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Abstract
Most computers today are embedded, i.e. they are built into some prod-
ucts or system that is not perceived as a computer. It is highly desirable to 
use modern safe object-oriented software techniques for a rapid develop-
ment of reliable systems. However, languages and run-time platforms for 
embedded systems have not kept up with the front line of language 
development. Reasons include complex and, in some cases, contradictory 
requirements on timing, concurrency, predictability, safety, and flexibility. 

A carefully tailored Java virtual machine (called IVM) is proposed as 
an approach to overcome these difficulties. In particular, real-time gar-
bage collection has been considered an essential part. The set of bytecodes 
has been revised to require less memory and to facilitate predictable exe-
cution. To further reduce the memory footprint, the class loader can be 
located outside the embedded processor. Since the accomplished concur-
rency is crucial for the function of many embedded applications, the 
scheduling can be defined on the application level in Java. Finally consid-
ering future needs for flexibility and on-line configuration of embedded 
system, the IVM has a unique structure with which, for instance, methods 
being objects that can be replaced and GCed. 

The approach has been experimentally verified by a full prototype 
implementation of such a virtual machine. By making the prototype avail-
able for development of real products, this in turn has confronted the solu-
tions with real industrial demands. It was found that the IVM can be 
easily integrated in typical systems today and the mentioned require-
ments are fulfilled. Based on experiences from more than 10 projects uti-
lising the novel Java-oriented techniques, there are reasons to believe 
that the proposed approach is very promising for future flexible embedded 
systems. 
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Chapter 1

Introduction
The purpose of this thesis is to provide a foundation for the integration of 
high-level object-oriented language features in real-time embedded sys-
tems. This is achieved by an implementation of a specially designed vir-
tual machine for Java.

In the field of embedded systems, the state-of-the-art high-level pro-
gramming languages have not made any major impact, because the 
imposed restrictions are difficult to cope with in a high-level context. Lim-
ited computational power and limited memory resources restrict the 
incorporation of desirable high-level language features. High-level pro-
gramming languages have been developed on and adapted to general sys-
tems with relatively powerful processors and vast memory resources. 
Hard real-time requirements, such as predictability, impose further 
issues that are not even resolved by powerful computers. 

Throughout computer history, programming languages have become 
more expressive and more secure. They have developed from low-level 
instructions into more abstract constructs that relate to the algorithms. 
Program complexity decreases with high-level programming languages. 
The vision is to unambiguously describe the execution of computer pro-
grams with few building blocks, sufficiently few for the human mind to 
grasp (see [Nør99]). Introduction of modern high-level programming lan-
guages into the development of embedded systems is desirable and in 
great demand from the industry.

Common programming issues, such as the problem of encapsulation, 
or issues regarding re-usability, scalability, and portability are elegantly 
handled in modern high-level programming languages. High-level lan-
guages often provide program organisation and structure. The time to 
develop software has decreased and the code quality has increased with 
the utilisation of high-level programming languages.

High-level languages also focus programmers to essential program-
ming tasks. Purely administrative tasks, such as memory management, 
are handled by the language itself. Programming errors can thereby be 
avoided. In many high-level languages, a garbage collector (GC) automati-
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cally performs memory management. Manual memory management, 
where the programmer allocates and deallocates the memory, has been a 
major source of severe programming errors. 

The principal real-time requirements are worst-case execution time, 
WCET, predictability, and worst-case live memory, WCLM, predictability. 
High-level programming languages have not addressed these require-
ments. 

The modern high-level programming language, used as a platform for 
this thesis, is the secure and platform independent Java programming 
language (see [JLS00]). As the name indirectly implies, Java was origi-
nally designed to be a platform for embedded systems, for instance, coffee 
machines. However, this original vision has not been implemented during 
the development of Java. It now requires vast memory resources and high 
performance computers to execute adequately. This work is an attempt to 
return to the original vision of Java by implementing a tiny Java Virtual 
Machine, JVM that executes the platform independent Java bytecode. 
The Infinitesimal Virtual Machine, IVM, is our implementation of a mem-
ory efficient real-time adapted JVM. There has been made many attempts 
to implement this original vision of Java. However, the resulting contribu-
tions have often suffered from severe restrictions or overhead. 

The work presented in this thesis furthermore takes an important step 
towards integration of the object-oriented paradigm and real-time embed-
ded systems. As a foundation for further development and research, it 
thoroughly examines the implications of the requirements introduced in 
an object-oriented context. 

The thesis is structured as follows:

• Chapter 1 includes background and requirements for the work pre-
sented in this thesis. Focus is on embedded systems, real-time, and 
Java.

• Chapter 2 describes the design of the Infinitesimal Virtual Machine 
considering the requirements mentioned in Chapter 1.

• Chapter 3 discusses the start-up procedure of the IVM that includes 
class loading, linking, and initialisation. A discussion about byte-
code conversion completes the chapter.

• Chapter 4 deals with the runtime description of the IVM with a 
subsection about real-time considerations.

• Chapter 5 contains experiences with different platform ports of the 
IVM. 

• Chapter 6 discusses related work with embedded systems limita-
tions and real-time requirements.

• Chapter 7 discusses the conclusions of this thesis, together with an 
elaboration of future work.

1.1 Embedded systems

An embedded system is characterised by a specific application domain –– 
typically something else than the system itself –– for example, sensors 
and controllers. The concepts of embedded computer systems are, how-
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ever, difficult to clearly separate from those of general-purpose computer 
systems. The flexible general-purpose systems are prepared to execute a 
vast range of applications, and the embedded systems are inexpensive 
and power efficient. 

Figure 1.1 shows these characteristics of different kinds of computer 
systems. 

An example of a small computer system is the personal digital assist-
ant, PDA. Embedded systems are, for instance, cellular phones, sensors, 
and controllers. General-purpose systems are typically found as desktop 
computers with applications ranging from mathematical calculation and 
simulation to word processing and entertainment.

The popularity of embedded systems is reflected in their large produc-
tion quantities. A complete system often combines many embedded sys-
tems together with general-purpose systems in a network, in order to 
benefit from both. Examples of such networks are Supervisory Control & 
Data Acquisition, SCADA (see [SCADA]), and Controller Area Network, 
CAN (see [CAN91]).

Even though there are differences between the embedded systems and 
general-purpose systems, the software languages do not have to differ. 
The flexibility and the greater power of the general-purpose system have, 
however, lead to improved language features for general-purpose systems. 
Computer language development for embedded systems has been lagging 
behind the state-of-the-art language development due to the restrictions 
and limitations of the embedded systems. Software in embedded systems 
is normally developed in a low-level language, typically in C. General-pur-
pose systems are often developed using object-oriented languages like 
C++ or Java.

1.1.1 Embedded systems overview and restrictions

The restrictions imposed by embedded systems are limited computational 
power and restricted memory. Depending on the level of the restrictions, 
the JVM may be utilised in various ways. Preferably, the embedded sys-
tem has both RAM for the dynamic heap and ROM for the JVM and basic 
Java programs.

Figure 1.1  Even though the embedded systems are much simpler than the gen-
eral-purpose systems, they have other attractive chraracteristics.
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Figure 1.2 shows the main parts of a computer system in general. The 
memory area in embedded systems is often divided into several kinds of 
memory, e.g. RAM, ROM, EEPROM, flash memory, hard drives etc. Our 
work has targeted embedded systems with a small flash memory and a 
small RAM area.

Embedded systems may also work together with other systems. An 
interesting situation where a network contains both general-purpose sys-
tems and embedded systems offers a split machine approach for the JVM. 
In those networks, the IVM may be split into an interpreter that resides 
in the embedded system, and the class loader that resides in the general-
purpose system. 

The limited memory of embedded systems imposes restrictions, such 
as a small heap. It is essential to keep a low memory overhead. Fortu-
nately, small memory sizes also lead to shorter pointers. The GC may be 
designed to accommodate to a small memory area, which can lead to 
memory efficient and fast garbage collecting algorithm implementations. 
Real-time behaviour is not affected by the limited memory requirement.

Evidently, the limited computational power imposes requirements on a 
small overhead for managing the programs. Small and embedded comput-
ers often tend to be simple and predictable, which is advantageous when 
performing hard real-time analysis. 

1.1.2 Embedded operating systems

The software organisation in an embedded system is typically divided into 
an operating system and the application programs. The operating system 
controls all the computer’s resources and provides the basis upon which 
the application programs can be written. 

A scheduler manages the threads in a real-time application. The sched-
uler may reside in the operating system, i.e. tightly coupled, or in the 
application itself, loosely coupled. Loosely coupled applications share the 
processor resource with other applications, or utilise the processor exclu-
sively as a single application or as a high-priority application. 

Figure 1.3 shows the different types of software organisation relevant 
in embedded systems. There are systems that combine both the tightly 
coupled and the loosely coupled thread management strategies. Those 
systems are called combined in this thesis. For example, a time critical 
application may execute together with other applications. To ensure dead-

Input

Hardware
Central Processing Unit

Memory Output

Software
Operating System

Applications

Figure 1.2  The size of the blocks in a computer system varies depending on 
the type of the system.
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lines, the operating system has to guarantee the processor allocation for 
the hard real-time application.  

Migration of new software disciplines into existing embedded systems 
may take the combined approach to maintain the original code and, at the 
same time, benefit from the advantages of modern programming lan-
guages. 

Other embedded systems do not utilise an operating system. Applica-
tions for those systems implement their own scheduler, as in the loosely 
coupled case. In those cases, the processor is exclusively utilised by the 
application itself.

1.2 Real-time programming

Real-time programming handles applications with time and timing 
requirements. A real-time program is considered correct only if it executes 
correctly within a specified period. The deadline is the latest time 
instance before which a calculation has to be completed. Embedded sys-
tems often execute real-time programs. Sensors and controllers must cal-
culate and deliver values within a specified time frame. Aeroplanes and 
their passengers would suffer from unexpected and possibly fatal conse-
quences if the calculations performed by the controllers were based on old 
or late data from the sensors, or if the controllers spent too much time cal-
culating control signals. Other time critical application domains are for 
example space probes, robots, and alarm systems for nuclear power 
plants.

The real-time systems focused on in this thesis utilise one computer 
and one private memory area. A single computer, however, often has 
many different tasks to perform simultaneously. Parallel programming
allows the tasks to be expressed as separate programs. The idea of paral-
lel programming is to give the impression of concurrently executing pro-

Operating system with scheduler

Application

Operating system with scheduler

Application
 
Input

Hardware

Software

 
Output

Operating system
Application

Scheduler
Threads

Application
Scheduler
Threads

…

Application
…

Figure 1.3  A program is tightly coupled with the operating system if it is able 
to utilise the operating system threads as its own. Otherwise, it is loosely cou-
pled; it has to manage its own threads.
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…
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grams, threads1. The idea of real-time programming is to schedule the 
execution order of the threads in such a way that every deadline is met. 
The threads typically execute a single loop indefinitely and periodically.

The single-processor approach is called multiprogramming. If more 
computers share the same memory, it is called multiprocessing. If the 
computers are connected in a network with private memory areas it is 
called distributed programming. The approach in this thesis is to study 
the real-time issues for multiprogramming. The other domains are briefly 
discussed.

If a number of threads simultaneously read from and write to the same 
memory area, the program can enter an unpredictable state. Code sec-
tions that must be handled atomically are called critical regions. Mutually 
excluding threads from concurrently executing the same code region is 
often realised with semaphores, monitors, or events. 

Threads are often given priorities to support the scheduling algorithm. 
The scheduler switches threads according to a scheduling algorithm. The 
basis of the scheduling algorithms is that real-time programs are predict-
able and schedulable. These concepts are described in the following sub-
sections. This section is concluded with a detailed study of the preemption 
mechanism, a description of a real-time garbage collector (RTGC) and a 
summary.

1.2.1 Predictability

The fundamental prerequisite of real-time programming is timing pre-
dictability of program behaviour during runtime. Deadlines cannot be 
guaranteed to be met unless the execution time of the thread loop is 
known. It is also necessary to be able to predict memory consumption to 
ensure the availability of sufficient memory during the execution of a 
real-time program. 

Calculation of execution time is mainly based on summation of exe-
cuted instructions. Control-flow analysis determines the most time-con-
suming execution path, if there is one. Indefinite loops (cf. the halting 
problem in [AT36]) increase the complexity of the control-flow analysis. 

The execution time of instructions is often specified in old Complex 
Instruction Set Computers, CISC. However, more modern and complex 
Reduced Instruction Set Computers, RISC, utilise optimisation tech-
niques to increase average execution time, which complicates instruction 
execution time predictions. Caches, pipelines, instruction level parallel-
ism, and speculative control flow estimation are some performance 
enhancing techniques that complicates the prediction of instruction exe-
cution time. A thorough description of the techniques can be found in 
[HePa96]. Common, but inexact, solutions to overcome the analysis com-
plexity are program simulation and benchmark measurements (see 
[CE00]). 

Some real-time systems tolerate a percentage of deadline misses. 
Those systems have soft deadlines as opposed to systems with hard dead-

1. Threads will also be referred to processes in this thesis.



 7
lines where every deadline has to be met. Dynamic scheduling can be uti-
lised by soft real-time systems. The scheduler is supported by execution 
time measurements during runtime to increase the real-time perform-
ance. 

Prediction of execution time and memory utilisation is focused on the 
worst possible outcomes. The Worst-Case Execution Time, WCET, is the 
longest possible effective execution time needed to execute a code 
sequence if the code is executed on a single processor. The overhead of the 
scheduler is not included in the WCET calculation. Typically, the relevant 
WCETs are located in the task loops of the threads.

The Worst-Case Live Memory, WCLM, value describes the maximum 
amount of utilised (live) memory during the life of a program. Of the three 
program phases, start-up, working, and termination, the working phase is 
the most important. It is desirable to locate WCLM during that phase. 
There are three different techniques used in the analysis of WCLM:

• Manual memory analysis is the sum of statically allocated acti-
vation records, variables, and objects. Memory allocation during 
runtime, dynamic memory allocation, is not permitted in these real-
time systems. Since all memory that is needed by an application is 
allocated before runtime (statically), it tend to be much larger than 
the actual utilised memory, thus WCLM tend to be lower than, and 
not equal to, the statically determined memory.

• Automatic memory analysis examines the code to determine the 
maximum amount of utilised memory. Generally, the automatic 
analyser cannot determine the maximum sizes of data structures or 
the maximum recursion depths. 

• Annotated automatic memory analysis is supported by annota-
tions in the code set by the programmer. The annotations describe 
the maximum sizes of data structures and the maximum recursion 
depths. The annotations enable the programmer to utilise more 
advanced programming language concepts, for example, recursion, 
and lists, in real-time programs. A detailed study of such code anno-
tation techniques can be found in [Per00].

1.2.2 Context switch

The procedure where an executing thread is stopped and another thread 
is started is called a context switch. The context, i.e. all the processor reg-
ister values, for the stopped thread is written to memory and the context 
of the starting thread is read into the processor. When a thread is re-
started, it continues executing from where it was previously stopped, just 
as if no interruption would have occurred.

Scheduling algorithms for real-time systems rely on involuntary 
changes of active threads, preemption. The scheduler decides when a con-
text switch is to occur. If context switches are only initiated by the appli-
cation itself, the context switches are called voluntary, or non-preemptive. 
Voluntary context switches result in unpredictable execution times, and 
they burden the programmer with extra programming tasks. 
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Preemptive context switches are typically triggered by a clock, or at 
certain pre-defined preemption points. Table 2.2 shows commonly utilised 
preemption point insertion techniques in a Java perspective. Not all the 
solutions are deterministic. Non-deterministic preemption points are dis-
qualified in hard real-time systems. The estimated times presented in the 
table show the average preemption point interval and the maximum time 
between preemption points. Time is measured by the duration of the exe-
cution of a number of Java bytecodes.

The IVM utilises a combination of clock triggered preemption and 
preemption points. The different times related to a context switch in the 
IVM are described in Figure 1.4. Implementation of clock triggered con-
text switch is hindered by the problem to determine what registers con-
tain references. References to live objects are important requirements 
during garbage collection. With preemption points, it is possible to sepa-
rate references from values.

1.2.3 Schedulability

The schedulability analysis determines if a real-time application will exe-
cute correctly. Even though the system is predictable, it is not certain that 
a real-time program will meet all its deadlines. One approach to ensure 
schedulability is to measure the behaviour of the system. Such an empiri-
cal study, however, will not guarantee correctness, but can give an estima-
tion of the real-time characteristics. Analytical a priori examination of a 
real-time system, on the other hand, could prove correctness. A third tech-
nique for schedulability analysis is to combine the two approaches. This 
feedback schedulability is thoroughly covered in [EHÅ00]. 

During runtime, the scheduler performs context switches, by executing 
a scheduling algorithm. In hard real-time applications, these scheduling 
algorithms are based on the predictability of time mentioned in the previ-
ous subsection.

This thesis focus is on hard real-time systems. However, all the sched-
uling techniques could be implemented in the IVM. A short description of 
different scheduling algorithms is given below.

tr2p

tps

tstore tloadtscheduler

t

Preemption 
request

preemption request 
to preemption point load 

context

store 
context

locate next 
thread 
to execute

thread transfer time

Other thread 
continues 
execution

Figure 1.4  The context switch is not immediately performed as it is 
requested. The figure shows delays that occur when the context switch is 
requested until it is performed.
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Static cyclic scheduling
The processor resource is divided into time slots. Every thread is given a 
specific time slot at a given interval, in which its execution has to finish. 
The time between the end of a thread’s execution and its time slot expira-
tion is not utilised. This approach is simple and straightforward, but bur-
dens the system analyser. Every application, and every software 
modification, may result in a new thread execution order. That execution 
schema must be created manually.

Fixed priority scheduling
Every thread is given a priority and scheduled in accordance to these 
thread priorities. Two popular methods for assigning priority are rate 
monotonic scheduling, RMS, and deadline monotonic scheduling, DMS. 

In RMS, threads are ordered according to their period, which have to 
be fixed. Threads with shorter periods receive a higher priority. The 
threads are not allowed to block each other. RMS lets the thread with the 
highest priority execute at all times. This solution has been proven opti-
mal by Lui and Layland in [LL73]. Elaboration of the RMS algorithm is 
expressed in [SLR90] by Sha, Rajkumar, and Lehoczky where thread 
blocking, scheduling overhead, etc. are covered.

DMS is interesting in systems where threads have deadlines smaller 
then their period. To achieve the optimal scheduling solution for these 
systems, the priority should equal the deadline — the shorter the dead-
line, the higher priority. 

Earliest deadline first scheduling
This dynamic scheduling algorithm delays the scheduling decisions until 
runtime. The thread with the shortest time to its deadline is given the 
processor resource. This scheduling algorithm was proved optimal by Der-
touzous in [Der74].

Feedback scheduling
The scheduler utilises measurements during runtime to schedule the 
threads in the system. The resource allocation varies during runtime (see 
[CE00]). This approach cannot sustain hard real-time requirements.

1.2.4 Real-Time Garbage Collection

Automatic memory management, garbage collection (GC), is desirable 
since it relieves the programmer from the burden of doing error-prone 
manual memory management. Safe modern high-level object-oriented 
languages include garbage collection. The problems resolved by GC are 
dangling pointers, memory leaks, and memory fragmentation.

To handle real-time requirements of predictable execution times and 
predictable free memory, a typical garbage collector must be incremental, 
exact, and non-fragmenting. The scheduler must schedule the GC in 
accordance with real-time requirements, (see [Hen98]).

Incremental GC algorithms distribute their execution throughout the 
execution of the program, as opposed to perform a complete garbage col-
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lection when needed. WCET for stop-the-world algorithms is very high, 
making them unsuitable in real-time systems. 

Exact algorithms maintain information to locate references, in con-
trast to conservative GC algorithms that guess if the type of an element is 
a reference or a numerical value. All elements that resemble to a refer-
ence are treated as such. Conservative GC algorithms violate the predict-
ability requirement since the amount of free memory is indefinable. In 
conservative GCs, values could be treated as references to allocated mem-
ory.

Non-fragmenting GC techniques are characterised by the ability to col-
lect live objects into one continuous sequence. This can either be per-
formed by compaction, where live objects are pushed together in the same 
memory area, or by copy, where the objects are moved to another memory 
area. The copying technique splits the memory area into two sections. 
Typically, as soon as one section is full of objects, the live objects are 
moved to the empty section.

As an object is moved, it is essential to update all the direct pointers to 
it. All the direct object pointers are encapsulated in handles, which are 
presented as references to the programmer. These handles introduce 
memory and execution overhead.

The real-time garbage collection scheduling algorithm presented in 
[Hen98] operates as a middle-priority thread, separating the high-priority 
(HP) time critical hard real-time threads, from the low-priority (LP) soft 
real-time threads. To increase the real-time performance for the HP 
threads, their GC work is collected and delayed until the GC thread is 
allowed to execute, after the HP threads. Scheduling analysis is utilised 
to prove the schedulability of the HP threads and the GC thread. LP 
threads perform their GC work as it is generated, i.e. when allocating new 
objects and assigning references. Figure 1.5 shows a picture of a logic ana-
lyser that displays the different types of threads at work. More details 
about a study of garbage collection and real-time can be found in 
[Ive98.2]. An important parameter to schedule the garbage collector in 
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real-time systems is the memory allocation rate of the high-priority 
threads. 

Before a context switch can be performed in a system with an exact 
GC, the system must reach a state where the locations of all references 
are known. References can be stored in memory and in processor regis-
ters. In the memory, references are stored in activation frames as local 
variables, on the stack as global variables, or in objects. The handling of 
these references is addressed in Section 3.2.2. 

1.2.5 Summary

Hard real-time programming addresses problems where time is as crucial 
as correct calculations. To guarantee correct behaviour, the programs 
must be predictable with respect to time and memory consumption. The 
system could then be analysed with a scheduling analysis technique to 
determine if it is schedulable. Schedulable programs can always be guar-
anteed to perform all calculations within its deadline limits.

The introduction of automatic memory management in real-time sys-
tems increases the complexity of the scheduler. One solution divides the 
threads in the system into high-priority and time crucial threads, and 
other threads that are not time critical. Threads that are not time critical 
are given a lower priority. The GC thread itself cleans the memory after 
the execution of the high-priority threads and before the low-priority 
threads are allowed to execute. 

Figure 1.5  The snapshot of the logic analyser shows how the GC thread co-
operates with the high-priority threads and low-priority threads. The six lines 
show, from above: GCWork – the total GC thread execution time, HiPrio, 
RTGC, LoPrio – the execution of HP threads, the GC thread, and LP threads 
respectively, Idle – idle time, and Clock – the context switch handling.
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The exact RTGC also imposes context switch latency. The system must 
reach a state where the references to live objects are under control. These 
problem domains are addressed in this thesis.

1.3 High-level Programming Languages

The development of programming languages is motivated by the vision of 
attaining higher code quality, e.g. through improvement of the language 
comprehensibility. This is achieved by abstract high-level language con-
cepts, suited for human notions. Low-level languages, on the other hand, 
primarily reflect the hardware functionality. Tor Nørretrander writes in 
his book “Märk Världen” that the human being is able to keep about 
seven different pieces of information in mind at the same time (see 
[Nør99]). These pieces must be carefully selected to increase the compre-
hensibility of a programming language.

A high-level programming language is characterised, among other 
things, by the following:

Comprehensibility – the complexity of the language is determined 
by the syntax and the amount of features covered in the language. 

Productivity – the ability to create software products is determined 
by the programmer’s knowledge in programming and by the sup-
port from programming tools, e.g. the programming language.

Robustness – a robust programming language is characterised by 
well-limited concepts, error recovery mechanisms, and the ability to 
handle heavy program utilisation.

Extendibility – the code size should reflect the program functionality 
and not increase dramatically as new features are added to a large 
program. 

Portability – the software does not depend on a particular type of 
hardware. It has the ability to run on a variety of computers.

Hardware specific details are often written in a low-level language and 
integrated into the high-level domain through a low-level, or native, inter-
face. Typical low-level language concepts are memory addresses, pointers, 
and pointer arithmetic.

The real-time embedded system community primarily utilises low-
level programming languages. Modern state-of-the-art high-level pro-
gramming languages often require vast memory spaces and utilise the 
processor extensively to manage the language overhead. Average case 
performance has been optimised, but worst-case execution time analysis 
has been omitted. These prerequisites conflict with time critical real-time 
programming and the restricted embedded systems.

This section discusses the advantages of high-level programming lan-
guages from the view of the object-oriented programming paradigm. The 
Java programming language is studied in detail in conjunction with real-
time embedded systems. Finally, existing real-time Java solutions are 
presented before the summary.
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1.3.1 Modern object-oriented programming languages

Object-oriented programming (OOP) languages are based on the philo-
sophical fundament of Plato’s idea of a perfect entity of which all other 
instances are implementations. A class describes the ideal entity, and it 
may be instantiated into objects. The classes can be ordered in a hierar-
chy to reflect the natural connections of the classes. For example, Linné 
categorised flowers in a hierarchical order that can be found in The Flora 
(see [Lin51]). OOP languages support division of code into classes. The 
programmer has the possibility to organise the software naturally into 
classes and hierarchies, e.g. according to the functionality of the classes. 
The intention is to improve the comprehensibility of the code with 
abstract concepts. A collection of recurrent class diagram designs has 
been put together in Design Patterns and A System of Patterns (see 
[GHJV95] and [BMRSS96]).

Subclasses inherit and reuse code from their superclasses. The main 
idea for code reuse is to increase code quality through “code once, use eve-
rywhere”. The reused code increases the software robustness through its 
extensive usage. It is better to test one implementation many times than 
to test many similar algorithms one time each. However, code reuse may 
result in a small loss of performance.

A more general way of reusing code is to describe how classes should 
be created. These descriptions of classes are called generic types or tem-
plates. Algorithms could be made independent of types with generic types. 
Stepanov and Lee in The Standard Template Library (see [STL95]) 
describe an excellent example of a general generic type programmer’s 
interface.

OOP languages are suitable to implement automatic memory manage-
ment. The required information of objects by the garbage collector is 
defined by classes. Automatic memory management decreases the pro-
gramming overhead for the programmer, and increases the code compre-
hensibility and robustness. The memory related pointers are replaced by 
object related references that either refer to objects or are set to null. 
Examples of high-level OOP languages are Java, Simula, Beta, and 
Smalltalk (see [JLS00], [DNM68], [KMMN91], and [GR83] respectively).

In strong typed programming languages, the compiler and the runtime 
system perform controls to assure the correct type before the type entity 
is utilised. If a situation arises where the program cannot handle the 
type, the program halts in a controlled manner, e.g. by raising an excep-
tion or an error. The idea is to avoid unintentional and undesirable pro-
gram execution. Weakly typed languages, such as C and C++, often 
provide type controls, but they can be circumvented. Programs could 
enter a state where the execution is unpredictable. 

Low-level languages often include features that extend the language 
functionality and increase its complexity, for instance, pre-processor 
directives, and macro expansions. An example of a low-level language is 
C.

Many OOP languages have both low-level and high-level features. 
These composite languages must regulate the utilisation of the language 
by coding conventions, to ensure high-level code standards. The language 
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itself cannot guarantee the desired robustness of high-level languages. An 
example of a language with both high- and low-level features is C++ (see 
[C++91]).

1.3.2 Java

Java is a modern object-oriented programming language primarily 
designed with the intention to be utilised in embedded systems, for exam-
ple, coffee machines, remote controls, and portable digital assistants. 
However, during its development, the language was developed and 
adapted to general-purpose computers with large amount of memory and 
powerful processors. A goal of this thesis is to attempt to return to the 
original vision of Java.

The Java compiler produces an intermediate and symbolic low-level 
machine code, bytecodes, in classfiles. A classfile is read by a Java Virtual 
Machine and converted into an internal representation before execution 
starts. The functionality of the JVM, especially the functionality of the 
bytecodes, is specified in [JVM99], The Java Virtual Machine Specifica-
tion. Some implementations of the JVM compile the code dynamically (see 
[HS02]). Other JVM implementations interpret the internal code instead.

The main advantage with the classfiles is that they are portable. If a 
JVM exist for a platform, programs may be written in Java on those plat-
forms. The language specific features of Java are automatic memory man-
agement, strong typing, and native code encapsulation. 

1.3.3 Real-time aspects of Java

The real-time behaviour of Java is integrated into the language itself and 
in every object. Processes are termed threads. 

The two synchronisation mechanisms implemented in Java are locks
and events. Locks are specialised monitors. They are only specified for 
concurrent systems and not hard real-time systems. According the Java 
specification, [JLS00] p. 235, “Every object has a lock associated with it, 
…”. The monitor functionality resides in the Object-class, which every 
other class inherit from. Another feature of the locks is that they only 
have one condition variable. A thread can only wait for one single condi-
tion to be fulfilled before it is woken.

The implementation of monitors into the virtual machine requires that 
the machine utilises the monitors every time the synchronized-keyword 
is encountered. The keyword could be a statement or a method modifier 
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(see Figure 1.6). As a statement, the compiler generates lock-related byte-
codes to indicate when the thread enters a lock and when it exits the lock. 
The JVM executes the monitor operations as these bytecodes are encoun-
tered. A counter has to be added in every lock since the thread that owns 
the lock can lock them repeatedly.

In the method modifier case, the lock related bytecodes are not gener-
ated. The specification requires that every time a synchronized method 
is invoked, the lock must be acquired before execution continues. The 
JVM must check the method modifier, and in the synchronised case, try to 
attain the lock, before the method is executed.

Real-time conflicts in Java
Even though Java is a thoroughly designed modern high-level program-
ming language, there are language constructs that conflict with the 
requirements of real-time embedded systems. The following subsections 
relate the quirks in Java with these requirements.

Concurrent monitor specification
The JVM specification states that every object has a lock associated with 
it. A direct implementation of this statement would consume a lot of 
memory that will never be used. The overhead of the processor increases, 
as these locks have to be managed. Solutions to give the impression that 
every object has a lock are required in memory limited embedded sys-
tems. A priori program analysis could determine which classes contain 
the synchronised method modifier. As objects of those classes are created, 
an extra lock could also be created. However, the synchronised statement 
invalidates this procedure since every object could be utilised as a lock in 
the statement. That removes the possibility for the a priori analysis since 
anyone may write a program that locks every other accessible object. 
Objects could, however, be hidden from other programmers.

Unpredictable dynamic class loading
The JVM is specified for dynamic and lazy evaluation techniques. Classes 
could be loaded as they are needed, and code is analysed and transformed, 
as it is necessary. In a real-time system, the WCET would be pessimistic if 
the lazy and dynamic approach would be considered. The static approach 
is more desirable in real-time systems, where all necessary classes are 

synchronized (aLock) { // synchronised statement
… // The object ‘aLock’ is locked.

}

synchronized void aMethod() {// synchronised method modifier
… // The object receiving the method call is locked. 

}

synchronized static void aMethod() {// synchronised and static method modifier
… // The class-object receiving the method call is locked. 

}

Figure 1.6  Locks are located inside objects that are locked through the syn-
chronized statement and method calls to synchronized methods.
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loaded before the execution starts. Loading and conversion times should 
not burden the WCET analysis.

Unpredictable garbage collector behaviour
The garbage collector algorithm is influenced by the JVM at two points. 
The complexity of the GC algorithm is thereby increased. First, the 
method finalize is inherited into every object from the class Object. 
The method description states that (see [JLS00], Section 12.6):

Before the storage for an object is reclaimed by the garbage collector, 
the Java virtual machine will invoke the finalizer of that object.

Some garbage collecting algorithms only determine the live object set. 
The added functionality of dead object determination and finalize-
method call extends those GC algorithms.

In real-time applications, the WCET analysis would be pessimistic if 
the finalize-methods are incorporated into the scheduling analysis, 
because the execution time of the finaliser must be included in the WCET 
analysis.

Native manual memory management
In the Java Native Interface (see [JNI99]), there are methods that lock an 
object. It may not be moved by the GC until the programmer releases the 
pointer. This manual memory management conflicts with the operations 
of the GC. It also introduces low-level pointers and extra overhead for the 
programmer.

1.3.4 Related work

There are many attempts to implement real-time embedded systems. 
None of the projects can, however, determine the real-time behaviour of 
Java programs together with automatic memory management. 

Two approaches to the handling of real-time issue in Java can be rec-
ognised. First, the API could be extended with a specific real-time module, 
and the interpreter could be modified. Second, a Java compiler could gen-
erate real-time code. This section lists some interesting Java real-time 
solutions. The projects are examined in Chapter 6. 

Real-time Java specifications
The Real-Time Specification for Java is a document describing how the 
Java Language Specification should be specialised to ensure hard real-
time behaviour (see [RTSJ00]). Some manual memory managements have 
been introduced and a detailed real-time API has been specified.

Real-time Java compiler
A Java compiler could perform the conversion of Java to predictable 
native code. Either the bytecode or the Java source code is transformed. 
The compilation could be performed ahead-of-time or by a JIT.
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Interesting works in this area are the Java-to-C converter by Anders 
Nilsson in [NE01], the commercial RTOS and bytecode to native compiler 
(see [JBed], and [PERC02]).

1.3.5 Summary

The incorporation of high-level languages in real-time embedded systems 
is complex since the restricted memory and limited computational power 
requirements often interfere with high-level functionality. It is, however, 
desirable to benefit from the advantages of high-level languages in 
embedded systems; the code quality increases. The major benefits are 
relief of programming memory management, better language support for 
software organisation, and clear languages specified for high-level pro-
gramming.

The programming language studied in this thesis is the object-oriented 
Java programming language. It covers the crucial high-level functionality 
and hides the low-level details behind a native interface. Java serves well 
as a high-level language to prove the concept. 
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Chapter 2

The Infinitesimal Virtual Machine
The Infinitesimal Virtual Machine, IVM, for Java is a research prototype 
intended to execute Java programs in embedded systems with real-time 
demands. Besides proving that object oriented programs can run in real-
time environments, the IVM was developed as a research platform 
intended for a study of code replacement during runtime with real-time 
requirements. The IVM is also suited to support other research in connec-
tion with Java and real-time.

The IVM is designed as an interpreter. Interpreted code is slower than 
compiled code. However, the goal of this thesis is to prove that it is possi-
ble to utilise high-level object oriented languages in real-time embedded 
systems. Compared to real-time programs that are not optimised, the exe-
cution of Java programs by the IVM may perform well. Hard real-time 
applications often are not optimised to ensure stability, and remain reada-
ble and traceable. In this aspect, the interpreted bytecodes may be com-
petitive. Besides, the interpreted bytecode is platform independent, 
simple, more expressive than binary code, and thus suitable as an inter-
face for real-time analyses.

This section describes the design of the IVM and the design considera-
tions. First, the overall static data structures of the IVM are described as 
modules and interfaces between the modules. Then the dynamic runtime 
data structures are described, for example, classes, objects, and method 
calls. A split variant of the IVM is introduced. It imposes further design 
issues. The runtime behaviour is discussed and the implications of 
preloaded classes are discussed. The section is concluded with a general 
design discussion and a section summary.



20 
2.1 Java Virtual Machine Overview

The overall structure of a Java Virtual Machine, as it is described in the 
JVM specification, is depicted in Figure 2.1, (see [JVM99] pp. 67-70). 

Classfiles are loaded by the class loader. It verifies that the code is 
secure. The code is then resolved by the resolver. During resolution, the 
symbolical references in the classfile are substituted into internal refer-
ences to increase the overall runtime performance during the execution of 
the methods in the class. The interpreter utilises the internal references 
to execute the program. 

The memory of the JVM is organised in five areas:

The Java Virtual Machine stacks contain one stack per thread. The 
stack stores local variables, temporary results, and manages the 
method calls by the JVM stack.

The heap is the runtime data area. Objects and arrays are located on 
the heap, which is managed by the garbage collector.

The method area is shared among all threads. It contains constants, 
class descriptions, method data, and code.

The runtime constant pool contains the symbols and constants of 
classes. The information is relevant to transform the class into an 
internal representation or to examine the class retrospectively. 

The native method stacks are typically allocated one per thread. 
Native machine dependent methods utilise the native stack to per-
form its execution.

2.2 Modules and interfaces

The IVM is divided into modules to comply with various demands that 
originate from its usage. The rationale is the embedded system limita-
tions and the real-time requirements, which necessitate modifications to 
the original JVM design. Another design goal for the IVM is to facilitate 
the port process to other platforms. It is achieved by division of platform 
specific code and platform independent code. Platform specific code is 
encapsulated in modules and accessed via a port interface. The intention 

Figure 2.1  This overall structure of the Java Virtual Machine shows the main 
parts, i.e. the modules and memory areas, according to the JVM specification. 

Classfiles

Class loader Interpreter

Verifier Resolver

Heap JVM stacks Method area
Native 
method 
stack

Runtime
constant

pool



 21
has been to create a simple design intended to be extendable and flexible. 
Other JVM research projects could utilise the IVM as a platform for 
research on Java or JVM related ideas.

The overall structure of the IVM is depicted in Figure 2.2. Two new 
modules, the optimiser and the real-time analyser, are added to meet the 
requirements of embedded systems and of real-time systems. The sched-
uler and the garbage collector are explicitly shown because they have dif-
ferent behaviour in real-time systems and concurrent systems. The real-
time requirements inflict special solutions to those parts that are super-
fluous in concurrent systems. 

The heap is utilised for the JVM stacks, the method area, and the 
runtime constant pool. This solution simplifies the overall structure of the 
IVM and reduces the amount of design decisions. Native methods execute 
on the same frame as the IVM itself.

The modules are:

The class loader locates and loads classes into internal data struc-
tures.

The verifier checks if the classfiles are well formed and secure to exe-
cute.

The resolver converts bytecodes into an internal form.
The real-time analyser creates real-time information about the code 

for the scheduler.
The initialiser initialises the loaded classes.
The interpreter executes the bytecodes.
The scheduler schedules threads.
The garbage collector works together with the scheduler to uphold 

real-time characteristics.
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ol
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Figure 2.2  The overall structure of the Infinitesimal Virtual Machine shows 
its modules, interfaces, and memory areas. The difference from the original 
JVM specification is the real-time analyser and optimiser in the class loader.
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The platform specific methods — the IVM support methods that 
are platform dependent.

The thread and monitor methods — support for different thread 
and monitor implementations are implemented in this module.

The native methods store all native methods.

The original class loader has been split into a verifier, a bytecode resolver, 
and an initialiser. The real-time analyser prepares the internal class rep-
resentation with real-time information that is relevant to the scheduler. 
The information concerns WCET, and WCLM. The optimiser is mainly 
focused on memory saving optimisations, but it is possible to extend it 
with other performance-increasing optimisation techniques. The garbage 
collector interface enables various garbage collector modules. For real-
time embedded systems, a scheduling of a GC is available in [Hen98].

The interfaces are:

File: the classfile access protocol
Native: support of and access to native methods
Port: support methods for the IVM
GCI: garbage collector interface
Thread: interface to context switch and thread handling
Monitor: access to lock handling
Bytecode conversion: description of the internal bytecodes

The file interface describes how to access classfiles. It is utilised by the 
class loader. This interface gathers hardware specific file formats for dif-
ferent platforms, in modules. It consists of simple file accessing methods, 
for example, open and close files, and read bytes.

The GCI is platform independent; the various garbage collectors that 
comply with the interface can be interchanged. The GCI also supports 
thread safe GC utilisation and a debug layer to support IVM and GC 
development. The debug layer can also be utilised when different garbage 
collectors are tested and evaluated. Real-time requirements necessitate 
GC algorithms that are unnecessary complex for concurrent systems. GCI 
enables the ability to change GC implementations in accordance with the 
purpose of the application. The GCI is utilised throughout the code of the 
IVM.

Some methods are inherently platform dependent. For instance tex-
tual output could be presented on a monitor or a LCD display. Such plat-
form dependent methods are collected in the port interface.

The native interface differs from the other interfaces. It has two parts, 
one with access to native methods from the IVM, and another with access 
of Java objects and Java methods from native code. The latter is similar to 
the JNI specification [JNI99]. In the IVM design, the native methods are 
statically linked during compilation. New native methods cannot be 
added during runtime. They are statically linked with the interpreter. 
Native methods are generated from native method descriptions. Many 
native method descriptions stem from the Java API, but platform specific 
implementations could override the native methods. The programmer 
could also add native method descriptions. The generated native method 
file contains all the accessible native methods during runtime.
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The monitor and the thread interface describe the methods that are 
relevant for the IVM to be able to reschedule threads and perform syn-
chronisation of threads.

The following subsections contain detailed descriptions of the inter-
faces. Another interface, the bytecode conversion interface, offers alterna-
tive bytecode implementations suitable for specific platforms. The 
concluding discussion covers an interface to threads in the IVM.

2.2.1 File interface

The file interface is a universal and platform independent interface to 
access classfiles. The underlying file system may for example store class-
files on a hard drive, via a network, or on a flash memory module. Only 
the fundamental file methods are implemented in the interface. The inter-
face concerns:

• Open and close classfiles.
• Read information (byte, short, or int).
• Check if a classfile exists.

The interface should implement a temporary buffer to enhance file 
accesses. Then chunks of information could be read from the file instead of 
single bytes.

2.2.2 Native interface

The native interface describes how the JVM and Java objects can be 
accessed from native code, and how native methods are invoked and 
added.

The native methods in the IVM are implemented in C. To support the 
programmer, a tool, Java native extractor, has been developed to extract 
declarations of native methods from Java files and provide a default 
native method implementation, i.e. an implementation that displays a 
message that the native method is not finished. Arguments are popped 
from the stack and a default return value, if any, is pushed. The Java 
native extractor also forces the native programmer to encounter the cod-
ing standards of the IVM. It is imperative to utilise the heap correctly. 
Native code has to follow the GCI correctly. The programmer is supported 
by the default implementation generated by the extractor, and by the 
debug layer of the GCI that examines if the memory is handled correctly.

The native implementations are collected by the native code generator 
and put into a single file that is compiled and statically linked into the 
IVM. The Java Language Specification states that native methods should 
be loaded dynamically, i.e. the native methods should be located in shared 
objects, or dynamic link libraries. At this point, the IVM breaches the 
specification to the benefit of decrease of the complexity in the IVM. Hard 
real-time analysis is simplified if loading times of native methods are 
excluded from the analysis.

Native method implementations are supported for different platforms 
and different thread models. The native code generator selects the native 
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implementations due to the given characteristics of the current IVM com-
pilation. Figure 2.3 describes the process of native code integration into 
the IVM.

Inside the IVM, each native method is represented by a unique index 
number. The number is used to locate the native method during runtime. 
The native code generator generates a switch statement where all the 
native methods are case alternatives. Figure 2.4 shows this generation 
and the resulting switch statement.

Native methods in the IVM execute on the same stack as the inter-
preter. This simplifies the design of the C stacks. One stack is needed for 
the IVM itself and for the native methods. However, this influences the 
real-time behaviour, since only one native method is allowed to execute. 
The interpreter is blocked from further context switches until the native 
method is finished. This restriction complicates the analyses of WCLM 
and WCET for native methods. WCET analysis for native methods is 
omitted in the IVM. Only the bytecodes are studied in the WCET analy-
sis. WCLM analysis is relevant to design the size of the C stack for the 
IVM. The IVM native interface can be utilised to analyse the memory con-
sumption for native methods. However, if the methods are non-determin-
istic in size, the WCLM is only an approximation.

java.lang.Class

native Class forName(String);
native String getName();
…

java.lang.System

native Long currentTimeMillis();
…

…

java.lang.Class.native

java.lang.System.native

native.c

Figure 2.3  One part of the native interface describes how native code should 
be added into the IVM. The Java native extractor supports the programmer 
with a default native method implementation that fulfils the native method 
interface.
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generator

Native methods in java.lang.Class
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Long currentTimeMillis() { … }
… 

Class forName(String);
String getName();
…

switch (nativeNumber) {
case 1: // forName

… break;
case 2: // getName

… break;
case 3: // currentTimeMillis

… break;
…

}

Native C-file

Figure 2.4  In the IVM, the native methods are identified as numbers that are 
utilised in a switch statement to locate the method, when the native method is 
to be executed. The switch statement is generated by the native code generator 
from the native method implementations. The resulting native file is statically 
linked into the IVM.

Native code 
generator
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Inside the native methods, it is possible to invoke Java methods and 
access Java objects. These procedures are described in the Java Native 
Interface Specification (see [JNI99]). The main functionality of the JNI 
consists of the following tasks:

• Call virtual or static methods.
• Pass arguments to and from the virtual machine.
• Get and set object-, static- and array fields.
• Handle strings and arrays, e.g. get number of elements, or get a 

subsection.
• Handle exceptions, i.e. generate, and throw exceptions.
• Check types.
• Get internal identification for methods and fields.
• Get class, superclass, or virtual machine.
• Native method registration.
• Synchronise threads.

The native interface implemented in IVM includes subsets of the catego-
ries above. The reasons for this are to decrease the overall code size of the 
IVM and that the full JNI implementation has low priority in the project. 
It is possible to implement almost every JNI method without difficulty. 
However, some of the methods in the JNI are related to memory manage-
ment. For instance, it is possible to lock the position of an object in mem-
ory. This procedure intrudes on the workings of the GC and conflicts with 
the hard real-time requirement of a predictable memory area without 
fragmentation, to ensure the size of allocated memory. These methods are 
introducing manual memory management and thereby introducing low-
level concepts into Java.

The static loading of native methods interferes with the JVM specifica-
tion. It states that dynamic loading of native methods is necessary. The 
specification breach is not considered critical. Dynamic loading of native 
methods would increase the complexity of the real-time analysis.

2.2.3 Port specific interface

Methods not covered in another interface and necessary for the IVM are 
collected in the port interface. Primarily it serves the supportive purpose 
of printing and context switching. Types utilised throughout the IVM code 
are also defined as compiler dependent types in the port interface.

2.2.4 Garbage Collector Interface

This interface allows different garbage collecting algorithms to be imple-
mented and utilised in the IVM. However, it also burdens the IVM imple-
menter and the native method implementer, with code regulations. Every 
reference assignment and reference utilisation has to be capsulated and 
accessible from the garbage collector. The interface also defines a descrip-
tion of object layouts, and garbage collecting object overhead. The follow-
ing coding regulations are added:
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• Declare (allocate) a reference under the supervision of the garbage 
collector.

• Use (access) GC reference.
• Compare GC references.
• Check GC reference assignment.
• Add/remove GC reference to/from live reference set.
• Initialise heap.
• Allocate object on heap.

The GC fields in every object ordinarily consist of a handle location (for-
warding pointer). However, different garbage collecting algorithms 
require different GC fields. For instance, mark algorithms require a mark 
bit.

The object layout description shows the location of GC references 
inside an object. Figure 2.5 explains the grammar and Figure 2.6 shows 
an example of object descriptions. In arrays, the number of pointers is 
noted as variable in the object description. The actual number of refer-
ences is contained in the array object itself. The variable marker also indi-
cates the position. 

<pointer locations> → <pointers> | <stop>
<pointers> → (<number of pointers> <skip bytes>) | <stop>
<skip bytes> → (<number to skip> <pointers>) | <stop>
<number of pointers> → <number>
<number to skip> → <number>
<number> → <byte number> | <word number> | <variable size>
<byte number> → 0 – 253
<word number> → 255 <high byte> <low byte>
<high byte> → <byte>
<low byte> → <byte>
<byte> → 0 – 255
<variable size> → 254
<stop> → <end of array>

Figure 2.5  The garbage collector utilises strings formed from the grammar to 
locate pointers in objects. Variable size entries indicate that the number of 
pointers or bytes is found in the object itself at the location.
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2.2.5 Thread interface

Real-time threads are not specified in the JVM specification. To achieve 
real-time characteristics a specific implementation of the threads in Java 
must be implemented. The implementation of threads is modularised to 
allow different thread implementations. Real-time threads may be too 
complex for applications without real-time demands. Those applications 
could choose a lighter thread implementation.

The thread interface involves context switching and monitor opera-
tions. The IVM is designed to check if a context switch is about to occur, 
after the execution of every bytecode.

2.2.6 Bytecode conversion interface

The IVM supports alternative implementations of the internal instruction 
set. Many of the bytecodes specified in the JVM specification (see 
[JVM99]) are utilising symbolic references as operands. These references 
are time-consuming to follow and they should be replaced with direct ref-
erences to increase runtime performance. Other reasons for alternative 
bytecode implementations are introduction of performance-increasing 
bytecodes, and removal of unnecessary bytecodes. An example on how to 
increase the performance is to map platform specific abilities to bytecodes.

In some embedded systems, the restricted memory requirement is 
especially prominent. Reduction of the internal bytecode instruction set 
decreases the size of the interpreter. However, some performance-increas-
ing bytecodes are also removed.

In some embedded systems, there are bytecodes that are never uti-
lised. These unnecessary bytecodes are, for example, floating-point opera-
tions or monitor related bytecodes in a single threaded application.

class Object 
<head>

Figure 2.6  The object descriptions show where the GC references are located 
in objects. The references are counted and the space between references is given 
in bytes. Variable length is given as the number 254. It shows that the corre-
sponding location in the array-object contains the number of elements. It is five 
in the array-object.

 class B
int c
A refD, refE
int d

class A
int a
A refA, refB, refC
int b

 class A[]
<head> +0, 254

<head> +4, 3, 8, 2

<head> +4, 3

<head>

<head>
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[0] 
[1] 
[2] 
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Conversion of symbolic bytecodes
Symbolic references are represented in textual form and should be con-
verted into direct references to gain performance. Textual comparisons 
during runtime are time-consuming. In applications where symbols are 
only utilised to resolve symbolic references, the symbols may be removed 
to save memory space after the conversion.

Direct references may be pointers or indirect references, i.e. offsets. 
There are three groups of references from the bytecode:

1. Class references
2. Virtual methods references and object field references
3. Static method and field references, and constants

Some bytecodes utilise two of the references, but most of them utilise only 
one. Symbolic class references are replaced by direct references to the 
class. Virtual methods are often replaced by an offset in the virtual 
method table. Fields are replaced by offset into the object. A straightfor-
ward resolution of static methods is by an offset into the static method 
table of the object. Constants and fields are also located by an offset into 
the static field array of the class.

There are other solutions to the constant bytecode resolution. For 
example, inline methods, or propagate constants into the bytecode.

Minimal bytecode instruction set
The JVM instruction set operates on four different components: the 
objects, the static objects and static constants, the stack, and the local 
variable area. Operations exist to transfer information between the com-
ponents, and to directly operate on them. Since the machine is stack-ori-
ented, operations on the stack attract most bytecodes. Figure 2.7 shows 
the overall bytecode operations of a JVM.  

Figure 2.7  The Java bytecode instruction set contains mainly operations on 
the stack and data transfer to and from the stack.
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The main component is the stack. The JVM is a stack-based machine 
without registers. All operations are performed on the stack. Data is 
loaded and stored in three different places, besides the stack. Those are 
the other components, i.e. the objects, the local variable area, and the 
static variables. The objects are created from the application program. 
The static objects are created by the JVM itself. The local variable area is 
a part of the frame. In the IVM, the stack is also a part of the frame, and 
frames are stored as objects on the heap. 

Data transfer between the different memory areas (objects, static vari-
ables, constants, local variable area, and stack) are described as put and 
get, load and store, push, and stack manipulating bytecodes. Other essen-
tial bytecodes handle method invocations. They occur in objects, either 
static or ordinary, and during creation of objects (new). These bytecodes, 
together with the arithmetic bytecodes, span the fundamental operations 
in the machine. Arrays are treated specially in the JVM. They have spe-
cial creation bytecodes and a specific bytecode that delivers the size of an 
array to the stack. Bytecodes that address the frame directly are related 
to control flow and exception handling. Synchronisation bytecodes are 
related to thread handling. 

The static objects and the frames are also located as objects on the 
heap. It would be possible to substitute those bytecodes with object 
related bytecodes to decrease the size of the interpreter even further. The 
description of internal data structures as classes is dealt with in Section 
7.6, "Meta virtual machine". 

Unnecessary bytecodes in embedded systems
The restrictions of the embedded system hardware may be utilised to 
decrease the size of the IVM code and the bytecodes of the method. The 
bytecode converter could also be made smaller in size. The following 
groups of bytecodes may be superfluous in some platforms:

• Type reduction and unsupported types: Not all the Java types may 
be supported by the platform. Those bytecodes may be removed for 
those systems. For example, if the platform does not support float-
ing-point arithmetic, the types float and double may be removed. 
Other types may not be relevant for the underlying platform, e.g. 
int, short, char, or byte.

• Single threaded application: If the application is single threaded, 
the overhead for multi-threading could be removed. Synchronisa-
tion bytecodes and synchronisation code in the IVM could be 
removed.

• Limited memory area: Since the RAM size in embedded systems 
are limited, the heap has a definitive maximum size. References 
and addresses could be made smaller within the IVM code. The 
number of classes could be limited by the memory size. Indirection 
to a smaller range of classes could decrease the size of offsets.

• Some runtime checks may be removed after an analysis. For exam-
ple, situations where array accesses cannot exceed the array limits 
may be removed. See [ACL98] for more details on such optimisa-
tions.
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2.2.7 Discussion

The IVM is split into modules connected with interfaces, to support many 
different implementations. The modularisation serves well as a research 
platform. Different implementations of the modules could support exami-
nation of the behaviour and functionality of the virtual machine.

The focus during the design of the IVM has been to accommodate the 
requirements of real-time embedded systems in the machine. The mem-
ory consumption is important to minimise and real-time threads impose 
requirements that are necessary to deal with in the JVM design.

2.3 Internal data structures

The internal data structures lay the foundation of the work of the IVM. 
Internal representation of classes, objects, and methods, are described in 
this section. During runtime, template structures support, for example, 
the automatic memory management, the dynamic type checks, and the 
localisation of virtual methods. Symbol tables support the class loader to 
transfer classfiles into an internal representation of the class.

In general, the template structure collects information common to 
underlying templates and objects. However, these structures do not corre-
spond to the Java class inheritance structure. The difference is analysed 
in a section after the description of templates, object layouts, and inherit-
ance structure.

2.3.1 Object design

The primary design goal for the objects, i.e. instances, was to make them 
simple and to design them for real-time and dynamic code replacement 
purposes. Performance was considered a secondary goal. 

An object consists of an object head and the attributes designed by the 
programmer. The object overhead consists of garbage collecting part, the 
template reference, and information concerning the lock of the object. The 
size of the garbage collecting part is dependent on the algorithm of the 
GC. The template reference refers to the template describing this object 
and containing all common information for all objects of that type. The 
lock is due to the Java specification. See the Java Virtual Machine 
([JVM99]) for more information about the lock mechanism.

Because methods are common to all objects of the same type, they are 
collected in the template. The attributes, as described in the class, reside 
in the object, since they are unique for every object. The object structure 
implemented in IVM is described in Figure 2.8. Other information that is 
common to objects of the same type is a description of the object, for exam-
ple, the object size. The template of objects is actually class descriptions. 
They contain methods, static variables, symbolic information about the 
class for further class loading, and an interface array to keep track of the 
implemented interfaces.

Some garbage collecting algorithms use handles. The mark-and-sweep 
algorithms or mark-and-compact algorithms also utilise a mark pointer 
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field. The IVM is designed with the intention of different object layout 
techniques. 

2.3.2 Templates

The internal hierarchical template structure contains runtime informa-
tion common to children of the template. All IVM objects are referring to a 
template that describes their layout and design. Other information gath-
ered in templates is garbage collecting information, i.e. object size and the 
location of references inside the object. The reason to collect the common 
information in a template instead of inside the objects is to save memory 
space. It is also a principal decision to strive to gather information affect-
ing many objects in one place. The major drawback is performance loss. It 
is quicker to access the information immediately, in the objects, than 
through indirection via a template reference.

In one specific case, the common information is contained in the 
objects themselves. Garbage collector information for array-objects is also 
described in the objects and not solely by their templates. Instead of hav-
ing a separate template for every array, all arrays may share one single 
template at the expense of slightly increased array sizes.

The template hierarchy inside the IVM is shown in Figure 2.9. The 
internal data structures in the figure are created prior to execution and 
class loading. Classes are created during class loading. Dynamic data 
structures are created during runtime as described by the executing Java 
program. At the top of the hierarchy the meta meta template is located. It 
describes itself as well as its children. They are the meta method template 
and the meta meta class template.

Figure 2.8  The object structure layout consists of an internal overhead for 
managing the object and the attributes described in the object’s class.

garbage collector information 
template reference 
lock 

<Attributes described in the class>
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The separation of classes, interfaces, primitive classes, and array 
classes enables the runtime system to determine the type of an object dur-
ing runtime. Some Java methods require this distinction. For example, in 
the class Class there are methods, isPrimitive and isInterface, 
that examine the type of the object.

The template structure is utilised by the runtime system to support 
the GC with the layout and sizes of objects and the other data structures 
in the runtime system. The interpreter compares types with template ref-
erence comparisons. Virtual methods are found by following the objects 
template reference. Similar data structures can be found in [KM93].

The design of a template head
Every template is an object and thus located on the heap. All objects have 
information concerning the GC state of the object. The templates also 
describe instances with a reference location description and an object size.

object

Figure 2.9  The template structure in the IVM shows how the objects and tem-
plates relate to each other in the IVM system. Methods are marked as classes 
since they are created during class loading.
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 class template
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Figure 2.10 describes graphically the outlook of the template head in 
the IVM system. The reference location description is explained in detail 
in Section 2.2.4. 

Templates may be extended to hold more information common to their 
children. The meta method activation template and the meta meta class 
template have the same outlook, but they describe different children. 
Children to the meta meta class template have an extra virtual method 
table. In Java, it is possible to call methods in classes. The virtual method 
table contains the methods that are accessible from every Java class 
object. Those methods are described in the Java class named Class.

Templates for classes, arrays, interfaces, and primitive types
The objects of templates are the instances of the classes that the tem-
plates represent. Information common to all objects of a class is collected 
in the corresponding class template. The information in a template for a 
Java object is described by the following fields (the template head is 
excluded):

• Access flags — the flags describe the access modifiers and prop-
erty modifiers of the class (see [JVM99], Table 4.1, p. 96).

• Superclass: The reference refers to the Java superclass of this 
object.

• Virtual method table — the table contains all the virtual meth-
ods in the class. The methods are represented as activation tem-
plates.

• Static method table — the table contains the static methods 
declared in the class. The methods are represented as activation 
templates.

• Constant value table — the table contains the value constants 
declared in the class.

• Constant reference table — the table contains the references 
constants declared in the class. 

• Interface table — the table contains the interfaces and the corre-
sponding virtual method array, implemented by this class.

Figure 2.10  The templates describe its children. The meta meta template is 
also its own subtemplate.
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• Fields — the content describes fields declared by the class. The fol-
lowing information is stored: name of the field, the descriptor of the 
field, the offset to the field, the access flags of the field, and the type 
of the field. The name and the descriptor are stored as indices to the 
internal symbol table that is explained in Section 2.3.5.

• Class references — the references utilised in the method are 
stored in this array. A reference entry contains indices to its class, 
name, and descriptor. Class indices are offsets in the class template 
table and the class symbol table. The name and descriptor indices 
are offsets in the symbol table. See Section 2.2.5 for more informa-
tion about the internal tables.

• Class index — the index shows which location in the class symbol 
table that contains the class template table representing this class.

• Debug information — the extra information about the class is 
stored into the debug information table. 

Activation templates
The method templates describe the methods in the IVM. As methods are 
called, their invocations are stored as objects on the heap with a reference 
to their template. The activation template is depicted in Figure 2.11 and 
it contains the following information:

• Access flags — the flags describes the method access modifiers and 
properties, see [JVM99], table 4.5, p. 115 for more information.

• Class template reference — the reference refers to the class 
implementing this method.

• Name and descriptor indices — the indices describes the loca-
tion of the symbol of the name and descriptor of this class in the 
class symbol table.

• Number of reference and value arguments — the number of 
arguments shows how many arguments are transferred to the new 
activation or frame. 

• Start of local variable area and stack — the indices show where 
the local variable area and the stack start in the frame. Since the 
local variables and the stack are split into reference and value 
parts, there are four indices to locate the internals of the frame.

• Exception table — the exception table contains indices to the 
exceptions and their ranges in which the exception can be caught. A 
handler index indicates where in the bytecode to proceed if the 
exception is caught.

• Code reference — the code reference refers to the bytecode array.
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2.3.3 Inheritance structure

The hierarchical inheritance structure represents the type of the objects 
of the class, and the contents of objects as designed by the programmer. 
Attributes and methods in an object consist of the collection of inherited 
attributes and methods plus those implemented by the class. Figure 2.12
depicts an inheritance situation. 

The template structures are utilised to locate the direct superclass of 
an object. However, the superclass of the object’s direct superclass is not 
found via the template reference of that class. Instead, the class reference 
in the class template is utilised to find the superclass of the object. The 
template reference in the class template leads to the meta template of the 
template. The distinction between the class and its template is due to the 

garbage collector information 
template reference 
reference location description 
object size 
access flags 
class template reference 
name Index 
descriptor index 
number of reference arguments 
number of value arguments 
local reference variable area index 
local value variable area index 
reference stack index 
value stack index 
exception table 
code

Figure 2.11  The activation template contains information that is common to 
all method calls of the method. 
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JVM specification. It says that all classes are instances of the class 
Class.

All the templates that are possible to inherit have to implement a 
superclass reference to support the class inheritance structure.

2.3.4 Java class structure

The Java class structure shows a template structure as described to the 
programmer by the API. The Java description of classes and objects is 
found in the class Class defined in the Java API, e.g. Java 2 Standard 
Edition API [J2SE] and Java 2 Micro Edition API [J2ME]. 

The Java class structure differs from the IVM template structure and 
from the class inheritance structure. It does not describe any garbage col-
lecting information and other implementation specific details. Neither 
does it collect all common information in children. It only enables every-
thing written by the programmer for the Java program. The class Class
supports symbolic field and method access. Figure 2.13 shows how the 
Java classes are related to the class Class. This class is important in a 
JVM implementation even though it belongs to the Java API. Inside the 
class Object, there is a method returning the class of the object. The 
method is inherited into every Java object in the system. The objects and 
classes in Figure 2.13 are related to each other according to the Java API. 
The instances of classes refer to their classes. The internal template 
structure and the Java class structure utilise the same template refer-
ence.

2.3.5 Internal memory and data structures

This section describes the memory organisation and internal data struc-
tures that support the IVM. Memory organisation is primarily a garbage 
collection design issue. The GC algorithms decide the outlook of the refer-
ences, objects, and heap. The internal data structures support the IVM 
during runtime.

To decrease memory utilisation, symbols in classfiles are reused. They 
are collected in a global symbol table. Every reference to a symbol is rep-
resented by an index in the symbol table. Class symbols and class tem-

Figure 2.13  The Java class structure describes relations of objects and 
classes.
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plates are referred from a global class symbol table and a global class 
table, respectively. The symbol tables are utilised during class loading 
and by introspection. If introspection is removed from the API, the symbol 
tables do not need to reside in the runtime environment of the interpreter. 
The converter, on the other hand, requires the symbols to resolve symbolic 
links in classfiles during class loading. 

The memory in the IVM is concentrated to the heap. Other memory 
areas have been transferred to the heap in order to simplify the memory 
organisation of the IVM. The cost of simplicity is performance loss. The 
only memory area outside the heap is the C stack that the IVM utilises 
during execution. 

The organisation of the heap is dependent on the garbage collector 
algorithm. The GC algorithms implemented in the IVM are batch-copy, 
compacting incremental mark-and-sweep, and a compacting generational 
incremental mark-and-sweep. The algorithms will be touched briefly upon 
here, but more information about them can be found in “Garbage Collec-
tion”, a book written by Richard Jones and Rafael Lins ([JL96]). The 
memory structure and the outlook of references of the algorithms are 
described next. All GCs utilise a root set containing references to live 
objects.

A batch-copy algorithm divides the memory into two areas of the same 
size. Allocation is performed in one area until it is filled. Then the pro-
gram execution is abruptly halted while all live objects are selected and 
transferred to the other area. Dead objects are left in the old area. Refer-
ences are direct pointers to objects. During the flip, all the live references 
are updated to point to the new location of the object. Even though this 
algorithm induces little overhead, the unused memory area conflicts with 
the restricted memory of embedded systems.

The compact and incremental mark-and-sweep algorithm utilises one 
single memory area. The GC compacts objects inside the heap to avoid 
internal fragmentation. Every reference points at an internal object table 
where all objects in the heap are referred. When an object is moved onto 
the heap, it is only necessary to update the object table since all refer-
ences to that object go through the corresponding object table entry. Every 
object is fitted with a handle that locates its entry in the object table. The 
memory state of the object is also noted inside every object. 

The compact incremental generational mark-and-sweep algorithm 
combines the two algorithms mentioned above in an attempt to gain from 
the advantages. It has a small and fast batch-copy area, and objects sur-
viving one flip are placed in a compacted heap that is updated with long 
intervals. 

The disadvantage of placing the JVM stacks on the heap is perform-
ance loss. Compared to the stack solution due, extra indirection is intro-
duced and extra overhead decreases performance. Another disadvantage 
is introduction of memory overhead in the frames. However, the stack 
solution requires beforehand determination of the stack sizes that could 
result in reserved memory that isn’t utilised. Even if the maximum stack 
size could be determined, it is not probable that all stacks are utilised to 
the fullest at all times. The heap solutions do not suffer from these mem-
ory problems.
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2.4 Split machine

The split machine executes the class loader and the interpreter on differ-
ent machines connected via a network. Classes and objects are sent over 
the network to the interpreter, as they are needed. The size of the inter-
preter and the heap of the interpreter are reduced significantly without 
the class loader. Since the memory is not shared between the interpreter 
and the class loader, the classes loaded to the interpreter have to be 
linked into the runtime system of the interpreter. The class-loading mod-
ule in the interpreter is replaced with a linker.

The split machine could be utilised in distributed systems consisting of 
small embedded nodes and a more powerful server, e.g. SCADA [SCADA]. 
An example of a system suitable for the split machine is depicted in Fig-
ure 2.14. The nodes contain embedded computers with an interpreter 
each. A supervisor computer keeps track on the state of the different 
nodes.

Another benefit of the split solution is that only parts of a class have to 
be within the memory of the interpreter. If a method is called without 
being loaded, it is requested from the supervisor. Other threads could con-
tinue to execute during the loading of the method, reducing the memory 
requirement even more. This approach supports real-time systems as 
well. A typical real-time program often executes a loop. The necessary 
methods and data structures to execute the loop — the working set — 
could be loaded into the interpreter’s memory, while the rest could be 
thrown away. A simple way to find the main parts of the working set is to 
clean the memory as the control loop is reached. All the necessary meth-
ods and classes would then be requested from the supervisor instead. Fig-
ure 2.15 depicts the extensions of the original IVM structure. 

Figure 2.14  The split machine is suited for systems with a more powerful 
computer, the supervisor, connected to interpreter nodes. The supervisor con-
tains the class loader and prepares classes to be sent to the nodes.
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The physical layer is encapsulated in the inter process communication, 
ipc, interface. It consists of methods to open and close a channel between 
the converter and the interpreter. It also defines how to read and write 
bytes to an opened channel. On top of the physical interface, the converter 
utilises a command interface to send instructions to the interpreter, for 
example, load a class, and start executing a program. This command 
interface is called com in the figure.

2.4.1 Interfaces and modules of the split machine

The interfaces and modules introduced by the split machine concern com-
munication between the interpreter and the class loader. The interpreter 
is extended with a linker to incorporate the classes sent from the class 
loader into the runtime data structures of the interpreter. At the same 
time, the class loader is extended with an IVM control module that sends 
commands and objects to the IVM node. Figure 2.16 shows the communi-
cation layers:
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Figure 2.15  The overall structure of the Java Virtual Machine shows the 
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the split machine. Two separate memory areas are needed for the class loader 
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The extra modules in the split IVM are as follows:

Inter process communication — a transport layer of bytes between 
communicates between the interpreter and the class loader.

Command protocol — defines commands and the representation of 
the transport classfile.

Ivm control — sends commands and objects to the IVM node.
Linker — implements the commands defined in command protocol.

The extra interfaces in the split IVM are:

Com — the command protocol transfers commands and objects to and 
from the IVM. 

Ipc —the inter process communication encapsulates the physical 
transport layer. It contains methods to open and close channels, as 
well as methods to send and receive bytes.

The com interface describes object serialisation between the converter 
and the interpreter. It also describes control signals. The command mod-
ule implements the com interface and the underlying physical transport 
layer is encapsulated in the ipc interface. 

The linker module has to be added to the IVM. It converts the loaded 
objects into runtime objects, by resolving the pointer references to real 
references. The class loader sends and receives commands to the IVM via 
the IVM control module.

The transport classfile layer consists of the internal runtime data 
structures. However, the references have to be recalculated in the inter-
preter if a separate memory area is utilised.

Initialisation of the IVM node’s internal data structures
Classes are sent in a transport representation. All references have to be 
recalculated in the IVM. It is essential to install the referred objects 
before reference recalculation is performed. The internal hierarchical 
template structure can also be sent to reduce the size of the interpreter. 

2.4.2 Memory model

There are two alternative solutions to the split machine memory design. 
The class loader memory area should be shared amongst the nodes to 
save space on the supervisor computer. The other alternative is more 
memory consumptive where a separate heap is allocated for every node. 
The advantage of such a solution is to avoid irrelevant classes to reserve 
memory in the interpreter memory area. A combination of both ideas is 
also an alternative. The common classes defined in the API are the same 
for every interpreter node. 

2.4.3 IVM references

There are two different ways to refer to an object and there are two differ-
ent ways to refer to elements in an object. The object may be accessed 
directly by a pointer, or via a reference. The pointer is only utilised by the 
garbage collector. Java objects and internal data structures are referred to 
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via references. The reference implementation is dependent on the GC 
algorithm. It may be implemented as a pointer or as an indirect pointer, 
i.e. a pointer pointer. Elements inside an object are accessed as offsets 
from the object pointer. Array elements are to be accessed via indices, or 
as offsets. 

For instance, an object accesses its class by directly referring to its 
template. A class is referred from the bytecode by an index to it. The index 
is utilised in the global class template table to access the class. Index ref-
erences are also utilised by Java arrays. The global class template table 
could be accessed from Java, if a reference to it is provided to the pro-
gram. Figure 2.17 describes the different reference types.

The utilisation of indices is more secure than that of offsets. If the 
index reaches outside the array, an exception is thrown. Offsets do not 
have this feature.

2.5 Runtime

The runtime design of the IVM concerns the execution of bytecodes, 
method calls, threads, and context switches. The design is a specialisation 
of the JVM specification, which is too general for real-time embedded sys-
tems.

In Java, the runtime system is tightly coupled with the JVM, and the 
Java API. Programmers are allowed to work with threads and locks, i.e. 
monitors. Every object in Java has a monitor, and thread handling meth-
ods are implemented in the superclass of all classes, Object. All other 
classes inherit the class. Inside the JVM, there are monitor-handling 
bytecodes associated with the runtime system.

2.5.1 Method calls

The method call design of the IVM utilises the heap instead of stacks. The 
incurred performance loss is motivated by a simple and more predictable 
behaviour of the IVM. The advantages are avoidance of stack size calcula-
tion and better memory utilisation. The method call procedure is depicted 
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Figure 2.17  In the IVM, the array would be referred to by an object reference. 
Only the garbage collector is aware of the direct pointers to the array. Elements 
in the array are accessed by an index. Internally, the elements of a general 
object are reached by offsets.

offset
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in Figure 2.18. As one method is called, a new method activation record, 

i.e. frame, is created for the new method. This frame contains the local 
variable area and the stack for the called method, according to the infor-
mation in the method template. It is linked with the frame of the caller in 
order to store the returning frame after the method is completed. The 
other contents of a frame are the program counter and the location of the 
top of the stacks. Both the stack and the local variable area are divided 
into a reference part and a value part that supports the garbage collector 
with the locations of the references in a simple way. The number of total 
references in the frame is also noted to support the GC.

The procedure of a method call is as follows:

1. Allocate the new frame.
2. Initialise internals of frame:

• Set all references to null.
• Set method template reference; return frame reference, program 

counter, and top of stacks.
• Transfer arguments.

3. Transfer the execution point to the new frame.

The arguments are moved from the stack of the caller to the local vari-
able area of the new frame. If the method is declared virtual, a reference 
of the object that receives the method call is also transferred as an “invis-
ible” argument. 

As the IVM is started, the specified main-class must contain a method 
that is named main and declared public and static. The IVM automati-
cally creates the frame of the main-method, and starts execution of the 
main-method.

2.5.2 Java runtime

Java enables access to the runtime system via the language itself as wall 
as via the standard API. The main-method describes the first method to 
execute in a thread. It does not differ from other threads in other ways. 

Figure 2.18  The design of a method call in IVM describes the utilisation of the 
heap for all Java frames instead of one stack for every thread. The greyed area 
in the frame shows the references in the local variable area and the stack.
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New threads can be spawned from classes inheriting the Thread class or 
implementing the Runnable interface, which is then given to a Thread 
constructor. The class Thread specifies operations for voluntary resched-
uling, i.e. sleeping a period of time, and yielding the processor resource to 
other threads. Preemption occurs when the time slice of the currently 
active thread has expired, or when higher priority threads are activated. 
Every thread has a priority to indicate its importance. See [JLS00] for 
more details on the behaviour of threads.

The protection of critical regions and synchronisation is described as 
follows: every object has a lock associated with it and that lock can be 
acquired and released through the use of methods and statements 
declared synchronized. Since the lock is implemented as a monitor 
there are standard monitor operations associated with it. They are 
located in the Object class. It is possible for a thread inside a monitor to 
release it and wait for a condition to occur. As the monitor is released, 
other threads can enter it, change conditions, and notify one or all of the 
waiting threads. The JVM specifies the monitor behaviour in [JVM99].

Differences from general monitors are that the Java monitors only 
have one condition variable, and that the Java monitors are incorporated 
into the JVM. More condition variables allow threads to wait for different 
conditions to occur in the monitor. It is also common to treat the monitors 
as objects in an object oriented system, e.g. in BETA ([KMMN91], Section 
12). The behaviour of monitors in Java is specified in the Java Virtual 
Machine Specification ([JVM99] Section 8, “Threads and Locks”). The 
specification does not describe the monitor or the scheduler behaviour 
exactly. The following citation is from [JLS00], 10.6 Thread Scheduling, 
pp. 248-249:

Exactly when a preemption can occur depends on the virtual 
machine you have. There are no guarantees, only a general expecta-
tion that preference is typically given to running higher priority 
threads. … You can make no assumptions about the order in which 
locks are granted to threads, nor the order in which waiting threads 
will received notifications – these are all system dependent.

In short, the Java Specification specifies the contents of the JVM runt-
ime handling while leaving the details to the JVM implementation. 

Other common synchronisation mechanisms are semaphores and 
event handling. They are omitted in the Java specification. 

2.5.3 JVM runtime

Even though the specification does not state the exact behaviour of the 
JVM runtime system, many tasks are thoroughly covered. They can be 
collected into the following list:

• Threads
• Locks
• Preemption
• Priorities
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• Runtime API, e.g. Thread and Object

The runtime API is the interface for the programmer to the runtime sys-
tem, and the scheduler. Exactly how the scheduler is implemented varies 
greatly. In some systems, the scheduler is implemented by a thread; in 
other systems, the scheduling work is distributed throughout the pro-
gram. An example of the active thread organisation within the JVM is 
shown in Figure 2.19. Active threads are placed in different priority ready 
queues. When preemption occurs, the running thread is placed last in its 
priority list in a round-robin manner. Threads that are not in a ready 
queue are inactive, or blocked. Blocking can occur, for example, when a 
thread waits in a condition queue of a monitor. Sleeping threads are 
placed in a separate sleeping queue. An example of threads during runt-
ime is described in Figure 2.19.

The pictures in Figure 2.20 show the workings of the scheduler as 
preemption occurs, i.e. when the time slice of the active thread expires, 
when the active sleeps, and when a sleeping thread is woken.
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Figure 2.19  Ready queues for different priorities help the scheduler to keep 
track on which thread it has to execute. Sleeping threads are woken as their 
sleeping time expires and re-inserted into their priority queue. This system con-
tains 15 threads that are ready to run and 3 sleeping threads.
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Java locks
A typical layout of a Java monitor, called lock, is shown in Figure 2.21. It 
consists of a waiting queue where threads are lined up if the monitor is 
occupied. The event queue of the monitor contains threads that wait to be 
notified, probably after some change of a condition inside the monitor. 

Threads that are located in the monitor queues or in the sleeping 
queue are blocked. Only threads in the ready queue are allowed to exe-
cute. A thread cannot reside in different queues at the same time.

iv. B1 yields and trans-
fers the processor 
resource to the next 
thread in line.

vi. The time slice for A3 
expires. The scheduler 
transfers the execution to 
A3 due to priority.

B1 B2 B3

Figure 2.20  The ordinary workings of the scheduler consist of preemption due 
to expired time slice, and voluntary rescheduling, i.e. yielding and sleeping. 
When a thread terminates, rescheduling occurs to the next thread in line.
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In Java, it is specified that there is a lock associated with every object. 
The workings of the monitor methods are described in Figure 2.22. Inside 
the monitor, a thread can wait for a condition to occur, or notify waiting 
threads of condition changes.

Thread 
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Thread 
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B2

Thread 
C1

Thread 
C2

Thread 
main

Thread 
A3

Thread 
C4

Lock M
Owner: A1

}Ready 
queues

Waiting queue

Event queue

Figure 2.21  The workings of a lock can be described with two queues associ-
ated with it. They are the waiting queue, where the active thread is placed 
when trying to acquire an occupied lock. The other queue is the event queue. As 
the thread that holds the lock decides to wait for a condition to change, it can 
wait in the event queue for this to happen. Other threads may then change the 
condition and notify the threads in the waiting queue. The name of the threads 
indicates their priority: A is highest priority and D is lowest priority. The 
thread that executes main has priority C.
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Java does not explicitly specify the exact behaviour of the monitor 
operations. For example, the priority levels may not be completely valid 
because the behaviour of the monitor is implementation specific. In some 
systems it is feasible to let every thread, even those with lower priority, 
execute occasionally, in order to prevent starvation. In hard real-time sys-
tems, however, the priorities are typically followed stricter. 

Traditionally, an implementation of a monitor works as follows with 
priorities:

• The waiting queue of a monitor is sorted due to priority. It is feasi-
ble that threads with higher priority acquire the monitor before 
lower priority threads do, even though the threads with lower prior-
ity have to wait longer. An example of this procedure is described in 
Figure 2.22.i.

• The monitor event queue is sorted due to priority. If one waiting 
thread is notified it is feasible to wake the thread with the highest 

i. Thread A1 has the 
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and tries to acquire M.

LEGEND: 
Active thread 
Thread named B1

ii. Thread C1 is preemp-
tied by the higher prior-
ity thread A1, as it 
awakes.

iii. A1 waits for an event 
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continues execution. 
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Figure 2.22  The workings of the monitor M are shown graphically. However, 
the exact implementation may vary from system to system. In pictures v-vi the 
notified threads are sorted into the waiting queue. According to the Java speci-
fication, this sorting procedure may not be taken for granted. It is implementa-
tion dependent. The handling of the vi-priority inversion situation is also 
implementation dependent. It is not reasonable to let lower priority thread 
block a higher priority thread’s execution.
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priority. If more thread share the same priority, the thread that has 
waited for the longest time will be awaken.

• As all threads in the event queue are notified simultaneously, they 
are sorted into the waiting queue according to their priorities. 
Threads from the event queue are placed before other threads with 
the same priority in the waiting queue. They had to hold the lock 
before they were able to wait for an event. See this transition in 
Figure 2.22.v.

• It is necessary to implement a priority inheritance protocol, for 
example, in hard real-time applications, in order to avoid priority 
inversion. An example of possible priority inversion is found in Fig-
ure 2.22.vi, where the B1 thread blocks higher priority threads. B1 
does not have the lock M.

The Java runtime access
The Java J2SE API [J2SE] covers the workings of the scheduler in the 
classes Object and Thread. The Java language supports handling of moni-
tors through the synchronised statement and the synchronised method 
declaration. The classes contain the following methods related to work-
ings described above:

public class Object

public final void  
notify()

Wake up a single thread that is waiting on this object’s 
monitor. If any threads are waiting on this object, one of 
them is chosen to be awakened. The choice is arbitrary and 
occurs at the discretion of the implementation. A thread 
waits on an object’s monitor by calling one of the wait 
methods. 

public final void  
notifyAll()

Wake up all threads that are waiting on this object’s 
monitor. A thread waits on an object’s monitor by calling 
one of the wait methods. 

public final void  
wait() 
wait(long timeout)
wait(long to, int ns)
throws 
InterruptedException

Cause current thread to wait until either another thread 
invokes the notify method or the notifyAll method for 
this object, or the specified amount of time has elapsed, or 
the thread is interrupted by another thread.

public class Thread extends Object implements Runnable:

public Thread() Allocate a new Thread object. 
Other variants of the Thread constructor take arguments 
such as the name, Runnable interface, or the Thread-
Group the thread belongs to.

int getPriority() Return this thread’s priority.

void  
setPriority(int prio)

Change the priority of this thread.

void interrupt() Interrupt this thread.

void run() If this thread was constructed using a separate Runnable 
run object, then that Runnable object’s run method is 
called; otherwise, this method does nothing and returns.

Table 2.1  The classes in the J2SE API that relates to thread handling are 
Object and Thread.
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Voluntary rescheduling may occur in the following methods in the Java 
J2SE API: wait, setPriority, sleep, start, and yield. The setPri-
ority-method may lower the priority of the active thread below other 
ready threads. Execution continues among the other threads with higher 
priority. The start-method may initiate a higher priority thread, which 
should resume the execution.

Java Specification [JLS00] states nothing about the implementation 
issues like time slicing, priority inheritance protocols, periodic threads, 
and semaphores. Preemption, i.e. time slicing, and periodic threads are 
especially important for hard real-time scheduling. It may be imple-
mented in different ways. See Section 2.5.4 for alternative implementa-
tions. A real-time adapted API, similar to the Java J2SE API, can be 
found in [Big98], where a semaphore API is also specified.

2.5.4 Preemption models

The procedure of preemption is crucial to real-time analysis techniques. 
The real-time systems aimed at in the IVM contain many threads execut-
ing their code repeatedly within specified time limits. Deadlines may vary 
between the threads. It is the scheduler that decides which thread that 
will execute after a context switch, in contrast to voluntary context 
switches where the context switch decisions are transferred from the 
scheduler into the application program, i.e. programmer. The scheduler 
cannot guarantee that deadlines are met.

There are many ways to implement preemption. Table 2.2 lists a few 
implementations and some systems utilising the techniques, along with 
an estimated minimum interval of continuous execution without preemp-
tion (in number of bytecodes). The order of the WCET is also presented.

static void 
sleep(long ms) 
sleep(long ms,int ns)

Cause the active thread to sleep (temporarily cease 
execution) for the specified number of milliseconds.

void  
start()

Cause this thread to begin execution; the Java Virtual 
Machine calls the run method of this thread.

static void  
yield() 

Cause the active thread object to temporarily pause and 
allow other threads to execute.

Preemption
Preemption 

interval 
estimation

WCET Comments

Insertion of extra 
preemption bytecodes.

< maximum 
interval

Maximum time of most time-
consuming control flow path 
between preemption points.

An analysing tool could 
suggest insertion of 
preemption points.

Between source code 
lines.

~2–10 
bytecodes

Longest “one-liner”. Implemented in Lund 
Simula [SIM89].

Table 2.2   Preemption is crucial in real-time systems. The table lists some 
alternatives of where preemption points can be inserted into the code.

public class Object

Table 2.1  The classes in the J2SE API that relates to thread handling are 
Object and Thread.
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Preemption from the surrounding system is an attractive option from 
the programmer’s view. Little extra analysis is necessary to calculate the 
time of a context switch. The complexity of the system, however, 
increases; preemption can only occur at safe positions in the code where 
the GC can supervise all references in the system. The GC must be 
informed of references stored in processor registers. With preemption 
from the surrounding system, the context switch may be time consuming 
compared to the other variants. All the registers in the processor must be 
stored in the context of the thread. Other preemption implementations, 
e.g. preemption points, restricts the context switches to well-defined posi-
tions in the code, where only the necessary registers have to be stored in 
the context of the thread.

The IVM is restricted to check for a pending preemption after every 
bytecode. The longest interval between preemptions is set by the most 
time-consuming bytecode. Native methods are executed as one bytecode. 
It is possible for the programmer to insert rescheduling checkpoints in the 
native code in order to decrease the interval between preemptions.

2.5.5 Alternative runtime design

There are many different flavours of runtime design. Some applications 
require specialised treatment, while others are more machine independ-
ent. This section deals with basic design issues that are relevant in some 
systems and applications. 

In an attempt to simplify the implementation of threads and to 
decrease the memory overhead for the scheduler, it is possible to imple-
ment the scheduler in Java. Everything except crucial native methods 
could be written in Java. The minimal native functionality is to disable 
and enable interruptions, to avoid preemption during critical regions. It is 
possible to build a complete runtime system on top of coroutine primitives 
(call, detach and thread initialisation). Another runtime implementation 
could describe all the thread handling procedures in native code. Native 
code inflexible but may increase performance.

Before every memory 
allocation (objects or 
activation frames)

~1–100 
bytecodes

Most time-consuming control 
flow path without memory 
allocation.

Implemented in Beta 
[KMMN91].

Before method entrances 
and backward jumps

~10–50 
bytecodes

Most time-consuming control 
flow path without method calls 
or backward jumps

Implemented in 1131-1.

After the execution of a 
number of bytecodes.

= maximum 
interval

Execution time of maximum 
bytecode count.

Instruction counting 
introduces noticeable 
runtime overhead.

Preemption 
(interruptions from 
surrounding system)

time interval 
between 

interruptions

Time interval + context 
switch.

This procedure does not 
require prior code 
analysis.

Preemption
Preemption 

interval 
estimation

WCET Comments

Table 2.2   Preemption is crucial in real-time systems. The table lists some 
alternatives of where preemption points can be inserted into the code.
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The idea of thread handling written in Java is to simplify access and 
increase flexibility. The IVM is intended as a research project with unfore-
seen requirements. Flexible code should increase the availability of the 
code for future research projects. However, the cost is performance loss.

The implementation of a thread API could be influenced by the notion 
of coroutines. They are utilised in the Simula programming language. 
More information about coroutines may be found in [KM93], Section 25, 
“Simula runtime system overview”.

2.6 Preloaded classfiles

It is desirable to start a Java application fast. Many classes could be con-
verted into the internal intermediate format prior to the execution. When 
an application is started, the preloaded classes have to be linked into the 
runtime system; conversion has already been performed. Typically, the 
API should be appropriate to convert before execution, and application 
classes should undergo conversion as usual. The preloading of classfiles 
steps outside the scope of real-time systems, but embedded systems may 
often require fast start-up behaviour. There are three levels of preloading:

1. No classes are preloaded. Everything is loaded and converted during 
runtime. This approach is time-consuming but flexible.

2. Some classes are preloaded, typically the API. The application itself 
is not preloaded. Flexibility is maintained reasonably well together 
with shorter start-up times.

3. Every class is preloaded. This inflexible approach speeds up the acti-
vation of the application.

As the classfiles are preloaded to improve start-up time, it is necessary to 
specify with which classes the preloaded classes are loaded. The same 
symbols and symbol indices must be utilised by all the preloaded classes 
in the working set.

The preloaded classes are incorporated into the runtime system by a 
linker. The purposes of the linker is to load the preloaded classes, allocate 
memory for them, and set the absolute references in them to their correct 
values. The linker is similar to the interpreter linker in the two-process 
variant.

The problems associated to the linker are circular graphs and how to 
represent the references in a manner that is independent of absolute posi-
tions. The circular graph problem could be circumvented with a two-pass 
procedure. All preloaded objects are allocated and loaded in the first pass. 
The references, on the other hand, are resolved during the second pass. 
The exact details of the solutions to these problems are directed in section 
4.3, "Loading converted classfiles". 

A simple and effective fashion to preload classes is to load all classes 
that should be preloaded and store the heap as a file. The heap image 
could then be copied into the heap before the application is loaded. The 
heap and the loaded heap image must be located on the same physical 
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memory addresses so that references refer to the same addresses as dur-
ing the creation of the heap image.



Chapter 3

IVM runtime
The runtime behaviour of the IVM is focused on hard real-time applica-
tions. The complex analyses to guarantee timing criteria are achieved 
through a simple fundamental design of the runtime system that insists 
of program execution, thread handling, exception handling, and termina-
tion. Furthermore, the garbage collector is also an essential part of the 
execution system. 

The subsections describe the runtime data structures of the IVM with 
special regard to the prerequisites of limited memory and hard real-time, 
and runtime procedures. The main contributions are the solutions to the 
prerequisites, i.e. the split machine and the split stack. Functionality and 
simplicity have dominated over performance during the design of the 
runtime system. Our aim is not to optimise an already existing program, 
but to prove that object-oriented programs may function in embedded 
hard real-time systems.

3.1 Fundamental runtime data structures

The fundamental runtime data structures in the IVM consist of a tem-
plate hierarchy and a frame stack for every thread, i.e. a stack of method 
activations. The purpose of the templates is to save memory by gathering 
information in one location, instead of copying the data into the children 
of the template. Maintenance is also simplified if information is expressed 
in one location. The template hierarchy consists of internal nodes, tem-
plates. A child of a template can be a template or an instance. For exam-
ple, all class templates are internal nodes that describe their instances, 
and the class template is described by the meta class template, etc. The 
frame stack holds all of the frames of the method invocations that are 
active at the current execution point.
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The descriptions of the runtime data structures in the IVM are pre-
sented gradually, beginning with a simple Java example. The template 
hierarchy of the following program example is shown in Figure 3.1. 

All objects, i.e. templates, instances, and frames, are located on the 
heap and they are connected to the template hierarchy. The top node, the 
meta meta template, describes itself as well as its children. To support the 
template hierarchy, all objects on the heap must have a template refer-
ence. Templates also contain the size of their children and garbage collec-
tor information describing the layout of their children. 

The instance created in the program example of Figure 3.1 is shown in 
Figure 3.2 together with a template, the SuperHero-class. The virtual-
Man-object contains a template reference and an integer attribute, 
strength, which is set to the value 10. The SuperHero-class in the pic-
ture also contains the size of its instances. The size can vary from one 
platform to another. The GCInfo-field contains information for the GC 
about the layout of the instances of the class SuperHero. 

This simplified description of objects omits the object head. However, 
that is described in Section 3.2.8 together with the GCInfo-field.

Meta Meta
Template

Meta Meta 
Class Template

Meta Class
Template

Superhero

virtualMan

Meta Activation 
Template

main useSuperPower

frame frame

Internal templates

Class templates 

Instances created during runtime

Figure 3.1  The template hierarchy of the program example shows how the 
instances and the templates are connected.

 template

LEGEND

instance

template reference

created during IVM start-up

created during class-loading

class SuperHero {
private int strength;
public SuperHero(int strength) { this.strength = strength; }
public void useSuperPower() {…}
public static void main(String[] argv) {

SuperHero virtualMan = new SuperHero(10);
virtualMan.useSuperPower();

}
}

template

strength

template

GCInfo

child size

…

  10   
Figure 3.2  The contents of the newly created virtualMan-instance are a tem-
plate reference and a strength-attribute as declared in the class.

SuperHero class template

virtualMan
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Every method invocation results in an allocation of a frame where run-
time information about the method invocation is stored — such as the val-
ues of local variables. When the method is completed, the previous 
method resumes execution. A reference to the dynamic father, i.e. the 
caller of the method, is stored in the frame.

At one location in the program example, the main-method calls the vir-
tual method, useSuperPower, on the virtualMan-object. The frames 
resulting from the method call are depicted in Figure 3.3. In this simpli-
fied example, the frame consists only of a template reference, and a 
dynamic father. The dynamic father of the main-method is null to indicate 
that the execution (of that thread) is finished.

3.2 IVM runtime system in detail

These subsections focus on the runtime mechanisms of the IVM, and 
especially on the techniques relevant for hard real-time embedded sys-
tems.

3.2.1 Interpreter

The main task of the interpreter is to execute bytecodes. Other essential 
functionality of the interpreter is managing signals, preferably context 
switches. The following pseudo code shows this procedure. 

template

dynamic father

template

dynamic father

template

GCInfo

child size

…

template

GCInfo

child size

…

      

useSuperPowermain

frame frame

Figure 3.3  The runtime situation in the figure shows two frames when the 
main-method has called the useSuperPower-method. The main-method does 
not have a dynamic father (null).

do {
fetch an bytecode;
if (operands) fetch operands;
execute the action for the bytecode;
if (signals) handle signals;

} while(there is more to do);
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During signal handling, the machine may switch the executing thread. 
However, the interpreter will not notice the context switch. Execution will 
continue in the active thread as if no interruption had occurred.

Context switches are only performed after the execution of a bytecode, 
regardless of whether the program voluntarily requests the switch or the 
switch is triggered by an external signal (preemption). Voluntary context 
switches are instigated by blocking the thread, e.g. a call to sleep, 
yield, or wait. There are two different ways to signal for a preemptive 
context switch. The first way is to let the machine itself signal for a con-
text switch. This may be instigated by, for example, a number of bytecodes 
that have been executed, or when specific bytecodes are reached. The sec-
ond alternative is to let a hardware timer signal for the context switch. 
The latter alternative is often utilised in hard real-time applications. Dif-
ferent solutions to preemption are presented in Table 2.2.

Other signals than those just mentioned are also possible to send to 
the machine, e.g. command the machine to pause, or to send signals to the 
application. Signal handling is performed together with the context 
switch handling. The reason for delaying preemptive context switches 
until after the execution of a bytecode is to reach a well-defined location in 
the code where all the references reside in well-defined locations, i.e. in 
memory, and not within unmanaged processor registers or caches. The 
garbage collector requires that it must be able to reach all references 
when it is working.

3.2.2 Method calls

There are four different types of method calls: virtual, static, interface, 
and native. Synchronised methods extend the execution of the calls with 
monitor-handling procedures. They are described in the later part of this 
section. 

All method calls, except the native method call, are performed by locat-
ing the method template, and creating a frame from that template. The 
method types differ in how the method template is located. Since the 
frames are allocated on the heap, no extra memory areas, stacks, are 
required for each thread. Performance decreases, however, in comparison 
to stack allocated frames. The incurred performance loss is motivated by a 
simple and more efficient memory utilisation. No stack sizes have to be 
calculated and allocated. A detailed study of the performance loss is 
described in Appendix C.

Frame layout
The contents of a frame are data utilised by the method during runtime, 
i.e. a program counter, a dynamic father, local variables, and a stack. The 
local variables and the stack have been split into a value part and a refer-
ence part to simplify the description of the reference locations for the gar-
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bage collector. The frame is described in Figure 3.4 and the elements in 
the frame are: 

• Program counter – the currently executing bytecode offset into 
the method.

• Dynamic father – the caller of this method.
• Stack tops (value and reference) – offsets into the method indicat-

ing where the top of the stacks are located in the frame.
• Number of references – the number of references that follows.
• Local variables (value and reference) – variables that are 

declared in the method.
• Stacks (value and reference) – holds temporary values and refer-

ences.

Method template layout
The method template describes the layout of its frames. Most values are 
related to the construction of the frame: offsets to the stacks and local var-
iables, and the number of reference and value arguments declared by the 
method. The bytecodes of the method is stored in a code-array. Excep-
tions that this method can catch are noted in the exceptions-array. The 
name of the method is described as a name index into the symbol table. 
The descriptor of a method is a textual representation of the argument 
and return value types. The descriptor index is also an index into the 
symbol table. The semantics of the descriptor is given in [JVM99], Section 
4.3.3. Access flags contain information about the declared method modifi-
ers. See Appendix B for more information.

Figure 3.4  The frame contains the runtime state of a method. The greyed area 
of the frame contains the references in the local variables and the stack.
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…
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Figure 3.5 shows the contents of the frame template in relation to a 
frame.

Method call details
As a method is called, a new frame is created for the new method. The 
stack sizes and number of local variables of the frame are described in its 
method template. The new frame is linked with the caller’s frame by the 
dynamic father reference. The other contents of a frame are initialised 
into default values. The program counter is initialised to the start of the 
bytecodes, and locations of the stack tops are initialised to indices repre-
senting the bottom of the stacks. The number of total references in the 
frame is also noted to support the GC.

The procedure of a method call consists of the following steps:

1. Locate the method template.
2. Allocate the new frame.
3. Initialise the frame:

• Set all references to null (performed during allocation).
• Set template, dynamic father, program counter, and stack tops.
• Transfer arguments.

4. Transfer the execution point to the new frame.

The arguments are moved from the stack of the caller to the local vari-
able area of the new frame. If the method is declared virtual, a reference 
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accessFlags  
classRef

Figure 3.5  The picture shows the frame template and a frame of the method.
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of the object that receives the method call is also transferred as an “invis-
ible” argument. The execution point is then transferred to the new frame. 
All of the method calls, except for the native method call, differ in how the 
method template is located. Native method calls are fundamentally differ-
ently structured.

Static Method Call
The static method call is equivalent to ordinary procedure calls. The static 
methods are collected inside the class template corresponding to the class 
where they are implemented. Operands of the static method call bytecode 
are the class index and the method index. The class is located by a class 
index (16 bits) in the class template table. The static method is found by 
the static method index (16 bits). Figure 3.6 extends the superhero pro-
gram example to exemplify the method template location of a static 
method call. The static method call is depicted in Figure 3.7. 

interface SuperPower { String superPowerName(); }

class SuperHero extends SuperPower {
…
public void useSuperPower() {…}
public static int superHeroAmount() {…} 
String superPowerName() { return “Dimensional phasing“;}

public static void main(String[] argv) {
…
virtualMan.useSuperPower(); // virtual method call
System.out.println(superHeroAmount());  // static method call
String n=virtualMan.superPowerName());// interface method call

}
}

Figure 3.6  The example code contains a virtual method call, a static method 
call, and an interface method call in the main-method.
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Virtual method call
The virtual method templates are reached via a virtual method table in 
the template of the object that receives the method call. The receiver is 
located on the stack. The index to the virtual method is stored as an oper-
and of the bytecode. Figure 3.8 describes how the virtual method call in 
the program example is executed. The useSuperPower-method template 
is located and a frame is produced (see [KM93], Section 25.4.3, “Virtual 
binding”, for a more detailed description of the design of the virtual 
method table).

Figure 3.7  The static method call is performed by locating the method tem-
plate of the method, and then a new frame is allocated and initialised with 
arguments and a dynamic father to the caller.
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Interface method call
A class may implement many interfaces. All the interfaces are stored 
together with the implementations of the methods in the interfaces-array 
of the class. The receiver of the interface method searches through the 
interfaces-array in order to locate the correct interface and method tem-
plate. All the interfaces of the superclasses are also included into the 
interfaces-array of the classes. Figure 3.9 illustrates the interface method 
template discovery.

Figure 3.8  The method template of the virtual method call, useSuperPower, 
is found via the object, virtualMan, which receives the method call. 

java: virtualMan.useSuperPower();
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Native method calls
Native method calls are declared in Java and written in C. They execute 
outside the scope of the Java Virtual Machine, but if they access the heap, 
the coding conventions for the machine (see [JNI99]) must be utilised to 
sustain correct functionality. We have developed a C-stub creation tool to 
support the programmer with an initial native method implementation 
according to the code conventions. Within the stub, arguments are popped 
from the caller’s stack and delivered as arguments to the native method. 
References are registered in the garbage collector, and a default return 
value, if any, is declared.

The native methods store their frames on a stack that lies outside the 
supervision of the JVM. It is the same stack as the JVM utilises. The size 
of the stack and the worst-case execution time for the method have to be 
determined by the programmer.

No preemption is supported inside the native methods. The execution 
time of a native method counts as an execution time of a single bytecode 
during the WCET analysis. Time-consuming native methods can affect 
the analysis significantly, but the programmer can insert preemption 
points inside the native code to decrease the influence of native methods 
on the WCET analysis.

Synchronised methods
The synchronised methods are indicated by an access flag (see Appendix 
B) in the method template, to indicate that the method is a critical region 
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of code. The flag is examined before the method is executed. If the method 
is synchronised, the receiver’s monitor, i.e. the lock, must be acquired 
before the method is executed. Synchronised static methods utilise the 
monitor contained in the class object. 

Since only threads are able to utilise monitors, locks could be managed 
by threads and not by every object. This approach minimises the memory 
utilisation of locks by sustaining the impression that every object has a 
lock. Every thread could be fitted with a lock as they are created. This 
leads to another benefit. The monitor creation is, hopefully, outside the 
scope of the code that is relevant in real-time analyses and real-time 
applications do not have to include the monitor creation in the real-time 
loop. These thread-associated locks contain references to the locked 
objects, and how many times they are locked. Locked objects, on the other 
hand, refer to the lock of the thread that has locked them. As threads 
become inactive through a call to wait, the lock also refers to the waiting, 
inactive, thread. When other threads try to get the lock, they check if 
there is a thread that holds the lock and if that thread is inactive or 
active. If an inactive thread is holding the lock, another thread is free to 
take the lock. The waiting queue of the monitor is registered in the lock. 
More information about the memory efficient monitors can be found in 
[Blo00].

3.2.3 Runtime template hierarchy

The complete template hierarchy contains templates that describe all the 
objects on the heap, see Figure 3.10. In Java, three types of templates are 

directly usable by the programmer: classes, interfaces, and arrays. The 
interfaces are simpler and smaller than ordinary classes, and take less 
memory. For example, they have no static methods. Arrays differ because 
they have propagated the object size from the template into the instances. 

Meta Meta
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Template
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frame frame
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Figure 3.10  The template hierarchy of the program example shows how the 
instances and the templates are connected.
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Arrays with the same dimension and type could utilise the same array 
template, regardless of their sizes. The array size is stored within the 
instance. If the size of an array would be described in the template, a new 
array template had to be created for every array size.

Method templates are divided into three types: ordinary methods, 
methods without code, and methods that do not catch exceptions. Methods 
that do not catch exception could be described with smaller method tem-
plates than ordinary methods because they do not have the need of a ref-
erence to an exception array. Codeless methods do not have any code 
reference either. The three different types of method templates are com-
pared in Figure 3.11.

3.2.4 Signal handling

After the execution of every bytecode, and during the execution of some 
long bytecodes, the machine checks if any external signal has occurred. 
Applications in Java may also explicitly check for signals. The machine 
handles signals concerning execution of an application: preemption, start, 
stop, termination, and step one bytecode. If a preemptive signal is pend-
ing, the scheduler performs a context switch. A graphical overview of the 
signal handling procedure is depicted in Figure 3.12.

Java applications are supported by a system method that forward sys-
tem signals to the environment. Signals to Java applications are for-
warded by a dispatcher to the designated thread. The dispatcher is a Java 
thread. If no dispatcher is present, the signals are dismissed by the 
machine. Typically, the signals to and from Java threads are asynchro-
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nous method calls (see Figure 3.13). The identification of the thread is 
supplied inside the Java signal. An example of an asynchronous call from 
the machine to the surrounding system is exemplified in Figure 3.13. 

The signal check can often be implemented with a single machine code 
instruction. Preemption signals are set periodically by a timer interrup-
tion. The machine idles if there are no active threads available, and if 
there are threads that could possibly be reactivated. Otherwise, the appli-
cation terminates. Signals to the machine while executing a native 
method are not handled until the native method is concluded. A native 
method affects the machine in the same way as the execution of a single 
bytecode.

Figure 3.12  After the execution of a bytecode, the machine checks whether the 
surrounding system has sent a signal to the machine or to a Java application. 
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The context switch procedure is dependent on the thread implementa-
tion. In the IVM, three different thread implementations have been 
implemented. They are described in detail in Section 3.2.7. 

3.2.5 Context switch

The preemptive context switch transfers the execution point from a proc-
ess to the scheduler. The scheduler determines the next process that con-
tinues execution, if there are any active processes. Otherwise, the 
scheduler idles. The basic process model is based on coroutines (see 
[WaDa71]). The word process is utilised to emphasize the coroutine 
aspect. Threads are utilised to express a similarity to the threads utilised 
in Java. 

There are three methods associated with context switches: initialise a 
process, call a process, and detach a process. The scheduler calls processes 
that execute and the voluntary or preemptive context switch is performed 
by detach. Figure 3.14 visualises call, detach, and initProcess. Actu-
ally, every process in the system is modelled as a coroutine, even that of 
the scheduler.

Figure 3.13  Asynchronous method calls to the surrounding system contain 
information about the sender and arguments. The answer is converted to an 
event by the signal dispatcher, and sent to the sender.
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When a process calls another process to continue execution, a refer-
ence to the frame of the caller is stored. When a process is finished, or 
when a process detaches itself, execution continues in the caller frame. In 
the figure, this is shown by changing the reference of the dynamic father 
of the initial frame. The process P that has been called sets its dynamic 
father to the frame where the call was performed, i.e. the top frame of the 
frame stack of process S. P continues execution. After a while, P is obliged 
to detach, either by a timer signal or voluntarily by itself. The detach 
method returns the execution to S and stores its own top frame as the 
dynamic father of its initial frame to indicate where execution shall con-
tinue after another call. The implementation of call and detach differ only 
in one aspect. Detached processes perform nothing if they are detached 
repeatedly.

The initProcess-method sets the frame reference in the process-
object to the currently executing frame. It is utilised in a Java method 
that starts new processes, the start-method. The method invokes init-
Process to set the current process to refer to the currently executing 

Figure 3.14  The procedures of the coroutine methods (call, detach and initial-
ise process) are depicted in the figure.
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method, i.e. start. This procedure is shown last in Figure 3.14. A new 
process is created named T. When T started from P from the method 
T.start, the initFrame reference of the process T is set to the currently 
executing frame, i.e. the start-frame, thus the initial frame of process T 
is the start-frame. Then the newly created process detaches itself. Exe-
cution continues in the calling frame, after the invocation of start. When 
the process T is allowed to execute, i.e. called by the scheduler, it invokes 
the run-method that is preferably overridden in a subclass. Otherwise, 
the default run-implementation in the Thread-class immediately returns 
and the start-method continues with the termination of the process.

There is a fourth coroutine method named resume. A resumed process 
continues execution as if it has been called. However, if the process is ter-
minated or detached, execution continues after the first resume-invoca-
tion of the chain of resume-invocations. Resume is not utilised by the 
scheduler.

The identical call and detach methods have also been utilised in an 
implementation of the Thread API in J2ME written in C. With the same 
coroutine model, some parts of context switching may be written in C 
while other remain in Java. The Java variant is simpler to modify but 
slower than the C variant.

3.2.6 Process and scheduler structure

The scheduler of processes is implemented in Java and available for mod-
ification. Actually, the scheduler itself is executed by the machine like any 
other process. The machine only executes bytecodes regardless of the type 
of the process it executes. If an application only contains one process, 
there is no need for a scheduler or synchronisation between processes for 
that application. In this case, the application could be the only process 
that the JVM executes. However, for applications with many processes, a 
scheduler is created to manage the processes.

It is also possible to execute more schedulers than a single one concur-
rently in the IVM. This possibility exists because the process handling is 
implemented as an ordinary Java process. The only connection to the sur-
rounding system is one operating system process in which the machine 
executes. Processes that execute as OS processes, native processes, are 
described like future work in Section 7.8.

The application environment — i.e. the loaded classes and their states 
— is also encapsulated. Different applications are able to execute concur-
rently on the same machine in completely separated environments. Even 
the same heap and garbage collector can be utilised different environ-
ments. Figure 3.15 shows three different environments and many proc-
esses co-existing in the same machine. 

An application with real-time demands is instantiated in a system 
with only one environment and one scheduler to simplify the real-time 
analysis. Future work may cover a more general situation where more 
schedulers and machines are analysed in a real-time application.

Implementation of a coroutine scheduler
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A simple implementation of a coroutine scheduler utilises a round-robin 
queue as the ready queue. The ready-queue is implemented by the classes 
ThreadQueue, ThreadNotice, and QLinkage. The scheduler is named 
ThreadManager and has to be started manually by a call of the method 
runProcesses. The context switch frequency is set by orderPeri-
odicInterrupt. Single interruptions are ordered with orderInter-
rupt, where the argument states when the interruption should occur. 
Processes are inserted into the ready queue when they are started. The 
coroutine methods are native and encapsulated into the class Basic-
Thread. Figure 3.16 shows a class diagram over the classes related to 
scheduling. The classes QueueLinkage, ThreadNotice, and Thread-
Queue cover the handling of queues.

The coroutine model has served as the foundation of a more elaborate 
Java variant, where different scheduling algorithms are implemented, 
e.g. earliest deadline first scheduling.

3.2.7 Exceptions

Exception handling is a mechanism to provide error handling in a control-
led way. Unexpected situations are handled by exception-handlers that 
catch the exception within the code ranges of the handlers. If there is no 
handler of a matching type, the exception is passed over to the caller of 
the method. The caller then examines its handlers to see if it is able to 
catch the exception. If no frames catch the exception, the thread termi-
nates. When an exception handler catches an exception, the program 
counter is set to the start of the code of the handler. The stacks are cleared 
and the reference to the exception is pushed on top of the reference stack. 

JVM

Figure 3.15  Schedulers in the machine are implemented in Java and executes 
as Java threads. This simplifies the implementation and integration into 
applications. Many schedulers can co-exist on the same heap but with separate 
class environments.
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The exception-handling algorithm can be expressed with the following 
pseudo code: (A detailed description of the exception handling mechanism 
in Java can be found in [JVM99], Section 3.10.)

Since the exception handling mechanism is intended for unexpected 
situations in the software, it has been omitted from the scheduling analy-
sis. However, Sven Gestegård Robertz shows in [Ges03] how exceptions 
can be utilised in memory critical real-time systems. 

In the worst case when the exception is not caught and the thread ter-
minates, the real-time analysis is not relevant since the thread termi-
nates. If the exception is caught, it is relevant to calculate the WCET if it 
affects the continued execution of the real-time task. If the exception is 
caught outside the control loop, it is unlikely that the WCET affects the 
current real-time application. In those cases, the application should prob-
ably inform the application supervisor with alarm signals. It is interest-
ing to study the effect of failures in real-time systems. However, failure 
recovery is outside the scope of this thesis and is left as future work.

3.2.8 Garbage collection

According to the work of Roger Henriksson on scheduling garbage collec-
tion in real-time applications ([Hen98]), it is important to provide the 
memory allocation rate of the high-priority threads, i.e. the threads that 
are obeying real-time requirements. The real-time garbage collector has 

BasicThread
call(BasicThread)
detach(BasicThread)
initThread(BasicThread)
run()

IVMThread
start()
stop()
yield()
run()

ThreadNotice
ThreadNotice(IVMThread)
ThreadNotice suc()
ThreadNotice pred()
into(ThreadQueue)
intoAsFirst(ThreadQueue)
follow(ThreadNotice)
precede(ThreadNotice)
out()

ThreadQueue
ThreadNotice first()
ThreadNotice last()
boolean empty()

QLinkage

current

readyQueue

ThreadManager
orderInterrupt(int)
orderPeriodicInterrupt(int)
setCurThread(IVMThread)
IVMThread runningThread()
startThread(IVMThread)
unscheduleThread(IVMThread)
runThreads()

Figure 3.16  The class diagram shows the relations of the thread, the thread 
manager, and queue classes. A thread can exist in three different states.
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terminate the thread
let the scheduler decide the following execution
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to be incremental to support preemption. Our machine supports various 
types of GC implementations, even incremental and real-time adapted 
ones. To support many different GC implementations, the garbage collec-
tors and the machine utilise the garbage collector interface, GCI (see 
[GCI02]). The GCI extends the garbage collectors with thread safety and 
debug support. 

A general GC algorithm determines which live objects that shall 
remain. Reachable objects are determined to be living since they can be 
utilised by the program. A more efficient approach would be to release 
objects as soon as they never will be accessed again. However, is difficult 
to determine at what point objects could be released in those cases. A com-
mon procedure to keep track of live object is to maintain a live reference 
graph. The live reference graph starts with a root set that contains live 
references. All objects that can be reached from the roots are elements in 
the live reference graph. Information about the reference locations inside 
different objects is stored in the templates of the objects. 

The garbage collectors in IVM also have the possibility to add informa-
tion in every object on the heap. The first bytes of every object are under 
the control of the GC. Some GC algorithms store a handle location in 
every object in order to make it possible to refer to the handle of the 
object. Other algorithms store the memory state of the object, for example, 
a mark field in mark-and-sweep algorithms. Some GC algorithms do not 
need information in every object. The GC-fields of the objects are adapted 
to the GCI to simplify the interchange of GC algorithm. Figure 3.17 shows 
an example of how the head of every object is extended with GC informa-
tion for an incremental mark-and-sweep GC.

Our machine implements two different garbage collectors: a batch-
copy GC, and an incremental mark-and-sweep GC that is prepared for 
real-time. For more information about the GC algorithms see [JL96].

A problematic feature of Java, concerning termination of objects, is the 
finalize method in the class Object. It has to be executed for every 
object before it is removed by the GC, and after the object is inaccessible 
from the application. Only the GC, or a similar algorithm, can decide if an 
object can be removed. Consequently, the GC instigates the call to the 
finaliser. The WCET analysis must then include the execution of the final-

Figure 3.17  The complete layout of an instance consists of attributes declared 
by the class of the instance, i.e. an object head, and GC fields.
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iser, but it is omitted in our implementation in order to simplify the anal-
ysis. The analysis would be pessimistic if the finaliser is to schedule 
termination of objects during every period. 

3.3 Real-time aspects

One major goal is to show that Java can be utilised in hard real-time sys-
tems without any introduction of code conventions or extra programming 
overhead. To approach this goal the following assumptions are assumed:

1. Existence of preemption points after the execution of every bytecode, 
and in some cases inside time-consuming bytecodes.

2. There are worst-case execution times for bytecodes, context switches, 
and the scheduler.

3. The GC is adapted to real-time.
4. The code is annotated to limit large data structures and recursive 

method calls.

Based on those assumptions the scheduling analysis, the Worst-Case Live 
Memory (WCLM) analysis, and the Worst-Case Execution Time analysis 
could be performed. The following subsections describe the WCET and 
WCLM analysis based on the bytecodes. Traditional scheduling algo-
rithms may be utilised as these analyses are performed.

3.3.1 WCET analysis

The worst-case execution time analysis determines the execution time of 
the various control-flow paths that a program may take. The duration of 
the most time-consuming path constitutes the WCET for either a program 
or a specific code sequence, e.g. a control loop. Indeterminable control 
paths (halting problem) have to be subjected to restrictions, if the analysis 
shall be able to deliver a result. The restrictions are noted as comments in 
the code. Those annotations are added to the classfile by a specific tool 
that extracts them from the source code. The WCET analysis is performed 
during class loading, and its procedure is described in detail in the thesis 
by Patrik Persson in [Per00]. To support the worst-case execution time 
analysis, every bytecode is given a worst-case execution time value that is 
obtained by a detailed study of the binary code (see Appendix A). The 
maximal time to perform a context switch also has to be included in the 
WCET analysis.

Figure 3.18 shows a simple control loop in Java, its bytecodes, and the 
fictitious WCET of the bytecodes. The WCET values in the figure are 
derived from a preliminary bytecode WCET analyser. The bytecodes that 
handle conditional jumps have two values. If the jump is performed, the 
higher value is utilised in the WCET analysis. Indeterminable loops and 
unlimited recursions are limited by annotations — comments that are 
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handled by a special tool. The basic blocks of the program and the WCET 
for bytecodes in the control loop are described in Figure 3.19. 

The class loader calculates the WCET for basic blocks and then selects 
the most time-consuming path for the final WCET calculation that is 
given to the scheduling analysis. The basic block of the program example 
is depicted in Figure 3.19 together with the WCET of the bytecodes. The 
recursive method adjust in the class Reg is annotated with a maximal 
recursion depth, i.e. 10 recursions. The programmer has to guarantee that 
this limit is never exceeded. The WCET calculation for the control loop in 
Figure 3.18 is described in Figure 3.20. The recursive method adjust is 
annotated with a maximum recursion depth of 10 recursions — the 
method is called at most ten times. The last call must terminate the 

Java program
public class WC_Testprg {

  static final int LIMIT = 10;

  ...

  public static void controlLoop() {

    int val = 0;

    int nbrOkReading = 0; 

    int nbrOverload = 0;

  
    while (true) {

      int newVal = Reg.adjust(IO.getVal());

      if (Math.abs(val - newVal) <= LIMIT) {

        nbrOkReading++;

      } else {

        newVal = val - newVal < 0 

             ? LIMIT 

             : -LIMIT;

        nbrOverload++;

      }

      val = newVal;

      IO.setVal(val);

    }

  }
}
class IO {

  public native static int getVal();

  public native static void setVal(int val);
}

class Reg {

  static int adjust(int value) 

  /** recursion maximum: 10 */

  {

    int result = value <= 0 

               ? adjust(value*2) 

               : value;

    return result;

  }
}

Java bytecodes
public class WC_Testprg {

    public static void controlLoop() {

        0:iconst_0

        1:istore_0

        2:iconst_0

        3:istore_1

        4:iconst_0

        5:istore_2

        6:goto 56

        9:invokestatic IO.getVal()

       12:invokestatic Reg.adjust(int)

       15:istore_3

       16:iload_0

       17:iload_3

       18:isub

       19:invokestatic Math.abs(int)

       22:bipush 10

       24:icmpgt 33

       27:iinc 1 1

       30:goto 50

       33:iload_0

       34:iload_3

       35:isub

       36:ifge 44

       39:bipush 10

       41:goto 46

       44:bipush -10

       46:istore_3

       47:iinc 2 1

       50:iload_3

       51:istore_0

       52:iload_0

       53:invokestatic IO.setVal(int)

       56:goto 9

    }
}
class Reg {

    static int adjust(int i) {

        0:iload_0

        1:ifgt 13

        4:iload_0

        5:iconst_2

        6:imul

        7:invokestatic adjust(int)

       10:goto 14

       13:iload_0

       14:istore_1

       15:iload_1

       16:ireturn

    }
}

WCET values 
for bytecodes

bipush value 83
goto offset 93
icmpgt offset 85/120
iconst_0 53
iconst_2 53
ifge offset 53/88
ifgt offset 53/88
iinc index val 78
iload_0 83
iload_1 83
iload_3 105
imul 101
invokestatic 
Reg.adjust(int) 498
invokestatic 
IO.getVal() 263
invokestatic 
IO.setVal(int) 263
invokestatic 
Math.abs(int) 498
ireturn 179
istore_0 81
istore_1 81
istore_2 81
istore_3 115
isub 101

Figure 3.18  The program example is shown in terms of its bytecodes and their 
WCET.
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recursion. When calculating the WCET for the method, nine calls are 
recursive, and the last terminates the recursion. 

The feedback of the time analysis supports the programmer in the 
design of the program. Well-considered algorithms and data structures 
that are adapted to the real-time behaviour of the program could be cho-
sen. In many situations, the compiler is not aware of the real-time per-
formance of the bytecodes. The generated bytecodes may not be optimal 

controlLoop

abs

getValue

setValue

Figure 3.19  The basic block structure of the program examples shows the con-
trol flow. The worst-case execution time of the main-loop is calculated for the 
scheduling analysis. The black circles hold the WCET for the blocks.

        0:iconst_0
        1:istore_0
        2:iconst_0
        3:istore_1
        4:iconst_0
        5:istore_2
        6:goto 56

         9:invokestatic IO.getVal()
        12:invokestatic Reg.adjust(int)
       15:istore_3
       16:iload_0
       17:iload_3
       18:isub
        19:invokestatic Math.abs(int)
       22:bipush LIMIT
       24:icmpgt 33

       27:iinc 1 1
       30:goto 50

       33:iload_0
       34:iload_3
       35:isub
       36:ifge 44

       39:bipush LIMIT
       41:goto 46

       44:bipush -LIMIT

       46:istore_3
       47:iinc 2 1

       50:iload_3
       51:istore_0
       52:iload_0
        53:invokestatic IO.setVal(int)

       56:goto 9

        0:iload_0
        1:ifgt 13

        4:iload_0
        5:iconst_2
        6:imul

         7:invokestatic adjust(int)
       10:goto 14

       13:iload_0

       14:istore_1
       15:iload_1
       16:ireturn

end
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Figure 3.20  The WCET calculation for the control loop depends on the longest 
control path of the code. Recursive methods must be limited by the program-
mer.

Tadjust_recursion = Tiload_0 + Tifgt_false + Tiload_0 + Ticonst_2 + Timul + 
+Tinvokestatic_adjust + Tgoto + Tistore_1 + Tiload_1 + Tireturn = 
=83+53+83+53+101+498+93+81+83+179 = 1307 
 
Tadjust_return = Tiload_0 + Tifgt_true + Tiload_0 + Tistore_1 + Tiload_1 + Tireturn = 
=83+88+83+81+83+179 = 597 
 
WCETadjust = 9*Tadjust_recursion + Tadjust_return = 9*1307+597 = 12360 
 
WCETcontrol_loop = Tinvokestatic_getVal + WCETgetVal + Tinvokestatic_adjust + 
+WCETadjust + Tistore_3 + Tiload_0 + Tiload_3 + Tisub + Tinvokestatic_abs + 
+WCETabs+Tbipush+Ticmpgt_false + Tiload_0 + Tiload_3 + Tisub + Tifge_true + Tbipush + 
+Tgoto + Tistore_3+Tiinc + Tiload_3 + Tistore_0 + Tiload_0 + +Tinvokestatic_setVal + 
WCETsetVal + Tgoto = 
=263+100+498+12360+115+83+105+101+498+657+83+85+83+105+101+88+83+ 
+93+115+78+105+81+83+263+100+93 = 14948+377+176+193+632+93 = 16419
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for the application. In Figure 3.19, the bytecode in the control loop at 
index 6, goto 56, leads to another goto-bytecode that jumps to the byte-
code at index 9, i.e. the bytecode directly after the first goto. The goto at 
index 6 could be removed. The method size would be three bytes smaller, 
and the WCET for the method would decrease. 

Optimisations are relevant in code that is supposed to execute many 
times, or in our case, code that contribute to the WCET. In the example, 
the control loop will execute under hard real-time restrictions. Within the 
control loop there is a call to the method adjust. That method also calls 
itself recursively at most 9 more times. Optimisations in that method 
would probably result in significant changes to the execution times of the 
control loop. Figure 3.21 shows the how the bytecode may be optimised. 
First, the iload_0 is moved from the basic blocks after the comparison, 
into the first block. Two bytecodes (13:iload_0 and 14:goto 14) are 
rendered unnecessary and removed. The execution of the adjust method 
would be faster and its size smaller. Second, the duplicated iload_0
instructions could be replaced by iload_0 and dup, if the dup is faster 
than the iload_0 bytecode. This may reduce the execution time for every 
call to adjust. Both the average execution time and the WCET are low-
ered. Third, the istore_0 and iload_0 instructions are unnecessary. 
The returning value already resides on the stack and it does have to be 
not required to save it in a local variable. 

3.3.2 WCLM analysis

The worst-case live memory analysis is performed during class loading. It 
determines the largest amount of allocated memory within a specific code 
sequence, or a program. If the hardware cannot offer enough free memory, 
the application cannot execute in a predictable fashion.

Some program constructions leave the WCLM indeterminable. In 
those cases, the programmer must support the analysis with restrictions, 

static int adjust(int i) {

  0:iload_0

  1:ifgt 13

  4:iload_0

  5:iconst_2

  6:imul

  7:invokestatic 

     adjust(int)

  10:goto 14

  13:iload_0

  14:istore_1

  15:iload_1

  16:ireturn
}

  0:iload_0

  1:iload_0

  2:ifgt 10

  5:iconst_2

  6:imul

  7:invokestatic 

     adjust(int)

  

  10:istore_1

  11:iload_1

  12:ireturn

  0:iload_0

  1:dup

  2:ifgt 10

  5:iconst_2

  6:imul

  7:invokestatic 

     adjust(int)

  

  10:istore_1

  11:iload_1

  12:ireturn

  0:iload_0

  1:dup

  2:ifgt 10

  5:iconst_2

  6:imul

  7:invokestatic 

     adjust(int)

  

  
  
  10:ireturn

factoring of 
common sub-
expression 

faster bytecode 
alternative
 WCETiload_0 = 83
 WCETdup = 67

redundant 
bytecode elim-
ination

Size (bytes): 17 13 13 11
WCET (ticks): 12360 11523 11363 9723 

(9*1307+597) (9*1214+597) (9*1198+581) (9*1034+417)

Figure 3.21  Bytecode optimisations may reduce the method size and the 
WCET. 
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e.g. lists, loops, and recursive method invocations must be limited. Figure 
3.22 shows code whose memory consumption is indeterminable. The list 
in the code is annotated by the programmer. A special tool has been devel-
oped to extract the annotations and extend the classfiles with the extra 
information. 

The number of elements in a list is indeterminable, in the general case, 
during analysis. In the example, a clever analyser could identify the max-
imum number of elements in the list because the program checks that the 
number of elements does not exceed ten. If the analyser cannot determine 
the exact types of the elements in the list, the WCLM is the maximal list 
size multiplied by the largest possible list element. This approximation 
may be pessimistic, but annotations may support the analyser to calculate 
the maximum size of the list with appropriate element sizes. Without the 
annotations, the analyser must assume that the largest possible element 
is utilised in the list. For example, if the list allows instances of Object, 
the largest possible class in the system, has to be assumed list elements. 
Feedback to the programmer supports the design of the list and the writ-
ing of annotations. A more elaborate description of the WCLM analysis 
can be found in the licentiate thesis [Per00] by Patrik Persson.

The WCLM analysis calculates the maximal possible amount of mem-
ory that can be allocated. Even method frames are included in the analy-
sis. Displaying the memory utilisation during runtime may provide 
important information. The programmer may modify the program in 
order to reduce the memory utilisation and decrease the WCET for the 
most time-consuming control path.

3.3.3 Scheduling analysis

The scheduling analysis determines whether an application will keep all 
its deadlines at all times. Necessary requirements of the analysis are how 
often and how long threads execute. To simplify the analysis, threads are 
presumed to execute during their total worst-case execution time. 
Dynamic schedulers consider the actual execution time, but they intro-
duce a risk where deadlines sometimes may be exceeded.

With values from the WCET analysis and thread periodicity, the 
scheduling analysis is able to determine if a system will fulfil its real-time 
requirements or not. High-priority threads and the GC thread are prima-
rily considered in the analysis. Low-priority threads are supposed to be 
without real-time demands, but the scheduling analysis must take care of 
priority inheritance. The latency of a context switch is added when a high-

...
do {

int n = SimpleInput.readInt();
} while (n<0 && n>10);
List l = new List(); /** WCLM:max size: 10 **/
for (int i = 0; i < n; i++) /** WCLM:maximum iterations: 10 **/

l.add(new ListElement());
...

Figure 3.22  The code contains memory allocations whose memory consump-
tion cannot be determined without the support from the programmer via anno-
tations.
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priority thread is interrupting a low-priority thread. To ensure schedula-
bility of the GC the worst-case simultaneously live memory has to be cal-
culated.

The execution time of the middle-priority GC thread depends on how 
much allocations the high-priority threads have performed. The actual 
GC work is delayed until the execution of the GC thread, i.e. after the exe-
cution of all high-priority threads. The scheduling analysis checks if the 
GC is schedulable (see [Hen98]). The maximal amount of work has to be 
determined in order to ensure correct GC timing. 

3.4 Discussion

The described simple and homogenous memory utilisation provides sim-
plicity at the cost of performance. It enables, however, the WCET and 
WCLM analysis that provide valuable information for the programmer in 
the design of real-time applications. Program code can be modified to uti-
lise the memory more efficiently. Unexpected time-consuming and mem-
ory-consuming code sections can be identified.
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Chapter 4

Classfile conversion
Classfiles must be converted into a format that is more suitable for inter-
pretation. Direct interpretation of the classfiles would be slow because the 
classfiles uses symbolic references for identifier binding. To use these 
directly during runtime would mean extensive text matching and slow 
execution. 

Besides improving performance, the classfile conversion verifies the 
program code in the classfile, i.e. makes sure it follows the format, and is 
not malignant. After conversion, the classfile has to be represented inter-
nally, with the runtime data structures described in Section 3.2. 

The conversion procedure is the task of the class loader. After it has 
loaded and converted the classfile, the internal data structures of the 
class are handed to the interpreter that utilises them during interpreta-
tion. Figure 4.1 shows the three main parts of the class loader. Class load-
ing refers to the process of locating and fetching classfiles. Class linking, 
on the other hand, verifies the class, creates an internal representation of 
the class, and resolves the bytecode into a format more suited for interpre-
tation. It also matches references to other classes — it “links” them. Dur-
ing class initialisation, static code is executed, i.e. code that is executed 
only once before the class is utilised. All classes have to pass through the 
different phases of the class loader. The details of conversion are 
described in the following subsections. 
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The contributions of this work are to elucidate the connection and to 
show how to integrate the Java virtual machine with the limitations of 
real-time embedded systems. This piece of work also introduces two tech-
niques to reduce the size and the time a classfile spends in the class 
loader. These techniques are the preconverted classfiles and the split 
machine. Finally, the conversion of bytecodes is studied in detail.

4.1 Classfile conversion overview

Before a class can be utilised in execution, it must have passed the three 
major phases of the class conversion procedure according to the JVM 
Specification: loading, linking, and initialisation. In this piece of work, the 
phases will be referred to as class loading, class linking, and class initiali-
sation in order to distinguish them from the more general concepts of 
loading, linking, and initialisation. This section gives an overview of the 
three phases. Among them, the most demanding phase, class linking, is 
described in detail in a later section. The structure of the classfiles is pre-
sented briefly, as a background for further discussions.

4.1.1 Conversion requirements

The class conversion procedure described in the Java Virtual Machine 
Specification [JVM99], pp. 48-54, is divided into the following sections 
and subsections that are performed sequentially for every class (the spec-
ification also describes how a multi-threaded class loader should work):

• Loading – refers to the process of finding classfiles.
• Linking – transforms the classfile into an internal representation. 

This process is divided into subsections:
- Verification – ensures that the class is structurally correct, for 

instance, the bytecodes must be defined, operand types have to 
match the bytecode, and branch instructions have to land on the 
beginning of a bytecode and not in the middle of a bytecode. 

- Preparation – creates and sets static fields to default values. 

•runtime data 
  structures
•converted 
  bytecode

Figure 4.1  The class loader converts the classfiles into internal runtime data 
structures that are more suited for interpretation.
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- Resolution – checks and converts symbolic references to an 
internal more efficient representation.

• Initialisation – consists of executing initialisations for static fields 
and static blocks.

Verification ensures that the program follows the JVM Specification and 
that the program does not make the machine crash. Verification is also an 
important component in order to make Java a secure programming lan-
guage.

4.1.2 Classfile structure

The classfile contains all information that is necessary in order to link a 
class with a runtime system. Classfiles are similar to object files that have 
to be linked to form an executable program. The classfiles are thoroughly 
specified in the JVM specification, see [JVM99] chapter 4, “The Classfile 
Format”, pp. 93–153. The classfile structure is briefly presented here as 
background information for the later discussions. All the references in the 
classfile are indices into its constant pool, where textual representations 
of the references are located. A classfile has the following contents:

• Magic number identifies this file as a classfile.
• Versions state the valid JVM versions that can execute this class.
• Constant pool contains all the constants, symbols, and symbol ref-

erences to classes, and signatures1 of methods, fields.
• Access flags show the class modifiers.
• This class identifies this class.
• Superclass identifies the superclass of this class.
• Interfaces list all the implemented interfaces.
• Fields describe all the attributes, static fields, and constants by 

name, type, field modifiers that are declared in this class.
• Methods describe all static and virtual methods, and interface 

methods by name, signature, method modifiers, and bytecode.
• Attributes contain extra and non-crucial information about the 

class.

Interfaces are also described by classfiles. However, interface methods 
and native methods do not contain a bytecode body. All other methods 
contain the bytecode, stack size, size of the local variable area, and excep-
tion handling information.

To illustrate the classfile format, Figure 4.2 shows a class and its class-
file in a simplified form. Textual comparison is needed to resolve the sym-
bols in the bytecode, for example, method bytecodes refer to the textual 
names of the methods via the constant pool. The elements of the constant 
pool are strings and symbolic references to classes, methods, and fields. A 
support element in the constant pool, called name-and-type, provides 

1. A signature of a method contains type information but omits the modifiers. For ex-
ample, the signature for main is: ([Ljava/lang/String;)V – i.e. the argu-
ment is a string array (one dimension) and the method returns nothing (void).
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methods and fields with more symbolic information. The methods are 
described with their code and information about the method name, access 
flags, types of arguments, and type of return value. In this example, the 
classfile is 372 bytes, of which 167 (45%) are spent by the constant pool. 
The methods constitute 71 bytes (19%). In the example, only those meth-
ods that are utilised in the bytecode have a method reference into the con-
stant pool. Method descriptions refer to the textual fields directly.

4.1.3 Class loading

The task of the class-loading phase is to locate, load, and pass over the 
classfile to the next phase, i.e. class linking. There are four causes for 
class loading. First, in order to execute the main-method, the class that 
contains the main-method has to be loaded, the main-class. Second, there 
are some classes loaded by default. Third, during class conversion other 
classes may be referred to. The referred classes may be required during 
execution. Fourth, class loading may be initiated by the application dur-
ing execution. The default classes are loaded by the JVM before the main-
class. The main-class is the seed for further class loading due to its refer-
ences that refer to other classes.

public class SuperHero extends Hero {
private int power;
SuperHero(int power) { this.power = power; }
public int power() { return power; }
public boolean defeatObstacle(int difficulty) { 

return power() > difficulty; 
}

}

Figure 4.2  The figure contains a small Java program and its classfile repre-
sentation. The <init> method is the name of the constructor. Types are coded 
with letters, e.g. I is int, V is void, and Z is boolean.

Magic number 
Minor and major version 
Constant pool
#1: Method class: 5=Hero name_and_type: 14=<<init> ()void>
#2: Field class: 4=SuperHero name_and_type: 15=<power int>
#3: Method class: 4=SuperHero name_and_type: 16=<power ()int>
#4: Class name: 17=SuperHero
#5: Class name: 18=Hero
#6: Utf8: "power"
#7: Utf8: "I"
#8: Utf8: "<init>"
#9: Utf8: "(I)V"
#10: Utf8: "Code"
#11: Utf8: "()I"
#12: Utf8: "defeatObstacle"
#13: Utf8: "(I)Z"
#14: NameAndType name: 8=<init>, signature: 19=()void
#15: NameAndType name: 6=power, signature: 7=int
#16: NameAndType name: 6=power, signature: 11=()int
#17: Utf8: "SuperHero"
#18: Utf8: "Hero"
#19: Utf8: "()V"

Access flags: public
This class: 4=SuperHero super: 5=Hero
Interfaces (count: 0):

Fields (count: 1):
Field name: 6=power private Signature: 7=int

Methods (count: 3):

Method name:8="<init>" Signature: 9=(int)void
Attribute "Code", length:22, max_stack:2, max_locals:2
code_length:10
  0: aload_0
  1: invokespecial #1=<Method Hero.<init> ()void>
  4: aload_0
  5: iload_1
  6: putfield #2=<Field SuperHero.power int>
  9: return

Method name:6="power" public Signature: 11=()int
Attribute "Code", length:17, max_stack:1, max_locals:1
code_length:5
  0: aload_0
  1: getfield #2=<Field SuperHero.power int>
  4: ireturn

Method name:12="defeatObstacle" public  
Signature: 13=(int)boolean
Attribute "Code", length:26, max_stack:2, max_locals:2
code_length:14
  0: aload_0
  1: invokevirtual #3=<Method SuperHero.power ()int>
  4: iload_1
  5: if_icmple 12
  8: iconst_1
  9: goto 13
 12: iconst_0
 13: ireturn

Attributes (count: 0):
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There are a number of different places to fetch classfiles. Table 4.1
shows examples of locations where classfiles are stored. Embedded sys-
tems often utilise the ROM or a network to store the classfiles. Desktop 
computers often utilise their local hard drive for classfile storage.

The classfiles could be stored as a part of the JVM itself. This static 
classfile system circumvents problems that may arise with other types of 
storages — no file system is necessary. Static classfiles support debugging 
and rapid development. A drawback with the static classfiles approach is, 
however, that it requires the creation of an additional object file that has 
to be linked into the JVM. Another drawback is that static classfiles are 
located in memory together with the code of the JVM, which contradicts 
the requirement of efficient memory utilisation. During execution, the 
classes are represented twice: as static classfiles and as runtime tem-
plates.

All the classfiles may be compressed to save memory space. Decom-
pression algorithms, in that case, must be included in the class loader. All 
the storage types can utilise compression.

Another requirement during the class conversion is to handle many 
threads that are loading the same class at the same time. These critical 
sections have to be synchronised according to the “Detailed Initialization 
Procedure” described in the JVM specification, see [JVM99], pp. 52–54. 

4.1.4 Class linking

The linking phase links the classfiles into the runtime system by creation 
of corresponding class templates (preparation) and by converting the 
bytecodes into a form that is suitable for interpretation (resolution). Veri-
fication ensures that the classfiles are correct and non malignant. Java is 
a secure language and the verification phase is an important part to guar-
antee that. 

Class linking is the most complex and largest part of the class loader. 
In an embedded system, it is relevant to analyse the temporary data 
structures that are utilised during class linking in order to examine the 
memory consumption. Class linking may be the most memory consuming 
part during the lifetime of an application. A detailed study of the tempo-

Classfile storage Suited for

Network desktop computers
embedded systems in combination with classes in ROM

Local hard drive desktop computers

ROM embedded systems

“JVM” rapid development, debug purposes

Table 4.1  The classfiles may be stored in different places. It is the task of the 
class-loading phase to handle the different storage locations.
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rary structures may reveal how the peaks of the memory utilisation may 
be reduced.

The class-linking phase prepares the classfile for execution by creating 
runtime data structures of the class and by converting bytecode to an 
interpretable form. The runtime class structures, i.e. class templates, are 
created with the aid of temporary data structures, mainly supporting the 
symbolic reference resolution. The following steps require temporary data 
structures, and they are performed for every classfile, during class link-
ing:

1. Transfer the symbols of the classfile into global symbol tables.
2. Organise the class and generate class information, i.e. method 

tables, object layout, garbage collector information etc.
3. Convert the bytecode.

The bytecode conversion converts the references in the bytecode from 
symbolical references to direct ones, i.e. the textual resolution is con-
verted into array indices. Other bytecode transformations are related to 
the control flow analyser. 

All classes are stored in the template table. Their symbols, i.e. their 
names, are stored in another table, the template symbol table. Other sym-
bols are stored in the symbol table. These tables are utilised to represent 
symbols with a unique index, instead of the complete symbol itself. For 
example, if the java/lang/String class template is located at index 30, 
the class template is referred to as the number 30. The symbol for the 
class is found in the 30:th element of the template symbol table. The 
advantage of global symbol tables is that identical symbols in different 
classfiles can be reused, which saves memory. 

A significant deviation from the JVM specification in our approach is 
to load all the necessary classes before execution. The reason is to 
decrease the WCET in the real-time analysis by being able to exclude the 
class conversion. The class conversion, written in C, is difficult to analyse. 
However, if it was written in Java, the ordinary real-time analyser could 
be utilised even though the WCET for the class loader would become 
large. 

The lazy class loading procedure, i.e. the loading of classes when they 
are needed, encounters problems in embedded systems, considering that 
the memory is limited and many classes cannot be loaded at the same 
time. 

A problem with class loading during start-up is the bootstrap problem, 
where classes are needed before they are loaded, and they cannot be 
loaded because they are needed during class loading. This catch-22 situa-
tion is not addressed in the JVM specification. The lazy class loading is 
subject to a detailed class loading procedure (see [JVM99] pp. 158–170) in 
order to avoid other threads from loading the same class at the same time. 
Our implementation adopts a static class loading procedure in order to 
reduce memory consumption and complexity. 
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4.1.5 Class initialisation

The last step in the class conversion procedure is to execute the code in 
the static blocks of the class, i.e. class initialisers. Class initialisers have 
to be executed after the bytecode of the class has been converted but 
before the class is utilised, e.g. instantiated. The compiler collects all the 
static initialisers of a class into a class initialisation method. All the class 
initialisers in our machine are executed before the start of the applica-
tion. 

During the bytecode conversion, the static initialisers are identified. 
Method activations, frames, are created for them and stored in a frame 
list. Those frames are executed after the transformation of all classes and 
before the execution of the main-method. According to the JVM Specifica-
tion ([JVM99], Section 2.17.4), there are two rules that determine the exe-
cution order of the initialisers. First, the order of the class initialisations 
is determined by the class hierarchy. The superclass must be initialised 
before the subclasses. Second, a class may not be utilised (e.g. instanti-
ated) before the static initialisation is performed. 

If the classes are converted in a hierarchical order (superclass down), 
the initialisation frame list is organised according to the first require-
ment. The second requirement is achieved by sorting the initialisation 
frames according to the utilisation order of the classes. The bytecode must 
be analysed to obtain the order before initialisation. An alternative is to 
execute the initialisers on the fly, i.e. lazy evaluation, and to check if a 
class is initialised as it is utilised. Figure 4.3 depicts the possible initiali-
sation orders of four classes. Note that none of the possible execution 
orders is correct if the class Hero creates an instance of class SuperHero
during the initialisation of the Hero-class. In that case, the execution 
order cannot be determined with the support of the JVM specification. 
The JVM should generate an error and terminate. The program (the 
main-method) can be executed after the initialisation phase, and this is 
marked by placing the main-frame last in the list. 

Figure 4.3  The initialisation order of the four classes is determined by inher-
itance and class utilisation. The execution of the program (main) may com-
mence after the initialisation.
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4.2 Class linking and memory utilisation

The limitations of embedded systems impose modifications on the mem-
ory utilisation of the class linking process. The class linking, with its tem-
porary data structures, is memory intensive and has to be restricted in a 
system with limited memory. Class linking could be the most memory-
consuming part during the lifetime of a program, because many tempo-
rary data structures are built to support verification, preparation, and ini-
tialisation.

The first, and often the largest, temporary data structures are utilised 
to hold the information in the constant pool (CP) of the classfile. All sym-
bolic references from the rest of the classfile and from the bytecode are 
specified in the CP. In our solution, two temporary arrays hold the CP 
contents and their types — see Figure 4.4. The arrays hold as many 
entries as there are in the CP. The temporary CP arrays support the refer-
ence resolution process in the preparation and resolution phases. Since 
the temporary arrays allocate extensive amount of memory, it is impor-
tant to release the arrays as soon as possible. As the information in the 
CP is transferred into other internal data structures, it may be released. 
The parsing of the constant pool is performed in three passes:

1. Parse the constant pool.
• Transfer the constant pool of the classfile into the contents array 

and the constant pool type array. 
• Create symbols and store them in the global symbol table.
• Count the number of strings, constants, methods, interface meth-

ods, fields, and references.
2. Transfer constants and create shadow templates.

• Create two temporary arrays to hold string and value constants.
• Create and insert strings in the string constants array.
• Transfer value constants to the value constants array.
• Create shadow templates, i.e. empty template objects that can be 

referred to, of classes and interfaces and store them in the template 
table. If the template already exists, it can be referred to directly. 
Insert the corresponding class symbol in the template symbol table.

3. Create a reference array to hold all the references to fields and meth-
ods.

Before a class can be loaded, space must be allocated for it. The shadow
class representation incurs no extra memory overhead since it is utilised 
during the class loading of the shadow class. All the class representations 
are stored in the template table. Two additional internal tables contain all 
the symbols in the classes. They are the symbol table and the template 
symbol table. As a textual representation of a template is parsed, a 
shadow representation is created for it and added to the template table. 
The symbol of the template is stored in the template symbol table at the 
same index as the shadow representation.

Figure 4.4 shows how the CP of the classfile is parsed and how the con-
stants are stored internally. Shadow templates are shown as empty boxes. 
The simplified CP of the Java program in the figure is transferred into a 
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type array and a contents array that are utilised to resolve the symbolic 
references in the classfile. The constants (declared as static final in 
the Java program) are stored in the constants arrays of the classfile. They 
are the value constant MAX_power and the string constant motto, and 
they are stored in the value constant array and the string constant array 
respectively. Offsets to the constants are stored in the contents array. 
Classes in the contents array are represented as indices into the class 
template table.

During the last part of the preparation and during resolution, the 
parts that are dependent on information in other templates are resolved. 
The CP contents array is then superfluous and under the disposal of the 
garbage collector. The type array is only necessary during the parsing of 
the CP. If verification is supported, it cannot, however, be dropped until 
all the references to the CP have been checked to access the correct ele-
ment type, e.g. unresolved method bytecodes contain a reference to a 
method description in the CP.

Besides the CP, there are two large sections in the classfile: the fields 
and the methods. The field section contains information about fields 
declared in the class, i.e. field attributes, field types, field offsets, and indi-
rect references to names (indices into the symbol table). Field offsets to 

class SuperHero extends Hero implements SuperPower {
int power;
static final int MAX_power = 100;
...
Villain getEnemy() { ... }
static final String motto = "Right means Might”;
...

}

Figure 4.4  The constant pool of the program example is stored in temporary 
arrays. Shadow templates (Hero, SuperPower, and Villain) are created 
for classes that are referred but not already loaded.
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the static fields and constants (they are accessed as static fields) are cal-
culated and stored. Static fields are added to the constants arrays in the 
class template. Figure 4.5 shows the conversion of field information. The 
machine does not discriminate between the static fields and the con-
stants; they are accessed in the same manner. Verification has to confirm 
that the usage of constants is correct.

All information about the methods in the classfile is stored in a tempo-
rary method array. The methods are separated into three different arrays 
to improve performance — the static methods array, the interface meth-
ods array, and the virtual methods array. First, the static methods are 
extracted at an early stage, but the interface methods cannot be identified 
and separated from the virtual methods until all the interfaces have been 
loaded. Figure 4.6 depicts the static method array creation. The two static 
methods main and superHeroAmount are extracted from the temporary 
methods array. The remaining methods are stored in the virtual and 
interface method array. Information about exception handling and the 
bytecodes are brought together with the methods. 

Figure 4.5  The static fields in the classfile are added to the constant arrays. 
The machine does not discriminate between constants and static fields.

class SuperHero {
static final int MAX_power = 100;
static final int MIN_power = 3;
static final String motto ="Right means might!";
static final String curse ="Jikes!";
static int power;
static float mood;
static SuperHero master;
...

}
SuperHero 
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When all the method templates have been sorted, the bytecode may be 
converted. All the class references in the bytecode are substituted with 
indices into the class template table. 

4.2.1 Deep and shallow template references

The template references can be divided into two different types, shallow
and deep references. Shallow references refer to templates. They are 
called shallow since the referred classfile does not have to be loaded to be 
represented. It is sufficient to refer to an empty template. As the classfile 
is loaded, its already allocated template will be used. Deep template refer-
ences, on the other hand, are utilised to access information inside a tem-
plate. Thus, the accessed template has to be loaded and linked. An 
example of a shallow reference is a template’s reference to the superclass. 
A deep reference is, for example, an access of a bytecode to a static field in 
a class template.

4.2.2 Finishing linking and memory utilisation

When all the necessary classes have been loaded, the last transformation 
phases commence, i.e. finishing linking and resolution. The last steps of 
class linking enable all deep template accesses, in the resolution phase, to 
be resolved without interference from further class loading. The tasks 
performed during this phase are performed one class at a time, in a hier-
archical order (superclass first). The tasks are:

1. Calculation of offsets to attributes and object size.
2. Generation of garbage collector information.
3. Generation of the interface array.
4. Generation of the virtual method array.
5. Conversion of the deep references in the bytecode.

The different stages in class linking are depicted together with their 
requirements as a dependency graph in Figure 4.7. The requirements 
show how many templates are required to be loaded before the stated 
phase may commence. For example, the bytecode new that depends on a 

Figure 4.6  All the methods in the classfile are converted to method templates 
that are stored in a temporary methods array. Static methods are extracted 
and put in the class template. Virtual methods and interface methods are sepa-
rated after all interfaces are read.
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class reference and the object size cannot be converted until the object 
size has been calculated, which requires that the current template is in 
the link phase and that its superclass templates have been linked. 

The attribute offsets inside the instances are dependent on the 
attributes declared in template and the superclasses of the instance. 
Attributes declared in the template are added to the description of the 
instance by its superclass. After the offsets are calculated, the size can be 
determined. 

The GC information can be generated when the object size and the 
attribute offsets have been calculated. The GC information of the super-
class is copied and extended with reference locations of the template. If no 
new reference attributes are declared in the template, the GC information 
of the superclass may be referred to directly. 

It is important to convert the attributes and the virtual methods before 
the final bytecode transformations. Some bytecodes are dependent on the 
information calculated in the previous phases. 

The interface array consists of all interfaces implemented by the class, 
all the interfaces that the superclasses implement, and all the superinter-
faces of the implemented interfaces. The number of interfaces is counted 
and represented in an array, together with the corresponding method 
arrays of those interfaces. Figure 4.8 shows an example of interface tem-
plates and interface arrays. In the class diagram, the interfaces are sepa-
rated from the method arrays to make the picture clearer. They could be 
merged into a single array to make the class template smaller (one refer-
ence instead of two), but the arrays are separated here to make the exam-
ple clearer. Some other examples in the thesis utilise the merged interface 
array.

Furthermore, Figure 4.8 shows a diagram of four interfaces named iA, 
iB, iC, and iD. Their runtime information is also displayed. An interface 
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Figure 4.7  The contents of a template are dependent on information in other 
templates as depicted in the graph. Furthermore, bytecodes depend on informa-
tion in other templates and on the bytecode itself.
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contains information about the inherited interfaces and the declared 
interface methods. For example, interface iD implements iB and iC and 
declares methods imC and imD. 

The two classes in Figure 4.9 implement the interfaces in Figure 4.8. 
Their runtime information concerning interfaces is displayed. If a class 
does not implement new variants of the inherited superclasses, the inter-
face method arrays in its superclass can be reused. In the figure below, 
this is depicted by two references to a single interface method array. The 
figure depicts how the method, imC, is overridden by the interface iD. It 
would normally be meaningless to override methods in an interface hier-
archy since they do not contain any code. However, this is allowed in Java.

As the interface methods are identified, they are removed from the 
temporary methods array that now consists solely of virtual methods. The 
order of the interfaces in the interface array may vary from class to class 
Every class may implement any number of interfaces in any order. 

Figure 4.8  The four interfaces and two classes reuse method descriptions and 
a method array in their runtime representation.

imB

iB 
template

ima

imA

imC

imD

iC 
template

iA 
template

iD 
template

Class hierarchy
iA
imA
ima

iB
imB

iC
imC
imA

iD
imC
imD

LEGEND 

iA
imA
ima

interface

class with array of 
methods and  
interfaces

imB method template



92 
The virtual method array is based on the virtual method array of the 
superclass as well as the virtual methods implemented by the class. The 
new methods are appended to a copy of the virtual method array of the 
superclass. Overloaded methods replace the corresponding location in the 
method array. The procedure is exemplified in Figure 4.10. The virtual 
method array of the superclass is copied in order to maintain the same off-
sets to the methods in the subclass. Virtual methods have the same off-
sets independently of whether the instance is a superclass or a subclass. 
That improves the virtual method lookup time during runtime. In the fig-
ure, the two methods, getName and doDeed, declared in the superclass 
Person, are inherited by all the other subclasses. The doDeed method is 
overridden by the two direct subclasses. However, the good superheroes 
inherit the doDeed method defined in the Hero class, while the evil vil-
lains implement a doDeed method more suited for evil purposes.
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imBima
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Figure 4.9  When classes implement interfaces, all the interface methods 
placed in an interface array correspond to the interface. In some cases the same 
method templates can be reused.
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When all the methods are in place, the bytecodes are transformed into 
its final form during the resolution phase. All the operands that contain 
deep references are converted into internal references. For more informa-
tion about the internal reference conversion see Section 4.2.5, “Detailed 
reference analysis” on page 96. 

4.2.3 Memory allocation during class conversion

The temporary data structures during class loading, linking, and initiali-
sation occupy a significant amount of memory. An analysis of these data 
structures is required to determine the memory consumption, and to pro-
vide support for actions in order to decrease the memory consumption. 
The class conversion procedure may be the most memory-consuming 
phase during a lifetime of an application. Consequently, it is important to 
analyse the behaviour of the class loader. The following temporary mem-
ory data structures are allocated, for every loaded class, during class ini-
tialisation:

• Constant pool contents array
• Constant pool type array
• Reference constants
• Value constants
• Implemented interfaces
• Implemented methods
• Implemented virtual and interface methods
• Class initialisation frame list

The following data structures are created and maintained for every 
loaded class:

• Static methods

Figure 4.10  The structure of virtual methods is dependent on inheritance.
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• Virtual methods
• Reference constants and static reference field array
• Value constants and static value field array
• Interface method array and corresponding interfaces
• Field description array
• Reference array

The following data structures are global to all loaded classes (in one 
environment):

• Class template table
• Class template symbol table
• Symbol table

Data structures written in italics could be removed if dynamic class load-
ing and reflection were not supported. 

The data structures are depicted on a time axis in Figure 4.11. The fig-
ure shows when memory is allocated and utilised during class conversion. 
The lifetimes are divided into four sections, which represent steps in the 
linking process. The first section is valid when a classfile is loaded. The 
second section represents the moment the class hierarchy has been 
loaded. If the classes are loaded according to the class hierarchy, i.e. with 
the superclass before its subclasses, there is no difference between the 
first and second sections. The third section is entered when all classes in 
the application have been loaded. The fourth section shows when the 
bytecode is transformed. Data structures that are utilised during inter-
pretation are marked in the last column.

In Figure 4.11 the conclusions can be drawn that the most long-lived 
temporary data structures are the constant pool contents array, the 
implemented interfaces, the implemented virtual and interface methods, 
as well as the class initialisation frame list. The implemented interfaces, 
and the implemented virtual and interface methods are substituted with 
the virtual methods and the interface method array and corresponding 

Constant pool contents array . . . . . . . . . . . . . . . . . . . .
Constant pool type array  . . . . . . . . . . . . . . . . . . . . . . .
Reference constants. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Value constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reference constants and static reference field array . .
Value constants and static value field array . . . . . . . .
Implemented interfaces. . . . . . . . . . . . . . . . . . . . . . . . .
Implemented methods. . . . . . . . . . . . . . . . . . . . . . . . . .
Static methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Implemented virtual and interface methods . . . . . . . .
Virtual methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interface method array and corresponding interfaces
Class initialisation frame list  . . . . . . . . . . . . . . . . . . .
Field description array . . . . . . . . . . . . . . . . . . . . . . . . .
Reference array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Class template table . . . . . . . . . . . . . . . . . . . . . . . . . . .
Class template symbol table . . . . . . . . . . . . . . . . . . . . .
Symbol table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 4.11  The lifetime of data structures are marked in the diagram. Crea-
tion is marked in a darker hue. The data structures marked in the last column 
are utilised during runtime. 
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interfaces, as soon as all the classes are loaded. The latter arrays could be 
constructed when all the necessary interfaces are loaded. If interfaces are 
loaded before other classes, the lifespan of the temporary data structures 
concerning interface methods could be shortened. The virtual methods 
cannot, however, be calculated before the necessary interfaces are loaded 
and all the superclasses are linked. The memory consumption of these 
temporary data structures is approximately of the same size as the final 
representations of those structures.

The class initialisation frame list is utilised after the conversion of the 
bytecodes. In order to minimise the initialisation list, an early attempt to 
convert the bytecode could be performed. The references of bytecodes to 
the constant pool are listed in Table 4.2. As the elements in the constant 
pool are utilised, they could be removed. For example, static fields in the 
class are calculated as the classfile is parsed and they are utilised by some 
bytecodes. The elements in the constant pool that describe those static 
fields are utilised by some bytecodes. A preliminary bytecode conversion 
of “static” bytecodes, referring to static fields in the class, could be per-
formed to decrease the size of the constant pool. The constant pool could 
be copied to a new constant pool without the description of static fields. 
Bytecodes referring to static fields in other classes can be converted if the 
other classes have been linked. Traversing the bytecodes many times 
would slow the overall classfile conversion process. The size of the class 
loader would not be affected considerably. 

In Figure 4.11, it can be concluded that a suitable situation for prelim-
inary bytecode conversion is after the linking of the current class, or after 
the linking of a complete superclass hierarchy. 

JVM stack

Constant pool 
element

Bytecode 
group Utilisation Removal

Constants (values 
and strings)

Constants Bytecode After bytecode transfor-
mation.

Field references Field accesses Bytecode After bytecode transfor-
mation.

Method
references

Method 
accesses

Bytecode After bytecode transfor-
mation.

Interface method 
references

Method 
accesses

Bytecode, interface array After bytecode transfor-
mation.

Name and type — From other constant pool 
elements. 

After parsing of fields 
and methods.

Utf8 – textual 
references

— String constants are referred 
from the bytecode, other 
constant pool elements, 
from the classfile

String constants — after 
bytecode transformation.
After utilisation from the 
classfile

Table 4.2  Parts of the constant pool may be removed at an early stage in the 
classfile conversion in order to save memory.
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The execution of the machine itself utilises memory for its frames on a 
stack. Some sections of the class linking code are recursive and require 
significant amounts of stack memory. However, class loading in a hierar-
chical order minimises the memory consumption of the stack.

Default classes
The Java requires a number of default classes to be loaded. These are 
derived from the JVM specification and indirectly via the API. The classes 
that are necessary in the machine are about 50 exceptions that the 
machine may produce during execution, for example, 
NegativeArraySizeException, NullPointerException, Illegal-
AccessError, and OutOfMemoryError.

Necessary classes that are indirectly accessed are Object, String, 
and Class. To what extent these classes access other classes is dependent 
on their implementation. In J2SE, Object refers directly or indirectly to 
251 other classes, of which 15 are exceptions utilised by the machine. In 
J2ME, Object directly or indirectly refers to 50 other classes — 15 of 
them are exceptions utilised by the machine.

4.2.4 JVM start-up classes

Before the designated classfile is loaded, initial class templates have to be 
created. The top of the class hierarchy (Object) has to be loaded before 
inheritance can be calculated. However, Object requires other classes 
before it can be loaded. This conflict is solved by “manual” creation of 
shadow class templates with some information. For example, the size of 
instances of Object is put into its shadow class template. The value is 
overwritten as the class is loaded. 

4.2.5 Detailed reference analysis

The accesses to information inside templates (deep accesses) and shallow 
references are located in the class itself and in the bytecode. Shallow ref-
erences are resolved by substitution of the symbolic reference to a tem-
plate index in the global template table (indirect reference), or to a direct 
reference to the template itself. Deep accesses are converted into indices 
to the different class template structures. For instance, a virtual method 
is located by a method index into the virtual method array. The final loca-
tion of the virtual methods must have been calculated before the resolu-
tion of virtual method invocations. Figure 4.12 shows all references and 
accesses to other templates from a classfile.

Shallow references do not have to actually result in the class to be 
loaded. An empty class object could be allocated and loaded at a later 
stage. The memory allocation during class conversion is dealt with in Sec-
tion 4.2.3. The shallow references in a classfile are references to the 
superclass, this class, i.e. a reference to itself, and the interfaces that the 
class implements.

During bytecode resolution, the bytecode in the classfile requires infor-
mation from other classes. The information in the class template depend-
ent on information inside another class, is offsets to the virtual methods, 
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offsets to the interface methods, the object size, the attribute offsets, and 
the garbage collection information. Accesses to information inside a class 
are also found in the bytecode. The class information requested concerns 
static fields and attributes, constants as well as static, virtual, and inter-
face methods. This information is actually dependent on the JVM imple-
mentation. Table 4.3 shows the bytecodes with references, and how they 
relate to information in other classes. Access to information inside a class 
inside only to non-bytecode information. This limitation prevents dead-
lock in the bytecode resolution phase. It is possible to resolve the bytecode 
in one class at a time. 

Bytecode 
reference group Bytecode example Information type

static fields getstatic deep – offset to static fields in class

attributes putfield deep – offset to attributes in object

virtual method 
invocation

invokevirtual deep – offset in virtual method table

static method 
invocation

invokestatic shallow – index to the class and
deep – offset in static method table

interface method 
invocation

invokeinterface shallow – interface index and 
deep – reference to method descriptions

type check checkcast shallow – index to class

object creation new shallow – index to class (during 
conversion)
(and object size (deep) during execution)

Table 4.3  Some bytecodes require information located in other classes. 

Figure 4.12  The figure depicts where accesses and references to other tem-
plates occur in a class template. References from the bytecode only access non-
bytecode information, thus enabling bytecode resolution in one class at a time.

GC fields
template
GC info

object size
access flags

lock
superclass

virtual methods
static methods

value constants and static values
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interfaces
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All implemented and 
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Indirect class and 
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4.2.6 Verification

The verification part is thoroughly specified in the JVM Specification in 
order to avoid malignant or malformed classfiles. It is divided into the fol-
lowing four passes:

1. Classfile structure check. The contents of the classfile must be rec-
ognizable and correctly formed.

2. Further classfile analysis:
2.1. Type check of symbolic references, e.g. the superclass refer-

ence has to be of a class type. This pass does not check the sym-
bolic references in the bytecode, nor does it check if the symbols 
can be resolved.

2.2. Semantic check on keyword final. This pass also ensures 
that final classes are not superclasses of other classes and that 
final methods are not overridden. 

3. Data and control flow analysis. Every method is checked for: 
3.1. Method end. The code must not end in the middle of a byte-

code; neither must it fall off the end of the code.
3.2. Type check of operands. Every bytecode must utilise oper-

ands of the correct type. The stack, the local variables, and the 
symbolic references have to contain the corresponding operand 
type.

3.3. Branch check. Every branch in the code must land within the 
method on a new bytecode. Exception handlers have to be cor-
rectly limited.

3.4. Overflow and underflow check. Accesses to local and stack 
variables must be within the stated limits.

3.5. Stack outlook. For every position in the code, the stack has to 
contain the same types independent on which code path taken to 
reach the code.

4. Last checks:
4.1. Symbolic type consistency check. The symbolic types must 

correspond to something real. This check may be delayed until 
execution (lazy evaluation).

4.2. Access check. Every method call and every field access has to 
be accepted according to the access modifiers, e.g. public, pack-
age public, protected, and private.

The complete verification requires execution time and memory. The size of 
the interpreter also is increased if the verifier is added. One step of the 
verification process is to ensure that the bytecodes operate on operands of 
the correct types. The verification process must simulate the operand 
stack to perform this check and execute every possible code sequence in 
order to assure that the control flow is type safe. This type control could 
be simplified if the bytecodes themselves contained the type information 
about their operands.
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4.2.7 Discussion

To enable classfile conversion in embedded systems, it is important to 
study where and how the memory is utilised in the class loader. The mem-
ory constraint emphasises the idea of loading one class at a time. Since 
the linking of subclasses depends on superclasses, it is desirable to iden-
tify the superclass hierarchy at an early stage of the class-loading phase. 
Otherwise, temporary data structures would be kept for an unnecessary 
long time. If the superclasses are loaded, the loading of subclasses can 
continue with class linking. The linking depends on all the references in 
the class template as well as on all the accesses to other templates. As 
they are resolved, temporary data structures may be released. If the 
requirements of the JVM omit reflection and dynamic class loading, other 
data structures may be released, and memory may be gained. 

4.3 Loading converted classfiles

An optimisation of the linking procedure would be to load already con-
verted classfiles, i.e. classfiles that are represented in the internal format 
of the JVM. There are two different types of converted classes: the precon-
verted classfiles, and the heap image, depending on how the symbols in 
them are handled. Table 4.4 shows the different types. Classfiles are also 
listed in the table.

The preconverted classfiles constructs a unique number to each class. 
A class reference is represented as the number of the class. During link-
ing, all classes are loaded and all the direct references are resolved, i.e. 
the numbers of the classes are converted into real references.

A variant is to load an image of the heap, containing all the converted 
classes, instead of all the classfiles separately. All direct references are 
already calculated, which necessitates that the heap image is located 
exactly at the same location in memory as it was after having been cre-
ated. If the heap is located at another memory location, every reference in 
the heap image has to be recalculated, i.e. an addition of an offset to every 
reference. The updated references reflect the physical locations in the 
memory. The offset is the difference between the physical location of the 
heap and the presumed heap location of the heap image. To support the 
localisation of the references, the class image must contain information of 
the whereabouts of the references. Since every reference is stored inside 

Class type Class references Linking

Classfiles strings complex, see Section 4.1.4.

Preconverted classfiles indices convert indices to references,
create class templates

Heap image references copy image to RAM

Table 4.4  The two different types of converted classfiles are simpler and much 
faster to integrate into a runtime system than ordinary classfiles.
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objects, the problem is to identify all the objects, and update the refer-
ences in them. The references in an object are described in the GC infor-
mation that is stored in the template of the object. Together with the 
object size and the location of the references in the object, the objects in 
the image could be updated sequentially. This problem is the classical 
issue of relocation of references during linking. 

The heap image contains the converted objects, the size of the heap, a 
root stack, and in some cases, depending on the garbage-collecting algo-
rithm, an object handler array. The root set contains references to live 
objects in the heap. All live objects can be found, directly or indirectly by 
the help pf these root references. Some garbage-collecting algorithms uti-
lise an object handler array. All objects are represented in the object 
array, and all references refer to objects indirectly via the handler array. 
The root stack and the object handler array are normally located outside 
the heap. Figure 4.13 shows a description of an image. 

When converted classes are utilised, it is necessary to record the class 
environment variant where the classes have been generated. When other 
classes are loaded, the linker must determine if the environment is suited 
for the classes. If a class is created within another API, attributes and 
methods could conflict with the utilised environment. Together with the 
converted classfiles, a working class set versioning system has to support 
the verification. However, the working class set and the preconverted 
classfiles are not considered crucial for the project goal. Still, they are 
planned as future work.

The heap image, in contrast to the preconverted classfiles, also 
requires a specific version of the JVM. The object layout and the garbage 
collector must not differ in the image or in the JVM that utilises the 
image. 

A combination of ordinary classfiles, preconverted files, and a heap 
image, is possible. For example, the heap image could consist of initial glo-
bal tables and the internal template hierarchy. Frequently utilised 
classes, e.g. the classes in the API, could be loaded and stored as precon-
verted classfiles. Other classfiles could be converted normally.

4.4 Split machine

A step towards executing Java on small devices is to split the JVM into 
one class loader and one interpreter, where the interpreter is located in a 

Figure 4.13  The class image contains preconverted classes, and all other 
objects on the heap. The object handles are utilised by some garbage collector 
algorithms, and the roots contain all the roots that the garbage collector needs 
to locate all the live objects on the heap.
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little node computer and the class loader resides in a more powerful 
supervision computer. The interpreter does not need to load, link, or even 
initialise the classes since those tasks may be performed on the supervi-
sor computer. However, a small linking step remains in order to install 
classes in the node. If the only connection with the node is via the supervi-
sor, verification may be omitted in the node. The supervisor is responsible 
for verifying the code. These networks may be found in industry where 
many smaller nodes are connected to a supervisor computer, e.g. SCADA 
[SCADA] (see Figure 4.14).

If the nodes do not contain a necessary class, they require it from the 
supervisor. It could be possible to throw away not utilised classes and 
methods to save memory in the node. If they are needed, they are fetched 
from the supervisor. This procedure would of course lead to significant 
delays, but in a well-trimmed system, it could be possible to only have the 
“control loop code” and the interpreter in the node, which would decrease 
the memory utilisation significantly.

Since the node is behind a secure supervisor, a number of insecure 
methods could be applied. Verification could be omitted in the nodes. A 
specialised instruction set and a specialised interpreter could be designed 
for a node.

The split machine incurs a different memory model from a homogene-
ous JVM, since the applications reside in two different memory spaces. 
The following sections examine the memory model and the communica-
tion protocol of the supervisor and its nodes.

4.4.1 Memory model

An important reason for splitting the machine is to reduce the memory 
need of the nodes. It is assumed that the supervisor has a large memory 
in comparison with the nodes, which could consist of inexpensive single 
chip systems with simple processors and small memory. To achieve this 
end, nodes execute an interpreter, and the supervisor takes over the rest, 
i.e. the class loader.

Only the classes that are utilised are necessary in the nodes. Missing 
classes can be required from the supervisor. Even parts of classes can be 
loaded as they are needed, e.g. methods. Unutilised classes and methods 
could be removed in the nodes. In principle, the nodes can remove all 
classes and methods because those are requested when they are needed. 
Static fields have to be stored in the supervisor before they can be 

Figure 4.14  The configuration of the split machine places the class loader in 
the supervisor computer and only the interpreter in the node. The class loader 
can support many nodes.
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removed in the node. The supervisor can contain one implementation of a 
class even though many nodes are utilising it. However, the static fields 
are uniquely represented for every node that utilises a class. A node could 
be represented in the supervisor as a thread with its own working envi-
ronment as explained in Figure 3.15.

As objects are sent to the nodes, the references of the objects must be 
converted by the class loader in the node. It is assumed that the supervi-
sor does not know the outlook of the node’s heap. The references therefore 
must be set by the node.

Other memory issues are to omit the symbols in the node and the field 
and reference descriptions from every class template. Symbols and field 
descriptions are only relevant if reflection and dynamic class loading is 
required. The supervisor could perform those tasks.

The nodes utilise a stripped environment as well as reduced class 
descriptions, with focus on runtime instead of maintainability. Other opti-
misations the split machine enables are that interpreters can be modified 
to suit the hardware architecture of a specific node, and that the bytecode 
instruction set can be modified in order to suit the memory-limited envi-
ronment of a node. The size of the interpreter could be reduced if some 
bytecodes that are unnecessary for small systems were omitted.

4.4.2 Communication between supervisor and node

The communication between the supervisor and the node consists of 
object transfers. The supervisor sends the classes and other objects that 
are required by or requested of the node. When the node removes classes 
and objects, due to an almost exhausted memory, their static values are 
sent to and stored in the supervisor. When these removed classes or 
stored static objects are required, they are again transferred to the node.

When objects are sent from the supervisor to the node, they have to be 
linked into the runtime system of the node. The object transmission con-
sists of four parts: 

1. Locate the reference from where the object will be referred.
2. Create the object.
3. Set its value parts.
4. Set references.

The first point (locate the reference position) assumes that the location 
can be found in the node — the object containing the reference, for exam-
ple, may not reside in the node. To simplify matters, the supervisor 
restricts the references to keep track on to the templates that are loaded 
in the node, and not on all the roots in the node. It is difficult for the 
supervisor to determine all the actual runtime roots in the node. One root 
is, however, always determinable — the environment reference that con-
tains the template tables. 

Before a sent object is created in the node, its corresponding class must 
be present. The supervisor keeps track on all the classes that have been 
sent to the node, as well as the state of each class (skeleton or fleshy). If 
the node removes the contents of a class template from the runtime sys-
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tem, the supervisor must be informed that the removed class is only rep-
resented with a skeleton class. The state of the static fields is also sent 
from the node to the supervisor for storage. Templates cannot be com-
pletely removed since they contain information that is necessary for the 
garbage collector. As the object is created in the node, the object is linked 
to the template hierarchy so the object may be exposed to the GC.

After the object has been created, the value parts are sent to the node. 
The values are sent directly as a memory image of the object, where all 
the references are set to null. The supervisor and the node must have an 
equal object representation. If they differ, the supervisor must adapt the 
object design to the node. An alternative to the object image is to attach 
type information together with the values, so that the linker of the node 
can set the correct attributes that are received from the supervisor.

The last step is to set the references. Only references to existing 
objects may be set. The supervisor is responsible of keeping track of the 
objects that are installed in the node, and to keep track of all references in 
the node that have not been set due to the lack of objects.

An example of how three objects are transferred from the supervisor to 
the node is described in Figure 4.15. The program declares static fields, 
attributes, and how the created objects are connected. A static variable 
(ourHero) refers to an object (captainJava) in the object graph. The 
object therefore can be reached via the template table and sent to the 
node. Objects are transferred one at a time. Another object has a refer-
ence (sidekick in object captainJava) that cannot be set directly after 
it has been sent away. The referred object does not yet exist in the node. 
The supervisor must remember the references that are not set. After the 
referred object has been sent, the reference is set. 



104 
The internal part of the template hierarchy can also be sent. However, 
the automatic memory management cannot be activated until a minimal 
set of templates and objects are in place. The meta meta template and its 
garbage collector information is essential. The meta templates of the GC-
information object also must be in place, together with the GC-informa-
tion for the meta templates, in other words, if the GC-information is a 
byte array, the template of the byte array and the meta array template 
must also be loaded. When all the templates and the GC-information 
objects are loaded, the garbage collection may commence. 

An optimisation to the communication is an installation of a global ref-
erence in the node. It is set by the supervisor and utilised as a cache of the 
last reference position. The reference position description could be 
shorter, which increases communication performance.

Another communication modification is to keep the static fields in the 
node at all times, in order to make the supervisor less complex. The node 
must in any case inform the supervisor about the skeleton classes.

4.5 Bytecode conversion

The specified bytecodes (see [JVM99]) are not suited for memory-limited 
real-time applications. The conversion of classfile bytecodes has to con-
sider the real-time requirements, more compact bytecodes, and perform-

 Root 
stack

The communication between  
the supervisor and the node

1. object reference 
• start from template table 
· offset to SuperHero template 
· offset to static fields 
· offset to ourHero

2. create object (captainJava) 
· number to SuperHero template

3. send values
4. object reference 

• start from template table 
· offset to SuperHero template 
· offset to static fields 
· offset to ourHero 
· offset to sidekick

5. create object (interphaze)
6. send values
7. set references 

set reference at offset “partner”: 
• start from template table 
· offset to SuperHero template 
· offset to static fields 
· offset to ourHero

8. object reference 
• start from template table 
· offset to SuperHero template 
· offset to static fields 
· offset to ourHero 
· offset to partner

9. create object (voidMaster)
10.send values
11.set references 

reference at offset “partner”, set to: 
• start from template table 
· offset to SuperHero template 
· offset to static fields 
· offset to ourHero

class SuperHero {
static SuperHero ourHero;
SuperHero partner;
SuperHero sidekick;
static void main(String[] argv) {

SuperHero captainJava = new SuperHero();
SuperHero interphaze = new SuperHero();
SuperHero voidMaster = new SuperHero();
captainJava.partner = voidMaster;
captainJava.sidekick = interphaze;
interphaze.partner = captainJava;
voidMaster.partner = interphaze;
ourHero = captainJava;

}
}

Figure 4.15  Three SuperHero-objects are sent from a supervisor to a node. 
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ance-increasing bytecodes. The real-time requirements imply an exact 
garbage collector and its need of well-defined element types of the stack. 
Some of the bytecodes utilise operands that are unnecessary large. Mem-
ory could be saved if these bytecodes were represented with smaller oper-
and sizes. The performance-increasing bytecodes are new versions of 
those containing symbolic references. They are resolved into direct or 
indirect references. The following subsections deal with the different byte-
code conversion aspects.

4.5.1 Symbolic reference resolution

The original bytecodes in the JVM specification [JVM99] describes byte-
codes with symbolic reference operands. Textual comparison has to be uti-
lised in order to determine the correct reference. Bytecodes with symbolic 
reference operands could be replaced with indirect references that are 
resolved in a determinable number of indirections. Real-time applications 
rely on techniques that are limited in time. Performance also would 
increase compared to textual resolution during runtime.

Shallow references to classes and interfaces are replaced by indices 
into the template table. Static fields are replaced by their corresponding 
indices into the static field array. Object attributes are accessed by their 
offset into the object. Methods are accessed by the method indices into the 
static, virtual, and interface method arrays. Reference constants are 
replaced by an index into the symbol table, where the corresponding sym-
bol is to be found.
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The bytecode groups with symbolic references are listed in Table 4.5
together with notes about the type of reference.  

The operands of the original bytecodes are indices into the constant 
pool of the classfile. When they are replaced with other indices, they may 
be too small to express the new index. For example, a constant is accessed 
with the bytecode ldc, which has an operand size of one byte. Only 255 
indices may be expressed with this bytecode. However, if the correspond-
ing symbol is located in the symbol table at an index that is larger than 
255, the operand has to be extended. This bytecode swelling has to be han-
dled by a control flow analyser. 

The string constants have to be created before they can be used. This is 
performed as the classfile is loaded. The string instance is stored in a 
symbol table. The index to the string in that array is stored as an operand 
in those bytecodes.

4.5.2 Memory limitation bytecode changes

Embedded systems require efficient memory utilisation. There are a 
number of ways to reduce the memory consumption with bytecode modifi-
cations. The interpreter can be reduced in size if bytecodes are omitted, 
and the bytecodes can be made smaller, making the code smaller, in a sys-
tem where the address space is limited. The number of allowed classes in 

 Bytecode 
group Example Operand 

reference Resolution

Constants ldc, ldc_w, 
ldc2_w

symbolic location 
to constant

Represent location as index 
into one constants array.

Attribute 
access

getfield,
putfield

symbolic attribute 
reference

Replace reference with off-
set to attribute.

Static field 
access

getstatic, 
putstatic

symbolic class ref-
erence and sym-
bolic static field 

reference

Replace class reference with 
index to class. Replace field 
reference with index to field.
May increase bytecode size.

Virtual 
method calls

invokevirtual, 
invokespecial

symbolic method 
reference

Replace method reference 
with index to method.

Static/
interface 
method calls

invokestatic,
invokeinterface

symbolic method 
reference and 
symbolic class/
interface refer-

ence

Replace class/interface ref-
erence with index to class/
interface. Replace method 

reference with index to 
method.

Object 
creation

new, anewarray, 
multinewarray

symbolic class 
reference

Replace class reference with 
index to class. 

Type instanceof, 
checkcast

symbolic class 
reference

Replace class reference with 
index to class. 

Exception athrow symbolic class 
reference

Replace class reference with 
index to class.

Table 4.5  Bytecodes that access information in a class must be resolved. 
Symbolic, i.e. textual, references are replaced with indices into tables. Methods, 
attributes, and fields are represented as indices.
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an application also affects the bytecodes. Some bytecodes are introduced 
to increase the performance. They may be expressed by other bytecodes, 
thus reducing the instruction set. Bytecodes could be removed until a 
minimal instruction set remains.

A limited heap leads to a limited address space, which incur less and 
smaller bytecodes. If the JVM is limited to maximum 255 classes, they 
may be referred indirectly by a single byte index into the template table. 
Many bytecodes utilise two bytes when referring to a class. For example, 
new refers to a class template. The original bytecode utilises two bytes to 
access the class template. There are five bytecodes with class, interface, or 
array references of two bytes. They are: new, anewarray, multianewar-
ray, checkcast, and instanceof.

If the address space is limited, the methods cannot be as large as some 
bytecodes can handle. In an embedded system, the address space may be 
limited to, for example, 216 bytes. In this case, the address space is fully 
covered by two bytes. Bytecodes that utilise more than two bytes in order 
to express an address may be reduced to three bytes. Some bytecodes have 
two variants, a 2-byte address operand, and a 4-byte address operand. 
The latter may be removed completely. For example, the bytecode goto_w
and jsr_w have a 4-byte address operand. 

By reducing the number of bytecodes, the memory required for the 
interpreter is also reduced as well. The remaining bytecodes, in some 
cases, may have to be more general, while in some cases larger than their 
original variants. Table 4.6 shows some typical bytecode modifications 
and how they affect the JVM at large.

Bytecode Modification Consequence
putfield op2 
getfield op2

Shrink operand size 
from 2 to 1 byte

The maximal number of attribute positions 
in an object is reduced from 216 to 28.

putstatic op2 
getstatic op2

Use operands as 
class- and static 

field indices

The maximal number of static fields in a 
class is reduced from 216 to 28 and the 
maximal number of classes is reduced from 
216 to 28.

wide <TYPE>load op2 
wide <TYPE>store op2

Remove bytecode The maximal number of local variables 
cannot be larger than 28.

invokevirtual op2 Shrink operand size 
from 2 to 1 byte

The maximal number of virtual methods in a 
class is reduced from 216 to 28.

invokestatic op2 Use operands as 
class- and method 

indices

The maximal number of static methods 
implemented by a class is reduced from 216 
to 28 and the maximal number of classes is 
reduced from 216 to 28.

invokeinterface op4 Shrink operand size 
from 4 to 2 bytes

Effects are similar to invokestatic.

<TYPE>const_<VALUE> Remove Replace bytecode with one byte larger 
bipush op1 (push constant integer) 
bytecode and add type conversion bytecode 
when needed. The bytecode will increase but 
the size of interpreter decreases.

Table 4.6  Modifications of the bytecode instruction set may affect the size of the 
interpreter or the bytecodes.
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4.5.3 Real-time bytecode changes

The real-time requirements impose modifications to the bytecode instruc-
tion set. The exact real-time garbage collector must always have control 
over all of the references in the machine. In particular, the stack has to be 
typed. Our solution to meet this end has been to split the stack into a 
value stack and a reference stack (see [Mag84], [KMMN91], [KML00]). 
Bytecodes that operate on both value and reference types have to be 
duplicated for each stack. For example, in the JVM specification, pop
would operate on the top element of the Java stack. Regarding the split 
stack, it is necessary to specify if the value stack or the reference stack 
should be popped. The bytecode has to be converted to pop_val (value 
stack) or pop_ref (reference stack). The concerned stack-related and 
type neutral bytecodes are presented in Table 4.7, together with their new 
representations due to the split stack. Some bytecodes affect both stacks. 
Those bytecodes could be expressed as new bytecodes or they could be 

<TYPE>load_<VALUE> 
<TYPE>store_<VALUE>

Remove bytecode Replace bytecodes with <TYPE>load op1 
variant.

Bytecode Modification Consequence

Table 4.6  Modifications of the bytecode instruction set may affect the size of the 
interpreter or the bytecodes.
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described as a sequence of previously defined bytecodes. Such sequences 
are shown in the “Equivalent bytecode sequence” column.  

The instruction set is expanded with 39 new bytecodes that replace the 
16 original bytecodes. In the IVM, the original bytecodes are reused, leav-
ing the instruction set with 23 new bytecodes. It is possible to reduce the 
instruction set expansion from 23 to 16 new bytecodes if equivalent byte-
code sequences are allowed, i.e. the new bytecodes are expressed as a 
sequence of “old” bytecodes. They are only allowed if control flow analysis 
is included into the converter, since the equivalent bytecode sequences 
increases the size of the method.

Some bytecodes have non-trivial worst-case execution times. These 
are:

• invokeinterface (linear search for class) 
• anewarray (dependent on number of entries)
• athrow (difficult to estimate)
• checkcast, instanceof (proportional to deepest hierarchy depth)
• multianewarray (proportional to dimensions multiplied by depth)
• lookupswitch (search through alternatives).

Original 
bytecode Value stack Reference 

stack

Reference and value stack

New bytecode Equivalent bytecode 
sequence

dup dup_val dup_ref

pop pop_val pop_ref

pop2 pop2_val pop2_ref pop_val_ref pop_val, pop_ref

swap swap_val swap_ref

dup_x1 dup_x1_val
dup_val

dup_x1_ref
dup_ref

dup_x2 dup_x2_val
dup_x1_val
dup_val

dup_x2_ref
dup_x1_ref
dup_ref

dup2 dup2_val dup2_ref dup_val_ref dup_val, dup_ref

dup2_x1 dup2_x1_val
dup_x1_val
dup2_val

dup2_x1_ref
dup_x1_ref
dup2_ref

dup_x1_val_ref
dup_x1_ref_val

dup_x1_val, dup_ref
dup_x1_ref, dup_val

dup2_x2 dup2_x2_val
dup2_x1_val
dup2_val

dup2_x2_ref
dup2_x1_ref
dup2_ref

dup_x2_val_ref
dup_x2_ref_val
dup_x1_val_x1_ref

dup_x2_val, dup_ref
dup_x2_ref, dup_val
dup_x1_val, dup_x1_ref

putfield putfield_val putfield_ref

getfield getfield_val getfield_ref

putstatic putstatic_val putstatic_ref

getstatic getstatic_val getstatic_ref

ldc ldc_val ldc_ref

ldc_w ldc_w_val ldc_w_ref

ldc2_w ldc2_w_val ldc2_w_ref

Table 4.7  The table shows all original and type neutral stack related bytecodes 
that have to be converted due to the split stack. The representations of new 
bytecodes are shown. They are tagged with _ref or _val if they are related to the 
reference stack or to the value stack, respectively. Bytecodes typed in bold letters 
indicate additions to the instruction set.
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4.6 Control flow analysis

The control flow analysis determines the type of the internal bytecodes 
and performs bytecode optimisations. Two different control flow analyses 
are identified: a thorough one for the split machine, and a simple one for 
the homogeneous machine. The consequences of the simple conversion are 
that it is smaller, it decreases conversion time, and it requires less tempo-
rary memory, but it omits bytecode optimisations. The thorough imple-
mentation constructs a control flow graph that is utilised in a bytecode 
optimiser. The optimiser requires temporary data structures for the con-
trol flow analysis. To put it simply, optimisations require memory. The 
control flow structure overhead could be minimised if the methods were 
converted one by one. However, that approach removes some optimisa-
tions, for example, method inlining. The simple control flow analyser mod-
ifies the bytecodes in the original methods, without moving them to 
another offset. No temporary method structures, or basic blocks are nec-
essary, but the bytecode cannot be shrunk or swollen. Some bytecodes 
must increase in size if certain conditions are fulfilled. These bytecodes 
cannot be executed, because a bytecode is not allowed to expand in size in 
the converter, without control flow analysis. 



Chapter 5

Results
The IVM has primarily been developed as a research platform. However, 
the demand of Java in embedded systems has resulted in many porting 
projects to enable the Java technology on many platforms. The research 
subjects have to be concluded in future work.

5.1 Target platforms

The IVM has been utilised in a number of projects and ported to different 
computer systems. The projects have mainly been related to the studying 
of the influence of Java in concurrent embedded systems. In one project 
the IVM was shipped with a product. The computer systems that the IVM 
has been ported to are listed in Table 5.1. 

Target Configu
ration

OS Reference

System Processor Clock
(MHz)

Memory

S
p

li
t

S
in

gl
e

Flash RAM

ATMEL 
Evaluation 
board

AVR 
ATMega107L

8 128kb 32kb X [STK300]

Evaluation 
board, 
Bluecell

ARM X X

Evaluation 
board 

ARM 7 25 512k
b

X X eCos

Koala 68332 16 1Mb 1Mb X
Khepera 68000 16 256kb 64kb X
Palm V DragonBall, 

MC68253
16 2Mb 34kb X PalmOS 

v.3.1.1

Table 5.1  The target platforms for the IVM. 
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The projects in which the IVM has been utilised are listed below:

• Research project on ABB Corporate Research, autumn 1999. The 
IVM was ported to a development board from ATMEL as a prepara-
tory study of Java.

• Research project on Ericsson, autumn 1999. The IVM was ported to 
a low-end mobile phone. Initiatory evaluation of Java technology in 
mobile phones was performed.

• Master thesis, winter 1999. The task of the master thesis work was 
to port the IVM to a palmtop (see [Palm99]).

• Student project, autumn 1999. The IVM was ported to the AVR 
development board for real-time control of a servo. The IVM was 
split to fit it into the small memory of the development board.

• Research project for Bluecell, autumn 2000. The IVM was ported to 
an ARM based computer system developed by Bluecell as an initial 
evaluation of the IVM as a component in a product.

• Product development for Bluecell and TAC, spring 2001. Bluecell 
implemented Java midlets for supervision of the control systems of 
TAC. The Java programs were transported wirelessly and they 
were based on the J2ME API and MIDP. The wireless network 
layer was written in C. The IVM was utilised as the JVM in the 
final product.

• Master thesis on ABB, autumn 2001. The IVM was integrated into 
the control system of ABB to support Java programs (see 
[TAHG02]).

• Research project, summer 2001. The IVM was almost successfully 
ported to a Khepera robot. 

• Research project with Computer Science in Lund, Department of 
Control in Lund, and DIKU, Department of Computer Science at 
the University of Copenhagen, spring 2002. The project targeted 

Controller 
for IRB 
(industry 
robot) 

PPC 25 X

ABB 
AC800M 
controller

PPC 860 25 8Mb X

Ericsson 
R320

X Enea 
RTOS

iPaq Intel 
StrongARM

206 32 32 X Pocket 
PC

Intel 
XScale

XScale 333–
766

0 2Mb X libc

Target Configu
ration

OS Reference

System Processor Clock
(MHz)

Memory

S
p

li
t

S
in

gl
e

Flash RAM

Table 5.1  The target platforms for the IVM. 
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dynamic Java code exchange between semi autonomous systems, 
i.e. a control computer (Pentium and GNU/Linux) and a Koala robot 
[Bon02]. The communication was via Bluetooth. The Bluetooth 
stack was written in Java together with the control code of the 
Koala. The control computer also ran Java with the IVM to control 
a beam.

• Research on XScale, spring 2003. Thread scheduling was adapted to 
the different clock frequencies the XScale to minimise the power 
consumption (see [FG02] for more information about power con-
sumption).
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Chapter 6,

Related work
In the diverse market of Java virtual machines, there are some related to 
embedded systems and others are related to real-time. The API has to be 
adapted to embedded systems and real-time. Two competing real-time 
specifications have emerged in addition to our approach: the real-time 
specification for Java (see [RTSJ00]) and the Real-Time Core Extensions 
(see [JCRE]) from the J-Consortium. Another method to enable Java in 
real-time embedded systems is to convert the Java program to C, and add 
real-time garbage collection, real-time threads, and real-time scheduling. 
In our approach, the real-time concepts are concealed from the program-
mer as much as possible, while the real-time API specifications are explic-
itly expressed in an API.

The related work in this section describes the real-time API specifica-
tions, the embedded APIs, real-time JVMs for embedded systems, and 
Java-to-C conversion in real-time systems.

6.1 Java Real-Time API Specification

Real-time Java work has been focused on further specifications of the vir-
tual machine and the API. The concepts that need to be specified more are 
threads, scheduling, the memory management, and the garbage collector.

Real-Time Specification for Java
The real-time Java expert group1 has written a Real-Time Specification 
for Java (see [RTSJ00]), i.e. an API for Java where real-time issues are 

1. The expert group consists of representatives from different companies and uni-
versities, e.g. Sun Microsystem Laboratories, Lucent, Mitsubishi Electric, Carn-
egie Mellon, and the University of York. The group has three parts: a technical 
interpretation committee, an advisory team, and the original specification develop-
ment core team. More information about the specification and the group can be 
found at www.rtj.org.
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addressed. Real-time threads are introduced with more specified execu-
tion behaviour than ordinary Java threads. Other covered topics are 
scheduling, memory management, synchronisation, and timers. 

The difference between our approach and the solution provided by the 
real-time specification is that time critical threads utilise manual memory 
management instead of automatic memory management. The program-
mer is burdened with memory management and exposed to the tradi-
tional errors, i.e. dangling pointers and memory leaks. Our approach 
avoids these problems by maintaining automatic memory management 
for time critical threads. The garbage collector is scheduled as an ordinary 
thread. The RTSJ introduces complex concepts and lowers the simplicity 
of Java. For example, four new memory areas are introduced: heap mem-
ory, immortal memory, scope memory, and physical memory, where our 
solution utilises only one, the heap.

6.2 Java platform

There are many standardised Java APIs targeted for different system 
requirements and demands, ranging from enterprise computers to smart 
cards. An API that is called Java 2 Micro Edition, J2ME, covers the 
embedded systems. This API is further divided into subsections to suit 
specific areas of embedded systems. The other Java platforms are the 
enterprise edition (J2EE), the standard edition (J2SE), and Java Card. 
Figure 6.1 shows the different platforms. In the smaller APIs, some speci-
fications are removed from the virtual machine. The virtual machine for 
the J2ME/CLDC configuration is designed for resource-constrained tar-
gets. It requires 160kb-512kb to execute. Suns implementation, the Kilo1

virtual machine, KVM, is derived from the Spotless research project. The 
Card VM implements only the fundamental functionality of the JVM 
Specification. It omits dynamic class loading, the Security Manager, final-
isation, threads, cloning, access control in Java packages, and garbage col-
lection (an optional object deletion mechanism is offered). Only the 
following types are supported: boolean, byte, short, and int (optional).

1. It was so named because its memory budget is measured in kilobytes (whereas 
desktop systems are measured in megabytes).
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Java 2 Platform, Micro Edition
The J2ME architecture is composed of a virtual machine and a minimal 
set of class libraries that are designed to provide the functionality for a 
particular range of devices, sharing similar characteristics. Currently, 
there are two J2ME configurations: the Connected Limited Device Config-
uration (CLDC), and the Connected Device Configuration (CDC). CLDC is 
smaller than CDC and designed for devices with slow processors, limited 
network, and limited memory, for example, mobile phones and PDAs. Fur-
ther, it addresses core Java libraries (java.lang and java.util), input and 
output, networking, security, and internationalisation. The following 
areas, though, are not addressed: application management (installing, 
launching, and deleting), user interface, event handling, and interaction 
between the user and the application. In addition to this, the float and 
double data types are not supported and error handling is limited. CLDC 
can be utilised on systems with a minimal memory of 128kb to 512kb. 
CDC targets devices with a minimum memory of 2Mb — for example, 
high-end PDAs and communicators.

On top of the fundamental API, it is possible to add optional packages, 
or profiles. For example, in the CLDC there is a Mobile Information 
Device Profile (MIDP) that is designed for mobile phones. It contains a 
user interface, network connectivity, local data storage, and application 
management. CDC, on the other hand, contains profiles with more func-
tionality. The foundation profile is the basis of the personal profile, PP, 
(support for full GUI, and applets), and personal basis profile, PBP, which 
is a subset of PP. Other optional packages are developed for Bluetooth, 
web services, wireless messaging, multimedia, and database connectivity.

Optional 
Packages

Personal Profile

Personal
Basic Profile

Foundation 
Profile

Connected Device 
Configuration

JVM

Optional 
Packages

Java 2 
Platform, 

Enterprise Edition
(J2EE)

JVM

Optional 
Packages

Java 2 
Platform, 

Standard Edition
(J2SE)

JVM

Optional 
Packages

Mobile 
Information

Device Profile

Connected 
Limited Device 
Configuration

KVM
Java Card

Card VM

Java 2 Platform, Micro Edition (J2ME)

Servers, enter-
prise computers

Servers, 
personal com-

puters

High-end PDAs, 
embedded 

devices

Mobile phones, 
entry-level 

PDAs

Smart cards

Figure 6.1  The Java architecture consists of an API and a JVM. There are 
various sizes of the APIs targeted for different systems.
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The CLDC relaxes the JVM Specification at the following points: no 
floating-point data types (float and double), no Java native interface 
(native code is linked directly into the JVM), no Java level class loaders, 
no reflection, no thread groups or daemon groups, no finalisation of class 
instances, no weak references, and limitations on error handling.

6.3 Java virtual machines for embedded systems

On Sun Microsystems many embedded virtual machines for Java have 
been developed. The embedded API is specified and a real-time specifica-
tion has been developed. The embedded virtual machines from Sun are 
considered in a separate subsection, while other embedded JVM imple-
mentations are listed in another subsection. Existing real-time JVMs are 
listed and described in a following subsection.

6.3.1 Embedded JVMs from Sun

The JVMs from Sun that addresses the embedded systems have been 
developed from research platforms (JavaInJava [JIJ98], and Spotless) to 
the commercial variants (KVM and CLDC HotSpot Implementation VM). 
At this date, no official attempt to establish real-time Java in embedded 
systems has been performed by Sun.

Spotless system
The Spotless system is a JVM and a class library implemented by Sun 
Microsystems Laboratories, suited for small systems, e.g. palmtops and 
embedded systems [JDP]. It manages dynamic class loading, the complete 
bytecode set, garbage collection, and multi-threading. The goal of the 
Spotless project is to create the smallest possible “complete” JVM. The 
Java Card and Embedded Java are subsets of Java. They do not support, 
for example, dynamic class loading, garbage collection. The creators iden-
tify program criteria for consumer device manufacturers as portability, 
and fast learning curve for developers, which is well in line with the phi-
losophy of standard Java. 

The functionality of the Spotless is a straightforward JVM without 
memory-consuming optimisations like just-in-time compilation. However, 
quick bytecodes are included to increase the performance of the runtime 
system. The major memory consumption is, however, the classfiles and 
the classfile library. A small subset of the standard non-graphical classes 
has been implemented without redundant methods and classes that are 
seldom utilised. The number of exceptions is kept at a minimum. Folding 
them together has reduced dependencies between classes. The Spotless 
JVM starts with nothing and add only what is necessary, rather than 
starting with the complete JDK and removing what is not needed.

The internal class structure is similar to the IVM constitution. How-
ever, the garbage collectors do not seem to be incremental, and the thread 
switching seems to depend only on bytecode counting. The native methods 
are included in the machine instead of implementing the large Java 
Native Interface [JNI99].
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The first target system of the Spotless was a Palm. The size of the 
Spotless JVM is 30kb - 50kb depending on platform and debug informa-
tion. It performs 30% - 80% of the JVM in JDK 1.1 (without JIT compiler). 
The size of the needed heap is tens of kilobytes. The code is and consists of 
14000 lines distributed on 25 C/C++ files. The code is written to be reada-
ble (well commented) and easy to understand.

It is unclear if it is possible to download Java programs that are not 
known beforehand, for example, Java MIDlets. 

KVM
The first commercial JVM for embedded systems developed by Sun is the 
KVM. The size of KVM is between 40 - 80kb depending on compiler 
options and target platform. A normal application would use about 256kb, 
of which the heap is half (128kb). 

A pre-verification tool that is typically run on another machine before 
the classfile arrives to the VM in the embedded system supports verifica-
tion. Classfiles are given an extra “stackmap” attribute to support fast, 
and memory effective verification (5% larger classfiles). 

A “ROMiser” tool for converting classfiles into a format that is directly 
linkable in the virtual machine has been developed, reducing the start-up 
times considerably. The tool is named Java Code Compact, JCC. The 
result is a C code file that is compiled and linked together with the KVM. 

CLDC HotSpot Implementation Virtual Machine
The latest addition to the JVM from Sun is the CLDC HotSpot Implemen-
tation Virtual Machine, which incorporates a JIT compiler. The optimisa-
tions execute an order of magnitude faster (10 - 20 times) than the 
interpreted variant. The compiled code uses four to eight times as much 
space as the original bytecodes. Only the most frequently used parts of 
the application, i.e. the hotspots, are compiled to keep the memory con-
sumption at a low level. A statistical profiler keeps track on the number of 
times a method is executed. The basic optimisations of this one-pass JIT 
compiler are: constant folding, constant propagation, and look peeling. 
The target platforms are 12-32MHz processors with at least 512kb mem-
ory, i.e. mid- to high-end mobile phones. 

Java Card VM
There exists a Java Virtual Machine specification for small-memory 
embedded devices (see [JCVMS]), e.g. smart cards, together with a 
shrunk API, and a small runtime system. The typical application is an 8-
bit or 16-bit processor architectures with 1.2kb RAM, 16kb EEPROM, and 
32kb ROM. The Java Card Application Interface (see [JCAPI]) is a small 
subset of the java.lang package with added functionality for security and 
communication between applications, Java Card Applets. The runtime 
system is specified in the Java Card Runtime Environment Specification 
(see [JCRE]). It explains how to utilise Java Card Applets and how they 
can interact with each other. 

The JCVM Specification restricts the applications to be single 
threaded, thus removing some functionality of the language and invali-
dating the java.lang.Thread class and related classes. Dynamic class load-
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ing and garbage collection is not supported. Finalisation of objects is 
omitted. Further, the security manager in the J2SE API is removed. An 
applet firewall is introduced to keep objects unreachable from other appli-
cations. Cloning is removed, and native methods are not permitted. The 
following types are removed: char, double, float, and long. Integers could 
optionally be removed. Only one-dimensional arrays are supported. How-
ever, exception is fully supported. Only a few exceptions and errors of the 
virtual machine are not included from the J2SE specifications. 

Classfiles are considered to large to fit into the environment of Java 
Card. Instead, a Java Card Converter collects classes in a package into 
the Connected Applet format (CAP). Symbols, i.e. the CAP interface, in 
the CAP are placed in an export file. Linking of many packages is resolved 
with the aid of the export files. CAP files are loaded into a terminal, typi-
cally a “powerful” computer that prepares the applet that is executed by 
the virtual machine of the “card” computer. 

Since the target platform has a limited address space, many bytecodes 
are unnecessary. Every class is limited to 256 static methods and 256 vir-
tual methods (2 different types * 128 methods per type). Every class may 
only be instantiated 255 times, and the maximum length of a method is 
32767 bytes.

These restrictions are well in line with those of the IVM. However, the 
aim of the IVM is to add multi-threading and garbage collection to the 
same target platforms as those of Java Card.

6.3.2 Embedded virtual machines

Many Java virtual machines, like the KVM, are targeted towards embed-
ded systems. Typical features of those are that some features of the JVM 
Specification are not supported to make the machine smaller. The sup-
ported API is often a subset of the J2SE API or the J2ME/CLDC PAI. 
Applications tend to focus on concurrent systems, and not hard real-time 
systems.

SimpleRTJ
The simpleRTJ (see [SRTJ]) is a Java architecture for concurrent memory 
limited embedded system without a RTOS. The footprint of the system 
can be 17-19kb with almost all features of Java. Floating-point types are 
optionally included in the runtime environment. The classes of a Java 
application are bundled together by the classlinker and linked with 
native code and the simpleRTJ source files to form a native code binary 
image that can be put in the embedded system. The JNI is not supported. 
Many classes from the standard libraries are supported. SimpleRTJ is 
developed by RTJ Computing Pty. Ltd. in Perth, Australia.

WABA
An attempt to migrate Java for embedded systems is the open source 
Waba virtual machine (see [WABA]). The Waba classfile and bytecode for-
mat are strict subsets of the classfile and bytecode format supported by 
Java. The primary target platform for Waba has been PalmOS, but it has 
been ported to many different operating systems. 
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The Waba language, virtual machine, and classfile format were 
designed to be for small devices. Features that would use substantial 
amounts of memory or that were deemed unnecessary for small devices 
were omitted from the design of the Waba language and platform, e.g. 
exceptions, floating-point arithmetic, and limited address space (32kb). 
Waba has a rewritten subset of the core functionality of the J2ME/CLDC 
API, with some simple user interface routines. Waba programs may run 
in a Java environment, however, the contrary is not always the possible.

Waba was designed for small, usually mobile, devices. Waba virtual 
machines are available that are under 72.3kb in size (including founda-
tion classes) and that run programs in less than 10K of memory. The VM 
takes 40KB of executable code on Motorola 68K processors, and about 
double that on a Pentium. 

A more powerful Waba variant, Superwaba (293kb with classes and 
VM) executes faster and contains a larger subset of Java.

6.3.3 Real-time Java Virtual Machines

These machines are focused on achieving hard real-time behaviour. 

6.3.4 JamaicaVM

This JVM implementation is made by Aicas real-time in Karlsruhe (see 
[SW]). Their JVM is suited for hard real-time applications in embedded 
systems. The program builder takes a set of classfiles and produces a C 
source code file that is compiled by a C compiler to an object file that is 
linked together with other Jamaica VM files into a single executable. The 
builder can run in a smart mode that omits symbols, and unnecessary 
code, i.e. this selective compilation removes code that cannot be utilised 
during runtime, at the expense of reflection, and dynamic class loading. 
The classfiles may be transformed completely to C code, or to memory effi-
cient intermediate internal bytecodes that are interpreted. The C code 
executes faster than the bytecodes, however, it is more spacious. The byte-
codes are linked with an interpreter to form an executable. The Jamaica 
VM identifies classfiles as the largest memory consumer. Compaction of 
classfiles reduces the size of classfiles up to 50%, and smart linking up to 
90%. Just-in time compilation is completely omitted since it takes to much 
time to convert the code, which results in a pessimistic real-time analysis.

Jamaica VM supports J2SE (however, not all the classes have been 
implemented). Native methods are interfaced by the relatively memory 
consumptive JNI 1.2 (added optionally) or by their own and more compact 
Jamaica Binary Interface, JBI. 

A simple “HelloWorld” program (62 Java bytecodes) compiles to a 
150kb executable on a PowerPC. If smart linking is activated, the applica-
tion shrinks to 130kb, of which the VM is 120kb. The RAM utilisation for 
is 260kb, of which 1,8kb are utilised as a heap by the application.

The real-time is supported by an exact and incremental real-time gar-
bage collection and profiling tools. All threads are real-time threads. Any 
higher priority threads are guaranteed to preempt lower priority threads 
within a fixed worst-case delay. The profiling tool determines the worst-
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case execution is given for any code, by counting the number of executed 
bytecodes in every method. The memory analyser determines the memory 
consumption. It finds the amount of memory that is actually used by the 
application and how long time the maximal time the GC will interrupt the 
application. A larger heap reduces the, the smaller worst-case GC execu-
tion interruption of the garbage collector. The exact size of the heap and 
the number of threads, but also the classfile API affects the size of the 
executable. The parameters are given to the Jamaica compiler. Threads 
are preemptied after a set number of intermediate instructions, i.e. a 
more efficient form of bytecodes. It makes the preemption mechanism 
simple to port. Native methods do not affect the real-time behaviour. We 
assume that the native code may be preemptied in the same fashion as 
the compiled Java code.

6.3.5 PERC

Kelvin Nilsen and his company NewMonics put aside the Java certifica-
tion process from Sun, in favour own ideas. NewMonic’s Java environ-
ment is named PERC and it consists of a development environment 
besides the JVM and the classfiles (J2SE). PERC can handle hard real-
time with the support of an incremental, copying, and exact real-time GC. 
The systems consist of approximately 50000 lines of code. Optimising 
ahead-of-time and just-in-time compilation is supported. The develop-
ment environment supports debugging, simulation, and performance tun-
ing, e.g. maximum number of heap allocation regions, and CPU time 
dedication to threads. ROMised bytecodes are also supported. It seem 
that the target architectures (ARM, Intel X86, XScale, ARM, MIPS, and 
68K) are in the more advanced end of the embedded systems market. 

6.3.6 JBed

A full-featured real-time JVM for embedded system is the JBed from 
Esmertec (see [JBed], and [JBed99]). JBed supports both ahead-of-time 
compilation and classfile conversion during runtime. Real-time is 
achieved by compilation to the platform before execution. A step towards 
the real-time specification for Java has been taken with Tasks. They are a 
subset of ordinary threads, but add real-time characteristics. A task may 
be specified to complete within a certain deadline, or utilise a specified 
amount of CPU time. The scheduler implements an earliest deadline first 
scheduling algorithm [Pil00]. 

J2ME/CLDC 1.0 and MIDP 2.0 are supported. JBed, in its static form, 
and the CLDC classfiles occupy 210kb on an ARM7 code. 

6.3.7 Kertasarie

A german JVM implementation, called Kertasarie, claims to handle real-
time in embedded systems. The Kertasarie VM implements its own native 
threads based on the OS threading model (green threads). Priority inher-
itance is implemented to avoid priority inversion. The machine occupies 
typically 60-80kb and the API occupies about 200kb (ROM or RAM). 
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Another 100-200kb RAM is needed during execution. Classes may be 
“preloaded” to increase the start-up time. Many parts of the machine are 
modularised and can be selected or removed from a VM. Hard real- time 
issues have yet to be proved for the Kertasarie JVM.

6.3.8 Summary

Spotless and JavaInJava is remarkably simple. The idea of describing a 
JVM in Java and then generating C/C++ code of that code is appealing. 
Object layouts could be suited for the platform, e.g. a fast but memory 
consumptive 8-bytes aligned offset to every attribute, or a compact byte 
alignment of object attributes. However, the real-time aspects are lacking 
in Spotless, but Spotless would be well suited for real-time modifications.

PERC is complex. The real-time aspects are complex and require 
extensive knowledge of the runtime system. The simplicity of Java is lost.

• VMs from Sun are targeted for embedded systems without real-time 
requirements. They leave a large embedded system segment between 1-
8MHz, 32kbROM, and 10-32kb RAM. The Java Card VM is too limited to 
provide high-level features. However, there it is relevant to the industry 
to be able to write high-level code for that segment. 

6.4 Java to C compilation

Many real-time applications are written in C (or a “safe” subset of C). To 
achieve real-time functionality, concepts of threads, scheduler, and pre-
dictable execution time and predictable memory utilisation are added. 
Java provides a standardised way to utilise threads. Scheduler implemen-
tation, however, is not standardised in Java. Memory management is 
standardised in Java with the garbage collector. Memory analysis tools 
have to be added to guarantee the memory utilisation.

A Java to C compiler could enable the benefits of Java to the program-
mer while maintaining the traditional real-time language community. 
This approach is utilised in the JamaicaVM, and the PERC system 
described in Section 6.3.4, and Section 6.3.5. Another approach is the 
Java2C compiler written by Anders Nilsson, [NE01]. Java2C converts the 
Java code into C and adds garbage collection and a predictable kernel, i.e. 
threads and scheduler. A hard real-time kernel has been developed by 
Torbjörn Ekman [Ek00], for the AVR processor. The binary code had to be 
analysed by hand to produce the WCET. The GC implements the Garbage 
Collector Interface, GCI, which enables different garbage collectors to be 
utilised without changing the generated C code. 

A preliminary performance estimation of the Java2C execution and 
the IVM reveals 5 to 10 times faster execution of the generated C code.
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Chapter 7

Future work and conclusions
In this work, a foundation has been laid for further work. Even though 
the principal objectives, i.e. merging real-time and high-level program-
ming languages, have not been proven, no obstacles have appeared to pre-
vent the merge either. Future work, however, will conclude the 
integration after more work has been done on the WCET analysis. 

Many other interesting topics related to the IVM have appeared dur-
ing the implementation of the IVM. The IVM serves as a good foundation 
for further explorations into the real-time domain. The following subjects 
are discussed as future work: how to adapt the IVM to real-time, more 
general real-time issues, and optimisations of the IVM. Interpretation 
and compilation that run together in embedded systems could be studied 
to determine if the benefits form the domains are possible to join. During 
the development of the IVM, many interesting topics were discovered. 
Code replacement during execution of real-time applications would be an 
interesting continuation of the real-time IVM. The Meta Virtual Machine, 
MVM, could be created to describe a JVM and to generate the machines. 
The minimal language is a spin-off to describe a language that is portable 
by itself. At an architecture level, the split machine presents an intrigu-
ing situation where nodes could communicate with each other.

7.1 Real-time adaptations

To achieve predictable behaviour of the virtual machine, the following 
parts must be implemented:

• Predictable bytecodes – all bytecodes in the machine must have a 
WCET.

• Code execution analyser – the control flow must be analysed 
together with the memory utilisation.

• Predictable scheduler – the scheduler must be predictable and 
implement a predictable scheduling algorithm.
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• Real-time garbage collector – the garbage collector must be predict-
able.

The three first parts have been implemented in the IVM. However, the 
current garbage collector is not completely adapted to real-time. Real-
time analysis remains to be implemented before WCET can be deter-
mined for the bytecodes and the scheduler. The code execution analyser is 
implemented but not integrated into the machine.

7.2 Real-time code replacement

Preliminary work has been conducted to replace code during execution in 
the IVM. With a real-time virtual machine, as stated in the previous sec-
tion, the code replacement could be performed during execution of real-
time programs. Two approaches of code replacement are considered. First, 
the fine-granular approach replaces segments of code by, for example, 
adding a “backpack” of the new code, and inserting a method call where 
the code is replaced (see [BM83]). The other approach is to exchange com-
plete modules, plug-ins (see [JDP]).

Code replacement requires another computer and a network to com-
municate the new code to the real-time machine. The network does not 
have to be deterministic in the sense that information is transmitted 
within a determinable period. However, together with a real-time 
machine, the performance may probably be increased with a deterministic 
network. 

Another related issue is to study the real-time behaviour of a system 
that could download binary code as well as bytecodes. 

7.3 Interpretation and compilation co-operation

Interpreted code and complied code could co-exist in the same application. 
Time critical code sections could be compiled and the other code could be 
interpreted to save space. For example, in a real-time application, a con-
trol loop could be compiled to increase the performance of the control sys-
tem. The other code could be left interpreted. However, the compilation 
would be performed offline and not in a JIT fashion because JIT compila-
tion often require vast amount of memory. Interpretation is often bur-
dened with slow performance, but it often has smaller method sizes, and 
benefits from portability. Compiled code often requires more space, per-
forms better, and is difficult to port to other systems.

The Java2C-compiler developed by Anders Nilsson (see [NE01]) is 
especially interesting to study in the relation to the IVM since the object 
design is the same, and the interface to the garbage collector has been 
developed in co-operation.
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7.4 Optimisations

There are many sections of the IVM code that should be optimised for 
both speed and size. Development of the machine has been concentrated 
upon basic functionality, i.e. to get the machine to work. When optimisa-
tions have been performed, the size has always been considered before 
speed. 

The following list is a selection of optimisations that are interesting to 
implement and study:

• Exception optimisations – the machine require many exceptions 
that are similar in structure. Since they are similar, they could be 
handled differently to decrease the memory consumption. For 
example, exception classes could be created, as they are needed, to 
save memory. Real-time related exception classes should be gener-
ated before the entrance of the real-time loop. In the split machine, 
the necessary exceptions should be loaded on demand.

• Compressed file systems – the classfiles consume significant 
amount of memory. Compression could reduce the size of the class-
files significantly. Many Java systems have already adopted com-
pression to their classfiles (see [SRTJ] and [WABA]).

• Remove arrays with zero elements – currently in the IVM there are 
many zero sized arrays. Memory could be saved if these zero sized 
arrays would be removed by, for instance, a check everywhere an 
array is accessed. Measurements should be performed to show how 
much is gained by removal of zero size arrays. 

• Organise global data structures – the final size of global tables is 
determined when all the classes have been loaded. To support 
tables with variable size, they could be implemented as a linked 
list, or as small arrays linked together. However, the tables are 
extensively utilised during class conversion that renders linear 
search algorithms inefficient. To improve the table access, it could 
be implemented as a hashtable, or as another performance increas-
ing data structure. The penalty would be larger memory consump-
tion. 

• Bytecodes optimisations – since it is possible to modify the internal 
bytecodes arbitrarily, it would be interesting to study variations of 
the bytecode instruction set, or a combination of bytecodes and 
binary code. Platform specific bytecodes could utilise hardware 
more efficient and a reduced instruction set reduces the size of the 
virtual machine. 

• Interface method optimisations – analyse the interface methods to 
find a faster bytecode variant for real-time embedded systems. The 
class linking could try to create interface arrays where the inter-
faces are located at the same offsets — the interface array could be 
extended to hold all the interfaces. Every interface would then 
acquire a unique offset that is utilised to locate its method array 
independently of which class template is utilised. Another approach 
to improve the performance of interface method calls is to guess the 
interface location in the interface method array by adding a guess 
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operand to the interface bytecode. A good guess is the last interface 
index that was found. That approach, however, has as bad WCET 
behaviour as the worst case is a linear search for the method array. 
As bytecodes are changed in this approach, they must not reside in 
ROM. It would be interesting to study different approaches to the 
interface method localisation.

• Inlined class templates – the information in the class template is 
consists of many references to other data structures, e.g. the virtual 
method table, and the constant table. These data structures could 
be inlined in the class template itself to increase performance. 
Memory consumption may even decrease with inlined data struc-
tures because the number of objects, and object heads, is smaller.

• Other optimisations techniques – ordinary optimisation techniques 
should be implemented and evaluated. For example, caches for field 
and methods, constant propagation etc.

7.5 Measurements

Performance and memory measurements should be conducted in depth on 
the IVM. Interpretation is not as fast as compiled code, but it may be 
more memory efficient. The performance bottlenecks and the benefits 
should be pinpointed. Different target platforms and the two machine 
variants should be utilised in the tests. 

An in depth study of the performance (speed and memory) of the vir-
tual machine would make clear the bottlenecks and the advantages with 
interpretation. For example, how much performance is lost by the mem-
ory efficient virtual method calls in the bytecode, or how much memory is 
gained by removal of floating-point types and long integer types (32- and 
64-bits). How much space is saved by the symbol table? 

Since the memory requirement of the IVM is crucial, it is interesting to 
get a grasp of the classfile sizes and the sizes of the contents of the class-
files. The classes of the following APIs should studied: J2SE, J2EE, and 
J2ME. More information about the APIs can be found in [J2SE], [J2EE]
and, [J2ME], respectively. The measurements on the classfiles concern 
size of constant pool, size of fields, methods etc. How many symbols can be 
reused? How much of the symbols are only utilised as reference and 
descriptive purposes? How much is gained if only the necessary parts 
remain? 

The sizes of the data structures in the machine should be measured in 
detail. The split machine should also be taken into account. Its internal 
structure differs from the homogeneous machine. Ideally, only the neces-
sary data structures should reside in the split machine.

7.6 Meta virtual machine

A meta virtual machine, MTM, describes and generates virtual machines. 
There are many different requirements for different platforms. In the 
IVM, the port specific information is collected in a module that is modified 
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according to the specific platform. However, there always arise new 
demands and desires that are not thought of in the original design. It is 
desirable to test and evaluate new ideas quickly. For example, object lay-
out could implement four-byte aligned data, which is desirable in 32-bits 
architectures, or one-byte aligned attributes in 8-bits processors.

New ideas could be implemented and tested without thorough knowl-
edge of the virtual machine code. A future project idea is to implement a 
meta virtual machine and use Java as the description language (see 
[JIJ98]). To further describe the machine in a more expressive way is to 
utilise a symbol language, e.g. the notation language described in 
[Ive98.3]. This section discusses and presents design ideas for a MVM 
implementation in Java.

7.6.1 Template and class structure

It is essential to describe the internal structure of the JVM. This could be 
done in MVM as Java classes. The internal data structures that have to 
be described are the template structure of the IVM. It consists of:

• Classes
• Arrays
• Interfaces
• Primitive classes
• Instances of classes, arrays, interfaces, and primitive classes
• Methods
• Method activations (or instances)

The layout of the classes in the generated machine should be described by 
classes in the MVM. The attributes in a class of a generated machine 
should be described as attributes in the MVM. 

7.6.2 Object layout

The object layout of a virtual machine should depend on the underlying 
processor architecture. In addition, different requirements such as mem-
ory utilisation, performance, and hardware considerations, e.g. mapping 
of an object to hardware port, may affect the object layout. The MVM 
could describe the different object layouts in an object-oriented fashion. 
Figure 7.1 describes three different object layouts: objects with four-bytes 
aligned attributes, one-byte packed attributes, and an object layout that 
maps a hardware port. To map a hardware port directly may avoid trans-
lation overhead, as data in one representation must be converted to data 
that suits another representation. For example, an IP-packet may be 
mapped directly onto a Java object. 

Some processors utilise different reference sizes, e.g. 16-bits references 
or 24-bits references. If the address space is four-bytes aligned, there is 
only need for 14-bits to fully cover a 16-bits address space. Reference sizes 
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should be reflected in the object layout. In Figure 7.1, 2-bytes and 4-bytes 
references are also taken into consideration.

Other requirements may also influence the object design. In a system 
with a small memory, a non-moving garbage collector could be considered, 
even if it results in fragmentation. An object consists of an object head, 
e.g. GC-information, a template reference, and synchronisation informa-
tion. If the memory is limited to 256 memory blocks, a reference could be 
expressed with only one byte. In those systems, an object head could con-
sist of three bytes: template reference, GC-information, and synchronisa-
tion information, e.g. an index to a monitor pool, or a direct reference to a 
monitor object. If the block size is four bytes, the remaining byte could be 
an attribute of reference type, a boolean type, or a byte type. The complete 
memory area would then be 1kb. A more realistic block size would be 
eight bytes, resulting in a 2kb heap. The VM could be equipped with a 
minimal interpreter optimised for an address space covered by 8-bit 
addresses. Drastic modifications like the minimal object design could be 
performed with the MVM. The effects could directly be compared with 
other alternative object designs.

7.6.3 Code generation

The MVM could be designed to generate C code for those segments that 
would benefit from faster execution. Primarily, the MVM could be exe-
cuted as a Java program. However, a minimal amount of C code genera-
tion from the MVM code is necessary to bootstrap the generated virtual 
machines. As the core code for the virtual machine is generated, the rest 
could execute as bytecodes. One advantage of a two-language representa-
tion of the same description is that a comparison would reveal bottle-
necks. 

IOPort
2 bits
byte d
16 bits
short c
14 bits
byte e

Figure 7.1  Different object designs would easily be expressed in the meta vir-
tual machine. The figure contains three different object designs. The variants 
are: four-bytes alignment, one-byte alignment, and hardware specific consider-
ations.
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The generation of the core VM code could also be expressed in the 
MVM by adding descriptions of the code generation of the core. In the gen-
erated VM, the interpreter’s bytecodes could be specially designed for a 
specific instruction set, e.g. a limited address space, or a digital signal 
processor. Different interpretation algorithms could be expressed without 
too much work. Optimisations, such as inlining, could be added. Virtual 
machines could easily be generated and compared. Another code genera-
tion example is how the interpreter should be expressed in C code. One 
direct approach is to implement the interpreter as a switch statement, 
where each case alternative corresponds to a bytecode. There exist more 
efficient interpretation methods, e.g. by storing addresses as bytecodes, 
where the bytecode is implemented as a code sequence and located by a 
simple jump-instruction (the bytecode).

Another code generation consideration is to map the stack and the 
local variables on processor registers to increase performance. Bytecodes 
have been mapped to registers in a JIT compiler (see [ACL98]).

The interface to the code generation should be interesting to general-
ise. The design of an interface that accommodates the different require-
ments is an interesting problem. 

7.6.4 Summary

A Java virtual machine generator could be a solution to test and compare 
the different requirements and optimisations that has emerged during 
the development of the IVM. Platform specific requirements could be 
obliged in a safer and more controlled way. A test suite could generate 
comparison tests of the generated machines. To raise the abstraction 
layer from the current C-code of the IVM to Java would result in code that 
is more secure and reduce the debugging time significantly. Most of the 
debugging sessions of the IVM revolve around errors in the hand coded 
garbage collector interface. 

The interface to the machine description should be open and suffi-
ciently simple to implement modifications. The meta virtual machine 
addresses these problems.

7.7 The minimal language

Another approach to platform independence is to create a bootstrap lan-
guage that is implemented in the language itself and that require as 
small platform support as possible. The platform specific parts should be 
simple to port to any other language that is supported by the platform. 
When those initial parts have been compiled, the bootstrap procedure 
begins. The language should be able to build itself. 

A direct approach would be to express the language on basic assembly 
level operations, for example, load from memory, store, and perform a cal-
culation. 
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7.8 Real-time issues

Schedulers in C and Java
It would be interesting to study the difference between schedulers imple-
mented in Java and in C. Java schedulers benefit from a Java interface to 
the scheduler that enables simple scheduling modifications. Schedulers in 
C, should be faster, but must be compiled together with the machine. The 
performance, time of context switching, and the size should be compared. 
Threads would also be interesting to implement in Java and in C. 

A scheduler is responsible for the execution in its environment. Other 
schedulers may be instantiated inside the environment of another sched-
uler. The combination of many schedulers in one application would be 
studied in deeper detail. Communication between real-time environments 
within one application has not been studied in detail, to my knowledge.

Native threads co-existing with Java threads
It should be interesting to study threads in Java that are mapped to the 
thread handling routines of the underlying operating system. Benefits 
from, for example, a real-time kernel could be integrated into the VM. A 
combination of native threads and threads handled by Java should be 
interesting to study in detail. 

Native threads require a stack for every thread. The WCLM size of the 
stacks is relevant to determine. A study of the native thread memory uti-
lisation could be integrated into the memory analyser, if the code is anno-
tated. 

Predictable C-stack sizes
The size of the C-stack may vary during execution, especially if native 
methods are utilised. A predictable VM must be able to keep track on its 
WCLM of the C-stack. If native methods do not allocate dynamic memory, 
or call other methods outside the machine, the memory consumption of 
the C-stack can be determinable by profiling. To enable recursive native 
method calls, a more thorough analysis has to be performed to determine 
the WCLM for the C-stack. With some annotations about the memory 
behaviour in the native C-methods, a memory profiler can provide the 
WCLM.

Different context switching points
Currently the context switch may be performed after the execution of a 
bytecode. Other context switching points would be interesting to study, for 
example, after each line of source code ([SIM89]), after the execution of a 
method invocation and backward jump, or in specific context switching 
bytecodes that are inserted by the class loader. The execution of a given 
number of bytecodes before a context switch would enable the benefits of 
RISC architectures. The registers in the processor do only need to be writ-
ten back before a context switch.

To allow preemption everywhere during execution, even in the middle 
of a bytecode, is another interesting approach. The IVM could serve as a 
test bench for preemption, and it could be compared with other context 
switching alternatives.
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Real-time application debugging
Real-time applications often tend to be more complex to debug than ordi-
nary applications. One problem is often to reproduce the error. With the 
IVM, a debugging context switch could be performed after every bytecode 
to increase the predictability of the multi-threaded program. This 
extreme thread switching could also put pressure on the functionality of 
the application. Some real-time errors could be forced to appear and 
repeated with this kind of extreme context switching.

Memory efficient synchronisation
The Java Language Specification states that every object should have a 
lock. However, in embedded systems, the locks take considerable memory 
space, and not all the locks are utilised during runtime. An idea is to cir-
cumvent the unnecessary memory consumption is to give the impression 
that every object has a lock. Only the necessary objects are equipped with 
locks. This can be achieved in many ways:

• Lazy-evaluation – create locks as they are needed. This approach is 
time-consuming, and burdens real-time applications.

• Lock pool – create a limited amount of locks that are reused. This is 
time efficient since all locks are created during the start of an appli-
cation. However, the amount of locks may be difficult to determine.

• Static analysis – the application is analysed before runtime and the 
necessary locks are created. The ability to download new classes is 
prohibited with static analysis. Code outside the analysis may uti-
lise objects as locks that are not determined as locks by the ana-
lyser. 

• Dynamic analysis – give every thread its lock that the thread uti-
lises to lock objects (see [Blo00]).

It would be interesting to study the efficiency and the memory consump-
tion for the different approaches. 

WCET analysis
The determination of the worst-case execution time for a Java program 
should be performed by addition of all the WCETs for the bytecodes in the 
most time-consuming execution path of the program. The bytecodes exe-
cution times are calculated on a deterministic processor by adding the 
binary code for each bytecode. The WCET of a bytecode must also incorpo-
rate the execution of read-and-locate the next bytecode. 

After the execution every bytecode, the interpreter checks if there is a 
pending context switch, and if so, the active thread is rescheduled. The 
WCET for the scheduler has also to be added in the scheduling analysis. 
The scheduling analysis determines if the application is schedulable.

Real-time garbage collector
The exact and incremental RTGC is scheduled as a thread. Higher prior-
ity threads can interrupt its execution. Lower priority threads are not 
considered time critical. They are executed after the high-priority threads 
have had their memory allocations managed by the GC-thread. The mem-
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ory management of low-priority threads are performed incrementally as 
they occur in the code, while high-priority threads only performs minimal 
memory management work when they are running. 

Real-time analysis feedback to the programmer
The real-time analysis could be included in a tool to provide a program-
mer with feedback of the real-time analysis. The execution time of a code 
sequence could be shown and utilised in a scheduling analysis. A real-
time expansion of an existing incremental development tool would be 
preferable, e.g. eclipse (see [Eclipse]) or applab (see [Bja97]).

The tool should also show the worst-case live memory. The program 
has to be annotated with memory comments to support the WCLM analy-
sis. As the annotations are changed, the memory analysis is performed 
again.

Periodic jitter
The preemptive context switches in the IVM are performed only after the 
execution of a bytecode. The time to finish the bytecode execution imposes 
an extra time overhead to take into account during scheduling analysis 
and in the control loop. The occurrences of the periodic jitter for two 
threads are depicted in Figure 7.2. The figure also shows a presumed dis-
tribution of jitter times, where the worst-case jitter time marks the execu-
tion of the longest bytecode.

Figure 7.2  Threads have to finish their currently executing bytecode before a 
context switch can occur. 
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7.9 Communication between nodes

The nodes in a split machine can communicate with each other, and not 
only with the supervisor, since they have access to the same network. The 
co-operation of many nodes may result in semi automated computer sys-
tem architecture. Inter node communication would also be a step towards 
ubiquitous computing. Java can serve as a powerful interface language 
between nodes. A project in this direction is the Java code transfer project 
over Bluetooth (see [Bon02]) where the IVM was run in a control compu-
ter and a Koala robot. Bytecodes were transmitted to the control compu-
ter that later ran the downloaded program. The system architecture in 
semi-autonomous systems would be interesting to study in deeper detail. 

7.10 Conclusions

This thesis constitutes a foundation on which further work can be imple-
mented to empirically prove that real-time and embedded systems can 
achieve the desirable consequences of high-level object-oriented program-
ming languages without significant modifications or adaptations. Only 
some parameters for the GC are required, for example, memory allocation 
speed of high-priority threads, together with annotations in the code, to 
reach this end, however, it still has to be proven. The approach to imple-
ment a virtual machine on top of the hardware platform seems to be a 
good balance for safety critical systems. They have to rely on statically 
verified code. In safety critical systems, every compilation would require a 
new time-consuming verification of the compiled code — even small 
changes of the source code could result in major changes in the binary 
code. A VM could be a good tradeoff. It can be compiled and verified once 
for the platform. All the programs that are executed by the VM run in a 
safe environment. 

A major contribution of the IVM is to open the runtime system from 
native C code. Threading and garbage collection are possible to modify 
and even adapt to an already existing runtime system. Integration of the 
IVM into another system is simplified through this possibility to reach the 
internals of the IVM from native C code. No other VM enables this possi-
bility. Other JVMs require at least a specific memory area for the machine 
and they cannot cooperate with a GC or a scheduler that already operates 
in the underlying runtime system. Most common is a JVM that require 
complete control of the hardware platform — an unthinkable sacrifice for 
many applications.

Even though the goals of the project have not been empirically proven, 
no obstacles have emerged during the implementation this far. WCET and 
WCLM analysis remain to be calculated and verified, and the complex 
integration of a RTGC and a predictable RT kernel into the IVM is left as 
future work. Together with the RT analyser and a scheduling analyser, 
the system would be complete to prove the goal of modern high-level pro-
gramming languages in RT embedded systems. All the parts have been 
developed and verified separately, but they all have to be collected 
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together in one application- The IVM serves as the link to all the men-
tioned parts.
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Appendix A

Bytecode execution time calculation
The WCET calculation of the bytecodes in the IVM are analysed by hand. 
The execution time of the binary code produced by a bytecode, is summa-
rised. No considerations of how caches changes the execution time are 
included. The following figure shows an examples of a bytecode, their 
binary code and their execution time calculation.
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C-code:                      
case IADD:

top--;
stack[top-1] += stack[top];
pc++;

break;

Pseudo Code:                       
case IADD: // push(pop() + pop());

int val2 = pop();
int val1 = pop();
int res  = val1 + val2;
push(res);
inc pc;

break;

Optimised 68000 assembler:                    
L117:

movel a5@(4),a0 // 
movel a0@,a0 // 
subqw #1,a0@(20) // int val2 = pop();
movel a5@(4),a0 //      ivm->ap
movel a0@,a0 //     *
clrl d0
movew a0@(20),d0 //   ((        )->vST
lsll #2,d0
movel a0@(d0:l),d1 //ivm->ap[vST]
addl d1,a0@(-4,d0:l)// + ivm->ap[vST-1]
movel a5@(4),a0 //ivm->ap
movel a0@,a0
jra L459
.even

...
L459:

addqw #1,a0@(16) //->pc++

Expanded C-code:                
case 96:

((*ivm->ap)->valueStackTop) -= 1;
((*((uint32**)ivm->ap))[((*ivm->ap)->valueStackTop)-1]) =

(uint32)(
((int32)((*((uint32**)ivm->ap))

 [((*ivm->ap)->valueStackTop)-1]))  
+ ((int32)((*((uint32**)ivm->ap))

 [((*ivm->ap)->valueStackTop)]))
);

((* ivm->ap )->pc)++;
break;

Hand optimised 68000 assembler: Execution Time (cycles):          
L117:

subqw #1,a0@(20) 12
clrl d0 2
movew a0@(20),d0 12
lsll #2,d0 2
movel a0@(d0:l),d1 16
addl d1,a0@(-4,d0:l) 18
jra L459 1
.even

...
L459:

addqw #1,a0@(16) 12



Appendix B

Access flags 
Modifier Value
Applicable to

class field method

ACC_PUBLIC 0x0001 • • •

A
cc

or
di

n
g 

to
 t

h
e 

JV
M

 S
pe

ci
fi

ca
ti

onACC_PRIVATE 0x0002 • •

ACC_PROTECTED 0x0004 • •

ACC_STATIC 0x0008 • •

ACC_FINAL 0x0010 • • •

ACC_SYNCHRONIZED 0x0020 •

ACC_SUPER 0x0020 •

ACC_VOLATILE 0x0040 •

ACC_TRANSIENT 0x0080 •

ACC_NATIVE 0x0100 •

ACC_INTERFACE 0x0200 •

ACC_ABSTRACT 0x0400 • •

ACC_STRICT 0x0800 •

ACC_SHADOW 0x0002 •

IV
M

 S
pe

ci
fi

c

ACC_INTERMEDIATE 0x0040 •

ACC_PRECOMPACT 0x1000

ACC_INTERFACEMARK 0x2000

ACC_INIT 0x80

Table 0.1  
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Appendix C

Method efficiency

The number of pointer dereferences, for the three different method calls, 
to find a method description is shown in Table 0.2. The purpose of the 
table is to briefly show the overhead introduced in the IVM compared to 
efficient C code. Optimisation techniques, as method inlining, could dras-
tically reduce the overhead of the search for the method description. 
Every reference in the IVM is counted as two actual pointer dereferences. 
Offsets and indices are counted as one dereference. 

Interface method descriptions lookups are dependent on the unpredict-
able location of the interface in the interface array. In the worst case, the 
complete interface array has to be searched before the correct method 
array is found. This unpredictable behaviour could be circumvented with 
the implementation of a hash table interface lookup. This, for example, is 
implemented in the hotspot engine from Javasoft (see [HS02]).
Different method optimisation techniques that are relevant to the IVM, 
are presented in Section 7.4. 

Method call
Number of indirection steps

Remarks
IVM “Efficient” C

static 9 0 The method pointer is 
located in the code.

virtual 9 2

interface 7 + C*N 2 + N*D N is the size of the number 
of interfaces in the interface 
array. C and D is the time 
compare two interface 
references, and to run the 
search algorithm.

Table 0.2  The table shows the number of indirection steps to find the method 
description in the IVM and in an “efficient” solution.



Appendix D

Exceptions and memory utilisation
Some exceptions are generated by the JVM itself. Others are related to 
specific bytecodes, while some span over several bytecodes. The supported 
API often adds more exceptions that are always necessary. About 50 
exceptions and errors necessary for the JVM are depicted in Figure 0.1
together with basic exceptions from the API. Java applications may later 
add more exceptions, but those in the figure are necessary for every appli-
cation. 

The classes of the exceptions and errors occupy much memory. A sensi-
ble optimisation would be to represent each exception as a number 
instead of a complete class. The class could then be constructed during 
runtime if the memory is not exhausted. The exception could then be 
instantiated from the class. In the IVM, all classes are loaded prior to the 
main-class.

Throwable

Exception Error

Object

LinkageError

AbstractMethodError
ClassCircularityError
ClassFormatError 
   UnsupportedClassVersionError
ExceptionInInitializerError
IncompatibleClassChangeError 
   AbstractMethodError
   IllegalAccessError
   InstantiationError
   NoSuchFieldError
   NoSuchMethodError
NoClassDefFoundError
UnsatisfiedLinkError
VerifyError

InternalError
OutOfMemoryError
StackOverflowError
UnknownError

VirtualMachineError

RutimeException
ArithmeticException
ArrayStoreException
CannotRedoException
CannotUndoException
ClassCastException
CMMException
ConcurrentModificationException
EmptyStackException
IllegalArgumentException
IllegalMonitorStateException
IllegalPathStateException
IllegalStateException
ImagingOpException
IndexOutOfBoundsException
MissingResourceException
NegativeArraySizeException
NoSuchElementException
NullPointerException
ProfileDataException
ProviderException
RasterFormatException
SecurityException
SystemException
UnsupportedOperationException

Figure 0.1  The exceptions and errors necessary for the JVM are described in 
about 50 classes.
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