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1. INTRODUCTION

This thesis considers control of large horizontal axis wind power plants
connected to large utility grids. The objective is to give a global picture of the

control problem. The following questions are investigated:

1. Which properties and limitations are fundamental and common to all
horizontal axis wind turbines?

2. Which properties and limitations are design dependent?

3. Which properties can be influenced by control system design?

4. What are the control objectives and is it possible to fulfil them?

There are a number of different types of horizontal axis wind turbines in
operation and more are under construction. A survey is given in Koepp! (1982).
The characteristics of the MOD-2, the WTS-3, the WTS 75 and the Growian | are
referenced in the discussion. A listing of their basic characteristics is given in

Appendix A.

The thesis is organized as follows. The dynamics of horizontal axis wind power
plants is analysed and explained in Chapter 2. First, simple physical models are
considered in order to explain the basic dynamics. Then higher order dynamics
of the different parts of the plant is considered. A modular simulation model is
presented in Appendix B. When modelling, it is important to know the purpose of
the model. Our purpose is control design. The wind is a source of both joy and
sorrow. This power source cannot be controlled in any way and it is the major
source of disturbances. It is a basic contro! objective to compensate for the large,
rapid and random variations in the wind. Thus Chapter 2 concludes with models
for design of compensators for the wind variations. The characteristics of the
wind are considered in Chapter 3. Measurements from the WTS-3 are analysed in
Chapter 4. Different models are identified and compared with physical models.
Control is considered in Chapter 5. First, the control objectives are discussed.
Then the possibilities to compensate for the wind speed variations are
investigated. Basic factors like control authority and measurements as well as
interaction between process design and control design are discussed. The results

~ of the investigation are summarized in Chapter 6.




2. SYSTEM DYNAMICS

A suitable characterization of the system dynamics of horizontal axis wind power
plants should tell how energy is transferred from the wind to the utility grid. For
reasons of safety it is also necessary to consider the structural dynamics. A
characterization of the system dynamics can be given in different ways. A
modular simulation model is presented in Appendix B. In this chapter a more

analytical presentation is given in order to explain the dynamics.

Several modes of operation can be identified: startup mode, power generation
mode, shutdown mode and emergency modes. In the startup mode the turbine is
accelerated and the generator is connected to the utility grid. In the power
generation mode power is extracted from the wind and transferred to the utility
grid. In the shutdown mode the generator is disconnected and the turbine is
decelerated. The system is in an emergency mode if malfunctions have been
detected. In an emergency mode backup systems are invoked to provide for a safe
shutdown. The power generation mode will be of principal consideration here. A
plant will hopefully operate in this mode during the major part of its lifetime. This

mode has the most difficult and the most interesting control problems.

A wind power plant may be viewed as consisting of an aerodynamical part and an
electrical part, which are connected by a drive train. The aerodynamical part is
influenced by the wind and consists of the wind turbine, the nacelle and the
tower. The electrical part is connected to the utility grid and consists of the
generator. The drive train which connects the turbine and generator consists of

shafts and gearboxes.

The basic wind characteristics are summarized in Section 2.1. A more detailed
discussion is given in Chapter 3. The investigation of the system dynamics starts
in Section 2.2 by considering simple models in order to understand the behaviour
of wind turbine generators. Higher order dynamics and the validity of the simple
models for the aerodynamical part are discussed in Section 2.3 and for the
electrical part in Section 2.4. The dynamics of interest in designing compensators

for wind speed variations is summarized in Section 2.5.




2.1 Basic Wind Characteristics

It is convenient to view the wind speed sensed by the wind turbine as consisting
of one quasi-constant part and one varying part.)The quasi-constant part
represents the mean wind speed over 10 minutes and the varying part the
turbulence. The mean wind speed over the turbine is important, but also the

spatial variation induces important variations in the driving aerodynamical torque.
Most wind models use the concepts of a stochastic process. An introduction on
stochastic processes satisfactory for our purposes is given in Astrém (1970). For

clarity some definitions are listed below.

Some Stochastic Concepts

The concept of spectral density (power spectrum) is important. Unfortunately,
different definitions are used in the literature. The placement of the factor 2r in
the Fourier transform varies. We will use the following definition. Let r(r) be the
covariance function of a continuous time, weakly stationary stochastic process.

Then r(r) and the spectral density $(w) are related as

$l) = 5 J &7 r(r) dr
- . (2.1)
r(r) = [ e ¢(w) dw

The concept of white noise is a useful idealization. White noise has constant
spectral density; i.e. ¢(w) = constant. If ¢(w) = ¢/(2r), we have formally that white
noise has the covariance function r(r) = c§(r), where §(r) is the Dirac delta

function. The parameter c is in the following called the noise intensity.

Mean Wind Speed over the Turbine Area

0 over the turbine be the sum of 00 and AUO, where

UO is the mean of UO' A simple and useful model for AU0 is given by

Let the mean wind speed U

AOO = -AU/T, + o v2[(r T ] w (2.2)

where w is Gaussian white noise with zero mean and the noise intensity ra The

time constant Tw is of the order of 5 - 30 seconds and the standard deviation aw
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of AU, is in the order of 5 - 20% of UO' Model (2.2) gives the spectral density

¢UO of AUO as
T
2 1 W
d{w) = o ¢« = —— (2.3)
uo w s 1+ NZT"Z"

Effects of Spatial Variations

The spatial variation of the wind speed over the turbine area causes nonnegligible
fluctuations in the driving aerodynamical torque. Let the rotational frequency of
the turbine be P. If the turbine has two blades these fluctuations appear in the
spectrum as narrow-band spikes at integer multiples of 2P. The most significant
fluctuation is that at 2P. For a fixed blade angle the amplitude of the 2P variation
in the driving aerodynamical torque typically is 10 - 30% of the rated turbine
torque. There are also spikes at odd integer multiples of P, but they are much
smaller. There are three major sources of these spikes. Firstly, the mean wind
speed varies with altitude (wind profile). Secondly, the tower blocks the airflow
for a rotating blade when it passes the tower. Thirdly, the turbulence contributes
also to these fluctuations. The blades chop across the eddies and experience them

as high frequency fluctuations.

2.2 Basic System Dynamics

In this section simple models are considered in order to understand the
behaviour of horizontal axis wind power plants. Higher order dynamics and the

validity of the simple models are discussed in Sections 2.3 and 2.4.

The dynamics of the drive train with the large turbine and the electrical coupling

to the grid give a wind power plant its basic dynamic characteristics.

The equation of motion for the turbine is
Jt¢ =T - TS (2.4)

" where P is the angular position of the turbine and .lt is the turbine inertia. The

torque T is the driving aerodynamical torque and TS is the reaction torque from

S —

T
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the shaft. The equation of motion for the generator is

J8 =T -T -T
m e

O (2.5)

el

where em is the angular position of the generator rotor and Jg is the rotor
inertia. The torque Tm is the mechanical torque driving.the generator rotor, Te is

the developed electrical torque and Te represents electrical torque losses in the

generator. The drive train from the nlxrbine to the generator usually has a step
up gear. The inertia of the drive train can be neglected. The important features
are the gearing and the torsional compliance. We can consider the shaft between
the gearbox and the generator as being rigid and thereby transform all the
compliance of the drive train to the shaft between the turbine and the gearbox. If

the step up ratio of the gear is Ng then

T = TN (2.6)

and the torsion y of the drive train is

¥ =% -8 /N (2.7)

The compliance of the drive train can be represented by a spring coefficient KS
and a damping coefficient Ds’ which gives

Ts = st + sz (2.8)

The models for the torques Te and Te depend on the generator type and are

discussed further in this section. In prl‘oceeding it is convenient to make some
simple transformations and relate the description to the electrical system. To
facilitate comparisons between different wind power systems and also to other
kinds of power systems, it is convenient to introduce a base TB for the torques
as TB = SB/wO, where SB is the rated apparent power of the generator and Wy is
the synchronous electrical angular frequency. There may be an upgearing
between the mechanical rotational speed of the generator and the electrical
angular frequency, so that the rated generator speed émO = wO/Ne. The gear ratio

Ne is for example p/2 for a synchronous generator with p generator poles.

[
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Introduce
¢e = NgNe¢ 6 = Neem
ta =T/ (NgNe)/TB tm = Tm/Ne/TB
te = Te/Ne/TB tel= Tel/Ne/TB
' o . 2 (2.9)
By = 3/ (NPT ig = g/Ne/Tp
k=K /(NN)¥T d =D /(NN)¥T
s s g e B s s g e B
and
Yo = d)e - 8 (2.10)
then the equations of motion can be written as
Jpbe = T, — koY - 4oy,
(2.11)
Jg9 = ksxe * dsxe - te - tel
The generated power Pe is given by
Pe = wbusteSB (2.12)

where Yhus is the angular frequency of the bus. Some numerical values are
given in Table 2.1. When discussing the electrical torque it is convenient to

introduce the angle & defined as

6=10 -8, (2.13)

where 8 = W

bus bus’

Table 21: Numerical values for some wind power systems.

Wind power jt jg ks dS
system [s%/rad] [s%/rad] [1/rad] [s/rad]
MOD-2 0.083 0.0028 0.065 0.005
WTS-3 0.033 0.0038 0.050 0.020
HTS 75 0.067 0.0035 6.2 *)

*) The value is small, but not known.
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The driving aerodynamical torque T is a nonlinear function of the pitch angle, the
oncoming wind and the turbine speed. Turning of the blades or parts of them
around their longitudinal axes thus modifying the pitch angle makes it possible to
control the power generation. The properties of T are discussed in Section 2.3.
The aerodynamical damping is low, because the blades are designed to give
maximum power and minimum losses. For the WTS-3 fhe aerodynamical damping
coefficient —8ta/ad;e is 0.002 s/rad at 14 m/s and increases to 0.01 s/rad at 26 m/s.
Compare with the damping coefficient dS which is 0.02 s/rad. The aerodynamical

damping of the turbine oscillation will for simplicity be neglected in this section.

Turbine Inertia

Hinrichsen (1981) points out that the per unit turbine inertia jt is very high

because

1. The low energy density of wind leads to a large rotor diameter.
2. The tip speed/wind speed ratio must lie within a narrow range to achieve

good efficiency. This leads to turbine speeds between 15 and 50 rpm.

The per unit inertia jt of a typical wind power plant is about ten times greater

than the per unit inertia of typical hydro or steam turbines.

Synchronous Generator

The MOD-2 and the WTS-3 have a synchronous generator with four poles. The
dynamics of synchronous generators is discussed in Section 2.4. Here a simple
but useful model for the electrical torque will be given. Assume that the
generator is connected to an infinite bus. Linearized models for the electrical

torques are then given by

]

At k AS
e e
(2.14)

Atel

d A
e

where A denotes deviation from a stationary operating point. The assumption of

infinite bus implies that w = w. = constant, which means that A8 = A&. The

bus 0

electrical coupling given by Ate + Ate is equivalent to a mechanical coupling

1
consisting of a spring and a damper.
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Figure 2.1: Bode plot of the transfer function (2.16) from Ata to At for the
WTS-3.

The models (2.11), (2.13) and (2.14) give the characteristic polynomial P(s)
P(s) = j,j s + [§,(d_+d )+j d_]s° + [], (k_+k_)+j k_+d_d_]s>

t'g t'*' s e g s t''s e g S s e

+ [dske+ksde]s + k. k, (2.15)
In the frequency domain Ate, Axe, A\be and A8 are given by

k, (d_s+k_)

Ate(s) = —'—-P(T- Ata(s) (216)

i s+ ds +k
e e

by, (s) = A 26 At_(s) (2.17)
j 524 (ds+de)s + k tk,
b _(s) = £ 20 At_(s) (2.18)
- ds+kS
AB(s) = —~FET At (s) (2.19)
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With k= 2.3 rad "' and d, = 0017 s/rad, the characteristic polynomial (2.15) gives
for the WTS-3 poles in -0.3 £ 1.2i and -4.8 + 24i. The mode associated with the
first pole pair has the lowest natural frequency. The mode will be referenced as
the first torsional mode. Its natural frequency is 1.2 rad/s (= 0.47 P} and its
relative damping is 0.25. The mode is approximately tprbine oscillations against
the electrical system. The mode associated with the pc;le pair -4.8 + 24i will be
referenced as the second torsional mode. Its natural frequency is 25 rad/s
(= 9.5 P) and its relative damping is 0.20. This mode is approximately generator
oscillations against the synchronous power system. Note that more than half of
the damping of the second mode is due to ds’ since the damping of the drive train
and the electrical coupling for this mode work in parallel. The MOD-2 has the
same modes and their natural frequencies are 0.88 rad/s and 26 rad/s

(Hinrichsen and Nolan (1980)).

The first torsional mode is also called the soft shaft mode. This mode is
important. It gives the MOD-2 and the WTS-3 their basic dynamic characteristics.
It is excited by the wind and blade angle changes. It has low damping. However,
the soft shaft also has its merits. Figure 2.1 shows that the large turbine and the
soft shaft act as a low pass filter. Rapid wind variations are prevented fr‘om’, going
through the system into the utility grid. This filtering effect is important. As
pointed out in Section 2.1 the variations in the wind speed over the turbine disc
cause significant fluctuations with frequencies being multiples of 2P (5.2 rad/s).
Figure 2.1 shows that these disturbances are attenuated drastically by the soft
shaft.

The soft shaft also prevents small electrical disturbances like frequency-, voltage-
and impedance fluctuations in the utility grid from influencing the turbine. The
angle 6 is at normal operation typically 20 - 30° and to keep the synchronism it
must be within *90°. For the WTS-3 the torsion Yo of the drive train is ) about
1000° at rated operation. Thus small electrical disturbances do not have the

possibility to build up any significant shaft torques.

For a wind turbine system with a soft shaft, mechanical compliance is much
greater than electrical compliance. This implies that shaft torque amplification
during electrical switching and faults is less severe than in conventional turbine
” generators. Bracing of generator windings, not strength of shafts, is the limitation

during electrical disturbances. The soft shaft also reduces the accuracy required
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Figure 2.2: Root-locus of (2.15) with respect to k [rad_1] for the WTS-3.

for matching voltage, speed and phase angle during synchronization. The study by
Hinrichsen and Nolan (1980) shows that a well designed wind turbine generator
with a soft shaft will perform equally well in single and multi-machine
applications, since turbine and generator are transiently decoupled by the soft

shaft.

The second mode is of great importance for the generator control. It dominates
the response to small and rapid electrical disturbances. In conventional turbine

generators this is generally the lowest mode and the only one considered.

In the models discussed above the inertia of the gearbox is neglected. For the
MOD-2, the WTS-3 and the WTS 75 the per unit inertia of the gearbox is less
than 0.0003 sz/rad. Hinrichsen and Nolan (1980) report that for the MOD-2 there
is a natural mode in which the rotating part of the gearbox oscillates through the
high speed shaft against the generator rotor with 550 rad/s. They state that this

“mode can be neglected because it is hard to excite it. Simulations made by ASEA
(1980) show that this is also the case for the WTS-3.
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Table 2.1 shows that the céupling between the turbine and the generator is 100
times stiffer for the WTS 75 than for the MOD-2 and the WTS-3. The MOD-2 and
the WTS-3 have deliberately designed soft drive trains. The MOD-2 has a quill
shaft. The planetary gearbox of the WTS-3 is not rigidly mounted, but it is
suspended with springs and hydraulic dampers, w‘hich is equivalent to a
torsionally soft shaft. Figure 2.2 shows the root-locus \;vith respect to kS for the
WTS-3. For ks =5 rad_1 the WTS-3 would have poles in -0.14 £ 6.7i and -5 + 45i
which means that there would be no filtering effect for the 2P (5.2 rad/s)

disturbances.

Induction Generator

The WTS 75 wind power system has an induction generator with four poles. An
induction generator influences the first torsional mode in a more complex way
than a synchronous generator. Statically the electrical torque Ate is proportional
to AbS, with the mechanical interpretation of the coupling to the grid being a
damper. However, dynamically the situation is somewhat more complex. All
electrical time constants cannot be neglected. The electrical torque Ate can be
modelled as (linearized around a stationary operating point)

T, At + At = d b (2.20)

The time constant Tte and the static gain dte vary with the operating point and
they are typically halved when produced power is increased from zero to the
rated. They also depend on the generator resistances and inductances. Typical

is

values are Tte =01-02s and dte = 0.1 - 0.4 s/rad. The electrical torque tel

neglected.

The models (2.11) and (2.20) give the characteristic polynomial P(s) (the integrator
giving A8 is excluded)

S 3, . L 2.2
P(s) = §d Tyes + Ligdgt(ig*ig)d Ty Is™ + [5d, +(3 +i ) (d+k T, )]s

+ [(3t+]g)ks+dsdte]s +kd | (2.21)
In the frequency domain Ate, Axe, A\I)e and A8 are given by

d, (d_s+k_)

Tat (s) = == P?s) at_(s) (2.22)
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by (s)

s&p_(s)

shB(s) =

. 2 .,
]thes +]gS +d

P(s)

% At (s)

. 3., 2
]thes +(Jg+dsTte)s +(ds+ksTte+dte)s + k

P(s)

2
d.T s +(Tteks+ds)s + k

P(s)

> At_(s)

= Ata(s)

(2.23)

(2.24)

(2.25)

Figures 2.3 - 2.5 show the root-locus with respect to kS for some pairs of Tte

and dte' The damping coefficient dS of the drive train is set to zero to illustrate

the damping effects of the induction generator. The figures show that the damping

of the pole pair with the greater modulus then becomes very low for large ks.

For a stiff drive train the mode associated with this pole pair is approximately the

oscillation of the generator against the drive train. The damping of the drive train

is thus important for this mode. The natural frequency for a stiff drive train is

high compared to electrical time constant Tte and the coupling to the grid becomes

less important.
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Figure 2.4: Root-locus of (2.21) with respect to k [r‘ad_l] for the WTS 75 when
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The two branches closest to origin in Figures 2.3 - 2.5 show that also when an
induction generator is used there is a basic complex pole pair. Consider now this
basic pole pair. The relative damping is low when the shaft is soft but increases
with increasing ks. The difference between the root-loci in Figures 2.4 and 2.5 is
that they are calculated for different time constants Tte'». The pole pairs lie on the
same arc in both figures. If the shaft is soft they are almost identical. If the shaft
is stiff the pole pair moves moves closer to origin with increasing Tte' The
difference between the root-loci in Figures 2.3 and 2.4 is that they are calculated
for different dte' The figures show that the pole pair moves from origin and the

relative damping decreases with increasing dte'

Other Generator Systems

The generators of the MOD-2, the WTS-3 and the WTS 75 have four poles and
gearboxes are used to step-up the turbine speed. However, the gearbox is an
expensive part, typically amounting to 7 - 10% of the costs for a delivered unit.
Nygren, Grop and Pettersson (1981) suggest a low speed generator with 216
poles. This means that jg is in the magnitude of 10-7 sz/r‘ad. The pole pair of the
first torsional mode is insensitive to this decrease of jg. Then the simple model

gives poles with a modulus greater than 60.

When a synchronous generator or an induction generator is used the turbine
must operate at an almost constant speed and the possibilities of controlling
generated power at the generator are negligible. Pitch angle control is the only
means of controlling generated power for these systems. Thyristors can be used
to control the power output if the difference between the power input at the
turbine and the power output to the grid can be absorbed elsewhere. The large
turbine inertia can be used as an energy storage, if the turbine speed is allowed
to vary. The electrical system must supply the electrical power to the network at
power system frequency, but to obtain this it is not necessary to operate the
turbine with constant speed. A frequency converter can be used to give the
power output from a generator operating with variable speed a constant
frequency. For example, Brown Boveri (Schweickardt and Suchanek (1982)) has
such systems for wind power plants. The generator speed is typically allowed to
vary in the range 4 - 130% of synchronous speed. The system contains a
_synchronous generator, a static frequency converter and a power transformer.
;Raina and Malik (1983) suggest a system with an induction generator, a rectifier

and an inverter. The induction machine is excited by a capacitor across each of
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its terminals. The voltage at the machine terminals are kept constant by a

thyristor controlled inductor.

Another approach is to use a variable frequency exciter and to control this in
such a way that power output from the generator ha§ constant frequency. The
Growian | has a generator of this type. It is a doubly-fed generator and the
generator speed is allowed to vary t15% of synchronous speed. Leonhard (1979)

describes the control scheme in the following way

"Since it is based on the magnitude and direction of a flux vector,
established by direct or indirect measurement, it is called field-oriented
control. The magnitude, frequency and phase of the input currents (in this
case the rotor currents) are generated in such as to give the rotor
MMF-vector a prescribed orientation in relation to the main flux vector:
(which itself is a function of the rotor currents). The longitudinal component
of the rotor current vector changes the terminal voltage, hence the reactive
power, and through a substantial lag the magnitude of the main flux; the
quadrature component of the rotor current vector immediately affects the

torque and active power."

2.3 Aerodynamical Part

A wind turbine is a complex construction with several degrees of mechanical
freedom. The rotation of the turbine around its axis is the main motion. The
rotation of the nacelle and the turbine around the axis of the tower is called
yawing. The blades may or may not move out of plane of rotation depending on
how they are attached to the turbine shaft. To allow pitch control, the blades or

parts of them can be turned around their longitudinal axes.

A survey of rigid body and elastic body motions is given below and the equations
of motion are given in Appendix B.1. The structural dynamics and stability of

wind power plants are thoroughly considered in Stoddard (1978).
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Torque and Thrust

The driving aerodynamical torque T and the thrust F acting on the turbine can be
obtained by applying static and two-dimensional airfoil theory. The driving
aerodynamical torque acting on a blade at the distance s from the rotor axis can,

neglecting profile drag, be expressed as

dT, = 0.5 ¢_s ¢ {U§+s2¢2} (sin @) Cfle+p) ds
(2.26)
« = arctan Ud/ (sh)

where e, is the density of air and c the local chord length. The variable U d
denotes the wind speed at the section of the blade. The pitch angle 3 denotes the
orientation of the cross section with respect to the longitudinal axis of the blade.
It is a function of s, if the blade is twisted. The lift coefficient C, is a function of

L

the angle of attack 6 = o+p. Typically C, increases almost linearly to a maximum

and then there is an abrupt decrease. T}I;is phenomenon is called stalling. The flow
goes from laminar to turbulent flow. Analytical expressions for T and F below
stalling are given in Appendix B.1. Figure 2.6 and Figure 2.7 show T and F for the
WTS-3 as functions of the pitch angle at 3/4 radius (63 / 4) for different speeds U0
of the oncoming wind. The expressions given in Appendix B1 were used to
calculate T and F. The implications for pitch angle control are discussed in

Chapter 5.

The blade servos for pitch angle control can be electric or hydraulic. The WTS-3
has full span pitch control and the servo is designed as a position servo with a
time constant of 0.4 s. However, the servo speed is limited to 4°/s (Svensson and

Ulén (1982)).
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Figure 2.6: The driving aerodynamical torque T of the WTS-3 versus the pitch

angle 63 /4 for different wind speeds U_ at synchronous turbine speed.
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Figure 2.7: The aerodynamical thrust F of the WTS-3 versus the pitch angle 63 /4

for different wind speeds U0 at synchronous turbine speed.
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Orientation

A wind turbine can be designed for upwind or downwind operation. In upwind
operation the rotor must be aligned against the wind by active yaw control. In
downwind operation the free yaw behaviour may be stable. The WTS-3 turbine
was designed for free yaw operation, but it turned out to be unstable. In free
yaw operation it turns out of the wind with a yaw rate of 0.3 - 0.4°/s. The
WTS-3 is now provided with an active yaw mechanism which can turn the nacelle
with a maximum speed of 1.2°/s. The existing methods are deficient in their ability
to predict free yaw behaviour in horizontal axis wind turbines (Thresher (1981)
p. 445). Ganander and Olsson (1983) are currently considering these problems. A

preliminary validation of their model shows good agreement with measured data.

The turbine axis may be tilted out of the horizontal plane. One reason is to make
the turbine disc more orthogonal to the streamlines. Another reason is to
increase the clearance between blades and tower so that the effect of the tower

blockage is minimized. The axis of the WTS 75 is for this reason inclined 10°.

The blades can be attached to the turbine shaft in different ways. Three typical

cases are

1. Hinged hub. The blades are hinged to the main shaft, so that each blade
independently can move out of the plane of rotation.

2. Teeter (pendulum) hub. The blades are rigidly connected to each other and

hinged to the main shaft, so that they can teeter orthogonal to the plane of

rotation.

3. Rigid hub. The blades are rigidly mounted to the main shaft.

The hinged hub and teeter hub give extra degrees of freedom in orientating the
rotor disc in an optimal way. It is important to decrease the loads on the blades
and the hub. The heavy bending moments in the root sections of the blades are
critical. The bending moments due to thrust and centrifugal forces depend on the
angle between the blade and the plane of rotation, called the cone angle.
Fortunately, they are in opposition and there is a specific cone angle for which
they balance one another. For the hinged hub the bending moment at the blade
root is zero. For the teeter and rigid hub the bending moments are substantially
“relieved if the angle between the blades are chosen such that the wind force and

centrifugal force are in balance at the design wind speed.




25

Gravity, wind profile, tower blockage and turbulence generate forces and torques
on the blades that vary considerably over the rotor area. A hinged or teeter hub
allows the blades to yield and thus relieves them of extreme loads resulting from
wind variations over the rotor area. Variations in the driving torque are also

attenuated.

Hinged hubs and teeter hubs can be designed such that the blades also turn along
their longitudinal axes when they move orthogonal to the plane of rotation. This
introduces a local feedback by making the pitch angle vary with the angle to the
plane of rotation. This feature is typically employed to reduce the motions out of
the plane of rotation. It also gives flexibility in blade tuning to avoid possible

structural resonances. See Perkins and Jones (1981).

Elastic motions

The bending motions of the blades have a wide nomenclature The bending motion
out of plane of rotation is called flapping, flapwise, flatwise etc. and the bending in
plane is called lead-lag, chordwise, edgewise etc. Table 2.2 gives some typical
values of their natural frequencies. Sullivan (1981) discusses blade resonance

responses. He makes the following conclusions:

1. High aerodynamical damping prevents resonance in the blade flatwise
direction at all frequencies.

2. 0Odd harmonic excitations up to and including 5 P can cause significant
blade edgewise resonance response; teetering the rotor will reduce this

response substantially.

Table 2.2: Natural frequencies (in P) for some elastic blade and tower modes.

MOD-2 HWTS-3 HWTS 75 Growian I

1st blade flatwise 3.3 2.6 4.2 3.5
1st blade edgewise 6.7 4.7 6.7 4.3
1st blade torsional 20 19 20
1st tower bending,

thrusting direction 1.3 0.85 2.7 1.5

1st tower bending,
side direction 0.90 2.6

L




-

26

Table 2.2 indicates that the blades are torsionally rigid. Friedmann (1976) states

that this is typical for wind turbines.

Sullivan (1981) classifies towers with first bending frequencies over 2P as "stiff"
towers and those with bending frequencies between 1P and 2P as "firm" towers.
He does not discuss towers with bending frequencies below 1P. Hence, Table 2.2

indicates that the tower of the WTS-3 must be considered as "soft".

When designing pitch angle control the elastic modes must be considered if their
natural frequencies are close to the desired crossover frequency. The first tower
bending mode must be considered when designing pitch angle control for the
WTS-3, because the tower is so soft. See Section 5.3. Other elastic blade and
tower modes can be neglected. The crossover frequency can be chosen lower for
a plant with a generator allowing variable turbine speed. However, a plant which
operates at an almost constant speed can be designed so that the rotation does
not cause structural resonances. This is more difficult to obtain if the turbine
speeds can vary considerably. Operation at critical speeds must be avoided.
Turbines with hinged hub or teeter hub can be designed for passive load
alleviation. For a rigid hub active, cyclic pitch control may be of interest. The

elastic modes must then of course be considered.

2.4 Electrical Part

Synchronous Generator

From the modelling point of view all synchronous generators have similar
representations. They differ only with respect to some model parameters.
Modelling of the synchronous generator is covered extensively in the literature
and there are many good textbooks. Elgerd (1971) gives an excellent introdv;iction.
Anderson and Fouad (1977) discuss synchronous machine modelling in detail and
give many references. The excitation systems may however have quite diversified
representations. Excitation systems are modelled by standard representations
developed by IEEE (IEEE Committee Report (1968)). The model for the excitation
system of the WTS-3 is given in Appendix B.7.
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Figure 2.8: The Synchronous Generator

The basic ideas behind the modelling of the synchronous generator will now be
outlined. The equations are given in Appendix B.2. The stator is considered to
have three identical, symmetrically placed, lumped windings a, b and c¢ (See
Figure 2.8). On the rotor there are three windings f, x and g, placed in the
direction of two orthogonal axes d (direct axis) and q (quadrature axis). The
rotor winding f represents the field winding, while windings x and g are fictitious
windings inserted to account for the effects of currents in the iron parts of the
rotor or in damper windings. It is assumed that all self- and mutual inductances
are independent of current (saturation is handled in other ways) and that they
may be represented as constants plus a simple sine variation of the rotor angle 0
or 20. The Kirchhoff's law equations and the equation of motion for the rotor

(the swing equation) constitute the model.

Since the inductances depend on the rotor angle 0, Kirchhoff's equations for this
model contain time-varying parameters. This complication can be avoided by using
Parks transformation (Park (1929)). The idea is to express the stator flux linkages
in the rotating d, q reference system (see Figure 2.8) instead of the normal stator
fixed reference system. The stator windings are replaced with two fictitious
windings which are fixed with respect to the rotor. One winding is chosen to

= coincide with the d-axis and the other with the g-axis.
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The equations describing the rotor motion and the windings give a seventh order
model, which contains both fast modes in the millisecond range and slow modes in
the second range. The linearized model for the generator of the WTS-3 gives at

zero power the following poles

-19.6 £ 313i, -72.8, -2.65 + 21.6i, -16.2, -1.16
and at the rated operating point

-19.6 + 313i, -74.5, -2.23 + 24.6i, -15.9, -0.64

The two fastest poles (-19.6 + 313i) are due to the stator windings. In the
literature they are referenced as the stator dynamics. The poles at -74.5 and -15.9
are due to the damper windings and the pole at -0.64 is due to the field winding.
The time constant of the field winding is normally 10 to 100 times longer than the
time constants of the equivalent damper time constants. The poles at -2.23 + 24.6i
give the basic oscillatory mode of the rotor motion. The zeros of the transfer
function from the mechanical torque Atm to the electrical torque Ate at the rated
operating point are -9.8 % 313i, -51.4, -157 and -0.64. In Section 2.2 the
synchronous generator was modelled by the swing equation with Ate and Atel
given by (2.14). Figure 2.9 shows that this second order model is a good
approximation when studying the influence from the wind on the power

generation.

The stator dynamics and the dynamics of the windings are important when
electrical properties such as the response to faults in the grid are studied. Hwang
and Gilbert (1978) used the seventh order model outlined above when simulating
synchronization of wind power plants against an infinite bus. The implications of
neglecting the stator dynamics are discussed by Olive (1968). This means that

second and higher harmonics in flux linkages and stator currents are neglected.
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Figure 2.9: Bode plot of the transfer function from Atm to Ate for the
synchronous generator of the WTS-3 at the rated operating point. The bold lines

~ are for the seventh order model. The thin lines are for the second order model.
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Induction Generator

The induction generator is also modelled using the Kirchhoff's law equations and
the equation of motion for the rotor (for example Leonhard (1974) or
Nordanlycke, Paulsson and Wredenberg (1974)). The rotor is considered to have
two orthogonal windings. To make the equations time invariant, the stator
quantities are transformed to a synchronous rotating system in the same way as
for the synchronous generator. The rotor quantities are transformed to a

rotating system with the rotational speed 6 - w_. The equations give a sixth order

0
model. The complex pole pair giving the stator dynamics is of the same magnitude
as in the synchronous generator case. Figure 2.10 shows that the first order
model (2.20) is a good approximation when studying the influence from the wind

on the power generation.

Loss of Electrical Load

Electrical faults may change the dynamic behaviour drastically. If the load is lost
this corresponds to Te = 0. For the WTS-3 the torsion Yo of the drive train is
1000° at rated operation. If the load is lost, the untwisting of this spring between
the turbine and the generator will accelerate the rotor of the generator. The
behaviour can be estimated by the model (2.11). If damping is neglected the power

angle & can be estimated by
5(t) - &(0) = 1000°-(1 -~ cos 3.8-t) (2.27)

For example §(0.1) - §(0) = 75°. A rigorous calculation using the simulation model
in Appendix B shows that synchronism is upset if the load is lost more than

0.16 s. This is also a typical value for conventional turbine generators.

If the synchronous generator is connected and the bus voltage is greater than
zero during the fault, it is possible to increase the electrical torque by increasing
the excitation voltage. The synchronism can be maintained, if the excitation \}oltage
can be increased so much that the electrical torque can be restored in steady
state. The dynamics of the excitation system can be made sufficiently fast.
However, it is another question whether it is a good practice to deliver power to

the grid when the bus voltage is low.
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Figure 2.10: Bode plot of the transfer function from Ad [rad/s] to At, for a
typical induction generator. The bold lines are for the sixth order model. The thin

- lines are for the first order model (2.20).
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Figure 2.11: Simulated turbine speed response of the WTS-3 to a loss of load for
different emergency pitch rates Bem' The wind speed is constant 14 m/s and the
system is operating in stationarity generating 3 MW when the generator is

disconnected at the time 1 s and the emergency system is activated.

It is not possible to prevent loss of synchronism during electrical faults by
controlling the pitch angle even if the shaft is stiff. Hau (1982) reports that the
Growian I has received battery storage units weighing 2.5-103kg in order to fulfil
the requirement of bridging grid interruptions of up to 20 s. For the WTS-3, the
blade angle must be changed more than ten degrees to obtain zero driving
aerodynamical torque at rated wind speed. Figure 2.11 shows simulated turbine
rotor overspeed of the WTS-3 at loss of load for different emergency pitch rates.

The simulation model described in Appendix B was used.
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2.5 Models for Design of Pitch Angle Control

When modelling it is important to know the purpose of the model. Here we will
discuss models for design of pitch angle control. Modelling and control design are
normally an iterative procedure. Control objectives‘and control design are
discussed in Chapter 5. A basic objective of the pitch angle control is to

compensate for variations in the wind.

In Section 2.2 it was found that horizontal axis wind turbines with synchronous
generators or induction generators have similar basic dynamics. The transfer
function from the aerodynamical torque Ata to the electrical torque Ate has two
complex pole pairs and a zero at —ks/ds. The first torsional mode is important
when designing pitch angle control. This mode is excited by the wind and by the
blade angle changes. It acts as a low pass filter and prevents rapid disturbances
in the turbine from going through the system into the utility grid. It has low
damping (at least when a synchronous generator is used). Consequently, the mode
indicates the crossover frequency needed for piich angle control which should
compensate for wvariations in generated power. It is not reasonable to chose the
crossover frequency much higher than the natural frequency of the ’mode.
Inspection of (2.16) and (2.22) shows that in the frequency range of interest for

pitch angle control the relation between Ata and Ate can be approximated by

dss + ks
Ate(s) = Ata(s) (2.28)

2
pzs + pis + ks

where

2 2
p2=ks/(a + w)

Py = ~20p,

and o % iw is the pole pair associated with the first torsional mode. The static
gain, the zero at —kS/ds and the pole pair at ¢ % iw are preserved. The second
pole pair is neglected because of the frequency range involved. Inspection of
(2.17) and (2.23) shows that in the same frequency range the relation between At

and Axe can be approximated by

" hy(s) = ! At_(s) (2.29)

5
Pps  *+ Pys * kg

(s
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Thus in the time domain we have
pzAxe + p1Axe + ksAxe = Ata (2.30)

At = d Ay + k Ay (2.31)

Design of compensation for variations in the mean wind speed over the turbine
disc results for the MOD-2, the WTS-3 and the WTS 75 in a crossover frequency
of 2 - 3 rad/s for the pitch angle control. For the MOD-2 and the WTS-3 the
pitch angle control must also provide damping of the first torsional mode. For
- these systems the soft shaft attenuates the 2P, 4P, 6P and 8P variations in the
aerodynamical torque before they appear as shaft and electrical torques. The
turbines are designed to withstand these variations in the aerodynamical torque
and the pitch angle control is supposed to neglect the variations. The first
torsional mode of the WTS 75 need not be damped, but the WTS-75 has no
filtering effect for the 2P variations. Today the large 2P variations in the
electrical power are accepted, but the plant is prepared for active cyclic pitch
control. Compensation of the 2P disturbances means that the pitch angle control

must have a higher crossover frequency.

When the electrical system allows the turbine to operate at variable speed and the
power output can be controlled at the electrical system, the requirements on the
blade angle control to respond to changing wind conditions may be lowered
considerably. By allowing the turbine to perform limited speed excursions
transient wind power is absorbed by the large turbine as kinetic energy. It is
possible to keep the turbine speed variations with a high probability within 10%
using a pitch angle control having a crossover frequency of less than 1 rad/s.

The generator dynamics is then unimportant for pitch angle control.

When structural dynamics must be considered in the design éimple
inertia-stiffness models can be used. Model (2.39) below for tower bendings is an

example.
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The WTS-3

For convenience models for design of pitch angle control for the WTS-3 are are
listed below. These models are compared with models identified from measured
data from the WTS-3 in Chapter 4. The discussion of pitch angle control in
Section 5.3 are for simplicity first specialized to the WTS-3. The dynamics from
the aerodynamical torque to generated power is as we found above similar for

systems having synchronous generators or induction generators.

The torsional mode of the WTS-3 has a simple physical interpretation as the
oscillation of the turbine against the electrical system. Inspection of (2.17) and
(2.18) shows that Anl’e R~ A{(e. Another interpretation is that the dynamics of the

generator can be neglected. Hence P, = j, and Py = ds' Consequently, if all

t
quantities are reduced to the turbine axis, a model is given by

J A + DAY + K Ay = AT (2.33)
AP. = ¥y (D Ay + K_AY) (2.34)
A = Ay (2.35)

where J’O is the synchronous turbine speed and PE is the generated electrical
power. In this approximation the variations in the shaft torque are proportional

to the variations in the generated power.

The aerodynamical torque T and the aerodynamical thrust F are nonlinear
functions of the pitch angle B, the mean speed UO over the rotor disc of the

oncoming wind, 11) and z.. Expressions for T and F are given in Appendix B.1. The

T
linearized expressions for AT and AF are written as

AT

To 88 + Ty AUy + Ty &) + T Az (2.36)

Fy 4B + Fy AUy + F; A + F, Az

AF B 0 b

I (2.37)

The dynamics of the blade servo must also be included. The blade servo of the
WTS-3 is modelled by a linear, first order system. Let Br be the control input,

then

-

D
IA
D

B = (Br - l3)/Tbs’ rgmin s max (2.38)
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The first mode of the tower bendings can be modelled by

Mizp = F - Dpzo - Kpz, (2.39)

where zy is the displacement of the nacelle in the direction perpendicular to the
rotor disc and F is the aerodynamical thrust acting on the turbine in this
direction. The mass MT‘ the spring coefficient KT and the damping coefficient DT
are chosen such that the model gives correct static displacement, natural
frequency and damping. The models (2.33) - (2.37) and (2.39) then give the

dynamics from AR and AUO to Ay in the frequency domain as

2 2

{(Jts + (D= Ty)s + K_) (Mgs

b + (D= Fy)s + Kp) - T2F¢s} Ay

- Tﬁ{MTsz + (D= Fy + T;Fg/Tg)s + K} 08

2
+ TU{MTS + (Dp- Fy + T;Fy/Ty)s + KT} Av, (2.40)

Relations (2.33) - (2.39) constitute a linear, fifth order system model. The model is
good for design of pitch angle control. The single most important approximation

for this use is the linearization of the expression for the aerodynamical torque
AT.




3. WIND CHARACTERISTICS

The variation of the wind speed as function of space and time is a complex
phenomenon. The wind turbulence gives it a stochastic behaviour. The power
spectrum of horizontal wind speed near ground level ranges over several
decades of frequencies. The spectrum has two major eddy-energy peaks in the
spectrum; one peak occurs at a period of about 4 days, and a second peak occurs
at a period of about 1 minute (van der Hoven (1957)). The former peak is due to
wind speed fluctuations caused by migratory pressure systems of synoptic
weather-map scale. The latter peak is in the micrometeorological range and is a
mechanical and convective type of turbulence. Between the two peaks, a broad
spectral gap is centered at a period ranging from 10 minutes and 1 hour. When
considering blade angle control, it is the high frequency part that is of interest.
The low frequency part gives the mean wind speed. This means that it is

convenient to model a wind speed component at a point X as
U (x.t) = 0 (X) + AU, (X,t) (3.1)

where Ui is the mean value of Ui over typically 10 minutes and AUi is the

turbulence part having zero mean.

The properties of the wind turbulence at a fixed point are discussed in Section 3.1
as an introduction to the discussion in Section 3.2 on how a large turbine

experiences the wind variations. A summary was given in Section 2.1.

3.1 Wind Turbulence at a Fixed Point

Wind turbulence is a complex and not completely understood phenomenon. An
introduction can be found in Lumley and Panofsky (1964). Etkin (1972) gives a nice
summary of basic concepts and relations. Engineering Sciences Data (1974) and

Frost et al (1978) give detailed computational procedures.
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Several analytical expressions for the power spectrum of the horizontal wind
speed at a fixed point are given in the literature. They are typically of the form
K- lwl?¥

$(w) = TNEEAL (3.2)

where K and T depend on the surface roughness, mean wind speed and height
over ground level. Mathematical models and also most spectra obtained from
measurements indicate that there is a range (the inertial subrange) where
¢(w)”m_5/3, which means that in (3.2) o - ¥y = 5/3. Engineering Sciences Data
(1974) recommends the von Karman spectrum. It has « = 2, 3 = 5/6 and ¥y = 0. A
detailed description on how to calculate K and T is given. Also many references
are given. Etkin (1972} uses also the von Karman spectrum. Davenport (1961)
suggests a spectrum with o« = 2, 8 = 4/3 and y = 1. In the Swedish Specification
for the WTS-3 a spectrum with « =1, B =5/3 and y = 0 is given. Frost et al
(1978) and Spera and Richards (1980) use a spectrum with o« =5/3, B =1 and
¥ = 0. Unfortunately, these spectra are not rational and this makes it complicated
to use them for control design. The Dryden spectrum, which has « = 2, 8 = 1 and
¥ = 0, is rational. A stochastic process with the Dryden spectrum can be modelled

by the output of a first order system driven by white noise.

Engineering Sciences Data (1974) states that it is reasonable in many applications
to assume that wind turbulence is a Gaussian process, but in practice it contains
'patches’ of a significantly non-Gaussian nature when larger gusts and longer

lulls occur more frequently than indicated by the Gaussian distribution.

Spectral models are not well-suited for modelling extreme events like large gusts.
Events of this kind can be modelled by discrete gust models. Powell and Connell

(1980) define gusts as

"any series of discrete velocity-time events that can be defined from a

turbulence time series according to some extrinsic criterion.”

For example the extrinsic criterion may be chosen as adjacent crossings of the

mean value and the velocity-time events as the amplitude and duration.

A discrete gust model gives the statistics for the velocity-time events.
" Unfortunately, there is no good and generally accepted discrete gust model

available today. Powell and Connell (1980) review a number of discrete gust

\%




39

models suggested in the literature. Linde (1983) gives short descriptions of the
models and presents analysis of measurements in the vertical plane at different
heights. The findings show that the variations in gust intensity at different heights
and under different conditions are larger than can be expected from available
models. Another result is that the measurements show that positive gusts
generally are more frequent than negative. This anisotropy is a function of
several parameters. Linde thinks that a reasonable explanation is the existence of
well ordered turbulence structures. The measurements also indicate that a gust

extends to less than 60 m in the vertical direction.

3.2 How a Turbine Experiences Wind Variations

Connell (1982) gives both theoretical and experimental evidence that a point on a
rotating wind turbine blade encounters turbulence whose characteristics are quite
different from turbulence encountered at a fixed point. The midfrequency region
is depleted and the removed energy is distributed into the high frequency end of
the spectrum and the spectrum also contains narrow-band spikes of turbulence
energy centered on integer multiples P. An intuitive explanation is that a rotating
point chops across the eddies whereas a small fixed anemometer is totally

immersed in the turbulence eddies.

It is convenient to view the wind variations experienced by the turbine as
consisting of the mean wvalue over the turbine area and of narrow-band
variations at integer multiples of P. There are three major sources of the
variations at the integer multiples of P: the rotational sampling of turbulence

eddies, the wind profile and the tower blockage.

When designing pitch angle control it is reasonable to assume that the rotor disc
is orthogonal to the mean wind direction, which means that it is the wind
variations in the longitudinal direction that are of interest. To simplify the
notation a cylindrical coordinate system (r,p,z) with the origin at the hub center
and the =z-axis parallel with the mean wind direction is introduced. The

longitudinal wind component at the point (r,,z) at time t is denoted by Uz(r,d),z,t).
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Mean Wind over the Turbine Area

Different ways to model the mean wind of an area are suggested in the literature.
Davenport (1977) suggests a nonrational transfer function to account for the

averaging over rectangular walls.

Holley et al (1981) gives a simple model for the mean wind Uo(t) of Uz(r,\p,o,t)
over a rotor disc with the radius R. Let UO be the sum of UO and AUO, where U0
is the mean of UO' Let o be the standard deviation of the turbulence at a fixed
point and let czz(Az) be the covariance between Uz(r,\b,z+Az,t) and Uz(r,\b,z,t).

Introduce the integral scale L defined as

L =o2 é c,,(€) d¢ (3.3)

Intuitively, L. can be interpreted to be the size of typical eddies. Their model for

AUO is then given as

au, = _AUO/Tw + cw\/27 irw/Twi W (3.4)
where w is Gaussian white noise with zero mean and noise intensity ry The time
constant TW is given by '

T, = L/Uo/a* (3.5)

and the standard deviation O of AUO is given by

o, =bya (3.6)

Holley et al (1981) gives a_and b_as functions of the quotient R/L. For R = 0 we
get a = b*= 1 and the point spectrum. The functions a, and b* are close to one

when R/L < 0.1. Thus the point spectrum and the spectrum of AU_ are equal

0
when the eddies are much larger then the disc. For R/L = 1 we get a = b*= 0.5,

which give a spectrum that differ significantly from the point spectrum.

An important issue is the possibilities of measuring UO' From the basic relations
given in Holley et al (1981) for incompressible flow and homogeneous and
isotropic turbulence it is easy to calculate that the covariance between the mean
wind speed Uo(t) over a disc with radius R and the wind speed UZ(O,O,O,t) at the
center of the disc is czz(R)' The von Karman covariance functions imply that for

R/L > 0.5, czz(R)/02< 0.6 (a plot of c,, can be found in for example Frost et al
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(1978)). Such poor correlation implies that it is not possible to obtain

representative measurements of UO using an anemometer.

Rotational Sampling

Holley et al (1981) approximates AU2 at a point in the ‘rotor disc with the polar

coordinates (r,) as

AUz(r,xb,O,t) = AUO(t) + Asz(t) r cos p + AUZy(t) r sin ¥ (3.7)

The uniform terms AUO and the gradient terms AUZx and AUZy are three

uncorrelated processes. The uniform term AU_ is the mean value over the rotor

0
disc and was discussed above. The gradient terms Asz and AUzy are also
modelled by first order systems driven by white noise. The Simnon code for this

model is enclosed in Appendix B.9.

The model (3.7) gives a spectrum for a rotating point which is depleted in the
midfrequency region and has a peak at the frequency of rotation, but does not
reproduce an energy excess at frequencies greater than the frequency of
rotation as Connell's above referenced model (Connell (1982)) has. Connell's model
for the wind spectrum at a rotating point is unfortunately not given in a simple

analytical form.

Wind Profile

Different analytic expressions for the wvariation of the mean speed with the
altitude for an airflow over a horizontal and homogeneous terrain are suggested
in the literature. Shepherd (1978) gives a survey. The influence of ridges and hills
are discussed in Jackson and Hunt (1975) and Bradley (1980). Frost et al (1978)
gives detailed computational procedures intended for fatigue strength analysis or
structural strength analysis under extreme wind shear. Since it is only the wind
profile over the rotor disc that is of interest, it is in many cases reasonable to
assume a linear wind profile when calculating variations in power output or when
designing cyclic pitch control. However, ridges and hills may cause very
nonlinear wind profiles, that must be considered if active cyclic pitch control is

going to be used to alleviate the loads on the blades.
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Tower Blockage

The tower blocks the airflow in the rotor disc. The effect is most significant on
turbines operating downwind of the tower. The wake depends critically on the
aerodynamical properties of the tower. For the WTS-3 Hamilton Standard
calculated a velocity defect of 30% and a wake width of 1.4 times the tower
diameter in the rotor disc. This means that the major part of the driving torque
on a blade is lost as it swings behind the tower. Seidel (1977) reports that the
MOD-0 wind turbine (The ERDA-NASA 100 kW wind turbine near Sandusky, Ohio)
momentarily loses more than 60% of the rotor torque as a blade swings behind
the tower. For the WTS-75, whose turbine operates upwind of the tower, the

velocity defect is about 6%.

Let the variable TTB denote the defect in the aerodynamical torque caused by the
tower. For a turbine with two blades the disturbance occurs with a frequency of
2P. Assume that the turbine is influenced by the tower blockage when for some

integer m
—xf/2 + 2mm < 2 < of2 + 2mm

and that otherwise TTB(II)) = 0. Fourier analysis gives the amplitudes of the
harmonics as
5 of 2
A =2 [T _(b) cos (n-2p) dp (3.8)
n s B
~af2
The disturbance is of short duration, because a blade is in the wake only a few
per cent of the time. This means that at least 3 - 4 of the first harmonics have

amplitudes of the same magnitude.

If we for the WTS-3 translate the estimation of the wake width which is 1.4 times
the tower diameter to o = 10° and assume that a blade loses all driving torque in
the wake, we get that A1 = 5% of the mean aerodynamical torque. The soft shaft

attenuates the disturbance to 0.7% in the electrical power.




4. SYSTEM IDENTIFICATION

Measurements from the WTS-3 are analysed in this chapter. Attention is focused
on dynamics of interest for pitch angle control. Different models are identified

and compared with the physical models listed in Section 2.5.

This chapter is organized as follows. The measurements are presented in
Section 4.1. The interactive program package Idpac (Wieslander (1980a)) was used
to analyse the data. The measured data are sampled and Idpac's identification
procedures give discrete time input/output models. The physical models are
continuous time models. The transformation of the physical models to discrete
time models is discussed in Section 4.2. The identification of models for different
parts starts with the servo dynamics in Section 4.3 and with the relation between
turbine speed and generated power in Section 4.4. The wind speed does not enter
as a direct source of the variations in the outputs of these models. This is,
however, the case when we want to identify the behaviour from the blade angle
to the generated power. The wind measurements are analysed in Section 4.5. The
behaviour from the blade angle and the wind speed to the generated power is
then identified in Section 4.6. The 2P variations in the generated power are

investigated in Section 4.7. Finally, the results are summarized in Section 4.8.

4.1 Measurements

Three measurement series from the WTS-3 recorded on the 11th October 1983
are used:

Series 1. at 11:05, 240 seconds long, 24 000 data points

Series 2. at 12:52, 240 seconds long, 24 000 data points

Series 3. at 13:04, 210 seconds long, 21 000 data points
The measurements were filtered with a sixth order Bessel filter having a cut-off
frequency of 25 Hz (157 rad/s). The filtered signals were then sampled with
100 Hz (628 rad/s). One difficulty is that the system may be poorly identifiable,
_ because the data were collected when the process was in closed loop control. The
power reference of the controller was switched between 2 MW and 3 MW

according to a PRBS-sequence to improve the identifiability.
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Figure 4.1: Measurements from series 3. The wind speed measurement is from an

anemometer on the nacelle.
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An example of measurements obtained is shown in Figure 4.1,

The measurements are analysed in Sections 4.3 - 46 for the purpose of
identifying the plant dynamics of interest for pitch angle control. Besides the plant
dynamics and the wind characteristics, the power spectra of the measurements
must also be considered in the control design, becau;e high spectral densities
above the crossover frequency may cause excessive servo motions if they are

neglected in the control design.

Figure 4.2 shows a power spectrum for the electrical power PE calculated from
measurement series 1. The series was split into blocks containing 2048 data points
each. Discrete Fourier transform with a 4-term Blackman-Harris time window
with a sidelobe level of -74 dB (Harris (1978)) was used to calculate a spectrum
for each of the first ten data blocks. Figure 4.2 shows the mean of these spectra.
The power spectra for the turbine speed ¢ and the servo reference fir shown in
Figures 4.3 and 4.4 were calculated in the same way. The power spectra from the
three different measurement series are very similar.

The power spectra for P_. and 1!) have several peaks. There are large peaks at 2P

(= 5.2 rad/s), 4P, 6P andEBP. These variations are caused by the spatial variation
of the wind speed over the turbine area. See Section 3.2. They must be
considered in the control design to avoid excessive servo motions. The controller
had notch filters at these frequencies so these variations are as seen from
Figure 4.4 suppressed in the servo reference. There are also peaks at odd integer
multiples of P, but they are much smaller. The variations at odd integer multiples
of P are smaller, because the turbine has two blades. These variations are not
suppressed in the servo reference and they make the servo reference look noisy.

The 2P variations in the electrical power are investigated further in Section 4.7.

If the generator inertia is included in the physical models, the calculatic;ns in
Section 2.2 show that there is a torsional mode having a natural frequency of
about 25 rad/s. This mode is a possible explanation for the peak at 8P (21 rad/s)
being wider than those at 4P and 6P.
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Figure 4.2: Power spectrum for the electrical power PE [MW] from series 1.
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Figure 4.3: Power spectrum for the turbine speed { [rad/s] from series 1.
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Figure 4.4: Power spectrum for the servo reference 3 [rad] from series 1.

4.2 Transformation to Discrete Time Input/Output Models

Idpac's identification procedures give discrete time input/output models on the

form

-1 -1 -1
A{q ")y(t) = B(a )u(t) + XC(q )e(t) (4.1)
where y is the output, u is the input of the system, e is discrete time, white noise
with zero mean and variance one and q-1 is the delay operator, q_ix(t) = x(t-h},
with h being the time between two sampling instances. The polynomials A, B and C

are defined as

Alqg ) =1 +aq +...+a.q (4.2)
-1 -1 —nb
B(q ') =by +bqa + *+b,q (4.3)
claly =1 +c,qt+ +c_qm¢ (4.4)
. cte .

The model may be extended to have several inputs.
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Since the physical models presented in Section 2.5 are continuous time models,
they must be transformed to discrete time input/output models to compare with

the experimental data. The physical models can be written as

x =Fx + Gu + v (4.5)

Hx + Du : (4.6)

Y

with F, G, H and D being constant matrices and v being multivariable, continuous
time, white noise with zero mean and the noise intensity Ri' A discrete time
model with sampling interval h is then given by

h

x(t+h) = dx(t) + J e ("Slgu(tes)ds + v(t) (4.7)
0

y(t) = Hx(t) + Du(t) (4.8)

with

$=eh (4.9)

and v being multivariable discrete time, white noise with zero mean and the

variance

Fh-s)p [oF (h=3))Tys (4.10)

€ 1

= IR
Puh

|
O o

To calculate the transfer function AC/A from e to y a spectral factorization must

be performed. If we like, we can introduce white measurement noise e with

~

variance R2 and uncorrelated with v;

~

v(t) = Hx(t) + Du(t) + e(t‘) (4.11)

Let P be a symmetric, nonnegative definite solution to the discrete time, algebraic

Riccati equation

P = aP3 + R, - SPH! (HPH' + R2)_1HP®T (4.12)

Introduce K defined as

T T

K = OPH (HPH + R -1

) (4.13)

and let In be an nxn unity matrix, where n is the dimension of the mairix F, then
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-1

1+ H(al_ - )7'K A(a”) = g Mdet(al, - @) (4.14)

z
=
S
1]

n_= n and
a

1/2

A= (HPH' + R (4.15)

2)

To calculate the transfer function B/A from u to y we must evaluate the integral
on the right side of (4.7). This requires knowledge of the shape of u between the
sampling instances. If we can choose the representation for u, it is convenient to
let it be constant between the sampling instances. This is typically the case when
u is an output from a digital controller. However, in our case the inputs are
analog signals. If the sampling frequency is sufficiently high it is reasonable to
assume that u varies linearly between sampling instances. However, we must not
choose too high a sampling frequency, since it gives an estimation problem which
is badly conditioned numerically. If p is a pole of the continuous time model then
eph is a pole of the discrete time model. If h is small compared to the time
constants of the system, the discrete time model, thus has its poles close to one,
and the calculation of the time constants of the continuous time model is
ill-conditioned. It is possible to estimate the parameters directly from discrete time
measurements. See Astrém and Killstrém (1976). However, this approach requires
a much greater effort, both in form of development of software and computing

time.

Let t be a sampling instance. Assume that u varies between the sampling instances
as
u(t+s) = u(t) + a-s/h-(u(t+h)-u(t)) for 0 < s < h (4.16)

where o = 0 gives an u that is constant between the sampling instances and o« = 1
gives an u that is continuous and varies linearly between the sampling instances.

Under this assumption we get

x(t+h) = @x(t) + Tu(t) + of, (u(t+h)-u(t)) + v(t) (4.17)
with

h
r o= [ (B8l g (4.18)
- 0




50

eF(h—s)

r s G ds (4.19)

O~

=1
1~ h

The transfer function B/A from u to y becomes

-1

BlA ) - p+ H(qL - &)1 (T + oT, (a-1)) (4.20)
-1 n 1

Alg ")

with n,=n =n. In the case D = 0 and « = O there is no direct term (b0 = 0).

4.3 Blade Servo

Sampling of the servo model (2.38) according to Section 4.2 gives

-1 1

(1 - aq 1)a8 = ((1-a)a™" + «(1+(1-a)/1n a)(1-q~ )]A|3r (4.21)

where a = exp(—h/Tbs).

For each measurement series the mean value of Br was subtracted from ﬁr giving
Aﬁr. The blade angle AR was calculated in the same way. The signals A[Sr and Ap
were filtered with a second order Butterworth filter having the cut-off frequency
10 rad/s. The signals were then resampled with h = 0.1 s. Since both Aﬁr and A
were filtered with the same filter, the transfer function between them remains
unchanged. The filtering does of course modify the importance of the behaviour
at different frequencies when estimating the models. The ML-procedure and
Idpac's evaluating procedures suggest that the servo dynamics can be modelled by

(2.38) with T, = 0.65 * 0.05 s. The model error, which is the difference between

bs
measured output and model output, shows that this model is good. For o = 0 as

well as for o =1 the model error of (4.21) with Ty = 065 is for all three

measurement series less than 0.2° and its standard deviation is 0.06°, The ‘shape
of Aﬁr between the sampling points turned out to be unimportant, because h is

small compared to T, . A typical result is illustrated in Figure 4.5.

bs
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4.4 Turbine Speed and Electrical Power

The relations (2.34) - (2.35) imply that
APL = ¥y (DAY + K Ap) . (4.22)

To get some insight into the validity of the relation (4.22) the coherence between
turbine speed and electrical power was determined. Figure 4.6 shows that the

coherence is good in the frequency range 0.5 - 5 rad/s.

Low coherence is caused by nonlinearities or other input sources. The
quantization in the turbine speed measurements is a significant nonlinearity. The
quantization unit is 0.0016 rad/s and the difference between minimum and
maximum turbine speed for these three measurement series is less than
0.05 rad/s. This implies that the turbine speed measurement is quantized into only
30 different values. The resolution in the power measurements is better. The
quantization is 0.0025 MW and the variation was 1 MW implying over 300

different values. Low resolution in the turbine speed measurements is a probable

1.0

0.8 =

0.6 =

0.4 —

0.2 =

0 T | 7 T | T T I
0.1 1.0 10.0 rad/s

Figure 4.6: The coherence between lb and PE for measurement series 1.
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reason for the poor correlation at high frequencies. Furthermore, Figure 4.3
shows that the spectrum of 4» has a peak at 12 - 13 rad/s, but the spectrum of PE
has no such peak. No explanation to this has been found. Artefacts in the

measurement device for the turbine speed may be an explanation.

When deriving relation (4.22) it was assumed that Alb = A*} and hence that
Ay = Ay. This assumption is violated if the bus frequency varies. Low frequency
variations in the bus frequency may cause a significant difference between Ay
and Av. This is one possible explanation for the poor coherence between turbine
speed and electrical power below 0.5 rad/s. If the bus frequency is assumed to be
constant, the relation (4.22) indicates that the spectral density of AII) should be
small for low frequencies. Low frequency measurement disturbances when
measuring the turbine speed have then large impact on the spectral properties
for low frequencies and these disturbances are thus another possible explanation

for the poor coherence below 0.5 rad/s.

The drive train is equipped with hydraulic dampers. Measurements made by the
manufacturers show that hydraulic dampers have a pure quadratic characteristic
with no linear term up to 0.03 rad/s. Above 0.03 rad/s the hydraulic dampers
give a constant torque. For all three measurements series the deviation from
mean turbine speed is less than 0.03 rad/s. This suggests an extension of the
model (4.22) to

AP = b (D Ab + D_, 1818 + K_AY) (4.23)

If A, APIAPI and A} are viewed as inputs and AP_ as output, the parameters

E
can be estimated by a least square fit. However, the values for Ay are not
available, but have to be calculated from A\i:. If it is assumed that A\i: varies

linearly between the sampling instances we get
AP (nh)/$,= D_&b(nh) + D_, |ab(nh) |a}(nh)

n-1

+ K h{ Y Mb(ih) + (8)(nh)-29(0))/2} (4.24)
i=0
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Guided by the coherence, the measured AII) and APE were processed in the
following way: First they were low pass filtered with a second order Butterworth
filter with the cut-off frequency 5 rad/s and resampled with h = 0.1s. The
resampled signals were then high pass filtered with a second order Butterworth
filter with the cut-off frequency 0.5 rad/s. A least square fit to the model (4.24)
gave the following parameter estimates Ks = 9.4 +0.2 MNm/rad, Ds = 43 0.3
MNms/rad and D$2 =~ 0. Figure 4.7 shows a typical result of the identification.
The model error in the electrical power of this model is for all three
measurement series less than 0.08 MW and its standard deviation is 0.025 MW.
The high pass filtering was necessary in order to obtain a good result. The model
error of the above identified model has low frequency (<0.2 rad/s) components
giving model errors of 0.5 MW, if the measured turbine speed and electrical
power are used without being high pass filtered. Identification using signals
without high pass filtering gives Ks = 2.2 MNm/rad and the same Ds and DSz as

above. The standard deviation of the model error is 0.13 MW.

The identification indicates that there are other sources of damping than the
hydraulic dampers that are important for small oscillations. If the linear damping
is eliminated from the model by setting Ds to zero, identification gives the same

value for K_ and D, = 460 * 50 MNm(s/rad)z. The given value for the hydraulic

2
dampers is 488 MNm(s/rad)Z. This model gives a poorer fit to the data than the
linear model. The standard deviation of the model error in the electrical power is

0.034 MW.

Let us return to the linear model (4.22). We can view either Ay or APE as input
and use ML-identification. It turns out that it is not possible to improve the
system model by increasing the model order. It is only the noise model that is
improved. Errors in the observations of the turbine speed and the electrical
power are a basic problem. When using ML-identification it is assumed that the
inputs are the true ones. The effects of errors in the inputs when estimating
model parameters are discussed in Kendall and Stuart (1961). Nothing more can be
done without a priori knowledge about the measurement noises. In summary, the
relation (4.22) is at least good in the frequency range 0.5 - 5 rad/s, which is an

important frequency range for pitch angle control.
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Figure 4.7: Measurements from series 3 and the model error of the model (4.24)
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low pass filtered with a second order Butterworth filter with the cut-off
frequency 5 rad/s and high pass filtered with a second order Butterworth filter

with the cut-off frequency 0.5 rad/s.
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4.5 Wind Speed

The unavailability of representative wind speed measurements causes many
problems. There is an anemometer on the nacelle. A few hundred meters from
the plant there is a mast with several anemometers. I:.et UN denote the output
from the anemometer on the nacelle and UM the output from the anemometer on
the mast at an altitude of 75 m. The signal UN is very strange. It has dips down
to 8 - 10 m/s with a duration of about one second. See Figure 4.1. The signal UM
has no such dips. The plant probably induces local wind disturbances so that the

anemometer on the nacelle gives bad measurements.

Measurement series 3 was used in the following, since it had the highest mean
wind speed (> 16 m/s). The mean wind speed of series 1 is about 14 m/s.
Measurement series 2 was collected just before measurement series 3. The wind
dropped, however, to 11 - 13 m/s for a minute, while it was between 14 - 18 m/s

for the rest of the tithe when series 2 was collected.

Measurement series 3 has the mean values m(U

16.7 m/s and the standard deviations o{U

N) = 16.3 m/s and m(UM) =
N) = 207 m/s and a(UM) = 0.60 m/s.
From AUM (sampling frequency 2 Hz) the ML-procedure gave the first order

model

Oy, = -AUL/Ty, + o(Uy) v2[(r T, v (4.25)

with TM = 5 + 1 s, where v is white noise with zero mean and noise intensity r,
The model (3.4) can now be used to calculate estimates of the parameters in the

wind model (2.2) for the mean wind speed AU. over the turbine disc. We get

0]
L =84m, a* = 0.63 and b* = 0.73, which gives the time constant Tw = 79 s and

standard deviation o, = 0.44 m/s.

The integral scale L indicates that a typical eddy is of the same size as the rotor
disc. In Section 3.2 it was pointed out that the correlation between the wind speed
at the center of the disc and the mean value over the disc is about 0.6 when the
eddies and the rotor disc are of the same size. This is another reason to why it

is difficult to get representative measurements.
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4.6 From Blade Servo and Wind To Electrical Power

We will now consider the behaviour from the blade servo and the wind speed to
the electrical power. Consider first the models (2.33) - (2.39). They indicate as
seen from (2.40) that the elasticity of the tower introduces a complex pole pair in
the transfer function from Afir to APE. According to Table 2.2 the natural
frequency of the tower bendings is 2.2 rad/s. However, it turned out that the
effect of the tower bendings could not be detected in the available measurements
of Br and PE
Furthermore, the models (2.34) and (2.40) indicate that the transfer functions
from Aﬁr and AU

. The controller was designed so as not to excite the tower bendings.

0 to APE have one one complex zero pair that lies close to the
pole pair associated with the tower bendings. This indicates poor observability of
the tower bendings in the electrical power. Consequently, it is not surprising that
the pole pair associated with the tower bendings could not be detected by the
identification procedure. To simplify further use of the physical models the tower

bendings are neglected in the rest of this section.

The values in Table 4.1 represent our a priori knowledge of the system. The

derivatives of the aerodynamical torques depend on the wind speed. They are

calculated under the assumption that the mean wind speed L_IO is 16.7 m/s and that -

the generated power P_. is 25 MW. The uncertainties in the calculations are

E

indicated in the following. An increase of U, with 1 m/s gives an increase of 10%

0
in Tﬁ' and an increase of 5% in TU’ An increase of PE with 0.6 MW gives a

decrease of 5% in T, and an increase of 4% in TU.

B

Table 4.1: Numerical values used in calculations with the physical models.

K, 7.7-10° Nm/rad D_ 3.0-10° Nms/rad
6 2
Jt 5.1-10 kgm Tbs 0.4 s
o 0.44 m/s T 7.9 s
W W
'I'B 9.8-10° Nm/rad Ty 2.1-10° Ns
T‘l’ -6.0-10° Nms/rad

et
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If the sampling frequency was chosen to 10 Hz when identifying a model with the
output APE and the inputs Aﬁr and AUN, the ML-procedure mainly attempted to
model the noise. Models for the 2P, 8P, 4P and 6P variations were obtained with
increasing model order. Idpac's ML-procedure minimizes the one-step prediction
error, which means that the noise characteristics are -more important than the

system dynamics for short sampling periods.

To elirﬁinate the 4P, 6P and 8P variations the measured data were filtered with a
second order Butterworth filter with the cut-off frequency 5 rad/s. The signals
were resampled with 2 Hz. If it is assumed that Aﬁr varied linearly between the
sampling instances the time discrete model gives a direct term. This is
unfortunately not identifiable, since the controller also has a direct term. But
fortunately, this is not too serious as shown by Figure 4.8. The discrete time
transfer functions calculated using « = 0 or o = 1 have the same poles, Below
2 rad/s the difference in amplitude is less than 10% and in phase less than 25°
below 2 rad/s.

The ML-procedure and Idpac's test procedures indicate that AUN has low
explanatory significance for variations in the electrical power. The variations are
picked up in the noise model. A fifth order model is obtained if both Aﬁr and
AUN are used as input. A sixth order model is obtained if only ABr is used as
input. The fifth order model is just on the borderline for acceptance. Figure 4.9
shows that the estimated transfer functions from the white noise e to APE are
similar whether AUN is-used as input or not. Figure 4.10 compares the noise
model of the estimated sixth order model with the physical model. Note that the
2P variations are not included in the physical model. It is hard to analyse the
uncertainties in the transfer function. The ML-procedure gives a covariance
matrix for the uncertainties of the parameters. Idpac's RANPA-command provides
a facility which can give us an idea of the uncertainties. It generates a new model
by picking parameters with the random distribution given by the estimated
parameters and their covariance matrix. Figure 4.11 shows the transfer functions
for four such models. The physical noise model lies within the uncertainties of

the estimated noise model.
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Figure 4.8: Bode plots of the transfer functions from ABr[rad] to AP [MW]
calculated from models (2.33) - (2.38) using the parameter values in Table 4.1. The

-~ bold lines are for « = 0 and the thin lines are for o« = 1.
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Figure 4.9: Bode plots of the transfer function from the white noise e to APE

[MW]. The bold lines are for the estimated fifth order model with the inputs Aﬁr
= and AUN. The thin lines are for the estimated sixth order model with the input

AB..

=
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Figure 4.10: Bode plots of the transfer function from the white noise e to APE
[MW]. The bold lines are for the estimated sixth order model with the input AB, .
- The thin lines are for the models (2.2) and (2.33) - (2.38) with the parameter

values in Table 4.1.
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Figure 4.11: Bode plots of the transfer functions from the white noise e to APE
[MW] for the estimated sixth order model and four models picked with the
" random distribution given by the estimated parameters and their covariance

matrix.
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Figure 4.12 shows the Bode plot of the transfer function from Aﬁr to APE for

the estimated sixth order model. The poor explanatory power of AUN is
unfortunate, since it implies a larger statistical uncertainty. It also introduces
numerical problems. The A-polynomial needs a zero close to one to model the
turbulence. To eliminate that pole in the transfer , function from Aﬁr the
B-polynomial must have a zero close to one. This is hard to obtain numerically.
The location of this pole is quite uncertain. It can be eliminated by using
(1~<:1"1)Ar3r as input and (1-q'1)APE

the deterministic part. A fourth order model is then obtained. Figure 4.13 shows

as output when making ML-identification of

the Bode plot of the transfer function of that model. Figure 4.14 illustrates
uncertainties. It is hard to estimate the static gain, because, as the model (2.2)

indicates, the wind has a great amount of energy at low frequencies.

The estimated model has one complex pole pair corresponding to the 2P variations
and one complex pole pair at 0.62 £ 0.52i, which in continuous time corresponds
to -0.4 t 1.4i. Interpretation of this pole as the pole of the soft shaft mode gives
(DS~T‘1)/Jt = 0.85 (s rad)’1 and K_/1, = 2.13 (szrad)"l. In Section 4.4 the values
Ks = 9.4 MNm/rad and DS = 4.3 MNms/rad were estimated from the relation
between turbine speed and electrical power. These values then give
Jt = (5% 0.5)-106 kgmz. A possible explanation to the absence of the servo pole is
that it is hard to detect because the continuous time pole is close to the zero at

-K_/D_.
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Figure 4.12: Bode plots of the transfer function from AR [rad] to AP [MW]. The
bold lines are for the estimated sixth order model with the input A[Sr. The thin
-lines are for the models (2.33) - (2.38) with the parameter values in Table 4.1 and

o« = 0.
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Figure 4.13: Bode plots of the transfer function from AS_ [rad] to AP [MW]. The
bold lines are for the estimated fourth order model. The thin lines are for the

" models (2.33) - (2.38) with the parameter values in Table 4.1 and o = 0.
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Figure 4.14: Bode plots of the transfer functions from AR, [rad] to AP [MW] for
the estimated fourth order model and four models picked with the random

~distribution given by the estimated parameters and their covariance matrix.
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4.7 The 2P Variations in the Generated Power

We will now investigate the properties of the 2P variations in the electrical

power. A possible model for them is

PEzp(t) = A(t) cos(2¢(t)+x(t))

A(t) cos o(t) cos 2¢(t) - A(t) sin «(t) sin 2{(t)

Ci(t) cos 2p(t) + Cz(t) sin 2{(t) (4.26)

where the amplitude A(t) and the phase o(t) in some sense should vary slowly
compared to the frequency 2P. Furthermore, the coordinate system is chosen

such that the blades are in vertical position when ¥ = 0.

We will use a recursive least square method with exponential weighting to
estimate Cl(t) and C2(t). Estimates of A(t) and o(t) are then calculated from Cl(t)
and Cz(t). Let h denote the sampling period. Introduce 6(t) and ¢(t) as

8(t) = [C,(t) ()] (4.27)
o(t) = [cos 2p(t) sin 2¢(t)]T (4.28)
Hence

Pop(t) = 8(t) o(t) (4.29)

An estimate 6(t+h;t) of 8(t+h) based on data available up to time t is now given

by the following expressions

8(t+h;t) = 6(t; t-h) + P(t)e(t)e(t) (4.30)

e(t) = AP_(t) - 8(t; t-h) o(t) (4.31)

[p(eon) - Blhle(t]e(x) P(t-h)

P(t) L
A + o(t) P(t-h)e(t)
= (P(t-h) !+ p(t)e(t) )] (4.32)

If we start with P(IO)_l = 0 and 6(t0+h;t0) = 0 then 9(t0+nh;t0+(n-1)h) minimizes

the criterion
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Figure 4.15: Estimates for measurement series 1. The forgetting factor A was 0.99

and the sampling period h was 0.1 s.

n
1(8) = ¥ a2(n-1) (8P, (t *ih) - 0 o(ty+in)]? (4.33)

i=t

where ) is called the forgetting factor. As indicated by (4.33) it gives a possibility

to discount old data.

A typical example of estimates obtained is given in Figure 4.15. The residual e(t)
given by (4.31) is the difference between APE and 1;E2P' The procedure given
above for calculating ¢ from APE and Y can be viewed as a filter which
attenuates the 2P variations. Since this filter is nonlinear, we cannot describe it
with a transfer function. We can, however, calculate the power spectrum of e(t)
and compare it with the power spectrum of APE. Figure 4.16 shows the power
spectra of &(t) and APE(t). The spectral density is decreased in a small band
around 2P. At 2P it is decreased a factor of ten. Otherwise it is almost
R unchanged. If the forgetting factor ) is 0.98 the spectrum of ¢(t) is almost similar

to that for )\ = 0.99, but the estimates are noisier.




69

-?f N
10724

1073

107"

107° -

10—6 ' ] 1 | I 1 l T
0.1 1 10 rad/s

Figure 4.16: The bold line is the power spectrum of ¢ (in MW) for measurement
series 1 when the forgetting factor is 0.99. The thin line is the power spectrum of

Pe (in MW) for measurement series 1.

-~

The estimated amplitude A lies within 1 - 3% of the rated power. This means that
the 2P variations in the aerodynamical torque is in the range of 10 - 30% of the
rated turbine torque. There are three major sources of the 2P variations in the
aerodynamical torque: the wind profile, the tower blockage and the rotational
sampling of the turbulence eddies. These are discussed in Section 3.2, The 2P
disturbance caused by the tower blockage is there estimated to be 0.7% of rated
power. This disturbance has constant phase in relation to the turbine angular
position. Figure 2.1 indicates that the dynamics from aerodynamical torque to
electrical power introduces a phase lag of 100 - 120°. This combined with the fact
that the tower decreases the flow when 2y mod 27 = 0 imply that o would be
60 - 80° if the tower blockage was the only source for the 2P variations. The
mean value of ; seems to lie in this range, but ; is not constant. The estimated
amplitude /;\ is significantly greater than 0.7%. Rotational sampling of turbulent
- eddies is a very probable explanation to the varying phase and the larger
amplitude. The integral scale L is above estimated to 84 m, which means that

typical' eddies are of the same size as the rotor disc.
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4.8 Summary

The measurements from the WTS-3 showed that the servo model (2.38) is a very
good model in the frequency range up to at least 10 rad/s. The relations
(2.34) - (2.35) are a good model for the relation between the turbine speed and
the electrical power at least in the frequency range 05 - 5 rad/s. This is

sufficient for pitch angle control.

The signal from the anemometer on the nacelle turned out to have poor
explanatory power for the variations in the electrical power. This signal was
quite different from signals from anemometers in a mast a few hundred meters
from the plant. This indicates that the plant induced local disturbances so that the
anemometer on the nacelle gave bad measurements. Identification using the signal
from an anemometer on the mast at an altitude of 75 m gave a model of the type
(2.2).

The lack of representative wind speed measurements complicated the identification
of the dynamics from blade angle to electrical power, since not only blade angle
variations but also wind speed variations is a source of the variations in the
electrical power. The variations in the electrical power caused by wind speed
variations had to be modelled by noise. This increased the statistical uncertainty.
Above the frequency 2P it was not possible to identify the system dynamics due
to the large disturbances at 2P, 4P, 6P and 8P. The wind speed has as indicated
both by (2.2) and the identified model, high spectral density for low frequencies.
This gave an uncertainty in the estimated static gain of 20 - 30%. The dynamics of
the soft shaft was very significant in the identified models. The tower bendings
did not appear in the models, because the controller was designed so as not to
excite the tower. Furthermore, the physical model indicates poor observabi!ity of
the tower bendings in the electrical power. No dynamics was found which could

not be explained by the models (2.33) - (2.38) or the statistical uncertainty.

Estimation of the 2P variations in the electrical power showed that the amplitude
varied between 1 - 3% of mean power. Neither the amplitude nor the phase

relative to the blade position was constant. The conclusion is that aside from the

" disturbance caused by the tower blockage there is a random component due to

the turbulence.




5. CONTROL

A wind turbine system connected to an electrical network is intended to produce
power by transforming wind energy into electrical energy with an optimal overall
efficiency. It is of course desirable that the plant extracts as much energy as
possible, but this does not mean that a strategy that maximizes instantaneous
power gives the best overall economic results. A safe and reliable operation must
be guaranteed to give the system a lifetime of 20 - 30 years with low maintenance
and repair costs. The limited capability of the plant to withstand mechanical stress
must be considered. The operation is also constrained by demands from the
environment. Some demands emanate from the desire to have a stable utility grid,
but there are others like that the acoustic noise should be low. This discussion
indicates that the regulator design may be viewed as a constrained dynamic
optimization problem. It is, however, not obvious how such a problem should be
formulated. First, there are open questions concerning energy prices and fatigue.
Second, there are strong interactions between process design and regulator
design, since the outcome may depend critically on constraints due to the process
design. Third, constrained dynamic optimization problems are often difficult to
solve. It is thus desirable to simplify the problem as much as possible. The

control objectives are discussed further in Section 5.1.

The system has the following control signals: the orientation of the turbine, the
pitch angle and possibly the excitation of the generator. It has many variables that
may be of interest to control: orientation relative to the wind, electrical power,
terminal voltage and mechanical stress in blades and tower. It is an important task
to find out if the control actions have to be coordinated. The control problem is
simplified considerably if the different control actions can be considered to be

independent. The need for coordination is discussed further in Section 5.2. .

Pitch angle control is discussed in Sections 5.3 and 5.4. The case when the system
has a synchronous generator or an induction generator is discussed in
Section 5.3. In this case the turbine must operate at an almost constant speed and
pitch angle control is the only means of controlling generated power. This
imposes severe constraints on the system. Other generator systems, which allow
variable turbine speed and control of the power output at the generator, are

discussed in Section 5.4.

4
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5.1 Control Objectives

Extraction of maximum power means that generated power follows the wind
variations since the plant cannot store significant amounts of energy. Holm and
Lindstrém (1982) have studied installation of wind power in the Swedish utility
grid up to 30% of the total electrical power. They conclude that, on second and
minute timebases, variations of the wind do not cause any frequency control
problems and do not require any extensive increase of the reserve, since the

variations from different plants are not coherent.

Neither do the demands on the voltage cause any significant problems. The
Swedish norm for acceptable voltage variations in a low-voltage system is based
on the sensitivity of the eye to light flickering. The eye is most sensitive to
variations having frequencies between 15 and 20 Hz. In this frequency range the
acceptable variations are as low as 0.3%. At frequencies around 1 Hz the voltage
variation may be 0.8%. For occasional voltage fluctuations such as start-ups a few

times a day, the norm accepts a 2.5% voltage fluctuation.

Strain and stress limit the generated power. As pointed out in Section 2.3 the
bending moments at the root sections of the blades are critical. The shaft torque
are also critical. The supervisory system of the WTS-3 disconnects the generator
and initiates an emergency shutdown, if the generated power exceeds 140% of
rated power. The control system must not excite elastic modes in blades and
tower. Fatigue is another serious problem. The parts of the turbine are typically
supposed to withstand 108 load cycles during the plant lifetime. This is about 100
times more than for ordinary constructions. It is an open question how available

data should be extrapolated and how the load cycle calculations should be done.

It is important to have a safe and reliable system so that breakdowns are avoided.
The demands emanating from the mechanical parts are decisive for pitch angle
control during normal operation. There are of course also basic demands like that
a synchronous generator should remain in synchronism with the grid. A loss of
the synchronism caused directly by the wind should not be possible. A torque in
. the magnitude of twice rated torque is required to pull a synchronous generator
out of synchronism. Such a high power generation cannot be tolerated for safety

reasons. The generator itself constrains the power output. If generated power is
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greater than rated power for longer times, the generator may be overheated and

damaged.

It is a difficult mathematical problem to handle load limits in the regulator design
and to guarantee that they are not exceeded while at the same time maximizing
the power generation. To obtain a good result, a good model for the wind gusts is
required. Such models are not available today. A common control strategy is to
let the controller try to extract maximum power up to a certain level PEO and to
keep the power generation constant above this level. The control must not excite
the elastic modes of the tower and the blades. The level PEO is chosen in such a
way that the controller can keep the peak loads inside the design limits with a
high probability. It may depend on the weather conditions. Thus the controller
should try to maximize the power generation when the mechanical loads are small
and it should try to achieve a smooth operation for high mechanical loads. This
decreases the risks for fatigue. Furthermore, it gives a design problem that can
be handled satisfactorily using existing control theory. The better the generated
power can be held constant at PEO the closer PEO can be chosen to the design

limits.

A standard technique to ‘'guarantee’ that the limits are not exceeded is to
introduce a supervisor and new ’'fictitious' limits inside the 'real' limits. If one of
these fictitious limits is exceeded, the system should be put in an emergency
mode. In the emergency mode the objective is to avoid excess of the real limits;

for example backup systems may be invoked to provide a safe shutdown.

5.2 Coordination of Control Actions

Both the orientation of the turbine rotor (the yaw control) and the pitch angle of
the blades influence the driving aerodynamical torque. The purposes of the two
controls are, however, different. The yaw control intends to orient the turbine
correctly to achieve high efficiency and to avoid large dynamical loads caused by
cross -winds. The yaw control should eliminate the effects of variations in the
wind direction, not the effects of variations in wind speed. The pitch angle control
should take care of the variations in wind speed experienced by the turbine

rotor. Since the wind speed experienced by the rotor depends on the orientation,
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the pitch angle control can be more effective if the actions of the yaw controller
are known. However, no coordination is necessary, since the yaw drives are

slow.

As found in Section 2.2 the synchronous generators, of the MOD-2 and the
WTS-3 have a second torsional mode at 25 rad/s with low damping. A high
frequency disturbance around 25 rad/s is needed to excite this mode. Due to the
low pass filtering effect of the large turbine and the soft shaft, this mode is
barely influenced by the wind variations or by the blade servo. For the WTS-3
such large and rapid disturbance as the loss of driving torque, when a blade
passes behind the tower, causes only few small oscillations that die out before the
next blade comes into the tower shadow. The second torsional mode may,
however, be excited by the grid and also by the excitation control. Consequently,
the damping and control of this mode is an internal electrical problem. It can be
neglected when designing the pitch blade control. There may be a conflict between
using the excitation system for voltage control and damping of the generator
oscillations. It is probably a good approach to assume that pitch and excitation
control can work independently in normal operation when a synchronous

generator is used.

The situation is somewhat different when a variable speed generator is used. To
obtain maximum power the tip speed/wind speed ratio and the pitch angle should
be constant. This means that the generator should let the turbine speed vary with
the wind speed. However, critical speeds causing structural resonances must be
avoided. As found in Section 2.2 the allowed range for the generator speed
depends on the generator. There are systems which allow the generator speed to
vary in the range 4 - 130% of synchronous speed. For the Growian I the range is
only 85 - 115% of synchronous speed and the possibility of varying the turbine
speed is not intended to be used to maximize the generated power, but the plant
is desired to operate close to synchronous speed. Here, it is natural to let the
pitch angle control try to extract maximum power. The generator control can use
the large inertia to improve the power quality under the constraint that the
generator rotor speed should be kept inside the allowed interval. Above the
power level PEO it is natural to let the pitch angle control keep the turbine speed
constant and let the generator control keep the shaft torque constant. It is also

possible to accept variations in shaft torque and improve the power quality.

1o

L
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5.3 Pitch Angle Control for Constant Speed Plants

In this section pitch angle control for systems with a synchronous generator or
an induction generator is discussed. .
Figure 2.6 indicates that it is not difficult to obtain a good result when trying to
maximize the generated power. The maxima of the aerodynamical torque are
rather flat with respect to the blade angle and the maxima for different wind
speeds are close to each other. It is no use to follow rapid wind variations like
the 2P variations, since compared to possible power gain it gives excessive servo
motions. The control can be based on nonlinear feedback from the generated

power P_ and the pitch angle 3 in the following way. From measured PE (possibly

filtered) F;nd B the wind speed, UO is calculated neglecting the dynamics. From U0
the optimal pitch angle is calculated giving the reference value Br to the servo.
However, it is more difficult to gain the last few per cent of the available power,
since it requires good knowledge of the actual wind and the actual aerodynamical
characteristics of the blades. Furthermore, it is important to have a well-adjusted
blade servo, so that bias does not ruin the result. If the blade angle is increased
too much stalling appears and the situation becomes more complex with
hysteresis. Rasmussen and Pedersen (1982) report that skew wind may cause high

dynamical loads on a stalled turbine.

Figure 2.6 shows that the WTS-3 is able to produce rated power already at about
a wind speed of 13.5 m/s, but the WTS-3 is not allowed to do that until the wind
speed is over 14.2 m/s. Figures 2.6 and 2.7 show that the thrust increases with
the wind speed when generated power is maximized. By not extracting maximum
power, but keeping the thrust below a certain limit, excessive blade loads are

avoided.

Note that it is difficult for pitch angle control to dampen the first torsional mode
when maximizing the power output. The control authority is low, because the
system then operates close to the maximum and there is OT/63 small
Furthermore, the maxima are flat. This means that large servo motions are

needed to dampen the oscillations.

-7
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Above the level PEO the control objective is to keep the power output constant.
One difficulty is that the system is nonlinear. The only important nonlinearity is
that from the pitch angle, the wind speed and turbine speed to the driving
aerodynamical torque. It makes the process gain vary with the wind speed.

Transformations or gain scheduling are common ways to handle such effects.

Linear Quadratic Gaussian (LQG) control theory (for example, see Astrém (1970),
Anderson and Moore (1971) and Kwakernaak and Sivan (1972)) is useful for the
linear design. It makes it possible to estimate the possibilities and limitations of
pitch angle control and it reveals difficulties in a simple way. The separation
theorem is useful. It says that the optimal control strategy can be separated into
two parts: one state estimator, which gives the best estimates of the states from
the observed outputs, and one linear feedback law from the estimated states. This
means that the processing of the measurements and the pitch angle control can be

discussed separately.

The rest of this section is organized as follows. Design of pitch angle control for
the WTS-3 at a given weather condition using LQG control theory is first
discussed in detail. Effects of different plant designs, weather conditions and

nonlinearities are then discussed.

Models

In Section 2.5 it was found that horizontal axis wind turbines with synchronous
generators or induction generators have similar basic behaviour from the

aerodynamical torque T to the electrical torque T.. To simplify the discussion we

E
will first limit discussion to the WTS-3 and assume that the tower is rigid.

The LQG control theory assumes a linear state space model. We will use the
models (2.2) and (2.33) - (2.38) to describe the deviations from the stationary
operating point defined by the mean wind speed UO’ the synchronous turbine

speed ‘LO’ and the desired power level PEO' This linear model can be written as

Ax

A-Ax + B-Aﬁr + Bw-w
(5.1)

ax = (88 AU /100 Ay Ay )T

"~ where the servo reference Aﬁr is the control input and w is the white noise

which is input to the model giving the mean wind speed U0 over the rotor disc.

o1
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Table 5.1: Numerical values used in the design.

: 6
¢B 2.618 rad/s PB 3.0-10° W
: 6
b, 2.618  rad/s P, | 3.0:10° W
I, 5.1-10° kgm? M 2.1-10° kg

6 5
K, 7.7.10° Nm/rad K 9.4.10° N/m
D_ 3.0-10° Nms/rad || Dy 1.1-10% Ns/m
TB 1.0.107 Nm/rad FB 1.8-10° N/rad
T, 2.4.10° Ns Fy 3.0-10% Ns/m
T, -7.6-10° Nms/rad F, -4.5-10% Ns/rad
T. | -2.810° Ns F, | -3.7-10" Ns/m
Too 0.4 s Ug 18 m/s
o 1.8 m/s T 20 s

w w

The possibilities of measuring different quantities and models for measurement

noise are discussed further below.

The interactive program package Synpac (Wieslander (1980b)) was used to carry
out the LQG-design. The linear models for the servo, the turbine, the tower and
the wind were entered in Synpac and connected together to give the total system.
This structured description was useful, because it made it easy to modify parts of
the system.

The design for a mean wind speed U, around 18 m/s will now be discussed.

0]
Unless otherwise stated, the numerical values given in Table 5.1 are used. Using

Sl-units, we get for model (5.1):

25 0 0 0 2.5 0
0 -0.05 0O 0 0 0.0057
A=1| 20 a7-074 15| B=| o |' By 0 (5.2)
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0.01 0.1 1.0 10.0 rad/s

Figure 5.1: Standard deviations o(APE,w;w,oo) [% of PB]. The bold line is for the
open loop system. The thin line is for an open loop system with a rigid drive

train.

The contribution to the standard deviation in y caused by v is denoted as oly.v).
The spectral properties of the disturbances are of a great interest. The
contribution to o(y,v) in the frequency range (wi,wz) is denoted as o{y,v;w1,w2)
and given by

w 1/2
a(y,v,w1 ,wz) = { 2 ({zle,v(w)lz d)v(w) dw } (5.3)
1

where Gy V(s) is the transfer function from v to y and ¢v(w) is the spectral

y

density of v.

The quantity o(APE,w;w,oo) for the open loop system is shown in Figure 5.1. If the
drive train is assumed to be stiff, the model above gives APE = J)OTUAUO. This

case is also shown in Figure 5.1 to illustrate the effect of the soft shaft.
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Loss Function and State Feedback

The LQG theory assumes that the purpose of the control is to minimize a loss
function J that is a quadratic function of the state vector Ax and the control
signal Aﬁr. Since the objective is to keep the power output constant, it is natural
to include APE in the loss function. To avoid excessive servo motions it also of
interest to introduce a weight on the servo speed AQ (=ﬁ) This is the same as
penalizingk ABr_ - AB in the loss function, since AB = (ABr—Aﬁ)/Tbs. The objective
of the pitch angle control will thus be formulated as to minimize the loss function

J defined as

J = E{lim

T-00

-

T
I a®ap% + a5 (a8, - 49)> dt} (5.4)
0

The design parameter qB gives a possibility to get a proper bandwidth and
reasonable servo motions. It gives also a finite control input A[Sr. There is no
reason for penalizing ABr further. It is only the servo reference. The variable q

is a scale factor, which is arbitrarily chosen as 1 (MW)_i.

The optimal control law is given by the state feedback

OB, = - L-Ax (5.5)

Rewrite the loss function (5.4) as
10T T T
J = E{llm T [ ax Q) Ax + 28x°Q A8 + 43,.Q, 08 dt} (5.6)
0 = 0
The feedback gain matrix L then is given by

-1 T
L =q, (SB +Q,) (5.7)

where S is a symmetric nonnegative definite solution to the algebraic Riccati
equation

T -1 T )
A'S + SA +Q - (SB + Q,) Q, (sB + Q,) =0 (5.8)

In the following Lx denotes a feedback law and Lx denotes its feedback gain

matrix. The following feedback gains are obtained for model (51) - (5.2)
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L,=[ t46 5.8 3.85 4.83 ] for qz= 3 rad”
L,={ 0.036 4.60 2.39 2.54 ] for dg= 5 rad
L,=[ 0.379 3.26 1.21 0.954] for qg= 10 r?d—i
L,=[ 0.113 2.62 0.790 0.487 ] for qg= 15 rad ™}
L= [ -0.261 1.73 0.348 0.103 ] for qg= 30 rad ™t

Some properties of these state feedback designs are given in Table 5.2. The
results indicate that the control authority with respect to the variations in UO is
good. The feedback L gives a local proportional servo feedback 11 where 1 1 is the
first element of L. Consider now just the servo in closed loop with this feedback

1,. It has then the time constant Tbs/(i + 11), where T, is as before the time

1 bs
constant of the servo in open loop. This shows that the compensations above do
not imply any excessive dynamical demands and that it is appropriate to use the

simple servo model in the design at least when qﬁ is greater than 5 r‘ad_1

Consider now the total system. Cut the loop after the servo but keep the local
servo feedback. The crossover frequency W, when the loop is cut in this way is
given in Table 5.2. It indicates that the simple turbine model only considering the

soft shaft dynamics is appropriate for pitch angle design.

Table 5.2: Some properties of the closed loop system with different state
feedbacks.

Design
L1 L2 L3 L4 L5
o(Pg.w)[% of Pg] | 0.65 | 0.97 | 1.7 2.4 4.2
a(B.w) [°/s] 1.7 1.5 1.2 1.1 0.85

o(¥,w) [% of b;] | 0.06 |0.08 | 0.13 |0.16 | 0.25

w, [rad/s] 3.2 2.7 2.1 1.8 1.3
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If the elasticity of the tower is taken into account in the design, it is possible to
obtain both a reasonable damping of the tower and practically the same standard
deviations as those for a rigid tower. Before considering the tower bendings in
more detail, the possibilities of measuring or reconstructing the states in the
design model will be discussed, since the difficulties in fneasuring the wind speed

and other quantities influence on the performance more than the tower bendings.

Measurements and Observers

The state feedback requires knowledge of the variables AR, AUO, A{( and Ay.
According to (2.34) the variable Ay can be replaced by a linear combination of
APE and Ay.

Electrical quantities like power and voltage are all easily measured. Note that the
model indicates that in normal on-line operation the shaft torque, the electrical
torque and the electrical power are dynamically equivalent in the frequency
range of interest. Rotational speed at the primary and secondary shafts can also

be measured.

The quality of the control depends also on how well the wind speed AUO is
known and on how well its behaviour can be predicted. In Section 3.2 it was
shown that in some weather conditions the wind speed at a point in the rotor
disc is poorly correlated with the mean wind speed over the rotor disc. The plant
may also itself induce local disturbances so that an anemometer gives bad
measurements. This indicates that an anemometer may be of little use for
feedforward compensation. However, it may be possible to use the wind turbine
itself as wind gauge by measuring other quantities. The reconstruction of the

wind speed from turbine speed and power measurements using Kalman filters will

therefore be considered.

Assume that a linear system is written as

Ax + Bu + v

X
(5.9)
Cx + e

il

y

where u is the control inputs, y is the measured outputs and v and e are
” Gaussian white noise processes with zero means, }'-_'v(t)v(r)T = R16(t-'r),

Ev(t)e(r T, R,.5(t-7) and Ee(t)e(r T, R, &(t-7). Under these assumptions the
12 2
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-~

minimum variance estimate x of x is in stationarity given by the Kalman filter

x = Ax + Bu + K(y - Cx) (5.10)
where the filter gain matrix K is given by

T -1 )

K = (PC +Ry,) R, (5.11)

with P being the largest symmetric nonnegative definite solution to the algebraic

Riccati equation

T T

AP + PA" + R, - (PC et

(et + R,.)T

+ Ry,) R, 1p) =0 (5.12)

The matrix P is the covariance of the prediction error x(t) = x(t) - x(t);
P =E x(t)x(t) .

To apply these Kalman filter equations we will in the following assume that 8 is
known exactly and that PE and 11» are measured with noise. Models of the
measurement noises PEe and \be are needed to proceed. Figures 4.2, 4.3 and 5.1
give some clues. Figure 5.1 shows for the open loop system that due to the soft
shaft, the wind has negligible effect on PE for frequencies above 5’rad/s.
Consider now Figures 4.2 and 4.3 and neglect for the moment the peaks at 2P, 4P,
6P and 8P. If the measurement noises are assumed to be white, the spectral
density (I)PE of the electrical power measurement noise can be estimated by
e = 310" (MW)z/(rad/s) and 7the spectral density (I){be of the rotor speed
measurement noise by (D\I)e = 2110 'rad/s.
As seen from the servo model the pitch angle A3 depends just on ABr. Since AR

is known the servo dynamics can be eliminated and AR can equally be viewed as

the input instead of AB . The model (5.1) can then be reduced to

A% = A -Ax + B,-AB + B W
ay = [op_ /10° ap )T =c ax + e (5.13)
Em m 1 )
- T
| Ax = [ AUy/100 Ay Ay ]

where e is Gaussian white noise with the noise intensity matrix Re. The
- measurement noise e is assumed to be uncorrelated with w. The measurement

noises of the electrical power measurement and the rotor speed measurement are
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assumed to be uncorrelated, which means that Re is assumed to be diagonal with

Re(l,l) = 2Py, and Re(2,2) = 27®: . Three cases will be considered

Ee Ve |
R, = diag( 2107 110™)
R, = diag( 210°% 310°°)
R.5= diag( 2-10'4) (no rotor speed measurement)

In the following Kx denotes an observer and Kx denotes its filter gain matrix.

Model (5.13) is transformed to the form (5.9) if the term B, 1W is exchanged for

1
. T _ .
v and we introduce R1 = BwiBwl’ R127 0 and Rz as given below. The model
gives the following filter gains:
0.212 0.241 0.060 T
Ky = [ 4.75 4.94 0.464 ] for Ry = Rey
T
K 0.204 0.376 0.082 for R. = R
2 | 2.17 2.54 0.256 2 e2
K, = [ 0.396 0.552 0.108 )T for R, = R
3 ) ) ) 2 e3

To investigate these designs consider the closed loop system when using the state
feedback L3 combined with the observer K1i. Compared to the result obtained for
the state feedback L3, when U0
a(PE,w) has doubled to 3.4% of Py Figure 5.2 shows that the controller attenuates

was assumed to be known, the standard deviation

the variations in the electrical power caused by the wind variations up to about
2 rad/s, but above 2 rad/s they are increased. Figure 53 shows that this
increase is not particularly harmful as far as the variations AUO in the mean

wind are concerned.

The standard deviation U(B,w) is 1.3°/s implying only a slight increase compared
to the wvalue for the state feedback L3 shown in Table 5.2. However, the
measurement noise increases the servo motions. The noise intensities assumed in
the design give cr(B,PEe) = 0.48°/s and a(fi,\i» ) = 0.74°/s. The variance
UZ(B,W & Pp & \I:e) is the sum of the variances o (fw), UZ(B,PEe) and az(ﬁ,d)e)

since w and the measurement noises PEe and d)e are assumed to be uncorrelated.

It gives o(fw & PEe& \j)e) = 1.6°/s. Figures 54 and 5.5 show the transfer
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10 —

0.01 0.1 1.0 10.0 rad/s

-50 -

-100 -

0.01 0.1 1.0 10.0 rad/s

- Figure 5.2: Bode plots of the transfer function from AU, [m/s] to AP [% of PB].

The bold lines are for the closed loop system when L3 and K1 are used. The thin

- lines are for the open loop system.
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0.01 0.1 1.0 10.0 rad/s

Figure 5.3: Standard deviations a(PE,w;w,oo) [% of PB]. The bold line is for the
closed loop system when L3 and K1 are used. The thin line is for the open loop

system.

functions from PEe and \i:e to AB. They show that the sensitivity for measurement
noise increases drastically at the natural frequency of the soft shaft. This can be
explained by the following argument. Figure 5.1 shows that the wind variations
AUO for frequencies up to a bit above the natural frequency of the first torsional
mode must be compensated for to obtain good control. To be able to do that it is
important to have good estimates of AUO in this frequency interval. However,
around the natural frequency of the soft shaft there is a considerable increase in

the phase lag from AU. to A} and APE. To minimize the criterion (5.4) the

0
controller must introduce phase lead at the expense of sensitivity to measurement

noise, so that the servo motions increase. The turbine dynamics decreases the

influence of measurement noise on the output PE' The standard deviation
H = o . . . H = o
a(PE,PEe&Ibe) 0.5%. Summation of the variances gives o(PE,w&PEe&\be) 3.5%,

showing that the influence of measurement noise on P_ is negligible.

E
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deg

1 —-100
10 =
1077

. ~-200
1073

I
0.01 0.1 1.0 10.0 rad/s

Figure 5.4: Bode plot of the transfer function from P. [% of PB] to AR [°/s] for

the closed loop system when L3 and K1 are used.

10 deg
~-100

1 -
0.1 —-200

0.01 0.1 1.0 10.0 rad/s

Figure 5.5: Bode plot of the transfer function from ‘Le [% of le] to AR [°/s] for

the closed loop system when L3 and K1 are used.

(V2]
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The 2P Disturbances

Unfortunately, there are large disturbances at 2P (5.2 rad/s) as indicated in
Figures 4.2 and 4.3. These disturbances cannot be neglected in the design.
Figure 5.2 shows that a sinusoidal variation in the electrical power with the
frequency 2P and an amplitude of 1% of PB can for -the open loop system be
viewed as caused by a sinusoidal variation in the wind speed AUO with the
frequency 2P and an amplitude of 0.37 m/s. We will assume that these variations
in the wind speed are independent of those caused by the source w. In
Section 4.7 we found that for the WTS-3 the amplitude of the 2P variations in P

is 1 -3% of P

E
B’ which we thus can view as being caused by 2P variations in the
wind speed with amplitudes of 0.3 - 1.1 m/s. Figure 5.2 shows that the controller
with the feedback L3 and the observer K1 the 2P variations in PE increases with

a factor ®op = 1.7. Figure 5.6 shows that this controller also gives excessive
servo motions. The gain from AU/ to ApB at 2P is 8op = 5.3°/s/(m/s). This means
that the control system forces the servo to oscillate at this frequency with an
amplitude of 0.3 - 1° and a rate of 1.5 - 6°/s. Since the turbine speed varies and

the peaks in the different spectra have finite width, we want more robust

0.1 —

I
0.01 0.1 1.0 10.0 rad/s

Figure 5.6: Bode plot of the transfer function from AU, [m/s] to AB [°/s] for the

closed loop system when L3 and K1 are used.
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measures when evaluating the attempts to eliminate the excessive servo motions.
In the following we will let 8,op represent the largest value of the gain from AUO
to AB in the frequency range 1% around 2P. The variable %op is also redefined

analogously.

The pitch servo is not designed to handle these 2P vax:iations. They are instead
taken care of by the teeter hub and the soft shaft. The control system should not
try to eliminate these variations and more importantly they should not cause
excessive servo motions. Murdoch et al (1983) state that for the MOD-5A (a
6.2 MW system under design by General Electric Co.) the steady state motion limit
on the pitch actuator is 0.2°. Use of notch filters and low pass filters is a
common way to reduce such variations. Low pass filters are not good alternatives
in this case, since the 2P frequency is too close to the desired crossover
frequency of the pitch angle control. The basic notch filter has the transfer

function

52+2§ws+w
NN
Gy(s) =
N 52+2§ws+w
DN

(5.14)

2Z NN

A possible approach is to filter the feedback from AU Ay and Ay so that the

spectral density‘ around 2P is decreased to that level Oassumed in the observer
design. Figures 4.2 and 4.3 show that the spectral densities of PEm and ‘Lm at 2P
are about 100 times higher than those given by white measurement noise with the
noise intensity Re

IG

1 This indicates that we should choose wy = ZJ)O and
N(in)I2 = (gN/gD)2 = 0.01. The desire to give the filter a proper bandwidth
then gives St 0.03 and gD = 0.3. This notch filter will be called N1 in the
following. Figure 5.9 further below compares IGN(iw)l_2~(2-10—4/(27r)) and the
spectral density in Figure 4.2. Some properties of the closed loop system when N1

is used are given in Table 5.3. It shows that O'(PE,W) is greater when N1 is used.

If the loop is cut at A (See Figure 5.7) where we have the largest variations in
the process gain due to the nonlinearities in the aerodynamical torque, we find
that the amplitude margin Am has decreased from 3.6 to 2.5. See Figure 5.8.
Without N1 the loop gain passes -180° at 7 rad/s, but with N1 the loop gain
passes -180° already at 4.2 rad/s. However, the gain of N1 is almost one at
- 4.2 rad/s. We face here the open question of determining how much stability

margin is really needed. As we will find, the nonlinearities are not so simple that
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Table 5.3: Some properties of the closed loop system for different feedbacks and

different observers.

= Figure 5.7: Control Configuration.

Design
L3 L3 L3 L3.| L3 L3
K1 K2 K3 K1 K2 K3
N1 N1 N1
o(Pg.w) [%] 3.4 {3.8 |4.2 |4.4 |47 |5.1
a(B.w) [°/s] 1.3 | 1.3 (1.3 [1.3 [1.3 |1.3
a(B.Pg,) [°/s] 0.48 | 0.75 | 1.1 | 0.40 | 0.61 | 0.90
a(B,¢e) [°/s] 0.74 | 0.67 | - 0.63 | 0.55 | -
a(B,w&pEe&¢e) [°/s] |16 |16 |17 |15 |15 | 1.6
w_ [rad/s] 2.8 |27 |26 |25 |24 |23
A 3.6 [3.3 |29 |25 |22 |20
e, [°] 37 35 34 28 27 26
% 1.68 | 1.66 | 1.50 | 1.08 | 1.07 | 1.06
8p [°/s/(m/s)] 53 | 4.7 | 4.1 | o0.48 | 0.43 | 0.37
w—==f Wind AUO
!
Aﬁr Servo Ak A Turbine
AY AP
-1 > Pee
‘b.e
-(lp I3 ) AUQME)O Observer Aty AP
Ap, Ay Em
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| | I 1 L] —l | L] I n 1
0.01 0.1 1.0 10.0 rad/s
0
deg
-100 =
-200 —
| ] 1 I ] | ] I | ) | § l 1 | ]
0.01 0.1 1.0 10.0 rad/s

Figure 5.8: Bode plot of the loop gain at A. See Figure 5.7. The bold lines are for

the case when L3, K1 and N1 are used. The thin lines are for the same case

“ without N1.
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the circle criterion can be used to establish stability. The possibilities of
increasing the stability margins without deteriorating the disturbance rejection too
much will be investigated in the following. Since the variations at 4P, 6P and 8P
are further away from W, notch filters can be used without any difficulty to

prevent signals at those frequencies to generate servo motions.

One way to handle the 2P variations in the LQG design procedure is to have a
frequency dependent weight on A[Sr - AP and to put a large weight at 2P in the
loss function. This can be done by expanding the design model with a part that
NT A[Sr - AB and by letting the
output y replace Afir - AB in the loss function (5.4). Here we let that part have

has a resonance at 2P and which input is u

the transfer function (5.14). On state space form this can be written as

X.

N1 = “25p¥y Xng ~ On*nz * 2(5y Epluyuy
. (5.15)
2 I i

with

yN = le + uN (5.16)

Expansion of model (5.1) - (5.2) with (5.15) and choosing the state vector as

Ax = [ 8B AUL/100 Ay By x (5.17)

T
N1 *N2 ]

and the parameters in (5.15) as Wy = 2\1')0, SV 0.3 and 5p = 0.03, gives the

following state feedback gains

Lg = [ 0.603 3.78 1.20 0.781 0.775 0.617] for a4 = 10 rad *
L, = [ 0.262 2.07 0.771 0.372 0.853 0.512] for qg = 15 rad”*
= 30 rad”!

Lg = [-0.195 1.88 0.328 0.052 0.935 0.350] for 1

Some properties of the closed loop systems with these feedback laws are given in

Tables 5.4 and 5.5.

Doyle and Stein (1979) have proposed a method for increasing the stability

~ margins in LQG designs. A fictitious noise e_, is added to the control input in the

B

model for observer design. The noise intensity matrix R1 of model (5.13) then

T T . _ - k102
becomes Bwlel + rBBiBl. In the case with R2 = Re1 and rB = 5.10 7 we get
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Table 5.4: Some properties of the closed loop system for different feedbacks and

observers.
Design
L6 L6 L6 L6 -| L3 L3
K1 K3 K4 K5 K6 K7
o(P;,w) [%] 4.2 |50 |53 |58 |4.8 |5.3
a(B.w) [°/s] 1.2 (1.2 |10 |10 1.2 1.0
a(B,PEe) [°/s] 0.44 | 1.0 |[0.41 1.0 | 1.0 | 1.0
a(B.&e) [°/s] 0.70 | - 0.66 | - - -

o(p.wePp &b.) [°/s] | 1.4 | 1.5 | 1.3 | 1.4 | 1.6 |1.5

w, [rad/s] 25 |24 |23 |22 |24 |23
A 3.0 | 2.2 |36 |29 |21 |30
o, [°] 34 31 40 40 32 40
%p 1.09 | 1.08 | 1.06 | 1.06 | 1.09 | 1.10
8,0 /5] (m/s)] 0.62 | 0.47 | 0.36 | 0.34 | 0.53 | 0.66

0.204 0.541 0.0602 T

4~ | 4.71 12.5 0.476

. _ -5 .
The case with RZ = Re3 and r‘B = 510 7 gives

Kg = [ 0.300 1.00 0.113 )7

Another approach to handle the 2P variations in the LQG design procedure is to
view them as measurement disturbances, since they should be neglected by the
controller, and model them as coloured measurement noise when designing the
observer. The measured electrical power APEm can be viewed as the sum of APE,
PE2P and PEe’ where APE represents the part of interest for pitch control, PEZP
the disturbance at 2P and PEe the remaining part. The measured turbine speed

¢2P and \be. Since the 2P

A\bm can similarly be viewed as the sum of A\I),
variations have their origin at the turbine, the linearity and (2.34) - (2.35) give
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Table 5.5: Some properties of the closed loop system for different feedbacks and

observers.
Design

L7 L7 L4 Ls ., | Ls L5

K1 K3 K6 K1 K3 K6
o (Pg,w) [%] 514 |59 |57 |72 |81 |7.8
a(B.w) [°/s] 1.0 | 1.0 1.1 |o0.79 | 0.79 | 0.81
a(B,pEe) [°/s] 0.33 | 0.72 | 0.73 | 0.19 | 0.41 | 0.42
a(B.%,) [°/s] 0.52 | - - 0.30 | - -

o(p,waP &b ) [°/s] | 1.2 [ 1.3 [ 1.3 | 0.82 | 0.89 | 0.91

W, [rad/s] 2.3 2.1 2.2 1.8 1.7 1.8
A 31 |24 |23 [40 |31 |20
o [°] 38 | 36 | 36 | 40 | a8 | a7
o 1.07 | 1.06 | 1.06 | 1.05 | 1.05 | 1.04
g,p [°/5/ (n/s)] 0.48 [ 0.34 | 0.30 | 0.27 | 0.19 | 0.22
Peop = Yo (Pgbop + K bpp) (5.18)

Here we will only consider the case when the rotor speed is not measured. A
gop T Ppe IS the output y,, of (5.15) - (5.16) with Uy
white noise. Figure 5.9 shows the spectral density of PEZP + PEe for the choice

possible model for P being

= Z\LO, St 0.3 and gD = 0.03 and when the white noise u ., has the intensity

w
N
Re3. The model for observer design can be written as

N

[ Ax

= Aybx + By (B8 + eg) + B yew + Bypeyp
6
By = AP [10° = C,-Ax + Dype,n + Pp (5.19)
: T
| ax = [AU/100 By By xyy Xy, )

- Transformation to the form (5.9) gives the following noise intensity matrices:
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0.01 0.1 1.0 100 rad/s

Figure 5.9: The bold line is the spectral density of the output from (5.14) with
wy T 2J>0, SV 0.3 and 5p = 0.03 when the input is white noise with the noise

intensity Re3’ The thin line is the spectral density of the electrical power given in

Figure 4.2.
' T T T
Ry = BuoBup + BppBop + rgBoBy
T
Ry2= BopPop
R, =R. + DD}
L B2 = Re3 ¥ Uoplop

With the above given parameter values and rﬁ = 0 we get the following filter

gains

Kg = [ 0.379 0.639 0.155 0.780 -2.56 ]

With rg = 5107 we get

K, = (0.389 1.12 0.161 0.288 -2.45 |
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In the designs above we have assumed that the 2P variations are caused by a
small-banded stochastic noise. If this assumption is true, Tables 5.3 - 5.5 show
that the desire to avoid excessive servo motions is in conflict with the desire to
keep the power output constant. The model of the 2P variations as small-banded
noise may seem somewhat conservative. A large part of; the disturbance is due to
the tower blockage which is much more 'deterministic’ than the small-banded
noise model indicates. There are, however, also random disturbances like the
effects of rotational sampling. The investigation in Section 4.7 using recursive
LS-estimation was initiated to see if the phase or the amplitude was constant. If
this was true it would be possible to design a better filter to attenuate the 2P
variations in the control output |3r. The investigation in Section 4.7 shows that
neither the phase nor the amplitude is constant. See Figure 4.15. Figure 4.16
shows the effect of the LS-estimator viewed as a filter to attenuate the 2P
variations. The notch filters discussed above decrease further the spectral
density around 2P a factor of 4 - 5 times. Moreover, the LS-estimator needs a
measurement of the turbine position Y or some other kind of synchronization
input to be effective. The 2P variations have a random component and when
trying to attenuate the 2P variation efficiently in the servo reference ﬂr notch
filters appear in some way or other. The designer must balance excessive servo

motions against variations in the shaft torque and the generated electrical power,

Different Plant Designs

The process designer can influence the parameter values in the basic relation
given by (2.28). We will now study how the control result depends on these
parameters. As a starting point three different cases will be studied. The plant
given by model (5.1) - (5.2) will continue to serve as a reference and will be
referenced as Plant 1. Table 2.1 shows that the torsional damping coefficient Ds of
the drive train is much lower for the MOD-2 than for the WTS-3. To investigate
the effect of this parameter variation Plant 2 is chosen identical to Plant 1, but
with Ds a five times smaller, which gives Ds = 0.6-106 Nms/rad. Plant 3 is chosen
to be the WTS-75. The complex pole pair ¢ % iw of (2.27) is chosen as -3 % 5i and
KS and Ds are chosen as KS = 6.5~108 Nm/rad and DS = 0. All the three plants

are assumed to have a rigid tower. We thus have

Plant 1: The plant given by model (5.1} - {5.2) (¢ = -0.37 and w = 1.17).
= Plant 2:  As Plant 1, but with D_ = 0.610° Nms/rad (o = -0.13 and w = 1.22).
Plant 3: As Plant 1, but with 0 = -3, w = 5, K_ = 6.510° Nm/rad and D = 0.
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With the design parameter qB = 10 r‘ad_1 the following feedbacks are obtained:

L

py = [ 0.3793.26 1.21 0.954 ] for Plant 1

I"P2

Lp3

Some properties of the closed loop system for these state feedbacks are given in

(0.433 3.39 1.31 0.912 ] for Plant 2

(1.06 4.90 10.2 36.1 ] for Plant 3

Table 5.6. The table shows that almost the same results are obtained for Plants 1
and 2. The pitch angle control introduces damping of the torsional mode and
moves the pole pair to -1.23 * 2.06i for Plant 1 and to -0.97 * 2.05i for Plant 2.
The first torsional mode of Plant 3 is much better damped and the pitch angle
control need not dampen this mode. The feedback LP3 moves the pole pair from
-3 % 5i to -3.3 £ 6.1i, which means a lower relative damping. The loop gain at A
in Figure 5.7 is less than 0.3 for all frequencies, indicating that the feedback from
A{g and Ay is small in spite of the feedback coefficients for A{g and Ay being ten
times greater than those for Plants 1 and 2. The control relies on feedforward
from AUO and a fast servo. The first element of LP1’ LPz and LP3 shows that the
local servo feedback from A is greater for Plant 3 than for Plants 1 and 2. This
local servo feedback for Plant 3 halves the servo response time. For a given
control energy a(B,w) the standard deviation U(PE,w) is greater because Plant 3
has less filtering effect for high frequency disturbances than Plants 1 and 2.

Control of high frequency disturbances gives a large o(|§,w).

Table 5.6: Some properties of the closed loop system with state feedback for the

three different plants.

Plant/Feedback
1 2 3
LP1 LP2 LP3
o(Pg.w) [% of Pgl 1.7 1.6 2.5
a(B.w) [°/s] 1.2 1.3 1.4
o(¥.w) [% of &B] 0.13 0.14 | 0.0076
W, [rad/s] 2.1 2.2 -
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Consider now the design of observers. Model (5.13) with Rz = Rel for observer

design gives the following filter gains:

o = [ 27 5280 2088 | tor pame
oop = | 9500 S 820980 | for pramt 2
oon = | 6.5 51085 0008 | for Prant 3
With R, = R_, we get

Kop = [ 0.396 0.552 0.108 ] for Plant 1

Ko,p = [ 0.392 0.846 0.240 ] for Plant 2

Kpap = [ 0.398 0.043 0.007 ] for Plant 3

Some properties of the closed loop system when these observers are used are

given in Table 5.7.

To obtain a good control result it is important to have a good estimate of AUO in
the frequency interval where the filtering effect of the dynamics from AUO to
APE is low. Phase lag in the dynamics from AUO to the measurements makes the
reconstruction of AUO more difficult. Around the natural frequency of the first
torsional mode there is low filtering effect, but a considerable increase in phase
lag. To minimize the loss function (5.4) the controller must introduce phase lead
at the expense of sensitivity to noise. Since APE is proportional to DSA{( + KsAx
there is less phase lag in Ay than in APE. However, the variations in the

electrical power are relatively larger and are easier to measure. If measured per

unit, the variations in APE are more than ten times higher than those in Ax

Table 5.7 shows that the results for Plants 1 and 2 are rather similar when A:g
and APE are measured, but different when only APE is measured. The table and
the Kalman filter gains KPlA and KPZA show that the measurements ar‘e. used
differently. The control of Plant 2 relies more on the measurement of Ay than
-~ Plant 1 does. The damping coefficient Ds of Plant 2 is small so in the frequency

range of interest for pitch angle control the variations in APE is almost 90° after




98

Table 5.7: Some properties of the closed loop system when observers are used to

reconstruct the wind speed for the three different plants.

Plant/Feedback/Observer

1 1 2 2 . 3 3
LP1 LP1 LP2 LpP2 LP3 LP3
KP1A | KP1B | KP2A | KP2B | KP3A | KP3B

o (Pg.w) [%] 3.4 |42 |35 |58 |55 |5.5
a(B.w) [°/s] 1.3 | 1.3 |14 |15 [|1.2 |[1.2
o(B.Pg,) [°/s] 0.48 | 1.1 | 0.22 [ 1.6 | 0.92 | 0.93
a(é,$e) [°/s] 0.74 | - 0.98 | - 0.11 | -

o(B.wePg &b ) [*/s] [ 1.6 | 1.7 [1.7 |22 |15 [1.5

w, [rad/s] 2.8 |26 |28 |24 [209 |20
A 3.6 |29 [33 [2.2 [2.7 |27
e [°] 37 34 32 23 71 71
% 1.68 | 1.59 | 1.74 | 1.33 | 1.30 | 1.30
g,p [°/5/ (m/s)] 53 4.1 |55 |29 |6.1 |6.1

those in A%. The damping coefficient Ds of Plant 1 is greater so the phase

difference is considerably less than 90°,

A stiffer drive train gives less variations in A:‘. This means that speed
measurements must be very accurate to be useful for Plant 3. The accuracy of
the turbine speed measurements of the WTS-3 is as good as the normal
measurements for large power plants. However, here we are interestéd in

reconstructing the state of a rapidly varying power source.

The possibility of simplifying the measurement and reconstruction task by having
dampers in the drive train is worth considering if the damping of the first
torsional mode is small, since there are also other reasons for having damping in
“the drive train. In the beginning of this section we noted that when the controller

maximizes the power output the control authority is low and it is difficult to
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dampen the oscillations by pitch angle control. Damping in the drive train is also
good for the generator. The second torsional mode is the oscillation of the
generator against the grid. Damping in the drive train also provides damping of
this mode. As an example, the drive train of the WTS-3 is equipped with dampers
giving the first torsional mode of the open loop system a relative damping of 0.25.
The dampers double the relative damping of the second ‘mode to 0.20. The energy

loss is small, only a few hundred watts.

The filtering properties at 2P are different for the three systems. The gain for
oo APE for Plants 1-3 is 2.74, 1.31 and 22.2 (% of

PB)/(m/s). Consequently, the 2P variations in the driving aerodynamical torque

the open loop system from AU

cause large variations in the shaft torque for Plant 3. To reduce these variations
active cyclic pitch control is needed. Liebst (1980, 1981) discusses alleviation of
cyclic loads by active pitch control. Sensors like accelerometers and strain gauges
are needed to measure blade motions and blade loads. It must be possible to
controi the blade angles individually. Liebst (1981) states that preliminary
investigations for the MOD-2 showed that pitch rates of the order of 12°/s would
be necessary to obtain significant vibration reductions. It seems more robust to

design the turbine to have passive load alleviation as discussed in Section 2.3.

A soft shaft is a nice way to attenuate the 2P variations in the shaft torque.
However, it is not quite easy to design a torsionally soft shaft that can stand the
bending torques. A soft suspension of the planetary gearbox as used in the
WTS-3 is one solution to the problem. Another quite different approach to
attenuate the variations in the shaft torque is to use generator systems which

allow variable turbine speed and control of the power output at the generator.

Tower Bendings

Let us now consider the tower bendings by using the models (2.33) - (2.39) and
the numerical values in Table 5.1. The tower damping coefficient DT in Table 5.1
is calculated under the assumption that the structural damping of the tower is
2%. To force the control system to dampen the tower bendings, the loss function

(5.4) is modified by adding the new term q‘z'ZAz'2

T to the integral. With the state

vector

“ax = [ A3 AUL/100 Ay Ay Az /10 Az /10 ] (5.20)
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Table 5.8: Some properties of the closed loop system with state feedback. For the

open loop system we have the relative tower damping g'l'o =

a(—;-T,w) = 0.055 m/s.

5.4%

and

Design

L3 LA LB LC LD
a(PE,w)[% of PB] 2.1 1.8 1.8 1.8 1.8
o(B.w) [°/s] 1.2 1.3 1.3 1.3 1.3
a(iT,w)[m/s] 0.083 | 0.078 | 0.060 | 0.045 | 0.035
ST [%] 1.9 2.6 4.3 7.3 11.5

the following feedback gains are obtained for qB = 10 radal:
0.336 3.26 1.20 0.883 -0.144 0.705 | for q, = 0.0 s/m

for q, = 0.3 s/m

(

[ 0.364 3.34 1.19 0.844 -0.121 0.821
[ for q, = 0.6 s/m
[

)
]
0.414 3.48 1.77 0.779 0.227 0.999 ]
)

0.485 3.68 1.15 0.694 0.581 1.21

h
o]
2]
.Q
]

1.0 s/m

Some properties of the closed loop system when using these state feedbacks are
given in Table 5.8. The variable ch denotes the resulting relative damping of the
tower bendings for the closed loop system. The results show that it is possible to

increase the tower damping and decrease the tower oscillations without

deteriorating the control of the power output.

Assume that Az.. is measured. For the observers discussed above, the tower

T
bendings enter only in the calculation of the aerodynamical torque as given by
expression (2.36). If AZ.T is viewed as an input like A, it is easy to modify the
observers to include the tower bendings. It is just to extend the observer with an

and add a new term in the calculation of AT. Let K7T denote K7

input for AZ.T

" extended in this way. When LC and K7T are used, then the results are very close

to those given in Table 5.4 for L3 and K7. Figure 5.10 shows the Bode plot of the




101

deg

- -100

—~-200

-3 ]
10 L] ] l | | | l | ] ]

|
0.01 0.1 1.0 10.0 rad/s

Figure 5.10: Bode plot of the loop gain at A when LC and K7T are used.

loop gain. For the tower we get Src = 7.3%, a(iT,w) = 0.082 m/s and
a(iT,PEe) = 0.015 m/s. If we make a state feedback design similar to L6 but with
q, = 0.6 s/m and extend the observer K1, then the properties of the closed loop
system are very close to those given in Table 5.4 for L6 and K1. For the tower
we get . = 7.3% and a(iT,w) = 0.086 m/s. For these designs the standard
deviations a(zT,w) are unfortunately greater than for the open loop system. The
tower has its resonance at 2.1 rad/s. Figure 5.2 shows that the control is poor at
this frequency even if the tower is assumed to be rigid. The phase lag in the
reconstruction of AUO caused by the observer eliminates the feedforward effect
from AUO. A more systematic approach should exploit the information of the
wind in the measurements of Zy by including the tower model in the observer.
This approach requires a model for the measurement noise and will not be
discussed here,

Design attempts show that it is unrealistic to reconstruct Az_. from turbine speed

T
_and power measurements and use the feedback laws discussed above, and still

have a robust closed loop system. The demands on APE must be lowered

considerably. The elastic tower introduces one poorly damped complex pole pair
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(See (2.40)) into the frequency range close to the desired crossover frequency.
The transfer functions from A to A{( and APE have also one complex zero pair
to the right of the pole pair. This dynamics is too complex to be handled only by
dynamic output feedback from Ay and APE, if high performance is desired.

Table 2.2 shows that the resonance frequency of the tower of the WTS-3 is low.
It is about twice as high for the Growian l. If we analyse the properties of such a
tower by increasing the value of KT in Table 5.1 four times to 37-106N/m and
assuming that the structural damping is 2%, we find that we can manage without
tower measurements. The properties in Tables 5.4 and 5.5 apply almost unchanged
for this plant. For the tower we get the following properties. The open loop
system has the relative tower damping 5T = 3.3% and the standard deviation
a(iT,w) = 0.026 m/s. For example the closed loop system with the feedback L6 and
the observer K1 has ST = 4.0% and a(iT,w) = 0.048 m/s. The closed loop system
with the feedback L3 and the observer K7 |has c = 55% and
o{zq.w) = 0.040 m/s.

5T

Different Weather Conditions and Different Operating Points

So far the design has been carried out for a wind with a mean speed
UO = 18 m/s, a standard deviation O = 1.8 m/s and a time constant TW = 20 s.
We wiill now consider how the design should be extended to handle different
weather conditions. Changes in the weather conditions are much slower than the
system dynamics so we can separate the control design into two parts. First we
can consider design for different but constant weather conditions and then we
can consider how the controller should adapt to changing weather conditions,

since this adaptation can be slow. This is a common approach in adaptive control.

Let us now first consider the design of pitch angle control for different but
constant weather conditions. For simplicity it first will be assumed that the tower

is rigid. The mean wind speed U_., the synchronous turbine speed \I)O and the

0)
desired power level PEO define a stationary operating point. We will as above use
the linear models (2.2) and (2.33) - (2.38) to describe the deviations from this

point.
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The largest variations in the system dynamics are caused by the nonlinear

8 varies significantly with UO' The
influence of the wind turbulence also varies since it is proportional to TU' The
aerodynamical damping is small compared to the desired damping so variations in

at UO' If P

function T([3,U,\I)). The partial derivative T

T\], can be neglected. Let [30(PE,U0) denote the blade angle giving PE E

cannot be obtained at UO’ let it denote the blade angle gi?/ing maximum power. The
dependence on ‘i’O is left out for convenience. It is practical to use the values in
Table 5.1 as nominal values and introduce the relative variations k., and kU

B

defined as

TB(BO(PE'UO) ’Uo)

k,(P..U ) = (5.22)
B E’0 TB(BO(Pn’Un)'Un)
ky (P Ug) = EUEBOEEE'EO;'?% (5.23)
ulPoPn Y)Y
with Pn = 3 MW and Un = 18 m/s. Figures 5.11 and 5.12 show k‘3 and kU.

We will now consider the possibilities of isolating and factoring out these
variations in the control design. The partial derivatives TB and TU enter the
linearized model only in the calculation of AT, which is basically the sum of the
two terms TBAﬂ and TUAUO. Some of the variations are isolated if TBAB or the
scaled version kBAB is viewed as the quantity of interest instead of AP itself.
Similarly it is sometimes more convenient to consider the quantity kUAUO than
AUO.

The A and B matrices of model (5.1) which were used for the state feedback
design are independent of O If the second state AUO/IOO of this model is
changed to kUAUO/100, the A and B matrices of the model will be independent of
TU. This means that with this modification the resulting state feedback matrix L
for a given loss function (5.4) is independent of % and TU. The matrix L is also
rather insensitive to variations in the time constant TW of the wind model. If Tw

varies from ten seconds to 'infinity', the elements of L vary only with a few per

cent.

The change of the state AUO/100 to kUAUO/100 also implies that the observer is
independent of O and TU when the filter gain K is given. The observer becomes

Pindependent of T, if the input AB to the observer is changed to k_Ap.

B g
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W= Wind AUO kU
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AB, Servo = kg = Turbine
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Figure 5.13: Control Configuration (the tower is assumed to be rigid).

Consider Figure 5.13. Assume that the observer has constant A, B and L matrices
and that it is designed for the nominal weather condition. Figure 5.13 then shows
for a constant feedback L that variations in kB cause changes in the magnitude of
the loop gain when the loop is cut at A. We found above that the possibilities of
keeping the power output constant critically depend on the possibilities of
measuring or reconstructing AT. Variations in kﬁ do not influence these
possibilities to any large extent. From this point of view it thus seems reasonable
to try to keep the loop gain constant. The variations in loop gain are eliminated if
we choose o, = kﬁ and e, = kél. A minimum wind speed UO(PEO)
obtain a certain power level PEO' At this wind speed kﬁ is zero and then

is needed to

increases as shown by Figure 5.11. This indicates that the regulator gain oy

becomes large when U is close to UO(PEO).

For the designs discussed above, the major parts (>80%) of CT(PE,W) and o(f,w) lie
within the frequency range above 0.5 rad/s. Since TW »>> 2 s, the spectral density
@Uo(w) of the wind turbulence over the turbine disc given by (2.3) can be

approximated by
2 () ~ o2f (aT w?) for w>> 1T (5.24)
uo W W W ’

This gives
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o(UO,w; wl,oo) ~ aw\/ 2/ (ﬂTwwl) for w,>> 1/Tw (5.25)

Model (3.4) can be used to relate o, and T to the properties of the spectrum

for the wind speed at a fixed point. It gives

= = 0.5
a(UO,w; wl,oo) N a-b*\/Za*/(erwl)-Uo =00 U

o (5.26)

where o is the standard deviation of the point turbulence and L is the integral
scale defined by (3.3). The variables a and b* are functions of the ratio R/L. For
L > 10 R = 380 m we have a=b =1ando = c*(10R/L)0'5. The variable c, is

only a function of 0, For L = 200 m we have o, = 1.180* and for L = 100 m we

get o, = 1.280*.

If the loop gain is kept constant for different 00’ the standard deviation a(PE, w)
~ 0.5

UUO

can write these relations as

is proportional to aa*k and o(fi, w) is proportional to cra*kufloo's/kﬁ. We

= = 0.5
O‘(PE,W)I P 0. = Claa*'gU(PED’UO)/UD (5.27)
EO’ "0
o (B,w) ~ = c 00 g, (Pu,0.)/0.03 (5.28)
) Peo-g 27 88 E0""0! /Yo S
where 4 and c, are constants and
gy(Peo-Ug) = (0y/U,) ky(Peg.0p) . U = 18 m/s (5.29)
85 (Peo-Up) = 8y (Pgo-Tg) kg (Prg . Tg) (5.30)

Figure 5.14 and 5.15 show 8y and gﬁ. Figure 5.15 shows that gB is almost
independent of UO’ when GO is sufficiently larger than UO(PEO). Figure 5.14 shows
that gy is affine in U0 for a given PEO’ The possibility of keeping the qutput
constant depends critically on the measurements as concluded above. When
kB > 1 this means that the gain from the measurement noises and the 2P

variations to Af is less than in the nominal design.

At mean wind speeds 00 close to UO(PEO), a strategy which keeps the loop gain
constant would be disastrous. The parameter o, must be limited. The choice
="o:1 = kf3 means that the physical interpretation of the observer states are

maintained. The choice o, = «

1 ;1 means that the phase and the shape of the
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amplitude curve of the loop gain is maintained. At 00 = 15 m/s, O = 1.5 m/s and

Tw = 20 s the controller with LC, K7 and o, = 1 and o, = o:-z1 gives the standard

deviations a(PE,w) = 55% of Py and o(fw) = 0.84 °/s, the relative tower damping
S = 8.8%, crossover frequency w, = 1.8 rad/s and the stability margins

= ° = i = = i = 9
¢, = 48 and AL 4.5. The choice «, 1 and ) }(6 gives cr(PE,w) 8.5 %,

which is worse. It is of course possible to use more sophisticated schemes, but

we will not elaborate this problem further.

The scheme discussed above can easily be modified to handle the tower bendings,
if /_\iT is measured. Extend the observer with an input for AiT. The coefficient Té

in the observer can be kept constant. Scale the feedback from AZ.T and AzT with

LS At UO = 25 m/s we have o, = 0.56 and for example the controller with LC

2
and K7T gives e = 5.4%, € = 46° and Am = 3.1.

The controller must be able to calculate A, APEm' Albm, AzT and Az.r from 3,

P_. , ‘I’m and z.. . The desired power level P__ should be chosen such that the

Em Tm EO
controller can keep the loads inside tolerable limits with a high probability. It can
for example be chosen constant or it may be adjusted using estimates of o(PE). A

simple way to estimate BO is to use a low pass filtered value of §3;

This introduces integral action. In stationarity the mean values m(fsr), m(B) and
m([30) are equal, which means that m(A[Sr) = 0 and m(Aﬁr) = 0. In stationarity
our control laws give that m(Aﬁr) is a linear combination of m(Ap) (=0),

m(APEm), m(Ad)m), m(Asz) and m(Asz). Consequently, if m(Aubm), m(Az and

Tm)
m(Asz) all are zero, this gives m(APEm) = 0.

If Ail:m is estimated by high pass filtering ‘i’m’ we have m(Aan) = 0. Since
Azp =z, and m(zT) =0 in statxonar’*lty, m(Asz) = 0 in stationarity, if z. is
measured without bias. Bias in the Z1 measurement can be eliminated by high

pass filtering, so that m(iTm) = 0. In the calculations above the estimate Az.r
given by

d Az =z —A;/T (5.32)
dt T Tm T "1=zT ’

= with T = 10 s was used. If m(z 0 then also m(AzT) = 0.

T Tm) =
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The time constant TbO should be chosen larger than the time constants of the
design model, in order not to interfere with that design. In the following we will

use TbO = 20 s. The adaption of oy and o, to changing weather conditions can be

2

based on PEO and (30. An estimate of 00 can be calculated from these values,

giving an estimate of kﬁ'
The controller must also be able to switch between the two operating modes
"generate maximum power" and "keep generated power constant" according to the
wind variations. A simple way to do this is to have a controller for each mode
and run them in parallel and select the smallest output from these two as Br' The
proposed controller for the mode '"generate maximum power" is static and thus
stable. The proposed controllers for the mode "keep generated power constant”
are also stable and the proposed way of introducing integral action avoids

wind-up.

Nonlinearities

The variation of the process gain with the wind speed is the most important
nonlinearity. If we neglect the variations in turbine speed and the tower bendings,

we get

AT(B,Ug) = [T(B.Ug)-T(By.Uy)] + [T(By.Ug)-T(By.Uy)] (5.33)
The linearized expression

AT(B,Uy) = TB(BO,UO)(ﬁ - By + Tu(po,ﬁo)(uo - UO) (5.34)

was used in the design. The second term on the left of hand of both (5.33) and
(5.34) is independent of B and can be viewed as the disturbance. The first term
describes how the dependence on (3 varies with the wind speed. The quotient ozB

between the nonlinear gain and the linearized gain at the stationary operating

point is given by

T(ﬁ’uo) - T(BO’UO)

Tﬂ(BO’UO)(B - ﬁo)

for B # By,

aﬁ(B,UO,BO.UO) = (5.35)

T By Ug)/Tg(Bg Tg)  for B = B
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Figure 5.16: aﬁ(ﬁo(PE,Uo), Uy BO(Pn,Un),Un)) for P = 3 MW and U_= 18 m/s.

E>4.2MWorPE<0f0r

for those blade angles which give

Since the supervisor will disconnect the generator if P
longer times, we need only to study o

B
0 < P. < 42 MW. The variable o, is plotted in Figure 5.16.

E B
The controller for the operating mode '"generate maximum power" introduces
other nonlinearities so that stability cannot be established simply by use of the
circle criterion even if the tower is assumed to be rigid and the nonlinearities
introduced by the adaption of a, and «, are neglected.

1 2

Simulations

The behaviour of the system with the controllers suggested above has been
simulated using the nonlinear simulation model given in Appendix B. Three typical
simulation results will be shown. The controller based on LC and K7T with
schedules of operating point and gains as given above was used in these
simulations. The controller was also extended with notch filters (5.14) with
SN T 0.01 and 5p = 0.1 for the 4P, 6P and 8P variations. The Simnon code for
this controller is given in Appendix B.9. For excitation control the wvoltage
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controller described in Appendix B.7 was used. No measurement noise was

introduced but exact measurements were assumed.

Figure 5.17 shows the behaviour in the weather condition assumed for the base
design. The behaviour is consistent with the calculations above. Figure 5.17 also

shows that the variations in the terminal voltage vgen are small.

Linde (1983) has calculated average gusts from turbulence measurements. In one
case he used a measurement series from Maglarp at the level 84 m. The mean
wind speed was 18.1 m/s and the standard deviation was 1.6 m/s. In the
simulation presented in Figure 5.18 the mean wind speed U0 over the turbine disc
was chosen as the average gust of this measurement series. This choice is
probably pessimistic since Linde (1983) found that the measurements indicated the
extent of a gust in the vertical direction is less than 60 m. The figure shows that
the response in the electrical power is well damped. Also the tower response is
satisfactory. The small and rapid variations in PE' 130, fi etc are caused by the
tower blockage. This disturbance does not cause excessive servo motions as
shown by the figure. Figure 5.18 also illustrates the lag in the estimation of UO'
The loss of measured U0 limits the performance considerably. The maximum value
of PE is just below 130%. If UO
with notch filtering at the frequencies 2P, 4P, 6P and 8P of the feedback from Ay,
APp, Az and Az

effort.

had been available then the feedback LC extended

T would have kept PE below 111% with almost the same control

Figure 5.19 shows the behaviour around the rated wind speed when the
controller switches operating mode back and forth. A simple schedule based on

enerated power was used for the operating mode "generate maximum power".
g p p




112
m
s 20
=
16 ] | ¥ |
X 100 L
L
0.
80 L I |
-8 F
> 12
| | |
. 2k
L
Tap N _2 |
| { |
€ 03
b
N
0.1 | | |
103
5 102 |
> | l i
0 50 100 150 200 s

_ Figure 5.17: Simulated response to turbulent wind around 18 m/s when the

controller based on LC and K7T is used.




113

:J)' 20
E T -
<DfJ 16
- | | L
120
=
o 100
| |
-6
< 10k
1 L I
2 L
X
.a —2 [
[ ! 1
E 0.3 - J\/\/\/\/\/\/\/\M
l_.
N
0.1 | | J
103
S
s 102
> ! ! |
0 10 20 30 L0 s

_ Figure 5.18: Simulated response to a large gust when the controller based on LC
and K7T is used.




114

16 F
¢
£
= 12
| | ]

0.4

z.[m]

02

103

o “J‘“/\W\/V\{\/\\/“AM\/\,W\/V\[W\AAWV\WV\/V\/\’\N

1 L |

0 50 100 150 200s

Vierl %]

Figure 5.19: Simulated response to turbulent wind around 14 m/s when the

controller based on LC and K7T is used.

-




115

Summary

In this section design of pitch angle control for plants having synchronous or
induction generators has been discussed. It was found that it was easy to obtain a
good result for the operating mode "generate maximum power". The mode "keep

generated power constant"” was more difficult.

When designing pitch angle control for keeping the power output constant,

attention was focused on the variations caused by the mean wind speed U. over

1]
the turbine disc. Cyclic pitch control was not considered. It was assumed that the

2P variations were properly attenuated by a soft shaft or could be neglected.

In the mode "keep generated power constant", it is the difficulties in measuring

the wind speed U_. experienced by the turbine that limit the performance. The

0

control authority is good. Feedforward from U_ is a key to good performance. If

0
U_ is known it is possible for a system like the WTS-3 to keep the generated

0

power output constant within 10 - 15% with a high probability and with a
maximum servo speed of 5°/s. Unfortunately, it is not possible to obtain
representative measurements of U0 using an anemometer. When only turbine
speed measurements and power measurements are available the measurement
noise are important. To obtain a good performance the controller must introduce
phase lead which means that measurement noise is amplified generating excessive
servo motions. Even if the turbine speed measurements and power measurements
are improved they still contain the 2P variations. These can be viewed as
measurement disturbances since they should be neglected by the pitch angle

controller. To avoid excessive servo motions and to get a robust control

variations in the generated power up to 30 - 40% must be accepted.

Normally the first tower bending mode is the only structural mode that may have

to be considered when designing compensators for the variations caused by U_. It

can be neglected if its natural frequency is greater than twice the crosso?/er
frequency of the pitch angle control. If the frequencies are closer together, it is
possible to get an adequate damping of the tower bendings without deteriorating
the control of the power output if the speed of the tower bendings is measured.
Without measurements of the tower bendings greater variations in the generated

. power must be accepted.
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5.4 Pitch Angle Control for Variable Speed Plants

In this section pitch angle control for systems with variable speed generators is
discussed. The important differences in comparison to systems with synchronous
generators or induction generators are that the the generated power also can be
controlled at the generator and that the large turbine inertia can be used to store

kinetic energy.

If we want to extract maximum power the pitch angle should be kept constant and
the generator should control the turbine speed so that the tip speed/wind speed
ratio is constant. The critical turbine speeds causing structural resonances must
of course be avoided. As found in Section 2.2 there are systems which allow the
generator speed to vary in the range 4 - 130% of synchronous speed. For the
Growian I the range is only 85 - 115% of synchronous speed and the possibility
of varying the turbine speed is not intended to be used to maximize the generated
power, but the plant is desired to operate close to synchronous speed. Here, it is
natural to use the pitch angle control to extract maximum power. The generator
control can make use of the large inertia to improve the power quality under the

constraint that the generator rotor speed be inside the allowed interval.

When reconstructing the wind speed U0 for calculation of the optimal control, the
generator dynamics and the generator losses can be neglected. The wind speed
can be estimated from turbine speed and power measurements using the equation

of motion for the turbine
Jti[: =T - PE/xb (5.36)
The problems with measurement noise are not serious, since the demands on the
bandwidth are moderate.

The pitch angle control problem above the power level P is simpler when a

variable speed generator is used. The bandwidth of the conEt:Eol loop can be made
lower, since the large turbine can be used to store kinetic energy. The objective
of the pitch angle control is to keep the deviation A\i) of the turbine speed from
_ synchronous speed \LO within tolerable limits. A plant which operates at an almost
constant turbine speed can be designed so that the rotation does not cause

structural resonances. When the turbine speed can vary, operation at the critical
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speeds of the system must be avoided. One way to do this is to keep the turbine

speed variations small.

We will not discuss the control problem in such detail as for the case when a
synchronous or induction generator is used. Let it suffice to show the adequacy
of the simple Pl-controller with a low pass filter

a8 (s) = K[1 + g%;]/(sTF + 1) Bb(s) (5.37)

The low pass filter is included to protect the servo from high frequency noise.

Above the power level P the objective of the generator control can be to keep

the shaft torque or the ignerated power constant. We will study the case when
the generator keeps the generated power constant. In this case it is somewhat
more difficult to keep the turbine speed constant by pitch angle control, because
of the shaft torque decrease with increasing turbine speed. Since the resulting
crossover frequency w, can be kept below 1 rad/s, it is reasonable to make the
simplifying assumption that the dynamics of the generator can be neglected and

that the generated power is kept constant at P.. by the generator control system.

EO
Note that these assumptions hold for any generator when it is disconnected.
Consequently, this discussion also considers the possibilities of keeping the
turbine speed constant when synchronizing a synchronous generator against the

grid.

The assumptions for (5.36) are fulfilled. Linearization around the stationary

operating point U and PEO assuming constant generated power gives

o ¢0
" .2 . .

I - (Ppg/¥g * Ty)Bb = ToAs + T AU + T Az (5.38)

The models (2.2), (2.36) - (2.39), (5.38) and the values in Table 5.1 give

o(pw) = 38.3% of 1[)0 for the open loop system. The controller (5.37) with

K = 0.5 rad/(rad/s), T, =10s and T
output o(pw) = 2.1% of J)O and of the input o(3,w) = 0.66°/s. For the tower we get

= 0.5 s gives the standard deviation of the

the standard deviation a(iT,w) = 0.076 m/s and the relative damping STc = 7.4%.
The crossover frequency w, = 0.9 rad/s and the stability margins Am = 2.8 and
o= 42°, The influences of the measurement noise are low. If we assume that the

measurement noise of the turbine speed is as given by Rel we get
a(d'),ube) = 0.04% of \]')B and a-(B,\Le) = 0.054°/s. Since the turbine speed varies, it is
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not quite correct to speak about 2P disturbances. Nevertheless, the tower
blockage, the wind profile and the rotational sampling generate disturbances. A
sinusoidal variation in the aerodynamical torque with the frequency 5.2 rad/s and
the amplitude 10% cause for fixed pitch angle a variation in the turbine speed of
0.2%. The increase in the gain from AUO to A\I} for. the closed loop system
compared with the open loop system above 4.5 rad/s is less than 4%. The gain
from AU_ to AB above 4.5 rad/s is less than 0.3°/s/(m/s) and the value of

0

€op = 0.21°/s/(m/s).




6. CONCLUSIONS

To make wind power competitive in a large utility grid it is important that the
wind power plants are cheap and reliable. It is a nontrivial design problem to
make the best choice. The objective of this thesis has been to give a global picture
of the control problem of large horizontal axis wind power plants. The system
dynamics has been discussed and explained. Measured data have been analysed
and models have been identified. Comparisons between mathematical models and
identified models showed good agreement. The possibilities and limitations of pitch
angle control as well as the interaction between control design and process design

have been discussed.

This investigation has also resulted in a modular simulation model. The model,
which is programmed in a high level language, is easy to use. It is valuable both
for further research and education. A design procedure for pitch angle control
based on the LQG framework is proposed. The design procedure considers wind
properties and measurement noise explicitly. Pitch angle control has been
discussed in a number of papers: Kos (1978), Wasynczuk et al (1981}, Liebst
(1980, 1981), Murdoch et al (1983) and Hinrichsen (1984). It is remarkable that all
these papers and reports except Liebst (1981) overlook measurement noise and
do not consider the wind properties explicitly. The measurement noise is very
important. Svensson and Ulén (1982) found when testing the control system of the
WTS-3 that measurement noise was a limiting factor. The control proposed by
Liebst (1981) is a complex cyclic pitch control for load alleviation on wind
turbines. He proposes accelerometers on the blades as measurement devices and
gives the design procedure for design of Kalman filters. However, he does not

discuss or analyse how measurement noise influences the result.

The results of the investigation are summarized in Section 6.1 and some aspects

of more general interests are given in Section 6.2.
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6.1 A Global Picture of the Control Problem

Wind Characteristics

The variations in the wind speed are large, rapid and rgndom. For control design
the variations in the mean wind speed over the turbine disc can be modelled as
the output of a first order system driven by white noise with a time constant of
the order of 5 - 30 seconds. The standard deviation is approximately 5 - 20% of
the mean wind speed. Wind profile, tower blockage and wind turbulence cause
spatial variations in the wind speed over the turbine disc. These spatial variations
give fluctuations in torque with frequencies being multiples of the rotational
frequency of the turbine. For a turbine with two blades the largest component
has a frequency twice the rotational frequency (2P) of the turbine. Without
compensation the amplitude of the variation in the driving aerodynamical torque

is typically 10 - 30% of mean torque.

Control objectives

Reduction of the peak loads caused by the varying wind speed is a basic control
objective, since it is expensive to build plants that can withstand large loads: The
drive train, the gearbox and the root sections of the blades are critical parts. The
demands on voltage and power quality are not critical. A reasonable strategy is to
let the controller try to extract maximum power up to a certain level and to keep
power generation constant above this level. This means that the controller should
try to maximize generated power when the mechanical loads are small and that it
should try to achieve a smooth operation for high mechanical loads. This
approach gives a design problem that can be handled satisfactorily using existing

control theory.

Basic Plant Characteristics

The driving aerodynamical torque, which forces the turbine to rotate, is a
function of the oncoming wind, the blade angle and the turbine speed.
Consequently, the power generation can be controlled by turning the blades or
parts of them along their longitudinal axes. The torsional dynamics of the turbine,
the drive train, the generator and the coupling to the grid are a key to

understanding the basic dynamics of horizontal axis wind power plant.
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A wind turbine has a very high per unit inertia. The low energy density of wind
requires a large turbine diameter. To achieve good efficiency the turbine
speed/wind speed ratio must lie within a narrow range giving turbine speeds
between 15 and 50 rpm. Typically the per unit inertias of wind turbines are
about ten times greater than those of typical hydro or}steam turbines. The large
turbine inertia can be used to store kinetic energy if the turbine speed is allowed
to vary on-line operation. This facilitates the control of the plant. It is thus

natural to divide plants into the two groups

1. Constant speed plants

The plants have a synchronous generator or induction generator so that the
turbine speed is almost constant. Pitch control is the only means of
controlling the power generation.

2. Variable speed plants

The plants have a generator that can operate at variable speed so that the
turbine speed may vary. The power output can also be controlled at the

generator.

Possibilities with Constant Speed Plants

It is easy to achieve a good result when trying to maximize generated power. The
maxima for different wind speeds are rather flat with respect to the blade angle.
A simple and adequate strategy is to make the servo reference a function of the

generated electrical power and the blade angle.

Feedforward from the mean wind speed sensed by the turbine is a key to good
results when trying to keep the power output constant If the turbine speed, the
electrical power and the wind speed sensed by the turbine are known, it is
possible to design a controller which for a system like the WTS-3 keeps the
generated power constant within 10 - 15% of the rated value with a high
probability and with a maximum servo speed of 5°/s. Unfortunately, it is not
possible to obtain representative measurements of wind speed using an
anemometer. The wind speed at a point is in some weather conditions poorly
correlated with the wind speed experienced by the turbine. The plant may also
induce local disturbances so that an anemometer gives bad measurements. The
inadequacy of wind measurements makes it impossible to keep the generated

- power within 10% of the rated value; 30 - 40% is a more realistic goal.




122

The dynamics of interest for pitch angle control is given by the first torsional
mode of the turbine, the drive train, the generator and the coupling to the grid.
The behaviour from the aerodynamical torque T to the torsion ¥ of the drive

train can be approximated by the transfer function

1

Ay(s) = AT(s) (6.1)

pzs + pls + KS

where KS is the torsional spring coefficient of the drive train. The coefficients p 1
and p, are such that model (6.1) preserves the pole pair related to the first

torsional mode. For the generated power PE we have
APE(s) = \pO(DSs + Ks)Ax(S) (6.2)

where \I)O is the synchronous turbine speed and Ds is the damping coefficient of
the drive train. In this approximation the variations in the shaft torque is

proportional to the variations in generated power.

The relations (6.1) and (6.2) are important and fundamental for pitch angle
control. They show that the variations in the aerodynamical torque above the

natural frequency w, of the first torsional mode are attenuated when they appear

1

as shaft torques and generated power. The natural frequency w, is in the

interval 1 - 10 rad/s. The torsional stiffness of the drive train is the major

design parameter for choosing w,. The spring coefficient KS can be varied in a

1
range of two decades.

When a synchronous generator is used, the damping is given by the drive train
and is in general low. The aerodynamical damping of the turbine is low, because
the blades are designed to give minimum losses. The controller must dampen the

mode. The natural frequency w, and thus Ks influence the crossover frequency

1
needed for pitch angle control. There is no sense in choosing it much higher than

w, when trying to keep the generated power constant, due to the filtering effect

1
of the dynamics. When an induction generator is used the first torsional mode is

much better damped since the coupling to the grid basically acts as a damper. The

relative damping increases with increasing w, and the pitch angle control need

1
= not dampen the mode if w 1 is large.

AN

vy o0
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The designers of the MOD-2 and the WTS-3 have taken advantage of the low pass
dynamics and deliberately designed the drive train to be torsionally soft. The
MOD-2 has w, = 0.9 rad/s and the WTS-3 has w, = 1.4 rad/s. An important
disturbance is the 2P variations in the aerodynamical torque. The turbine speeds
of MOD-2 and WTS-3 are 25 rpm. This implies that the 2P variations have a
frequency of 5.2 rad/s. This means that the 2P variations in the aerodynamical
torque are attenuated more than eight times when they appear as shaft torques.
The turbines are designed to withstand the wvariations in the aerodynamical

torque. Consequently, the pitch angle control system does not have to take care

of the 2P variations.

To obtain a good control result it is important to have a good estimate of the
wind speed in the frequency interval where the filtering effect of the dynamics
from the wind speed to generated power is low. However, the dynamics also
introduce a phase lag from the wind speed to the measurements. This makes the
reconstruction of the wind speed difficult. Around the natural frequency w 1 of
the first torsional mode there is low filtering effect, but a considerable increase
in phase lag. The controller must compensate for the phase lag by introducing
phase lead which means that measurement noise is amplified generating excessive
servo motions. Relation (6.2) indicates that there is less phase lag in ¥ than in PE.
However, if the variations in PE are kept within 10% of rated value the variations
in x for a soft shaft is less than 1% of synchronous turbine speed. A stiffer
drive train gives less variations in x This means that speed measurements must
be very accurate. Note that (6.2) also indicates that an increase of D_ gives a

decrease in phase lag of P_. Recall that in the frequency range of interest for

E
pitch angle control the dynamics from aerodynamical torque to shaft torque and

to electrical power are similar, so it is of no use to measure the shaft torque.

Even if the measurements of turbine speed and electrical power are improved
they still contain 2P wvariations. The 2P variations can in this case be viewed as
measurement disturbances since they should be neglected by the pitch angle
controller. Unfortunately, the 2P frequency lies near the desired crossover
frequency (2 - 3 rad/s) of the pitch angle control. If the 2P variations are
neglected when designing the pitch angle control the controller obtained will
introduce high gain in this frequency range. The result will be an oscillation of
" the servo with a rate amplitude of several degrees per second. Notch filters must

be used so that excessive servo motions are avoided. The notch filters degrade
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the performance. Analysis of measurements indicates that the 2P variations have
a random component. Neither the amplitude nor the phase is constant. The effect
of rotational sampling of the turbulence is a possible explanation. It seems
impossible to design better filters,

The filter properties at 2P depends on w,. If Wy is close to or larger then 2P the

2P variations in the driving aerodynamiical torque cause large variations in the
shaft torque. To reduce these variations servo speeds of several degrees per
second are needed. A soft shaft is a nice way to attenuate the 2P variations in
the shaft torque. However, it is not quite easy to design a torsionally soft shaft
that can stand the bending torques. A soft suspension of the planetary gearbox as
done in the WTS-3 is one solution to the problem. Another quite different
approach to attenuate the variations in the shaft torque is to use a variable speed

generator.

Possibilities with Variable Speed Plants

The problem of keeping the shaft torque or the generated power constant is
simpler when a variable speed generator is used. The large turbine can be used
to store kinetic energy and the generated power can also be controlled at the
generator. The generator control determines the variations in the shaft torque
and the generated power. The standard deviation of turbine speed variations can
be kept below a few per cent of the rated speed with a pitch angle control having
a crossover frequency below 1 rad/s and with a maximum servo speed of 5°/s.
Note that these figures also apply for any system which is is not connected to the

grid. Thus it is not difficult to synchronize a generator against the grid.

Structural Dynamics

The control system must not excite structural modes of the tower and the blades.
It is the first tower bending mode that may interfere with the pitch angle control
and cause problems. Normally the first tower bending mode is the structural
mode with the lowest natural frequency. If the natural frequency of the mode is
sufficiently (say a factor of two) larger than the crossover frequency of the pitch
angle control, the tower bendings can be neglected when designing the pitch angle

control. When the frequencies are closer together, it is possible to get an

~adequate damping without deteriorating the control of the power output, if the

speed of the tower bendings is measured. Greater variations in the torques must
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be accepted without measurements of the tower motions. Consequently, the
designer must consider the cost of an additional sensor when reducing weight of
the tower. Note also that pitch angle control for variable speed plants in general
has lower crossover frequencies than those for constant speed plants. However,
a plant which operates at an almost constant turbine speed can be designed so
that the rotation does not cause structural resonancesj When the turbine speed

can vary, operation at the critical speeds of the system must be avoided.

The turbine can be designed to withstand variations in the aerodynamical torque.
This seems more robust than to alleviate the blade loads by having active cyclic
pitch control. Sensors like accelerometers and strain gauges are then needed to
measure blade motions and blade loads. It must be possible to control the blade

angles individually. High servo speeds in the order of 12°/s are also needed.

6.2 General Aspects

This thesis has dealt with a specific problem. Hence we may also ask what we

have learned that can be of more general interest.

Since the main objective of the work was to give a global picture of the control
problem, we had to gain understanding for a complex physical process.
Mathematical models were compiled from the literature. The behaviour of different
models was simulated, analysed and evaluated. Measurements from the WTS-3
were analysed and dynamical models were identified and compared with models
derived from first principles. Control systems were designed. Their properties
were investigated as well as the interaction with the system design. These steps
involve lots of calculations. Unfortunately, only a very few of them can be
carried out analytically. Most of them must be done numerically by a corﬁputer.
For professional use, methods which are not supported with good software are of
small value. The numerics must be robust and reliable. The user should not be
forced to numerically scale his problem. The programs for analysis and design
should of course warn the user when the result is sensitive to variations in the
input data. Furthermore, many methods for analyse and design involve steps of
" trial and error. A good interactive man-machine interface is then of great value.

The user should be able to control the steps in a simple way. He should be able
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to examine the results using for example good graphics. With a computer it is
rather easy to calculate a number of cases under different assumptions and to
generate lots of results. However, it is impossible to keep in mind how the
different results were obtained. Automatic documentation is needed. Let us now

consider the different steps. .

Modelling, Simulation and Analysis of the System Dynamics

This work was started with a more modest objective in mind than giving a global
picture of the control problem. The work was initiated during the design of the
WTS-3 by request of Sydkraft AB (the South Swedish Power Company Ltd.). They
wanted a simulation model for design verification and failure investigation. They
also wanted a model suitable for educational purposes and for future design of
new controllers. This resulted in a simulation model and a number of simulation
studies. The latest version of the simulation model is given in Appendix B. The
interactive simulation package Simnon (Elmqvist (1975)) was used. Simnon allows

good structuring and programming in a high level language.

The model in Appendix B is modular. Modularization gives many advantages. It
simplifies the modelling, it makes the mode! more flexible and easier to adapt and
manage. Technical systems are often built in a modular way composed of standard
components. Their behaviour may be well-known. Even good, generally accepted
models may already exist. A synchronous generator is an example of such a
standard component. We can build and use libraries of models. Modularization
makes the model easier to adapt for different simulations. Two conceptually
different needs of adaptability can be identified: adaptability with respect to
different plant designs and adaptability with respect to model complexity. During
the design of a system the model has to be updated as the design proceeds.
Questions of the type "What happens if we modify the design in this way?" arise
frequently in simulation projects. It is impossible to make a model which can
simulate all aspects of a given plant. Models of different complexity must be used
for simulation of different events. For example, if we want to simulate how a
power plant behaves at electrical faults in the grid, a complex generator model is
needed. The complex model contains fast modes which requires a lot of
computations. Fortunately, these events are short and we are only interested in
~simulating a few seconds. If we want to simulate the behaviour in turbulent wind
we are interested in simulating over a couple of minutes. The fast modes are not

excited and can thus be neglected. The improvement in computational speed is
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considerable. It may be improved a factor of 10 - 50. Modularization facilitates
testing. It is difficult to verify that a simulation program implements the intended
mathematical model. Use of a high level language facilitates the programming and
the documentation and makes the program more readable. With a modular
approach we split the problem into smaller parts. We can start with simple

models and use them as references when testing the more complex ones.

The analysis presented in Chapter 2 is the result of a number of simulation
studies including several revisions of the models. The aim was to gain a more
profound understanding of the system dynamics. The simulation studies had given
an insight in the dynamics based on available equations. However, the
mathematical simulation model is a complex description composed of models for
the different parts. It is not apparent what the basic dynamics for the total
system is. It is difficult to analyse nonlinear systems. The simulation model was
used for empirical studies concurrently with the mathematical analysis. The
possibilities in Simnon to include and exclude different features in the model by
changing the model for one part or by making parameter changes were useful
when studying their importance. To have some success with the analysis we are
more or less forced to work mainly with linear models and to estimate the effects
of nonlinearities. Linearization is tedious to do with paper and pen. A good
formula manipulation program which takes the nonlinear equations and outputs
the linearized ones would be a real time-saver. If there also was a program that
took the linear model and intervals for the parameters and made proper
approximations, the analysis would be even simpler to carry out. A nice thing
with linear models is that they can be transformed into the frequency domain
where many dynamical properties are easier to understand. When analysing a
system it is also useful to have different viewpoints and possibilities to transform

back and forth between different representations.

System ldentification

The analysis of measurements from the WTS-3 presented in Chapter 4 and the
control design presented in Chapter 5 were done concurrently. The analysis of
measurements and the identification of dynamic models involve a lot of trial and
error. We have to try different filtering of data, different sampling frequencies
and different model structures. Consequently, we generate many versions of the
measurements which are filtered or processed in other ways. A database

manager that keeps track of the different versions is thus of great value.

(SN
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We also faced the problem of system identification using analog inputs. A low
sampling frequency facilitates the identification, but the shape of the inputs
between the sampling instances becomes more important. A high sampling
frequency makes it more difficult for the identification procedure and makes the
transformation from discrete time model to continuous time model more
ill-conditioned. New approaches to system identification so that continuous time
models can be identified directly from data sampled with high frequency are

desirable.

Control Design

The simple models obtained from the analysis of the system dynamics were used
for control design. They gave a possibility to gain a good understanding of the
possibilities for pitch angle control and the interaction with process design.
Caution is needed when using simple models. The model must be wvalid for
frequencies a bit over the crossover frequency. It must be verified that
unmodelled dynamics is not harmful. If it is difficult to estimate the crossover
frequency in advance, one possibility is to use a more complex design model. If
the controller then is considered to be too complex try to simplify it afterwards.

The frequency range of interest is then known.

The control design and the analysis of its interaction with process design implied
that many cases had to be considered. Modularization of the models gave also
here many advantages. The interactive program package Synpac (Wieslander
(1980b)) was used. In Synpac linear models can be entered and connected

together to give the total system.

A way to check a result is to calculate it in two different ways. The package
CTRL-C (1983) was used in this way to check some of the results. Synpac and
CTRL-C are so different that the programming has to be done in quite different

ways.

{
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APPENDIX A

CHARACTERISTICS OF SOME WIND POWER PLANTS

Some characteristics of the MOD-2, the WTS-3, the WTS 75 and the Growian 1
are listed in Table A.1 of this appendix. References to reports and papers
containing descriptions, simulation models, simulation plots and experiences are

also given. All of these four wind power systems are described in Koeppl (1982).

The MOD-2

The MOD-2 was designed by Boeing Engineering and Construction Company for
DOE-NASA. Three plants have been installed at Goodnoe Hills, Washington. They
are operated by the Bonneville Power Administration. References are Hinrichsen
and Nolan (1980), Krause and Man (1981), Sullivan (1981) and Wasynczuk, Man
and Sullivan (1981).

The WTS-3

The WTS-3 was designed by Karlskronavarvet AB, Sweden, and Hamilton
Standard, a division of United Technologies Inc, USA, for the National Swedish
Board for Energy Source Development (NE). Karlskronavarvet AB is a part of
Swedyard Group. One plant is installed at Maglarp, near the city of Trelleborg, in
southern Sweden. Sydkraft AB (The South Swedish Power Company Ltd.) operates
this plant. A 4 MW plant (the WTS-4) of the same design is installed in Medicine
Bow, Wyoming, USA. References are Kos (1978), Swedyards (1981, 1982),
Svensson and Ulén (1982), NE (1982), Bergman, Mattsson, and Ostberg (1981),
Mattsson (1982) and Bergman and Mattsson (1983).

The WTS 75

The WTS 75 was designed by KaMeWa AB, Sweden, for the National Swedish
Board for Energy Source Development (NE). A plant is installed at Nisudden in
the south-west of Gotland, Sweden. Statens Vattenfallsverk (The Swedish State
Power Board) operates the plant. References are NE (1982) and Mets and

. Hermansson (1983).
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The Growian I

The Growian I (Grosse Windenergie Anlage) was designed by Mashienenfabrik
Augsburg-Nurnberg Aktiengesellschaft (MAN-Neue Technologie) for the West
German Ministry for Research and Technology. A plant is installed at

Kaiser-Wilhelm-Koog which is located at the mouth of the river Elbe near the

North Sea. References are Hau (1982) and Leonhard (1979).

Table A.1: Major Characteristics

MOD-2 WTS-3 WIS 75 Growian I
Rated power [MHW] 2.5 3 2 3
Wind speeds
cut-in [m/s] 7.2 6 5.4
rated [m/s] 12.3 14.2 12.5 12.0
cut-out [m/s] 20 27.2 21 24
Rotor
blades 2 2 2 2
steel GRP-Epoxy*) steell) steelz)
location upwind downwind upwind downwind
yaw control hydraulic hydraulic hydraulic el .-mech
max rate [°/s] 0.25 1.2 0.5
hub type teetered teetered rigid teetered
hub height [m] 100 80 80 100
diameter [m] 100 78 75 100
speed [rpm] 17.5 25 25 18.5+15%
pitch control hydraulic hydraulic hydraulic el.-mech
outer 30% full span  full span full span
3)
Generator synch synch induction asynch
speed [rpm] 1800 1500 1500 1500
frequency [Hz] 60 50 50 50
Tower cyl cyl reinforced cyl
steel steel concrete steel
shell shell shell

%
1
2
3

)
)
)
)

Glass-Fibre Reinforced Plastic
with GRP-Epoxy leading and trailing edges

with a GRP-shell
doubly-fed




APPENDIX B

A MODULAR SIMULATION MODEL

»

A mathematical simulation model for a large horizontal axis wind turbine system
is presented. Older versions are presented in Mattsson (1982), as well as in
Bergman, Mattsson and Ostberg (1981) and Bergman and Mattsson (1983)). The

two last papers also contain simulation plots.

The model is intended to be a framework for simulation of the system behaviour
in different situations such as synchronization of the wind turbine generator
against the utility grid, normal operation under different wind conditions and
emergencies caused by faults in the plant or in the electrical network. The model
can for example be used for education, design verification, failure investigation

and when designing new controllers.

When developing a model for a complex system it is important to use a modular
and well structured approach. Particular attention has been given to the
modularization. The model is divided into subsystems to make it easy to modify
the model and adapt the complexity of a subsystem to the case to be simulated.
The interactive simulation package Simnon (Elmqvist (1975)) has been used.

Simnon allows good structuring and programming in a high level language.
The simulation model is adapted to the WTS-3. However, the modularization and
use of a high level language make it easy to adapt the mode! to other systems of

similar type.

To make the model manageable and not unnecessarily complicated some simplifying

assumptions of importance for the modularization are made.

Assumption B.1:

The synchronous generator is connected via an impedance to an infinite bus.

This means that the bus voltage and bus frequency are not affected by the
wind turbine system. The system is designed to supply power in parallel with

other electrical generators to a large utility grid. Consequently, the power
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supplied by the wind turbine system will only constitute a small portion. By
making the bus frequency and bus voltage time varying, it is possible to model

a large utility grid in both normal operation and during faults,

Assumption B.2:

The moment of inertia of the gearbox and shafts can be neglected.

If the moment of inertia of the gearbox is reduced to the generator side, it is
less than 10 % of the moment of inertia of the generator and, if it is reduced
to the turbine side, it is less than 2 % of the moment of inertia of the wind
turbine rotor. Simulations performed by ASEA (1980) show that this is a very
good approximation. This assumption means that, disregarding the gearing, the
drive train between the turbine and the generator can be modelled as one

spring with a damper.

Assumption B.3:

The nacelle is aligned in the direction of the wind.

The WTS-3 has an active yaw mechanism, but yawing will not be modelled

here.

Assumption B.4:

The blades are torsionally rigid and the pitch servo is not affected by the

wind.

Friedmann (1976) states that the blades of typical wind turbine are torsionally
rigid. The first frequency of torsional mode is high (for the WTS-3 about 37
rad/s).

Assumptions B.1 - B4 make it possible to draw a simple block diagram
(Figure B.1) that can be directly translated to a Simnon program. The block
diagram only defines which outputs each subsystem must provide and which
inputs are available. To increase the flexibility, the inputs and outputs of the
subsystems are chosen as unscaled, physical quantities. Sl-units are used.
However, to improve the numerics scaled quantities are used inside the
subsystems. Models for the different subsystems in Figure B.1 are discussed

below. The Simnon code for these models is given at the end of this appendix.
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Figure B.1: Model structure.
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Other mathematical simulation models for the complete system can be found in for
example Hwang and Gilbert (1978), Kos (1978), Hinrichsen and Nolan (1980),
Krause and Man (1981) (also in Wasynczuk, Krause and Man (1981)). These

reports and papers also contain simulation plots. These models are similar to that

given here. The differences are mainly in the aerodynamical part. Yawing is not

considered in any of these models. Unfortunately, none of the authors describes

how their models are programmed. The advantages with the model presented here

is that this model is modularized and programmed in a high-level modelling

language which makes the model flexible, readable and easy to modify and use.
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B.1 Wind Turbine

The wind turbine is considered in Section 2.3. Here the equations of motion for a
turbine with a teeter hub are given as well as analytical expressions for the
aerodynamical torques and thrust are given. Yawing is neglected and it is

assumed that the nacelle is aligned in the direction of the wind (Assumption B.3).

Equations of Motion

For a wind turbine with teeter hub the blades are rigidly mounted to each other
hinged to the main shaft by means of a teeter pin. This means that the flapping

angles satisfy (See Figure B.2)

®y + ¢, = Z(po = constant (B,1,1)

so the motion around the teeter pin can be described by one variable,

e = (¢, - 0,)/2 (B.1.2)
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Figure B.2: Wind turbine geometry.
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The first lead-lag oscillations (bending motions of the blades in the plane of
rotation) are modelled by viewing the turbine as a three mass system (hub and
two blades) connected by springs and dampers. Values for the equivalent blade
inertia JeB’ hub inertia JeH
rigid hub first edgewise frequency W, and operational first edgewise frequency

are achieved (Kos (1978))

and blade stiffness KeB are chosen so that correct

w

el

S = Uy + 235 w2 [ w2y (B.1.3)
S = {3y + 215) - I _}/2 (B.1.4)
Kp = J goor (B.1.5)

The first mode of the tower bendings perpendicular to the plane of rotation is
modelled. The influence of the tower on the nacelle is modelled as a spring with

damper

Fr = —(DTiT + Kpz,) (B.1.6)

Consider Figure B.2. The motion in the Y and ¢ directions assuming a rigid tower

is modelled by Hultgren (1979). His model, extended with the z._-motion, will be

T
used. Applications of Lagrange's equations yield the following equations of motion

(JeBcos (pi) \pi— 2JB<pi1bis1n @, cos @, + DeB(tbi— V)

]
|

- 2gSBcos ?; sin d)i + KeB(\I)i— P+ (i-1)n) i
i=1, 2 (B.1.7)

L}
1

JeH{f) - DeB(li’1+ 1]’2_ 2‘1’) - KeB(¢1+ \bz_ 2‘1) + ﬂ) (8.1.8)

gear

ZJB(p + SB(cos ¢, cos cpz) zo* (JB\blcos ¢y - gSB51n \|)1)S1n )

.2 . ) _
- (JB¢Zcos ®, - gSgsin d:z)sm ®, = Ttpi— 'I'(p2 (B.1.9)

" . <2 . 2
SB(cos ®, - cos (pz) © + MTZT - SB(<p151n ¢4+ ¢y5in (p2) = F21+ F22+ FT

(B.1.10)
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where

g Gravitational acceleration

P Azimuth angle of hub

11)1, 11:2 Azimuth angles of blades

SB Static moment of one blade

MT Mass of the nacelle

T i’ T(pi Aerodynamical torques

in Aerodynamical thrust

Tgear Driving torque to the gearbox
FT Reaction thrust from the tower

Aerodynamical Thrust and Torques

The aerodynamical thrust and torques can be obtained by applying static and

two-dimensional airfoil theory to each cross section of the blades.

It is assumed that over the rotor disc the wind speed U(r,pt) of the oncoming

undisturbed wind (as if there was no wind power plant) can be written as

U(r,¥,t) = Uo(t) + Ux(t) r cos  + Uy(t) r sin ¥} (B.1.11)

It is also assumed that U(r,t) and the wind speed Ud(r,\!),t) at the rotor disc are

related as

U (rob,t) = (1-a(t)) U(r.b,t) (B.1.12)

where a(t) is the interference factor.

The tower has a significant effect on the flow especially for turbines downwind of
the tower. The wake depends critically on the aerodynamical properties of the
tower and is difficult to model. However, the form of the wake is probably not
critical for the intended use of this model. A common modification for the wind at

the i:th blade is given by the factor

1-C cos(1—r ——ii), W.- nl < o
2 o i
q; (¥;) =
1 otherwise (B.1.13)

~

= where “’i = ‘bi mod 27,
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The pitch distribution of the blades is assumed to be of the form

R
Bls) =By +3

62 (B.1.14)
The profile lift increment is assumed to depend linearly on the angle of attack.

The profile drag increment is assumed to be independént of the angle of attack.

Consequently, stalling is not modelled. Introduce

A= (1-a)u0/(R¢i) (B.1.15)

u, = R(chos by ¥ Uysm ll)i)/Uo (B.1.16)

Lengthy calculations, ignoring terms of the orders O()\i4) and O()\i3q'>i) and

nonlinear terms in u,, q'>i and z.. give (Hultgren (1979) extended with the motion

T

in the z. direction)

_13:2 3
T,i= oR vicos e, {(AB +A B )A; + AjA

2

1 3
i+ 5(AgB *A_1B,)A] - B,}

12. 2 3 2, .
- gRcos%e, {{(AB1+A8,) + 280, + S(A B +ASB )AL} &

3 2, :
+ {(A231+A1[32) + 2AA, E(A061+A—162)Ai} z cos (pi},

i=1, 2 (B.1.17)
1, .3

C1.3.2 2 1 2
T,i™ R Vicos e {(Ag8 +A8,) + (Ay+By)A; + 5(AB +AB,)AT + gAoAT}

1.2, 1, 2,
- R7V;c0s @, {{(Ay+By) + (A8 +AB A + FAAT} &,

1, .2 .
+ {(Ay*B,) + (AB *AB A, + SAAT) 2 cos ¢i},
i=1, 2 (B.1.18)

1.2:2 3 1 2 1. .3
F,i= gR bicos o, {(A8,+AB)) + (Aj+By)A; + S(ASB +A_,B)) Aj+ gh_1A}

1, . 2 1, .2, .
= R byc0s7e, {{(Ay4B,) + (AB *AGB)A; + AT} &,

1, 2,
+ {(A*By) + (ABy+A_Bo)A; + 5A 4AT} Zpcos o},

i=1,2 (B.1.19)

" where

IR RY (B.1.20)
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éi = Réi - qiRcoszwi(i—a)(chos ¥; + Ugsin ¥, ) (B.1.22)
The blade constants A-—l’ AO’ Al' A2' A3, Bl’ B2 and B3 are defined as
R
A, = gaR-a [ cas® ds (B.1.23)
0 EY
R
B = o R é eCps” ds (B.1.24)

where e, is the density of air, c the local chord length, a the lift curve slope of

the blade section and CD the profile drag coefficient of the section.

The interference factor a(t) can be calculated by using momentum theory (esg.

Shepherd (1978)). The generated power is

2 2.3
P =n, 20 7R a(1-a) Yg (B.1.26)
where np is the degree of power efficiency of the blades. The relations (B.1.17),
(B.1.26) and
P = 1|)1TM+ IPZT\PZ (B.1.27)

give (neglecting the effects of wind profile, teetering, tower motions, tower

shadow and lead-lag oscillations)

[y 20,mR% + L(Ag8,*A_By) } 2% - {ng 20 nR” Uy/ (RD) - A} 22

+ (A8, +AB,) A - By =0 (B.1.28)

where )\ = (1-a)U0 /(RY)

Representation of the Azimuth Angle ¥

From the equations (B.1.1) - (B.1.28), it can be seen that the azimuth angle y enter
the model only as sin P, cos ¥ and § mod 27 (c.f. the discussion in B.3). Since ¥

is increasing with time, it is better numerically to calculate ¥ from the equations

. . 2 2
X, = - %X, 4 ax1(1 - X - x2) (B.1.29)
. . 2 2
X, = ) Xy + ozxz(l - X - xz) (B.1.30)

[
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with the interpretation cos Y = x, and sin § = Xy For o > 0 the second term in

1
the right hand of (B.1.29) and the second term in the right hand of (B.1.30)

guarantee amplitude stability so that xf + xg is kept close to one;
d , 2 2 2 2 2 2
E(x1 + xz) = oc(x1 + xz)(l - x{ - x2) (B.1.31)

B.2 Synchronous Generator

The basic idea behind standard models for synchronous generators is presented
in Chapter 2.4 together with references. It has become a common practice to use
a standard set of parameters and state variables when modelling synchronous
generators. This standard will be used. To simplify the model and to improve its
numerical properties, the voltages, currents and impedances are in per unit based

upon the machine rating.

Svnchronous Machine Equations

Kirchhoff's law equations give for the rotor circuits f, x and y (See Figure 2.8)

X,-X" X.,-x!

. d “d d d
e' = (Vo -5+ e +ove')/ T (B.2.1)
q f Xd—Xd q Xd—Xd q do
e = —(e" - (X - X") i T" B.2.2
ey = —(ey - (Xg- X2) i) / T2 (B.2.2)
e " (eq—eq-— (Xd—Xd) 1d)/Tdo (B.2.3)
and for the stator circuits

. " "3 W \
vy = Ry (ed + quq) ;—)0 + (B.2.4)

S " m"a w Y
Vg = —Ralq + (eq - Xdld) (-:,0 + Aq (B.2.5)
)‘d = (ea - Xéiid)/“’o (B.2.6)
)‘q = —(ed + quq)/wo (B.2.7)
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where

wg synchronous circular frequency

A d d-axis stator flux linkages

Aq g-axis stator flux linkages

ec'1 voltage behind transient reactance (propgrtional to the field flux
linkage A of the field circuit f)

Ve generator field voltage

ea, e('l' d-axis and q-axis components of voltage behind subtransient
reactance (proportional to the flux linkages >‘y and )\x of the circuits
y and x).

X q Xq d-axis and g-axis synchronous reactances

Xc'1 d-axis transient reactance

X('i, X; d-axis and g-axis subtransient reactances

T('lo d-axis transient open circuit time constant

T&O’ T(']'O d-axis and g-axis subtransient open circuit time constants

Ra armature resistance

The armature voltage and current of phase a are given by

v v,cos 6 - vqsin ] (B.2.8)

a d

a = igc0s 8 - isin 0 (B.2.9)

i
where 0 is the electrical position of the rotor and

6 =w (B.2.10)

The generator is assumed to be connected to an infinite bus through a line and a

transformer with the impedance R, + le (Assumption B.1). The bus voltage of

1

phase a is assumed to be ViusteS ebus' Kirchhoff's law equations describing this

connection are

Xi1g = wg(vy = vp,eSin 8) - wRyiy + lelq (B.2.11)
X11q = wo(vq = Vius€OS 5) - wk iy - lelq (B.2.12)
where & is the power angle defined as

56 =0 - ebus (B.2.13)
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The equations are rearranged, because (B.2.4), (B.2.6) and (B.2.11) and (B.2.5),
(B.2.7) and (B.2.12) contain algebraic loops. Eliminating A, and )\q and solving for
v ,i,and i give

q q

Va d

v {(eg + xaiq)w + é; - xaid} | wy = R (B.2.14)

d d

v_ = {(eq - X81d)w - el + quq} / wy - R i

5 alq (B.2.15)

oo
i

g = {oleg (XX )i T = wgl (R *R))ighv,, sin 8] + &2}/ (Xg#k))  (B.2.16)

[
1

= {w[e;—(X3+X1)id] - wol (R #R) )i #vy, cc0s 8] - éa}/(xa+x1) (B.2.17)

Equation of Motion

The mechanical angular speed of the rotor is

w = w/ (p/2) (B.2.18)

where p is the number of poles. Differentiation of (B.2.13) gives

=P -
b=35w - W (B.2.19)
The equation of motion, or swing equation is
0 o= - _P
w = (Tm mem 5 Te) / Jgen (B.2.20)
Sbase
T, = _‘:’E—— (eqlq +egig - (Xd——Xq)ldlq) (B.2.21)

where Tm is the mechanical torque driving the generator, mem represents
constant friction torque, Te is the torque developed by the generator (in Sl-units)

and Jgen is the moment of inertia of the generator.

Disconnection

When the generator is disconnected, the currents i d and i should be reduced to
zero. This is done by assigning constant values to their derivatives so that they
are reduced to a small value within a few milliseconds. When the generator is
disconnected from the grid, & may increase. Since it is only 5 mod 27 that are
interest cos & and sin & can be used as states instead of & itself as done in

. (B.1.29) and (B.1.30).
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Model Simplification

The generator model given above contains as shown in Chapter 2.4 both fast
modes (in the millisecond range) and slow modes (in the second range) which
makes the model computationally slow. The fast modes are only of interest if the
behaviour of the electrical wvariables are studied. .If only the mechanical
oscillations are investigated, the fast modes can be neglected The improvement in
computational speed is considerable. Janischewskyj and Prabhashankar reports in
the discussion of Olive's paper (1968) that in a particular study it was possible to
increase the step size 50 times (from 1 ms to 50 ms), if the ;\d and j‘q terms in
(B.2.4) and (B.2.5) were neglected. This means that (B.2.4) and (B.2.5) do not

depend on i, and iq. The algebraic loops have disappeared and only (B.2.11) and

d

(B.2.12) have terms dependent on id and iq' If )(l is small, these derivatives can be
eliminated from the model. Further assuming « = w, in (B.2.4), (B.2.5), (B.2.11)

and (B.2.12) gives

0

Vd = ed + quq - Rald (B.2.22)

Vg = Cq " Xyig - Ralq (B.2.23)

iy = {(Ra+R1)(e3 - VpusSin &) + (X;+X1)(e; = Vpus©oS 8)}/% (B.2.24)

iq = {(Ra+R1)(e; = Vpus©OS 5) - (X5+X1)(ea - vbussin 8)}/% (B.2.25)
2 " 17"

L= (RHR)T + (X)) (X)) (B.2.26)

The equations (B.2.1}) - (B.2.3), (B.2.8) - (B.2.10), (B.2.13) and (B.2.18) - (B.2.26)
constitute a simplified model. Krause, Nozari, Skvarenia and Olive (1979) discuss

the implications of these approximations.

B.3 Drive Train and Gearbox

The wind turbine is connected to the synchronous generator through a
multi-stage planetary step-up gearbox. The gearbox is not rigidly mounted but
suspended with springs and hydraulic dampers. According to Assumption B.2, the
drive train can be modelled as a spring and a damper. The torsion ¥ of the

spring viewed from the wind turbine side is

¥ = (- 0 /N)/ (1= YN (B.3.1)
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where ¥ is the azimuth angle of the wind turbine, em is the the mechanical
position of the rotor of the generator and Ng is the step-up gear ratio. However,
(B.3.1) causes numerical difficulties, since ¥ and wm/Ng are increasing and of the

same size. The difficulties are avoided if the relation is expressed as

¥ = (b= /N (L - 1N ‘ (B.3.2)

Torque and energy balance give

Toear = ~To/ (1 = 1/N) (B.3.3)

T, = -T/(N, - 1) (B.3.4)

where Tgear is the driving torque from the wind turbine, Tm is the torque
driving the generator and T‘d is the reaction torque of the gearbox suspension.

The suspension consists of springs and hydraulic dampers thus giving TX as

T =T+ T (B.3.5)

where TSp is the reaction torque from the springs and T d is the reaction torque
from the dampers. The suspension is soft in the interval y . <y <y and
min max

outside this it is much stiffer so that

_KgOXmin - Kgi(x - Xmin) ’ ¥ < ¥pin
Tsp= _KgOY’ ¥nin® ¥ € ¥max (B.3.6)
—Kgoxmax - Kgi(x - xmax) © ¥pax< ¥

Two models for T q are given., The hydraulic dampers can be modelled to have

either a linear characteristic

-4
[}

- max (-T , mln(Tdmax’

dmax DgI% ) ) (B.3.7)

or a quadratic characteristic

-
I

= _ max(-—TdmaX, min(Tdm , Dgzlxlx ) ) (B.3.8)

ax
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B.4 Pitch Servo

The pitch angles of the blades can be controlled by changing the pitch angle
reference signal to the hydraulic pitch change mechanism. The dynamics from the
servo reference Br to the pitch angle of blade at 3/4 radius B3 /4 (convention of
Hamilton Standard) of the WTS-3 is modelled as a first order system with limits

on the rate:

B3/4 = min(B, ., max(B (B = B3/4)/Tps)) (B.4.1)

min’

where T, is the time constant of the pitch servo and fS and ﬁ . are the
bs ma min

X
maximum and minimum rate limits.

B.5 Wind

It is possible to use measured wind data sequences when simulating the system
behaviour in Simnon. It is also a simple task to write a subsystem that simulates
discrete wind gusts of a given shape. The turbulence models suggested in the
literature can be simulated by using random number generators provided by
Simnon. As an example a subsystem simulating the longitudinal turbulence
according to the model suggested by Holley et al (1981) is enclosed. See
Section 3.2, model (3.7).

B.6 Bus

The generator is assumed to be connected to an infinite bus via an impedance
Rl + le (Assumption B.1). This means that the bus voltage and bus frequency are
not affected by the wind turbine system. By making the bus frequency and bus
voltage time varying it is possible to model a large utility grid in both normal

operation and during faults. Consider the following example.

S
V
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Wrs-3

%

Figure B.3: Simplified bus model for transient stability simulations.

The integration of the WTS-3 prototype into the local electrical grid in southern
Sweden is of great interest. A simple model was developed for the grid. See
Figure B.3. A 3-phase fault in different locations (a-g} can be modelled by
reducing the faults to step-changes in the bus voltage. Impedance variations are
very small due to the transformers and can be neglected. The enclosed bus model
simulates 3-phase faults by changing the bus voltage to a given level at a given
point of time. After a given time the bus voltage is reset to normal level,
simulating breaker action in the line where the fault was applied. The system also

models stochastic variations in the bus frequency.
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B.7 Excitation System and Voltage Controller

The excitation system of the generator of the WTS-3 use an AC alternator and a

rotating rectifier to produce the direct current needed for the generator field. A

Type 1 standard IEEE representation (IEEE Committee Report (1968)) including

non-linear saturation effects is used to model the excitation system and voltage

controller. See Figure B.4.

Exciter
Regulator amplifier -Sg (Vy)
VREF
VR max
K
T 1+sTA KE+sTE
VR min
Vg
—sKF
1+STF
Regulator stabilizing circuit

Figure B.4: IEEE Type 1 excitation system representation for a continuously acting

regulator and exciter without input filter.

i

o
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B.8 Pitch Angle Controller

The Simnon code for the pitch angle controller used in Section 5.3 for the

simulations shown in Figures 5.17 - 5.19 is given as an example in Section B.9.

B.9 Simnon Code

The Simnon code for the models presented above is given below as follows:

Wind Turbine 154
Synchronous Generator 159
Drive Train and Gearbox 162
Pitch Servo 164
Wind 165
Bus 167
Excitation System and Voltage Controller 169
Pitch Angle Controller 171

Connecting System 175
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CONTINUOUS SYSTEM TURBINE

"File: TURB6

"

"Version: 1984-02-17

"Author: Sven Erik Mattsson

" Department of Automatic Control

Lund Institute of Technology, Sweden

"Description:

Models a horizontal axis, variable pitch downwind
turbine with two blades mounted on a teetered hub.
The teeter motion is modelled.

" The blades, the nacelle and the tower are modelled as
rigid bodies. However, the first edgewise blade
motions can be modelled (see parameter leadlag)

The nacelle is assumed to be aligned in the direction
of the wind. Consequently, yawing is not modelled.

It is assumed that over the rotor disc the speed

U(r, psi, t) of the oncoming, undisturbed wind (as

if there was no wind power plant) can be written as

U(r,psi,t) = U0 + Ux rcos(psi) + Uy rsin(psi)

The aerodynamical torques are calculated under the
assumption that the inflow ratio

" lambda = UO/ (Rxpsidot} is small (0.05 < lambda < 0.2).

Stalling is not modelled.

"References:

" Hultgren L S (1979): Torsional Oscillations of the
" Rotor Disc for Horizontal Axis Wind Turbines with
" Hinged or Teetered Blades. Technical Note AU-1499
" part 12, The Aeronautical Research Institute of
Sweden.

13]

INPUT beta7?5 Tgear UO Ux Uy
OUTPUT zT zTdot

STATE psidot cospsi sinpsi fi fidot =xzT xzTdot
STATE delpsil delpldot delpsi2 delp2dot

DER Dpsidot Dcospsi Dsinpsi Dfi Dfidot DxzT DxzTdot
DER Ddelpsii Ddepidot Ddelpsi2 Ddep2dot

"Inputs:

"  beta75 pitch angle of blade at 3/4 radius [rad]

" Tgear torque to drive the gearbox [Nm]

" U0 mean wind speed [m/s] over the rotor disc
=" Ux measure of the wind speed variation [1/s]

" over the rotor disc in vertical direction

" Uy measure of the wind speed variation [1/s]

as well as the first tower mode (see parameter tbend).

P




" over the rotor disc in horizontal direction

"Outputs:

"o2T nacelle displacement [m] and

" zTdot nacelle velocity [m/s] in thrusting direction
"States:

" psidot angular velocity of hub [rad/s]

cospsi  cos(psi) and

sinpsi sin(psi), where psi is the azimuth angle

" (for psi = O blade #1 is pointing upwards)

" fi flapping angle [rad]
" fidot angular flapping velocity [rad/s]
" oxzT nacelle displacement [m] and

"  xzTdot nacelle velocity [m/s] in thrusting direction
" if the tower bendings are modelled

(see parameter tbend)

" delpsil lead/lag position [rad] of blade #1; angular

" position of the blade is psit+delpsil

" delpsi2 ditto, but blade #2

"  delpidot lead/lag velocity [rad/s] of blade #1; angular
" velocity of the blade is psidot+delpidot

" delp2dot ditto, but blade #2

c0 = (4/3)xbeta2
betal = beta75 - cO
betail = betal "for blade #1
betal2 = betal "for blade #2
psi = atan2(sinpsi, cospsi)
psil = if leadlag then psi + delpsil else psi
psi2 = if leadlag then psi - pi + delpsi2 else psi - pi
psildot = if leadlag then psidot + delpidot else psidot
psi2dot = if leadlag then psidot + delp2dot else psidot
fil = fi0 + fi
fi2 = fi0 - fi
todeg = 180/pi

fiideg = todegxfil

fildot = fidot

fi2dot = —fidot

zT = if tbend then xzT else O
zTdot = if tbend then xzTdot else O

" Calculate the aerodynamical torques and thrust

Al1pB1 = A1+B1
A2pB2 = A2+B2
A3pB3 = A3+B3
Amib2 = Amixbeta2
AOb2 = AOxbeta2
A1b2 = Alxbeta2
A2b2 = A2xbeta2

AOb1
AOb11

AOxbetal + Amib2
AOxbetall + Amib2
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AObi2 = AOxbetal2 + Amlb2

Alb11 = Alxbetall + AOb2

Albl12 = Alxbetal2 + AOb2

A2b1 = A2xbetal + Alb2

A2b11 = A2«betail + A1b2

A2b12 = A2xbetal2 + A1b2

A3b11 = A3xbetall + A2b2

A3b12 = A3xbetal2 + A2b2 :

"

Calculate the interference factor a

c01 = np*2«rairxpi*R«R
lambda0 = U0/ (Rxpsidot)

b13 = c01 + 0.5%xA0b1
b12 = A1 - cO1xlambdaO
b1l = A2b1

bi0 = -B3

v01l = -0.5%xb12/b13

y0 = v01 + sqrt(v01xv01 - b11/b13)
v02 = (3xb13xy0 + 2xb12)xy0 + bil

yl = y0 - b10/v02
v03 = ((bi3xy1l + b12)xyl + bi1)xyl + bi0
v04 = (3+b13xyl + 2xb12)syl + bi1

y2 = y1 - v03/v04
v05 = ((b13xy2 + b12)*y2 + bl1)xy2 + b10
v06 = (3xb13xy2 + 2xbi12)xy2 + bill

lambda = y2 - v05/v06

b = lambda/lambda0 " b = 1-a

"

Tower blockage

psiilmpi = if psil<0 then psil+pi else psil-pi
psi2Zmpi = if psi2<0 then psi2+pi else psi2-pi
cl = pi/2/span
ql = if abs(psilmpi)<span then 1-amp*cos{clxpsilmpi) else 1

q2 = if abs(psi2mpi)<span then 1-ampxcos(clxpsi2mpi) else 1
1ql = q1xbxU0/ (Rxpsildot)
1g2 = q2xbxU0/ (Rxpsi2dot)
vibl = ((0.5«xAO0b11x1q1+A1)x1q1+A2b11)x1q1-B3
vib2 = ((0.5+xA0b12x1q2+A1)x1q2+A2b12)x1q2-B3
v2bl = (1.5¢+A1b11x1q1+2+A2)*1q1+A3b11
v2b2 = (1.5xA1b12x1q2+2xA2)x1q2+A3b12
v3bl = (1.5xA0Ob11x1q1+2xA1)x1q1+A2bi1
v3b2 = (1.5xA0b12x1q2+2xA1)x1q2+A2b12
vabl = ((AO/6.0%1q1+0.5%xA1b11)x1q1+A2pB2)*1q1+A3b11
v4b2 = ((AO/6.0%1q2+0.5%xA1b12)x1q2+A2pB2)*1q2+A3b12
v5bl = (0.5xA1x1q1+A2b11)#1q1+A3pB3
vEb2 = (0.5xA1x1q2+A2b12)+1q2+A3pB3
v6bl = (0.5xA0x1q1+A1b11)x1q1+A2pB2
v6b2 = (0.5xA0x1q2+A1b12)x1q2+A2pB2
v7bl = ((Am1/6.0+1q1+0.5xA0b11)*1q1+A1pB1)x1q1+A2b11
- v7b2 = ((Am1/6.0%1q2+0.5xA0b12)x1q2+A1pB1)*1q2+A2b12

v8b1l = v6bl

v8b2 = v6bh2




vObl = (0.5xAm1x1q1+AOb11)x1q1+A1pB1
vOb2 = (0.5xAm1x1q2+A0b12)x1q2+A1pB1
cosfil = cos(fil)

cosfi2 = cos(fi2)

v20bl = Rxpsildotxcosfil

v20b2 = Rxpsi2dotxcosfi2

v21bl = 0.5xRxcosfilxv20bi :
v21ib2 = 0.5%xRxcosfi2xv20b2

v22bl = 0.5xRxv20bl

v22b2 = 0.5xRxv20b2

v23bl = 0.5xcosfilxv20bl

v23b2 = 0.5xcosfi2xv20b2

v31lbla = Uxxcos(psil)+Uyxsin(psil)

v31b2a = Uxxcos(psi2)+Uy*sin(psi2)

v31b1l = R+ (fildot - qlxcosfilxcosfilxbxv3ibla)
v31b2 = R« (fi2dot - q2xcosfi2xcosfi2xbxv31b2a)
v32bl = zTdotxcosfil

v32b2 = zTdotxcosfi2

Tpsil = v21blx (v20bilxvibl-(v2b1lxv31b1+v3bixv32bl))
Tpsi2 = v21b2x (v20b2*xv1b2-(v2b2xv31b2+v3b2xv32b2))

Tpsi = Tpsil + TpsiZ2

Tpsip = 100.0xTpsi/Tpsirat

Tfi1 v22b1x (v20b1xv4b1l-(v5bixv31b1+v6blxv32b1)

Tfi2 v22b2x (v20b2xv4b2- (v5b2xv31b2+v6b2xv32b2)
)
)

)
)
Tfi = Tfil - Tfi2

FzT1 v23blx (v20b1xv7bl-(v8b1xv31bl+vObixv32bl

FzT2 v23b2# (v20b2xv7b2- (v8b2xv31b2+vIb2+v32b2
FzT = FzT1 + FzT2

)
)

" The equations of motion

TBpsil KBpsixdelpsil + DBpsixdelpidot

TBpsi2 KBpsix*delpsi2 + DBpsixdelp2dot

vdl = 1.0 - sinpsixsinpsi - cospsixcospsi

v42 = TBpsil + TBpsi2 - Tgear

v43bl = gxSBxsin(psil) + 2xJBxpsildotxfildot*sinfil
v43b2 = gxSBxsin(psi2) + 2xJBxpsi2dotsxfi2dotxsinfi2
v44 = v43blxcosfil - TBpsil + Tpsil

v45 = v43b2«cosfi2 - TBpsi2 + Tpsi2

Jtot = 2xJeB+JeH

Dcospsi = -psidotxsinpsi + v41lxcospsi
Dsinpsi = psidotxcospsi + v4lxsinpsi

Dpsidot if leadlag then v42/JeH else (v42+v44+v45)/Jtot
Ddelpsit if leadlag then delpldot else O

Ddelpsi2 if leadlag then delp2dot else O

Dpsildot if leadlag then v44/JeB else Dpsidot

Dpsi2dot if leadlag then v45/JeB else Dpsidot

=~ Ddep2dot Dpsi2dot - Dpsidot
sinfil = sin(fil)

Ddepldot = Dpsildot - Dpsidot
= s
sinfi2 = sin(fi2)
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FT = KTxzT + DTxzTdot
v51 = SBxfidotsxfidotx (sinfil+sinfi2) - FT + FzT
v52b1 = JBxpsildotxpsildotxcosfil - gxSBxcos(psil)
v52b2 = JBxpsi2dotxpsi2dotxcosfi2 - gxSBxcos(psi2)

vB2 = -v52bixsinfil + v52b2xsinfi2 + Tfi

cd4l = 2xJB

v53 = SBx (cosfil-cosfi2)

v54 = MTxc41l - vB3xv53
Dfi = fidot
Dfidot = if tbend then (MTxv52 - v53xv51)/v54 else v52/cai
DxzT = if tbend then zTdot else O

DxzTdot = if tbend then (c41xv51 - v53xv52)/v54 else O

"Parameters:
pi: 3.14159265
g: 9.81 "gravitational acceleration [m/s"2]
rair: 1.3 "density of air [kg/m"3]
R: 39.08 "length of blade [m]
np: 0.70 "degree of power efficiency of the blades
Am1: 3126 "aerodynamic integral [kg/m]
AO: 759 " [kg/m]
Al: 362 " [kg/m]
A2: 211 " [kg/m]
A3: 142 " [kg/m]
B1: 0.417 " [keg/m]
B2: 0.236 " [kg/m]
B3: 0.158 " [kg/m]
beta2: -0.0506 "twist angle of blade [rad]
fi0: 0.10472"steady coning angle [rad]
JB: 2.50E6 "moment of inertia of blade
"in fi-direction [kgm"2]
SB: 1.16E5 "static moment of blade [kgm]
amp: 0.3 "maximal velocity defect in the rotor

"disc due to the tower blockage

span: 0.1 "when abs(psii-pi)<span [rad] the wind
"at blade #i is modified by the factor
" 1-ampxcos(pi/2* (psii-pi)/span)

leadlag: 1.0 "if true the first edgewise blade
"mode is modelled

DBpsi: 1.48E6 "equiv. eff. damping of blade
"in psi-direction [Nms/rad]

KBpsi: 1.45E8 "equiv. eff. stiffness of blade
"in psi-direction [Nm/rad]

JeB: 9.25E5 "equiv. eff. moment of inertia of

"blade in psi-direction [kgm"2]

JeH: 3.2E6 "equiv. eff. moment of inertia of
"hub in psi-direction [kgm~2]
tbend: 1.0 "if true the first tower mode is modelled
MT: 2.14E5 "equiv. eff. mass of nacelle [kg]
KT: 9.38E5 "equiv. eff. stiffness of tower [N/m]
DT: 1.1E4 "structural damping coefficient of

"tower [Ns/m]
- Tpsirat: 1.146E6"rated turbine torque [Nm]
END




CONTINUOUS SYSTEM GEN

"File: GEN12

1"

"Version: 1984-02-23

"Author: Sven Erik Mattsson

" Department of Automatic Control

Lund Institute of Technology, Sweden

"

"Description:

Models a synchronous generator connected to an infinte
bus through an external impedance. The model is a Park
model. Besides the field winding two fictitious
windings (one in the direct axis and the other in the
quadrature axis) are inserted to account for the
effects of currents in the iron parts of the rotor

or in damper windings. The stator dynamics can be
included in the model (see parameter statdyn).

"References:

" Olive D W (1968): Digital Simulation of Synchronous
" Machine Transients. IEEE Trans. on Power Apparatus
" and Systems, Vol. PAS-87, August 1968, 1669-1675.
INPUT Tm fbus vbus vf Rl X1 ON

OUTPUT wm Pe vd vq id iq

STATE delta wmrel eqp edpp eqpp xidpu xigpu

DER Ddelta Dwmrel Deqp Dedpp Deqpp Dxidpu Dxiqpu

"Inputs:
" Tm input torque [Nm]
" fbus bus frequency [rad]
" vbus bus voltage [V]
" v generator field voltage [V]
" Rl line resistance [ohm]
" X1 line reactance [ohm]
" ON if true the generator is connected
"Outputs:
" wm mechanical angular velocity of rotor [rad/s]
" Pe generator power [H]
" wvd d-axis component of armature voltage [V]
" vq g-axis component of armature voltage [V]
"ooid d-axis component of armature current [A]
" iq g-axis component of armature current [A]
"States:
~" delta power angle [rad]
" wmrel relative mechanical angular velocity of rotor

"

eqp voltage behind transient reactance [pu]

Saturation is not modelled. Symmetrical load is assumed.
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" edpp d-axis component of voltage behind

" subtransient reactance [pu]

" eqpp g-axis component of voltage behind

" subtransient reactance [pu]

" xidpu d-axis component of armature current [pu]
" if the stator dynamics is modelled

" xigpu g-axis component of armature current [pu]

Y

" if the stator dynamics is modelled

twopli = 2xpi

w0 = twopixfO
pdiv2 = p/2

wmO = w0/pdiv2
wm = wmOxwmrel

w = wOxwmrel

sind = sin(delta)
cosd = cos(delta)
Tbase = Sbase/w0

vbuspu = vbus/Vbase
Rlpu = Rl/Zbase
Xlpu = X1/Zbase

Ddelta = w -~ twopixfbus
c52 = Xdpp-Xqpp

Tepu = eqppxigpu + edppxidpu - cb2xidpuxiqgpu
Te = TbasexTepu

c54 = 100xwO/Penom
Tep = c54xTe

c53 = wmOxJgen

Dwmrel = (Tm - Dmxwm - pdiv2xTe)/c53

c61 = (Xd-Xdpp)/ (Xdp-Xdpp)
c62 = (Xd-Xdp)/ (Xdp-Xdpp)

Deqp = (vf/Vbase - c6lxeqp + c62xeqpp)/TdOp
c? = Xq-Xqpp

Dedpp = (c7+igpu - edpp)/TqOpp

c8 = Xdp-Xdpp

Deqpp = (eqp - eqpp - c8xidpu)/TdOpp
c91 = Xdpp+Xlpu
c92 = Xgpp+Xlpu
c93 = Ra + Rlpu
c94 = c93%xc93 + c91xc92
v41l = edpp + c92xiqpu
v42 = ¢93xidpu + vbuspuxsind
v43 = if abs(idpu)<eps then O else -Dioffxsign(idpu)
vd4 = edpp - vbuspuxsind
v45 = eqpp - vbuspuxcosd

Dxidpul = if ON then (wxv41-wOxv42+Deqpp)/c91 else v43
Dxidpu = if statdyn then Dxidpul else O

idpustat = if ON then (c93xv44 + c92xv45)/c94 else O
idpu = if statdyn then xidpu else idpustat

v51 = eqpp - c91xidpu
v52 = ¢93xigpu + vbuspuxcosd
v63 = if abs(iqpu)<eps then O else -Dioffxsign(igpu)

Dxigpul = if ON then (wxv51-wOxv52-Dedpp)/c92 else v53
Dxigpu = if statdyn then Dxigpul else O




iqpustat = if ON then (c93xv45 - c91xv44)/c94 else O
igpu = if statdyn then xiqpu else iqpustat

vl = edpp + Xgpp*xigpu
vdpul = if statdyn then (w*v1+Deqpp—Xdpp*Dxidpu)/wO else vi
vdpu = vdpul - Raxidpu
v2 = eqpp - Xdpp*xidpu
vgpul = if statdyn then (wxv2-Dedpp+Xqpp*Dxiqpu)/w0 else v2
vgpu = vgpul - Raxiqpu
vpu = sqrt(vdpuxvdpu + vgpusvgpu)
ipu = sqrt(idpuxidpu + idpuxidpu)
id = Ibasexidpu
iq Ibasexigpu
vd Vbasexvdpu
vq = Vbasexvgpu

Ppu = vdpuxidpu + vgpuxigpu
Qpu = vgpuxidpu - vdpuxigpu
Spu = sqrt ( (vdpusvdpu+vgpusvgpu)* (idpuxidpu+iqpuxiqgpu))

cosfi = if Spu>eps then Ppu/Spu else 1
sinfi = if Spu>eps then Qpu/Spu else 0
Pe = SbasexPpu
Q = SbasexQpu

"Parameters:
pi: 3.14159265
fo: 50.0 "synchronous frequency [1/s]
p: 4 "number of poles
Dm: 0 "constant friction torque [Nms/rad]
Jgen: 160.0 "moment of inertia of generator [kgm"2]
Penom: 3.0E6 "rated power [W]
Sbase: 3.33E6 "base power [VA]
Vbase: 6600 "base voltage [V]
Ibase: 292 "base current [A]
TdOp: 2.34 "d-axis transient open circuit
"time constant [s]
TdOpp: 0.163 "d-axis subtransient open circuit
"time constant [s]
TqOpp: 0.03 "gq-axis subtransient open circuit
"time constant [s]
Zbase: 13.2 "base impedance [ohm]
Ra: 0.0 "armature resistance [pu]
Xd: 1.8 "d-axis synchronous reactance [pu]
Xdp: 0.274 "d-axis transient reactance [pu]
Xdpp: 0.202 "d-axis subtransient reactance [pu]
Xq: 0.78 "q-axis synchronous reactance [pu]
Xqgpp: 0.30 "q-axis subtransient reactance [pu]
statdyn: 1.0 "if true the stator dynamics is modelled
Dioff: 500 "current decrease rate when disconnecting
"the generator [pu/s]
eps: 1.E-3 "test quantity for off-line

END

i61
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CONTINUOUS SYSTEM GEAR

"File: GEAR4

”

"Version: 1984-02-23

"Author: Sven Erik Mattsson

" Department of Automatic Control

" Lund Institute of Technology, Sweden
"Description:

" Models the drive train and the gearbox as a
" nonlinear spring and a hydraulic damper with
either a linear or quadratic characteristic.

INPUT psidot wm
OUTPUT Tgear Tm

STATE gamma

DER Dgamma

"Inputs:

" psidot angular velocity of wind turbine [rad/s]
" wm mechanical angular velocity of generator
" [rad/s]

"Outputs:

" Tgear driving torque from the turbine [Nm]

" Tm input torque to generator [Nm]

"States:

" gamma torsion angle [rad]

Dgamma = (psidot - wm/Ng)/{1-1/Ng)

Tgear = -Tgamma/ (1-1/Ng)
Tm = -~Tgamma/ (Ng-1)
Tgamma = Tsp + Td

cl = -KgOxgmin

c2 = -KgOxgmax
Tsp0 = -KgOxgamma
Tspl = if gamma<gmin then c1-Kgix(gamma-gmin) else TspO
Tsp = if gamma<gmax then Tspl else c2-Kglx (gamma-gmax)
Td1 = -DgixDgamma
Td2 = -Dg2xDgammaxabs (Dgamma)

Tdul = if LIN then Tdl else Td2
Td = max(-Tdmax, ( min(Tdmax,Tdul) ) )
Pdamp = -DgammaxTd

~Tdp = 100%Td/Tdmax




"Parameters:
Ng: 60.
KgO:

Kg1i:

LIN: 1
Dg1: 3
Dg2: 4
Tdmax: 3
gmax: o
gmin: -0

END

7.

7.

7E6

7E8

.0E6

.88E8

.8E5

.35
.05

"gear ratio between generator side
"and turbine side

"lower spring coefficient (ref. to
"the turbine side) [Nm/rad]

"higher spring coefficient (ref. to
"the turbine side) [Nm/rad]

"if true the damper characteristic
"is linear else quadratic

"linear hydraulic damping torque
"coefficient [Nms/rad]

"quadratic hydraulic damping torque
"coefficient (ref. to the turbine
"side) [Nm(s/rad)"2]

"maximum damper torque [Nm]

"upper limit of torsion angle [rad]
"lower limit of torsion angle [rad]
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CONTINUOUS SYSTEM SERVO

"File: SERVO1

"Version: 1984-02-23

"Author: Sven Erik Mattsson
" Department of Automatic Control
Lund Institute of Technology, Sweden

"

17"

"Description:
" Models the pitch servo as a first order system with
limits on the rate.

1"

INPUT betaref
OUTPUT betadot
STATE beta75
DER Dbeta75

"Inputs:
"  betaref reference to pitch servo [rad]

1"

"Outputs:
"  betadot pitch servo speed [rad/s]

"States:
" beta75 pitch angle of blade at 3/4 radius [rad]

vl = (betaref-beta75)/Tbs

Dbeta75 = min(hratelim ,max(lratelim ,v1) )
betadot = Dbeta75

"Parameters:

Tbs: 0.4 "time constant [s]
hratelim: 0.056  "maximum rate limit [rad/s]
lIratelim: -0.070 "minimum rate limit [rad/s]
END
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CONTINUOUS SYSTEM WIND

"File: HOLLEY1

"

"Version: 1984-02-16

"Author: Sven Erik Mattsson

" Department of Automatic Control,
Lund Institute of Technology, Sweden

14

"Description:
" Models the longitudinal wind velocity over the rotor
disc as

U(r.psi,t) = U0 + Ux rcos(psi) + Uy rsin(psi)
"References:

" Holley W.E., Thresher R.H. and Lin S-R.:

" HWind Turbulence Inputs for Horizontal Axis Wind

" Turbines. NASA-CP-2185, DOE CONF-810226, A workshop
" held at Cleveland State University, Cleveland, Ohio,
" February 24-26, 1981, pp. 101-112.

"WARNING:

" The value of the parameter Ts must be equal to the
sampling time of the random number generator.

"

INPUT UOmean Uxmean Uymean e0 ex ey
OUTPUT UC Ux Uy

STATE xU0 xUx xUy

DER DxUO DxUx DxUy

"Inputs:

" UOmean Mean value of UO [m/s]

" Uxmean Mean value of Ux [1/s]
Uymean Mean value of Uy [1/s]

"

" ez White noise N(0,1)

" ex White noise N(0,1)

" ey White noise N(0,1)

" e0, ex and ey should be uncorrelated
"Outputs:

" U0 Mean wind speed [m/s] over the rotor disc

" Ux [1/s] See formula above.

" Uy [1/s] See formula above.

"States:

" xU0 Turbulence part of U0 (U0=UOmean+xU0) [m/s]
" xUx Turbulence part of Ux (Ux=Uxmean+xUx) [1/s]

xUy Turbulence part of Uy (Uy=Uymean+xUy) [1/s]
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U0 = UOmean + xUC
Ux = Uxmean + xUx
Uy = Uymean + xUy
DxUO = bOxel - aOxxUC
DxUx = bxxex - axxxUx
DxUy = byxey - ay*xUy
vl = UOmean/L
a0 = v1xa00
ax = vixaxO0
ay = vixay0
v2 = sigmaxsqrt(vi/Ts)
b0 = v2xb00
v3 = v2/R
bx = v3xbx0
by = v3xby0
RL =R/L
1RL = log(RL)
a00 = if RL<0.1 then 1.0 else 10~ (log(0.5)* (1RL+1))

cb00 = -(0.24x1RLx1RL + 0.66x1RL + 0.28)

b00 = if RL<O

.1 then 1.414 else 10°cb00

cax01 = -(0.9+IRL + 0.3)
cax02 = -(0.7+1RL + 0.1)
ax0 = if RL<0.1 then 10%cax01 else 10"cax02
cbx01 = —(0.18«1RL + 0.15)
cbx02 = -(0.25x1RL + 0.175)
bx0 = if RL<0.5 then 10°cbx01 else 10"cbx02
ay0 = ax0
by0 = bx0
"Parameters:
pi: 3.14159265
sigma 1.8 "standard deviation [m/s]
Ts: 0.2 "sampling interval of noise [s]
R: 38 "rotor radius [m]
L: 400 "integral length scale of turbulence [m]
END




CONTINUOUS SYSTEM BUS

"File: BUS2

1"

"Version: 1984-02-23

"Author: Sven Erik Mattsson

" Department of Automatic Control

Lund Institute of Technology, Sweden

1t

"

"Description:

Models a simplified network according to type B for
" simulation SV/SK.

3-phase faults is simulated by changing the bus
voltage to a given level at a given point of time.
After a given time the bus voltage is reset to normal
level, simulating breaker action in the line where
the fault was applied. Impedance variations are very
small due to the transformers and are neglected.

The system also models stochastic variations in the
bus frequency.

"WARNING:

" The value of the parameter Ts must be equal to the
sampling time of the noise generator.

TIME t
INPUT fnois

OUTPUT fbus vbus Rl X1

STATE ff

DER dff

"Input:

" fnois white noise N(0,1)
"Outputs:

" fbus bus frequency [Hz]

" vbus bus voltage [V]

" Rl total line resistance [ohm]
"Xl total line reactance [ohm]
"States:

" ff filter state for modelling frequency

"

deviation [Hz] from nominal value
c1l = sigmaxsqrt(2%Tc/Ts)
dff = if t<t3 then -ff/Tc else (clxfnois - ff)/Tc
fbus = f0 + ff

vbus=if (t>t1 and t<t2 ) then UB else UObus
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R1
X1

"Para
f0:
Ts:

sigma:

Tc:

t3:

UObus:

R11:
X1i:
Rt:
Xt:
UB:
t1:
t2:

END

R11 + Rt
X11 + Xt

meters:
50.0
0.01
0.03
5

0
6600
.20
.05
.05
.99

OO0

2000.0
2000.0

"synchronous frequency [1/s]
"sampling interval of noise [s]
"standard deviation of bus frequency [Hz]
"time constant of filter producing
"frequency noise from white noise [s]
"start time for frequency noise [s]
"nominal bus voltage [V]

"line resistance [ohm]

"line reactance [ohm]

"transformer resistance [ohm]
"transformer reactance [ohm]

"bus voltage during fault [V]

"fault start time [s]

"fault stop time [s]
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CONTINUOUS SYSTEM VOLTCONT

"File: VOLTC1

"

"Version: 1984-02-23

"Author: Sven Erik Mattsson

" Department of Automatic Control

" Lund Institute of Technology, Sweden
"Description:

" IEEE Type 1 excitation system representation including
" nonlinear saturation effects for a continuously acting
" regulator and exciter without input filter.
"Reference:

" IEEE Committee Report (1968): Computer Representation
" of Excitation Systems. IEEE Trans. on Power Apparatus
" and Systems, Vol. PAS-87, June 1968, pp. 1460-1464.

INPUT vt vs
OUTPUT vf
STATE xA xF xE

DER dxA dxF dxE

"Inputs:

"ovt terminal voltage [V]

" Vs auxiliary input signal [V]

"Outputs:

N § generator field voltage [V]

"States:

" xA rectifier voltage [pu]

" xF internal state in feedback loop [pu]
" xE generator field voltage [pu]

Verr = (Vref - vt + vs)/Vnorm

dxAl = (KAx(Verr+yF) - xA)/TA

dxA2 = if (xA>VRmax and dxA1>0) then O else dxAl
dxA = if (xA<VRmin and dxA2<0) then O else dxA2

SE = 0.17xxExabs (xE)
dxE = (xA - SE - KExxE)/TE
vf = Vnormx«xE

bF = KF/TF
dxF = (bFxxE - xF)/TF
yF = xF - bFxxE
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"Parameters:
Vref: 6800.
Vnorm: 6600.
KA: 400.
TA:

VRmax:
VRmin: -
KE:

TE:

KF:

TF:

END

ROORNNO
OCO®MOWwWO

"reference voltage [V]

"base voltage [V]

"regulator gain

"regulator amplifier time constant [s]
"maximum rectifier voltage [pu]
"minimum rectifier voltage [pu]
"exciter constant ’
"exciter time constant [s]

"regulator stabilizing circuit gain [s]
"regulator stabilizing circuit time
"constant [s]

L




=
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CONTINUOUS SYSTEM PITCHREG

"File: PITCHR2.T

1"

"Version: 1984-03-27

"Author: Sven Erik Mattsson

" Department of Automatic Control

" Lund Institute of Technology, Sweden
"Description:

" Pitch angle controller based on the state feedback LC
and the observer K7T with gain scheduling as described
" in Section 5.3 of Mattsson, S.E.: Modelling and Control
" of Large Horizontol Axis Wind Power Plants.

INPUT PEm beta75 zTdot
OUTPUT betaref

STATE beta750 edDgam edgam xekUdUO x2P1 x2P2 edzT
DER Dbeta?50 DedDgam Dedgam DxekUdUO Dx2P1 Dx2P2 DedzT

STATE x4Pi x4P2 x6P1 x6P2 x8P1 x8P2
DER  Dx4P1 Dx4P2 Dx6P1 Dx6P2 Dx8P1 Dx8P2

TIME t

"Inputs:

" PEm measured electrical power [W]

" beta75 measured pitch angle at 3/4 radius [rad]

" zTdot measured tower speed [m/s] in thrusting direction
"Outputs:

" betaref reference to pitch servo [rad]

"States:

" beta750 estimated mean pitch angle [rad]

"  xekUdUO observer state describing the wind and the
aerodynamical torque

edDgam  estimated gearbox torsion speed [rad/s]

" edgam estimated gearbox torsion angle deviation
" from rated value [rad]

" x2P1 state in the 2P-disturbance model

" x2P2 state in the 2P-disturbance model

" edzT estimated nacelle displacement from mean
" value [m]

Estimation of mean pitch angle

dbeta7?7b5 = beta75 - beta750
Dbeta750 = dbeta75/Tb750

Tb750: 20.0 "time constant [s] when calculating beta750
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" The observer

dPEm
edTE
edPE

PEm -~ PEO
DsxedDgam + Ksxedgam

psidotnxedTE

w2p = 2«psidotn
ePe2PMA = x2P1

ePe2P = 1,0E6xePe2PMH

edPEtot
diffPE

edDpsi

DedDgam
Dedgam
Dx2P1
Dx2P2
DedzT

psidotn:

PEO:
Tw:

CekUdUO:

Jt:
Ks:
Ds:
TbetaO:

TUO:
TzO:
TpsiO:

z2P:

Kpl:
Kp2:
Kp3:
Kp4:
Kp5:
TizT:

" betam

cimax
c2max
bimax
b2max
betamax

bmax1:
” bmax2:
bmax3:

= edPE + ePE2P

= dPEm - edPEtot
diffPEMW = diffPE/1.0E6 "MHW
= edDgam
ekUdUO = CekUdUO*xekUdUO

edT = alfasTbetaOxdbeta75 + TUOxekUdUO + TpsiOxedDpsi + TzOxzTdot
DxekUdUO = -xekUdUO/Tw + KplxdiffPEMW

= (edT - edTE)/Jt + Kp2xdiffPEMW
= edDgam + Kp3xdiffPEMH

—-w2Px (2xz2Pxx2P1 + x2P2) + Kp4xdiffPEMW

w2Pxx2P1 + Kp5+diffPEMW

-edzT/TizT +

2.
3.
20.
100.
5.
7.

3
10

2.
-2
-7.

1

ONOO—O

ax

6180
Oeb
0

1]
05E6
7E6

.OE6
.6E6

3E5

.8E5

6E5

.03

.389
.12
.161
.288
.45
.0

zTdot

"synchronous turbine speed [rad/s]
"rated power [W]

"time constant in the wind model [s]
"ekUdUO = CekUdUOxxekUdUO

"turbine inertia [kgm~3]

"gearbox spring coefficient [Nm/rad]
"damping coefficient [Nm/(rad/s)]
"derivative of driving aerodynamical
"torque with respect to pitch angle
"[Nm/rad] at U0=18m/s and PE=3MHW
"ditto, but with respect to U0 [N/s]
"ditto, but with respect to zTdot [N/s]
"ditto, but with respect to turbine
"speed [Nm/(rad/s)]

"relative damping in the 2P-notch filter
"Observer gains from electrical

"power (in MW) (K7) to edDgam

" to xeTUdUO

" to edgam

" to x2P1

" to x2P2

"time constant [s] when estimating edzT
"from zTdot

(bmax2-bmax1)/ (PE2-PE1)
(bmax3-bmax2)/ (PE3-PE2)
bmax1+cimaxx (PEm-PE1)

bmax2+c2max* (PEm-PE2)

= if PEm<PE2 then blmax else b2max

0.
0.
-0.

0
012
045

"linear interpolation and extrapolation
"using the points (PE1, bmax1),
"(PE2, bmax2) and (PE3, bmax3) [W, rad]
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PE1: 1.0E6
PE2: 2.0E6
PE3: 3.0E6
" betaref

v1 = Lixdbeta75 + L2xxekUdU0 + L3xedDgam + L4*edgam
= L5/CzTdotxzTdot + L6/CzTxedzT
betarefi = beta750 - Lixdbeta75 - (v1 + v2)/alfa
betaref2 = min(betamax, betaref1l)
" Feedback gains to betaref (LC)

L1: 0.414 " from beta75

L2: 3.43 " from ekUdUO/CekUdUO
L3: 1.18 " from edDgam

L4: 0.779 " from edgam

L5: 0.227 " from zTdot/CzTdot
L6: 1.0 " from edzT/CzT
CzTdot: 10.0

CzT: 10.0

" Notch filters for 4P, 6P and 8P variations

w4P = 4xpsidotn

b4P = 2.0%(0.01-0.1)*w4P

adP = -2x0.1xw4P
Dx4P1 = a4Pxx4P1 - wd4Pxx4P2 + b4Psbetaref2
Dx4P2 = wi4Pxx4P1
betaref3 = x4P1 + betaref2

wbP = 6xpsidotn

b6P = 2.0x(0.01-0.1)xw6P

abP = -2x0.1xw6P
Dx6P1 = a6Pxx6P1 - w6P+x6P2 + b6Pxbetaref3
Dx6P2 = w6Pxx6P1
betaref4 = x6P1 + betaref3

w8P = 8xpsidotn

b8P = 2.0%(0.01-0.1)%w8P

a8P = -2x0.1xw8P
Dx8P1 = a8Pxx8P1 - w8Pxx8P2 + b8Pxbetarefd
Dx8P2 = w4Pxx8P1

betaref = if notch then x8P1 + betaref4 else betaref2

"

notch: 1.0 "if true the notch filters are included
" Gain scheduling; alfa
= (4/3)xbeta2

betal0 = beta750 - c0
c01 = np*2«rairxpi*R«R

c101 = Rxpsidotn
c102 = c101xc101
c103 = c101%xc102

Amib2 = Amixbeta2

~ Alb2 = Alxbeta2

AOb10
A2b10

AOxbetal0 + Amib2
A2xbetal0 + A1b2
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ba3 = 0.5%A0b10

ba2 = Al

bal = A2b10

ba0 = -B3 - PEO/c103
yal = 0.15

vala = ((ba3xyal + ba2)xyal + bal)xyal + bal
valb = (3xba3xyal + 2xba2)xyal + bal
ya2 = yal - vata/valb
va2a = ((ba3xya2 + ba2)xya2 + bal)xya2 + bal
va2b = (3xba3xya2 + 2xba2)sya2 + bal
ya3 = ya2 - va2a/va2b
va3a = ((ba3xya3 + ba2)*ya3 + bal)xya3 + bal
va3b = (3xba3xya3 + 2xba2)xya3 + bal
la = ya3 - va3a/va3b
lasqr = laxla
lacub = laxlasqr
bd3 = c01 + 0.5xA0b10
bd2 = Al - cOixla
= (3xbd3xla + 2xbd2)xla + A2b10
sO = (0.5xAOxlasqr + A2)xla
dldbl = -s0/vd1
dTdl = c102+Rs ((1.5¢A0b10x1a + 2xA1)xla + A2b10)
dTdbl = dTdlxdldbl + c102xRxs0O
kb = dTdbi/Tbetal
alfa = max(kb, kbO)

kbO: 1.0 "minimum kb that are compensated
pi: 3.14159

rair: 1.3 "density of air [kg/m"3]

Am1: 3126 "aerodynamic integral [kg/m]

AD: 759 " [kg/m]

Al: 362 " [kg/m]

A2: 211 " [kg/m]

A3: 142 " [kg/m]

B1: 0.417 " [kg/m]

B2: 0.236 " [kg/m]

B3: 0.158 " [ke/m]
beta2: -0.0506 "twist angle of blade [rad]

R: 39.08 "length of blade [m]

np: 0.70 "degree of power efficiency of the blades

" Some Variables for Plotting

c201 = c01xcl102
UOm = PEO/ (c201xlasqr) + c101xla
d1dU0 = cO1xlacub/UOm/vd1
dTdU0 = dTdlxd1dU0
kU = dTdUO/TUO
edU0 = ekUdUO/kU
el0 = edU0 + UOm
ePE = edPE + PEO
epsidot = edDpsi + psidotn

gammaO = PEO/psidotn/Ks
egamma = edgam + gammaO
END




CONNECTING SYSTEM REGGEN

"File: REGGEN1

"Version: 1984-03-27

"Author: Sven Erik Mattsson
" Department of Automatic Control,
Lund Institute of Technology, Sweden

"

"

"Description:
" Connecting system for simulating on-line operation.

TIME t

betaref[servo] = if rotc then betaref[pitchreg] else bopen

UO[ turbine] = UO[wind] + Ugust
Ux[ turbine] = Ux[wind]
Uy[turbine] = Uy[wind]

Tgear[turbine] = Tgear[gear]
beta75[ turbine] = beta75[servo]

psidot[gear] = psidot[turbine]
wm[gear] = wm[gen]

tm[gen] = tm[gear]
fbus[gen] = fbus[bus]
vbus[gen] = vbus[bus]

vi[gen] = if voltc then vf[voltcont] else vfopen
R1l[gen] = Rl[bus]

X1[gen] = X1[bus]

ONfgen] = 1.0

vt[voltcont] = sqrt(vd[gen]«vd[gen] + vq[gen]xvq[gen])
vs[voltcont] = 0.0

PEm[pitchreg] = Pe[gen]
beta75[pitchreg] = beta75[servo]
zTdot[pitchreg] = zTdot[turbine]

fnois[bus] = E4[noisel]
" noisel is a standard system generating random numbers

UOmean[wind] = if (t>tpst and t<tpend) then vmnp else vmn
Uxmean[wind] = UxO
Uymean[wind] = UyO
eO[wind] = if t < tvel then O else El[noisel]
ex[wind] = if t < tvel then O else E2[noisel]
ey[wind] = if t < tvel then O else E3[noisel]
cl = Ug2/ (tg3-tg2)
Ugdv = if (t<tg3 and t>tg2) then clx(tg3-t) else 0.0
c2 = (Ug2-Ugl)/(tg2-tgl)
- Ug3v = if (t<tg2 and t>tgl) then Ugl+c2x(t-tgl) else Ugdv
c3 = Ugl/(tg1l-tg0)
Ug2v = if (t<tgl and t>tg0) then c3x(t-tg0) else Ug3v
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Ugust

= if t<tg0 then 0 else Ug2v

" Scaling of some variables

todeg = 180/pi

torpm = 60/ (2xpi)

betadeg = todegxbeta75[servo]

psidotrp = torpmxpsidot[turbine]

Psidotp = 100xPsidot[turbine]/psidotn

Tnomp = PErat/psidotn/100

Tgearp = tgear[gear]/Tnomp

Dbetadeg = todegxbetadot[servo]

wmrpm = torpmxwm[gen]

Pep = 100.0xPe[gen]/PErat

gamdeg = todegxgamma[gear]

deltadeg = todegxdelta[gen]

Vvel = UO[wind] + Ugust

"Parameters:

pi: 3.14159265

PErat: 3.0E6 '"rated power [NW]

psidotn: 2.618 "rated turbine speed [rad/s]

vmn: 18.0 "mean wind velocity [m/s]

vmnp: 18.0 "mean wind velocity [m/s] during
"wind pulse

tpst: 200.0 "start time for wind pulse [s]

tpend: 200.0 "stop time for wind pulse [s]

tg0: 2000.0 "when tgO<t<tg4 Ugust is given by

tgl: 10.0 " linear interpolation between the points

tg2: 12.0 " (tg0, 0), (tgl, Ugl), (tg2, Ug2) and

tg3: 20.0 " (tg3, 0) [s, m/s] otherwise Ugust = O

Ugl: -2.0

Ug2: 2.0

tvel: 0 "start time of turbulent wind

Ux0: 0.027 "measure of wind shear [1/s]

Uy0: 0.0 "measure of wind shear [1/s]

rotc: 1.0 "if true then the rotor controller is
"used else the loop is open and the
"pitch servo reference is bopen

bopen: 0 "see under rotc [rad]

voltce: 1.0 "if true then the voltage controller
"is used else the generator field
"voltage is vfopen

vfopen: 12000 "see under voltc [V]

END




