional cooling zones as in Figure 4.10, an efficient decentralized control
structure would be easier to find.

4.8 Summary, Comparisons and Conclusions

In this section, the methods presented in this chapter will be summa-
rized. Specifically, the decentralized and centralized control approach will
be compared on several layers, such as design, tuning, performance and
flexibility.

Control design The decentralized controller is based on multi-loop
PID controllers, where each PID-controller is designed independently of
the other loops. The decentralized control structure is easy to understand,
easy to implement and easy to tune. It is generally believed that a decen-
tralized approach saves on the modeling effort, however, a thorough pro-
cess knowledge is essential if the decentralized control should succeed, for
example in the input/output pairing analysis. The feed and cooling tem-
peratures are chosen as manipulated variables, as they are very loosely
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coupled. The PID controllers are tuned using the novel AMIGO method,
which is based on robust loopshaping and optimization of the integral
gain.
The centralized controller uses Model Predictive Control, which can

handle multivariable process models, input and state constraints and of-
fers a flexible specification of the control objectives. A thorough process
knowledge is essential also here, to design suitable disturbance models,
prediction horizons and weighting matrices. It is rather straight forward
to achieve an acceptable performance, but the increased complexity, when
there are many inputs/outputs and multiple objectives in the cost func-
tion, means that the tuning to further improve the closed loop response
is a very challenging task.

Control performance The performance of the temperature control is
similar for the decentralized and centralized control. With correctly cho-
sen control inputs, the process is largely decoupled, so the benefit with
centralized control is negligible. In fact, the choice of disturbance model for
the MPC may introduce virtual cross-couplings through the disturbance
estimates. The response of the decentralized controller is slightly faster
as it has a sampling time of Ts = 0.10 s compared to Ts = 0.50 s for the
MPC controller. With suitable model reduction and improved algorithms,
the MPC controller would also be capable of faster sampling times, thus
improving the performance.
The advantage of the centralized controller becomes clearer when the

chosen inputs have larger cross-coupling, e.g. feed flows and cooling tem-
peratures, since the multivariable process model describes the interaction.
This also allows the centralized controller to use additional control inputs
or control objectives. A few examples of this has been demonstrated in this
chapter. To improve the transient response of the temperature control,
both feed flows and temperatures are used as control inputs. By varying
the weight matrices, it is possible to gradually change what inputs to use
and how much they should be used, without having to consider the cross-
couplings between them. The controller can handle multiple objectives,
such as temperature and stoichiometric control, where the temperature
inputs deal with the temperature control and the feed inputs deal with
the concentrations. The focus between temperature control and stoichio-
metric control can easily be shifted in the controller tuning.
Temperature constraints can be handled in the decentralized control

structure by adding another control loop in parallel to the existing tem-
perature controller. The challenge is to design the constraint handling
controller so that the two controllers do not excite each other, leading
to oscillations and potentially instability. This requires very good under-
standing of the process. The solution is to have a fast decrease in the feed
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flow rate when the reactor temperature approaches the limit, and when
the temperature drops, the feed flow is slowly returned to its nominal
value. With the centralized controller, the closed loop response is similar,
but the constraint handling is easier to implemented in the MPC frame-
work.
Based on these results, decentralized control is sufficient for basic tem-

perature control when input saturations or temperature constraints are
non-existent or present but not always active. When choosing to operate
closer to saturation limits or temperature constraints or focusing on the
concentration control, a centralized MPC controller is recommended.

Process design It is important to consider the process design, choice
of operating point and control design all together, to avoid process design
that introduce cross-couplings in the process inputs. For example, when
there are multiple injection points of reactant B, it may be beneficial to
have the corresponding number of cooling zones, especially if the intention
is to implement a decentralized control structure.
Sensor location is also an important part of the process design, where

the sensors should be placed to give the best information about the process
state. In many applications, the maximum reactor temperature should be
controlled, however, it is non-trivial to place the sensors where the actual
temperature maximum occurs. In decentralized control, this may lead to
temperature violations if the measured temperature is lower than the
highest actual temperature in the reactor. In the centralized controller,
many temperature measurements are used and the full temperature pro-
file is recreated based on the measurements. This reduces the sensitivity
to wrongly placed sensors, but the estimates are subject to model uncer-
tainty.
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5

Start-up

5.1 Introduction

Start-up control of chemical reactors has been an area of research for
many years. The main focus has been on batch and semi-batch reactors.
Start-up of continuous reactors is similarly of great interest, since the
risk of incidents are much higher during start-up than during steady
state operation. At low temperature, almost no reaction occurs due to
the temperature sensitive reaction rate. To start the reaction, heat must
be provided into the reactor system, typically through the feed flows or
the cooling water. At some reactor temperature, the reaction reaches the
ignition point. The heat release from a strongly exothermic reaction leads
to self-acceleration and the reactor temperature quickly increases to the
nominal operating point, or, if care is not taken, above.
The transient from initial conditions to an optimal operating point and

the temperature at which ignition occurs are highly nonlinear functions of
the inputs and the states of the system. Therefore, the system is very sen-
sitive to small changes in reactor inlet conditions or variations in physical
parameters. Previous studies have been focusing on criteria to detect op-
erating regions with parametrically sensitive behavior, see e.g. [Bauman
et al., 1990] or [Varma et al., 1999]. However, the studies are often limited
to finding non-sensitive operating points for steady-state and the impact
of a feedback control system is often neglected. In [Zaldívar et al., 2003], a
general criterion to define runaway limits for tank reactors is presented,
where the effect of feedback control on the runaway boundaries is briefly
discussed. In general, feedback control can reduce the impact of model un-
certainty, but due to actuator limitations present in industrial processes,
the available bandwidth may not be sufficient to guarantee a safe start-up
in regions with parametrically sensitive behavior.

114



5.1 Introduction

In [Hahn et al., 1971], open loop optimal start-up trajectories for a
tubular reactor is computed, based on a distributed maximum principle
for a given optimal steady state operating point. The reaction is exother-
mic and reversible. The reactor temperature and thus the yield are con-
trolled by manipulating the reactor wall temperature with a constraint
on the maximum reactor temperature. The optimal control trajectory is
of bang-bang type with a singular arc to the steady-state. The study in
[Hahn et al., 1971], however, does not consider uncertainties or dynamic
limitations in the actuator, and does not consider any closed loop feedback
control.
In [Verwijs et al., 1996], the start-up and safeguarding of an adiabatic

tubular reactor system is considered. There, open loop trajectories of the
manipulated variables are calculated by a generalized-reduced-gradient
optimization. The safeguarding is realized through plant start-up rules
e.g. minimizing the total amount of unreacted chemicals exiting the reac-
tor during the start-up period. High levels of unreacted chemicals in the
reactor outlet may lead to continued reaction and heat release in storage
tanks. Without adequate cooling systems in these tanks, this temperature
increase may start by-product formation and lead to a thermal runaway.
During start-up, the safeguarding is implemented by monitoring the dif-
ference between the actual response of thermoelements and the optimal
trajectories calculated in the model-based optimization. When the differ-
ence exceeds some limit, the reactor should be brought to shutdown to
prevent the process from running into a hazardous situation state.
There are many interesting challenges associated with start-up control

of temperature sensitive exothermic reactions; nonlinear dynamics, actu-
ator limitations and process uncertainty. The nonlinear dynamics leads to
multiple equilibrium profiles for a given set of control signals. One equi-
librium profile corresponds to the situation when no reaction occurs due
to too low reactor temperature. Another equilibrium profile occurs when
almost all reactants have converted at high reactor temperature, which
is the desired operating point. Finally, in between these points, there is
an equilibrium profile, which is unstable, due to the exothermic reaction.
See e.g. [Laabissi et al., 2002] for an analysis of when there exist multiple
equilibrium profiles.
There are two main approaches to handle process uncertainty, robust

control and adaptive control. In robust control, the effects of the uncer-
tainty is often taken into account by means of some min-max optimiza-
tion, for example by using multiple models of the process and finding the
best control input for the worst case, see e.g. [Wang and Rawlings, 2004].
In adaptive control, information from on-line measurements is used to re-
duce the amount of uncertainty. An early example is [Lenells, 1982], where
adaptive start-up is investigated. A set of possible models is considered
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at first and based on measurements during the start-up some models are
rejected. The control input is computed based on the worst case of the
remaining models. In [Tian and Hoo, 2003], a transition control frame-
work is presented, to control a process from one steady state to another
steady state. The nonlinear dynamics are approximated by switching be-
tween multiple fixed and adaptive models. H∞ control design is employed
to deal with disturbances and uncertainties. Reference trajectories for the
transition are defined as ramp functions, where the time constant is set
by the user.
In this chapter, start-up control of the plate reactor is considered. In

contrast to the work in [Hahn et al., 1971] and [Verwijs et al., 1996], the
plate reactor is equipped with a cooling system and multiple injection
points for the reactants. Here, feedback control will be used to increase
safety and robustness in the presence of uncertainty.
The aim of this chapter is to develop methods to achieve safe, robust

and efficient start-up of an exothermic reaction. With actuator limita-
tions, it is necessary to consider the interplay between open-loop optimal
start-up trajectories and feedback control. By studying the parametric sen-
sitivity, the start-up optimization problem can be formulated so that the
optimal solutions have reduced sensitivity to uncertainty. This facilitates
the task of the feedback controller to maintain safe operation despite its
actuator limitations.
Dynamic optimization of large scale processes has received much atten-

tion both in theory and in industrial practice during the last two decades.
The advent of faster computers has enabled application of computation-
ally intensive algorithms also for process systems of realistic size. Appli-
cation of dynamic optimization can be categorized into on-line and off-line
methods. In the former category, model predictive control (MPC) has won
wide-spread industrial use, see e.g. [Qin and Badgwell, 2003]. However,
the size and complexity of the problem, in combination with fast dynam-
ics, complicate on-line solution of the robust nonlinear optimal control
problem in real-time.
Two methods to achieve robust start-up control are presented, a time-

driven continuous approach and an event-driven hybrid approach. They
both consider the sensitivity to uncertainties to achieve robustness by
introducing constraints in the state-space for the optimal solutions. In
both methods, optimal start-up trajectories are computed off-line and are
then used as reference signals to a feedback control system. However, the
optimization formulation, the problem structure and the implementation
differ.
The time-driven continuous approach, see Chapter 6, utilizes off-line

dynamic optimization on the full nonlinear model and the robustness of
the optimal solutions may be achieved by introducing state constraints on
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Figure 5.1 For the start-up control problem, we consider a reactor configuration
with two injection points and one cooling zone. The feed temperature TA,feed, the
inlet cooling temperature Tcool and the feed injection flows qB1 and qB2 are used as
manipulated variables.

the reactant B concentration. The resulting optimal solutions are then
given as references to an online feedback control loop.
The event-driven hybrid approach, see Chapter 7, exploits the phys-

ical structure of the start-up control problem. The start-up sequence is
divided into several modes, where each injection point along the reactor
is started sequentially. Transition between these modes are only permit-
ted if certain transition conditions are fulfilled. The conditions are here
defined as points in the state-space, for example reactor temperature. The
implementation is event-driven, as each mode transition corresponds to a
state event when the transition condition turns true.

5.2 Dynamics and Problem Motivation

The process

For the Chapters 5 – 7, we consider a plate reactor with two injection
points and one cooling zone, see Figure 5.1, and an exothermic reaction

A+ B → C + D. (5.1)

Assume that the reaction has similar kinetics as the sodium thiosulfate
reaction (2.2), but here the activation energy Ea = 76000 J/mol is 11%
higher than for the sodium thiosulfate reaction studied in Chapters 2-4.
The higher activation energy means that a higher reactor temperature is
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Table 5.1 Nominal values and bounded uncertainties for the plate reactor for the
start-up control problem in Chapters 5 – 7.

Variable/Parameter Nominal value uncertainty

Activation energy, Ea 76000 J/mol 2%

Pre-exponential factor, k0 2 ⋅ 107 m3/(mol s) 5%

Heat of reaction, ∆H 1.17 ⋅ 106 J/mol 5%

Heat transfer coefficient, h 3000 W/(m2 K) 10%

needed for this reaction to achieve a similar reaction rate, compared to
a reaction with a lower activation energy. This can also be interpreted
as the reaction being more temperature sensitive. In addition, the feed
concentrations cA,feed and cB,feed are assumed to be 70% higher than in
Chapters 2-4.
The process model was defined in (3.2) in Chapter 3. All parameters1

describing the reactor are the same as before.

Challenges

The main challenges during start-up control are severe process nonlinear-
ities, limited actuator dynamics and uncertainties concerning the process
model.

• The nonlinearities appear in particular in the reaction kinetics, where
the reaction rate r is exponential in temperature. For example, the
reaction rate at 30○C is 2.8 times larger than at 20○C and at 70○C
it is almost 100 times larger than at 20○C. See also the nonlinear
gain from feed injection rate uB1 to the temperature at the injection
point T1 in Figure 3.13.

• The actuator dynamics for the control inputs can in general be ap-
proximated by first or second order linear systems with time con-
stants of a few seconds. These time constants of a few seconds should
be compared to the reaction dynamics, where the reactor tempera-
ture can increase by more than 10○C/s. For large transitions, how-
ever, a nonlinear behavior appears for TA,feed and Tcool, which can be
approximated as rate limits; −2○C/s≤ ṪA,feed ≤ 3○C/s and −2○C/s≤
Ṫcool ≤ 1○C/s.

1The heat transfer coefficient h = 3000W/(m2 K) is associated with a heat transfer area
in the plate reactor of 0.0769 m2. In some publications regarding the start-up problem, the
geometry of a cylindrical tubular reactor was used that lead to h = 1120W/(m2 K), but h is
then associated with a heat transfer area of 0.206 m2. The product remains the same.
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• The process model is subject to parametric uncertainty, see Table 5.1.
The uncertainties associated with the model may lead to dramatic
changes in the predicted heat release and the shape of the predicted
temperature profiles compared to the real process. The process model
can be reformulated as

ẋ = f (x,u, p), p ∈ P , (5.2)

where x are the states, u are the control inputs, p are the uncertain
parameters and P is the uncertainty set associated with the model
parameters.

The main uncertainty is associated with the reaction kinetics. A
reasonable model for the reaction kinetics is available, however, it
is often only validated for the desired operating point. Therefore,
especially during start-up, there may be considerable uncertainty
concerning the reaction kinetics. In addition, as we will see in the
motivating examples, the uncertainties are much more challenging
during the start-up than in steady-state operation, as the effects of
the uncertainty may change abruptly during the start-up transition.
In steady-state operation, the effects of the uncertainties are often
constant and has already been compensated for by the controller
during the transition to the steady-state.

Problem formulation

The overall objective is to find control inputs that transfer the state of
the process safely from an initial point, where the reactor is cold and no
reactant B is fed, to an optimal operating point with maximum reactant
conversion. The objectives can be formulated as

1. The main design objective is safety, which means that the temper-
ature Tr throughout the reactor should at all times stay below a
maximum limit, Tmax = 160○C.

2. Maximize the reactant conversions at the reactor outlet, γ A and γ B ,
defined as

γ A =
cC,out

cC,out + cA,out
, γ B =

cC,out

cC,out + cB,out
, (5.3)

where the subscript ’out’ denotes the concentrations at the reactor
outlet. With the chemical reaction (2.1), this is equivalent to mini-
mizing the amount of unreacted A and B in the reactor outflow.

3. The time to reach the optimal operating point should be as short as
the primary objective permits.
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Chapter 5. Start-up

Dynamic optimization can be used to generate feasible start-up tra-
jectories in the presence of control limitations and nonlinear dynamics.
However, the process uncertainty adds another dimension to the com-
plexity of the start-up problem. Therefore, robustness is the key focus in
this problem formulation. Robustness is often associated with the ability
for a feedback controller to compensate for disturbances and uncertain-
ties. Here, we consider the feedback controller as fixed. Instead, we focus
on the robustness of the off-line computed optimal trajectories, that is,
the sensitivity of the optimal solution to model uncertainty. As will be
described in the next section, optimal start-up trajectories may be arbi-
trarily sensitive to uncertainty, if the issue of robustness is not addressed
in the formulation of the optimization problem.
Solving the start-up problem for a process with uncertain parameters

is a challenging problem. Clearly, control trajectories computed based on
a nominal model is not likely to reproduce the predicted output profiles
for all models within the uncertainty set. For the plate reactor start-up,
open loop application of the control trajectories may lead to degraded per-
formance, and more importantly, violation of the temperature constraint.
Introduction of a feedback control system, which is designed to track the
predicted temperature profiles, significantly decreases the effects of mod-
eling errors. However, for large parameter variations, the limitations of
the actuator systems and the non-linear characteristics of the process may
lead to violation of the safety requirements also in the presence of a well-
designed feedback system. However, the ability of the feedback system to
enforce the safety requirements is strongly dependent on the properties
of the pre-computed control profiles. Start-up trajectories that have large
sensitivity to parameter variations can be expected to be more difficult
for the control system, which has limited authority, than trajectories for
which the parametric uncertainty is small.
To summarize, parametric uncertainty has profound consequences for

the start-up problem. In particular, it is not sufficient to meet the three
objectives listed above for a nominal parameter set. To meet the objectives
for all parameters sets, a complimentary objective can be stated as:

Formulate the optimization problem so that the optimal control input

u(t) gives nominal state trajectories xnom(t) that have low sensitivity to
parameter uncertainty.
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Motivating examples

In this section, a few motivating examples of open-loop controlled start-up
sequences will be presented. The nonlinear dynamic model from Chapter 3
is used for the simulations. The initial conditions are the following

Tr = 20○C, Tw = 20○C, cA = c0A, cB = 0, cC = 0, (5.4)

where the vectors Tr,Tw,cA,cB and cC represent the variables along the
reactor, see the process model in (3.2). The initial conditions for the control
inputs are

uB1 = 0, uB2 = 0, TA,feed = 30○C, Tcool = 20○C. (5.5)

First, consider the naive approach of injecting the secondary reactant
B at a reactor temperature around 20○C, see solid line in Figure 5.2. How-
ever, due to the low reaction rate at low temperatures, the reaction does
not start despite nominal injection of uB1. The feed temperature TA,feed
is therefore increased to increase the reactor temperature, thus also the
reaction rate. At t = 100 s the reactor temperature has increased so much
that the reaction becomes self-accelerating, as the heat release from the
reaction leads to a positive feedback loop. The temperature increases from
65○C to 180○C, which gives a rough estimate of the potential dynamics
during the start-up. However, the simulation model is not developed to
accurately represent this kind of high-frequency behavior, as that time-
scale would require full CFD-simulations to account for more exact flow
dynamics, mixing, turbulence and heat transfer.
Note that the nonlinear dynamics yield multiple stationary solutions

as uB1 = 0.5 and TA,feed = 30○C may result in a reactor temperature of 32
or 155○C.
In industrial start-up procedures, it is common to specify a certain

start temperature at which it is safe to begin the feed injections, see e.g.
[Verwijs et al., 1996]. The second case utilizes this approach, where the
feed temperature TA,feed is increased to 70○C before any injection of B is
allowed to start, dash-dotted line in Figure 5.2. At the resulting higher
reactor temperature, the relation between uB1 and T1 is nearly linear
and the reaction starts almost immediately upon injection. The difference
between the nonlinear dynamics in the first start-up and the nearly linear
dynamics in the second case is very interesting.
Figure 5.3 plots the reactor temperature T1 as function of the two

primary control inputs, uB1 and TA,feed. Two arrows indicate the common
start and end point of the trajectories. With the 3-dimensional plot, the
difference between the two approaches are seen as two distinct routes to
the common end point. The solid trajectory passes through an area of
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Figure 5.2 Simulations of various start-up attempts. The solid line represents
the case when injection is begun before heating the reactant feed. The dash-dotted
line represents the opposite case, when the feed is heated before injection begins.
The dashed line represents the result of a dynamic start-up optimization without
any robustness considerations.

the state-space where the nonlinear dynamics are significant, whereas
the dash-dotted trajectory passes through areas with essentially linear
dynamics.
Even though the process dynamics are sometimes highly nonlinear,

dynamic optimization based on the nonlinear process model may give ef-
ficient and accurate start-up trajectories, see dashed line in Figures 5.2
and 5.3. The nominal operating point is reached within 20 seconds, by
injecting the feed and increasing the feed temperature at the same time.
However, this almost time-optimal solution considers only the nominal
plant, which makes it extremely sensitive to any kind of plant/model mis-
match or disturbance.
Assume now that there is a 2% plant/model mismatch in the activation
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Figure 5.3 3D plot of the state-state trajectories during the start-up. For low
temperatures and high injection flows, the process displays a higher degree of non-
linearity. The solid line represents the case when injection is begun before heating
the reactant feed. The dash-dotted line represents the opposite case, when the feed
is heated before injection begins. The dashed line represents the result of a dynamic
start-up optimization without any robustness considerations.

energy Ea, which is within the uncertainty set in Table 5.1. A 2% higher
Ea reduces the reaction rate for a certain temperature. The open-loop
controlled start-up is repeated with the trajectories from the dynamic
optimization of the nominal model. The reduced reaction rate leads to
the reaction occurring further downstream in the reactor and T1 remains
around 31○C. The temperature at the second injection point T2 is plotted
in Figure 5.4. The plant/model mismatch leads to T2 being lower initially
and then higher than the nominal trajectory, that is, the parameter error
changes sign during the ignition process. The effects of the plant/model
mismatch has the character of very fast transients, which may be very
difficult for any feedback controller to compensate for.
The open-loop start-up trajectories may be analyzed before being im-

123



Chapter 5. Start-up

0 10 20 30 40 50 60
0

50

100

150

200

250

0 10 20 30 40 50 60
−100

−50

0

50

100

150

0 10 20 30 40 50 60
−10

−8

−6

−4

−2

0

2
x 10

−3

Time [s]

Tnom2

T
perturbed
2

T
em
pe
ra
tu
re
s
[○ C
]

S
en
si
ti
vi
ty
�T
2
/�
E
a

T
em
p.
de
vi
at
io
n
[○ C
]

Tnom2 - Tperturbed2

Figure 5.4 Upper plot: The optimal start-up from Figure 5.2 is very sensitive
to uncertainties. In the perturbed case (dashed) the activation energy Ea is 2%
higher than in the nominal model (solid). Middle plot: The model mismatch leads to
first a lower temperature than predicted, but after the ignition of the reaction, the
mismatch leads to higher temperatures. Lower plot: The temperature sensitivity to
parameter variations in Ea.

plemented. The state sensitivity to parameter changes, �x/�p, gives an
indication of how parametric uncertainty affects the behaviour of the pro-
cess, see Figure 5.4. The higher sensitivity, the higher is the impact of the
model mismatch. For small parameter changes ∆, the state trajectories are
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given by

x = xnom + �x�p∆pnom, (5.6)

where

∆ = p− p
nom

pnom
(5.7)

is the dimensionless deviation factor of the parameter, here 0.02 for Ea.
This linear approximation is only valid for very small parameter changes,
due to the severe nonlinearities of the process.

Summary

The start-up control problem is challenging for three reasons, highly non-
linear dynamics of the process, slow input dynamics and rate limits for
some control inputs, and finally, the uncertainty in terms of plant/model
mismatch. Three motivating examples have been presented. The first two
examples show that the start-up trajectories can lead through either very
nonlinear dynamics or almost linear dynamics. The third example shows
that dynamic optimization can lead to very efficient start-up trajectories,
but it is not sufficient to only consider the nominal model for a safe and
robust start-up.
In the next two chapters, the robust start-up control problem will be

approached by using sensitivity analysis for two different control imple-
mentations.
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6

Start-up: Dynamic

Optimization

6.1 Introduction

We consider off-line dynamic optimization of the start-up trajectories. The
optimal trajectories are used as feed forward and set-point terms in a local
feedback system, see Figure 6.1, which should ensure that the optimal
trajectories are tracked also in the presence of disturbances and modeling
errors.
Dynamic optimization can easily give high performance solutions based

on a nominal model. A greater challenge is to find solutions with robust
performance, so that the solutions have reduced sensitivity to model un-
certainty. In [Diehl et al., 2006], an approximate technique is presented for
robust nonlinear optimization, which utilizes a linearization of the uncer-
tainty set. The main contribution of that paper is two methods to preserve
sparsity to achieve efficient computation for large scale problems.
The robustness of the optimal solutions are considered in terms of

parametric sensitivity. By introducing two key specifications in the opti-
mization formulation, high-frequency penalties on the control inputs and
state constraints on reactant B, the sensitivity of the optimal solutions can
be significantly reduced, which increases the robustness of the closed loop
start-up control problem. The robustness is introduced based on process
insight and the extra specifications have only a small contribution to the
computational complexity, compared to a min/max optimization problem
formulation. The robustness of the proposed method is verified in Monte-
Carlo simulations, where the values of the parametric uncertainties are
randomly generated from a uniform distribution.
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Figure 6.1 General block diagram for the start-up control with off-line optimiza-
tion and online feed forward and feedback control.

6.2 Dynamic Optimization

Overview

Historically, there has been two main approaches to dynamic optimization,
namely, dynamic programming and the maximum principle. Dynamic pro-
gramming was proposed in [Bellman, 1957] as an elegant method to derive
an optimal control policy as a function of the system states. The method
has been successfully used to solve a large number of important problems
in various fields, such as automatic control, inventory control and eco-
nomics. The method is however difficult to apply to large scale problems
due to the well-known curse of dimensionality. The maximum principle,
[Pontryagin et al., 1962], originating from the calculus of variations, de-
fines the conditions for a function to be the optimal control profile. The
optimality conditions form a two point boundary value problem. Solution
of this problem includes integration of the system dynamics as well as the
adjoint equations.
During the last two decades, a new family of methods has emerged,

referred to as direct methods. Direct methods address the problem by
transcription of the original infinite dimensional problem into a finite
dimensional problem, which in turn is solved by means of algebraic non-
linear programming (NLP). The popularity of the direct methods is mainly
due to their applicability to large scale problems, and in addition, the fact
that some direct methods permit path constraints of states and controls
to be enforced.
There are two main approaches to solving optimization problems using

direct methods. In single shooting, see e.g. [Vassiliadis, 1993], the control
variables are discretized, usually by introducing a piecewise polynomial
parametrization. In each iteration, the dynamic equations are integrated
in order to evaluate the cost function and the constraints. In order to ob-

127



Chapter 6. Start-up: Dynamic Optimization

tain first order gradient information, the sensitivity equations may also be
integrated. The NLP for the parametrized control variables is usually of
moderate size and can be solved by standard codes. In contrast, in simul-
taneous methods, see e.g. [Biegler et al., 2002], both the control variables
and the state variables are discretized. Since the dynamics must be dis-
cretized with sufficient accuracy, the resulting NLP is large but sparse.
Recent advances in specialized algorithms have increased the applicabil-
ity of the simultaneous methods, [Wächter and Biegler, 2006]. There are
two main reasons for choosing a simultaneous method in this application.
Firstly, the simultaneous methods have good numerical stability proper-
ties, which is important for the plate reactor system, since the system
dynamics is unstable in some operating conditions. Secondly, one of the
most important elements of the optimization problem is a temperature
path constraint, which is straight forward to enforce using a simultane-
ous method.

Transcription Method

A key element of a simultaneous method is the scheme used to discretize
the differential equation. Here, we use orthogonal collocation over finite
elements with Radau points and Lagrange polynomials, for its numerical
stability properties. The purpose of the transcription procedure is to trans-
late the infinite dimensional dynamic constraint into a finite dimensional
constraint, which can be incorporated into the final algebraic non-linear
program.
The method will be briefly explained in this section. Consider the dif-

ferential equation
ẋ = f (x,u), x(0) = x0, (6.1)

where x are the state variables and u are the control variables. The op-
timization horizon is divided into Ne finite elements, and within each
element, Nc collocation points, τ j ∈ [0, 1], are defined. Introducing the
element lengths hi, the time instants of the collocation points may be
expressed ti j = ti + hiτ j , where ti denotes the start time of element i.
Introduce the polynomial state variable approximations

xNc+1(t) =
Nc∑

k=0
xikl

Nc+1
k

(
t− ti−1
hi

)

t ∈ [ti−1, ti], (6.2)

where lNc+1k denotes Lagrange interpolation polynomials of order Nc + 1
and xi j are parameters. The control variables are discretized using the
approximation

uNc (t) =
Nc∑

k=1
uikl

Nc
k

(
t− ti−1
hi

)

t ∈ [ti−1, ti], (6.3)
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where the Lagrange polynomials, lNck , of order Nc has been introduced,
and ui j are parameters. The collocation equations may now be written

Nc∑

k=0
xik l̇

Nc+1
k (τ j) = hi f (xi j ,ui j) (6.4)

for all i = 1 . . .Ne and j = 1 . . .Nc. In order to enforce continuity of the
state variables between elements, the constraints

xi−1,Nc = xi,0 (6.5)

must be enforced. The variables x and u and the original dynamic con-
straint (6.1) are now replaced by the parameters xi j and ui j and the equal-
ity constraints (6.4) and (6.5) in the final transcribed algebraic non-linear
program.
It is interesting to note that this collocation scheme can be shown to be

equivalent to a fully implicit Runge-Kutta method. Accordingly, the strong
stability properties, see e.g. [Petzold, 1986], of this class of methods are
still valid.

Tools

Formulation of a dynamic optimization problem is an iterative process,
which requires careful tuning of the cost function, the constraints and
the method used to transcribe the continuous dynamics. In addition, the
properties of the numerical method used to solve the problem must be
considered. The demanding task of formulating the problem is often com-
plicated further by the details of how to encode the problem so that it
fits the numerical algorithm. This encoding procedure is largely routine,
but it is time consuming, error-prone and tends to distract the user from
the key task of formulating the actual problem to be solved. Therefore,
automatic computer software is important to bridge the gap between the
requirements of the algorithms and the user’s need of intuitive means
to formulate the problem at hand. There is, however, a delicate balance
between ease of use and restrictiveness when designing such software
tools.
The plate reactor model is formulated in the modeling language Mod-

elica, see [Modelica Association, 2005]. Modelica is an object oriented lan-
guage which enables the user to state mathematical equations declara-
tively. In addition, Modelica offers abstractions useful for structuring of
large models, such as class inheritance, components and connection of
components. There is a large number of free and commercial Modelica li-
braries covering application areas such as electronics, mechanics, thermo-
dynamics, fluid mechanics and vehicles.
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Figure 6.2 Flow sheet of the automatic code generation tool. The dynamic model
and the optimization problem are formulated separately. The Optimica Compiler
then automatically generates the nonlinear optimization problem in AMPL code.
Finally, IPOPT is called to solve the resulting nonlinear problem.

In the optimization problem, the Modelica model represents the dy-
namic constraint. However, it is desirable to be able to express, formally,
also the optimization quantities, such as cost and constraints. This sort
of constructs are not part of the current version of the Modelica language
specification. Therefore, a project, The JModelica Project, aiming at creat-
ing a flexible Modelica environment targeted at extensible compiler design
has been initiated, see [Åkesson et al., 2007; Åkesson and Årzén, 2007]. A
primary target of the project is to formulate a language extension, entitled
Optimica, of Modelica which offers high level descriptions of dynamic op-
timization problems. In addition, a prototype Modelica/Optimica compiler
is under development. Using this compiler, a Modelica description of the
process, and a complementing Optimica description for the optimal con-
trol problem can be automatically translated into AMPL, [Fourer et al.,
2003], which is a language for mathematical programming, see Figure 6.2.
The resulting NLP was then solved using AMPL and IPOPT, which is an
interior point optimization algorithm, [Wächter and Biegler, 2006].
All optimization results in this chapter were obtained using the Mod-

elica/Optimica compiler, AMPL and IPOPT.

6.3 The Model

In this chapter, we consider a reactor configuration with two injection
points for reactant B and one single cooling flow, that is, the same water
cools the entire reactor. The two injection points are located at the reactor
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inlet and mid section, respectively. The dynamic optimization is based on
the nonlinear model from Chapter 3.
Four control variables are used as manipulated variables in the start-

up optimization problem, uB1,uB2,TA,feed and Tcool. Note that the feed flow
rates uB1 and uB2 may be used independently of each other. Stoichiometric
conditions will be achieved in steady-state by proper formulation of the
cost function. The absolute and rate limits on the control variables are

0 ≤uB1 ≤ 0.8
0 ≤uB2 ≤ 0.8

−2○C/s ≤ṪA,feed ≤ 3○C/s
20○C ≤TA,feed ≤ 90○C (6.6)

−2○C/s ≤Ṫcool ≤ 1○C/s
15○C ≤Tcool ≤ 90○C

and there are constraints on the reactor temperature

Tr,i ≤ Tmax = 160○C for i = 1 . . .N (6.7)

For each control input, there is an actuator system. Therefore, the
output of the optimization will be the setpoints to these actuator systems,
denoted by uspB1,u

sp
B2,T

sp
A,feed and T

sp
cool, hence the superscript ’sp’. For clar-

ity, the superscript will be omitted when the meaning is clear from the
context.

6.4 The Optimization Problem

Definition of a dynamic optimization problem is an iterative procedure.
The problem specification given in this section is the result of such a
procedure, where successive refinement of objectives and constraints have
resulted in the final formulation.

Specifications

The state x of the reactor should be transferred from a cold stable equilib-
rium where no reaction takes place, to stable equilibrium at high reactor
temperature, where almost all of the reactants A and B are converted
to C. By minimizing the concentration of the reactants A and B at the
outlet of the reactor, ignition of the reactor, and transfer of the state, can
be achieved.
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As discussed in the previous section, it is very important to consider
the robustness properties of the optimal solution. The robustness prop-
erties of a particular solution may be analyzed by calculating the state
sensitivity with respect to parametric uncertainty, �x/�p. It is clear that
a bang-bang solution, resulting e.g. from solving a minimum time prob-
lem, would not be robust, since the success of such a strategy is based on
timing. In the presence of model uncertainty, the timing of the bang-bang
sequence might not match the actual state of the system, with degraded
performance as a result.
We introduce two specifications that will improve the robustness of

the optimal solution; i) a penalty on the high frequency use of the control
inputs, ii) a constraint on the accumulated amount of reactant B at each
injection point.

High frequency penalties on control signals High frequency penal-
ties on the inputs are introduced in the optimization, since it is impos-
sible to implement arbitrarily fast control trajectories. In addition, high
frequency penalties improves the numerical solution of the optimization
as the problem becomes less singular.
In the optimization problem, there exist rate limits on the feed tem-

perature and cooling temperature Ṫsp
A,feed and Ṫ

sp
cool. These derivatives are

penalized in the cost function as one kind of high frequency penalty. How-
ever, penalties on the derivatives of the injection flow rates, uspB1 and u

sp
B2,

were not sufficient. Instead a more general high-pass filter was introduced
to increase the flexibility in the optimization formulation. By varying the
cut-off frequency ω f

c of the filter, it is possible to vary the frequency at
which the HF-filter starts penalizing the control signal.
The high frequency penalties are important for the nominal solution,

but they should also be considered in the context of the closed loop sys-
tem. The optimal control profiles are implemented as feed forward signals
in the closed loop feedback control system, see Figure 6.1. The feedback
controller should be able to compensate for effects of the model mismatch.
Clearly, the feedback system cannot be expected to suppress effects from
model mismatch at frequencies higher than its bandwidth.
It is then convenient to design the high-pass filter cut-off frequency in

terms of the frequency domain for the closed loop system. The frequency
content of the off-line computed control variables should be such that
high frequencies are not injected into the system. For the plate reactor,
the bandwidth of the closed loop system is close to 0.5 rad/s at the final
steady-state operating point, see also Figure 6.12. The limited bandwidth
arises from actuator dynamics and limited control inputs. Accordingly, the
bandwidth of the filter, ω f

c was chosen to 0.5 rad/s. For comparison, the
case of ω f

c = 5 rad/s was evaluated. The filter was implemented as a third
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order Butterworth high-pass filter.

Accumulation of reactant B For safety reasons, it is undesirable to
have large amounts of reactant B accumulated in the reactor during start-
up. This may lead to sudden ignitions and thermal runaways. This can be
formally analyzed by investigating the state sensitivity with respect to the
parametric uncertainties, see Section 6.4. The analysis shows that high
concentrations and high temperatures give extremely high sensitivity for
the given uncertainties. Therefore, it is required that the concentration
of B should not exceed a specified maximum level. The constraints are
chosen based on the steady-state values at optimal operation for the nom-
inal model. In this application the concentration constraints were set to
200 mol/m3 at the first injection point and 400 mol/m3 at the second
injection point.
The constraints on cB has also another interesting physical interpreta-

tion. By limiting the amount of reactant B inside the reactor, the reaction
rate r is limited, see equation (2.3). As a consequence, the rate of the
change of the temperature, Ṫr , is also limited, see (3.2). This is a more
natural way of constraining the temperature derivative than introducing
explicit constraints on the derivative in the optimization problem.

Constraints on reactor temperature The reactor temperature, Tr,
should not exceed the specified maximum temperature anywhere along
the reactor length, in order not to damage the reactor. The maximum
temperature should be chosen somewhat conservative, in order to allow for
temperature fluctuations due to disturbances and parameter uncertainty.
The maximum temperature allowed in the reactor is Tmax = 160○C, while
the corresponding temperature bound in the optimization problem was set
to 155○C.

Absolute and rate limitations of the control inputs There is a com-
plicated interplay between the feed forward trajectories and the closed loop
system, which must be considered in the presence of model uncertainty.
Enough control authority must be allocated to the feedback control sys-
tem to enable it to compensate for any model mismatch. This is done
by enforcing more conservative constraints in the optimization procedure
than is required by the physical plant, see (6.6)-(6.7). In the optimization
formulation, more restrictive bounds were enforced (6.8).
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The Optimal Control Problem

Given the specifications presented in the previous section, the optimiza-
tion problem may now be formulated as

min
u

t f∫

0

α Ac
2
A,N +α Bc

2
B,N +α uB1(uspB1, f )2 +α uB2(uspB2, f )2+

α T f (Ṫ
sp
A,feed)2 +α Tc(Ṫspcool)2 dt

subject to

ẋ = f (x,u)
Tr,i ≤155, i = 1 . . .N cB,1 ≤ 200, cB,2 ≤ 400
0 ≤uspB1 ≤ 0.7, 0 ≤ u

sp
B2 ≤ 0.7 (6.8)

−1.5 ≤Ṫsp
A,feed ≤ 2, −1.5 ≤ Ṫspcool ≤ 0.7

30 ≤TspA,feed ≤ 80, 20 ≤ T
sp
cool ≤ 80

where cA,N and cB,N are the concentrations of A and B at the reactor
outlet. uspB1, f and u

sp
B2, f are the high-pass filtered control variables corre-

sponding to injection of reactant B. The weighting coefficients are denoted
α j . Tr,i are the reactor temperatures in the N control volumes. The terms
cB,1 and cB,2 are the concentrations at the first and the second injection
point, respectively. Note that at time t = 0, the only term that is non-zero,
is the first term in the cost function cA,N, since reactant A flows through
the reactor. The remaining five terms in the cost function are zero, as
they all are directly or indirectly associated with actions of the control
inputs. In steady-state, at the end of the optimization time t f , all terms
except the two concentrations are zero. Therefore, the values of α A and α B
determine the steady-state optimal operating point. To achieve high con-
version of both reactants, these weights are chosen so that stoichiometric
relations are achieved, thus maximizing the conversion.
The problem was transcribed and solved as described in Section 6.2,

using the automatic Modelica-based software. The input and state vari-
ables were discretized over a time horizon of 150 s using a grid of 450
points, which resulted in a large scale optimization problem with approxi-
mately 145 000 variables. The execution time for solving the optimization
problem was 1-2 hours on a Intel Core Duo 2.13 GHz system.

Scaling and Initial Guess

Scaling proved to be important in order for the numerical algorithm to
converge. Therefore, all states and controls were scaled to the same order
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of magnitude. In addition, the automatic scaling facilities of IPOPT were
utilized. Further, the convergence as well as the execution time of the opti-
mization algorithm is dependent on the initial guess supplied to the NLP
solver. Therefore, a square problem, with fixed inputs was solved initially,
to generate initial guesses for all variables. Then the actual optimization
problem could be solved with satisfying convergence rate.

Optimization Results

In this section the effects of the given specifications on the optimal solution
are presented and analyzed.

Overview of the characteristics The optimization results are plotted
in Figures 6.3 and 6.4. The main characteristic is the need for heating
to achieve ignition. By increasing the feed temperature TA,feed the reac-
tor temperature increases and after ignition the reaction becomes self-
accelerating and TA,feed can return to its initial value. Similarly, the cooling
temperature Tcool is increased to promote ignition at the second injection
point. The maximum conversion occurs when the reactor temperatures
around the two injection points are at the maximum limit of 155○C.
In the optimization formulation, the reactant B concentration around

the two injection points is limited, see Figure 6.4. The constraints on cB
ensure that there is only a limited accumulation of unreacted chemicals
in the reactor. The injection flow rates, uB1 and uB2, are initially low
to comply with the cB-constraints. Before more B can be injected, the
temperature at the injection points needs to be increased by TA,feed and
Tcool. The higher reactor temperature increases the reaction rate, which
leads to more of the injected B being consumed. It is then possible to
increase the injection of B and still comply with the constraint in cB . The
constraints in cB reduce the risk of uncontrolled ignition and increases
the robustness of the optimal trajectories.

Results when varying the high frequency penalty on uB1 and uB2
Two cases have been considered, ω f

c = 0.5 andω f
c = 5.0 rad/s. The optimal

control profiles for both cases are shown in Figure 6.3. When ω f
c = 5.0,

there is clearly more high frequency content of the injection control inputs.
This allows the start-up to be somewhat faster as the control actions can
be more aggressive, when the temperature reaches the maximum value,
see Figure 6.4.
When ω f

c = 0.5, the optimization gives a slower transient to the maxi-
mum temperature value, since the injection control is penalized for lower
frequencies than in the previous case. Notice that the temperature con-
straints are active for both cases at the optimal steady-state operation
point.
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Figure 6.3 Optimal control profiles. The dashed curves correspond to the case
ω fc = 5.0 rad/s and the solid curves corresponds to ω fc = 0.5 rad/s.
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Figure 6.4 Optimal profiles profiles for reactor temperature and concentration of
substance B. The left plots correspond to the first injection point, whereas the right
plots correspond to the second injection point.
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Figure 6.5 Conversion of reactant A at the outlet. The dashed curve correspond
to the case ω fc = 5.0 and the solid curve correspond to ω fc = 0.5.

The high frequency content of the case when ω f
c = 5.0 leads to control

input trajectories that require exact timing to satisfy the temperature con-
straints. This optimal solution will be much more sensitive to parametric
uncertainty, as will be demonstrated in Section 6.7.
However, there is almost no difference in the settling time of the conver-

sion, γ A, see Figure 6.5. With time to reach maximum conversion being the
primary performance measure, there seems to be almost no performance
loss for increasing robustness of the optimal solution in this case.

Results for varying the bounds on cB In Figures 6.6, 6.7 and 6.8
the optimal start-up trajectories are shown for three cases of different
concentration bounds on reactant B. The high frequency penalty on the
injection control inputs was fixed to ω f

c = 0.5 rad/s for all three cases.
With tighter constraints on cB , the reactor temperature needs to be

higher before more reactant can be injected. This is clearly shown in the
lower plots of Figure 6.6, where TspA,feed and T

sp
cool are increased to raise

the reactor temperature before more injection can occur. Figure 6.8 shows
the slower transient to the final operating point in terms of conversion,
when tighter constraints are used. However, when higher concentrations
are permitted, the start-up trajectories enter regions in the state-space
where the state sensitivity for parametric uncertainty is very high, see
Section 6.4.
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Figure 6.6 Control signals for optimal start-up for various cB-constraints. cB,1 ≤
200, cB,2 ≤ 400 (solid), cB,1 ≤ 400, cB,2 ≤ 800 (dashed), cB,1 ≤ 600, cB,2 ≤ 1200
(dash-dot)
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Figure 6.7 Temperatures and concentrations during optimal start-up for various
cB-constraints defined in Figure 6.6.
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Figure 6.8 Conversion of reactant A at reactor outlet during optimal start-up for
various cB-constraints defined in Figure 6.6.

Sensitivity Analysis

In the presence of uncertainty, there will be deviations in the actual state
trajectories from the off-line computed optimal trajectories. Sensitivity
analysis is performed to quantify the impact of the optimization specifica-
tions on the parametric sensitivity of the optimal trajectories. In addition,
we will study and compare the sensitivity of the open loop optimal trajec-
tories for the uncertain parameters from Table 5.1.
The state sensitivity to parameter changes, �x/�p, gives an indication

of how parametric uncertainty affects the behaviour of the process. The
higher sensitivity, the higher is the impact of the model mismatch. For
small parameter changes ∆, the state trajectories are given by

x = xnom + �x�p∆pnom, where ∆ = p− p
nom

pnom
(6.9)

is the dimensionless deviation factor of the parameter. In the start-up
of the plate reactor, temperature is the most important safety concern.
Therefore, the following analysis is focused on the sensitivity of the tem-
perature at the second injection point T2 to parameter variations. An
analysis on T1 would give similar results.
Table 6.1 summarizes the maximum temperature sensitivity during

start-up time to parameter changes for various cB -constraints and cut-
off frequencies ω f

c . The value in each entry of the table is the maximum
temperature deviation due to a 0.1% increase in the specific parameter,
for example

max
t∈[0,t f ]

(T2(t) − Tnom2 (t)) = max
t∈[0,t f ]

�T2(t)
�Ea

0.001 ⋅ Enoma (6.10)
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Table 6.1 Maximum deviation in T2 due to parametric sensitivity for different
start-up specifications.

ω f
c = 0.5 ω f

c = 0.5 ω f
c = 0.5 ω f

c = 5
cB,2 ≤ 400 cB,2 ≤ 800 cB,2 ≤ 1200 cB,2 ≤ 400

�T2
�Ea

⋅ 0.001Enoma -1.5 ○C -14.9 ○C -51.8 ○C -2.2 ○C

�T2
�k0

⋅ 0.001knom0 0.062 ○C 0.71 ○C 8.6 ○C 0.091 ○C

�T2
�∆H

⋅ 0.001∆Hnom 0.24 ○C 2.0 ○C 15.8 ○C 0.35 ○C

�T2
�h ⋅ 0.001hnom -0.14 ○C -1.4 ○C -15.4 ○C -0.18 ○C

This linear approximation is only valid for very small parameter changes,
due to the severe nonlinearities of the system. For the wider range of
uncertainties described earlier in Table 5.1, the nonlinear effects have to
be considered in order to analyze the state sensitivity, see the next section.
For tighter cB -constraints, the effect of the model mismatch on the

state trajectories is significantly smaller, up to an order of magnitude. The
maximum sensitivity in each case occurs when the reaction ignites and the
temperature increases very quickly. Start-up trajectories that have large
sensitivity to parameter variations can be expected to be more difficult for
the control system, which has limited authority, than trajectories for which
the parametric uncertainty is small. However, the decreased sensitivity
comes at the price of somewhat longer start-up time, see Figure 6.8.
The sensitivity of the optimal trajectories whenω f

c = 5 rad/s is roughly
50% higher than for ω f

c = 0.5 rad/s, but it is in turn much smaller than
the sensitivity for higher constraints on cB . The choice of cut-off frequency
for the high-pass filter has a smaller, but still significant, impact compared
to the cB -constraints on the sensitivity of the optimal solutions. From Ta-
ble 6.1 it can also be noted that the reactor temperature is most sensitive
to changes in the activation energy Ea, this because the reaction rate r
depends exponentially on Ea, but only linearly on for example k0.
The sensitivities discussed in this section were computed using the

numerical solver DASPK, see [Maly and Petzold, 1996]. This algorithm
implements a BDF method for solving index-1 DAE systems, and can also
integrate the sensitivity equations.
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Figure 6.9 Difference in temperature at first injection point T1 for the nomi-
nal trajectory and the actual trajectory caused by model mismatch for various cB-
constraints.

Effects of model mismatch

In the previous section, linear sensitivity analysis showed that tighter
concentration constraints in the optimization formulation gave optimal
trajectories that have significantly reduced sensitivity to parameter un-
certainty. That analysis is limited to small parameter variations, so in
this section we will use open loop simulations with the nonlinear model
to include the nonlinear and multiparametric effects in the sensitivity
analysis.
Up to now, optimal start-up trajectories have been presented for the

nominal model. Here we will take a first look at the effect of model mis-
match. The uncertainty of the model parameters were described in Ta-
ble 5.1. One specific case of model mismatch is now studied to provide some
insights. The parameter errors are the following; the heat transfer coeffi-
cient h 10% lower, the heat of reaction ∆H 5% higher, the pre-exponential
coefficient k0 5% lower and the activation energy Ea 2% higher than in
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the nominal model. This model mismatch is selected, since it is one of
the most difficult cases of model mismatch for the feedback controller to
handle, according to the Monte Carlo simulations that will be presented
in Section 6.7.
Figure 6.9 shows the difference ∆T = T1 − Tnom1 between the ac-

tual temperature and the nominal temperature at the first injection. The
higher value in Ea and lower value in k0 will reduce the reaction rate
and the subsequent heat release. Thus, the actual temperature will be
lower than the nominal temperature before ignition occurs. After the ig-
nition, the higher value in ∆H leads to more heat being released, thus
the actual temperature will be higher than the nominal. A reduced heat
transfer coefficient h will also lead to the actual temperature being higher
than the nominal. The combination of these four parameter errors form a
challenging model mismatch for a feedback controller to handle. First the
mismatch leads to lower temperatures, but after ignition has occurred,
the effect of the mismatch is the directly opposite.
Figure 6.9 shows that the effect of the model mismatch is significantly

smaller when tighter concentration constraints in B are enforced or when
lower cut-off frequency ω f

c is used. This supports the results of Table 6.1
even when the nonlinear effects and uncertainty in multiple parameters
are considered simultaneously. In the next sections, we will extend the
robustness analysis to the closed loop system.

6.5 Feedback Control

The dynamic optimization algorithm calculates open loop trajectories for
the four manipulated variables. Feedback control is necessary, however,
due to process uncertainties and disturbances. Only temperature feedback
is available. In the feedback control structure, the optimization results are
used as reference and feed forward trajectories,

T ref1 = Topt1 , T ref2 = Topt2 ,
T ffA,feed = Tsp,optA,feed, T

ff
cool = Tsp,optcool , u

ff
B1 = usp,optB1 , u

ff
B2 = usp,optB2 , (6.11)

where the superscript ’opt’ denotes the optimal results from (6.8).
Figure 6.10 shows the Bode diagrams of four open loop transfer func-

tions from the control inputs to the reactor temperatures T1 and T2. The
transfer functions are linearizations of the process model at steady-state
after the start-up. In the Bode diagram, we can see that the injection flow
rates of reactant B, usp

B1 and u
sp
B2, have larger process gain and faster im-

pact on T1 and T2 than T
sp
A,feed and T

sp
cool have. However, there are several
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Figure 6.10 Bode diagrams; usp
B1 → T1 (solid), u

sp
B2 → T2 (dashed), T

sp
A,feed → T1

(dash-dot) and Tspcool → T2 (dotted). The large difference in gain comes from a lack
of scaling.

nonlinear effects that should be considered when choosing control signals
for feedback. For example, the injection flow rates may affect the stoichio-
metric balance and should thus be used with care in steady-state. Clearly,
the variables TspA,feed and T

sp
cool also affect the reactor temperatures, but

their input dynamics and rate limits will prevent achieving a desirable
bandwidth for the closed loop system using these two inputs only.
Therefore, a mid-ranging control structure, see e.g. [Åström and Häg-

glund, 2005], shown in Figure 6.11 is introduced. The idea of mid-ranging
is to use control variables with fast impact, in this case, uspB1 and u

sp
B2, to

account for high frequency variations. This is realized by the controllers
C1 and C2 in Figure 6.11. Meanwhile, variables with slower impact, in this
case, TspA,feed and T

sp
cool, are used to compensate for low frequency variations

or effects of model mismatch, using controllers C3 and C4. The actions of
T
sp
A,feed and T

sp
cool on the process, enable the two injection flow rates u

sp
B1

and usp
B2 to return to their optimal values, thus achieving the correct sto-

ichiometric conditions between A and B in steady state. To reduce the
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interaction between the fast and the slow control variables, the slow con-
trol loops are designed to have a closed loop bandwidth that is an order
of magnitude smaller. For more details on mid-ranging control, see Chap-
ter 9.
Each controller C1, C2, C3 and C4 in Figure 6.11 is implemented as

a PID-controller. The tuning of the controller parameters is based on the
AMIGO method, which involves robust loop-shaping and optimization of
the integral gain, see [Åström and Hägglund, 2005].
Finally, to analyze the resulting closed loop system, the singular values

of the sensitivity function S is plotted in Figure 6.12. S is the transfer
function from the disturbance signals v1 and v2 to the temperature signals
T1 and T2 and it is defined as

S = [I + PC]−1, (6.12)

where P is the linearization of the nominal reactor model at steady-
state and C represents the mid-ranging control structure depicted in
Figure 6.11. The closed loop system has good attenuation of constant
and low frequency disturbances and model-mismatch effects. The max-
imum singular value for any frequency is 1.17 at 1.7 rad/s, which implies
that the feedback control gives a good robustness. However, σmax ≥ 1 for
ω ≥ 0.9 rad/s. This indicates that the feedback controller will have dif-
ficulties in attenuating model-mismatch effects with higher frequencies.
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6.6 Simulation with Feedback Control

In this section, the closed loop system with feedback control is simulated
and analyzed, see Figure 6.1. The result of the feedback is compared to the
optimal solution given that the true values of the uncertain parameters
had been known.
In Figures 6.13 and 6.14, the start-up trajectories for three cases are

plotted; the optimal solution for the nominal plant, the feedback solution
when there is model mismatch (as defined in Section 6.4) and finally
the optimal solution knowing the exact model mismatch. The specifica-
tions in the optimization problem are ω f

c = 0.5 rad/s and cB,1 ≤ 200 and
cB,2 ≤ 400 mol/m3. The model mismatch and its effect was described in
Section 6.4.
The feedback controller takes the temperature trajectories T ref1 and

T ref2 from the optimal solution as references. The controller manipulates
primarily uB1 and uB2 to achieve this reference tracking, despite track-
ing errors resulting from model mismatch. As described in Section 6.4,
this model mismatch leads initially to lower temperatures than in the ref-
erence. Thus, the controller have to increase the injection flow rates of
B to compensate. After the ignition, the model mismatch quickly gives
higher temperatures than for the nominal model, see e.g. Figure 6.9. The
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Figure 6.13 The control input set-points. Comparison of optimal solution with
nominal model (solid), feedback control with model mismatch (dashed) and the
optimal solution when the exact model mismatch is given (dash-dot).
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Figure 6.14 The state variables. Comparison of optimal solution with nominal
model (solid), feedback control with model mismatch (dashed) and the optimal so-
lution when the exact model mismatch is given (dash-dot).
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controller quickly lower the flow rates again.
Meanwhile, to achieve stoichiometric conditions in steady-state, the

mid-ranging control reduces the pre-heating TA,feed and cooling Tcool, to
allow the injection flow rates uB1 and uB2 to return to their pre-defined
optimal trajectories. In other words, during the transients the higher heat
release is compensated for by uB1 and uB2, but in stationarity by TA,feed
and Tcool. In this way, mid-ranging allows each control input to be used
at its best depending on its limitations, dynamics and available band-
width. The control limitations for TA,feed and Tcool were more restrictive
in the optimization formulation, to allocate some additional flexibility to
the feedback controller. The feedback controller is bound by the original
limitations defined in (6.6)-(6.7).
The feedback control tracks the optimal temperature trajectories and

preserves the optimal injection flow rates with the mid-ranging control.
However, these optimal trajectories are computed for the nominal model
and may not be optimal due to model mismatch. It may then be interesting
to see how the feedback solution compares with an optimal start-up if
the exact model mismatch had been known, see the dash-dot lines in
Figures 6.13 and 6.14. As the activation energy is higher, the reactor flow
needs to be heated more, before injection can be increased further, thus
avoiding excessive accumulation of B. The higher heat release leads to
less reactant being injected at the first point, since TspA,feed is already at
its lower limit of 30○C. Thus, the injection of B is slightly redistributed
from the first to the second injection point. To adjust for the increased
heat release, the cooling temperature Tspcool is lowered in steady-state.
The feedback controller succeeds in tracking the temperature refer-

ences, but the concentration of reactant B increases temporarily due to the
model mismatch, see the lower plots in Figure 6.14. This may be avoided if
concentration feedback is available. The resulting operating point will be
different for the feedback solution and the optimal solution knowing the
model mismatch. However, the conversion of reactant A is 98.8% for both
operating points, thus the feedback control does not loose any efficiency
for this particular model mismatch.

6.7 Monte Carlo Simulations

In this section, the effect of the off-line computed start-up trajectories on
the robustness of the closed loop system is evaluated by means of Monte
Carlo simulations. To reduce the state sensitivity of the optimal trajecto-
ries to parametric uncertainties, we have introduced two key specifications
in the optimization problem; i) high frequency penalties on uspB1 and u

sp
B2
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defined by a cut-off frequency ω f
c and ii) constraints on cB at the two

injection points. The temperatures at the first and second injection points
were evaluated and compared for five cases,

Case 1: Feedback control disabled, optimal trajectories computed forω f
c =

0.5 rad/s, cB,1 ≤ 200 mol/m3 and cB,2 ≤ 400 mol/m3

Case 2: Closed loop control, optimal trajectories computed forω f
c = 0.5 rad/s,

cB,1 ≤ 600 mol/m3 and cB,2 ≤ 1200 mol/m3

Case 3: Closed loop control, optimal trajectories computed forω f
c = 0.5 rad/s,

cB,1 ≤ 400 mol/m3 and cB,2 ≤ 800 mol/m3

Case 4: Closed loop control, optimal trajectories computed forω f
c = 0.5 rad/s,

cB,1 ≤ 200 mol/m3 and cB,2 ≤ 400 mol/m3

Case 5: Closed loop control, optimal trajectories computed forω f
c = 5.0 rad/s,

cB,1 ≤ 200 mol/m3 and cB,2 ≤ 400 mol/m3

The first case is open loop control, the remaining four are closed loop
control. Cases 2, 3 and 4 displays the effect of tighter cB-constraints. Case
5 considers less high frequency penalties on the injection control inputs.
For each case, 5000 simulations were carried out. In each simulation,

the values of the model parameters Ea,∆H, k0 and h were randomly gener-
ated from a uniform distribution, based on the uncertainties in Table 5.1.
The closed loop system is simulated and the reactor temperatures at the
injection points are recorded. Then a new sample of the uncertain param-
eters is generated and the whole procedure is repeated.
To visualize the sensitivity of the five cases to the uncertainties, en-

velope curves were constructed, see Figure 6.15. They show the minimum
and maximum temperature among the 5000 simulations for each sample
time t. The horizontal dashed line indicates the safety limit of 160 ○C. Any
temperature above this may lead to safety shut-down to avoid damage to
the reactor. A larger area between the minimum and maximum temper-
ature indicates a higher variation in reactor temperature due to insuffi-
cient robustness to the model mismatch. The same feedback controller is
used for all cases, since the focus is to investigate how the sensitivity of
the different reference trajectories affect the robustness of the closed loop
system.
In the first case, without feedback control, the reactor temperature at

the first injection point spans an interval from 145 to 164○C at steady
state. At the second injection point, there are some situations where the
reaction does not even ignite directly after injection, but instead ignition
occurs further downstream in the reactor. This gives an even larger tem-
perature interval. The remaining cases include feedback control.
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Figure 6.15 Maximum and minimum reactor temperature at the first (left col-
umn) injection point and the second injection point (right column) at each time
instant out of 5000 sample simulations
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The second case has the least restrictive cB-constraints. The optimal
solution based on the nominal model is then extremely sensitive for uncer-
tainties, see Section 6.4. Therefore, the Monte Carlo simulations for this
case show the widest range between the minimum and maximum reactor
temperature. In fact, the time for ignition of the reaction at T2 varies from
45 to 87 seconds, due to the effects of different model mismatch.
In the third case, the cB -constraints are somewhat stricter than in the

second case. The parameter uncertainty leads to model mismatch that the
feedback controller can not handle fast enough. In fact, the feedback con-
troller actually worsen the situation, since the transient results are even
worse than without feedback. In steady-state, however, the temperatures
are back to the nominal values, due to the integral action.
The most robust start-up is achieved in the fourth case, where tighter

cB-constraints and a low ω f
c yield optimal solutions with very low sensitiv-

ity to uncertainty. Therefore, the effects of the model mismatch is small
and the feedback controller succeeds in keeping the temperature below
the safety limit.
In the fifth and final case, the same cB-constraints are enforced, but

there is less penalty on the high frequency components of the injection
control inputs uB1 and uB2. Due to the very fast transient, the maximum
temperature limit for the nominal model, the optimal solution is sensitive
to model mismatch. There are some parameter values within the uncer-
tainty region, for which the feedback controller can not keep the reactor
temperatures below the safety limit.
To summarize, the first case shows that feedback is necessary. How-

ever, due to limited bandwidth in the feedback controller, the optimal
start-up trajectories can not be computed based on any arbitrary opti-
mization specification. The feedback controller has large difficulties with
handling the effect of the plant/model mismatch, especially when the ef-
fect of the mismatch changes sign at the ignition point. To avoid unsafe
start-up, the optimal start-up trajectories need to have low sensitivity
to parameter uncertainty. This is achieved by introducing high-frequency
penalties on the control signals and enforcing concentration constraints
on reactant B.

6.8 Summary and Conclusions

In this chapter, it has been shown how dynamic optimization can be used
to generate trajectories for start-up of a plate reactor. The complex inter-
play between the formulation of the optimization problem and the im-
plementation of its solution in a closed loop setting has been discussed.
With model mismatch, an optimal solution may lead to transients that
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the feedback controller can not handle due to limited bandwidth. There-
fore the specifications of the optimization problem include concentration
constraints on the injected reactant B and high frequency penalties on
the control inputs. This results in an optimal solution with a significantly
reduced sensitivity to uncertainties compared to solutions closer to the
time-optimal. Temperature feedback control ensures that the optimal tem-
perature trajectories are tracked. A mid-ranging control structure is used
to take advantage of all four available control inputs. The proposed opti-
mization specifications have been evaluated in Monte Carlo simulations,
under the assumption of uncertain parameter values, with satisfying re-
sult.
The design procedure has been supported by automatic code genera-

tion tools, where the model description has been expressed in the Mod-
elica language. The availability of automatic tools has enabled focus to
be shifted from the details of encoding the problem towards formulation
of the actual optimization problem. As a result, the iterative process of
formulating a dynamic optimization problem is supported.
A natural extension of this work may be to include the sensitivity anal-

ysis in the optimization formulation, i.e., solving the optimization problem
with a upper bound on the sensitivity or including the sensitivity in the
cost function. With the latter approach, it is possible to choose a weighting
coefficient corresponding to how much the model can be trusted. For large
uncertainties, there may be a large penalty on the sensitivities and vice
versa. It would also be interesting to consider the uncertainty by using
multi-parametric optimization, where the uncertainty in the parameters
are included in the optimization problem in the form of multiple models.
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7

Start-up: A Hybrid

Approach

7.1 Introduction

In [Verwijs et al., 1994] and [Verwijs et al., 1996], start-up of adiabatic
tubular reactors are studied. The safeguarding of the start-up can be for-
mulated as a few conditions that should be true before the feed of reactant
is initiated. These conditions, defined in Section 7.3, and the experience
from the dynamic optimization in Chapter 6 lead to the hybrid event-
driven start-up method presented in this chapter. Even though the re-
actor has continuous dynamics, we will show that start-up control using
hybrid modes may lead to increased safety and robustness of the start-up
in the presence of control limitations and uncertainties. It also connects
naturally to the practice of start-up in the industry.

7.2 The Model

In this chapter, we consider a reactor configuration with two injection
points for reactant B and one single cooling flow, that is, the same water
cools the entire reactor. The two injection points are located at the reactor
inlet and mid section, respectively. The control design is based on the
nonlinear model from Chapter 3.
Four control variables are used as manipulated variables in the start-

up optimization problem, uB1,uB2,TA,feed and Tcool. The limitations on con-
trol inputs and temperatures were given in Eqs. (6.6) – (6.7).
For each control input, there is an actuator system. Therefore, the

output of the hybrid controller will be the setpoints to these actuator
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systems, denoted by uspB1,u
sp
B2,T

sp
A,feed and T

sp
cool. For clarity, the superscript

’sp’ is dropped when the meaning is clear from the context.

7.3 Start-up Conditions

There are many interesting problems associated with start-up of temper-
ature sensitive exothermic reactions. Inspired by [Verwijs et al., 1996] and
the experience from Chapter 6, we propose two start-up conditions that
need to be satisfied in order to achieve a safe start-up. Each condition is
illustrated with an example.

Start-up condition 1: Ignition

The reactor temperature at the injection point should be driven to a re-

quired initial temperature, that is, T ≥ Tstart at which reactant B can be
fed into the reactor safely, meaning that the reaction rates are high enough

to sustain the reaction.

The required initial temperature Tstart will be used as a transition
point, to ensure safe operation.
Example: Consider here injections in the first injection point only.

In Figure 7.1, several start-up trajectories are plotted. The two control
variables uB1 and TA,feed are on the x-axis and y-axis, respectively. The
reactor temperature at the first injection point T1 is on the z-axis.
The solid line is open loop start-up, where initially uB1 is increased,

but the reaction does not start due to low reaction rate. When TA,feed is
subsequently increased, ignition occurs very sudden and the temperature
increases extremely fast and exceeds the maximum temperature allowed,
Tmax = 160○C. TA,feed is then decreased to its original steady-state value.
The process dynamics along this path is extremely nonlinear and offers
no chance for any feedback controller with limited actuator bandwidth to
control the reactor temperature.
The dashed line is open loop start-up where the reactant A is pre-

heated before injection of B is allowed. The dynamic response is much
smoother and less nonlinear. However, the reactor temperature exceeds
Tmax also here, so it is not feasible to maintain constant pre-heating of
reactant A while injecting B.
Finally, the dash-dotted line is start-up with closed loop feedback using

the hybrid start-up control that will be presented in Section 7.6. Reactant
A is pre-heated, to increase T1 before injection is allowed to start. The
feedback control ensures that the reactor temperature reaches steady-
state without violating Tmax.
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Figure 7.1 Start-up trajectories with open loop control injecting at low tempera-
ture (solid) and at high temperature (dashed), and finally closed loop response with
the hybrid controller from Section 7.6 (dash-dot).

An advantage with increasing the reactor temperature before starting
the injection is that it decreases the amounts of B flowing through the
reactor unconsumed. This reduces the risk of further heat release in stor-
age tanks downstream of the reactor, which may not be equipped with any
cooling capacity.
In addition to the ignition condition, there is another condition for the

subsequent injection points. Consider now two injection points.

Start-up condition 2: Conversion

Before the next downstream injection starts, it is necessary to check that

almost all reactants injected upstream has converted, that is, cB < cconvB

after the upstream injection point.

If there are large amounts of unreacted B in the reactor flow and even
more B is added in the injection point, the heat release at the injection
point may be much larger than anticipated.
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Figure 7.2 Temperature profiles along the uncontrolled reactor in steady state,
nominal case (solid) and for small perturbations in the process parameters (dashed).
Note that in the perturbed case, the temperature at the first injection point is much
lower than the required T conv = 145○C.

With a concentration measurement available, it is straight forward to
check this condition, as the amount of injected reactant is known. With
temperature measurements only, this condition is translated to a tem-
perature condition on T1 ≥ T conv corresponding to the high temperature,
resulting from the massive heat release from the reaction. For example,
we may use T conv = 145○C, which corresponds to a conversion of 98%. A
very low T1 is an indication on very low heat release, which corresponds
to a very low conversion.
Example: In the nominal operating point, the steady-state tempera-

ture profile has two temperature maxima, see Figure 7.2. The temperature
at the first injection point is around 155○C, which is a clear indication
that most of the injected B is consumed in the exothermic reaction, so
this fulfills the conversion condition. If the same control inputs that lead
to the nominal operating point are applied in open loop to a process with
some small plant/model mismatch1, the resulting temperature profile will

1The mismatch is 5% lower ∆H and k0, 2% lower Ea, and 10% larger h, see Table 5.1.

155



Chapter 7. Start-up: A Hybrid Approach

be completely different, see Figure 7.2. For this specific plant/model mis-
match the reaction is more temperature sensitive, so most of the substance
B fed into the first injection point remains unreacted. This is also seen in
the reactor temperature at the first injection point, Tpert1 << T conv1 , which
is clearly not satisfying the conversion condition. Later in the reactor, the
temperature increases due to heat release from the reaction and the reac-
tion self-accelerates. The problem is that the reaction occurs too close to
the second injection point and the cooling effect from the water is not suf-
ficient to remove the heat before the next injection point. When more B is
injected at the second injection point, the reactor temperature increases
up to 200○C, which may damage the reactor, lead to unwanted by-product
formation and initiate an emergency shutdown. This hazardous situation
could have been avoided if the conversion start-up condition T1 ≥ T conv1
had been checked before the second feed was initiated.

7.4 Start-up Modes

In the previous section, we defined two conditions necessary for safe start-
up:

• Ignition: The reactor temperature at the injection point T ≥ Tstart,
to ensure high reaction rate so that the reaction is sustained.

• Conversion: The reactor temperature at the upstream injection
point T ≥ T conv, to ensure that most of the reactant B being in-
jected there has been consumed.

To satisfy these two conditions and based on experiences from the start-
up optimization in Chapter 6, repeated here in Figure 7.3, the start-up
sequence is divided into four modes, schematically outlined in Figure 7.4.
The two required temperatures Tstart and T conv will be used as transition
points in the start-up sequence. This means that the condition has to be
fulfilled in order for the start-up sequence to proceed.

Identifying Start-up Modes

Figure 7.3 shows the optimization results from the start-up method in
Chapter 6. Dynamic optimization is applied to the nonlinear model with
the four control inputs uB1,uB2,TA,feed and Tcool. To reduce the sensitiv-
ity to uncertainties in model parameters, concentration constraints were
enforced of reactant B at the two injection points and high frequency
penalties on the inputs. At t = 0, the injection flows uB1 and uB2 start
feeding reactant B into the reactor. After 10 seconds, the constraints in
reactant B concentration have been reached at the two injection points.
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Figure 7.3 Optimization results from the start-up method in Chapter 6. The ver-
tical dashed lines indicate the transition between different start-up modes.

This effectively halts any further increase in feeding. Meanwhile, the feed
and cooling temperatures are slowly increased as fast as the actuator sys-
tems can manage. The increased reactor temperature leads to increased
reaction rate and around t = 25 s the reactant consumption is sufficiently
high, so that the feed injection flow uB1 can continue the transition to its
steady-state value. During the first 25 seconds, pre-heating the feed is the
most important task, the injected feed flows through the reactor largely
unreacted due to the low reactor temperature. Therefore, it is quite nat-
ural to define the first start-up mode as a pre-heating mode where no
injection is made, which lasts until the reactor temperature has reached
a sufficient level to sustain the reaction.
At the second injection point, the constraint is also reached at t = 10 s.

The cooling water can not heat the reactor, so the only heat comes from the
reactor feed and the reaction heat at the first injection point. The reactor
temperature T2 increases therefore only slowly until around t = 60 s, when
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the reactor temperature is sufficiently high to allow increased injection
feed. This marks the end of the second start-up mode, where the first
injection is increasing, but the second injection should wait for the reactor
temperature to reach a certain limit.
Finally, at t = 100 s both injection feeds are at their steady-state values

and the start-up is complete. This marks the end of the third start-up
mode, where both injection feeds are operational.

Definition of Start-up Modes

The feedback in form of an event-driven start-up, where the injection start
depends on the actual reactor temperature, leads to increased robustness,
compared to a time-driven start-up sequence, where the injections start
at pre-defined times from an off-line computed start-up scheme. With this
feedback, it is easy to avoid dangerous situations as in Figure 7.2. Here
is an example of the transition conditions for each mode, see Figure 7.4.
The transition conditions given here are determined in the next section.

1. Pre-heat: To satisfy the first start-up condition in the first injection
point, T1 should be controlled with the inlet temperature TA,feed so
that T1 > Tstart1 . No injection is allowed before this is fulfilled.

2. First injection starts: To satisfy the ignition condition for the
second injection point, T2 should be controlled with Tcool so that T2 >
Tstart2 . To satisfy the conversion condition T1 should be controlled so
that T1 > T conv1 .

3. Second injection starts: To satisfy the conversion condition for
the second injection point, control T2 so that T2 > T conv2 . Then the
start-up can be defined as completed.

4. Final state: This state can represent operation at steady-state or
use of an optimizing controller with other objectives than the start-
up controller.

7.5 The Hybrid Controller

The main components in the hybrid controller are the transition points
- deciding when to switch mode - and the control variable trajectories u
for each mode, bringing the process from the previous transition point to
the next transition point. In Figure 7.5, the hybrid controller is schemati-
cally represented by the “Mode estimation”-block and the “Offline hybrid
optimization”-block. Note how the feedback from the reactor P to the hy-
brid controller enables an event-driven start-up instead of a time-driven
start-up, see Figure 7.6.
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Figure 7.4 State machine to illustrate the different steps during start-up and
the guards corresponding to each transition. Note that the transitions are one-
directional and that not all control variables are available in each mode.

Choosing Transition Points

How should the transition points be computed? The aim is to choose tran-
sition points that promote start-up trajectories where the dynamics are
less nonlinear and the sensitivity to uncertainties is small. This will fa-
cilitate the task of the feedback controller to achieve safe start-up despite
uncertainties. For example, the transition point Tstart1 represents the de-
sired reactor temperature at which reactant B can be injected safely. We
know from the nonlinear process model and Figure 7.1 that the process
will react very differently depending on whether we inject B at T1 = 20○C
or 65○C.
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Figure 7.6 Block diagram of time-driven start-up from Chapter 6.

A sensitivity analysis using DASPK [Maly and Petzold, 1996] is per-
formed to gain insights how to choose transition points that will ensure
safe and robust start-up. Consider the temperature sensitivity with re-
spect to the uncertain process parameter Ea, the activation energy, for
various transition conditions, each defining a separate start-up trajectory.

T1 = Tnom1 + �T1
�Ea

∆Ea (7.1)

The objective is to find transition points, Tstart, leading to start-up trajec-
tories, which have reduced sensitivity to parameter uncertainties.
Figure 7.7 shows the parametric sensitivity of the reactor temperature

T1 with respect to the activation energy Ea for the open loop system.
For each transition condition, the optimal start-up trajectory has been
computed as described in Chapter 6. It is clear that transition conditions
forcing the reactor temperature to be higher before injection may start,
significantly reduces the sensitivity, but also leads to a slightly longer
start-up time. Similar analysis can be performed for the second injection
point.
The sensitivity analysis gives quantitative measures of how the choice

of transition points influence the situation for feedback control. Start-up
trajectories that have large parametric sensitivity will lead to large devia-
tions from the nominal trajectory, thus demanding large actions from the
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Figure 7.7 Parametric sensitivity of start-up trajectories for different transition
conditions T1 ≥ Tstart. The time of the sensitivity peaks reflects the somewhat
longer start-up time that follows from higher Tstart.

feedback controller. This may lead to actuator saturation and hazardous
transients.
Based on Figure 7.7, two different sets of transition conditions are

investigated in this chapter. This will provide us with a deeper insight
how the choice of transition points affects the sensitivity of the start-
up trajectories and in the long run also the robustness of the closed-
loop system. The first set of transition conditions, here denoted as lower
transition conditions are

Lower t.c. : Tstart1 = 35○C, Tstart2 = 45○C. (7.2)

The second set of transition conditions requires higher reactor tempera-
tures before feed injections are allowed to start, thus denoted as higher
transition conditions.

Higher t.c. : Tstart1 = 55○C, Tstart2 = 65○C (7.3)
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According to Figure 7.7, the higher transition conditions should give tra-
jectories with low sensitivity to uncertainty and the lower transition con-
ditions may result in trajectories with higher sensitivity. The transition
condition for the second injection point is 10○C higher, because cA is lower
at the second injection point compared to the first injection point, which
leads to a lower reaction rate. Both sets of conditions use the same con-
version condition, T conv1 = 145○C, T conv2 = 145○C, which corresponds to a
conversion of 98% of reactant B to product C.

Reference trajectories

Given the transition points, the next step is to calculate suitable control
trajectories that will bring the process from one transition point to the
next. Without state constraints as in Chapter 6, start-up trajectories can
easily be obtained by defining reference temperatures in terms of first
order filters or ramps. However, it may require very fast changes in the
control inputs to successfully track these references, as these references
do not consider the dynamics of the process. Instead, the trajectories are
here calculated offline with dynamic optimization based on the nonlinear
process model using the same method as in Chapter 6. The cost func-
tion includes the reactant concentrations of A and B and the control in-
puts weighted by high-frequency filters. Remember, there is no hybrid
structure within each mode. The dynamic optimization uses the nonlin-
ear process model from Chapter 3, but as shown in the start-up scheme in
Figure 7.4, not all control variables are available at all times. The process
model and the optimization variables are therefore changed according to
the current mode

• Mode 1: ẋ = f1(x,u, p), where u = {TA,feed,Tcool}

• Mode 2: ẋ = f2(x,u, p), where u = {uB1,TA,feed,Tcool}

• Mode 3: ẋ = f3(x,u, p), where u = {uB1,uB2,TA,feed,Tcool}

• Mode 4: ẋ = f4(x,u, p), where u = {uB1,uB2,TA,feed,Tcool}
and the mode switches are given by transition points in terms of the
temperatures Tstart or T conv, respectively.
The optimal trajectories for the two sets of transition points, (7.2) and

(7.3), are plotted in Figures 7.8 and 7.9. The dashed lines represent the
start-up with lower transition conditions and the solid lines represent
the start-up with higher transition conditions. It is clear that the lower
transition conditions allow the feed injections of B to begin earlier than
if the transition conditions are set to higher temperatures, t = 6.7 s and
18 s, respectively. However, the injections at low temperature do not lead
to a sustainable reaction, instead most of the injected B flows unreacted
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Figure 7.8 Optimal start-up trajectories for the four control inputs. Solid line
represents the case when Tstart1 = 55○C and the dashed line represents the case
when Tstart1 = 35○C. The vertical lines indicate the first two mode changes.
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through the reactor and the concentration of B increases. Eventually,
the reaction ignites and the temperature increases very quickly to the
maximum value at 155○C and almost all B that is being injected is now
consumed, thus decreasing cB . As indicated in Figure 7.7, this start-up
trajectory will be very sensitive to model uncertainty.
If the transition conditions are higher, the feed temperature needs to

be further increased to fulfill the condition. When the temperature T1
passes 55○C, the feed of B begins and almost all of the B being injected
is also consumed directly after injection. The concentration levels remain
very low. This leads to a smoother temperature response. The only dis-
advantage with the higher transition conditions is the somewhat longer
time start-up time2, 117 seconds compared to 102 seconds when using
lower transition conditions.
Figures 7.8 and 7.9 show the optimal start-up trajectories for the nomi-

nal process model. In Section 7.7, we will investigate the robustness of the
closed loop system for the different start-up trajectories in the presence
of plant/model mismatch.

7.6 Feedback Control of the Reactor Temperature

Even though the trajectories of the hybrid controller are computed to en-
sure that the ignition condition and the conversion condition are satisfied,
feedback control of the reactor temperature is necessary to satisfy the tem-
perature constraints in presence of uncertainty. In addition, the integral
action of the temperature feedback controllers ensures that the transition
points defined in the hybrid controller are reached, to enable the switch
to next mode.
Figure 7.5 shows the block diagram of the hybrid start-up controller.

For a given mode, the off-line computed temperature references r are sent
to the feedback controller C. The off-line computed control inputs uff are
added as feed forward terms to the feedback control input ufb. The sum
of the feedback part and the feed forward part is sent to each actuator
subsystem, to achieve the desired feed injection flow, feed temperature or
cooling temperature. The superscript ’sp’ in Figures 7.10-7.12 denotes the
set-point value for the actuator subsystem.
During mode 1, there is no feed of reactant B. Figure 7.10 shows the

straight forward temperature feedback implementation, where TA,feed is
manipulated to track T ref1 and Tcool is manipulated to track T

ref
2 . The feed

inputs uB1 and uB2 are fixed to zero.

2The start-up time is here defined as the time to reach a conversion of reactant A of 98%
at the reactor outlet.
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Figure 7.10 Block diagram for the feedback control during mode 1. The reactor
temperatures T1 and T2 are controlled by manipulating the feed temperature TA,feed
and the cooling temperature Tcool. No injections are allowed in this mode, hence
uff
B1 = uffB2 = 0.

During mode 2, reactant B is fed at the first injection point and the
feedback control structure is changed to Figure 7.11. Similarly to the feed-
back control structure in Chapter 6, uB1 is manipulated to track T ref1 ,
since uB1 has faster input dynamics and larger gain to T1 than TA,feed.
In addition, a mid-ranging control loop manipulates TA,feed so that uB1
can converge to uffB1 in steady state, thus achieving stoichiometric condi-
tions, see also Section 6.5. For more details on mid-ranging control, see
Chapter 9. There is still no feed of B into the second injection point in
mode 2, thus the reactor temperature remains controlled by the cooling
temperature Tcool.
During mode 3 and 4, reactant B is being fed at both injection points

and the feedback control structure is switched to Figure 7.12, which is
identical to the one in Section 6.5.
The tuning of the parameters for the PID-controllers are based on the

AMIGO method, which involves robust loop-shaping and maximization of
the integral gain [Åström and Hägglund, 2005]. The models used in the
control design are linearizations of the nonlinear model at the transition
point at the end of each mode. For example, for the uB1-controller in mode
2, the process is linearized at the end of mode 2 when T1 ( 145○C. From
the start of mode 2 to end of mode 2, the steady-state gain from uB1 to
T1 varies from 44 to 262, due to the nonlinear reaction rate. To reduce
the interaction between the fast (here C1 and C2) and the slow (here C3
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Figure 7.11 Block diagram for the feedback control during mode 2. The feed of
B into the first injection point has begun. T1 is controlled by manipulating the
injection feed and T2 is still controlled by the cooling temperature.

and C4) control variables in the mid-ranging control structure, the slow
control loops are designed to have a closed loop bandwidth that is an order
of magnitude smaller.

7.7 Simulation of Hybrid Start-up

Simulation with Model Mismatch

To illustrate the robustness of the start-up controller, a simulation is per-
formed with some plant/model mismatch, Ea 2% higher, ∆H 5% higher,
k0 5% lower and h 10% lower than in the nominal model, see Table 5.1.
The set of higher transition conditions (7.3) is used, i.e., Tstart1 = 55○C,
Tstart2 = 65○C, T conv1 = 145○C and T conv2 = 145○C.
Figures 7.13 and 7.14 show the start-up sequence. The reactor temper-

ature starts at 20○C. During the first mode, the aim is to pre-heat the feed
flow so that T1 ≥ Tstart1 = 55○C, see the transition conditions in Figure 7.4.
The vertical lines indicate the mode changes. When the second mode be-
comes active, injection of reactant B starts in the first injection point
and the reactor temperature quickly increases. When T1 ≥ T conv1 = 145○C
and T2 ≥ Tstart2 = 65○C, the two transition conditions are satisfied and
the hybrid controller switches to mode 3. Reactant B flows into the sec-
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Figure 7.12 Block diagram for the mid-ranging feedback control system during
mode 3 and 4. Reactant B is now being fed into the second injection point as well.
The reactor temperatures are controlled by the injection flows.

ond injection point, increasing T2. When T1 and T2 passes 145○C, mode 4
begins.
The uncertainties in Ea and k0 lead to higher temperature required

for the reaction to start, but when the reaction is ignited, the higher ∆H

leads to more energy being released, thus leading to higher temperatures
than in the nominal model. Before the reaction ignites in mode 2, the
reactor temperature is slightly lower than the reference, thus the feed-
back controller increases the injection flow. After the ignition, the model
mismatch gives higher heat release, which forces the controller to quickly
reduce the injection flow. A similar pattern is seen in mode 3, when the
reaction ignites at the second injection point. The mid-ranging effect is
clearly seen during mode 4, when TA,feed and Tcool are slowly manipulated
so that the injection flows uB1 and uB2 can converge to their feed forward
signals, thus ensuring stoichiometric conditions.
The transition points can be viewed as constraints in the state space

to avoid areas where the process nonlinearities are very large. This will
also lead to a reduced sensitivity of the trajectories to uncertainties. It
is therefore easier for the PID controllers to successfully track the given
reference temperatures from the hybrid controller despite uncertainties.
The next step is to verify the robustness of the closed loop system for any
arbitrary plant/model mismatch within the uncertainty set.
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Monte-Carlo Simulations

The simulation in the previous section, showed the closed loop response
for a particular set of model mismatch. In this section, the robustness
of the closed loop system is further evaluated by means of Monte Carlo
simulations. Three different cases are investigated.

Case 1: Feedback control disabled, optimal trajectories computed for the
higher transition conditions, Tstart1 = 55○C, Tstart2 = 65○C.

Case 2: Closed loop control, optimal trajectories computed for the higher
transition conditions, Tstart1 = 55○C, Tstart2 = 65○C.

Case 3: Closed loop control, optimal trajectories computed for the lower
transition conditions, Tstart1 = 35○C, Tstart2 = 45○C.

For each case, 5000 simulations were carried out and in each sim-
ulation the values of the model parameters Ea,∆H, k0 and h were ran-
domly generated from a uniform distribution, based on the uncertainties
in Table 5.1. The closed loop system was simulated and the reactor tem-
peratures at the injection points are recorded. Then a new sample of the
uncertain parameters is generated and the whole procedure is repeated.
The same controller parameters are used for the two closed loop simula-
tions.
To visualize the sensitivity of the start-up trajectories to the uncer-

tainties, envelope curves were constructed, see Figure 7.15. They show the
minimum and maximum temperature at the two injection points among
the 5000 simulations for each sample time t. The horizontal line indicates
the safety limit of 160 ○C. Any temperature above this may lead to safety
shut-down to avoid damage to the reactor. A larger area between the min-
imum and maximum temperature indicates a higher variation in reactor
temperature due to insufficient robustness to the model mismatch.
The top plots show the open loop response, when the off-line computed

control inputs are directly applied to the process. T1 will vary between 145
and 165○C. The uncertainties have even larger impact on T2, where the
trajectories vary from 49 to 171○C. This means that for some parameter
sets, the reaction never reaches ignition and the intended operating point,
while for some parameter sets the temperature violates the constraint.
There is a clear need for feedback control to handle the effects of the
uncertainties.
The middle plots show the closed loop response when higher transition

conditions are enforced. The envelope curves show that the maximum
and minimum temperature of T1 almost coincide, that is, the variation of
the temperature due to the model mismatch is very small. At the second
injection point, the variation is larger, but still within a narrow bound. The
higher transition points leads to optimal start-up trajectories with reduced
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Figure 7.15 Maximum and minimum reactor temperatures at the reactor tem-
peratures T1 (left plots) and T2 (right plots) for the 5000 Monte Carlo simulations.

sensitivity. This allows the feedback controller to successfully keep the
reactor temperature below 160○C, despite the uncertainties.
The bottom plots show the closed loop response when the lower tran-

sition conditions are enforced. In this case, the feed injections are started
earlier and the start-up trajectories are much more sensitive to the model
mismatch. The feedback controller can not track the given reference tem-
peratures due to its limited bandwidth. In fact, the situation is worse with
feedback compared to the open loop case, since the feedback controller has
large difficulties when the effect of the model mismatch changes sign after
the reaction ignition. For some plant/model mismatch, the reactor tem-
peratures increase above the safety limit, which may lead to an emergency
shutdown.
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To summarize, feedback control is necessary due to the model mis-
match. Feedback control can in general handle effects of uncertainty and
disturbances, but when the uncertainties are combined with large non-
linearities and limited control inputs, the feedback can actually lead to
degraded performance. Therefore, it is necessary to consider the sensi-
tivity of the start-up trajectory to model-mismatch when computing the
hybrid controller. It is clear that transition points that require higher re-
actor temperatures before feed injections are allowed, lead to more robust
trajectories, thus improving the robustness of the closed loop system.

7.8 Summary and Conclusions

In this chapter, the objective has been to improve the robustness of the
closed loop system, by computing reference trajectories bringing the pro-
cess to the nomial operating point through specified transition points. The
transition points should be chosen so that the resulting start-up trajec-
tory has low sensitivity to uncertainties. The simulations in this and the
previous chapter have been carried out with standard PID controllers.
It is possible to replace the PID controllers with any kind of controller
from robust control theory, however, the focus here has been on deriving
methods to generate start-up trajectories that will simplify the task of the
feedback controller.
To achieve safe and robust start-up, the start-up sequence is divided

into several steps and each step is associated with a transition condition
that needs to be satisfied to allow the start-up to continue. This event-
driven start-up improves the robustness to uncertainties and disturbances
as it forces the process to be in a certain state-space area before the next
start-up step is initiated. For example, no injections should be allowed
before the reactor temperature is high enough to allow safe ignition. The
choice of transition points has a significant influence on the sensitivity of
the start-up trajectory. Monte-Carlo simulations confirm that higher tran-
sition conditions lead to less sensitive solutions. Closing the loop and use
of PID control during start-up increases the robustness, but closing the
loop for the reference trajectories as in Figure 7.5 improves the robustness
even further.

7.9 Comparison between Start-up Methods

This section will compare the hybrid start-up approach developed in this
chapter with the start-up method developed in Chapter 6, where the entire
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start-up trajectory was optimized in one step, hereafter referred to as the
continuous approach.

Design

As stated before, the start-up control problem is challenging for three
reasons, process uncertainty, highly nonlinear dynamics and input satu-
rations. The dynamics and the saturations can be described with a process
model. The uncertainty is considered by analyzing the sensitivity of the
off-line computed start-up trajectories. The sensitivity of the start-up tra-
jectories was reduced in both methods by enforcing some kind of path
constraints in the state-space and introducing penalties on the use of the
control variables. The Monte Carlo simulations, see Figures 6.15 and 7.15,
indicate that the reduced sensitivity of the trajectories decreases the ef-
fect of the plant/model mismatch and the feedback controller can much
easier stabilize the system along the intended start-up trajectories.
In the continuous approach, the constraints were defined as upper

bounds on the reactant B concentration. In the hybrid approach, the start-
up trajectory has to pass through certain transition points, here defined
in terms of reactor temperatures.
Figure 7.16 shows the start-up trajectories plotted in the state-space

plane of reactor temperature T2 and concentration cB2 at the second in-
jection point. The trajectories start at lower left at T2 = 20○C and end at
T2 = 155○C. In the continuous approach, the injection of B is initiated
at t = 0. Due to the very low reactor temperature and reaction rate, the
injected B is not consumed and the concentration increases until it hits
the concentration constraint imposed by the optimization. Three different
constraint levels are plotted, cB2 ≤ 400, 800 and 1200 mol/m3, respec-
tively. The reactor temperature is increased by warmer feed, less cooling
and heat from the reaction flowing downstream from the first injection
point. Eventually, the temperature, thus also the reaction rate, is so large
that the concentration of B decreases and leaves the constraint.
In the hybrid approach, no injections are allowed until the reactor tem-

perature has reached the transition point, Tstart2 = 65○C and Tstart2 = 45○C,
respectively. By postponing the feed injection until the temperature is
higher, the reactant B can be fed into the reactor more safely, meaning
that the reaction rates are high enough to sustain the reaction. This avoids
accumulating large concentrations of B, which otherwise would increase
the sensitivity to uncertainties. The small transients in the two hybrid
start-up trajectories before the transition points are passed depends on
unconsumed B flowing downstream from the first injection point. For the
lower transition conditions, a larger amount of unreacted B passes the
second injection point compared to the trajectory with the higher transi-
tion conditions.
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Figure 7.16 A state trajectory plot of the concentration of B and the temperature
at the second injection point during start-up. From left to right, the trajectories
are with hybrid start-up Tstart2 = 65○C (line A), hybrid start-up Tstart2 = 45○C
(line B), continuous approach with the constraint cB2 ≤ 400 mol/m3 (line C), cB2 ≤
800 mol/m3 (line D) and at the far right the trajectory when cB2 ≤ 1200 mol/m3
(line E) is plotted. Note the squares at [cB2,T2] = [0, 65] and [cB2,T2] = [105, 45],
which represent the transition points Tstart2 = 65○C and Tstart2 = 45○C, respectively.

In addition to the path constraints, the sensitivity of the start-up tra-
jectories was reduced by introducing standard penalties on the control
inputs in the cost function of the optimization. This was particularly im-
portant to achieve a well-behaved response when the reactor temperatures
approach the limit at 155○C.

Implementation

With the continuous approach, the off-line computed trajectories are sent
to a feedback controller to be used as references and feed forward signals,
see Figure 7.6. The trajectories are time-driven and the solution relies on
the feedback controller to keep the temperatures close to the references.
With the hybrid approach, the trajectories for each mode are functions
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of time, but the transition between each mode is associated with a tran-
sition condition, here defined in temperature. This yields an event-driven
start-up, see Figure 7.5. It may of course be possible to implement the
off-line computed trajectories of the hybrid approach as functions of time
as in Figure 7.6, but that would remove the valuable feedback from the
event-based transition points.

Conclusions

To summarize, there are advantages for both approaches.

Advantages for the continuous approach

• Slightly faster start-up time, as injections may begin at t = 0.

• The implementation is simpler with the same feedback control struc-
ture during the entire start-up.

• The setup of the optimization problem is easier, using the same
model and control inputs during the entire start-up.

• The concentration constraint is a more efficient way to introduce
path constraints in the optimization problem, to avoid areas in the
state-space with large sensitivity.

Advantages for the hybrid approach

• Transparent strategy, start one injection at a time, easier to get
operator acceptance.

• The event-driven implementation avoids injection before safe igni-
tion temperature has been reached.

• It may be easier to define the path constraints in terms of temper-
ature conditions than defining concentration constraints.

• When the reactor is pre-heated before any injection may start, less
unreacted chemicals exit the reactor. This reduces the risk of unex-
pected heat release from the reaction in storage tanks downstream.

In the comparison, it is worth noting that the transition condition
defines the temperature at which injection may begin, whereas the con-
centration constraint gives a very natural limit to how fast the injection
may increase. The best option may then be to combine them, that is, us-
ing the hybrid approach, but including concentration constraints in the
optimization formulations.
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8

The Utility System: Design,

Control and Experiments

In this chapter, the utility system for the plate reactor will be presented
and controlled. The utility system is a general purpose hydraulic and
thermodynamic system that can deliver water to the cooling plates of
the plate reactor, thus enabling accurate temperature control. Within the
work of this thesis, it has been used as a cooling system and is therefore
referred to as either cooling system or utility system.
In Section 8.1, the process design phase is presented. In Section 8.2 the

mid-ranging control structure is presented. The control design and tuning
is discussed in Section 8.3. The experimental set-up at Alfa Laval AB in
Lund is presented in Section 8.4. In Section 8.5 the controller hardware
equipment is briefly presented. Disturbances during the experiments are
discussed in Section 8.6. The experimental results are shown in Section 8.7
and some concluding remarks on the utility system are summarized in
Section 8.8.

8.1 Hydraulic and Thermodynamic Design

To get the desired flow rate and temperature of the cooling water into
the cooling plates of the plate reactor, a utility system has been designed
and tested. The hydraulic and thermodynamic design was done by Rolf
Christensen at Alfa Laval AB in Lund. Three different flow configurations
have been tested. Common for all three is that an external heat exchanger
is used. The main reason is that the cooling water, entering from the left in
Figure 8.1, may be polluted and lead to fouling inside the plate reactor. The
external heat exchanger allows a closed hydraulic system for the cooling
water of the reactor and the heat exchanger can easily be disconnected
and removed for cleaning.
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Figure 8.2 Flow configuration 2 with a three-way control valve

The first and simplest version is a single flow loop with an external
heat exchanger HEX, where the cooling inlet temperature TT5 is con-
trolled by varying the flow rate FT1 on the left side of HEX, see Fig-
ure 8.1. There are several disadvantages with this design. First, there is
rarely a need to cool the entire water flow due to the limited heat gener-
ation in the plate reactor compared to needs in an emergency, for which
the heat exchanger has to be designed. Secondly, there is some thermal
inertia inside the heat exchanger, which increases the dynamics between
input and output.
The second alternative is a system with variable recycle of the cooling

flow from the outlet of the plate reactor, directly to port B of the control
valve RV1, see Figure 8.2. With a three-way control valve, the appropriate

176



8.1 Hydraulic and Thermodynamic Design

T

T

TF

FF T

T

T

T

T

F

F

T

...

CA

Reactants

Product

RV1

B
RV2

FT3FT1 TT1

Cooling Water

TT6

TT3FT2 TT5

ReactorHeat Exchanger

Figure 8.3 Flow configuration of the cooling system with recycle loops around the
heat exchanger (HEX) and the plate reactor. Note that the control signals v1 and
v2 corresponds to the positions of control valves RV1 and RV2. The cooling water
temperature TT5 is the controlled output.

cooling temperature TT5 can be reached by mixing water with the two
temperatures TT6 and TT3. One part of the flow will go to the control
valve RV1 directly, the other part will pass through the heat exchanger
HEX and then to the control valve. The response of this configuration
is faster than for the first alternative, thus facilitating the temperature
control. The flow through the heat exchanger will be varying, entirely
depending on the valve position RV1 and will always be lower than FT3.
The varying flow rate will increase the nonlinearity of the system and the
low flow rate of FT2 will increase the sensitivity of TT3 to disturbances
in FT1.
The third alternative is seen in Figure 8.3, where another recycle loop

is introduced around the heat exchanger HEX. Two pumps are needed
compared to one pump in the two first alternatives, but with this set-
up, the flow rates through the heat exchanger and the cooling plates are
almost constant, regardless of valve position. Here, the possible flow rate
through the heat exchanger is more flexible, so the heat exchanger can be
used more adequately. With a higher flow rate of FT2 the heat exchanger
is also less sensitive to disturbances in FT1.
This flow configuration is common in for example heating systems for

houses and in pasteurization units for food applications, [Petitjean, 1994].
The recycles give a fast and less sensitive system, but one should be careful
when introducing recycle in the process, since it can lead to large changes
in the process dynamics, [Morud and Skogestad, 1996]
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Modeling of the Utility System

To better understand how the cooling system works, an energy balance is
derived around the control valve RV1.

(qAC + qBC)cpρTT5 = qACcpρTT3+ qBCcpρTT6 (8.1)

TT5 = qAC

qAC + qBC
TT3+ qBC

qAC + qBC
TT6 (8.2)

where qAC is the flow rate through valve port A and qBC through port B,
see Figure 8.3. Note that this is a simple mixing process with two flows
of different temperatures.
Now define the flow ratio as the amount of flow through the control

valve port A divided by the flow through port C, which is the sum of the
flows through port A and B.

β = qAC

qAC + qBC
(8.3)

β can take values from 0 to 1, where 0 corresponds to port A being fully
closed and 1 to port B being closed.
The temperature TT5 that should be controlled is then given by

TT5 = (TT3− TT6)β + TT6 (8.4)

where β can be seen as the manipulated variable. From Eq. 8.4 we see
that the process gain is varying depending on the temperatures in the
utility system and that the gain is negative, since TT6 > TT3 (if the
utility side is cooling the reactor). Remember that we have here neglected
the very fast valve dynamics and the short transport delay from valve to
sensor.
Apart from the feedback signal from TT5, the controller could use

measurements from TT6 and TT3 in a feed forward term to improve its
response to disturbances. So far experiments have shown that feedback
alone can deal with variations in TT6 and TT3 very well, see Figure 8.13.
Before the construction of the experimental unit, a more systematic

model of the utility system was derived to learn more about the system,
what the limitations were and the dynamics of the system. The thermo-
dynamic and hydraulic equations were derived for each component such
as pumps, control valves, adjustment valves and a simple heat exchanger
model. The model was implemented in Modelica and simulated in Dymola,
see [Modelica Association, 2005] and [Dynasim, 2001]. The utility system
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Figure 8.4 Mid-ranging control structure of the utility system. PI-controller GPI1
controls the cooling inlet temperature TT5 and GPI2 acts so that v1 may operate
around a desirable working point specified by vref1 .

model was then connected to the plate reactor model from Chapter 3 in
order to simulate the combined system. After the experiments had been
carried out, the model was verified and re-tuned with the experimental
data, in terms of time constants of the valves and the thermal inertia.

8.2 Mid-ranging Control Structure

The cooling temperature TT5 should follow the reference temperature
TT5ref. The main control signal v1 of the temperature controller is the de-
sired position of the control valve RV1. The valve opening gives the flow
ratio β , i.e. how much of the flow that goes through port A divided by the
total flow through port C, see Figure 8.3. The second control signal v2 is
the position of control valve RV2, which indirectly controls the tempera-
ture TT3. By combining the two control signals in a mid-ranging control
structure, see Figure 8.4, the cooling temperature TT5 can be controlled,
and the extra degree of freedom is used to have the control valve RV1 work
around some desired operating point, e.g. 50%, to avoid valve saturation.
The term mid-ranging refers to control problems where there are two

control inputs and only one output to control, see e.g. [Allison and Ogawa,
2003] and [Allison and Isaksson, 1998]. Often the inputs differ signifi-
cantly in their dynamic effect on the output, and the faster input is in
some way more costly to use or closer to saturation than the slow one.
In this case, the fast input is v1, affecting TT5 with the fast dynamics
of control valve RV1, while the second control valve RV2 has the same
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valve dynamics, but the control action also passes the dynamics of the
heat exchanger HEX and some transport delays, which makes v2 a slower
input than v1.
The mid-ranging idea is to have the fast input v1 controlling the process

output, and to use the effect of the slower input v2 to gradually reset or
mid-range v1 to its desired value vref1 . Thus v2 indirectly acts to prevent
saturation in v1 and also to control the process mainly using the “cheaper”
v2 in stationarity. With the use of the second control input v2, the operating
range of the process is often considerably increased. The desired value of
vref1 may be in the middle of its working range, 50%, to have margin for
all kinds of disturbances, hence the name mid-ranging.
There are several advantages with the mid-ranging structure com-

pared to the case when only RV1 is the manipulated input and RV2 has
a constant value, giving a constant cooling flow rate FT1. First, the oper-
ating range of the utility system is largely increased and valve saturation
can be avoided. Second, the performance can be increased for large set-
point changes. Third, the utility system will be less sensitive to external
disturbances. The disadvantage is that effect of v2 may be seen as a slow
load disturbance to v1, which may delay the convergence to steady-state.
This can be avoided by introducing a feed forward signal from v2 to v1,
see [Åström and Hägglund, 2005].
Another way to see mid-ranging control is how to combine two con-

trol inputs with different frequency contents. RV1 gives faster response
in TT5, but have a small steady-state gain, which gives a small operat-
ing range. Whereas RV2 is slower, but with a much greater steady-state
gain, giving larger operating range. In Figure 8.5, the Relative Gain Array
(RGA) is shown for the two inputs and one output system. RGA may be
used as an interaction measure to find suitable input/output pairings for
multivariable systems. It may be computed for varying frequencies and
different pairings may be preferred depending on the closed loop band-
width. In Figure 8.5 we see that RV2 (dashed) dominates for low frequen-
cies due to its large steady-state gain. For medium and high frequencies,
which is the region where the closed loop bandwidth is, RV1 clearly dom-
inates. However, instead of choosing either of these valves for control, the
mid-ranging control technique coordinates both control valves to improve
performance.
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Figure 8.5 Relative Gain Array for the utility system when controlling the cooling
temperature TT5 with valves RV1 and RV2. The control valve RV1 (solid) dominates
for high frequencies, but for low frequencies RV2 (dashed) has greater impact on
the cooling temperature.

8.3 Control Design and Tuning

Control Design

The nonlinear model of the utility system described in Section 8.1 and
seen in Figure 8.4 is linearized and the corresponding block diagram can
be seen in Figure 8.6. The cooling inlet temperature TT5 can for example
be expressed as

TT5 = G3
[

G1 G2

] [

v1 v2

]T

(8.5)

where v1 and v2 are the two valve positions. G1 represents the valve dy-
namics of RV1, G2 represents the valve and heat exchanger dynamics and
G3 represents the mixing of the two water flows and the transport de-
lay between valve and temperature sensor. Bode diagrams of the transfer
functions from v1 and v2 to the cooling temperature TT5 can be seen in
Figure 8.7. Note the distinctive differences in cross-over frequency and
steady-state gain, which makes the system suitable for mid-ranging. The
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Figure 8.6 Mid-ranging control structure with transfer functions G1 and G2 , de-
rived from linearization of the utility model after experimental verification.

controllers GPI1 and GPI2 in Figure 8.6 are two PI-controllers with non-
linear gain to compensate for the nonlinear valve characteristics, see Fig-
ure 8.8.
First the nominal controller GPI1 is tuned to give good set-point track-

ing and load disturbance rejection performance. The controlled variable is
the temperature of the cooling water TT5. We want TT5 to track a given
reference value TT5ref. It is controlled by manipulating the position of the
control valve RV1. Mid-ranging control is then achieved by tuning GPI2,
so that v1 can work around its reference value vref1 . GPI2 should be tuned
to a slower response than GPI1 to avoid exciting cross-coupling effects.

Control Tuning

We start with a basic feedback PI-controller, see e.g. [Åström and Häg-
glund, 2005] and the control law

vref = K (TT5ref − TT5) + K
Ti

t∫

0

(TT5ref − TT5)dτ (8.6)

The controller sends a valve position reference, vref, to the control valve,
which has an internal P-controller with a constant offset to reduce the
steady-state error. The valve characteristics, that is, the flow ratio as a
function of valve position β = f (v), is a nonlinear function and should
be compensated for. For constant pump speeds, the nonlinear relation has
been experimentally measured, see Figure 8.8.
The valve process gains at the end positions are up to 10 times larger

than the gain at the middle of the valve range. A controller with constant
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Figure 8.7 Bode diagrams of the transfer functions from v1 (solid) and v2 (dashed)
to the cooling temperature TT5.

gain K would need to be tuned extremely conservative to be robust to-
wards these large gain variations. With mid-ranging control, the effects of
the nonlinear valve characteristics may be reduced, since the mid-ranging
allows the control valve RV1 to operate around its linear range at 50%.
We can also use the estimated valve characteristics from Figure 8.8 and
include its inverse in the controller. The desired flow ratio β ref is sent
through the inverse of the valve characteristics to get the desired valve
position vref. The inverse of the characteristics can be seen as a basic form
of gain scheduling. The function from β to TT5 is now linearized, when
we cancel the nonlinear effects from the valve with the known inverse.
The control law becomes

β ref = K (TT5ref − TT5) + K
Ti

t∫

0

(TT5ref − TT5)dτ (8.7)

vref = f−1(β ref) (8.8)

The PI-controllers can for instance be tuned using the λ-method, de-
scribed in [Åström and Hägglund, 2005].
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8.4 Experiments on the Utility System

Objectives with the Experiments

There were several objectives with the experiments. First, to verify the
hydraulic and thermodynamic design of the utility system. Second, to an-
alyze the coupling between the plate reactor and the utility system, in-
cluding the sensitivity to disturbances. Third, to design a control system
for the utility system and verify the performance.

The Experimental Set-up

An experimental set-up was constructed at the test lab of Alfa Laval AB
in Lund. Rolf Christensen at Alfa Laval AB performed the hydraulic and
thermodynamic design of the test unit, see Figure 8.9. Anders Håkansson
at Adesign made the mechanical design. The test unit, see Figure 8.10,
was assembled at Alfa Laval AB in Lund by local personnel. The electrical
system was designed and installed by Pakon AB.
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Figure 8.9 Experimental flow scheme. VVX1 is the external heat exchanger for
the cooling water. VVX2 is an external heat exchanger to pre-heat the primary
reactant.

The plate reactor was assembled with one reactor plate and two cooling
plates, one on each side of the reactor plate. For the tests of the cooling
system, it was sufficient to have a similar heat generation inside the
plate reactor as from exothermic reactions. For simplification, instead of
using chemical reactants giving exothermic reactions, water was used as
reactant A and super-heated steam was used as reactant B. The steam
is injected along the side of the plate reactor.

Methodology

The experiments were carried out in the test lab of Alfa Laval AB in Lund,
Sweden. The test rig was extensively instrumented in order to monitor all
important variables and properties of the system. The experiments were
carried out in a specific order to ensure that all components had full func-
tionality before the main tests were done. Every component was checked
individually and every sub system was tested before it was used in the
complete process. All experiments were carefully planned, in order to have
full reproducibility of the experimental results. However, the manually
operated steam system prevented exact and full reproducibility for some
experiments. The steam injections have therefore been used mainly to get
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Figure 8.10 The experimental setup at Alfa Laval laboratory in Lund. The plate
reactor is seen to the left and the utility system to the right. Note the injection pipes
on the left side of the plate reactor and the thermocouples along the right hand side
of the plate reactor.

a desired heat load inside the reactor to test the utility system and its
control system. A full survey of existing disturbances was carried out, if
possible to eliminate them and if not to be aware of them and take them
into consideration during the experiments, see Section 8.11.

8.5 Control System Hardware

To have a large flexibility in performing the experiments, the test unit has
two parallel independent control systems. With a simple switch the user
can choose which control system to use for an experiment. The signals
from each sensor are duplicated and sent to each of the control systems.
The control systems then computes the appropriate actions, but only the
output signals from the selected control system are sent to the control
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valves and the pumps. The control systems will also have a process super-
vision task, which is connected to an automatic safety system.
The first control system is implemented by components from National

Instruments and centered on their software package LabVIEW, [National
Instruments, 2005]. The software enables easy configuration with their
hardware components, such as data acquisition cards and analog output
cards. The actual control algorithms and all process monitoring are done
entirely in the LabVIEW software, thus giving high flexibility for testing
new features without having to change any hardware.
The second control system is centered around an ECA controller from

ABB with two PID control loops available, [ABB, 2000]. The system is
hardware-oriented and functions and features are done with specific hard-
ware components instead of programming it in software as in the Lab-
VIEW system. This ABB-controller is a standard component in many in-
dustrial control systems, whereas the LabVIEW system is mostly found
in laboratories or test stations.
All measurements are sent to a TopMessage logger from Delphin. The

logger samples the 30 measurements with a sampling frequency of around
5 Hz. The logger sends the data to a PC through an OPC-server to the
data acquisition program EasyView5 [Intab AB, 2005] from Intab AB.

8.6 Disturbances and Process Variations

Before the experiments were started, a rough analysis of potential distur-
bances was made. The plate reactor system has several input signals, all
vulnerable to disturbances from the surroundings. The test rig was placed
in the test lab of Alfa Laval in Lund, where many other experiments were
carried out at the same time. All experiments take water from the central
water system, which transfers possible disturbances from one experiment
to another.
When a large pump is started anywhere in the lab, the pressure in

the water system decreases for a very short moment. The process flow
rate to the plate reactor, FT4, and the flow rate to the heat exchanger,
FT1, are therefore also decreased for a short period of time. When the
pump stops, the pattern is repeated but in opposite direction. When the
pump actions are periodic, we get periodic disturbances in these signals,
see Figure 8.11.
Another disturbance appears in the flow rate FT4 when high-pressured

steam is injected into the reactor. The injected steam increases the pres-
sure inside the reactor and decrease the flow rate FT4 as expected. How-
ever, the steam injection causes bubble formation and varying pressure
inside the reactor, thus causing a disturbance and measurement noise in
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Figure 8.11 Measurement of process disturbances in the two flows FT1 (upper)
and FT4 (lower), during utility system experiments. The disturbances enter the
main water system roughly every two minutes.

the flow rates to and from the reactor FT4 and FT5, see Figure 8.11 from
time t = 13.28. The variation in FT1 does not cause any significant varia-
tion in TT3, due to the low pass filter effect of the heat exchanger VVX1.
The effect from the FT4-variations on the reactor temperature is larger,
since the process flow is pre-heated in the small heat exchanger VVX2
with a constant steam flow. If the process flow is varying, the process
inlet temperature will also vary. In a real production unit there would not
be any of these variations, there would for example be individual pumps
for each reactant. The disturbances are however interesting, since they
give us information about the dynamics and sensitivities of the system
that we otherwise would not get.
The chain of measurement equipment "thermocouples - transmitters -

resistors" were calibrated at five different temperatures with a Pt-100 sen-
sor as reference. The differences between individual measurements were
large, at most 3○C. However, the largest cause for the differences was not
the thermocouples, but the transmitters and the resistors. Some thermo-
couples have during the experiments given inaccurate measurements from
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time to time and likely causes can for example be steam bubbles inside the
reactor or glitches. Especially the thermocouples inside the reactor have
given noisy data when the steam injection causes bubble formations.

8.7 Experimental Results

In Figure 8.12 we can see step responses in TT5 for the controller from (8.8)
without and then with the nonlinear gain compensation for the nonlinear
valve characteristics. For notations, see Figure 8.3. The PI-controller was
auto-tuned with relay experiments around the 40 % operating point with
K = 3.0 and Ti = 1.0 s. The step in TT5ref is from 25.4○C to 29.4○C. When
the control valve is near its end position, RV1 = 5 %, the process gain from
valve position to flow ratio is considerably larger than in the middle of the
valve range, which was seen in Figure 8.8. Due to the increased process
gain at this operating point the closed loop system becomes unstable, as
seen around t = 20 s in Figure 8.12. The nonlinear gain compensation of
the valve characteristics is enabled at t = 35 s and the system returns to
the new set-point. The step response is repeated at time t = 75 s using
the nonlinear gain compensation from start and the step response of the
closed loop system is then stable and well-damped.
The next experiment is to keep the cooling water inlet temperature

TT5 constant despite load disturbances inside the reactor. For notations,
see Figure 8.3. The amount of injected steam is suddenly increased, thus
increasing the heat release inside the reactor by 50%. The additional heat
causes the outlet temperature TT6 of the cooling water to increase quickly,
see upper plot in Figure 8.13. Due to the recycle loops, the inlet temper-
ature TT5 of the cooling water will be quickly affected, unless necessary
control actions are made. In this experiment, the mid-ranging control is
disabled to more clearly see the dynamics of the closed loop. In Figure 8.13
it can be seen that the controller manages to keep the cooling temperature
TT5 almost constant, despite the large change in heat release and out-
let temperature TT6 of the cooling water. The control error is not larger
than 0.3○C during the disturbance. The closed loop dynamics of TT5 are
quite fast, but the recycle flows introduce very slow thermal modes, which
can be seen in the control signal v1 in the lower plot in Figure 8.13. At
t = 2384 s, the heat release is returned to the initial level. The control
valve is quickly adjusted to the new conditions.
The mid-ranging control structure is also experimentally verified, see

Figure 8.14. The two left plots show a step decrease in the cooling tem-
perature reference and the right plots show the step response after a step
increase. The results from the experiment with the mid-ranging is plot-
ted in solid lines, whereas the results without mid-ranging (v2 is then
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Figure 8.12 Step response first without and then with the inverse valve charac-
teristics as nonlinear gain compensation.

held constant) have dashed lines. The control parameters for v1, the first
PI-controller, are the same for both experiments.
In the left plots, when TT5ref decreases from 29.5○C to 27.5○C, the

cooling temperature follows the reference slightly better with mid-ranging
than without, since here both valves v1 and v2 cooperate. However, the
main advantage of the mid-ranging is that v2 resets v1 back to its nomi-
nal position, here 25%. The process is then better prepared for additional
disturbances or reference changes. v1 is here reset to 25% to achieve sim-
ilar initial conditions for the two experimental cases. In general the fast
control variable is reset to 50% to have good margin for disturbances in
both directions.
In the plots on the right hand side of Figure 8.14, the temperature

reference increases from 29.5○C to 32.5○C. The cooling temperature fol-
lows the reference very well in both cases. Without mid-ranging control
(dashed), the position of the control valve v1 has to be adjusted from 50%
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Figure 8.13 Load disturbance experiment with varying heat release inside the
reactor. Upper plot: The heat release is suddenly increased, which directly affects the
temperature TT6 of the cooling water coming out from the reactor. The controlled
variable TT5, the inlet temperature of the cooling water, remains almost constant.
Lower plot: The position v1 of the three-way control valve.

to 20%, to track the reference. With mid-ranging (solid) v1 is reset to 50%,
which leaves it better prepared for additional changes in disturbances or
references. The controller for v1 is manually tuned to give as fast response
as possible, with an overshoot of at most 25%. A smaller overshoot would
require a much slower response.
The resulting closed loop dynamics can be locally approximated with

linear dynamics using two poles and a zero,

Gcool(s) =
0.21(s+ 0.11)

(s2 + 0.21s+ 0.024) , (8.9)

with a cross-over frequency ω c = 0.2 rad/s and a rise time1 of roughly 6
1Here defined as the time from 10% to 90% of the steady-state value of a step response.
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Figure 8.14 Step response experiments with mid-ranging (solid) and without
(dashed). Left plots: Step down in cooling temperature. Right plots: Step up in
cooling temperature. Lower plots: The control valve positions v1 and v2. Note that
v1 is reset to 25% in the left case and to 50% in the right case to get similar initial
conditions as the case without mid-ranging.

seconds. For large setpoint changes, the valve v1 saturates and a nonlinear
behavior appears, which can be described with a rate limit function. The
mid-ranging control will manipulate v2 to allow v1 to return to its nominal
operating point. Experimental results for large setpoint changes for the
cooling system are reported in chapter 9.

8.8 Summary

The utility system is a multi-purpose heating/cooling system. In this
project, the utility system is designed to remove the heat from an exother-
mic reaction inside the plate reactor and allow fast, accurate and flexible
temperature control.
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8.8 Summary

To reduce fouling inside the cooling plates of the plate reactor, a closed
flow circuit of water is used, where an external heat exchanger transfers
heat from the cooling water to some cooling reservoir, for example a river
or cooling towers. Recycle loops are introduced to improve the speed of the
response of the system and to reduce the sensitivity to external distur-
bances.
A mid-ranging controller is designed, which uses two control valves to

control the cooling temperature and reduces the risk of valve saturation.
The mid-ranging control technique improves drastically the flexibility of
the utility system and increases its operating range with existing equip-
ment.
The utility system and its control system are verified in a series of

experiments. The controller offers very good set-point tracking and dis-
turbance rejection.
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9

Constraint handling in

Mid-ranging Control

9.1 Introduction

In the process industry most control loops are single-input single-output
(SISO). The use of additional inputs of the process for control purposes is
often considered to increase control authority, performance or flexibility.
When a process has more control inputs than outputs, the question arises
how to use the additional degrees of freedom. The general control problem
for this type of processes is sometimes referred to as control allocation,
i.e., how should the control actions be distributed among the available
control signals to control the process output, see e.g. [Durham, 1993].
A specific example of control allocation is mid-ranging, see e.g. [Allison

and Isaksson, 1998]. As stated in [Allison and Ogawa, 2003], mid-ranging
refers to control problems where there are two control inputs and only one
output to control. Often the inputs differ significantly in their dynamic
effect on the output, and the faster input is sometimes more costly to
use than the slow one. In general, the faster input, here denoted u1, is
also closer to saturation than the slower input, here denoted u2. The mid-
ranging idea, see block-diagram in Figure 9.1, is to have the fast input u1
controlling the process output, and to use the effect of the slower input u2
on y, to gradually reset or mid-range u1 to its desired set-point value u

sp
1 .

Thus u2 indirectly acts to prevent saturation in u1.
The mid-ranging idea has been around for many years under differ-

ent names, for example valve position control [Shinskey, 1996] or input
resetting [Skogestad and Postlethwaite, 2005]. It is commonly used in the
process industry, but is also used in other areas, e.g. in position control
of the pickup-head in a CD-player.
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Figure 9.1 Mid-ranging control structure, for a process where G3 represents com-
mon dynamics for u1 and u2. In the bio-reactor example G1 = 1, which will be used
in the sequel.

The controller method used in C1 and C2 in Figure 9.1 depends on the
process. Traditionally, PID-controllers are used, but all SISO controllers
are possible. For processes with more complex dynamics, time delays or
input constraints, the desired mid-ranging effect may be achieved us-
ing multi-variable control design, such as Internal Model Control, Linear
Quadratic Gaussian control or Model Predictive Control. When input con-
straints are present, a centralized controller in the form of MPC can give
improved performance compared to decentralized controllers, see [Allison
and Isaksson, 1998]. In MPC, the mid-ranging concept can be achieved by
introducing target set-points to the fast control inputs. However, as stated
in [Allison and Ogawa, 2003], there are numerous applications where an
MPC-type solution might be considered overkill and where the decen-
tralized control structure in Figure 9.1 offers a natural balance between
complexity and performance.
Papers such as [Allison and Ogawa, 2003; Allison and Isaksson, 1998;

Karlsson et al., 2005] present tuning guidelines and applications of mid-
ranging control, but there has so far been no discussion on constraint
handling and anti-windup for this type of control structure. The main topic
of this chapter is how to implement anti-windup in PID-based mid-ranging
control, and it will be demonstrated that standard anti-windup schemes
may lead to unnecessary performance degradation during saturation.

Problem Statement

Processes with two input signals and one output signal can in general be
represented with the block diagram in Figure 9.1. In some situations like
paper drying with steam and infrared light [Allison and Isaksson, 1998],

195



Chapter 9. Constraint handling in Mid-ranging Control

r

+−

−
+

+

+

+

KTds

K

1
s

1
Tt

K
Ti

u sat(u)

y

actuator

Figure 9.2 Basic scheme for anti-windup in a PID-controller. K is the proportional
gain, Ti is the integral time and Td is the derivative time.

it may be reasonable to use the approximation G3 = 1, while for other
processes, like the bio-reactor described in Section 9.2, it may be more
natural to use G1 = 1 .
In standard applications of mid-ranging control, the dynamics in G1

is significantly faster than that of G2. As a rule of thumb, the controllers
C1 and C2 should therefore be tuned to keep the dynamics from y to u1
an order of magnitude faster than the dynamics from y to u2 to avoid
exciting cross-couplings. The controllers C1 and C2 can be tuned according
to guidelines in e.g. [Allison and Ogawa, 2003].
Consider standard mid-ranging control for a general process with sat-

uration of u1. When u1 saturates, i.e., u1 = umax1 , due to a large change in
the reference y or due to a large process disturbance, the feedback path
from y to u1 is broken. The second control input u2 is manipulated to
achieve u1 = usp1 , so u2 will by its influence on y bring u1 out of its sat-
uration. The key question now is what influence the anti-windup scheme
of C1 has on the performance of the closed loop system. Another question
is whether the bandwidth of u2 should be increased while u1 is saturated,
to more quickly affect y so much that u1 does not have to be saturated.
Most controllers with integral action have some kind of anti-windup.

The reason is to prevent the integrator state from becoming too large
when the control input saturates and the control error e = r − y does not
go to zero. In this chapter, we consider PID-controllers as they are very
frequent in the process industry. When implemented, they often have some
kind of anti-windup scheme, one example is shown in Figure 9.2, see e.g.
[Åström and Hägglund, 2005]. More general anti-windup methods can be
found in e.g. [Kapoor et al., 1998]. The time constant Tt in Figure 9.2
determines the speed at which the integral term is reset. There are very
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few guidelines how to choose an appropriate Tt. A rule of thumb from
[Åström and Hägglund, 2005] states that Tt should be larger than Td, but
smaller than Ti, for example Tt =

√
TiTd. A low Tt will give fast integrator

reset and a high Tt will give slow integrator reset.
The rest of this chapter will demonstrate how applying this standard

choice of Tt for C1 can lead to unnecessary performance degradation when
u1 saturates. Guidelines will be derived for design of anti-windup schemes
for mid-ranging control structures based on the analysis of the frequency
response from y to u2.
The chapter is organized as follows. In Section 9.2, a bio-reactor appli-

cation of mid-ranging control is presented. In Section 9.3, the disadvan-
tage of using Tt ≤ Ti is demonstrated in simulations of the bio-reactor
application. Guidelines will be derived for how to choose a suitable time
constant Tt, which gives u2 the same bandwidth in the saturated case
as in the unsaturated case. Section 9.4 presents a modification in the
control structure that increases the bandwidth of u2 to improve the per-
formance in saturation. In Section 9.5, the guidelines are applied to a
general purpose cooling/heating system. The aim is to show how the de-
rived guidelines and modified control laws can be used for a process quite
different from the bio-reactor. Finally, stability and performance for the
proposed tuning are verified using theory for piecewise linear systems in
Section 9.6.

9.2 Mid-ranging Control of a Bio-reactor

An example of a process where mid-ranging control can be applied is con-
trol of oxygen concentration in a stirred-tank bio-reactor used for cultiva-
tions of bacteria. Control of the bio-reactor is described in [Velut et al.,
2004] and [Karlsson, 2005]. To ensure sufficient oxygen transfer to the
cultivation medium, a mechanical stirrer is used with feedback from the
dissolved oxygen concentration to the stirrer speed. Bacterial growth leads
to an exponentially increasing demand for oxygen, which causes the stirrer
speed to saturate. The resulting decrease in dissolved oxygen concentra-
tion causes unnecessary stress on the bacteria, and also disables schemes
for substrate feeding and monitoring of the cultivation that depend upon
a constant dissolved oxygen concentration. The undesired effects may be
avoided by mid-ranging the stirrer speed to a desired value by decreasing
the reactor temperature. A lower temperature leads to decreased activity
and reproduction of bacteria, thus reducing the oxygen demand. However,
caution must be taken using the temperature control, since the model is
only valid within a limited temperature range, and a too low temperature
may significantly inhibit growth.
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Figure 9.3 Block diagram for the bio-reactor

Figure 9.3 shows the block diagram of the bioreactor with the mid-
ranging control structure. The stirrer speed N is the fast control input
and the reference temperature T is the slower control input. A linearized
second-order model of the oxygen and temperature dynamics can be de-
scribed by

ẋ(t) = Ax(t) + B1u1(t) + B2u2(t) (9.1)
y(t) = Cx(t) (9.2)

where the first state x1 denotes the dissolved oxygen concentration which
is also the process output y, and the second state x2 denotes the reac-
tor temperature. The two control signals u1 and u2 represent the stirrer
speed N and the reference temperature T , respectively. The effect of the
stirrer speed on y is much faster than that of the reference temperature.
Numerical values for the system matrices used in simulations are given
by

A =
[

−2400 −5200
0 −15

]

[

B1 B2

]

=
[

210 0

0 15

]

C =
[

1 0
]

For efficient use of the bio-reactor, it is essential to choose the set-
point value usp1 for the stirrer speed close to the maximum value u

max
1 .

This narrow margin limits the control authority of u1 around its set-point
value.
PI-controllers are used for both C1 and C2. The nominal control pa-

rameters in the following simulations are K1 = 10, Ti1 = 1/120 hours,
K2 = 0.02, Ti2 = 10/120 hours, umax1 = 1200 rpm and usp1 = 0.98umax1
= 1176 rpm. Four different cases will be investigated, the unsaturated
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Figure 9.4 Step response for bio-reactor example. Fast anti-windup Tt = Ti1/3
(dashed), no anti-windup (dotted), nominal unsaturated system (solid), and Tt =
1.2Ti1 (dash-dotted), which is chosen to achieve the same bandwidth in u2 for the
saturated case as in the unsaturated case.

response, the saturated response with fast anti-windup Tt = Ti1/3, no
anti-windup Tt = ∞ and finally Tt chosen according to the guidelines
presented later in this section.
The closed loop responses for a step increase in the dissolved oxygen

reference are plotted in Figure 9.4 for varying degrees of anti-windup. The
fastest response is of course if the stirrer speed can not be saturated, but
the stirrer speed is saturated at 1200 rpm, which corresponds to 24 rpm
above the nominal operating point. If no anti-windup is used, the response
is quick, but it experiences a large overshoot. Unless the controllers C1
and C2 are well separated in bandwidth, disturbances may actually cause
instabilities if no anti-windup is used. When there is fast anti-windup, the
response is very slow. The details behind these responses will be analyzed
in the next section.
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9.3 Analysis of Standard Anti-windup

In this section, we will now explain the responses in Figure 9.4, first by
simple reasoning and then based on the frequency response from y to u2.
During control design of C1 and C2, the controllers are tuned for the

nominal, i.e., the unsaturated, case. The purpose of C2 is to influence the
process so that u1 is mid-ranged to its set-point value u

sp
1 . Remember that

to avoid exciting cross-couplings in this decentralized control structure,
the dynamic response of C2 is tuned slower than the response of C1. Fur-
thermore, we assume that the signal sent from C1 to C2 is the unsaturated
signal u1.
When u1 saturates at its maximum value umax1 , the feedback loop of

u1 is broken, and instead all feedback has to go through u2. With fast
anti-windup, the integrator is quickly reset and u1 ( umax1 , which gives
u2 ( C2(usp1 −umax1 ) = C2e2, where we define e2 as the control error sent to
C2. When the operating point is chosen such that u

sp
1 is close to u

max
1 , the

control error e2 that C2 acts on is very small, which makes the changes in
u2 very small. The effect from u2 to y, which may help end the saturation
of u1 is then very limited.
In contrast, if no or very slow anti-windup is used, the integrator state

will quickly grow and the unsaturated control input u1 will increase to
large values. This will give a very large control error e2 = usp1 − u1, thus
leading to a large control action in u2, which will have a large impact on
y, thus also bringing u1 out of saturation.
It is apparent that C2 in the saturated case receives a smaller control

error e2 compared to the unsaturated case, and this reduces significantly
the effect that u2 has on the closed loop performance, see the lowest plot
in Figure 9.4. With fast anti-windup, u2 adjusts very slowly resulting in
a longer period of saturation of u1. This standard choice of Tt ≤ Ti has
consequently negative effects in the mid-ranging control setting.

Frequency response analysis

To support the simple reasoning above, the frequency response from r to
u2 is examined for the nominal, i.e., unsaturated case and the saturated
case.
Given the block diagram in Figure 9.1 with G1 = 1, the transfer func-

tion from r to u2 in the nominal case can be derived as

u2 = −
C1C2

1+ C1G3 − C1G3G2C2
r
def= Gnom r. (9.3)
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The saturated case is less straight forward. The controllers and the
process are governed by

y= G3sat(u1) + G3G2u2,

u1 = C1(r − y) +
1
sTt
(sat(u1) − u1),

u2 = C2(usp1 − u1).

In saturation1 , sat(u1) = umax1 , which leads to

y= G3umax1 + G3G2u2,

u1 = C1(r − y) +
1
sTt
(−u1) +

1
sTt
(umax1 )

= sTt

(sTt + 1)
C1(r − y) +

1
(sTt + 1)

umax1 ,

u2 = C2(usp1 − u1),

where we define Caw = sTt/(sTt + 1) from the anti-windup scheme. The
set-point for u1 is assumed to be zero, u

sp
1 = 0. The broken feedback loop

reduces the transfer function from r to u2 as follows,

u2 = −C2u1 = −C2 (CawC1(r − G3G2u2))

= − C2CawC1

(1− C2CawC1G3G2)
r
def= Gsat r. (9.4)

Note that the transfer function Gsat is parameterized in the anti-windup
time constant Tt.
The frequency responses for the different anti-windup cases are plotted

in Bode diagrams in Figure 9.5. Consider first the frequency response
for the unsaturated case. The low and high frequency responses can be
approximated with

Gnom (
−C2

G3(1− G2C2)
∀ ω ≤ 0.1 rad/s (9.5)

Gnom ( −C1C2 ∀ ω ≥ 100 rad/s (9.6)

In the saturated case, the choice of anti-windup time constant Tt affects
mainly the gain and phase in the medium frequency range. No anti-
windup gives a very large increase in the gain at ω = 25 rad/h. Fast
anti-windup decreases the gain considerably compared to the unsaturated

1Without loss of generality, we consider only the upper limit on u1.

201



Chapter 9. Constraint handling in Mid-ranging Control

10
−1

10
0

10
1

10
2

10
3

10
−1

10
0

10
1

10
−1

10
0

10
1

10
2

10
3

100

150

200

250

Frequency [rad/hour]

P
h
as
e
[d
eg
]

M
ag
n
it
u
de
[-]

Figure 9.5 Bode diagrams of the transfer function from r to u2 for the bio-reactor
example. Unsaturated case (solid), no anti-windup (dotted), fast anti-windup Tt =
Ti1/3 (dashed) and Tt = 1.2Ti1 (dashed-dotted) that gives similar bandwidth in the
saturated case as in the unsaturated case.

case. This supports the initial reasoning above, that fast anti-windup leads
to performance degradation in a mid-ranging control structure.
It is now possible to choose a Tt that gives better performance than the

fast anti-windup, but avoids the overshoot from having no anti-windup. A
natural choice is then to choose Tt, so that the frequency response from
r to u2 has a similar bandwidth as in the unsaturated case. It may be
tempting to increase the bandwidth even further, above the bandwidth of
the unsaturated case. This aggressive use of u2 may introduce difficulties
in the presence of input saturation of u2, cross-couplings or unmodeled
dynamics. Therefore, this choice of Tt seems as an appropriate trade-off
between performance and robustness. As an alternative, this idea of sim-
ilar bandwidths can also be implemented by choosing a fast anti-windup,
but shifting the controller parameters in C2 as soon as u1 saturates, i.e.,
a form of gain scheduling.
In the bio-reactor example, a value of Tt = 1.2Ti1 is chosen. The re-
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sponse in Figure 9.4 shows that the closed loop performance is better than
with fast anti-windup. Note that by choosing Tt to achieve similar band-
widths, the control trajectories of u2 coincide for the saturated case and
the unsaturated case, and after u1 leaves saturation, the trajectories of
u1 also coincide.
To summarize, by choosing a value of Tt that gives similar bandwidth

in the saturated case as in the unsaturated case, the performance is im-
proved and the control actions in u1 and u2 resemble the unsaturated
case. Note that the suggested method for choosing Tt uses information
of the nominal process and controllers. It is independent of the choice of
set-point value usp1 and is not limited to a particular disturbance model or
to particular reference trajectories. The idea can also be implemented by
gain scheduling of C2.

9.4 Modified Anti-windup Scheme

So far the main criterion for choosing the anti-windup time constant Tt
has been to obtain the same bandwidth from r to u2 in the saturated case
as in the unsaturated case. The main objective has been to improve the
performance, but with the limitation that u2 should not be used more than
in the unsaturated case.
Assume now that there is good process knowledge in G2 and G3 and

the constraints on u1 and u2 are well known. It is then possible to use u2
more aggressively while u1 is saturated, to improve the performance and
bring u1 out of saturation as fast as possible. The more aggressive use of
u2 should be used with caution when there are nonlinearities associated
with the input dynamics or there is model uncertainty.
In this section, a simple modification of the anti-windup scheme will

be presented that increases the bandwidth of the frequency response, i.e.,
improves the performance during saturation. By manipulating the input
signal to C2 during saturation, the use of u2 can be increased without
having to change the control parameters in C2. The modified anti-windup
scheme can be seen in Figure 9.6.

ũ1 = u1 + Ks(u1 − sat(u1)) (9.7)
u2 = C2(usp1 − ũ1) = C2 (u

sp
1 − u1 − Ks (u1 − sat(u1))) (9.8)

In the unsaturated case, the last term is zero. When u1 saturates, sat(u1) =
umax1 and u1 −umax1 > 0. The signal to C2 is increased by the positive term
Ks(u1−umax1 ). The modification allows for a standard anti-windup scheme
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Figure 9.6 Mid-ranging control structure with modified anti-windup scheme. The
gain Ks increases the input signal to C2, thus generating higher control action in
u2 to improve performance when u1 saturates.

with a small Tt ≤ Ti for fast integral reset, eliminating the risk of inte-
grator windup and a possible overshoot. The difference u1 −umax1 is small
using fast anti-windup, but with a suitable choice of Ks, performance can
be improved. Note that the additional input to C2, u1−sat(u1), is the same
signal that is used for standard anti-windup of C1.
With the modification, the response from r to u2 will be

u2 = −
C2(Ks + 1)CawC1

(1− C2(Ks + 1)CawC1G2)
r
def= GKsr (9.9)

With this modification, the bandwidth of the transfer function from r to
u2 is increased, see Figure 9.7. Caution should be used to avoid increasing
the bandwidth into high frequency regions where there might be process
uncertainties or risk of violating input constraints in u2. Note that the
low frequency response is not affected by Ks.
To find a suitable value of Ks a standard integral squared error cost

function is used as performance criterion,

J =
∫ t f

0

(
(r − y)2 + ρu22

)
dt (9.10)

where ρ is a weight to compensate for scaling, or to suppress large use of
u2. The objective is to find Ks that minimizes the cost function J, for ex-
ample by numerical search or simulations. In the bio-reactor application,
the minimum cost was achieved with Ks = 3, with ρ = 0.34.
The modified anti-windup scheme is evaluated in step response in dis-

solved oxygen reference, see Figure 9.8. The performance with Ks = 3
is almost as good as the unsaturated case, since u2 is being used more
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Figure 9.7 Bode diagram for transfer function from r to u2 for bio-reactor with
modified anti-windup scheme and different values of Ks. Tt = Ti1 has been used in
all cases.

aggressively. If less control action in u2 is desired, ρ should be increased.
A larger reference step r will give larger control error (r − y), thus fa-
voring a higher Ks. For a faster C2, a lower Ks is needed for the same
performance. The value of Ks will also vary depending on the choice of
Tt, which should be small (Tt ≤ Ti) to allow fast anti-windup. Dead-beat
anti-windup should however be avoided, since it gives u1 = umax1 , which
renders the modification ineffective.
As an alternative to PID controllers, the mid-ranging control concept

can also be achieved by Model Predictive Control. In MPC, a similar cost
function to (9.10) is evaluated on-line for a specified prediction horizon.
Performance of the closed-loop system may be further improved using
MPC, but at the cost of developing a reliable process model and the com-
putational effort involved in on-line optimization.
The main advantages with the proposed simple modification of stan-

dard PID-control are that it is only active as long as u1 saturates, and that
the calculation is very simple and it can be implemented in most commer-
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anti-windup with Tt = Ti1 and Ks = 3 (dashed). Lower right: cost function (9.10)
evaluated for different values of Ks using ρ = 0.34.

cial PID packages. There is no need to change to a different set of control
parameters in C2 during saturation. A downside with the aggressive use
of u2 is the risk of exciting unmodeled dynamics or violating constraints
in u2. It is therefore essential to use a value of ρ that reflects the given
process and its constraints. The modified closed-loop system should also
be evaluated in simulations to verify performance.

9.5 Mid-ranging Control of a Cooling System

In this section, the previously derived guidelines are used on another
process to show that the results are generally applicable. Consider the
standard cooling system seen in Figure 9.9. The flow configuration can be
used for general cooling/heating purposes, and is described in more detail
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Figure 9.9 Flow configuration of the cooling system with recycle loops around
the heat exchanger (HEX) and the reactor. Note that the control signals u1 and u2
corresponds to the desired positions of the control valves RV1 and RV2.

in Chapter 8. The system is a closed hydraulic system that transfers heat
from the plate reactor on the right to cold water from a reservoir on the
left via a heat exchanger. With recycle of the water coming out from the
reactor directly back to the control valve RV1, the speed of the temperature
control can be significantly improved. The second recycle, around the heat
exchanger to the left, is implemented to keep the flow rate through the
heat exchanger constant regardless of the current valve position of RV1.
A simple nonlinear model of the cooling system based on first principles

has been derived, see Chapter 8. The control variables u1 and u2 are
the desired positions of the two control valves and the output y is the
inlet temperature of the cooling water for the reactor, see Figure 9.9.
Linearization gives a model with three water temperature states xp and
two actuator states xv for each control valve RV1 and RV2. The three
water temperatures are the temperatures of the left (cold) side and the
right (warm) side of the heat exchanger, and finally the left (cold) side of
the reactor. The pressure dynamics and the thermal inertia are neglected.
Constant heat is assumed to be conducted from the exothermic reaction
to the cooling side of the reactor. The dynamic system can be described as

ẋv1(t) = Avxv1(t) + Bvu1(t)
v1(t) = Cvxv1(t)
ẋv2(t) = Avxv2(t) + Bvu2(t)
v1(t) = Cvxv1(t) (9.11)
ẋp(t) = Apx(t) + Bp1v1(t) + Bp2v2(t)
y(t) = Cpx(t)
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and when expressed together, we get





ẋv1

ẋv2

ẋp




 =






Av 0 0

0 Av 0

Bp1Cv Bp2Cv Ap






︸ ︷︷ ︸

A






xv1

xv2

xp




+






Bv 0

0 Bv

0 0






︸ ︷︷ ︸

B

[

u1

u2

]

y =
[

0 0 Cp

]

︸ ︷︷ ︸

C






xv1

xv2

xp




 . (9.12)

Numerical values for the system matrices used in simulations are

Av =
[

−5.404 −36.39
1 0

]

Bv =
[

1.1

0

]

Cv =
[

−3.001 38.06
]

Ap =






−0.085 0 0.085

0 −1.1 0.60

0.072 0.075 −0.15






[

Bp1 Bp2 =
]

=






−1.22 0

0.44 −20.9
0.98 −2.0






Cp =
[

0.416 0 0.584
]

.

The two control valves are identical and the valve dynamics were deter-
mined by system identification from experimental data. The valve dynam-
ics have a fast unstable zero, approximating higher order dynamics. The
structure of the system matrix A reveals tight cross-couplings between
the different temperature states and control valve positions due to the
recycle loops.
The reference temperature for the cooling water is calculated by a con-

troller for the plate reactor using multi-loop PID controllers or MPC, see
Chapter 4. The purpose of the mid-ranging control is to track the given ref-
erence temperature as well as possible. The cooling temperature is mainly
influenced by u1 and control valve RV1. However, large reference changes
or disturbances may cause saturation of u1. To improve performance and
increase the operating region of the hydraulic equipment, u2 is manipu-
lated to mid-range u1 to a desired value. To have a suitable margin to the
saturation limits, usp1 = 0, which corresponds to an actual valve position
of RV1 of 50%. The constraints in u1 are ±0.5.
PI-controllers are used for both C1 and C2. The nominal control pa-

rameters in the following discussions are K1 = −0.03,Ti1 = 1.0 seconds,
K2 = −0.05,Ti2 = 30 seconds.
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Figure 9.10 Bode plots of the transfer function from r to u2 for the unsaturated
case (solid), the saturated cases when Tt = 4Ti1 (dash-dot), Tt = 0.5Ti1 (dashed)
and Tt = 50Ti1 (dotted).

Anti-windup for the Cooling system

Similar to the bio-reactor example, a fast time constant Tt of the anti-
windup scheme may not always be beneficial for the cooling system.
The transfer functions from r to u2 for the unsaturated and the satu-

rated cases were defined in (9.3) and (9.4). Bode plots for different values
of Tt are evaluated. By visual inspection, Tt = 4Ti1 gives the saturated
system a similar bandwidth of the frequency response as for the unsatu-
rated system, see Figure 9.10. As predicted, fast anti-windup gives lower
gain, whereas slow anti-windup gives higher gain than the unsaturated
case.

Experiments The proposed method was verified in experiments at the
Alfa Laval laboratory in Tumba2, Sweden. The equipment and the exper-
imental set-up was presented in Section 8.4.

2The equipment was moved from Lund to Tumba after the experiments in Chapter 8.
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Figure 9.11 Experimental data: Closed-loop response for a step decrease of 7○ C
for the saturated cases when Tt = 0.5Ti1 (line A), Tt = 4Ti1 (line B) and Tt = 50Ti1
(line C). Instead of plotting the valve position u2, the flow rate through the valve
RV2 is plotted.

Experimental results are shown in Figure 9.11, where the closed-loop
response is plotted for a step decrease in the temperature reference with
7○C. From practical limitations, there is no unsaturated case as in the
previous simulations. The control input u1 is quickly saturated, i.e., all
water is circulated to the external heat exchanger to decrease the cooling
water temperature to the reactor. With very slow anti-windup the inte-
grator state in the controller increases well above 140%, thus increasing
the input sent to the second controller. With a large controller error being
sent to C2, C2 increases u2 to allow u1 to return to its nominal operating
point. In Figure 9.11, the flow rate through RV2 is plotted instead of the
valve position u2, since the valve characteristics of RV2 are highly non-
linear. The slow anti-windup leads to more action in u2, higher flow rate
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9.5 Mid-ranging Control of a Cooling System

through the heat exchanger, thus improving the transient response. How-
ever, the slow anti-windup causes a small overshoot in the temperature
response. The overshoot is larger in simulations, but nonlinear effects in
the real process dampen the effect.
With the fast anti-windup, the control input is also saturated, but the

anti-windup resets the integrator so that the control error to C2 is very
small. The second control input u2 increases therefore very slowly, leading
to an overall very slow response. By manipulating the time constant of the
anti-windup scheme, the response may move between these two extreme
cases. The Bode plots indicated that Tt = 4Ti1 gave similar frequency
response as the unsaturated case. On the real process, this value of Tt
improved the closed loop performance compared to the fast anti-windup
case.
We can clearly see the effect of the increased gain at medium fre-

quencies from Figure 9.10 on the closed loop performance in Figure 9.11.
Choosing a very slow anti-windup may be tempting, due to increased per-
formance for this specific test, but is not recommended. In other operating
points the windup phenomena may become larger and decrease the per-
formance. In addition, the extra use of u2 may excite unmodeled dynamics
or violate input constraints not included in the study.

Modified Anti-windup Scheme for the Cooling System

To increase performance of the cooling system when u1 saturates, the
modified anti-windup scheme presented in Section 9.4 can be used. It is
important to use caution when increasing the control action in u2, since
higher controller bandwidth might excite unmodeled dynamics or cause
u2 to saturate.
The cost function (9.10) is used. Based on available control authority

in u2, a reasonable choice of ρ is 150. If less control action in u2 is desired,
ρ should be increased. From simulations, the cost function is evaluated
for varying Ks, see Figure 9.12. Standard fast anti-windup is used, Tt =
0.5Ti1. There is a clear minimum for Ks = 60 given this choice of Tt.
The choice of Tt and Ks can also be based on loop-shaping of the fre-

quency response, see Figures 9.7 and 9.10. For example, a larger Tt and
a smaller Ks would increase the gain at medium frequencies and reduce
the gain at high frequencies.

Experiments The modified anti-windup scheme was also verified in
simulations. The closed loop response when Ks = 60 and Tt = 0.5 is
plotted in Figure 9.12 together with the previous cases from Figure 9.11.
The modified scheme has higher gain at high frequencies from r to u2,
which is clearly seen in the top right plot. The temperature response is
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Figure 9.12 Experimental data: Closed-loop response for a step decrease of 7○C
for the saturated cases from Figure 9.11 (Tt = 4Ti1, Tt = 0.5Ti1, and Tt = 50Ti1)
and the final case when Tt = 0.5Ti1 with Ks = 60 (line D). On the lower right is
the evaluated cost function for different values of Ks when Tt = 0.5Ti1. Instead of
plotting the valve position u2, the flow rate through the valve RV2 is plotted.

as quick as the case with very slow anti-windup, but it has almost no
overshoot due to the fast anti-windup time constant.

9.6 Stability and Performance Analysis

Input-output stability for the bio-reactor using the proposed method for
choice of Tt has been ensured using the circle criterion in [Karlsson, 2005].
We can also use the fact that the closed-loop system is piecewise linear
for both the conventional anti-windup scheme and the modified scheme
in Section 9.4. Various tools are available for stability and performance
analysis of such systems, see for example [Hedlund and Johansson, 1999]
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and [Rantzer and Johansson, 2000].
The proposed choice of Tt is based on frequency response analysis and

improves the performance compared to the case with a standard choice of
Tt ≤ Ti. To provide a more thorough analysis of the combined unsaturated
and saturated system, the cooling system from Section 9.5 is studied using
algorithms from the PWL toolbox, [Hedlund and Johansson, 1999].
For the unsaturated case, the closed loop system matrix for the cooling

system with controllers, see Eq 9.12, can be written as

A1 =






A− B1K1C + B2K2K1C B1 − B2K2 B2

−K1C/Ti1 0 0

K1K2C/Ti2 −K2/Ti2 0




 . (9.13)

where the first row corresponds to the seven process states, the second
row is for the controller state of u1 and the third row is for the controller
state of u2. The system matrix for the closed loop system in the saturated
case can be written as

A2 =






A+ B2K2K1C −B2K2 B2

−K1C/Ti1 + K1C/Tt −1/Tt 0

K1K2C/Ti2 −K2/Ti2 0




 (9.14)

Stability is then verified by finding a quadratic Lyapunov function
V (x) = xTPx that gives negative rate both for the unsaturated and satu-
rated case. This is easily computed using the PWL toolbox.

V̇ = xT (AT1 P+ PA1)x ≤ 0 (9.15)
V̇ = xT (AT2 P+ PA2)x ≤ 0 (9.16)

The performance is verified by calculating with the PWL toolbox an
upper bound of the L2-gain from a disturbance d acting on the control
signal u1 to y for various values of Tt, see Figure 9.13. We see that the
extreme cases with fast or slow anti-windup have a significantly larger
L2-gain from d to y. Note also that the standard choice Tt ≤ Ti also
gives unnecessarily low performance. These results confirm the previous
analysis, indicating that Tt = 4Ti1 improves the performance when u1
saturates.

9.7 Summary

This chapter has presented two rather different applications of mid-ranging
control, a bio-reactor and a cooling system. The effects of anti-windup has
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Figure 9.13 An upper bound on the L2-gain from disturbance d to output y for
varying anti-windup scheme time constant Tt for the cooling system.

been examined for the case when the fast control input u1 is subject to
saturation. It has been shown that default choices of anti-windup con-
stant Tt are not extendable to the mid-ranging control structure, since
they may decrease the control performance. However, removing the anti-
windup mechanism leads to the characteristic windup phenomenon and
potentially even to instability.
We have suggested a method, where the anti-windup parameter Tt is

chosen to achieve similar bandwidths of the frequency response of the un-
saturated and the saturated case. The method improves the performance
for both studied processes when u1 saturates, compared to using either no
anti-windup or fast anti-windup. It preserves the closed loop bandwidth of
u2, to avoid excitation of unmodeled process dynamics and cross-couplings
between the control variables.
If the knowledge of the process allows for increased bandwidth of the

slow controller C2 when u1 saturates, we suggest a modified anti-windup
structure that does not change the nominal controller design, but gives an
increased control error to C2 when u1 saturates. This structure is parame-
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9.7 Summary

terized in a constant Ks, which is found through numerical optimization of
the integral square cost function (9.10). With this modification, u2 is more
aggressively used and the performance is significantly improved during
saturation, without altering the nominal design. The ideas can also be
implemented using gain-scheduling of the second controller C2.
The stability and performance of the system with saturation can be

analysed using theory of piecewise linear systems. The result from the
piecewise linear analysis supports the previous analysis on how to choose
a suitable anti-windup scheme.
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10

Conclusion

10.1 Summary

The focus of this thesis has been to investigate the dynamics of the plate
reactor and to develop control methods to exploit the increased potential
of the new reactor concept. Some of the results are specific for the plate
reactor, but many parts may be generalized to other applications of pro-
cess control, for example the decentralized and centralized control design,
the start-up/transition control design and use of mid-ranging control to
handle two-input one-output systems.

The process The plate reactor combines the high-heat-transfer capa-
bilities of plate heat exchangers with the efficient mixing and reaction
control typical of microreactors, thus enabling intensified production. The
flexible construction with multiple injection points and cooling zones im-
proves the steady-state and dynamic performance and improves the pos-
sibilities for feedback control, but to take advantage of these benefits may
require more complex control designs.
A nonlinear model of the reactor has been derived based on first prin-

ciples, which allowed a detailed investigation on the process dynamics and
the potential control inputs. The best control inputs for temperature con-
trol were the feed and cooling water temperatures, as they give low amount
of cross-coupling. The feed injection flow rates of reactant B may also be
useful for feedback control, especially to improve the transient response
when experience large disturbances or operating close to the constraints.
However, any change in the feed flows may affect the stoichiometric con-
ditions, so there is a trade-off between improved response and transients
in the conversion at the outlet.
It is important to consider the process design, choice of operating point

and control design all together, to avoid process design that introduce
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cross-couplings in the process inputs. For example, when there are multi-
ple injection points of reactant B, it may be beneficial to have the corre-
sponding number of cooling zones, especially if the intention is to imple-
ment a decentralized control structure.

The control at nominal operation The control of the plate reactor
has been divided into two parts, control at nominal operation and start-up
control. The control of the reactor at the nominal steady-state operating
point is designed using either decentralized or centralized control. The
multi-loop PID controllers proved to be sufficient to give good performance
to various load disturbance scenarios. The decentralized control structure
is easy to understand, easy to implement and easy to tune. Temperature
constraints can be handled by introducing additional temperature con-
trollers using the feed flow injections. These controllers operate in paral-
lel with the original temperature controllers and are only activated when
the reactor temperature crosses a specified threshold.
The centralized control design is based on Model Predictive Control,

which can handle multivariable process models, input and state constraints
and offers a flexible specification of the control objectives. By varying the
cost function, the MPC controller can shift its focus from temperature
control, to control the stoichiometric relation or to find control inputs that
maximize the reactant conversion, all within the same framework. The
MPC approach is especially advantageous when disturbances lead to in-
put saturations or state constraint violations, as the multivariable process
model allows all control actions to be calculated based on all available in-
formation.
When using additional control inputs in the decentralized control, the

general approach is to separate the different control loops in the frequency
domain, where one loop is fast and the other loop is slower, to avoid intro-
ducing interactions between the loops. In centralized control, additional
inputs are added by extending the cost function and the multivariable
process model describes the cross-couplings so there is no need for the
inputs to be separated in the frequency domain. Additional inputs and
control objectives increase the complexity of the tuning problem. It may
be straight forward to obtain an acceptable performance, but to achieve
the full potential of the MPC controller is a very challenging task.
The temperature control performance of the MPC controller is similar

to the performance of the decentralized controller. The choice of distur-
bance model may influence the transient response of the MPC controller
and should be considered as one of the many tuning parameters in the
MPC design. The real strength of the MPC framework is demonstrated
when adding more inputs, considering temperature constraints or extend-
ing the objectives to control both temperature and concentrations. The
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decentralized controller may also be designed to address these issues, but
it will lead to very complex control structures with possibly large inter-
connections between the control loops.
Based on the experiences from this thesis, decentralized control is suf-

ficient for basic temperature control when input saturations or tempera-
ture constraints are non-existent or present but not always active. When
choosing to operate closer to saturation limits or temperature constraints
or focusing on the concentration control, a centralized MPC controller is
recommended.

The start-up control The start-up control problem is challenging due
to process uncertainty, highly nonlinear dynamics and input and temper-
ature constraints. The dynamics and the constraint are easily captured
by the process model described in the optimization problem. The open
question is how to address the process uncertainty. A sensitivity analysis
shows that trajectories where the accumulated reactant concentration and
the reactor temperature are both high, are highly sensitive to parametric
uncertainty. This will result in large plant/model mismatch and lead to
large difficulties for the feedback controller.
In this thesis, robustness to uncertainty is achieved by introducing

state-space constraints in the optimization formulation, to avoid optimal
solutions that have large sensitivity. In the continuous approach, the con-
centration of the injected reactant B is constrained to avoid operation in
highly sensitive regions. In the hybrid approach, the injection of reactant
B is conditionally coupled to a reactor temperature, so that feed injections
are only allowed when the temperature is sufficiently high to sustain the
reaction. This can be viewed as having the concentration of B constrained
to zero until the reactor temperature increases above a certain threshold.
The robustness of the closed loop system is verified in Monte Carlo sim-
ulations for both approaches. The variations of the start-up trajectories
due to the uncertainty decrease significantly for the solutions with low
sensitivity.

The utility system and mid-ranging control Temperature control
of the plate reactor is easier using the inlet temperature of the cooling
water than the cooling flow rate. A utility system was designed and ex-
perimentally verified, which allows the inlet temperature of the cooling
water to be accurately controlled. The temperature of the cooling water
is controlled by manipulating a three-way control valve, mixing hot wa-
ter from the reactor and colder water from an external heat exchanger. A
mid-ranging control structure is implemented, where the external cooling
flow rate is manipulated so that the three-way control valve may oper-
ate around some desired value, for example in the middle of its operating
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range. Mid-ranging control is a very simple and efficient way to handle
situations when the process has two inputs and one output.
The performance of a decentralized mid-ranging control structure was

investigated when the fast control input saturates. The anti-windup scheme
may be modified to improve the performance compared to very fast anti-
windup or very slow anti-windup.

10.2 Suggestions for Future Work

When the Alfa Laval Plate Reactor project reaches the stage of full-scale
tests, the decentralized and centralized control structures should be tested
and verified in real experiments. Before these experiments can be carried
out, further work is needed to validate the dynamic response of the model
and to consider the location of the sensors.
To reduce the computational complexity of the MPC controller, the

process model used for control design may be approximated using any of
the techniques discussed in the beginning of Section 4.6.
After the design of linear MPC, it is a natural extension to consider

control of the plate reactor using nonlinear MPC. This will allow model
predictive control of the plate reactor from start-up to nominal operation
using the same controller. It may also be used in production rate changes
or other kinds of grade changes. The experiences from the start-up control
in this thesis can be directly applied in the design of a nonlinear MPC
controlled start-up.
The start-up optimization can be extended to include the sensitivity

analysis in the optimization formulation, i.e., solving the optimization
problem with a upper bound on the sensitivity or including the sensitivity
in the cost function. With the latter approach, it is possible to choose a
weighting coefficient corresponding to how much the model can be trusted.
For large uncertainties, there may be a large penalty on the sensitivities
and vice versa. It would also be interesting to consider the uncertainty
by using multi-parametric optimization, where the uncertainty in the pa-
rameters are included in the optimization problem in the form of multiple
models.
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Appendix

List of Symbols

Table 10.1 State variables inside the plate reactor

Symbol Unit Description

cA mol/m3 Concentration of reactant A

cB mol/m3 Concentration of reactant B

cC mol/m3 Concentration of reactant C

Tr
○C Reactor temperature

Tw
○C Cooling water temperature

Table 10.2 Input variables to the plate reactor

Symbol Value/Range Description

qA,feed 1.11 ⋅ 10−5 m3/s Feed flow of reactant A into the reactor

qB,feed 2.78 ⋅ 10−6 m3/s Feed flow of reactant B into the reactor

uB1 0− 1 Scaled feed flow of B at injection point 1

uB2 0− 1 Scaled feed flow of B at injection point 2

qcool 1.00 ⋅ 10−3 m3/s The cooling water flow rate

TA,feed 15− 80○C The feed temperature of reactant A

TB,feed 20○C The feed temperature of reactant B

Tcool 15− 80○C The inlet temperature of the cooling water

cA,feed 1470 mol/m3 The feed concentration of reactant A

cB,feed 11256 mol/m3 The feed concentration of reactant B
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Table 10.3 Parameters and variables inside the plate reactor

Symbol Value/Unit Description

Atotheat 0.2061 m2 Total heat transfer area

cp 4180 J/(kg K) Specific heat capacity of reactor fluid

dr 0.0081 m diameter of approx. tubular reactor

dw 0.0129 m diameter of approx. cooling jacket

D e 0.0371 m2/s Energy dispersion coefficient

Dm 0.0371 m2/s Mass dispersion coefficient

Ea 68200 J/mol Activation energy

h 3000 W/(m2 K) Heat transfer coefficient

∆H 1.172 ⋅ 106 J/mol Heat of reaction per mole Na2S3O6
k0 2.0 ⋅ 107 m3/(mol s) Pre-exponential factor in reaction rate

L 8.1 m Length of reactor channel

R 8.31434 J/(mol K) Ideal gas constant

ρr 1000 kg/m3 Density of reactor fluid

ρw 1000 kg/m3 Density of cooling water

vr 0.27 m/s flow velocity of reactor fluid

vw 14.0 m/s flow velocity of cooling water

V totr 4.17 ⋅ 10−4 m3 Total reactor volume

V totw 5.8 ⋅ 10−4 m3 Total cooling water volume

The kinetic parameters and the values of the feed concentrations are given
for the sodium thiosulfate reaction.
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