LUND UNIVERSITY

Towards an embedded real-time Java virtual machine

Ive, Anders

2003

Link to publication

Citation for published version (APA):
Ive, A. (2003). Towards an embedded real-time Java virtual machine. [Licentiate Thesis, Department of
Computer Science]. Department of Computer Science, Lund University.

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/27366f04-5459-4315-b4fe-eec1799168be

Towards an
embedded real-time
Java virtual machine

Anders lve

Licentiate thesis, 2003

Department of Computer Science
Lund Institute of Technology
Lund University

ISSN 1404-1219
Dissertation 20, 2003
LU-CS_LIC:2003-4

Thesis submitted for partial fulfillment of
the degree of licentiate.

Department of Computer Science
Lund Institute of Technology
Lund University

Box 118

SE-221 00 Lund

Sweden

E-mail: Anders.Ive@cs.lth.se
WWW: http://www.cs.lth.se/~ive

© 2003 Anders Ive

Abstract

Most computers today are embedded, i.e. they are built into some prod-
ucts or system that is not perceived as a computer. It is highly desirable to
use modern safe object-oriented software techniques for a rapid develop-
ment of reliable systems. However, languages and run-time platforms for
embedded systems have not kept up with the front line of language
development. Reasons include complex and, in some cases, contradictory
requirements on timing, concurrency, predictability, safety, and flexibility.

A carefully tailored Java virtual machine (called IVM) is proposed as
an approach to overcome these difficulties. In particular, real-time gar-
bage collection has been considered an essential part. The set of bytecodes
has been revised to require less memory and to facilitate predictable exe-
cution. To further reduce the memory footprint, the class loader can be
located outside the embedded processor. Since the accomplished concur-
rency is crucial for the function of many embedded applications, the
scheduling can be defined on the application level in Java. Finally consid-
ering future needs for flexibility and on-line configuration of embedded
system, the IVM has a unique structure with which, for instance, methods
being objects that can be replaced and GCed.

The approach has been experimentally verified by a full prototype
implementation of such a virtual machine. By making the prototype avail-
able for development of real products, this in turn has confronted the solu-
tions with real industrial demands. It was found that the IVM can be
easily integrated in typical systems today and the mentioned require-
ments are fulfilled. Based on experiences from more than 10 projects uti-
lising the novel Java-oriented techniques, there are reasons to believe
that the proposed approach is very promising for future flexible embedded
systems.

Acknowledgements

This thesis would not be without the support and help from my supervi-
sors, Boris Magnusson and Roger Henriksson that tirelessly followed my
progress. Their valuable ideas have made drastic improvements to the
disposition of the thesis. The support and comments of Klas Nilsson have
been especially valuable for me as they returned my focus to the original
problems and objectives of this work.

This thesis is also the product of many projects in cooperation with
other companies and researchers. I am especially grateful for the project
with BlueCell that resulted in a product where the IVM was an integral
part, but above all I am glad for the acquaintance with the managers of
BlueCell, Mats Iderup and Bjorn Strandmark, whose practical knowledge
excel in the hardware and software field. The cooperation with Ericsson
and ABB has been invaluable during the development of the machine. At
Ericsson I thank Magnus Larsson, Elizabeth Bjarnasson, Christer San-
dahl, and Sten Minor, for their supportive and positive attitude towards
reaching a “Java-in-the-ear” solution. The constructive collaboration with
Magnus Larsson during a couple of hectic weeks at Ericsson resulted in
major improvements to the IVM code. The master thesis of Thomas Féange
and Daniel Linaker at Ericsson inspired me to improve the IVM with
some optimisation. The projects with Anders Roswall at ABB Corporate
Research in Visteras and Michael Meyer at ABB Automation Technology
Products in Malmé have resulted in valuable contributions to the
machine. I thank Anders Lindwall, Andreas Rebert, Johan Gren, and
Jens Ohlund for their cooperation in their excellent student project in
which they utilised the IVM in a real-time application. Their results have
been most valuable in this licentiate thesis. Their summer project at ABB
in Visteras, where the IVM was integrated into an embedded platform
produced many new ideas concerning the IVM. The master theses of
Johan Gren and Jens Ohlund, and Tor Andree and Johan Gustavsson at
ABB Automation Control in Malmé resulted in further developments of
the IVM code.

The IVM has been integrated in many research projects. First I thank
Patrik Persson for his support and his friendship. His ideas from “Skan-
erost” are a valuable part of the WCET analysis of the bytecodes. I thank
Anders Nilsson for his work on the Java2C converter that resulted in a
unified object model of the IVM. Torbjérn Ekman also contributed with
his master thesis concerning a hard real-time kernel on an AVR processor.
The unsurpassed knowledge of embedded real-time behaviour of Anders
Blomdell resulted, together with the rest of the group, in the garbage col-
lector interface that has been successfully utilised in the IVM and in the
Java2C converter. I also thank all the other members of our group Gorel
Hedin, Sven Gestegard Robertz, Ulf Asklund, and the new members Torb-
jorn Eklund and David Svensson, for valuable discussion and project
ideas. I thank Goéran Fries, Lennart Andersson, and all the other col-
leagues at the Department of Computer Science in Lund for pushing me
forward. I also would thank Anders Robertsson and Johan Eker for their
support during my early days as a “robot” researcher.

I especially thank Christian Andersson as a minute proofreader and
for our “after-work” discussions providing me with determination. In this
context, I would also thank Fredrik Jonsson for his understanding and
support.

I thank Daniel Einarsson and Flavius Gruian for their friendship and
their tireless determination to include the IVM in their projects.

I thank Mads Bondo Dydensborg for his cooperation in the Koala
project. His invaluable knowledge of the open-source community and his
practical knowledge of all the cool tools have increased quality of the IVM
source code considerably and increased my interest in the open source
community.

I thank Magnus Landquist for his master thesis work together with
the IVM and the PalmOS. His work pinpointed crucial requirements of
the IVM that had to be implemented, but above all, he made me laugh so
much that my muscles in my stomach cramped.

Finally, I thank Madeleine Emmerfors for her support and love, but
also for her determination to proofread the thesis. She forced me to con-
front the darkest sections of the thesis, which improved the text consider-
ably. Above everything, she made me laugh at myself in moments of
despair.

Contents

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Introduction 1
1.1 Embeddedsystems 2
1.2 Real-time programming 5
1.3 High-level Programming Languages 12
The Infinitesimal Virtual Machine 19
2.1 Java Virtual Machine Overview.............. 20
2.2 Modules and interfaces 20
2.3 Internal data structures 30
2.4 Splitmachine............................. 38
25 Runtime......... 41
2.6 Preloadedclassfiles........................ 51
IVM runtime 53
3.1 Fundamental runtime data structures 53
3.2 IVM runtime systemindetail................ 55
3.3 Real-timeaspects.......................... 72
3.4 Discussioniiiii .. 77
Classfile conversion 79
4.1 Classfile conversion overview. 80
4.2 Class linking and memory utilisation 86
4.3 Loading converted classfiles................. 929
4.4 Splitmachine............................ 100
4.5 Bytecodeconversion 104
4.6 Control flow analysis...................... 110
Results 111
5.1 Targetplatforms 111
Related work 115

6.1 Java Real-Time API Specification 115

6.2 Javaplatform............................
6.3 Java virtual machines for embedded systems . .
6.4 Javato Ccompilation

Chapter 7 Future work and conclusions
7.1 Real-time adaptations.....................
7.2 Real-time code replacement
7.3 Interpretation and compilation co-operation. . .
7.4 Optimisations............................
7.5 Measurements...............cviuuun....
7.6 Meta virtual machine
7.7 The minimal language.....................
7.8 Real-timeissues...................cuv....
7.9 Communication betweennodes
7.10 Conclusionscuiiiinnn....

References

Appendices

118
123

125
125
126
126
127
128
128
131
132
135
135

137

143

Chapter 1

Introduction

The purpose of this thesis is to provide a foundation for the integration of
high-level object-oriented language features in real-time embedded sys-
tems. This is achieved by an implementation of a specially designed vir-
tual machine for Java.

In the field of embedded systems, the state-of-the-art high-level pro-
gramming languages have not made any major impact, because the
imposed restrictions are difficult to cope with in a high-level context. Lim-
ited computational power and limited memory resources restrict the
incorporation of desirable high-level language features. High-level pro-
gramming languages have been developed on and adapted to general sys-
tems with relatively powerful processors and vast memory resources.
Hard real-time requirements, such as predictability, impose further
issues that are not even resolved by powerful computers.

Throughout computer history, programming languages have become
more expressive and more secure. They have developed from low-level
instructions into more abstract constructs that relate to the algorithms.
Program complexity decreases with high-level programming languages.
The vision is to unambiguously describe the execution of computer pro-
grams with few building blocks, sufficiently few for the human mind to
grasp (see [Ngr99]). Introduction of modern high-level programming lan-
guages into the development of embedded systems is desirable and in
great demand from the industry.

Common programming issues, such as the problem of encapsulation,
or issues regarding re-usability, scalability, and portability are elegantly
handled in modern high-level programming languages. High-level lan-
guages often provide program organisation and structure. The time to
develop software has decreased and the code quality has increased with
the utilisation of high-level programming languages.

High-level languages also focus programmers to essential program-
ming tasks. Purely administrative tasks, such as memory management,
are handled by the language itself. Programming errors can thereby be
avoided. In many high-level languages, a garbage collector (GC) automati-

2

cally performs memory management. Manual memory management,
where the programmer allocates and deallocates the memory, has been a
major source of severe programming errors.

The principal real-time requirements are worst-case execution time,
WCET, predictability, and worst-case live memory, WCLM, predictability.
High-level programming languages have not addressed these require-
ments.

The modern high-level programming language, used as a platform for
this thesis, is the secure and platform independent Java programming
language (see [JLS00]). As the name indirectly implies, Java was origi-
nally designed to be a platform for embedded systems, for instance, coffee
machines. However, this original vision has not been implemented during
the development of Java. It now requires vast memory resources and high
performance computers to execute adequately. This work is an attempt to
return to the original vision of Java by implementing a tiny Java Virtual
Machine, JVM that executes the platform independent Java bytecode.
The Infinitesimal Virtual Machine, IVM, is our implementation of a mem-
ory efficient real-time adapted JVM. There has been made many attempts
to implement this original vision of Java. However, the resulting contribu-
tions have often suffered from severe restrictions or overhead.

The work presented in this thesis furthermore takes an important step
towards integration of the object-oriented paradigm and real-time embed-
ded systems. As a foundation for further development and research, it
thoroughly examines the implications of the requirements introduced in
an object-oriented context.

The thesis is structured as follows:

¢ Chapter 1 includes background and requirements for the work pre-
sented in this thesis. Focus is on embedded systems, real-time, and
Java.

¢ Chapter 2 describes the design of the Infinitesimal Virtual Machine
considering the requirements mentioned in Chapter 1.

¢ Chapter 3 discusses the start-up procedure of the IVM that includes
class loading, linking, and initialisation. A discussion about byte-
code conversion completes the chapter.

¢ Chapter 4 deals with the runtime description of the IVM with a
subsection about real-time considerations.

¢ Chapter 5 contains experiences with different platform ports of the
IVM.

¢ Chapter 6 discusses related work with embedded systems limita-
tions and real-time requirements.

¢ Chapter 7 discusses the conclusions of this thesis, together with an
elaboration of future work.

1.1 Embedded systems
An embedded system is characterised by a specific application domain —

typically something else than the system itself — for example, sensors
and controllers. The concepts of embedded computer systems are, how-

3

ever, difficult to clearly separate from those of general-purpose computer
systems. The flexible general-purpose systems are prepared to execute a
vast range of applications, and the embedded systems are inexpensive
and power efficient.

Figure 1.1 shows these characteristics of different kinds of computer
systems.

General Specific
Expensive | Inexpensive
Power consumptive Power efficient
Various purposes | Dedicated purpose

General Small Embedded
Purpose Computer Systems
Systems Systems

Figure 1.1 Even though the embedded systems are much simpler than the gen-
eral-purpose systems, they have other attractive chraracteristics.

An example of a small computer system is the personal digital assist-
ant, PDA. Embedded systems are, for instance, cellular phones, sensors,
and controllers. General-purpose systems are typically found as desktop
computers with applications ranging from mathematical calculation and
simulation to word processing and entertainment.

The popularity of embedded systems is reflected in their large produc-
tion quantities. A complete system often combines many embedded sys-
tems together with general-purpose systems in a network, in order to
benefit from both. Examples of such networks are Supervisory Control &
Data Acquisition, SCADA (see [SCADA]), and Controller Area Network,
CAN (see [CAN91)).

Even though there are differences between the embedded systems and
general-purpose systems, the software languages do not have to differ.
The flexibility and the greater power of the general-purpose system have,
however, lead to improved language features for general-purpose systems.
Computer language development for embedded systems has been lagging
behind the state-of-the-art language development due to the restrictions
and limitations of the embedded systems. Software in embedded systems
is normally developed in a low-level language, typically in C. General-pur-
pose systems are often developed using object-oriented languages like
C++ or Java.

1.1.1 Embedded systems overview and restrictions

The restrictions imposed by embedded systems are limited computational
power and restricted memory. Depending on the level of the restrictions,
the JVM may be utilised in various ways. Preferably, the embedded sys-
tem has both RAM for the dynamic heap and ROM for the JVM and basic
Java programs.

Hardware
Central Processing Unit
Input Memory Output

Software
Operating System
Applications

Figure 1.2 The size of the blocks in a computer system varies depending on
the type of the system.

Figure 1.2 shows the main parts of a computer system in general. The
memory area in embedded systems is often divided into several kinds of
memory, e.g. RAM, ROM, EEPROM, flash memory, hard drives etc. Our
work has targeted embedded systems with a small flash memory and a
small RAM area.

Embedded systems may also work together with other systems. An
interesting situation where a network contains both general-purpose sys-
tems and embedded systems offers a split machine approach for the JVM.
In those networks, the IVM may be split into an interpreter that resides
in the embedded system, and the class loader that resides in the general-
purpose system.

The limited memory of embedded systems imposes restrictions, such
as a small heap. It is essential to keep a low memory overhead. Fortu-
nately, small memory sizes also lead to shorter pointers. The GC may be
designed to accommodate to a small memory area, which can lead to
memory efficient and fast garbage collecting algorithm implementations.
Real-time behaviour is not affected by the limited memory requirement.

Evidently, the limited computational power imposes requirements on a
small overhead for managing the programs. Small and embedded comput-
ers often tend to be simple and predictable, which is advantageous when
performing hard real-time analysis.

1.1.2 Embedded operating systems

The software organisation in an embedded system is typically divided into
an operating system and the application programs. The operating system
controls all the computer’s resources and provides the basis upon which
the application programs can be written.

A scheduler manages the threads in a real-time application. The sched-
uler may reside in the operating system, i.e. tightly coupled, or in the
application itself, loosely coupled. Loosely coupled applications share the
processor resource with other applications, or utilise the processor exclu-
sively as a single application or as a high-priority application.

Figure 1.3 shows the different types of software organisation relevant
in embedded systems. There are systems that combine both the tightly
coupled and the loosely coupled thread management strategies. Those
systems are called combined in this thesis. For example, a time critical
application may execute together with other applications. To ensure dead-

Loosely coupled

Operating system with scheduler

Input Hardware Output I Application._ ' TApplicaiion

Software : O OQQ: : QQ :

Tightly coupled Combined
Operating system Operating system with scheduler
Application ||Application FA— = ™ =
[Scheduler] [Scheduler] Application Application

Threads Threads | Q' l..
56355 [|[00a) 2!

Figure 1.3 A program is tightly coupled with the operating system if it is able
to utilise the operating system threads as its own. Otherwise, it is loosely cou-
pled; it has to manage its own threads.

L — — — 4

lines, the operating system has to guarantee the processor allocation for
the hard real-time application.

Migration of new software disciplines into existing embedded systems
may take the combined approach to maintain the original code and, at the
same time, benefit from the advantages of modern programming lan-
guages.

Other embedded systems do not utilise an operating system. Applica-
tions for those systems implement their own scheduler, as in the loosely
coupled case. In those cases, the processor is exclusively utilised by the
application itself.

1.2 Real-time programming

Real-time programming handles applications with time and timing
requirements. A real-time program is considered correct only if it executes
correctly within a specified period. The deadline is the latest time
instance before which a calculation has to be completed. Embedded sys-
tems often execute real-time programs. Sensors and controllers must cal-
culate and deliver values within a specified time frame. Aeroplanes and
their passengers would suffer from unexpected and possibly fatal conse-
quences if the calculations performed by the controllers were based on old
or late data from the sensors, or if the controllers spent too much time cal-
culating control signals. Other time critical application domains are for
example space probes, robots, and alarm systems for nuclear power
plants.

The real-time systems focused on in this thesis utilise one computer
and one private memory area. A single computer, however, often has
many different tasks to perform simultaneously. Parallel programming
allows the tasks to be expressed as separate programs. The idea of paral-
lel programming is to give the impression of concurrently executing pro-

6

grams, threads!. The idea of real-time programming is to schedule the
execution order of the threads in such a way that every deadline is met.
The threads typically execute a single loop indefinitely and periodically.

The single-processor approach is called multiprogramming. If more
computers share the same memory, it is called multiprocessing. If the
computers are connected in a network with private memory areas it is
called distributed programming. The approach in this thesis is to study
the real-time issues for multiprogramming. The other domains are briefly
discussed.

If a number of threads simultaneously read from and write to the same
memory area, the program can enter an unpredictable state. Code sec-
tions that must be handled atomically are called critical regions. Mutually
excluding threads from concurrently executing the same code region is
often realised with semaphores, monitors, or events.

Threads are often given priorities to support the scheduling algorithm.
The scheduler switches threads according to a scheduling algorithm. The
basis of the scheduling algorithms is that real-time programs are predict-
able and schedulable. These concepts are described in the following sub-
sections. This section is concluded with a detailed study of the preemption
mechanism, a description of a real-time garbage collector (RTGC) and a
summary.

1.2.1 Predictability

The fundamental prerequisite of real-time programming is timing pre-
dictability of program behaviour during runtime. Deadlines cannot be
guaranteed to be met unless the execution time of the thread loop is
known. It is also necessary to be able to predict memory consumption to
ensure the availability of sufficient memory during the execution of a
real-time program.

Calculation of execution time is mainly based on summation of exe-
cuted instructions. Control-flow analysis determines the most time-con-
suming execution path, if there is one. Indefinite loops (cf. the halting
problem in [AT36]) increase the complexity of the control-flow analysis.

The execution time of instructions is often specified in old Complex
Instruction Set Computers, CISC. However, more modern and complex
Reduced Instruction Set Computers, RISC, utilise optimisation tech-
niques to increase average execution time, which complicates instruction
execution time predictions. Caches, pipelines, instruction level parallel-
ism, and speculative control flow estimation are some performance
enhancing techniques that complicates the prediction of instruction exe-
cution time. A thorough description of the techniques can be found in
[HePa96]. Common, but inexact, solutions to overcome the analysis com-
plexity are program simulation and benchmark measurements (see
[CEO00]).

Some real-time systems tolerate a percentage of deadline misses.
Those systems have soft deadlines as opposed to systems with hard dead-

1. Threads will also be referred to processes in this thesis.

7

lines where every deadline has to be met. Dynamic scheduling can be uti-
lised by soft real-time systems. The scheduler is supported by execution
time measurements during runtime to increase the real-time perform-
ance.

Prediction of execution time and memory utilisation is focused on the
worst possible outcomes. The Worst-Case Execution Time, WCET, is the
longest possible effective execution time needed to execute a code
sequence if the code is executed on a single processor. The overhead of the
scheduler is not included in the WCET calculation. Typically, the relevant
WCETS are located in the task loops of the threads.

The Worst-Case Live Memory, WCLM, value describes the maximum
amount of utilised (live) memory during the life of a program. Of the three
program phases, start-up, working, and termination, the working phase is
the most important. It is desirable to locate WCLM during that phase.
There are three different techniques used in the analysis of WCLM:

¢ Manual memory analysis is the sum of statically allocated acti-
vation records, variables, and objects. Memory allocation during
runtime, dynamic memory allocation, is not permitted in these real-
time systems. Since all memory that is needed by an application is
allocated before runtime (statically), it tend to be much larger than
the actual utilised memory, thus WCLM tend to be lower than, and
not equal to, the statically determined memory.

¢ Automatic memory analysis examines the code to determine the
maximum amount of utilised memory. Generally, the automatic
analyser cannot determine the maximum sizes of data structures or
the maximum recursion depths.

¢ Annotated automatic memory analysis is supported by annota-
tions in the code set by the programmer. The annotations describe
the maximum sizes of data structures and the maximum recursion
depths. The annotations enable the programmer to utilise more
advanced programming language concepts, for example, recursion,
and lists, in real-time programs. A detailed study of such code anno-
tation techniques can be found in [Per00].

1.2.2 Context switch

The procedure where an executing thread is stopped and another thread
is started is called a context switch. The context, i.e. all the processor reg-
ister values, for the stopped thread is written to memory and the context
of the starting thread is read into the processor. When a thread is re-
started, it continues executing from where it was previously stopped, just
as if no interruption would have occurred.

Scheduling algorithms for real-time systems rely on involuntary
changes of active threads, preemption. The scheduler decides when a con-
text switch is to occur. If context switches are only initiated by the appli-
cation itself, the context switches are called voluntary, or non-preemptive.
Voluntary context switches result in unpredictable execution times, and
they burden the programmer with extra programming tasks.

Preemptive context switches are typically triggered by a clock, or at
certain pre-defined preemption points. Table 2.2 shows commonly utilised
preemption point insertion techniques in a Java perspective. Not all the
solutions are deterministic. Non-deterministic preemption points are dis-
qualified in hard real-time systems. The estimated times presented in the
table show the average preemption point interval and the maximum time
between preemption points. Time is measured by the duration of the exe-
cution of a number of Java bytecodes.

The IVM utilises a combination of clock triggered preemption and
preemption points. The different times related to a context switch in the
IVM are described in Figure 1.4. Implementation of clock triggered con-
text switch is hindered by the problem to determine what registers con-
tain references. References to live objects are important requirements
during garbage collection. With preemption points, it is possible to sepa-
rate references from values.

Preemption Othgr thread
request contlnqes
execution
) locate next
preemptloq requgst store thread load
to preemption point context to execute context ;
| | | -
b 2p >I<tstore >I< Yscheduler 3 ltload -
tps -

thread transfer time

Figure 1.4 The context switch is not immediately performed as it is
requested. The figure shows delays that occur when the context switch is
requested until it is performed.

1.2.3 Schedulability

The schedulability analysis determines if a real-time application will exe-
cute correctly. Even though the system is predictable, it is not certain that
a real-time program will meet all its deadlines. One approach to ensure
schedulability is to measure the behaviour of the system. Such an empiri-
cal study, however, will not guarantee correctness, but can give an estima-
tion of the real-time characteristics. Analytical a priori examination of a
real-time system, on the other hand, could prove correctness. A third tech-
nique for schedulability analysis is to combine the two approaches. This
feedback schedulability is thoroughly covered in [EHAO00].

During runtime, the scheduler performs context switches, by executing
a scheduling algorithm. In hard real-time applications, these scheduling
algorithms are based on the predictability of time mentioned in the previ-
ous subsection.

This thesis focus is on hard real-time systems. However, all the sched-
uling techniques could be implemented in the IVM. A short description of
different scheduling algorithms is given below.

Static cyclic scheduling

The processor resource is divided into time slots. Every thread is given a
specific time slot at a given interval, in which its execution has to finish.
The time between the end of a thread’s execution and its time slot expira-
tion is not utilised. This approach is simple and straightforward, but bur-
dens the system analyser. Every application, and every software
modification, may result in a new thread execution order. That execution
schema must be created manually.

Fixed priority scheduling

Every thread is given a priority and scheduled in accordance to these
thread priorities. Two popular methods for assigning priority are rate
monotonic scheduling, RMS, and deadline monotonic scheduling, DMS.

In RMS, threads are ordered according to their period, which have to
be fixed. Threads with shorter periods receive a higher priority. The
threads are not allowed to block each other. RMS lets the thread with the
highest priority execute at all times. This solution has been proven opti-
mal by Lui and Layland in [LL73]. Elaboration of the RMS algorithm is
expressed in [SLR90] by Sha, Rajkumar, and Lehoczky where thread
blocking, scheduling overhead, etc. are covered.

DMS is interesting in systems where threads have deadlines smaller
then their period. To achieve the optimal scheduling solution for these
systems, the priority should equal the deadline — the shorter the dead-
line, the higher priority.

Earliest deadline first scheduling

This dynamic scheduling algorithm delays the scheduling decisions until
runtime. The thread with the shortest time to its deadline is given the
processor resource. This scheduling algorithm was proved optimal by Der-
touzous in [Der74].

Feedback scheduling

The scheduler utilises measurements during runtime to schedule the
threads in the system. The resource allocation varies during runtime (see
[CEO00]). This approach cannot sustain hard real-time requirements.

1.2.4 Real-Time Garbage Collection

Automatic memory management, garbage collection (GC), is desirable
since it relieves the programmer from the burden of doing error-prone
manual memory management. Safe modern high-level object-oriented
languages include garbage collection. The problems resolved by GC are
dangling pointers, memory leaks, and memory fragmentation.

To handle real-time requirements of predictable execution times and
predictable free memory, a typical garbage collector must be incremental,
exact, and non-fragmenting. The scheduler must schedule the GC in
accordance with real-time requirements, (see [Hen98]).

Incremental GC algorithms distribute their execution throughout the
execution of the program, as opposed to perform a complete garbage col-

10

lection when needed. WCET for stop-the-world algorithms is very high,
making them unsuitable in real-time systems.

Exact algorithms maintain information to locate references, in con-
trast to conservative GC algorithms that guess if the type of an element is
a reference or a numerical value. All elements that resemble to a refer-
ence are treated as such. Conservative GC algorithms violate the predict-
ability requirement since the amount of free memory is indefinable. In
conservative GCs, values could be treated as references to allocated mem-
ory.

Non-fragmenting GC techniques are characterised by the ability to col-
lect live objects into one continuous sequence. This can either be per-
formed by compaction, where live objects are pushed together in the same
memory area, or by copy, where the objects are moved to another memory
area. The copying technique splits the memory area into two sections.
Typically, as soon as one section is full of objects, the live objects are
moved to the empty section.

As an object is moved, it is essential to update all the direct pointers to
it. All the direct object pointers are encapsulated in handles, which are
presented as references to the programmer. These handles introduce
memory and execution overhead.

The real-time garbage collection scheduling algorithm presented in
[Hen98] operates as a middle-priority thread, separating the high-priority
(HP) time critical hard real-time threads, from the low-priority (LP) soft
real-time threads. To increase the real-time performance for the HP
threads, their GC work is collected and delayed until the GC thread is
allowed to execute, after the HP threads. Scheduling analysis is utilised
to prove the schedulability of the HP threads and the GC thread. LP
threads perform their GC work as it is generated, i.e. when allocating new
objects and assigning references. Figure 1.5 shows a picture of a logic ana-
lyser that displays the different types of threads at work. More details
about a study of garbage collection and real-time can be found in
[[ve98.2]. An important parameter to schedule the garbage collector in

11

Sapled @16 £ 5.9602.000 S0P

DR PERLEE

z A e o H i
.,cd_m:p B | Mtesnanne il SU3 2

EEE E Tra In 1 t

Figure 1.5 The snapshot of the logic analyser shows how the GC thread co-
operates with the high-priority threads and low-priority threads. The six lines
show, from above: GCWork - the total GC thread execution time, HiPrio,
RTGC, LoPrio - the execution of HP threads, the GC thread, and LP threads

respectively, Idle — idle time, and Clock — the context switch handling.

real-time systems is the memory allocation rate of the high-priority
threads.

Before a context switch can be performed in a system with an exact
GC, the system must reach a state where the locations of all references
are known. References can be stored in memory and in processor regis-
ters. In the memory, references are stored in activation frames as local
variables, on the stack as global variables, or in objects. The handling of
these references is addressed in Section 3.2.2.

1.25 Summary

Hard real-time programming addresses problems where time is as crucial
as correct calculations. To guarantee correct behaviour, the programs
must be predictable with respect to time and memory consumption. The
system could then be analysed with a scheduling analysis technique to
determine if it is schedulable. Schedulable programs can always be guar-
anteed to perform all calculations within its deadline limits.

The introduction of automatic memory management in real-time sys-
tems increases the complexity of the scheduler. One solution divides the
threads in the system into high-priority and time crucial threads, and
other threads that are not time critical. Threads that are not time critical
are given a lower priority. The GC thread itself cleans the memory after
the execution of the high-priority threads and before the low-priority
threads are allowed to execute.

12

The exact RTGC also imposes context switch latency. The system must
reach a state where the references to live objects are under control. These
problem domains are addressed in this thesis.

1.3 High-level Programming Languages

The development of programming languages is motivated by the vision of
attaining higher code quality, e.g. through improvement of the language
comprehensibility. This is achieved by abstract high-level language con-
cepts, suited for human notions. Low-level languages, on the other hand,
primarily reflect the hardware functionality. Tor Ngrretrander writes in
his book “Méark Virlden” that the human being is able to keep about
seven different pieces of information in mind at the same time (see
[Ngr99]). These pieces must be carefully selected to increase the compre-
hensibility of a programming language.

A high-level programming language is characterised, among other
things, by the following:

Comprehensibility — the complexity of the language is determined
by the syntax and the amount of features covered in the language.

Productivity — the ability to create software products is determined
by the programmer’s knowledge in programming and by the sup-
port from programming tools, e.g. the programming language.

Robustness — a robust programming language is characterised by
well-limited concepts, error recovery mechanisms, and the ability to
handle heavy program utilisation.

Extendibility — the code size should reflect the program functionality
and not increase dramatically as new features are added to a large
program.

Portability — the software does not depend on a particular type of
hardware. It has the ability to run on a variety of computers.

Hardware specific details are often written in a low-level language and
integrated into the high-level domain through a low-level, or native, inter-
face. Typical low-level language concepts are memory addresses, pointers,
and pointer arithmetic.

The real-time embedded system community primarily utilises low-
level programming languages. Modern state-of-the-art high-level pro-
gramming languages often require vast memory spaces and utilise the
processor extensively to manage the language overhead. Average case
performance has been optimised, but worst-case execution time analysis
has been omitted. These prerequisites conflict with time critical real-time
programming and the restricted embedded systems.

This section discusses the advantages of high-level programming lan-
guages from the view of the object-oriented programming paradigm. The
Java programming language is studied in detail in conjunction with real-
time embedded systems. Finally, existing real-time Java solutions are
presented before the summary.

13

1.3.1 Modern object-oriented programming languages

Object-oriented programming (OOP) languages are based on the philo-
sophical fundament of Plato’s idea of a perfect entity of which all other
instances are implementations. A class describes the ideal entity, and it
may be instantiated into objects. The classes can be ordered in a hierar-
chy to reflect the natural connections of the classes. For example, Linné
categorised flowers in a hierarchical order that can be found in The Flora
(see [Lin51]). OOP languages support division of code into classes. The
programmer has the possibility to organise the software naturally into
classes and hierarchies, e.g. according to the functionality of the classes.
The intention is to improve the comprehensibility of the code with
abstract concepts. A collection of recurrent class diagram designs has
been put together in Design Patterns and A System of Patterns (see
[GHJV95] and [BMRSS96]).

Subclasses inherit and reuse code from their superclasses. The main
idea for code reuse is to increase code quality through “code once, use eve-
rywhere”. The reused code increases the software robustness through its
extensive usage. It is better to test one implementation many times than
to test many similar algorithms one time each. However, code reuse may
result in a small loss of performance.

A more general way of reusing code is to describe how classes should
be created. These descriptions of classes are called generic types or tem-
plates. Algorithms could be made independent of types with generic types.
Stepanov and Lee in The Standard Template Library (see [STL95])
describe an excellent example of a general generic type programmer’s
interface.

OOP languages are suitable to implement automatic memory manage-
ment. The required information of objects by the garbage collector is
defined by classes. Automatic memory management decreases the pro-
gramming overhead for the programmer, and increases the code compre-
hensibility and robustness. The memory related pointers are replaced by
object related references that either refer to objects or are set to null.
Examples of high-level OOP languages are Java, Simula, Beta, and
Smalltalk (see [JLS00], [DNM68], [KMMN91], and [GR83] respectively).

In strong typed programming languages, the compiler and the runtime
system perform controls to assure the correct type before the type entity
is utilised. If a situation arises where the program cannot handle the
type, the program halts in a controlled manner, e.g. by raising an excep-
tion or an error. The idea is to avoid unintentional and undesirable pro-
gram execution. Weakly typed languages, such as C and C++, often
provide type controls, but they can be circumvented. Programs could
enter a state where the execution is unpredictable.

Low-level languages often include features that extend the language
functionality and increase its complexity, for instance, pre-processor
directives, and macro expansions. An example of a low-level language is
C.

Many OOP languages have both low-level and high-level features.
These composite languages must regulate the utilisation of the language
by coding conventions, to ensure high-level code standards. The language

14

itself cannot guarantee the desired robustness of high-level languages. An
example of a language with both high- and low-level features is C++ (see
[C++91]).

1.3.2 Java

Java is a modern object-oriented programming language primarily
designed with the intention to be utilised in embedded systems, for exam-
ple, coffee machines, remote controls, and portable digital assistants.
However, during its development, the language was developed and
adapted to general-purpose computers with large amount of memory and
powerful processors. A goal of this thesis is to attempt to return to the
original vision of Java.

The Java compiler produces an intermediate and symbolic low-level
machine code, bytecodes, in classfiles. A classfile is read by a Java Virtual
Machine and converted into an internal representation before execution
starts. The functionality of the JVM, especially the functionality of the
bytecodes, is specified in [JVM99], The Java Virtual Machine Specifica-
tion. Some implementations of the JVM compile the code dynamically (see
[HS02]). Other JVM implementations interpret the internal code instead.

The main advantage with the classfiles is that they are portable. If a
JVM exist for a platform, programs may be written in Java on those plat-
forms. The language specific features of Java are automatic memory man-
agement, strong typing, and native code encapsulation.

1.3.3 Real-time aspects of Java

The real-time behaviour of Java is integrated into the language itself and
in every object. Processes are termed threads.

The two synchronisation mechanisms implemented in Java are locks
and events. Locks are specialised monitors. They are only specified for
concurrent systems and not hard real-time systems. According the Java
specification, [JLS00] p. 235, “Every object has a lock associated with it,
...”. The monitor functionality resides in the Object-class, which every
other class inherit from. Another feature of the locks is that they only
have one condition variable. A thread can only wait for one single condi-
tion to be fulfilled before it is woken.

The implementation of monitors into the virtual machine requires that
the machine utilises the monitors every time the synchronized-keyword
is encountered. The keyword could be a statement or a method modifier

15

synchronized (aLock) { /I synchronised statement
/I The object ‘aLock’ is locked.
}

synchronized void aMethod() {// synchronised method modifier
/I The object receiving the method call is locked.
}

synchronized static void aMethod() {/ synchronised and static method modifier
/I The class-object receiving the method call is locked.
}

Figure 1.6 Locks are located inside objects that are locked through the syn-
chronized statement and method calls to synchronized methods.

(see Figure 1.6). As a statement, the compiler generates lock-related byte-
codes to indicate when the thread enters a lock and when it exits the lock.
The JVM executes the monitor operations as these bytecodes are encoun-
tered. A counter has to be added in every lock since the thread that owns
the lock can lock them repeatedly.

In the method modifier case, the lock related bytecodes are not gener-
ated. The specification requires that every time a synchronized method
is invoked, the lock must be acquired before execution continues. The
JVM must check the method modifier, and in the synchronised case, try to
attain the lock, before the method is executed.

Real-time conflicts in Java

Even though Java is a thoroughly designed modern high-level program-
ming language, there are language constructs that conflict with the
requirements of real-time embedded systems. The following subsections
relate the quirks in Java with these requirements.

Concurrent monitor specification

The JVM specification states that every object has a lock associated with
it. A direct implementation of this statement would consume a lot of
memory that will never be used. The overhead of the processor increases,
as these locks have to be managed. Solutions to give the impression that
every object has a lock are required in memory limited embedded sys-
tems. A priori program analysis could determine which classes contain
the synchronised method modifier. As objects of those classes are created,
an extra lock could also be created. However, the synchronised statement
invalidates this procedure since every object could be utilised as a lock in
the statement. That removes the possibility for the a priori analysis since
anyone may write a program that locks every other accessible object.
Objects could, however, be hidden from other programmers.

Unpredictable dynamic class loading

The JVM is specified for dynamic and lazy evaluation techniques. Classes
could be loaded as they are needed, and code is analysed and transformed,
as it is necessary. In a real-time system, the WCET would be pessimistic if
the lazy and dynamic approach would be considered. The static approach
is more desirable in real-time systems, where all necessary classes are

16

loaded before the execution starts. Loading and conversion times should
not burden the WCET analysis.

Unpredictable garbage collector behaviour

The garbage collector algorithm is influenced by the JVM at two points.
The complexity of the GC algorithm is thereby increased. First, the
method finalize is inherited into every object from the class Object.
The method description states that (see [JLS00], Section 12.6):

Before the storage for an object is reclaimed by the garbage collector,
the Java virtual machine will invoke the finalizer of that object.

Some garbage collecting algorithms only determine the live object set.
The added functionality of dead object determination and finalize-
method call extends those GC algorithms.

In real-time applications, the WCET analysis would be pessimistic if
the finalize-methods are incorporated into the scheduling analysis,
because the execution time of the finaliser must be included in the WCET
analysis.

Native manual memory management

In the Java Native Interface (see [JNI99]), there are methods that lock an
object. It may not be moved by the GC until the programmer releases the
pointer. This manual memory management conflicts with the operations
of the GC. It also introduces low-level pointers and extra overhead for the
programmer.

1.3.4 Related work

There are many attempts to implement real-time embedded systems.
None of the projects can, however, determine the real-time behaviour of
Java programs together with automatic memory management.

Two approaches to the handling of real-time issue in Java can be rec-
ognised. First, the API could be extended with a specific real-time module,
and the interpreter could be modified. Second, a Java compiler could gen-
erate real-time code. This section lists some interesting Java real-time
solutions. The projects are examined in Chapter 6.

Real-time Java specifications

The Real-Time Specification for Java is a document describing how the
Java Language Specification should be specialised to ensure hard real-
time behaviour (see [RTSJ00]). Some manual memory managements have
been introduced and a detailed real-time API has been specified.

Real-time Java compiler

A Java compiler could perform the conversion of Java to predictable
native code. Either the bytecode or the Java source code is transformed.
The compilation could be performed ahead-of-time or by a JIT.

17

Interesting works in this area are the Java-to-C converter by Anders
Nilsson in [NEO01], the commercial RTOS and bytecode to native compiler
(see [JBed], and [PERCO02]).

1.3.5 Summary

The incorporation of high-level languages in real-time embedded systems
is complex since the restricted memory and limited computational power
requirements often interfere with high-level functionality. It is, however,
desirable to benefit from the advantages of high-level languages in
embedded systems; the code quality increases. The major benefits are
relief of programming memory management, better language support for
software organisation, and clear languages specified for high-level pro-
gramming.

The programming language studied in this thesis is the object-oriented
Java programming language. It covers the crucial high-level functionality
and hides the low-level details behind a native interface. Java serves well
as a high-level language to prove the concept.

18

Chapter 2

The Infinitesimal Virtual Machine

The Infinitesimal Virtual Machine, IVM, for Java is a research prototype
intended to execute Java programs in embedded systems with real-time
demands. Besides proving that object oriented programs can run in real-
time environments, the IVM was developed as a research platform
intended for a study of code replacement during runtime with real-time
requirements. The IVM is also suited to support other research in connec-
tion with Java and real-time.

The IVM is designed as an interpreter. Interpreted code is slower than
compiled code. However, the goal of this thesis is to prove that it is possi-
ble to utilise high-level object oriented languages in real-time embedded
systems. Compared to real-time programs that are not optimised, the exe-
cution of Java programs by the IVM may perform well. Hard real-time
applications often are not optimised to ensure stability, and remain reada-
ble and traceable. In this aspect, the interpreted bytecodes may be com-
petitive. Besides, the interpreted bytecode is platform independent,
simple, more expressive than binary code, and thus suitable as an inter-
face for real-time analyses.

This section describes the design of the IVM and the design considera-
tions. First, the overall static data structures of the IVM are described as
modules and interfaces between the modules. Then the dynamic runtime
data structures are described, for example, classes, objects, and method
calls. A split variant of the IVM is introduced. It imposes further design
issues. The runtime behaviour is discussed and the implications of
preloaded classes are discussed. The section is concluded with a general
design discussion and a section summary.

20

2.1 Java Virtual Machine Overview

The overall structure of a Java Virtual Machine, as it is described in the
JVM specification, is depicted in Figure 2.1, (see [JVM99] pp. 67-70).

. . Method area
Class loader Interpreter
Classfiles

Figure 2.1 This overall structure of the Java Virtual Machine shows the main
parts, i.e. the modules and memory areas, according to the JVM specification.

untime
constant
pool

Native
method
stack

Verifier Resolver

Classfiles are loaded by the class loader. It verifies that the code is
secure. The code is then resolved by the resolver. During resolution, the
symbolical references in the classfile are substituted into internal refer-
ences to increase the overall runtime performance during the execution of
the methods in the class. The interpreter utilises the internal references
to execute the program.

The memory of the JVM is organised in five areas:

The Java Virtual Machine stacks contain one stack per thread. The
stack stores local variables, temporary results, and manages the
method calls by the JVM stack.

The heap is the runtime data area. Objects and arrays are located on
the heap, which is managed by the garbage collector.

The method area is shared among all threads. It contains constants,
class descriptions, method data, and code.

The runtime constant pool contains the symbols and constants of
classes. The information is relevant to transform the class into an
internal representation or to examine the class retrospectively.

The native method stacks are typically allocated one per thread.
Native machine dependent methods utilise the native stack to per-
form its execution.

2.2 Modules and interfaces

The IVM is divided into modules to comply with various demands that
originate from its usage. The rationale is the embedded system limita-
tions and the real-time requirements, which necessitate modifications to
the original JVM design. Another design goal for the IVM is to facilitate
the port process to other platforms. It is achieved by division of platform
specific code and platform independent code. Platform specific code is
encapsulated in modules and accessed via a port interface. The intention

21

has been to create a simple design intended to be extendable and flexible.
Other JVM research projects could utilise the IVM as a platform for
research on Java or JVM related ideas.

The overall structure of the IVM is depicted in Figure 2.2. Two new
modules, the optimiser and the real-time analyser, are added to meet the
requirements of embedded systems and of real-time systems. The sched-
uler and the garbage collector are explicitly shown because they have dif-
ferent behaviour in real-time systems and concurrent systems. The real-
time requirements inflict special solutions to those parts that are super-
fluous in concurrent systems.

IVM frame
Native method stack

Heap
Method area JVM stacks
Runtime constant pool

native thread || monitor
methods || methods|| methods

native threae monitor

Class loader Interpreter
Lo Y platform
classfiles | 558588 Scheduler| | § | specific
N % SRS R | methods
21E2EE|E
RS [= S [&

garbage collector interface

Garbage
collector

Figure 2.2 The overall structure of the Infinitesimal Virtual Machine shows
its modules, interfaces, and memory areas. The difference from the original
JVM specification is the real-time analyser and optimiser in the class loader.

The heap is utilised for the JVM stacks, the method area, and the
runtime constant pool. This solution simplifies the overall structure of the
IVM and reduces the amount of design decisions. Native methods execute
on the same frame as the IVM itself.

The modules are:

The class loader locates and loads classes into internal data struc-
tures.

The verifier checks if the classfiles are well formed and secure to exe-
cute.

The resolver converts bytecodes into an internal form.

The real-time analyser creates real-time information about the code
for the scheduler.

The initialiser initialises the loaded classes.

The interpreter executes the bytecodes.

The scheduler schedules threads.

The garbage collector works together with the scheduler to uphold
real-time characteristics.

22

The platform specific methods — the IVM support methods that
are platform dependent.

The thread and monitor methods — support for different thread
and monitor implementations are implemented in this module.

The native methods store all native methods.

The original class loader has been split into a verifier, a bytecode resolver,
and an initialiser. The real-time analyser prepares the internal class rep-
resentation with real-time information that is relevant to the scheduler.
The information concerns WCET, and WCLM. The optimiser is mainly
focused on memory saving optimisations, but it is possible to extend it
with other performance-increasing optimisation techniques. The garbage
collector interface enables various garbage collector modules. For real-
time embedded systems, a scheduling of a GC is available in [Hen98].
The interfaces are:

File: the classfile access protocol

Native: support of and access to native methods

Port: support methods for the IVM

GCI: garbage collector interface

Thread: interface to context switch and thread handling
Monitor: access to lock handling

Bytecode conversion: description of the internal bytecodes

The file interface describes how to access classfiles. It is utilised by the
class loader. This interface gathers hardware specific file formats for dif-
ferent platforms, in modules. It consists of simple file accessing methods,
for example, open and close files, and read bytes.

The GCI is platform independent; the various garbage collectors that
comply with the interface can be interchanged. The GCI also supports
thread safe GC utilisation and a debug layer to support IVM and GC
development. The debug layer can also be utilised when different garbage
collectors are tested and evaluated. Real-time requirements necessitate
GC algorithms that are unnecessary complex for concurrent systems. GCI
enables the ability to change GC implementations in accordance with the
purpose of the application. The GCI is utilised throughout the code of the
IVM.

Some methods are inherently platform dependent. For instance tex-
tual output could be presented on a monitor or a LCD display. Such plat-
form dependent methods are collected in the port interface.

The native interface differs from the other interfaces. It has two parts,
one with access to native methods from the IVM, and another with access
of Java objects and Java methods from native code. The latter is similar to
the JNI specification [JNI99]. In the IVM design, the native methods are
statically linked during compilation. New native methods cannot be
added during runtime. They are statically linked with the interpreter.
Native methods are generated from native method descriptions. Many
native method descriptions stem from the Java API, but platform specific
implementations could override the native methods. The programmer
could also add native method descriptions. The generated native method
file contains all the accessible native methods during runtime.

23

The monitor and the thread interface describe the methods that are
relevant for the IVM to be able to reschedule threads and perform syn-
chronisation of threads.

The following subsections contain detailed descriptions of the inter-
faces. Another interface, the bytecode conversion interface, offers alterna-
tive bytecode implementations suitable for specific platforms. The
concluding discussion covers an interface to threads in the IVM.

2.2.1 File interface

The file interface is a universal and platform independent interface to
access classfiles. The underlying file system may for example store class-
files on a hard drive, via a network, or on a flash memory module. Only
the fundamental file methods are implemented in the interface. The inter-
face concerns:

e Open and close classfiles.
¢ Read information (byte, short, or int).
¢ Check if a classfile exists.

The interface should implement a temporary buffer to enhance file
accesses. Then chunks of information could be read from the file instead of
single bytes.

2.2.2 Native interface

The native interface describes how the JVM and Java objects can be
accessed from native code, and how native methods are invoked and
added.

The native methods in the IVM are implemented in C. To support the
programmer, a tool, Java native extractor, has been developed to extract
declarations of native methods from Java files and provide a default
native method implementation, i.e. an implementation that displays a
message that the native method is not finished. Arguments are popped
from the stack and a default return value, if any, is pushed. The Java
native extractor also forces the native programmer to encounter the cod-
ing standards of the IVM. It is imperative to utilise the heap correctly.
Native code has to follow the GCI correctly. The programmer is supported
by the default implementation generated by the extractor, and by the
debug layer of the GCI that examines if the memory is handled correctly.

The native implementations are collected by the native code generator
and put into a single file that is compiled and statically linked into the
IVM. The Java Language Specification states that native methods should
be loaded dynamically, i.e. the native methods should be located in shared
objects, or dynamic link libraries. At this point, the IVM breaches the
specification to the benefit of decrease of the complexity in the IVM. Hard
real-time analysis is simplified if loading times of native methods are
excluded from the analysis.

Native method implementations are supported for different platforms
and different thread models. The native code generator selects the native

24

implementations due to the given characteristics of the current IVM com-
pilation. Figure 2.3 describes the process of native code integration into

the IVM.
Java native
extractor

Java files with native methods
| Jjava.lang.Class.native

native.c

Java.lang.Class

native Class forName(String);
native String getName();

A

Jjava.lang.System

Native code
generator

native Long currentTimeMillis(

g

java.lang.System.native

Figure 2.3 One part of the native interface describes how native code should
be added into the IVM. The Java native extractor supports the programmer
with a default native method implementation that fulfils the native method

interface.

Inside the IVM, each native method is represented by a unique index
number. The number is used to locate the native method during runtime.
The native code generator generates a switch statement where all the
native methods are case alternatives. Figure 2.4 shows this generation
and the resulting switch statement.

Native methods in java.lang.Class Native C-file

Class forName(String);
String getName();

switch (nativeNumber) {
case 1: // forName

... break;
Native code case 2: // getName
. . generator ... break;
Native methods in java.lang. v case 3: // currentTimeMillis|
... break;

Long currentTimeMillis() { ...

P

Figure 2.4 In the IVM, the native methods are identified as numbers that are
utilised in a switch statement to locate the method, when the native method is
to be executed. The switch statement is generated by the native code generator

from the native method implementations. The resulting native file is statically
linked into the IVM.

Native methods in the IVM execute on the same stack as the inter-
preter. This simplifies the design of the C stacks. One stack is needed for
the IVM itself and for the native methods. However, this influences the
real-time behaviour, since only one native method is allowed to execute.
The interpreter is blocked from further context switches until the native
method is finished. This restriction complicates the analyses of WCLM
and WCET for native methods. WCET analysis for native methods is
omitted in the IVM. Only the bytecodes are studied in the WCET analy-
sis. WCLM analysis is relevant to design the size of the C stack for the
IVM. The IVM native interface can be utilised to analyse the memory con-
sumption for native methods. However, if the methods are non-determin-
istic in size, the WCLM is only an approximation.

25

Inside the native methods, it is possible to invoke Java methods and
access Java objects. These procedures are described in the Java Native
Interface Specification (see [JNI99]). The main functionality of the JNI
consists of the following tasks:

Call virtual or static methods.

Pass arguments to and from the virtual machine.

Get and set object-, static- and array fields.

Handle strings and arrays, e.g. get number of elements, or get a
subsection.

Handle exceptions, i.e. generate, and throw exceptions.
Check types.

Get internal identification for methods and fields.

Get class, superclass, or virtual machine.

Native method registration.

Synchronise threads.

The native interface implemented in IVM includes subsets of the catego-
ries above. The reasons for this are to decrease the overall code size of the
IVM and that the full JNI implementation has low priority in the project.
It is possible to implement almost every JNI method without difficulty.
However, some of the methods in the JNI are related to memory manage-
ment. For instance, it is possible to lock the position of an object in mem-
ory. This procedure intrudes on the workings of the GC and conflicts with
the hard real-time requirement of a predictable memory area without
fragmentation, to ensure the size of allocated memory. These methods are
introducing manual memory management and thereby introducing low-
level concepts into Java.

The static loading of native methods interferes with the JVM specifica-
tion. It states that dynamic loading of native methods is necessary. The
specification breach is not considered critical. Dynamic loading of native
methods would increase the complexity of the real-time analysis.

2.2.3 Port specific interface

Methods not covered in another interface and necessary for the IVM are
collected in the port interface. Primarily it serves the supportive purpose
of printing and context switching. Types utilised throughout the IVM code
are also defined as compiler dependent types in the port interface.

2.2.4 Garbage Collector Interface

This interface allows different garbage collecting algorithms to be imple-
mented and utilised in the IVM. However, it also burdens the IVM imple-
menter and the native method implementer, with code regulations. Every
reference assignment and reference utilisation has to be capsulated and
accessible from the garbage collector. The interface also defines a descrip-
tion of object layouts, and garbage collecting object overhead. The follow-
ing coding regulations are added:

26

¢ Declare (allocate) a reference under the supervision of the garbage
collector.

Use (access) GC reference.

Compare GC references.

Check GC reference assignment.

Add/remove GC reference to/from live reference set.

Initialise heap.

Allocate object on heap.

The GC fields in every object ordinarily consist of a handle location (for-
warding pointer). However, different garbage collecting algorithms
require different GC fields. For instance, mark algorithms require a mark
bit.

The object layout description shows the location of GC references
inside an object. Figure 2.5 explains the grammar and Figure 2.6 shows
an example of object descriptions. In arrays, the number of pointers is
noted as variable in the object description. The actual number of refer-
ences is contained in the array object itself. The variable marker also indi-
cates the position.

<pointer locations> — <pointers> | <stop>

<pointers> = (<number of pointers> <skip bytes>) | <stop>
<skip bytes> - (<number to skip> <pointers>) | <stop>
<number of pointers> — <number>

<number to skip> - <number>

<number> — <byte number> | <word number> | <variable size>
<byte number> - 0-253

<word number> — 255 <high byte> <low byte>

<high byte> - <byte>

<low byte> - <byte>

<byte> - 0-255

<variable size> - 254

<stop> — <end of array>

Figure 2.5 The garbage collector utilises strings formed from the grammar to
locate pointers in objects. Variable size entries indicate that the number of
pointers or bytes is found in the object itself at the location.

27

class Object . B
<head> <head> instance
| A[5] (<head>Y)
class A | class A[]! A instance ?efA
int a <head> +0, 254 instance B
A refA, refB, refC re
int b refC
zlx <head> +4, 3 2
Object refD
class B ;
T instance refE
A refD, refE <head> \ d Y,
int d

<head> +4, 3, 8, 2

Figure 2.6 The object descriptions show where the GC references are located
in objects. The references are counted and the space between references is given
in bytes. Variable length is given as the number 254. It shows that the corre-
sponding location in the array-object contains the number of elements. It is five
in the array-object.

2.2.5 Thread interface

Real-time threads are not specified in the JVM specification. To achieve
real-time characteristics a specific implementation of the threads in Java
must be implemented. The implementation of threads is modularised to
allow different thread implementations. Real-time threads may be too
complex for applications without real-time demands. Those applications
could choose a lighter thread implementation.

The thread interface involves context switching and monitor opera-
tions. The IVM is designed to check if a context switch is about to occur,
after the execution of every bytecode.

2.2.6 Bytecode conversion interface

The IVM supports alternative implementations of the internal instruction
set. Many of the bytecodes specified in the JVM specification (see
[JVM99]) are utilising symbolic references as operands. These references
are time-consuming to follow and they should be replaced with direct ref-
erences to increase runtime performance. Other reasons for alternative
bytecode implementations are introduction of performance-increasing
bytecodes, and removal of unnecessary bytecodes. An example on how to
increase the performance is to map platform specific abilities to bytecodes.

In some embedded systems, the restricted memory requirement is
especially prominent. Reduction of the internal bytecode instruction set
decreases the size of the interpreter. However, some performance-increas-
ing bytecodes are also removed.

In some embedded systems, there are bytecodes that are never uti-
lised. These unnecessary bytecodes are, for example, floating-point opera-
tions or monitor related bytecodes in a single threaded application.

28

Conversion of symbolic bytecodes
Symbolic references are represented in textual form and should be con-
verted into direct references to gain performance. Textual comparisons
during runtime are time-consuming. In applications where symbols are
only utilised to resolve symbolic references, the symbols may be removed
to save memory space after the conversion.

Direct references may be pointers or indirect references, i.e. offsets.
There are three groups of references from the bytecode:

1. Class references
2. Virtual methods references and object field references
3. Static method and field references, and constants

Some bytecodes utilise two of the references, but most of them utilise only
one. Symbolic class references are replaced by direct references to the
class. Virtual methods are often replaced by an offset in the virtual
method table. Fields are replaced by offset into the object. A straightfor-
ward resolution of static methods is by an offset into the static method
table of the object. Constants and fields are also located by an offset into
the static field array of the class.

There are other solutions to the constant bytecode resolution. For
example, inline methods, or propagate constants into the bytecode.

Minimal bytecode instruction set

The JVM instruction set operates on four different components: the
objects, the static objects and static constants, the stack, and the local
variable area. Operations exist to transfer information between the com-
ponents, and to directly operate on them. Since the machine is stack-ori-
ented, operations on the stack attract most bytecodes. Figure 2.7 shows
the overall bytecode operations of a JVM.

nvo’nvoke

local variable area

methods. return

field ¢ PUt 9et @ getput = fiory
’ v i m
@ new length @ P constants

Figure 2.7 The Java bytecode instruction set contains mainly operations on
the stack and data transfer to and from the stack.

29

The main component is the stack. The JVM is a stack-based machine
without registers. All operations are performed on the stack. Data is
loaded and stored in three different places, besides the stack. Those are
the other components, i.e. the objects, the local variable area, and the
static variables. The objects are created from the application program.
The static objects are created by the JVM itself. The local variable area is
a part of the frame. In the IVM, the stack is also a part of the frame, and
frames are stored as objects on the heap.

Data transfer between the different memory areas (objects, static vari-
ables, constants, local variable area, and stack) are described as put and
get, load and store, push, and stack manipulating bytecodes. Other essen-
tial bytecodes handle method invocations. They occur in objects, either
static or ordinary, and during creation of objects (new). These bytecodes,
together with the arithmetic bytecodes, span the fundamental operations
in the machine. Arrays are treated specially in the JVM. They have spe-
cial creation bytecodes and a specific bytecode that delivers the size of an
array to the stack. Bytecodes that address the frame directly are related
to control flow and exception handling. Synchronisation bytecodes are
related to thread handling.

The static objects and the frames are also located as objects on the
heap. It would be possible to substitute those bytecodes with object
related bytecodes to decrease the size of the interpreter even further. The
description of internal data structures as classes is dealt with in Section
7.6, "Meta virtual machine".

Unnecessary bytecodes in embedded systems

The restrictions of the embedded system hardware may be utilised to
decrease the size of the IVM code and the bytecodes of the method. The
bytecode converter could also be made smaller in size. The following
groups of bytecodes may be superfluous in some platforms:

¢ Type reduction and unsupported types: Not all the Java types may
be supported by the platform. Those bytecodes may be removed for
those systems. For example, if the platform does not support float-
ing-point arithmetic, the types f1oat and double may be removed.
Other types may not be relevant for the underlying platform, e.g.
int, short, char, or byte.

¢ Single threaded application: If the application is single threaded,
the overhead for multi-threading could be removed. Synchronisa-
tion bytecodes and synchronisation code in the IVM could be
removed.

¢ Limited memory area: Since the RAM size in embedded systems
are limited, the heap has a definitive maximum size. References
and addresses could be made smaller within the IVM code. The
number of classes could be limited by the memory size. Indirection
to a smaller range of classes could decrease the size of offsets.

¢ Some runtime checks may be removed after an analysis. For exam-
ple, situations where array accesses cannot exceed the array limits
may be removed. See [ACL98] for more details on such optimisa-
tions.

30

2.2.7 Discussion

The IVM is split into modules connected with interfaces, to support many
different implementations. The modularisation serves well as a research
platform. Different implementations of the modules could support exami-
nation of the behaviour and functionality of the virtual machine.

The focus during the design of the IVM has been to accommodate the
requirements of real-time embedded systems in the machine. The mem-
ory consumption is important to minimise and real-time threads impose
requirements that are necessary to deal with in the JVM design.

2.3 Internal data structures

The internal data structures lay the foundation of the work of the IVM.
Internal representation of classes, objects, and methods, are described in
this section. During runtime, template structures support, for example,
the automatic memory management, the dynamic type checks, and the
localisation of virtual methods. Symbol tables support the class loader to
transfer classfiles into an internal representation of the class.

In general, the template structure collects information common to
underlying templates and objects. However, these structures do not corre-
spond to the Java class inheritance structure. The difference is analysed
in a section after the description of templates, object layouts, and inherit-
ance structure.

2.3.1 Object design

The primary design goal for the objects, i.e. instances, was to make them
simple and to design them for real-time and dynamic code replacement
purposes. Performance was considered a secondary goal.

An object consists of an object head and the attributes designed by the
programmer. The object overhead consists of garbage collecting part, the
template reference, and information concerning the lock of the object. The
size of the garbage collecting part is dependent on the algorithm of the
GC. The template reference refers to the template describing this object
and containing all common information for all objects of that type. The
lock is due to the Java specification. See the Java Virtual Machine
([JVM99]) for more information about the lock mechanism.

Because methods are common to all objects of the same type, they are
collected in the template. The attributes, as described in the class, reside
in the object, since they are unique for every object. The object structure
implemented in IVM is described in Figure 2.8. Other information that is
common to objects of the same type is a description of the object, for exam-
ple, the object size. The template of objects is actually class descriptions.
They contain methods, static variables, symbolic information about the
class for further class loading, and an interface array to keep track of the
implemented interfaces.

Some garbage collecting algorithms use handles. The mark-and-sweep
algorithms or mark-and-compact algorithms also utilise a mark pointer

31

garbage collector information
template reference
lock

<Attributes described in the class>

Figure 2.8 The object structure layout consists of an internal overhead for
managing the object and the attributes described in the object’s class.

field. The IVM is designed with the intention of different object layout
techniques.

2.3.2 Templates

The internal hierarchical template structure contains runtime informa-
tion common to children of the template. All IVM objects are referring to a
template that describes their layout and design. Other information gath-
ered in templates is garbage collecting information, i.e. object size and the
location of references inside the object. The reason to collect the common
information in a template instead of inside the objects is to save memory
space. It is also a principal decision to strive to gather information affect-
ing many objects in one place. The major drawback is performance loss. It
is quicker to access the information immediately, in the objects, than
through indirection via a template reference.

In one specific case, the common information is contained in the
objects themselves. Garbage collector information for array-objects is also
described in the objects and not solely by their templates. Instead of hav-
ing a separate template for every array, all arrays may share one single
template at the expense of slightly increased array sizes.

The template hierarchy inside the IVM is shown in Figure 2.9. The
internal data structures in the figure are created prior to execution and
class loading. Classes are created during class loading. Dynamic data
structures are created during runtime as described by the executing Java
program. At the top of the hierarchy the meta meta template is located. It
describes itself as well as its children. They are the meta method template
and the meta meta class template.

32

meta 58D |:| internal template
meta

template D class template

ol meta O dynamic objects
tef)fli)sls te /I\ template reference
/!\ I I 1
mela mela mela mela meta
method class interface array primitives]
template template template template template

N

interface |
interface J
interface K

Figure 2.9 The template structure in the IVM shows how the objects and tem-
plates relate to each other in the IVM system. Methods are marked as classes
since they are created during class loading.

The separation of classes, interfaces, primitive classes, and array
classes enables the runtime system to determine the type of an object dur-
ing runtime. Some Java methods require this distinction. For example, in
the class Class there are methods, isPrimitive and isInterface,
that examine the type of the object.

The template structure is utilised by the runtime system to support
the GC with the layout and sizes of objects and the other data structures
in the runtime system. The interpreter compares types with template ref-
erence comparisons. Virtual methods are found by following the objects
template reference. Similar data structures can be found in [KM93].

The design of a template head

Every template is an object and thus located on the heap. All objects have
information concerning the GC state of the object. The templates also
describe instances with a reference location description and an object size.

33

Figure 2.10 describes graphically the outlook of the template head in
the IVM system. The reference location description is explained in detail

in Section 2.2.4.
Meta meta template
internal garbage collector
template reference

_

reference location description <internal GC>,
object size 2 references

Meta meta class template Meta method template
internal garbage collector internal garbage collector
template reference template reference
reference location description™a [reference location description [~a
object size object size

Figure 2.10 The templates describe its children. The meta meta template is
also its own subtemplate.

Templates may be extended to hold more information common to their
children. The meta method activation template and the meta meta class
template have the same outlook, but they describe different children.
Children to the meta meta class template have an extra virtual method
table. In Java, it is possible to call methods in classes. The virtual method
table contains the methods that are accessible from every Java class
object. Those methods are described in the Java class named Class.

Templates for classes, arrays, interfaces, and primitive types

The objects of templates are the instances of the classes that the tem-
plates represent. Information common to all objects of a class is collected
in the corresponding class template. The information in a template for a
Java object is described by the following fields (the template head is
excluded):

e Access flags — the flags describe the access modifiers and prop-
erty modifiers of the class (see [JVM99], Table 4.1, p. 96).

e Superclass: The reference refers to the Java superclass of this
object.

¢ Virtual method table — the table contains all the virtual meth-
ods in the class. The methods are represented as activation tem-
plates.

e Static method table — the table contains the static methods
declared in the class. The methods are represented as activation
templates.

e Constant value table — the table contains the value constants
declared in the class.

¢ Constant reference table — the table contains the references
constants declared in the class.

¢ Interface table — the table contains the interfaces and the corre-
sponding virtual method array, implemented by this class.

34

Fields — the content describes fields declared by the class. The fol-
lowing information is stored: name of the field, the descriptor of the
field, the offset to the field, the access flags of the field, and the type
of the field. The name and the descriptor are stored as indices to the
internal symbol table that is explained in Section 2.3.5.

Class references — the references utilised in the method are
stored in this array. A reference entry contains indices to its class,
name, and descriptor. Class indices are offsets in the class template
table and the class symbol table. The name and descriptor indices
are offsets in the symbol table. See Section 2.2.5 for more informa-
tion about the internal tables.

Class index — the index shows which location in the class symbol
table that contains the class template table representing this class.
Debug information — the extra information about the class is
stored into the debug information table.

Activation templates

The method templates describe the methods in the IVM. As methods are
called, their invocations are stored as objects on the heap with a reference
to their template. The activation template is depicted in Figure 2.11 and
it contains the following information:

Access flags — the flags describes the method access modifiers and
properties, see [JVM99], table 4.5, p. 115 for more information.
Class template reference — the reference refers to the class
implementing this method.

Name and descriptor indices — the indices describes the loca-
tion of the symbol of the name and descriptor of this class in the
class symbol table.

Number of reference and value arguments — the number of
arguments shows how many arguments are transferred to the new
activation or frame.

Start of local variable area and stack — the indices show where
the local variable area and the stack start in the frame. Since the
local variables and the stack are split into reference and value
parts, there are four indices to locate the internals of the frame.
Exception table — the exception table contains indices to the
exceptions and their ranges in which the exception can be caught. A
handler index indicates where in the bytecode to proceed if the
exception is caught.

Code reference — the code reference refers to the bytecode array.

35

garbage collector information
template reference

reference location description 4”
object size

access tlags

class template reference

name Index

descriptor index

number of reference arguments
number of value arguments
local reference variable area index
local value variable area index
reference stack index

value stack index

exception table

code

Figure 2.11 The activation template contains information that is common to
all method calls of the method.

2.3.3 Inheritance structure

The hierarchical inheritance structure represents the type of the objects
of the class, and the contents of objects as designed by the programmer.
Attributes and methods in an object consist of the collection of inherited
attributes and methods plus those implemented by the class. Figure 2.12
depicts an inheritance situation.

Class Object
<No attributes>

: I |

b

- %aaslsbll\c glta:s B -X 1
s short s

— LEGEND
. class

ta) g;/etlesi Cy object with
o A @ attribute

s template

; < reference

y % inheritance

Figure 2.12 The inheritance structure describes the type and content of
objects.

The template structures are utilised to locate the direct superclass of
an object. However, the superclass of the object’s direct superclass is not
found via the template reference of that class. Instead, the class reference
in the class template is utilised to find the superclass of the object. The
template reference in the class template leads to the meta template of the
template. The distinction between the class and its template is due to the

36

JVM specification. It says that all classes are instances of the class
Class.

All the templates that are possible to inherit have to implement a
superclass reference to support the class inheritance structure.

2.3.4 Java class structure

The Java class structure shows a template structure as described to the
programmer by the API. The Java description of classes and objects is
found in the class Class defined in the Java API, e.g. Java 2 Standard
Edition API [J2SE] and Java 2 Micro Edition API [J2ME].

The Java class structure differs from the IVM template structure and
from the class inheritance structure. It does not describe any garbage col-
lecting information and other implementation specific details. Neither
does it collect all common information in children. It only enables every-
thing written by the programmer for the Java program. The class Class
supports symbolic field and method access. Figure 2.13 shows how the
Java classes are related to the class Class. This class is important in a
JVM implementation even though it belongs to the Java API. Inside the
class Object, there is a method returning the class of the object. The
method is inherited into every Java object in the system. The objects and
classes in Figure 2.13 are related to each other according to the Java API.
The instances of classes refer to their classes. The internal template
structure and the Java class structure utilise the same template refer-

ence.

class Object Class Class Class A

Interface B Class int[][] object anA

Figure 2.13 The Java class structure describes relations of objects and
classes.

2.3.5 Internal memory and data structures

This section describes the memory organisation and internal data struc-
tures that support the IVM. Memory organisation is primarily a garbage
collection design issue. The GC algorithms decide the outlook of the refer-
ences, objects, and heap. The internal data structures support the IVM
during runtime.

To decrease memory utilisation, symbols in classfiles are reused. They
are collected in a global symbol table. Every reference to a symbol is rep-
resented by an index in the symbol table. Class symbols and class tem-

37

plates are referred from a global class symbol table and a global class
table, respectively. The symbol tables are utilised during class loading
and by introspection. If introspection is removed from the API, the symbol
tables do not need to reside in the runtime environment of the interpreter.
The converter, on the other hand, requires the symbols to resolve symbolic
links in classfiles during class loading.

The memory in the IVM is concentrated to the heap. Other memory
areas have been transferred to the heap in order to simplify the memory
organisation of the IVM. The cost of simplicity is performance loss. The
only memory area outside the heap is the C stack that the IVM utilises
during execution.

The organisation of the heap is dependent on the garbage collector
algorithm. The GC algorithms implemented in the IVM are batch-copy,
compacting incremental mark-and-sweep, and a compacting generational
incremental mark-and-sweep. The algorithms will be touched briefly upon
here, but more information about them can be found in “Garbage Collec-
tion”, a book written by Richard Jones and Rafael Lins ([JL96]). The
memory structure and the outlook of references of the algorithms are
described next. All GCs utilise a root set containing references to live
objects.

A batch-copy algorithm divides the memory into two areas of the same
size. Allocation is performed in one area until it is filled. Then the pro-
gram execution is abruptly halted while all live objects are selected and
transferred to the other area. Dead objects are left in the old area. Refer-
ences are direct pointers to objects. During the flip, all the live references
are updated to point to the new location of the object. Even though this
algorithm induces little overhead, the unused memory area conflicts with
the restricted memory of embedded systems.

The compact and incremental mark-and-sweep algorithm utilises one
single memory area. The GC compacts objects inside the heap to avoid
internal fragmentation. Every reference points at an internal object table
where all objects in the heap are referred. When an object is moved onto
the heap, it is only necessary to update the object table since all refer-
ences to that object go through the corresponding object table entry. Every
object is fitted with a handle that locates its entry in the object table. The
memory state of the object is also noted inside every object.

The compact incremental generational mark-and-sweep algorithm
combines the two algorithms mentioned above in an attempt to gain from
the advantages. It has a small and fast batch-copy area, and objects sur-
viving one flip are placed in a compacted heap that is updated with long
intervals.

The disadvantage of placing the JVM stacks on the heap is perform-
ance loss. Compared to the stack solution due, extra indirection is intro-
duced and extra overhead decreases performance. Another disadvantage
is introduction of memory overhead in the frames. However, the stack
solution requires beforehand determination of the stack sizes that could
result in reserved memory that isn’t utilised. Even if the maximum stack
size could be determined, it is not probable that all stacks are utilised to
the fullest at all times. The heap solutions do not suffer from these mem-
ory problems.

38

2.4 Split machine

The split machine executes the class loader and the interpreter on differ-
ent machines connected via a network. Classes and objects are sent over
the network to the interpreter, as they are needed. The size of the inter-
preter and the heap of the interpreter are reduced significantly without
the class loader. Since the memory is not shared between the interpreter
and the class loader, the classes loaded to the interpreter have to be
linked into the runtime system of the interpreter. The class-loading mod-
ule in the interpreter is replaced with a linker.

The split machine could be utilised in distributed systems consisting of
small embedded nodes and a more powerful server, e.g. SCADA [SCADA].
An example of a system suitable for the split machine is depicted in Fig-
ure 2.14. The nodes contain embedded computers with an interpreter
each. A supervisor computer keeps track on the state of the different
nodes.

() Interpreter nodes

Figure 2.14 The split machine is suited for systems with a more powerful
computer, the supervisor, connected to interpreter nodes. The supervisor con-
tains the class loader and prepares classes to be sent to the nodes.

Another benefit of the split solution is that only parts of a class have to
be within the memory of the interpreter. If a method is called without
being loaded, it is requested from the supervisor. Other threads could con-
tinue to execute during the loading of the method, reducing the memory
requirement even more. This approach supports real-time systems as
well. A typical real-time program often executes a loop. The necessary
methods and data structures to execute the loop — the working set —
could be loaded into the interpreter’s memory, while the rest could be
thrown away. A simple way to find the main parts of the working set is to
clean the memory as the control loop is reached. All the necessary meth-
ods and classes would then be requested from the supervisor instead. Fig-
ure 2.15 depicts the extensions of the original IVM structure.

39

IVM frame
Native method stack

IVM frame
Native method stack

Inter ()
rocess B native
Heap L Heap g methods
Method area JVM stacks ;ZZ’;:Z" Method area =
Runtime constant pool JVM stacks " |~ thread &
ipc S monitor
~
Class loader Command [g Interpreter ||< methods
~ ~ ~
cass|| o || % § 3 éé 3 protocol g&u ST >/\ :
filess ||B| | (] |s[F 23 8 || Scheduler| |(patfgrm
§ 8| R’ ERRES _ Sl | specific
RIS = 3|8 j methods
(garbage collector interface >
Garbage
collector

Figure 2.15 The overall structure of the Java Virtual Machine shows the
main modules and interfaces. The greyed interfaces and modules are related to
the split machine. Two separate memory areas are needed for the class loader
and the interpreter respectively. Objects and commands are sent via the com
interface to the IVM. The command module utilises basic methods in an under-
lying physical interface, ipc, to send and receives bytes.

The physical layer is encapsulated in the inter process communication,
ipc, interface. It consists of methods to open and close a channel between
the converter and the interpreter. It also defines how to read and write
bytes to an opened channel. On top of the physical interface, the converter
utilises a command interface to send instructions to the interpreter, for
example, load a class, and start executing a program. This command
interface is called com in the figure.

2.4.1 Interfaces and modules of the split machine

The interfaces and modules introduced by the split machine concern com-
munication between the interpreter and the class loader. The interpreter
is extended with a linker to incorporate the classes sent from the class
loader into the runtime data structures of the interpreter. At the same
time, the class loader is extended with an IVM control module that sends
commands and objects to the IVM node. Figure 2.16 shows the communi-
cation layers:

IVM control transport classfile Linker

com interface
command module

ipc interface

interprocess
communication module

physical

Figure 2.16 The different layers of the communication between the IVM and
the class loader are designed to support different implementations.

40

The extra modules in the split IVM are as follows:

Inter process communication — a transport layer of bytes between
communicates between the interpreter and the class loader.

Command protocol — defines commands and the representation of
the transport classfile.

Ivim control — sends commands and objects to the IVM node.

Linker — implements the commands defined in command protocol.

The extra interfaces in the split IVM are:

Com — the command protocol transfers commands and objects to and
from the IVM.

Ipc —the inter process communication encapsulates the physical
transport layer. It contains methods to open and close channels, as
well as methods to send and receive bytes.

The com interface describes object serialisation between the converter
and the interpreter. It also describes control signals. The command mod-
ule implements the com interface and the underlying physical transport
layer is encapsulated in the ipc interface.

The linker module has to be added to the IVM. It converts the loaded
objects into runtime objects, by resolving the pointer references to real
references. The class loader sends and receives commands to the IVM via
the IVM control module.

The transport classfile layer consists of the internal runtime data
structures. However, the references have to be recalculated in the inter-
preter if a separate memory area is utilised.

Initialisation of the IVM node’s internal data structures

Classes are sent in a transport representation. All references have to be
recalculated in the IVM. It is essential to install the referred objects
before reference recalculation is performed. The internal hierarchical
template structure can also be sent to reduce the size of the interpreter.

24.2 Memory model

There are two alternative solutions to the split machine memory design.
The class loader memory area should be shared amongst the nodes to
save space on the supervisor computer. The other alternative is more
memory consumptive where a separate heap is allocated for every node.
The advantage of such a solution is to avoid irrelevant classes to reserve
memory in the interpreter memory area. A combination of both ideas is
also an alternative. The common classes defined in the API are the same
for every interpreter node.

2.4.3 IVM references

There are two different ways to refer to an object and there are two differ-
ent ways to refer to elements in an object. The object may be accessed
directly by a pointer, or via a reference. The pointer is only utilised by the
garbage collector. Java objects and internal data structures are referred to

41

via references. The reference implementation is dependent on the GC
algorithm. It may be implemented as a pointer or as an indirect pointer,
i.e. a pointer pointer. Elements inside an object are accessed as offsets
from the object pointer. Array elements are to be accessed via indices, or
as offsets.

For instance, an object accesses its class by directly referring to its
template. A class is referred from the bytecode by an index to it. The index
is utilised in the global class template table to access the class. Index ref-
erences are also utilised by Java arrays. The global class template table
could be accessed from Java, if a reference to it is provided to the pro-
gram. Figure 2.17 describes the different reference types.

Object 0 1 2 .
head . : index
Object[4] | | L | L
) , |N+O1234567891011
object pointer L
| offset

object reference

Figure 2.17 In the IVM, the array would be referred to by an object reference.
Only the garbage collector is aware of the direct pointers to the array. Elements
in the array are accessed by an index. Internally, the elements of a general
object are reached by offsets.
The utilisation of indices is more secure than that of offsets. If the
index reaches outside the array, an exception is thrown. Offsets do not
have this feature.

2.5 Runtime

The runtime design of the IVM concerns the execution of bytecodes,
method calls, threads, and context switches. The design is a specialisation
of the JVM specification, which is too general for real-time embedded sys-
tems.

In Java, the runtime system is tightly coupled with the JVM, and the
Java API. Programmers are allowed to work with threads and locks, i.e.
monitors. Every object in Java has a monitor, and thread handling meth-
ods are implemented in the superclass of all classes, Object. All other
classes inherit the class. Inside the JVM, there are monitor-handling
bytecodes associated with the runtime system.

2.5.1 Method calls

The method call design of the IVM utilises the heap instead of stacks. The
incurred performance loss is motivated by a simple and more predictable
behaviour of the IVM. The advantages are avoidance of stack size calcula-
tion and better memory utilisation. The method call procedure is depicted

42

in Figure 2.18. As one method is called, a new method activation record,
frame of methodB frame of methodA

garbage collector information
template reference void methodA() {

return frame reference methodB();
program counter

top of reference stack
top of value stack
number of references

local reference area

reference stack

local value area

value stack

Figure 2.18 The design of a method call in IVM describes the utilisation of the
heap for all Java frames instead of one stack for every thread. The greyed area
in the frame shows the references in the local variable area and the stack.

i.e. frame, is created for the new method. This frame contains the local
variable area and the stack for the called method, according to the infor-
mation in the method template. It is linked with the frame of the caller in
order to store the returning frame after the method is completed. The
other contents of a frame are the program counter and the location of the
top of the stacks. Both the stack and the local variable area are divided
into a reference part and a value part that supports the garbage collector
with the locations of the references in a simple way. The number of total
references in the frame is also noted to support the GC.
The procedure of a method call is as follows:

1. Allocate the new frame.
2. Initialise internals of frame:
e Set all references to null.
¢ Set method template reference; return frame reference, program
counter, and top of stacks.
¢ Transfer arguments.
3. Transfer the execution point to the new frame.

The arguments are moved from the stack of the caller to the local vari-
able area of the new frame. If the method is declared virtual, a reference
of the object that receives the method call is also transferred as an “invis-
ible” argument.

As the IVM is started, the specified main-class must contain a method
that is named main and declared public and static. The IVM automati-
cally creates the frame of the main-method, and starts execution of the
main-method.

2.5.2 Java runtime

Java enables access to the runtime system via the language itself as wall
as via the standard API. The main-method describes the first method to
execute in a thread. It does not differ from other threads in other ways.

43

New threads can be spawned from classes inheriting the Thread class or
implementing the Runnable interface, which is then given to a Thread
constructor. The class Thread specifies operations for voluntary resched-
uling, i.e. sleeping a period of time, and yielding the processor resource to
other threads. Preemption occurs when the time slice of the currently
active thread has expired, or when higher priority threads are activated.
Every thread has a priority to indicate its importance. See [JLS00] for
more details on the behaviour of threads.

The protection of critical regions and synchronisation is described as
follows: every object has a lock associated with it and that lock can be
acquired and released through the use of methods and statements
declared synchronized. Since the lock is implemented as a monitor
there are standard monitor operations associated with it. They are
located in the Object class. It is possible for a thread inside a monitor to
release it and wait for a condition to occur. As the monitor is released,
other threads can enter it, change conditions, and notify one or all of the
waiting threads. The JVM specifies the monitor behaviour in [JVM99].

Differences from general monitors are that the Java monitors only
have one condition variable, and that the Java monitors are incorporated
into the JVM. More condition variables allow threads to wait for different
conditions to occur in the monitor. It is also common to treat the monitors
as objects in an object oriented system, e.g. in BETA ([KMMN91], Section
12). The behaviour of monitors in Java is specified in the Java Virtual
Machine Specification ([JVM99] Section 8, “Threads and Locks”). The
specification does not describe the monitor or the scheduler behaviour
exactly. The following citation is from [JL.S00], 10.6 Thread Scheduling,
pPp. 248-249:

Exactly when a preemption can occur depends on the virtual
machine you have. There are no guarantees, only a general expecta-
tion that preference is typically given to running higher priority
threads. ... You can make no assumptions about the order in which
locks are granted to threads, nor the order in which waiting threads
will received notifications — these are all system dependent.

In short, the Java Specification specifies the contents of the JVM runt-
ime handling while leaving the details to the JVM implementation.

Other common synchronisation mechanisms are semaphores and
event handling. They are omitted in the Java specification.

2.5.3 JVM runtime

Even though the specification does not state the exact behaviour of the
JVM runtime system, many tasks are thoroughly covered. They can be
collected into the following list:

Threads
Locks
Preemption
Priorities

44

¢ Runtime API, e.g. Thread and Object

The runtime API is the interface for the programmer to the runtime sys-
tem, and the scheduler. Exactly how the scheduler is implemented varies
greatly. In some systems, the scheduler is implemented by a thread; in
other systems, the scheduling work is distributed throughout the pro-
gram. An example of the active thread organisation within the JVM is
shown in Figure 2.19. Active threads are placed in different priority ready
queues. When preemption occurs, the running thread is placed last in its
priority list in a round-robin manner. Threads that are not in a ready
queue are inactive, or blocked. Blocking can occur, for example, when a
thread waits in a condition queue of a monitor. Sleeping threads are
placed in a separate sleeping queue. An example of threads during runt-
ime is described in Figure 2.19.

— Currently running thread

Highest priority [Thread| [Thread 1
A1 A2
Thread | [Thread | |Thread
B1 B2 B3
Default priority Thread | [Thread | [Thread | [Thread Thr.ead } Ready
C1 C2 C3 C4 main queues
Thread
D1
L. Thread | [Thread | |Thread | |Thread
Lowest Priority |gq =) E3 E4 1
Set of sleeping [Thread | [Thread| [Thread
threads D2 A3 B4

Figure 2.19 Ready queues for different priorities help the scheduler to keep
track on which thread it has to execute. Sleeping threads are woken as their
sleeping time expires and re-inserted into their priority queue. This system con-
tains 15 threads that are ready to run and 3 sleeping threads.

The pictures in Figure 2.20 show the workings of the scheduler as
preemption occurs, i.e. when the time slice of the active thread expires,
when the active sleeps, and when a sleeping thread is woken.

45

LEGEND:
Active thread
BI] Thread named B1
[EA2) ATE (N1 |

i. The active thread (A1)
expires its time slice;
preemption occurs.

ii. The active thread (A2)
goes to sleep.

iii. Al finishes and ter-
minates.

[E71(B2](B3] [BT][E2](B3]

iv. B1 yields and trans-
fers the processor
resource to the next
thread in line.

v. During the execution of
thread B2, two threads
D2 and then A3 awake.
A3 resumes execution.

vi. The time slice for A3
expires. The scheduler
transfers the execution to
A3 due to priority.

Figure 2.20 The ordinary workings of the scheduler consist of preemption due
to expired time slice, and voluntary rescheduling, i.e. yielding and sleeping.
When a thread terminates, rescheduling occurs to the next thread in line.

Java locks

A typical layout of a Java monitor, called lock, is shown in Figure 2.21. It
consists of a waiting queue where threads are lined up if the monitor is
occupied. The event queue of the monitor contains threads that wait to be
notified, probably after some change of a condition inside the monitor.

Threads that are located in the monitor queues or in the sleeping
queue are blocked. Only threads in the ready queue are allowed to exe-
cute. A thread cannot reside in different queues at the same time.

46

Ihrea
A 1

Thread| Ready
B1 queues

Thread| |Thread,
C1 main

Thread,

C3 Sleeping queue

Lock M Thread| |Thread| |Thread Waiting queue
Owner: A1 A2 B2 c2

Thread| |Thread, Event queue
A3 Cc4

Figure 2.21 The workings of a lock can be described with two queues associ-
ated with it. They are the waiting queue, where the active thread is placed
when trying to acquire an occupied lock. The other queue is the event queue. As
the thread that holds the lock decides to wait for a condition to change, it can
wait in the event queue for this to happen. Other threads may then change the
condition and notify the threads in the waiting queue. The name of the threads
indicates their priority: A is highest priority and D is lowest priority. The
thread that executes main has priority C.

In Java, it is specified that there is a lock associated with every object.
The workings of the monitor methods are described in Figure 2.22. Inside
the monitor, a thread can wait for a condition to occur, or notify waiting
threads of condition changes.

LEGEND:
DActive thread
% BI] Thread named B1 E
main EQain]
AT]
wner: wner: wner:
E 7 A3] 7 A3)[cA] P A3]

i. Thread Al has the
monitor M. It sleeps. B1
continues the execution
and tries to acquire M.

E]

ii. Thread C1 is preemp-
tied by the higher prior-
ity thread Al, as it
awakes.

iii. A1 waits for an event
in monitor M. The high-
est priority thread, A2,
continues execution in M.

47

B31B2] B3IEA1
wner: BZ)BI]CZ] wner: BIJKZ] wner: A3AT]BI][CZ][CZ]
2va vl ezal =eatatl w3 zva) oz R =

iv. A2 leaves the moni-
tor, creates B3, and fin-
ishes. B2 gets M and B3
continues execution.

v. After the end of B3’s
time slice, B2 executes. It
notifies all event-waiting
threads about a change.

vi. As B2’s time slice
expires, priority inver-
sion occurs, if B3 contin-
ues to execute.

Figure 2.22 The workings of the monitor M are shown graphically. However,
the exact implementation may vary from system to system. In pictures v-vi the
notified threads are sorted into the waiting queue. According to the Java speci-
fication, this sorting procedure may not be taken for granted. It is implementa-
tion dependent. The handling of the vi-priority inversion situation is also
implementation dependent. It is not reasonable to let lower priority thread
block a higher priority thread’s execution.

Java does not explicitly specify the exact behaviour of the monitor
operations. For example, the priority levels may not be completely valid
because the behaviour of the monitor is implementation specific. In some
systems it is feasible to let every thread, even those with lower priority,
execute occasionally, in order to prevent starvation. In hard real-time sys-
tems, however, the priorities are typically followed stricter.

Traditionally, an implementation of a monitor works as follows with

priorities:

¢ The waiting queue of a monitor is sorted due to priority. It is feasi-
ble that threads with higher priority acquire the monitor before
lower priority threads do, even though the threads with lower prior-
ity have to wait longer. An example of this procedure is described in

Figure 2.22.1.

¢ The monitor event queue is sorted due to priority. If one waiting
thread is notified it is feasible to wake the thread with the highest

48

priority. If more thread share the same priority, the thread that has
waited for the longest time will be awaken.

¢ As all threads in the event queue are notified simultaneously, they
are sorted into the waiting queue according to their priorities.
Threads from the event queue are placed before other threads with
the same priority in the waiting queue. They had to hold the lock
before they were able to wait for an event. See this transition in
Figure 2.22.v.

e It is necessary to implement a priority inheritance protocol, for
example, in hard real-time applications, in order to avoid priority
inversion. An example of possible priority inversion is found in Fig-
ure 2.22.vi, where the B1 thread blocks higher priority threads. B1
does not have the lock M.

The Java runtime access

The Java J2SE API [J2SE] covers the workings of the scheduler in the
classes Object and Thread. The Java language supports handling of moni-
tors through the synchronised statement and the synchronised method
declaration. The classes contain the following methods related to work-
ings described above:

public class Object

public final void Wake up a single thread that is waiting on this object’s
notify () monitor. If any threads are waiting on this object, one of
them is chosen to be awakened. The choice is arbitrary and
occurs at the discretion of the implementation. A thread
waits on an object’s monitor by calling one of the wait

methods.
public final void Wake up all threads that are waiting on this object’s
notifyall () monitor. A thread waits on an object’s monitor by calling
one of the wait methods.
public final void Cause current thread to wait until either another thread
wait () invokes the notify method or the notifyAll method for

wait (long timeout)
wait (long to, int ns)
throws
InterruptedException

this object, or the specified amount of time has elapsed, or
the thread is interrupted by another thread.

public class Thread extends Object implements Runnable:

public Thread() Allocate a new Thread object.

Other variants of the Thread constructor take arguments
such as the name, Runnable interface, or the Thread-
Group the thread belongs to.

int getPriority () Return this thread’s priority.

void Change the priority of this thread.

setPriority(int prio)

void interrupt () Interrupt this thread.

void run() If this thread was constructed using a separate Runnable

run object, then that Runnable object’s run method is
called; otherwise, this method does nothing and returns.

Table 2.1 The classes in the J2SE API that relates to thread handling are
Object and Thread.

49

public class Object

Cause the active thread to sleep (temporarily cease
execution) for the specified number of milliseconds.

static void
sleep (long ms)
sleep (long ms, int ns)

Cause this thread to begin execution; the Java Virtual
Machine calls the run method of this thread.

Cause the active thread object to temporarily pause and
allow other threads to execute.

Table 2.1 The classes in the J2SE API that relates to thread handling are
Object and Thread.

void
start ()

static void
yield ()

Voluntary rescheduling may occur in the following methods in the Java
J2SE API: wait, setPriority, sleep, start, and yield. The setPri-
ority-method may lower the priority of the active thread below other
ready threads. Execution continues among the other threads with higher
priority. The start-method may initiate a higher priority thread, which
should resume the execution.

Java Specification [JLS00] states nothing about the implementation
issues like time slicing, priority inheritance protocols, periodic threads,
and semaphores. Preemption, i.e. time slicing, and periodic threads are
especially important for hard real-time scheduling. It may be imple-
mented in different ways. See Section 2.5.4 for alternative implementa-
tions. A real-time adapted API, similar to the Java J2SE API, can be
found in [Big98], where a semaphore API is also specified.

2.5.4 Preemption models

The procedure of preemption is crucial to real-time analysis techniques.
The real-time systems aimed at in the IVM contain many threads execut-
ing their code repeatedly within specified time limits. Deadlines may vary
between the threads. It is the scheduler that decides which thread that
will execute after a context switch, in contrast to voluntary context
switches where the context switch decisions are transferred from the
scheduler into the application program, i.e. programmer. The scheduler
cannot guarantee that deadlines are met.

There are many ways to implement preemption. Table 2.2 lists a few
implementations and some systems utilising the techniques, along with
an estimated minimum interval of continuous execution without preemp-
tion (in number of bytecodes). The order of the WCET is also presented.

Preemption
interval
estimation

Preemption WCET Comments

Insertion of extra

< maximum

Maximum time of most time-

An analysing tool could

preemption bytecodes. interval consuming control flow path suggest insertion of
between preemption points. preemption points.

Between source code ~2-10 Longest “one-liner”. Implemented in Lund

lines. bytecodes Simula [SIM89].

Table 2.2 Preemption is crucial in real-time systems. The table lists some
alternatives of where preemption points can be inserted into the code.

50

Preemption
Preemption interval WCET Comments

estimation
Before every memory ~1-100 Most time-consuming control | Implemented in Beta
allocation (objects or bytecodes flow path without memory [KMMN91].
activation frames) allocation.
Before method entrances ~10-50 Most time-consuming control | Implemented in 1131-1.
and backward jumps bytecodes flow path without method calls

or backward jumps
After the execution of a = maximum | Execution time of maximum Instruction counting
number of bytecodes. interval bytecode count. introduces noticeable
runtime overhead.

Preemption time interval | Time interval + context This procedure does not
(interruptions from between switch. require prior code
surrounding system) interruptions analysis.

Table 2.2 Preemption is crucial in real-time systems. The table lists some
alternatives of where preemption points can be inserted into the code.

Preemption from the surrounding system is an attractive option from
the programmer’s view. Little extra analysis is necessary to calculate the
time of a context switch. The complexity of the system, however,
increases; preemption can only occur at safe positions in the code where
the GC can supervise all references in the system. The GC must be
informed of references stored in processor registers. With preemption
from the surrounding system, the context switch may be time consuming
compared to the other variants. All the registers in the processor must be
stored in the context of the thread. Other preemption implementations,
e.g. preemption points, restricts the context switches to well-defined posi-
tions in the code, where only the necessary registers have to be stored in
the context of the thread.

The IVM is restricted to check for a pending preemption after every
bytecode. The longest interval between preemptions is set by the most
time-consuming bytecode. Native methods are executed as one bytecode.
It is possible for the programmer to insert rescheduling checkpoints in the
native code in order to decrease the interval between preemptions.

2.5.5 Alternative runtime design

There are many different flavours of runtime design. Some applications
require specialised treatment, while others are more machine independ-
ent. This section deals with basic design issues that are relevant in some
systems and applications.

In an attempt to simplify the implementation of threads and to
decrease the memory overhead for the scheduler, it is possible to imple-
ment the scheduler in Java. Everything except crucial native methods
could be written in Java. The minimal native functionality is to disable
and enable interruptions, to avoid preemption during critical regions. It is
possible to build a complete runtime system on top of coroutine primitives
(call, detach and thread initialisation). Another runtime implementation
could describe all the thread handling procedures in native code. Native
code inflexible but may increase performance.

51

The idea of thread handling written in Java is to simplify access and
increase flexibility. The IVM is intended as a research project with unfore-
seen requirements. Flexible code should increase the availability of the
code for future research projects. However, the cost is performance loss.

The implementation of a thread API could be influenced by the notion
of coroutines. They are utilised in the Simula programming language.
More information about coroutines may be found in [KM93], Section 25,
“Simula runtime system overview”.

2.6 Preloaded classfiles

It is desirable to start a Java application fast. Many classes could be con-
verted into the internal intermediate format prior to the execution. When
an application is started, the preloaded classes have to be linked into the
runtime system; conversion has already been performed. Typically, the
API should be appropriate to convert before execution, and application
classes should undergo conversion as usual. The preloading of classfiles
steps outside the scope of real-time systems, but embedded systems may
often require fast start-up behaviour. There are three levels of preloading:

1. No classes are preloaded. Everything is loaded and converted during
runtime. This approach is time-consuming but flexible.

2. Some classes are preloaded, typically the API. The application itself
is not preloaded. Flexibility is maintained reasonably well together
with shorter start-up times.

3. Every class is preloaded. This inflexible approach speeds up the acti-
vation of the application.

As the classfiles are preloaded to improve start-up time, it is necessary to
specify with which classes the preloaded classes are loaded. The same
symbols and symbol indices must be utilised by all the preloaded classes
in the working set.

The preloaded classes are incorporated into the runtime system by a
linker. The purposes of the linker is to load the preloaded classes, allocate
memory for them, and set the absolute references in them to their correct
values. The linker is similar to the interpreter linker in the two-process
variant.

The problems associated to the linker are circular graphs and how to
represent the references in a manner that is independent of absolute posi-
tions. The circular graph problem could be circumvented with a two-pass
procedure. All preloaded objects are allocated and loaded in the first pass.
The references, on the other hand, are resolved during the second pass.
The exact details of the solutions to these problems are directed in section
4.3, "Loading converted classfiles".

A simple and effective fashion to preload classes is to load all classes
that should be preloaded and store the heap as a file. The heap image
could then be copied into the heap before the application is loaded. The
heap and the loaded heap image must be located on the same physical

52

memory addresses so that references refer to the same addresses as dur-
ing the creation of the heap image.

Chapter 3

IVM runtime

The runtime behaviour of the IVM is focused on hard real-time applica-
tions. The complex analyses to guarantee timing criteria are achieved
through a simple fundamental design of the runtime system that insists
of program execution, thread handling, exception handling, and termina-
tion. Furthermore, the garbage collector is also an essential part of the
execution system.

The subsections describe the runtime data structures of the IVM with
special regard to the prerequisites of limited memory and hard real-time,
and runtime procedures. The main contributions are the solutions to the
prerequisites, i.e. the split machine and the split stack. Functionality and
simplicity have dominated over performance during the design of the
runtime system. Our aim is not to optimise an already existing program,
but to prove that object-oriented programs may function in embedded
hard real-time systems.

3.1 Fundamental runtime data structures

The fundamental runtime data structures in the IVM consist of a tem-
plate hierarchy and a frame stack for every thread, i.e. a stack of method
activations. The purpose of the templates is to save memory by gathering
information in one location, instead of copying the data into the children
of the template. Maintenance is also simplified if information is expressed
in one location. The template hierarchy consists of internal nodes, tem-
plates. A child of a template can be a template or an instance. For exam-
ple, all class templates are internal nodes that describe their instances,
and the class template is described by the meta class template, etc. The
frame stack holds all of the frames of the method invocations that are
active at the current execution point.

54

The descriptions of the runtime data structures in the IVM are pre-
sented gradually, beginning with a simple Java example. The template
hierarchy of the following program example is shown in Figure 3.1.

class SuperHero {
private int strength;
public SuperHero (int strength) { this.strength = strength; }
public void useSuperPower () {..}
public static void main(String[] argv) {
SuperHero virtualMan = new SuperHero(10);
virtualMan.useSuperPower () ;

}

} /7 LEGEND
Meta Meta
template reference

Template -
Meta Meta template (instance)
Class Template

A Meta Activation Internal templates

Meta Class Template created during IVM start-up
Template
4 /
; P Class templates

Superhero man useSuperPower created during class-loading

1

i [}
(frame) (frame) Instances created during runtime

Figure 3.1 The template hierarchy of the program example shows how the
instances and the templates are connected.

All objects, i.e. templates, instances, and frames, are located on the
heap and they are connected to the template hierarchy. The top node, the
meta meta template, describes itself as well as its children. To support the
template hierarchy, all objects on the heap must have a template refer-
ence. Templates also contain the size of their children and garbage collec-
tor information describing the layout of their children.

The instance created in the program example of Figure 3.1 is shown in
Figure 3.2 together with a template, the SuperHero-class. The virtual-
Man-object contains a template reference and an integer attribute,
strength, which is set to the value 10. The SuperHero-class in the pic-
ture also contains the size of its instances. The size can vary from one
platform to another. The GCInfo-field contains information for the GC
about the layout of the instances of the class SuperHero.

This simplified description of objects omits the object head. However,
that is described in Section 3.2.8 together with the GCInfo-field.

\ SuperHero class template

~ virtualMan
template
GClInfo template l l l
child size l l | strength 1 o
—/

Figure 3.2 The contents of the newly created virtualMan-instance are a tem-
plate reference and a strength-attribute as declared in the class.

55

Every method invocation results in an allocation of a frame where run-
time information about the method invocation is stored — such as the val-
ues of local variables. When the method is completed, the previous
method resumes execution. A reference to the dynamic father, i.e. the
caller of the method, is stored in the frame.

At one location in the program example, the main-method calls the vir-
tual method, useSuperPower, on the virtualMan-object. The frames
resulting from the method call are depicted in Figure 3.3. In this simpli-
fied example, the frame consists only of a template reference, and a
dynamic father. The dynamic father of the main-method is null to indicate
that the execution (of that thread) is finished.

main ‘ useSuperPower ‘
1 Y
template \ template \
GClInfo o GClInfo
child size | | | child size | | |
A A
frame frame
‘\\
template template
dynamic father dynamic father,
/\

Figure 3.3 The runtime situation in the figure shows two frames when the
main-method has called the useSuperPower-method. The main-method does
not have a dynamic father (null).

3.2 IVM runtime system in detail

These subsections focus on the runtime mechanisms of the IVM, and
especially on the techniques relevant for hard real-time embedded sys-
tems.

3.2.1 Interpreter

The main task of the interpreter is to execute bytecodes. Other essential
functionality of the interpreter is managing signals, preferably context
switches. The following pseudo code shows this procedure.

do {
fetch an bytecode;
if (operands) fetch operands;
execute the action for the bytecode;
if (signals) handle signals;

} while(there is more to do);

56

During signal handling, the machine may switch the executing thread.
However, the interpreter will not notice the context switch. Execution will
continue in the active thread as if no interruption had occurred.

Context switches are only performed after the execution of a bytecode,
regardless of whether the program voluntarily requests the switch or the
switch is triggered by an external signal (preemption). Voluntary context
switches are instigated by blocking the thread, e.g. a call to sleep,
yield, or wait. There are two different ways to signal for a preemptive
context switch. The first way is to let the machine itself signal for a con-
text switch. This may be instigated by, for example, a number of bytecodes
that have been executed, or when specific bytecodes are reached. The sec-
ond alternative is to let a hardware timer signal for the context switch.
The latter alternative is often utilised in hard real-time applications. Dif-
ferent solutions to preemption are presented in Table 2.2.

Other signals than those just mentioned are also possible to send to
the machine, e.g. command the machine to pause, or to send signals to the
application. Signal handling is performed together with the context
switch handling. The reason for delaying preemptive context switches
until after the execution of a bytecode is to reach a well-defined location in
the code where all the references reside in well-defined locations, i.e. in
memory, and not within unmanaged processor registers or caches. The
garbage collector requires that it must be able to reach all references
when it is working.

3.2.2 Method calls

There are four different types of method calls: virtual, static, interface,
and native. Synchronised methods extend the execution of the calls with
monitor-handling procedures. They are described in the later part of this
section.

All method calls, except the native method call, are performed by locat-
ing the method template, and creating a frame from that template. The
method types differ in how the method template is located. Since the
frames are allocated on the heap, no extra memory areas, stacks, are
required for each thread. Performance decreases, however, in comparison
to stack allocated frames. The incurred performance loss is motivated by a
simple and more efficient memory utilisation. No stack sizes have to be
calculated and allocated. A detailed study of the performance loss is
described in Appendix C.

Frame layout

The contents of a frame are data utilised by the method during runtime,
i.e. a program counter, a dynamic father, local variables, and a stack. The
local variables and the stack have been split into a value part and a refer-
ence part to simplify the description of the reference locations for the gar-

57

/ template \
dynamicFather |
programCounter: I
referenceStackTop I ————
valueStackTop I :
numberReferences I I
refLocals E
refStack 5
valueLocals E
valueStack E

Figure 3.4 The frame contains the runtime state of a method. The greyed area
of the frame contains the references in the local variables and the stack.

bage collector. The frame is described in Figure 3.4 and the elements in
the frame are:

¢ Program counter — the currently executing bytecode offset into
the method.

¢ Dynamic father — the caller of this method.

e Stack tops (value and reference) — offsets into the method indicat-
ing where the top of the stacks are located in the frame.

e Number of references — the number of references that follows.

e Local variables (value and reference) — variables that are
declared in the method.

e Stacks (value and reference) — holds temporary values and refer-
ences.

Method template layout

The method template describes the layout of its frames. Most values are
related to the construction of the frame: offsets to the stacks and local var-
iables, and the number of reference and value arguments declared by the
method. The bytecodes of the method is stored in a code-array. Excep-
tions that this method can catch are noted in the exceptions-array. The
name of the method is described as a name index into the symbol table.
The descriptor of a method is a textual representation of the argument
and return value types. The descriptor index is also an index into the
symbol table. The semantics of the descriptor is given in [JVM99], Section
4.3.3. Access flags contain information about the declared method modifi-
ers. See Appendix B for more information.

58

Figure 3.5 shows the contents of the frame template in relation to a
frame.

4 /
/
template A e
GClnfo y N
childSize | —
accessFlagS I < [N [N xx [N}
BS 4 — -
classRef —]
8518 Q @ < IR S
namelndex [32 § SIS § R § 3 §
SEPEDE e S R R
descriptorIndex [5 % S 3 3 8 % S 3 S
=S X 9 e SR = I3
nbrRefArg [//] I § § % S =
S ¥ 88
[/ RS =g
nbrValArg -1 \ S5 3 /
indexRefLocals I
indexRefStack I
indexValLocals [
indexValStack [
exception. — |
code — |

Figure 3.5 The picture shows the frame template and a frame of the method.

Method call details

As a method is called, a new frame is created for the new method. The
stack sizes and number of local variables of the frame are described in its
method template. The new frame is linked with the caller’s frame by the
dynamic father reference. The other contents of a frame are initialised
into default values. The program counter is initialised to the start of the
bytecodes, and locations of the stack tops are initialised to indices repre-
senting the bottom of the stacks. The number of total references in the
frame is also noted to support the GC.

The procedure of a method call consists of the following steps:

1. Locate the method template.

2. Allocate the new frame.

3. Initialise the frame:
e Set all references to null (performed during allocation).
¢ Set template, dynamic father, program counter, and stack tops.
¢ Transfer arguments.

4. Transfer the execution point to the new frame.

The arguments are moved from the stack of the caller to the local vari-
able area of the new frame. If the method is declared virtual, a reference

59

of the object that receives the method call is also transferred as an “invis-
ible” argument. The execution point is then transferred to the new frame.
All of the method calls, except for the native method call, differ in how the
method template is located. Native method calls are fundamentally differ-
ently structured.

Static Method Call

The static method call is equivalent to ordinary procedure calls. The static
methods are collected inside the class template corresponding to the class
where they are implemented. Operands of the static method call bytecode
are the class index and the method index. The class is located by a class
index (16 bits) in the class template table. The static method is found by
the static method index (16 bits). Figure 3.6 extends the superhero pro-
gram example to exemplify the method template location of a static
method call. The static method call is depicted in Figure 3.7.

interface SuperPower { String superPowerName(); }
class SuperHero extends SuperPower {

public void useSuperPower () {..}

public static int superHeroAmount () {..}

String superPowerName () { return “Dimensional phasing“;}

public static void main(String[] argv) {

virtualMan.useSuperPower () ; // virtual method call
System.out.println (superHeroAmount ()) ; // static method call
String n=virtualMan.superPowerName());// interface method call

}
}

Figure 3.6 The example code contains a virtual method call, a static method
call, and an interface method call in the main-method.

60

java: superHeroAmount () ;
bytecode:invokestatic <SuperHero index>;4 <superHeroAmount>jg

class class method
template template static methods template

table SuperHero superHeroAmount

al 8 T

nlo

=g [

ol-a metho

index

Call superHeroAmount()
Create frame,
copy arguments,
set dynamic father
and template.

frame new frame

Figure 3.7 The static method call is performed by locating the method tem-
plate of the method, and then a new frame is allocated and initialised with
arguments and a dynamic father to the caller.

Virtual method call
The virtual method templates are reached via a virtual method table in
the template of the object that receives the method call. The receiver is
located on the stack. The index to the virtual method is stored as an oper-
and of the bytecode. Figure 3.8 describes how the virtual method call in
the program example is executed. The useSuperPower-method template
is located and a frame is produced (see [KM93], Section 25.4.3, “Virtual
binding”, for a more detailed description of the design of the virtual
method table).

61

java: virtualMan.useSuperPower () ;
bytecode:1oad stack with virtualMan
invokevirtual <userSuperPower index>g¢

. class method
instance
template template
virtual methods
virtualMan SuperHero useSuperPower
///-—> -,
metho
index
Call virtualMan.useSuperPower(D
Create frame,
copy arguments,
< set dynamic father
and template.
frame new frame

Figure 3.8 The method template of the virtual method call, useSuperPower,
is found via the object, virtualMan, which receives the method call.

Interface method call

A class may implement many interfaces. All the interfaces are stored
together with the implementations of the methods in the interfaces-array
of the class. The receiver of the interface method searches through the
interfaces-array in order to locate the correct interface and method tem-
plate. All the interfaces of the superclasses are also included into the
interfaces-array of the classes. Figure 3.9 illustrates the interface method
template discovery.

62

java: virtualMan.superPowerName () ;
bytecode:load stack with virtualMan
invokeinterface <SuperPower index>;y <userSuperPower index>iq

class class implemented interfaces
L lat t lat .
e?gzj;zz € emptate Y'Y Y Y (Linear search)
SuperHero
a| % l Co
al g —— . interface method
ol = arrays
method
template
interface superPowerName
methods /\
method (
Call virtualMan.superPowerName@ index

Create frame,
copy arguments,
set dynamic father
and template.

A

frame new frame

Figure 3.9 Interface method templates are located through the interface and
an offset to the method.

Native method calls

Native method calls are declared in Java and written in C. They execute
outside the scope of the Java Virtual Machine, but if they access the heap,
the coding conventions for the machine (see [JNI99]) must be utilised to
sustain correct functionality. We have developed a C-stub creation tool to
support the programmer with an initial native method implementation
according to the code conventions. Within the stub, arguments are popped
from the caller’s stack and delivered as arguments to the native method.
References are registered in the garbage collector, and a default return
value, if any, is declared.

The native methods store their frames on a stack that lies outside the
supervision of the JVM. It is the same stack as the JVM utilises. The size
of the stack and the worst-case execution time for the method have to be
determined by the programmer.

No preemption is supported inside the native methods. The execution
time of a native method counts as an execution time of a single bytecode
during the WCET analysis. Time-consuming native methods can affect
the analysis significantly, but the programmer can insert preemption
points inside the native code to decrease the influence of native methods
on the WCET analysis.

Synchronised methods
The synchronised methods are indicated by an access flag (see Appendix
B) in the method template, to indicate that the method is a critical region

63

of code. The flag is examined before the method is executed. If the method
is synchronised, the receiver’s monitor, i.e. the lock, must be acquired
before the method is executed. Synchronised static methods utilise the
monitor contained in the class object.

Since only threads are able to utilise monitors, locks could be managed
by threads and not by every object. This approach minimises the memory
utilisation of locks by sustaining the impression that every object has a
lock. Every thread could be fitted with a lock as they are created. This
leads to another benefit. The monitor creation is, hopefully, outside the
scope of the code that is relevant in real-time analyses and real-time
applications do not have to include the monitor creation in the real-time
loop. These thread-associated locks contain references to the locked
objects, and how many times they are locked. Locked objects, on the other
hand, refer to the lock of the thread that has locked them. As threads
become inactive through a call to wait, the lock also refers to the waiting,
inactive, thread. When other threads try to get the lock, they check if
there is a thread that holds the lock and if that thread is inactive or
active. If an inactive thread is holding the lock, another thread is free to
take the lock. The waiting queue of the monitor is registered in the lock.
More information about the memory efficient monitors can be found in
[Blo00].

3.2.3 Runtime template hierarchy

The complete template hierarchy contains templates that describe all the
objects on the heap, see Figure 3.10. In Java, three types of templates are

/? LEGEND
Meta Meta template reference
Template
/(/' \\ template (instance)
Meta Class ||Meta Interface || Meta Array Meta Method
Template Template Template Template \
Class Interface Array Basic Method Codeless Exceptionless
Template Template Template Template Method Method
Template Template
Internal templates
created during IVM start-up
Superhero main useSuperPower Templates created
during class-loading

'y

A A
1 1
D @O

Figure 3.10 The template hierarchy of the program example shows how the
instances and the templates are connected.

Instances created during runtime

directly usable by the programmer: classes, interfaces, and arrays. The
interfaces are simpler and smaller than ordinary classes, and take less
memory. For example, they have no static methods. Arrays differ because
they have propagated the object size from the template into the instances.

64

Arrays with the same dimension and type could utilise the same array
template, regardless of their sizes. The array size is stored within the
instance. If the size of an array would be described in the template, a new
array template had to be created for every array size.

Method templates are divided into three types: ordinary methods,
methods without code, and methods that do not catch exceptions. Methods
that do not catch exception could be described with smaller method tem-
plates than ordinary methods because they do not have the need of a ref-
erence to an exception array. Codeless methods do not have any code
reference either. The three different types of method templates are com-
pared in Figure 3.11.

Ordinary method Exceptionless method Codeless method
template template template

template — template —u template —u
GClInfo GClnfo GClInfo
childSize ' childSize ' childSize '
accessFlags I accessFlags I accessFlags !
classRef —r classRef — | classRef
namelndex I namelndex I namelndex I
descriptorIndex I descriptorIndex I descriptorIndex I
nbrRefArg [nbrRefArg I nbrRefArg I
nbrValArg I nbrValArg I nbrValArg I
indexRefLocals I indexRefLocals I
indexRefStack I indexRefStack I
indexValLocals I indexValLocals I
indexValStack I indexValStack I
exceptions exceptions —
code ; _r

Figure 3.11 The three types of method templates differ in size.

3.2.4 Signal handling

After the execution of every bytecode, and during the execution of some
long bytecodes, the machine checks if any external signal has occurred.
Applications in Java may also explicitly check for signals. The machine
handles signals concerning execution of an application: preemption, start,
stop, termination, and step one bytecode. If a preemptive signal is pend-
ing, the scheduler performs a context switch. A graphical overview of the
signal handling procedure is depicted in Figure 3.12.

Java applications are supported by a system method that forward sys-
tem signals to the environment. Signals to Java applications are for-
warded by a dispatcher to the designated thread. The dispatcher is a Java
thread. If no dispatcher is present, the signals are dismissed by the
machine. Typically, the signals to and from Java threads are asynchro-

65

nous method calls (see Figure 3.13). The identification of the thread is
supplied inside the Java signal. An example of an asynchronous call from
the machine to the surrounding system is exemplified in Figure 3.13.

interpreter

(Get next

bytecode

NOP: ..
ADD: ..
SUB: ..
POP: ..

E AM system signal

eswitch thread
eready/stop thread
eterminate

estep bytecodes

Figure 3.12 After the execution of a bytecode, the machine checks whether the
surrounding system has sent a signal to the machine or to a Java application.

The signal check can often be implemented with a single machine code
instruction. Preemption signals are set periodically by a timer interrup-
tion. The machine idles if there are no active threads available, and if
there are threads that could possibly be reactivated. Otherwise, the appli-
cation terminates. Signals to the machine while executing a native
method are not handled until the native method is concluded. A native
method affects the machine in the same way as the execution of a single
bytecode.

66

The context switch procedure is dependent on the thread implementa-
tion. In the IVM, three different thread implementations have been
implemented. They are described in detail in Section 3.2.7.

B .
: @ : ' Surrounding’
' @ ' | system :
| vent /

' Threads :

' dispatcher :

Figure 3.13 Asynchronous method calls to the surrounding system contain
information about the sender and arguments. The answer is converted to an
event by the signal dispatcher, and sent to the sender.

3.2.5 Context switch

The preemptive context switch transfers the execution point from a proc-
ess to the scheduler. The scheduler determines the next process that con-
tinues execution, if there are any active processes. Otherwise, the
scheduler idles. The basic process model is based on coroutines (see
[WaDa71]). The word process is utilised to emphasize the coroutine
aspect. Threads are utilised to express a similarity to the threads utilised
in Java.

There are three methods associated with context switches: initialise a
process, call a process, and detach a process. The scheduler calls processes
that execute and the voluntary or preemptive context switch is performed
by detach. Figure 3.14 visualises call, detach, and initProcess. Actu-
ally, every process in the system is modelled as a coroutine, even that of
the scheduler.

67

Call & detach
Thread P frames

dynamic
father

detach P (detached
g: process)

(detached
process)

Thread S

currently
executing
here /
Init process
Thread R (via the start-method)

Y
ot
\

Thread T = new Thread())

start frame

(detached process)

Figure 3.14 The procedures of the coroutine methods (call, detach and initial-
ise process) are depicted in the figure.

When a process calls another process to continue execution, a refer-
ence to the frame of the caller is stored. When a process is finished, or
when a process detaches itself, execution continues in the caller frame. In
the figure, this is shown by changing the reference of the dynamic father
of the initial frame. The process P that has been called sets its dynamic
father to the frame where the call was performed, i.e. the top frame of the
frame stack of process S. P continues execution. After a while, P is obliged
to detach, either by a timer signal or voluntarily by itself. The detach
method returns the execution to S and stores its own top frame as the
dynamic father of its initial frame to indicate where execution shall con-
tinue after another call. The implementation of call and detach differ only
in one aspect. Detached processes perform nothing if they are detached
repeatedly.

The initProcess-method sets the frame reference in the process-
object to the currently executing frame. It is utilised in a Java method
that starts new processes, the start-method. The method invokes init-
Process to set the current process to refer to the currently executing

68

method, i.e. start. This procedure is shown last in Figure 3.14. A new
process is created named T. When T started from P from the method
T.start, the initFrame reference of the process T is set to the currently
executing frame, i.e. the start-frame, thus the initial frame of process T
is the start-frame. Then the newly created process detaches itself. Exe-
cution continues in the calling frame, after the invocation of start. When
the process T is allowed to execute, i.e. called by the scheduler, it invokes
the run-method that is preferably overridden in a subclass. Otherwise,
the default run-implementation in the Thread-class immediately returns
and the start-method continues with the termination of the process.

There is a fourth coroutine method named resume. A resumed process
continues execution as if it has been called. However, if the process is ter-
minated or detached, execution continues after the first resume-invoca-
tion of the chain of resume-invocations. Resume is not utilised by the
scheduler.

The identical call and detach methods have also been utilised in an
implementation of the Thread API in J2ME written in C. With the same
coroutine model, some parts of context switching may be written in C
while other remain in Java. The Java variant is simpler to modify but
slower than the C variant.

3.2.6 Process and scheduler structure

The scheduler of processes is implemented in Java and available for mod-
ification. Actually, the scheduler itself is executed by the machine like any
other process. The machine only executes bytecodes regardless of the type
of the process it executes. If an application only contains one process,
there is no need for a scheduler or synchronisation between processes for
that application. In this case, the application could be the only process
that the JVM executes. However, for applications with many processes, a
scheduler is created to manage the processes.

It is also possible to execute more schedulers than a single one concur-
rently in the IVM. This possibility exists because the process handling is
implemented as an ordinary Java process. The only connection to the sur-
rounding system is one operating system process in which the machine
executes. Processes that execute as OS processes, native processes, are
described like future work in Section 7.8.

The application environment — i.e. the loaded classes and their states
— is also encapsulated. Different applications are able to execute concur-
rently on the same machine in completely separated environments. Even
the same heap and garbage collector can be utilised different environ-
ments. Figure 3.15 shows three different environments and many proc-
esses co-existing in the same machine.

An application with real-time demands is instantiated in a system
with only one environment and one scheduler to simplify the real-time
analysis. Future work may cover a more general situation where more
schedulers and machines are analysed in a real-time application.

Implementation of a coroutine scheduler

69

‘ JVM scheduler ‘

Environments

(Thread schedule;)

(Threa@ @hrea@

Figure 3.15 Schedulers in the machine are implemented in Java and executes
as Java threads. This simplifies the implementation and integration into
applications. Many schedulers can co-exist on the same heap but with separate
class environments.

A simple implementation of a coroutine scheduler utilises a round-robin
queue as the ready queue. The ready-queue is implemented by the classes
ThreadQueue, ThreadNotice, and QLinkage. The scheduler is named
ThreadManager and has to be started manually by a call of the method
runProcesses. The context switch frequency is set by orderpPeri-
odicInterrupt. Single interruptions are ordered with orderInter-
rupt, where the argument states when the interruption should occur.
Processes are inserted into the ready queue when they are started. The
coroutine methods are native and encapsulated into the class Basic-
Thread. Figure 3.16 shows a class diagram over the classes related to
scheduling. The classes Queuel.inkage, ThreadNotice, and Thread-
Queue cover the handling of queues.

The coroutine model has served as the foundation of a more elaborate
Java variant, where different scheduling algorithms are implemented,
e.g. earliest deadline first scheduling.

3.2.7 Exceptions

Exception handling is a mechanism to provide error handling in a control-
led way. Unexpected situations are handled by exception-handlers that
catch the exception within the code ranges of the handlers. If there is no
handler of a matching type, the exception is passed over to the caller of
the method. The caller then examines its handlers to see if it is able to
catch the exception. If no frames catch the exception, the thread termi-
nates. When an exception handler catches an exception, the program
counter is set to the start of the code of the handler. The stacks are cleared
and the reference to the exception is pushed on top of the reference stack.

70

AN
BasicThread
call (BasicThread) |
detach (BasicThread) ThreadNotice [ThreadQueue
initThread (BasicThread) ThreadNotice (IVMThread) ThreadNotice first()
run () <_§ ThreadNotice suc () ThreadNotice last ()
AN ThreadNotice pred() boolean empty ()
into (ThreadQueue) A
intoAsFirst (ThreadQueue)
follow (ThreadNotice) readyQueue
precede (ThreadNotice)
out ()
current
IVMThread oh ThreadManager
start () readManager orderInterru, i
pt (int)
stop() orderPeriodicInterrupt (int)
yield () setCurThread (IVMThread)
run() IVMThread runningThread ()
startThread (IVMThread)
unscheduleThread (IVMThread)
runThreads ()

Figure 3.16 The class diagram shows the relations of the thread, the thread
manager, and queue classes. A thread can exist in three different states.

The exception-handling algorithm can be expressed with the following
pseudo code: (A detailed description of the exception handling mechanism
in Java can be found in [JVM99], Section 3.10.)

loop until no more frames
loop through all exception handling regions of the frame
check if the exception can be caught within the current position of the code
check if the type of the exception can be caught
catch the exception (execution continues in the interpreter)
terminate the thread
let the scheduler decide the following execution

Since the exception handling mechanism is intended for unexpected
situations in the software, it has been omitted from the scheduling analy-
sis. However, Sven Gestegard Robertz shows in [Ges03] how exceptions
can be utilised in memory critical real-time systems.

In the worst case when the exception is not caught and the thread ter-
minates, the real-time analysis is not relevant since the thread termi-
nates. If the exception is caught, it is relevant to calculate the WCET if it
affects the continued execution of the real-time task. If the exception is
caught outside the control loop, it is unlikely that the WCET affects the
current real-time application. In those cases, the application should prob-
ably inform the application supervisor with alarm signals. It is interest-
ing to study the effect of failures in real-time systems. However, failure
recovery is outside the scope of this thesis and is left as future work.

3.2.8 Garbage collection

According to the work of Roger Henriksson on scheduling garbage collec-
tion in real-time applications ([Hen98]), it is important to provide the
memory allocation rate of the high-priority threads, i.e. the threads that
are obeying real-time requirements. The real-time garbage collector has

71

to be incremental to support preemption. Our machine supports various
types of GC implementations, even incremental and real-time adapted
ones. To support many different GC implementations, the garbage collec-
tors and the machine utilise the garbage collector interface, GCI (see
[GCI02]). The GCI extends the garbage collectors with thread safety and
debug support.

A general GC algorithm determines which live objects that shall
remain. Reachable objects are determined to be living since they can be
utilised by the program. A more efficient approach would be to release
objects as soon as they never will be accessed again. However, is difficult
to determine at what point objects could be released in those cases. A com-
mon procedure to keep track of live object is to maintain a live reference
graph. The live reference graph starts with a root set that contains live
references. All objects that can be reached from the roots are elements in
the live reference graph. Information about the reference locations inside
different objects is stored in the templates of the objects.

The garbage collectors in IVM also have the possibility to add informa-
tion in every object on the heap. The first bytes of every object are under
the control of the GC. Some GC algorithms store a handle location in
every object in order to make it possible to refer to the handle of the
object. Other algorithms store the memory state of the object, for example,
a mark field in mark-and-sweep algorithms. Some GC algorithms do not
need information in every object. The GC-fields of the objects are adapted
to the GCI to simplify the interchange of GC algorithm. Figure 3.17 shows
an example of how the head of every object is extended with GC informa-
tion for an incremental mark-and-sweep GC.

template for class
SuperHero

instance of

SuperHero
. i "I handle location

GC Fields hahdle location .

object state object state
Object template template
head lock lock .

— instance of

. ::t 2 values byte array

Attributes GCinfo

ref —

2 references
ref
2,2

Figure 3.17 The complete layout of an instance consists of attributes declared
by the class of the instance, i.e. an object head, and GC fields.

Our machine implements two different garbage collectors: a batch-
copy GC, and an incremental mark-and-sweep GC that is prepared for
real-time. For more information about the GC algorithms see [JL96].

A problematic feature of Java, concerning termination of objects, is the
finalize method in the class Object. It has to be executed for every
object before it is removed by the GC, and after the object is inaccessible
from the application. Only the GC, or a similar algorithm, can decide if an
object can be removed. Consequently, the GC instigates the call to the
finaliser. The WCET analysis must then include the execution of the final-

72

iser, but it is omitted in our implementation in order to simplify the anal-
ysis. The analysis would be pessimistic if the finaliser is to schedule
termination of objects during every period.

3.3 Real-time aspects

One major goal is to show that Java can be utilised in hard real-time sys-
tems without any introduction of code conventions or extra programming
overhead. To approach this goal the following assumptions are assumed:

1. Existence of preemption points after the execution of every bytecode,
and in some cases inside time-consuming bytecodes.

2. There are worst-case execution times for bytecodes, context switches,
and the scheduler.

3. The GC is adapted to real-time.

4. The code is annotated to limit large data structures and recursive
method calls.

Based on those assumptions the scheduling analysis, the Worst-Case Live
Memory (WCLM) analysis, and the Worst-Case Execution Time analysis
could be performed. The following subsections describe the WCET and
WCLM analysis based on the bytecodes. Traditional scheduling algo-
rithms may be utilised as these analyses are performed.

3.3.1 WCET analysis

The worst-case execution time analysis determines the execution time of
the various control-flow paths that a program may take. The duration of
the most time-consuming path constitutes the WCET for either a program
or a specific code sequence, e.g. a control loop. Indeterminable control
paths (halting problem) have to be subjected to restrictions, if the analysis
shall be able to deliver a result. The restrictions are noted as comments in
the code. Those annotations are added to the classfile by a specific tool
that extracts them from the source code. The WCET analysis is performed
during class loading, and its procedure is described in detail in the thesis
by Patrik Persson in [Per00]. To support the worst-case execution time
analysis, every bytecode is given a worst-case execution time value that is
obtained by a detailed study of the binary code (see Appendix A). The
maximal time to perform a context switch also has to be included in the
WCET analysis.

Figure 3.18 shows a simple control loop in Java, its bytecodes, and the
fictitious WCET of the bytecodes. The WCET values in the figure are
derived from a preliminary bytecode WCET analyser. The bytecodes that
handle conditional jumps have two values. If the jump is performed, the
higher value is utilised in the WCET analysis. Indeterminable loops and
unlimited recursions are limited by annotations — comments that are

73

handled by a special tool. The basic blocks of the program and the WCET
for bytecodes in the control loop are described in Figure 3.19.

Java program

public class WC_Testprg {
static final int LIMIT = 10;

public static void controlLoop() {
int val = 0;
int nbrOkReading = 0;
int nbrOverload = 0;

while (true) {
int newval = Reg.adjust(IO.getVal());
if (Math.abs(val - newval) <= LIMIT) {
nbrOkReading++;
} else {
newval = val -
? LIMIT
: -LIMIT;
nbroverload++;
}
val = newval;
IO.setVal(val);
}
}
}
class I0 {
public native static
public native static

}

newval < 0

int getval();
void setVal(int val);

class Reg {
static int adjust(int value)
/** recursion maximum: 10 */
{
int result = value <= 0
? adjust (value*2)
: value;
return result;
}
}

Java bytecodes
public class WC_Testprg {
public static void controlLoop() {
:iconst_0
:istore_0
:iconst_0
:istore_1
:iconst_0
:istore_2
:goto 56
:invokestatic IO.getVal()
12:invokestatic Reg.adjust (int)
15:istore_3
16:iload_0
17:iload_3
18:isub
19:invokestatic Math.abs (int)
22:bipush 10
24:icmpgt 33
27:iinc 1 1
30:goto 50
33:iload_0
34:iload_3
35:isub
36:ifge 44
39:bipush 10
41:goto 46
44:bipush -10
46:istore_3
47:iinc 2 1
50:iload_3
51:istore_0
52:iload_0
53:invokestatic IO.setVal (int)
56:goto 9
}

AU WN RO

©

}
class Reg (
static int adjust(int i) {

0:iload_0

:ifgt 13

:iload_0

:iconst_2

:imul

:invokestatic adjust(int)

10:goto 14

13:iload_0

14:istore_1

15:iload_1

16:ireturn

RGN

<

}

WCET values

for bytecodes
bipush value 83
goto offset 93
icmpgt offset 85/120
iconst_0 53
iconst_2 53
ifge offset 53/88
ifgt offset 53/88
iinc index val 78
iload_o0 83
iload_1 83
iload_3 105
imul 101
invokestatic
Reg.adjust (int) 498
invokestatic
I0.getval () 263
invokestatic
I0.setVal (int) 263
invokestatic
Math.abs (int) 498
ireturn 179
istore_0 81
istore_1 81
istore_2 81
istore_ 3 115
isub 101

Figure 3.18 The program example is shown in terms of its bytecodes and their

WCET.

The class loader calculates the WCET for basic blocks and then selects
the most time-consuming path for the final WCET calculation that is
given to the scheduling analysis. The basic block of the program example
is depicted in Figure 3.19 together with the WCET of the bytecodes. The
recursive method adjust in the class Reg is annotated with a maximal
recursion depth, i.e. 10 recursions. The programmer has to guarantee that
this limit is never exceeded. The WCET calculation for the control loop in
Figure 3.18 is described in Figure 3.20. The recursive method adjust is
annotated with a maximum recursion depth of 10 recursions — the
method is called at most ten times. The last call must terminate the

74

recursion. When calculating the WCET for the method, nine calls are
recursive, and the last terminates the recursion.

controlLoop adjust
* max recursion

:invokestatic IO.getval()
0:iload_0
1:ifgt 13 @NY:}

9
[12: invokestatic Reg.adjust (int)
15:istore_3
16:iload_0
17:1load_3
18 :isub
19:invokestatic Math.abs (int)
22:bipush LIMIT
4:icmpgt 33

14983 rryrs

203

AW PO
b e e e
®
a
o
5
o
.

Z
5:iconst_2
6:imul
7
0

14948

:invokestatic adjust(int)
:goto 14

:iload 3
:isub

:ifge 44
39:bipush LIMIT 14:bipush -LINT
41:goto 46
- 159

46:istore_3
47:iinc 2 1
50:1load 3

51:istore_0 100
52:1iload_0 getVvalue

53 t)

:invokestatic IO.setVal (in

i
93

Figure 3.19 The basic block structure of the program examples shows the con-
trol flow. The worst-case execution time of the main-loop is calculated for the
scheduling analysis. The black circles hold the WCET for the blocks.

14:istore_
15:iload_1
16:ireturn

abs 657

Tadiustjecursion =1jload 0t Tifgt false T Tiload70 + Ticonst72 + Timul +

+Tinvokestaticﬁadjust + Tgoto + TistoreJ + Tiload?] + Tireturn =
=83+53+83+53+101+498+93+81+83+179 = 1307

Tad]’ust_return =Liload 0+ Tifgt_true + Tiload_O + Tistore_l + Tiload_l + Tireturn =
=83+88+83+81+83+179 = 597

WCE Tadjust =9 *Tadjustjecursion + Tadjust?return = 9%1307+597 = 12360

WCE Tcontrol_loop = Linvokestatic_getVal + WCE TgetVal + Tinvokestatic_adjust +

+WCE Tadjust + Tistore_3 + Tiload_o + Tiload_3 + Tisub + Tinvokestatic_abs +

+WCE Tabs+Tbipush+Ticmpgt _false t Tiload_O + Tiload_3 + Tisub + Tifge_true + Tbipush +
+Tgoto + Tistorej’"'Tiinc + Tiloadj)’ + Tistore?O + Tiload70 + +TinvokestaticfsetVal +

WCET sopvar + Tgoto =
=263+100+498+12360+115+83+105+101+498+657+83+85+83+105+101+88+83+
+93+115+78+105+81+83+263+100+93 = 14948+377+176+193+632+93 = 16419

Figure 3.20 The WCET calculation for the control loop depends on the longest
control path of the code. Recursive methods must be limited by the program-
mer.

The feedback of the time analysis supports the programmer in the
design of the program. Well-considered algorithms and data structures
that are adapted to the real-time behaviour of the program could be cho-
sen. In many situations, the compiler is not aware of the real-time per-
formance of the bytecodes. The generated bytecodes may not be optimal

75

for the application. In Figure 3.19, the bytecode in the control loop at
index 6, goto 56, leads to another goto-bytecode that jumps to the byte-
code at index 9, i.e. the bytecode directly after the first goto. The goto at
index 6 could be removed. The method size would be three bytes smaller,
and the WCET for the method would decrease.

Optimisations are relevant in code that is supposed to execute many
times, or in our case, code that contribute to the WCET. In the example,
the control loop will execute under hard real-time restrictions. Within the
control loop there is a call to the method adjust. That method also calls
itself recursively at most 9 more times. Optimisations in that method
would probably result in significant changes to the execution times of the
control loop. Figure 3.21 shows the how the bytecode may be optimised.
First, the i1oad_0 is moved from the basic blocks after the comparison,
into the first block. Two bytecodes (13:iload_0 and 14:goto 14) are
rendered unnecessary and removed. The execution of the adjust method
would be faster and its size smaller. Second, the duplicated iload_0
instructions could be replaced by iload_0 and dup, if the dup is faster
than the iload_0 bytecode. This may reduce the execution time for every
call to adjust. Both the average execution time and the WCET are low-
ered. Third, the istore_0 and iload_0 instructions are unnecessary.
The returning value already resides on the stack and it does have to be
not required to save it in a local variable.

static int adjust(int i) {

0:iload_o0 0:iload_o0 0:iload_0 0:iload_0
l:ifgt 13 l:iload_o0 1:dup 1:dup
4:1load_0 2:1ifgt 10 2:1ifgt 10 2:ifgt 10
5:iconst_2 5:iconst_2 5:iconst_2 5:iconst_2
6:imul 6:imul 6:imul 6:imul
7:invokestatic 7:invokestatic 7:invokestatic 7:invokestatic
adjust (int) adjust (int) adjust (int) adjust (int)
10:goto 14
13:110ad_0 ::> ::> ::>
14:istore_1 10:istore_1 10:istore_1
15:iload_ 1 11:iload 1 11:iload_1
16:ireturn 12:ireturn 12:ireturn 10:ireturn
} factoring of faster bytecode redundant
common sub- alternative bytecode elim-
expression WCETjj0aq 0 =83 ination
WCETg,, = 67
Size (bytes): 17 13 13 11
WCET (ticks): 12360 11523 11363 9723
(9*1307+597) | (9*1214+597) (9*1198+581) (9*1034+417)

Figure 3.21 Bytecode optimisations may reduce the method size and the
WCET.

3.3.2 WCLM analysis

The worst-case live memory analysis is performed during class loading. It
determines the largest amount of allocated memory within a specific code
sequence, or a program. If the hardware cannot offer enough free memory,
the application cannot execute in a predictable fashion.

Some program constructions leave the WCLM indeterminable. In
those cases, the programmer must support the analysis with restrictions,

76

e.g. lists, loops, and recursive method invocations must be limited. Figure
3.22 shows code whose memory consumption is indeterminable. The list
in the code is annotated by the programmer. A special tool has been devel-
oped to extract the annotations and extend the classfiles with the extra
information.

do {
int n = SimpleInput.readInt();
} while (n<0 && n>10);
List 1 = new List(); /** WCLM:max size: 10 **/
for (int 1 = 0; i < n; 1i++) /** WCLM:maximum iterations: 10 **/

1.add (new ListElement()) ;

Figure 3.22 The code contains memory allocations whose memory consump-
tion cannot be determined without the support from the programmer via anno-
tations.

The number of elements in a list is indeterminable, in the general case,
during analysis. In the example, a clever analyser could identify the max-
imum number of elements in the list because the program checks that the
number of elements does not exceed ten. If the analyser cannot determine
the exact types of the elements in the list, the WCLM is the maximal list
size multiplied by the largest possible list element. This approximation
may be pessimistic, but annotations may support the analyser to calculate
the maximum size of the list with appropriate element sizes. Without the
annotations, the analyser must assume that the largest possible element
is utilised in the list. For example, if the list allows instances of Object,
the largest possible class in the system, has to be assumed list elements.
Feedback to the programmer supports the design of the list and the writ-
ing of annotations. A more elaborate description of the WCLM analysis
can be found in the licentiate thesis [Per00] by Patrik Persson.

The WCLM analysis calculates the maximal possible amount of mem-
ory that can be allocated. Even method frames are included in the analy-
sis. Displaying the memory utilisation during runtime may provide
important information. The programmer may modify the program in
order to reduce the memory utilisation and decrease the WCET for the
most time-consuming control path.

3.3.3 Scheduling analysis

The scheduling analysis determines whether an application will keep all
its deadlines at all times. Necessary requirements of the analysis are how
often and how long threads execute. To simplify the analysis, threads are
presumed to execute during their total worst-case execution time.
Dynamic schedulers consider the actual execution time, but they intro-
duce a risk where deadlines sometimes may be exceeded.

With values from the WCET analysis and thread periodicity, the
scheduling analysis is able to determine if a system will fulfil its real-time
requirements or not. High-priority threads and the GC thread are prima-
rily considered in the analysis. Low-priority threads are supposed to be
without real-time demands, but the scheduling analysis must take care of
priority inheritance. The latency of a context switch is added when a high-

77

priority thread is interrupting a low-priority thread. To ensure schedula-
bility of the GC the worst-case simultaneously live memory has to be cal-
culated.

The execution time of the middle-priority GC thread depends on how
much allocations the high-priority threads have performed. The actual
GC work is delayed until the execution of the GC thread, i.e. after the exe-
cution of all high-priority threads. The scheduling analysis checks if the
GC is schedulable (see [Hen98]). The maximal amount of work has to be
determined in order to ensure correct GC timing.

3.4 Discussion

The described simple and homogenous memory utilisation provides sim-
plicity at the cost of performance. It enables, however, the WCET and
WCLM analysis that provide valuable information for the programmer in
the design of real-time applications. Program code can be modified to uti-
lise the memory more efficiently. Unexpected time-consuming and mem-
ory-consuming code sections can be identified.

78

Chapter 4

Classfile conversion

Classfiles must be converted into a format that is more suitable for inter-
pretation. Direct interpretation of the classfiles would be slow because the
classfiles uses symbolic references for identifier binding. To use these
directly during runtime would mean extensive text matching and slow
execution.

Besides improving performance, the classfile conversion verifies the
program code in the classfile, i.e. makes sure it follows the format, and is
not malignant. After conversion, the classfile has to be represented inter-
nally, with the runtime data structures described in Section 3.2.

The conversion procedure is the task of the class loader. After it has
loaded and converted the classfile, the internal data structures of the
class are handed to the interpreter that utilises them during interpreta-
tion. Figure 4.1 shows the three main parts of the class loader. Class load-
ing refers to the process of locating and fetching classfiles. Class linking,
on the other hand, verifies the class, creates an internal representation of
the class, and resolves the bytecode into a format more suited for interpre-
tation. It also matches references to other classes — it “links” them. Dur-
ing class initialisation, static code is executed, i.e. code that is executed
only once before the class is utilised. All classes have to pass through the
different phases of the class loader. The details of conversion are
described in the following subsections.

80

Class loader Interpreter

Class Class Class
loading | linking |initialisation

eruntime data
structures

intermediate class data structures

econverted
bytecode

Classfiles

Verification
Preparation
Resolution

Figure 4.1 The class loader converts the classfiles into internal runtime data
structures that are more suited for interpretation.

The contributions of this work are to elucidate the connection and to
show how to integrate the Java virtual machine with the limitations of
real-time embedded systems. This piece of work also introduces two tech-
niques to reduce the size and the time a classfile spends in the class
loader. These techniques are the preconverted classfiles and the split
machine. Finally, the conversion of bytecodes is studied in detail.

4.1 Classfile conversion overview

Before a class can be utilised in execution, it must have passed the three
major phases of the class conversion procedure according to the JVM
Specification: loading, linking, and initialisation. In this piece of work, the
phases will be referred to as class loading, class linking, and class initiali-
sation in order to distinguish them from the more general concepts of
loading, linking, and initialisation. This section gives an overview of the
three phases. Among them, the most demanding phase, class linking, is
described in detail in a later section. The structure of the classfiles is pre-
sented briefly, as a background for further discussions.

4.1.1 Conversion requirements

The class conversion procedure described in the Java Virtual Machine
Specification [JVM99], pp. 48-54, is divided into the following sections
and subsections that are performed sequentially for every class (the spec-
ification also describes how a multi-threaded class loader should work):

¢ Loading — refers to the process of finding classfiles.
¢ Linking - transforms the classfile into an internal representation.

This process is divided into subsections:

- Verification — ensures that the class is structurally correct, for
instance, the bytecodes must be defined, operand types have to
match the bytecode, and branch instructions have to land on the
beginning of a bytecode and not in the middle of a bytecode.

- Preparation — creates and sets static fields to default values.

81

- Resolution — checks and converts symbolic references to an
internal more efficient representation.
¢ Initialisation — consists of executing initialisations for static fields
and static blocks.

Verification ensures that the program follows the JVM Specification and
that the program does not make the machine crash. Verification is also an
important component in order to make Java a secure programming lan-
guage.

4.1.2 Classfile structure

The classfile contains all information that is necessary in order to link a
class with a runtime system. Classfiles are similar to object files that have
to be linked to form an executable program. The classfiles are thoroughly
specified in the JVM specification, see [JVM99] chapter 4, “The Classfile
Format”, pp. 93-153. The classfile structure is briefly presented here as
background information for the later discussions. All the references in the
classfile are indices into its constant pool, where textual representations
of the references are located. A classfile has the following contents:

¢ Magic number identifies this file as a classfile.

¢ Versions state the valid JVM versions that can execute this class.

¢ Constant pool contains all the constants, symbols, and symbol ref-

erences to classes, and signatures1 of methods, fields.

Access flags show the class modifiers.

This class identifies this class.

Superclass identifies the superclass of this class.

Interfaces list all the implemented interfaces.

Fields describe all the attributes, static fields, and constants by

name, type, field modifiers that are declared in this class.

e Methods describe all static and virtual methods, and interface
methods by name, signature, method modifiers, and bytecode.

¢ Attributes contain extra and non-crucial information about the
class.

Interfaces are also described by classfiles. However, interface methods
and native methods do not contain a bytecode body. All other methods
contain the bytecode, stack size, size of the local variable area, and excep-
tion handling information.

To illustrate the classfile format, Figure 4.2 shows a class and its class-
file in a simplified form. Textual comparison is needed to resolve the sym-
bols in the bytecode, for example, method bytecodes refer to the textual
names of the methods via the constant pool. The elements of the constant
pool are strings and symbolic references to classes, methods, and fields. A
support element in the constant pool, called name-and-type, provides

1. A signature of a method contains type information but omits the modifiers. For ex-
ample, the signature for main is: ([Ljava/lang/String;)V — i.e. the argu-
ment is a string array (one dimension) and the method returns nothing (void).

82

methods and fields with more symbolic information. The methods are
described with their code and information about the method name, access
flags, types of arguments, and type of return value. In this example, the
classfile is 372 bytes, of which 167 (45%) are spent by the constant pool.
The methods constitute 71 bytes (19%). In the example, only those meth-
ods that are utilised in the bytecode have a method reference into the con-
stant pool. Method descriptions refer to the textual fields directly.

public class SuperHero extends Hero {

private int power;
SuperHero (int power)
public int power ()

{ this.power =
{ return power; }

power; }

public boolean defeatObstacle(int difficulty) {

return power ()
}
}

Magic number
Minor and major version
Constant pool

#1

: Method class: 5=Hero name_and_type: 14=<<init> (Jvoid>

> difficulty;

Method name:8="<init>" Signature: 9=(int)void
Attribute "Code", length:22, max_stack:2, max_locals:.
code_length:10

0: aload_0

#2: Field class: 4=SuperHero name_and_type: 15=<power int> 1: invokespecial #1=<Method Hero.<init> (Jvoid>
#3: Method class: 4=SuperHero name_and_type: 16=<power ()int> 4: aload_0

#4: Class name: 17=SuperHero 5:iload_1

#5: Class name: 18=Hero 6: putfield #2=<Field SuperHero.power int>

#6: Utf8: "power" 9: return

#7: Utf8: "I"

#8: Utf8: "<init>" Method name:6="power" public Signature: 11=()int
#9: Utf8: "(DV" Attribute "Code", length:17, max_stack:1, max_locals:
#10: Utf8: "Code" code_length:5

#11: Uf8: "OI" 0: aload_0

#12: Utf8: "defeatObstacle"

#1
#1
#1
#1
#1

3: Utf8: "(DZ"

4: NameAndType name: 8=<init>, signature: 19=()void
5: NameAndType name: 6=power, signature: 7=int

6: NameAndType name: 6=power, signature: 11=()int
7: Utf8: "SuperHero"

1: getfield #2=<Field SuperHero.power int>
4: ireturn

Method name:12="defeatObstacle" public
Signature: 13=(int)boolean
Attribute "Code", length:26, max_stack:2, max_locals:.

#18: Utf8: "Hero" code_length:14
#19: Utf8: "(OV" 0: aload_0
1: invokevirtual #3=<Method SuperHero.power ()int:
Access flags: public 4: iload_1
This class: 4=SuperHero super: 5=Hero 5: if icmple 12
Interfaces (count: 0): 8: iconst_1
9: goto 13
Fields (count: 1): 12: iconst_0
Field name: 6=power private Signature: 7=int 13: ireturn

Methods (count: 3):

Attributes (count: 0):

Figure 4.2 The figure contains a small Java program and its classfile repre-
sentation. The <init> method is the name of the constructor. Types are coded
with letters, e.g. I is int, V is void, and Z is boolean.

4.1.3 Class loading

The task of the class-loading phase is to locate, load, and pass over the
classfile to the next phase, i.e. class linking. There are four causes for
class loading. First, in order to execute the main-method, the class that
contains the main-method has to be loaded, the main-class. Second, there
are some classes loaded by default. Third, during class conversion other
classes may be referred to. The referred classes may be required during
execution. Fourth, class loading may be initiated by the application dur-
ing execution. The default classes are loaded by the JVM before the main-
class. The main-class is the seed for further class loading due to its refer-
ences that refer to other classes.

83

There are a number of different places to fetch classfiles. Table 4.1
shows examples of locations where classfiles are stored. Embedded sys-
tems often utilise the ROM or a network to store the classfiles. Desktop
computers often utilise their local hard drive for classfile storage.

Classfile storage Suited for

Network desktop computers
embedded systems in combination with classes in ROM

Local hard drive | desktop computers

ROM embedded systems

“JVM” rapid development, debug purposes

Table 4.1 The classfiles may be stored in different places. It is the task of the
class-loading phase to handle the different storage locations.

The classfiles could be stored as a part of the JVM itself. This static
classfile system circumvents problems that may arise with other types of
storages — no file system is necessary. Static classfiles support debugging
and rapid development. A drawback with the static classfiles approach is,
however, that it requires the creation of an additional object file that has
to be linked into the JVM. Another drawback is that static classfiles are
located in memory together with the code of the JVM, which contradicts
the requirement of efficient memory utilisation. During execution, the
classes are represented twice: as static classfiles and as runtime tem-
plates.

All the classfiles may be compressed to save memory space. Decom-
pression algorithms, in that case, must be included in the class loader. All
the storage types can utilise compression.

Another requirement during the class conversion is to handle many
threads that are loading the same class at the same time. These critical
sections have to be synchronised according to the “Detailed Initialization
Procedure” described in the JVM specification, see [JVM99], pp. 52-54.

4.1.4 Class linking

The linking phase links the classfiles into the runtime system by creation
of corresponding class templates (preparation) and by converting the
bytecodes into a form that is suitable for interpretation (resolution). Veri-
fication ensures that the classfiles are correct and non malignant. Java is
a secure language and the verification phase is an important part to guar-
antee that.

Class linking is the most complex and largest part of the class loader.
In an embedded system, it is relevant to analyse the temporary data
structures that are utilised during class linking in order to examine the
memory consumption. Class linking may be the most memory consuming
part during the lifetime of an application. A detailed study of the tempo-

84

rary structures may reveal how the peaks of the memory utilisation may
be reduced.

The class-linking phase prepares the classfile for execution by creating
runtime data structures of the class and by converting bytecode to an
interpretable form. The runtime class structures, i.e. class templates, are
created with the aid of temporary data structures, mainly supporting the
symbolic reference resolution. The following steps require temporary data
structures, and they are performed for every classfile, during class link-
ing:

1. Transfer the symbols of the classfile into global symbol tables.

2. Organise the class and generate class information, i.e. method
tables, object layout, garbage collector information etc.

3. Convert the bytecode.

The bytecode conversion converts the references in the bytecode from
symbolical references to direct ones, i.e. the textual resolution is con-
verted into array indices. Other bytecode transformations are related to
the control flow analyser.

All classes are stored in the template table. Their symbols, i.e. their
names, are stored in another table, the template symbol table. Other sym-
bols are stored in the symbol table. These tables are utilised to represent
symbols with a unique index, instead of the complete symbol itself. For
example, if the java/lang/String class template is located at index 30,
the class template is referred to as the number 30. The symbol for the
class is found in the 30:th element of the template symbol table. The
advantage of global symbol tables is that identical symbols in different
classfiles can be reused, which saves memory.

A significant deviation from the JVM specification in our approach is
to load all the necessary classes before execution. The reason is to
decrease the WCET in the real-time analysis by being able to exclude the
class conversion. The class conversion, written in C, is difficult to analyse.
However, if it was written in Java, the ordinary real-time analyser could
be utilised even though the WCET for the class loader would become
large.

The lazy class loading procedure, i.e. the loading of classes when they
are needed, encounters problems in embedded systems, considering that
the memory is limited and many classes cannot be loaded at the same
time.

A problem with class loading during start-up is the bootstrap problem,
where classes are needed before they are loaded, and they cannot be
loaded because they are needed during class loading. This catch-22 situa-
tion is not addressed in the JVM specification. The lazy class loading is
subject to a detailed class loading procedure (see [JVM99] pp. 158-170) in
order to avoid other threads from loading the same class at the same time.
Our implementation adopts a static class loading procedure in order to
reduce memory consumption and complexity.

85

4.1.5 Class initialisation

The last step in the class conversion procedure is to execute the code in
the static blocks of the class, i.e. class initialisers. Class initialisers have
to be executed after the bytecode of the class has been converted but
before the class is utilised, e.g. instantiated. The compiler collects all the
static initialisers of a class into a class initialisation method. All the class
initialisers in our machine are executed before the start of the applica-
tion.

During the bytecode conversion, the static initialisers are identified.
Method activations, frames, are created for them and stored in a frame
list. Those frames are executed after the transformation of all classes and
before the execution of the main-method. According to the JVM Specifica-
tion ([JVM99], Section 2.17.4), there are two rules that determine the exe-
cution order of the initialisers. First, the order of the class initialisations
is determined by the class hierarchy. The superclass must be initialised
before the subclasses. Second, a class may not be utilised (e.g. instanti-
ated) before the static initialisation is performed.

If the classes are converted in a hierarchical order (superclass down),
the initialisation frame list is organised according to the first require-
ment. The second requirement is achieved by sorting the initialisation
frames according to the utilisation order of the classes. The bytecode must
be analysed to obtain the order before initialisation. An alternative is to
execute the initialisers on the fly, i.e. lazy evaluation, and to check if a
class is initialised as it is utilised. Figure 4.3 depicts the possible initiali-
sation orders of four classes. Note that none of the possible execution
orders is correct if the class Hero creates an instance of class SuperHero
during the initialisation of the Hero-class. In that case, the execution
order cannot be determined with the support of the JVM specification.
The JVM should generate an error and terminate. The program (the
main-method) can be executed after the initialisation phase, and this is
marked by placing the main-frame last in the list.

start execution here

Person Possible initialisation orders
Person Person Person
Hero Hero Villain
- - SuperHero Villain Hero
Hero villain | villain SuperHero SuperHero
SuperHero

Figure 4.3 The initialisation order of the four classes is determined by inher-
itance and class utilisation. The execution of the program (main) may com-
mence after the initialisation.

86

4.2 Class linking and memory utilisation

The limitations of embedded systems impose modifications on the mem-
ory utilisation of the class linking process. The class linking, with its tem-
porary data structures, is memory intensive and has to be restricted in a
system with limited memory. Class linking could be the most memory-
consuming part during the lifetime of a program, because many tempo-
rary data structures are built to support verification, preparation, and ini-
tialisation.

The first, and often the largest, temporary data structures are utilised
to hold the information in the constant pool (CP) of the classfile. All sym-
bolic references from the rest of the classfile and from the bytecode are
specified in the CP. In our solution, two temporary arrays hold the CP
contents and their types — see Figure 4.4. The arrays hold as many
entries as there are in the CP. The temporary CP arrays support the refer-
ence resolution process in the preparation and resolution phases. Since
the temporary arrays allocate extensive amount of memory, it is impor-
tant to release the arrays as soon as possible. As the information in the
CP is transferred into other internal data structures, it may be released.
The parsing of the constant pool is performed in three passes:

1. Parse the constant pool.
¢ Transfer the constant pool of the classfile into the contents array
and the constant pool type array.
¢ Create symbols and store them in the global symbol table.
¢ Count the number of strings, constants, methods, interface meth-
ods, fields, and references.
2. Transfer constants and create shadow templates.
Create two temporary arrays to hold string and value constants.
Create and insert strings in the string constants array.
Transfer value constants to the value constants array.
Create shadow templates, i.e. empty template objects that can be
referred to, of classes and interfaces and store them in the template
table. If the template already exists, it can be referred to directly.
Insert the corresponding class symbol in the template symbol table.
3. Create a reference array to hold all the references to fields and meth-
ods.

Before a class can be loaded, space must be allocated for it. The shadow
class representation incurs no extra memory overhead since it is utilised
during the class loading of the shadow class. All the class representations
are stored in the template table. Two additional internal tables contain all
the symbols in the classes. They are the symbol table and the template
symbol table. As a textual representation of a template is parsed, a
shadow representation is created for it and added to the template table.
The symbol of the template is stored in the template symbol table at the
same index as the shadow representation.

Figure 4.4 shows how the CP of the classfile is parsed and how the con-
stants are stored internally. Shadow templates are shown as empty boxes.
The simplified CP of the Java program in the figure is transferred into a

87

type array and a contents array that are utilised to resolve the symbolic
references in the classfile. The constants (declared as static final in
the Java program) are stored in the constants arrays of the classfile. They
are the value constant MAX_power and the string constant motto, and
they are stored in the value constant array and the string constant array
respectively. Offsets to the constants are stored in the contents array.
Classes in the contents array are represented as indices into the class
template table.

class SuperHero extends Hero implements SuperPower {
int power;

static final int MAX_power = 100;

\}iilain getEnemy () { ... }

static final String motto = "Right means Might”;
}
classfile internal data structures
Template Template
table symbol
e Contents
Typ table
SuperHero " JcIass 20 - -+ | y[Ftring]
Hero class 21 [— 10
SuperPower interface|[23 R B ISuPerHer0|
~ |[power field 39 20
8 MAX_power field 40 B\ 21 /
il Y Constant |[T0T0 — 22 [T
§ VilTain class 22 23 —
b getEnemy method 41 —
< |String class 10
S [motto Tield 17
Right means Mignt constant |[Z3]0 Class
o templates
P Symbol
table
Reference
constants String power \
object 39
SuperHero J PEXpower Je—f— 20
template Value — a1

[motto J&— | 43

[~ constants
|[Right means M1ght|‘/

Figure 4.4 The constant pool of the program example is stored in temporary
arrays. Shadow templates (Hero, SuperPower, and Villain) are created
for classes that are referred but not already loaded.

During the last part of the preparation and during resolution, the
parts that are dependent on information in other templates are resolved.
The CP contents array is then superfluous and under the disposal of the
garbage collector. The type array is only necessary during the parsing of
the CP. If verification is supported, it cannot, however, be dropped until
all the references to the CP have been checked to access the correct ele-
ment type, e.g. unresolved method bytecodes contain a reference to a
method description in the CP.

Besides the CP, there are two large sections in the classfile: the fields
and the methods. The field section contains information about fields
declared in the class, i.e. field attributes, field types, field offsets, and indi-
rect references to names (indices into the symbol table). Field offsets to

88

the static fields and constants (they are accessed as static fields) are cal-
culated and stored. Static fields are added to the constants arrays in the
class template. Figure 4.5 shows the conversion of field information. The
machine does not discriminate between the static fields and the con-
stants; they are accessed in the same manner. Verification has to confirm
that the usage of constants is correct.
class SuperHero {

static final int MAX_power = 100;

static final int MIN_power = 3;

static final String motto ="Right means might!";

static final String curse ="Jikes!";

static int power;

static float mood;
static SuperHero master;

}

SuperHero
MAX_power template motto
MIN_power curse
! . power — | ‘ ! . .
' ' ' mood # — \‘I ' master
[100 |3 | | | | |
Value Static value Reference Static reference
constants attributes constants attribute
Field descriptions
name type offset | flags
39 (power) int 2 static
40 (MAX_power)| int 0 static,final
42 (mot.t.é) String 0 static,final

Figure 4.5 The static fields in the classfile are added to the constant arrays.
The machine does not discriminate between constants and static fields.

All information about the methods in the classfile is stored in a tempo-
rary method array. The methods are separated into three different arrays
to improve performance — the static methods array, the interface meth-
ods array, and the virtual methods array. First, the static methods are
extracted at an early stage, but the interface methods cannot be identified
and separated from the virtual methods until all the interfaces have been
loaded. Figure 4.6 depicts the static method array creation. The two static
methods main and superHeroAmount are extracted from the temporary
methods array. The remaining methods are stored in the virtual and
interface method array. Information about exception handling and the
bytecodes are brought together with the methods.

89

When all the method templates have been sorted, the bytecode may be
converted. All the class references in the bytecode are substituted with
indices into the class template table.

Temporary methods array

| | | | | |
SuperHero l \4 \4 \4
template

superHeroAmount

1 1 71
Static methods Virtual & interface
array methods array

Figure 4.6 All the methods in the classfile are converted to method templates
that are stored in a temporary methods array. Static methods are extracted
and put in the class template. Virtual methods and interface methods are sepa-
rated after all interfaces are read.

4.2.1 Deep and shallow template references

The template references can be divided into two different types, shallow
and deep references. Shallow references refer to templates. They are
called shallow since the referred classfile does not have to be loaded to be
represented. It is sufficient to refer to an empty template. As the classfile
is loaded, its already allocated template will be used. Deep template refer-
ences, on the other hand, are utilised to access information inside a tem-
plate. Thus, the accessed template has to be loaded and linked. An
example of a shallow reference is a template’s reference to the superclass.
A deep reference is, for example, an access of a bytecode to a static field in
a class template.

4.2.2 Finishing linking and memory utilisation

When all the necessary classes have been loaded, the last transformation
phases commence, i.e. finishing linking and resolution. The last steps of
class linking enable all deep template accesses, in the resolution phase, to
be resolved without interference from further class loading. The tasks
performed during this phase are performed one class at a time, in a hier-
archical order (superclass first). The tasks are:

1. Calculation of offsets to attributes and object size.
2. Generation of garbage collector information.

3. Generation of the interface array.

4. Generation of the virtual method array.

5. Conversion of the deep references in the bytecode.

The different stages in class linking are depicted together with their
requirements as a dependency graph in Figure 4.7. The requirements
show how many templates are required to be loaded before the stated
phase may commence. For example, the bytecode new that depends on a

90

class reference and the object size cannot be converted until the object
size has been calculated, which requires that the current template is in
the link phase and that its superclass templates have been linked.

template

The superclass |
templates

static methods offsets, offsets to attributes,
constants and static field offsets object sizes

offsets to virtual methods
and interface methods

(shadouw\ reference)

bytecode garbage collector
class references information
static methods

static fields
constants

LEGEND interface methods @
Dependency — » virtual methods
object size

Entity attributes
: |swell & shrink

Figure 4.7 The contents of a template are dependent on information in other
templates as depicted in the graph. Furthermore, bytecodes depend on informa-
tion in other templates and on the bytecode itself.

The attribute offsets inside the instances are dependent on the
attributes declared in template and the superclasses of the instance.
Attributes declared in the template are added to the description of the
instance by its superclass. After the offsets are calculated, the size can be
determined.

The GC information can be generated when the object size and the
attribute offsets have been calculated. The GC information of the super-
class is copied and extended with reference locations of the template. If no
new reference attributes are declared in the template, the GC information
of the superclass may be referred to directly.

It is important to convert the attributes and the virtual methods before
the final bytecode transformations. Some bytecodes are dependent on the
information calculated in the previous phases.

The interface array consists of all interfaces implemented by the class,
all the interfaces that the superclasses implement, and all the superinter-
faces of the implemented interfaces. The number of interfaces is counted
and represented in an array, together with the corresponding method
arrays of those interfaces. Figure 4.8 shows an example of interface tem-
plates and interface arrays. In the class diagram, the interfaces are sepa-
rated from the method arrays to make the picture clearer. They could be
merged into a single array to make the class template smaller (one refer-
ence instead of two), but the arrays are separated here to make the exam-
ple clearer. Some other examples in the thesis utilise the merged interface
array.

Furthermore, Figure 4.8 shows a diagram of four interfaces named ia,
iB, iC, and iD. Their runtime information is also displayed. An interface

91

contains information about the inherited interfaces and the declared
interface methods. For example, interface iD implements iB and iC and
declares methods imC and imbD.

The two classes in Figure 4.9 implement the interfaces in Figure 4.8.
Their runtime information concerning interfaces is displayed. If a class
does not implement new variants of the inherited superclasses, the inter-
face method arrays in its superclass can be reused. In the figure below,
this is depicted by two references to a single interface method array. The
figure depicts how the method, imC, is overridden by the interface iD. It
would normally be meaningless to override methods in an interface hier-
archy since they do not contain any code. However, this is allowed in Java.

As the interface methods are identified, they are removed from the
temporary methods array that now consists solely of virtual methods. The
order of the interfaces in the interface array may vary from class to class
Every class may implement any number of interfaces in any order.

Class hierarchy iA
AT template
imA

v
b
=4
Q

ima

iB ic s
template template 4

— >l +l—>-imB — 1
[Cle—
— »[]
v
LEGEND i Emgl
(12) . template
Toa| interface
(ima) ——pl I imD
class with array of [I le———
methods and
interfaces

imB| method template

Figure 4.8 The four interfaces and two classes reuse method descriptions and
a method array in their runtime representation.

92

Class hierarchy iA iB ic iD

cB c
template template

imD LEGEND

class with array of
interfaces and
interface methods

Figure 4.9 When classes implement interfaces, all the interface methods
placed in an interface array correspond to the interface. In some cases the same
method templates can be reused.

The virtual method array is based on the virtual method array of the
superclass as well as the virtual methods implemented by the class. The
new methods are appended to a copy of the virtual method array of the
superclass. Overloaded methods replace the corresponding location in the
method array. The procedure is exemplified in Figure 4.10. The virtual
method array of the superclass is copied in order to maintain the same off-
sets to the methods in the subclass. Virtual methods have the same off-
sets independently of whether the instance is a superclass or a subclass.
That improves the virtual method lookup time during runtime. In the fig-
ure, the two methods, getName and doDeed, declared in the superclass
Person, are inherited by all the other subclasses. The doDeed method is
overridden by the two direct subclasses. However, the good superheroes
inherit the doDeed method defined in the Hero class, while the evil vil-
lains implement a doDeed method more suited for evil purposes.

93

Person
Person template
getName
doDeed doDeed
Person { ' ')
Hero Villain template : : : (evil)

doDeed doDeed

justify| |[intrigue —pf —1 - -

Person | , ,
template ! . .
./
SuperHero gl 1T 1] doDeed
useSuperPower : ! . T
enforce Person , Justify (good)
template X
— -1 " 1 . 1 |
|getName| |enforce| useSuperPower

Figure 4.10 The structure of virtual methods is dependent on inheritance.

When all the methods are in place, the bytecodes are transformed into
its final form during the resolution phase. All the operands that contain
deep references are converted into internal references. For more informa-
tion about the internal reference conversion see Section 4.2.5, “Detailed
reference analysis” on page 96.

4.2.3 Memory allocation during class conversion

The temporary data structures during class loading, linking, and initiali-
sation occupy a significant amount of memory. An analysis of these data
structures is required to determine the memory consumption, and to pro-
vide support for actions in order to decrease the memory consumption.
The class conversion procedure may be the most memory-consuming
phase during a lifetime of an application. Consequently, it is important to
analyse the behaviour of the class loader. The following temporary mem-
ory data structures are allocated, for every loaded class, during class ini-
tialisation:

¢ Constant pool contents array

e Constant pool type array

¢ Reference constants

¢ Value constants

¢ Implemented interfaces

¢ Implemented methods

¢ Implemented virtual and interface methods
e Class initialisation frame list

The following data structures are created and maintained for every
loaded class:

e Static methods

94

¢ Virtual methods

¢ Reference constants and static reference field array
¢ Value constants and static value field array

¢ Interface method array and corresponding interfaces
e Field description array

® Reference array

The following data structures are global to all loaded classes (in one
environment):

¢ Class template table
¢ Class template symbol table
e Symbol table

Data structures written in italics could be removed if dynamic class load-
ing and reflection were not supported.

The data structures are depicted on a time axis in Figure 4.11. The fig-
ure shows when memory is allocated and utilised during class conversion.
The lifetimes are divided into four sections, which represent steps in the
linking process. The first section is valid when a classfile is loaded. The
second section represents the moment the class hierarchy has been
loaded. If the classes are loaded according to the class hierarchy, i.e. with
the superclass before its subclasses, there is no difference between the
first and second sections. The third section is entered when all classes in
the application have been loaded. The fourth section shows when the
bytecode is transformed. Data structures that are utilised during inter-
pretation are marked in the last column.

Constant pool contents array
Constant pool type arrayccouuuuon. [
Reference constants.c..cou i, [
Value constants.ooouuiiunenennnn.. [
Reference constants and static reference field array . .
Value constants and static value field array
Implemented interfaces. [
Implemented methods.ccccuuuuun..
Staticmethods i
Implemented virtual and interface methods i

Virtual methods
Interface method array and corresponding interfaces
Class initialisation frame list
Field description array.ccouuueuenen..
Reference arrayc.ouuiiiinniian..
Class templatetablec.......
Class template symbol table.
Symboltable i

Interpretation data structures

One class Class All classes Bytecode
hierarchy

Figure 4.11 The lifetime of data structures are marked in the diagram. Crea-
tion is marked in a darker hue. The data structures marked in the last column
are utilised during runtime.

In Figure 4.11 the conclusions can be drawn that the most long-lived
temporary data structures are the constant pool contents array, the
implemented interfaces, the implemented virtual and interface methods,
as well as the class initialisation frame list. The implemented interfaces,
and the implemented virtual and interface methods are substituted with
the virtual methods and the interface method array and corresponding

95

interfaces, as soon as all the classes are loaded. The latter arrays could be
constructed when all the necessary interfaces are loaded. If interfaces are
loaded before other classes, the lifespan of the temporary data structures
concerning interface methods could be shortened. The virtual methods
cannot, however, be calculated before the necessary interfaces are loaded
and all the superclasses are linked. The memory consumption of these
temporary data structures is approximately of the same size as the final
representations of those structures.

The class initialisation frame list is utilised after the conversion of the
bytecodes. In order to minimise the initialisation list, an early attempt to
convert the bytecode could be performed. The references of bytecodes to
the constant pool are listed in Table 4.2. As the elements in the constant
pool are utilised, they could be removed. For example, static fields in the
class are calculated as the classfile is parsed and they are utilised by some
bytecodes. The elements in the constant pool that describe those static
fields are utilised by some bytecodes. A preliminary bytecode conversion
of “static” bytecodes, referring to static fields in the class, could be per-
formed to decrease the size of the constant pool. The constant pool could
be copied to a new constant pool without the description of static fields.
Bytecodes referring to static fields in other classes can be converted if the
other classes have been linked. Traversing the bytecodes many times
would slow the overall classfile conversion process. The size of the class
loader would not be affected considerably.

B e .
Constant pool ytecode Utilisation Removal
element group

Constants (values | Constants Bytecode After bytecode transfor-

and strings) mation.

Field references |Field accesses | Bytecode After bytecode transfor-

mation.

Method Method Bytecode After bytecode transfor-

references accesses mation.

Interface method | Method Bytecode, interface array After bytecode transfor-

references accesses mation.

Name and type |— From other constant pool After parsing of fields
elements. and methods.

Utf8 — textual — String constants are referred | String constants — after

references from the bytecode, other bytecode transformation.
constant pool elements, After utilisation from the
from the classfile classfile

Table 4.2 Parts of the constant pool may be removed at an early stage in the
classfile conversion in order to save memory.

In Figure 4.11, it can be concluded that a suitable situation for prelim-
inary bytecode conversion is after the linking of the current class, or after
the linking of a complete superclass hierarchy.

JVM stack

96

The execution of the machine itself utilises memory for its frames on a
stack. Some sections of the class linking code are recursive and require
significant amounts of stack memory. However, class loading in a hierar-
chical order minimises the memory consumption of the stack.

Default classes

The Java requires a number of default classes to be loaded. These are
derived from the JVM specification and indirectly via the API. The classes
that are necessary in the machine are about 50 exceptions that the
machine may produce during execution, for example,
NegativeArraySizeException, NullPointerException, Illegal-
AccessError, and OutOfMemoryError.

Necessary classes that are indirectly accessed are Object, String,
and Class. To what extent these classes access other classes is dependent
on their implementation. In J2SE, Object refers directly or indirectly to
251 other classes, of which 15 are exceptions utilised by the machine. In
J2ME, Object directly or indirectly refers to 50 other classes — 15 of
them are exceptions utilised by the machine.

4.2.4 JVM start-up classes

Before the designated classfile is loaded, initial class templates have to be
created. The top of the class hierarchy (Object) has to be loaded before
inheritance can be calculated. However, Object requires other classes
before it can be loaded. This conflict is solved by “manual” creation of
shadow class templates with some information. For example, the size of
instances of Object is put into its shadow class template. The value is
overwritten as the class is loaded.

4.2.5 Detailed reference analysis

The accesses to information inside templates (deep accesses) and shallow
references are located in the class itself and in the bytecode. Shallow ref-
erences are resolved by substitution of the symbolic reference to a tem-
plate index in the global template table (indirect reference), or to a direct
reference to the template itself. Deep accesses are converted into indices
to the different class template structures. For instance, a virtual method
is located by a method index into the virtual method array. The final loca-
tion of the virtual methods must have been calculated before the resolu-
tion of virtual method invocations. Figure 4.12 shows all references and
accesses to other templates from a classfile.

Shallow references do not have to actually result in the class to be
loaded. An empty class object could be allocated and loaded at a later
stage. The memory allocation during class conversion is dealt with in Sec-
tion 4.2.3. The shallow references in a classfile are references to the
superclass, this class, i.e. a reference to itself, and the interfaces that the
class implements.

During bytecode resolution, the bytecode in the classfile requires infor-
mation from other classes. The information in the class template depend-
ent on information inside another class, is offsets to the virtual methods,

LEGEND

Value field GC fiellds
t t

[]Indirect field %r%piifg
[Direct reference object size
access flags
lock
superclass

virtual methods

static methods

value constants and static values
reference contstants and static references
interfaces

interfaces method arrays

fields

references

97

Class template

Template hierarchy

Inheritance hierarchy

All implemented and
inherited interfaces

Indirect class and
interface refernces

Figure 4.12 The figure depicts where accesses and references to other tem-
plates occur in a class template. References from the bytecode only access non-
bytecode information, thus enabling bytecode resolution in one class at a time.

offsets to the interface methods, the object size, the attribute offsets, and
the garbage collection information. Accesses to information inside a class
are also found in the bytecode. The class information requested concerns
static fields and attributes, constants as well as static, virtual, and inter-
face methods. This information is actually dependent on the JVM imple-
mentation. Table 4.3 shows the bytecodes with references, and how they
relate to information in other classes. Access to information inside a class
inside only to non-bytecode information. This limitation prevents dead-
lock in the bytecode resolution phase. It is possible to resolve the bytecode
in one class at a time.

Bytecode R
reference group Bytecode example Information type
static fields getstatic deep — offset to static fields in class
attributes putfield deep — offset to attributes in object
virtual method invokevirtual deep — offset in virtual method table
invocation
static method invokestatic shallow — index to the class and
invocation deep — offset in static method table
interface method | invokeinterface |shallow — interface index and
invocation deep — reference to method descriptions
type check checkcast shallow — index to class
object creation new shallow — index to class (during
conversion)
(and object size (deep) during execution)

Table 4.3 Some bytecodes require information located in other classes.

98

4.2.6 Verification

The verification part is thoroughly specified in the JVM Specification in
order to avoid malignant or malformed classfiles. It is divided into the fol-
lowing four passes:

1. Classfile structure check. The contents of the classfile must be rec-
ognizable and correctly formed.
2. Further classfile analysis:

2.1.

2.2.

Type check of symbolic references, e.g. the superclass refer-
ence has to be of a class type. This pass does not check the sym-
bolic references in the bytecode, nor does it check if the symbols
can be resolved.

Semantic check on keyword final. This pass also ensures
that final classes are not superclasses of other classes and that
final methods are not overridden.

3. Data and control flow analysis. Every method is checked for:

3.1.

3.2.

3.3.

3.4.

3.5.

Method end. The code must not end in the middle of a byte-
code; neither must it fall off the end of the code.

Type check of operands. Every bytecode must utilise oper-
ands of the correct type. The stack, the local variables, and the
symbolic references have to contain the corresponding operand
type.

Branch check. Every branch in the code must land within the
method on a new bytecode. Exception handlers have to be cor-
rectly limited.

Overflow and underflow check. Accesses to local and stack
variables must be within the stated limits.

Stack outlook. For every position in the code, the stack has to
contain the same types independent on which code path taken to
reach the code.

4. Last checks:

4.1.

4.2.

Symbolic type consistency check. The symbolic types must
correspond to something real. This check may be delayed until
execution (lazy evaluation).

Access check. Every method call and every field access has to
be accepted according to the access modifiers, e.g. public, pack-
age public, protected, and private.

The complete verification requires execution time and memory. The size of
the interpreter also is increased if the verifier is added. One step of the
verification process is to ensure that the bytecodes operate on operands of
the correct types. The verification process must simulate the operand
stack to perform this check and execute every possible code sequence in
order to assure that the control flow is type safe. This type control could
be simplified if the bytecodes themselves contained the type information
about their operands.

99

4.2.7 Discussion

To enable classfile conversion in embedded systems, it is important to
study where and how the memory is utilised in the class loader. The mem-
ory constraint emphasises the idea of loading one class at a time. Since
the linking of subclasses depends on superclasses, it is desirable to iden-
tify the superclass hierarchy at an early stage of the class-loading phase.
Otherwise, temporary data structures would be kept for an unnecessary
long time. If the superclasses are loaded, the loading of subclasses can
continue with class linking. The linking depends on all the references in
the class template as well as on all the accesses to other templates. As
they are resolved, temporary data structures may be released. If the
requirements of the JVM omit reflection and dynamic class loading, other
data structures may be released, and memory may be gained.

4.3 Loading converted classfiles

An optimisation of the linking procedure would be to load already con-
verted classfiles, i.e. classfiles that are represented in the internal format
of the JVM. There are two different types of converted classes: the precon-
verted classfiles, and the heap image, depending on how the symbols in
them are handled. Table 4.4 shows the different types. Classfiles are also
listed in the table.

Class type Class references Linking
Classfiles strings complex, see Section 4.1.4.
Preconverted classfiles indices convert indices to references,

create class templates

Heap image references copy image to RAM

Table 4.4 The two different types of converted classfiles are simpler and much
faster to integrate into a runtime system than ordinary classfiles.

The preconverted classfiles constructs a unique number to each class.
A class reference is represented as the number of the class. During link-
ing, all classes are loaded and all the direct references are resolved, i.e.
the numbers of the classes are converted into real references.

A variant is to load an image of the heap, containing all the converted
classes, instead of all the classfiles separately. All direct references are
already calculated, which necessitates that the heap image is located
exactly at the same location in memory as it was after having been cre-
ated. If the heap is located at another memory location, every reference in
the heap image has to be recalculated, i.e. an addition of an offset to every
reference. The updated references reflect the physical locations in the
memory. The offset is the difference between the physical location of the
heap and the presumed heap location of the heap image. To support the
localisation of the references, the class image must contain information of
the whereabouts of the references. Since every reference is stored inside

100

objects, the problem is to identify all the objects, and update the refer-
ences in them. The references in an object are described in the GC infor-
mation that is stored in the template of the object. Together with the
object size and the location of the references in the object, the objects in
the image could be updated sequentially. This problem is the classical
issue of relocation of references during linking.

The heap image contains the converted objects, the size of the heap, a
root stack, and in some cases, depending on the garbage-collecting algo-
rithm, an object handler array. The root set contains references to live
objects in the heap. All live objects can be found, directly or indirectly by
the help pf these root references. Some garbage-collecting algorithms uti-
lise an object handler array. All objects are represented in the object
array, and all references refer to objects indirectly via the handler array.
The root stack and the object handler array are normally located outside
the heap. Figure 4.13 shows a description of an image.

Stack Heap

Root | Object\| Global |Template Basic API ApplicationRuntime/ I{//?
set | handles |references|hierarchy class classes | objects [/, €€ 7

templates /// . A

Area is GC-algorithm dependent

Figure 4.13 The class image contains preconverted classes, and all other
objects on the heap. The object handles are utilised by some garbage collector
algorithms, and the roots contain all the roots that the garbage collector needs
to locate all the live objects on the heap.

When converted classes are utilised, it is necessary to record the class
environment variant where the classes have been generated. When other
classes are loaded, the linker must determine if the environment is suited
for the classes. If a class is created within another API, attributes and
methods could conflict with the utilised environment. Together with the
converted classfiles, a working class set versioning system has to support
the verification. However, the working class set and the preconverted
classfiles are not considered crucial for the project goal. Still, they are
planned as future work.

The heap image, in contrast to the preconverted classfiles, also
requires a specific version of the JVM. The object layout and the garbage
collector must not differ in the image or in the JVM that utilises the
image.

A combination of ordinary classfiles, preconverted files, and a heap
image, is possible. For example, the heap image could consist of initial glo-
bal tables and the internal template hierarchy. Frequently utilised
classes, e.g. the classes in the API, could be loaded and stored as precon-
verted classfiles. Other classfiles could be converted normally.

4.4 Split machine

A step towards executing Java on small devices is to split the JVM into
one class loader and one interpreter, where the interpreter is located in a

101

little node computer and the class loader resides in a more powerful
supervision computer. The interpreter does not need to load, link, or even
initialise the classes since those tasks may be performed on the supervi-
sor computer. However, a small linking step remains in order to install
classes in the node. If the only connection with the node is via the supervi-
sor, verification may be omitted in the node. The supervisor is responsible
for verifying the code. These networks may be found in industry where
many smaller nodes are connected to a supervisor computer, e.g. SCADA
[SCADA] (see Figure 4.14).

If the nodes do not contain a necessary class, they require it from the
supervisor. It could be possible to throw away not utilised classes and
methods to save memory in the node. If they are needed, they are fetched
from the supervisor. This procedure would of course lead to significant
delays, but in a well-trimmed system, it could be possible to only have the
“control loop code” and the interpreter in the node, which would decrease
the memory utilisation significantly.

Xt ?{ P
)\) —
IV 0 (S T Network
@R Node (R

Supervisor Q/ g i | L \0

Figure 4.14 The configuration of the split machine places the class loader in
the supervisor computer and only the interpreter in the node. The class loader
can support many nodes.

Since the node is behind a secure supervisor, a number of insecure
methods could be applied. Verification could be omitted in the nodes. A
specialised instruction set and a specialised interpreter could be designed
for a node.

The split machine incurs a different memory model from a homogene-
ous JVM, since the applications reside in two different memory spaces.
The following sections examine the memory model and the communica-
tion protocol of the supervisor and its nodes.

441 Memory model

An important reason for splitting the machine is to reduce the memory
need of the nodes. It is assumed that the supervisor has a large memory
in comparison with the nodes, which could consist of inexpensive single
chip systems with simple processors and small memory. To achieve this
end, nodes execute an interpreter, and the supervisor takes over the rest,
i.e. the class loader.

Only the classes that are utilised are necessary in the nodes. Missing
classes can be required from the supervisor. Even parts of classes can be
loaded as they are needed, e.g. methods. Unutilised classes and methods
could be removed in the nodes. In principle, the nodes can remove all
classes and methods because those are requested when they are needed.
Static fields have to be stored in the supervisor before they can be

102

removed in the node. The supervisor can contain one implementation of a
class even though many nodes are utilising it. However, the static fields
are uniquely represented for every node that utilises a class. A node could
be represented in the supervisor as a thread with its own working envi-
ronment as explained in Figure 3.15.

As objects are sent to the nodes, the references of the objects must be
converted by the class loader in the node. It is assumed that the supervi-
sor does not know the outlook of the node’s heap. The references therefore
must be set by the node.

Other memory issues are to omit the symbols in the node and the field
and reference descriptions from every class template. Symbols and field
descriptions are only relevant if reflection and dynamic class loading is
required. The supervisor could perform those tasks.

The nodes utilise a stripped environment as well as reduced class
descriptions, with focus on runtime instead of maintainability. Other opti-
misations the split machine enables are that interpreters can be modified
to suit the hardware architecture of a specific node, and that the bytecode
instruction set can be modified in order to suit the memory-limited envi-
ronment of a node. The size of the interpreter could be reduced if some
bytecodes that are unnecessary for small systems were omitted.

4.4.2 Communication between supervisor and node

The communication between the supervisor and the node consists of
object transfers. The supervisor sends the classes and other objects that
are required by or requested of the node. When the node removes classes
and objects, due to an almost exhausted memory, their static values are
sent to and stored in the supervisor. When these removed classes or
stored static objects are required, they are again transferred to the node.

When objects are sent from the supervisor to the node, they have to be
linked into the runtime system of the node. The object transmission con-
sists of four parts:

1. Locate the reference from where the object will be referred.
2. Create the object.

3. Set its value parts.

4. Set references.

The first point (locate the reference position) assumes that the location
can be found in the node — the object containing the reference, for exam-
ple, may not reside in the node. To simplify matters, the supervisor
restricts the references to keep track on to the templates that are loaded
in the node, and not on all the roots in the node. It is difficult for the
supervisor to determine all the actual runtime roots in the node. One root
is, however, always determinable — the environment reference that con-
tains the template tables.

Before a sent object is created in the node, its corresponding class must
be present. The supervisor keeps track on all the classes that have been
sent to the node, as well as the state of each class (skeleton or fleshy). If
the node removes the contents of a class template from the runtime sys-

103

tem, the supervisor must be informed that the removed class is only rep-
resented with a skeleton class. The state of the static fields is also sent
from the node to the supervisor for storage. Templates cannot be com-
pletely removed since they contain information that is necessary for the
garbage collector. As the object is created in the node, the object is linked
to the template hierarchy so the object may be exposed to the GC.

After the object has been created, the value parts are sent to the node.
The values are sent directly as a memory image of the object, where all
the references are set to null. The supervisor and the node must have an
equal object representation. If they differ, the supervisor must adapt the
object design to the node. An alternative to the object image is to attach
type information together with the values, so that the linker of the node
can set the correct attributes that are received from the supervisor.

The last step is to set the references. Only references to existing
objects may be set. The supervisor is responsible of keeping track of the
objects that are installed in the node, and to keep track of all references in
the node that have not been set due to the lack of objects.

An example of how three objects are transferred from the supervisor to
the node is described in Figure 4.15. The program declares static fields,
attributes, and how the created objects are connected. A static variable
(ourHero) refers to an object (captainJava) in the object graph. The
object therefore can be reached via the template table and sent to the
node. Objects are transferred one at a time. Another object has a refer-
ence (sidekick in object captainJava) that cannot be set directly after
it has been sent away. The referred object does not yet exist in the node.
The supervisor must remember the references that are not set. After the
referred object has been sent, the reference is set.

104

The communication between class SuperHero {
the supervisor and the node static SuperHero ourHero;
SuperHero partner;
1. object reference SuperHero sidekick;
e start from template table static void main(String[] argv) {
- offset to SuperHero template SuperHero captainJava = new SuperHero() ;
- offset to static fields SuperHero interphaze = new SuperHero() ;
- offset to ourHero SuperHero voidMaster = new SuperHero();
2. create object (captainJava) captainJava.partner = voidMaster;
- number to SuperHero template captainJava.sidekick = interphaze;
3. send values interphaze.partner = captainJava;
4. object reference voidMaster.partner = interphaze;
e start from template table ourHero = captaindava;
- offset to SuperHero template }
- offset to static fields }
- offset to ourHero
- offset to sidekick Root Temp late
5. create object (interphaze) stack table SuperHero
6. send values
7. set references temp late
. /' ourHero
set reference at offset “partner”™ /y
¢ start from template table —
- offset to SuperHero template
- offset to static fields captainJdava
- offset to ourHero
8. object reference
¢ start from template table partljler —
- offset to SuperHero template sideKick \

- offset to static fields

- offset to ourHero
- offset to partner /
9. create object (voidMaster) :
10.send values voidMaster

11.set references lnterphaze
reference at offset “partner”, set to:
e start from template table
- offset to SuperHero template
- offset to static fields
- offset to ourHero

Figure 4.15 Three SuperHero-objects are sent from a supervisor to a node.

The internal part of the template hierarchy can also be sent. However,
the automatic memory management cannot be activated until a minimal
set of templates and objects are in place. The meta meta template and its
garbage collector information is essential. The meta templates of the GC-
information object also must be in place, together with the GC-informa-
tion for the meta templates, in other words, if the GC-information is a
byte array, the template of the byte array and the meta array template
must also be loaded. When all the templates and the GC-information
objects are loaded, the garbage collection may commence.

An optimisation to the communication is an installation of a global ref-
erence in the node. It is set by the supervisor and utilised as a cache of the
last reference position. The reference position description could be
shorter, which increases communication performance.

Another communication modification is to keep the static fields in the
node at all times, in order to make the supervisor less complex. The node
must in any case inform the supervisor about the skeleton classes.

4.5 Bytecode conversion

The specified bytecodes (see [JVM99]) are not suited for memory-limited
real-time applications. The conversion of classfile bytecodes has to con-
sider the real-time requirements, more compact bytecodes, and perform-

105

ance-increasing bytecodes. The real-time requirements imply an exact
garbage collector and its need of well-defined element types of the stack.
Some of the bytecodes utilise operands that are unnecessary large. Mem-
ory could be saved if these bytecodes were represented with smaller oper-
and sizes. The performance-increasing bytecodes are new versions of
those containing symbolic references. They are resolved into direct or
indirect references. The following subsections deal with the different byte-
code conversion aspects.

4.5.1 Symbolic reference resolution

The original bytecodes in the JVM specification [JVM99] describes byte-
codes with symbolic reference operands. Textual comparison has to be uti-
lised in order to determine the correct reference. Bytecodes with symbolic
reference operands could be replaced with indirect references that are
resolved in a determinable number of indirections. Real-time applications
rely on techniques that are limited in time. Performance also would
increase compared to textual resolution during runtime.

Shallow references to classes and interfaces are replaced by indices
into the template table. Static fields are replaced by their corresponding
indices into the static field array. Object attributes are accessed by their
offset into the object. Methods are accessed by the method indices into the
static, virtual, and interface method arrays. Reference constants are
replaced by an index into the symbol table, where the corresponding sym-
bol is to be found.

106

The bytecode groups with symbolic references are listed in Table 4.5
together with notes about the type of reference.

Bytecode Operand .
Y Example D Resolution
group reference
Constants ldc, ldc_w, symbolic location | Represent location as index
1de2_w to constant into one constants array.
Attribute getfield, symbolic attribute | Replace reference with off-
access putfield reference set to attribute.
Static field getstatic, symbolic class ref- | Replace class reference with
access putstatic erence and sym- | index to class. Replace field
bolic static field |reference with index to field.
reference May increase bytecode size.
Virtual invokevirtual, | symbolic method | Replace method reference
method calls | mvokespecial reference with index to method.
Static/ _invokestatic, | symbolic method | Replace class/interface ref-
interface invokeinterface | reference and erence with index to class/
method calls symbolic class/ interface. Replace method
interface refer- reference with index to
ence method.
Object new, anewarray, symbolic class | Replace class reference with
creation multinewarray reference index to class.
Type instanceof, symbolic class | Replace class reference with
checkeast reference index to class.
Exception athrow symbolic class | Replace class reference with
reference index to class.

Table 4.5 Bytecodes that access information in a class must be resolved.
Symbolic, i.e. textual, references are replaced with indices into tables. Methods,
attributes, and fields are represented as indices.

The operands of the original bytecodes are indices into the constant
pool of the classfile. When they are replaced with other indices, they may
be too small to express the new index. For example, a constant is accessed
with the bytecode 1dc, which has an operand size of one byte. Only 255
indices may be expressed with this bytecode. However, if the correspond-
ing symbol is located in the symbol table at an index that is larger than
255, the operand has to be extended. This bytecode swelling has to be han-
dled by a control flow analyser.

The string constants have to be created before they can be used. This is
performed as the classfile is loaded. The string instance is stored in a
symbol table. The index to the string in that array is stored as an operand
in those bytecodes.

4.5.2 Memory limitation bytecode changes

Embedded systems require efficient memory utilisation. There are a
number of ways to reduce the memory consumption with bytecode modifi-
cations. The interpreter can be reduced in size if bytecodes are omitted,
and the bytecodes can be made smaller, making the code smaller, in a sys-
tem where the address space is limited. The number of allowed classes in

107

an application also affects the bytecodes. Some bytecodes are introduced
to increase the performance. They may be expressed by other bytecodes,
thus reducing the instruction set. Bytecodes could be removed until a
minimal instruction set remains.

A limited heap leads to a limited address space, which incur less and
smaller bytecodes. If the JVM is limited to maximum 255 classes, they
may be referred indirectly by a single byte index into the template table.
Many bytecodes utilise two bytes when referring to a class. For example,
new refers to a class template. The original bytecode utilises two bytes to
access the class template. There are five bytecodes with class, interface, or
array references of two bytes. They are: new, anewarray, multianewar-
ray, checkcast, and instanceof.

If the address space is limited, the methods cannot be as large as some
bytecodes can handle. In an embedded system, the address space may be
limited to, for example, 216 bytes. In this case, the address space is fully
covered by two bytes. Bytecodes that utilise more than two bytes in order
to express an address may be reduced to three bytes. Some bytecodes have
two variants, a 2-byte address operand, and a 4-byte address operand.
The latter may be removed completely. For example, the bytecode goto_w
and jsr_w have a 4-byte address operand.

By reducing the number of bytecodes, the memory required for the
interpreter is also reduced as well. The remaining bytecodes, in some
cases, may have to be more general, while in some cases larger than their
original variants. Table 4.6 shows some typical bytecode modifications
and how they affect the JVM at large.

Bytecode

Modification

Consequence

putfield op,
getfield op,

Shrink operand size
from 2 to 1 byte

The maximal number of attribute positions
in an object is reduced from 216 5 28,

putstatic op,
getstatic op,

Use operands as
class- and static
field indices

The maximal number of static fields in a
class is reduced from 216 to 28 and the
maximal number of classes is reduced from
216 to 28.

wide <TYPE>load op,
wide <TYPE>store op,

Remove bytecode

The maximal number of local variables
cannot be larger than 28.

invokevirtual op,

Shrink operand size
from 2 to 1 byte

The maximal number of virtual methods in a
class is reduced from 216 to 28.

invokestatic op,

Use operands as
class- and method
indices

The maximal number of static methods
implemented by a class is reduced from
to 28 and the maximal number of classes is
reduced from 216 to 28-

916

invokeinterface op,

Shrink operand size
from 4 to 2 bytes

Effects are similar to invokestatic.

<TYPE>const_<VALUE>

Remove

Replace bytecode with one byte larger
bipush op; (push constant integer)
bytecode and add type conversion bytecode
when needed. The bytecode will increase but
the size of interpreter decreases.

Table 4.6 Modifications of the bytecode instruction set may affect the size of the
interpreter or the bytecodes.

108

Bytecode Modification Consequence
<TYPE>load_<VALUE> Remove bytecode [Replace bytecodes with <TYPE>I1oad op;
<TYPE>store_<VALUE> variant.

Table 4.6 Modifications of the bytecode instruction set may affect the size of the
interpreter or the bytecodes.

4.5.3 Real-time bytecode changes

The real-time requirements impose modifications to the bytecode instruc-
tion set. The exact real-time garbage collector must always have control
over all of the references in the machine. In particular, the stack has to be
typed. Our solution to meet this end has been to split the stack into a
value stack and a reference stack (see [Mag84], [KMMN91], [KMLOO]).
Bytecodes that operate on both value and reference types have to be
duplicated for each stack. For example, in the JVM specification, pop
would operate on the top element of the Java stack. Regarding the split
stack, it is necessary to specify if the value stack or the reference stack
should be popped. The bytecode has to be converted to pop_val (value
stack) or pop_ref (reference stack). The concerned stack-related and
type neutral bytecodes are presented in Table 4.7, together with their new
representations due to the split stack. Some bytecodes affect both stacks.
Those bytecodes could be expressed as new bytecodes or they could be

109

described as a sequence of previously defined bytecodes. Such sequences
are shown in the “Equivalent bytecode sequence” column.

Reference and value stack
Original Value stack Reference
Equivalent bytecode
bytecode stack New bytecode q Yy
sequence
dup dup_val dup_ref
pop pop_val pop_ref
pop2 pop2_val pop2_ref pop_val_ref pop_val, pop_ref
swap swap_val swap_ref
dup_x1 dup_x1_val dup_x1_ref
dup_val dup_ref
dup_x2 dup_x2_val dup_x2_ref
dup_x1_val dup_x1_ref
dup_val dup_ref
dup?2 dup2_val dup2_ref dup_val_ref dup_val, dup_ref
dup2_x1 dup2_x1_val dup2_x1_ref dup_x1_val_ref dup_x1_val, dup_ref
dup_x1_val dup_x1_ref dup_x1_ref_val dup_x1_ref, dup_val
dup2_val dup2_ref
dup2_x2 dup2_x2_val dup2_x2_ref dup_x2_val_ref dup_x2_val, dup_ref
dup2_x1_val dup2_x1_ref dup_x2_ref val dup_x2_ref, dup_val
dup2_val dup2_ref dup_x1_val_x1_ref|dup_xl_val, dup_xl_ref
putfield putfield_val |putfield_ref
getfield getfield val |getfield ref
putstatic ||putstatic_val | putstatic_ref
getstatic ||getstatic_val | getstatic_ref
ldc ldc_val ldc_ref
ldc_w ldc_w_val ldc_w_ref
ldc2_w ldc2_w_val ldc2_w_ref

Table 4.7 The table shows all original and type neutral stack related bytecodes
that have to be converted due to the split stack. The representations of new
bytecodes are shown. They are tagged with _ref or _val if they are related to the
reference stack or to the value stack, respectively. Bytecodes typed in bold letters
indicate additions to the instruction set.

The instruction set is expanded with 39 new bytecodes that replace the

16 original bytecodes. In the IVM, the original bytecodes are reused, leav-
ing the instruction set with 23 new bytecodes. It is possible to reduce the
instruction set expansion from 23 to 16 new bytecodes if equivalent byte-
code sequences are allowed, i.e. the new bytecodes are expressed as a
sequence of “old” bytecodes. They are only allowed if control flow analysis
is included into the converter, since the equivalent bytecode sequences
increases the size of the method.

Some bytecodes have non-trivial worst-case execution times. These
are:
invokeinterface (linear search for class)
anewarray (dependent on number of entries)
athrow (difficult to estimate)
checkcast, instanceof (proportional to deepest hierarchy depth)
multianewarray (proportional to dimensions multiplied by depth)
lookupswitch (search through alternatives).

110

4.6 Control flow analysis

The control flow analysis determines the type of the internal bytecodes
and performs bytecode optimisations. Two different control flow analyses
are identified: a thorough one for the split machine, and a simple one for
the homogeneous machine. The consequences of the simple conversion are
that it is smaller, it decreases conversion time, and it requires less tempo-
rary memory, but it omits bytecode optimisations. The thorough imple-
mentation constructs a control flow graph that is utilised in a bytecode
optimiser. The optimiser requires temporary data structures for the con-
trol flow analysis. To put it simply, optimisations require memory. The
control flow structure overhead could be minimised if the methods were
converted one by one. However, that approach removes some optimisa-
tions, for example, method inlining. The simple control flow analyser mod-
ifies the bytecodes in the original methods, without moving them to
another offset. No temporary method structures, or basic blocks are nec-
essary, but the bytecode cannot be shrunk or swollen. Some bytecodes
must increase in size if certain conditions are fulfilled. These bytecodes
cannot be executed, because a bytecode is not allowed to expand in size in
the converter, without control flow analysis.

Chapter 5

Results

The IVM has primarily been developed as a research platform. However,
the demand of Java in embedded systems has resulted in many porting
projects to enable the Java technology on many platforms. The research

subjects have to be concluded in future work.

5.1

Target platforms

The IVM has been utilised in a number of projects and ported to different
computer systems. The projects have mainly been related to the studying
of the influence of Java in concurrent embedded systems. In one project
the IVM was shipped with a product. The computer systems that the IVM
has been ported to are listed in Table 5.1.

Configu
Target ration
Q oS Reference
System Processor Clock | Memory 2 B
(MHz) |Flash|RAM | & | &
ATMEL AVR 8 128kb [32kb | X [STK300]
Evaluation | ATMegalO7L
board
Evaluation ARM X | X
board,
Bluecell
Evaluation ARM 7 25 512k | X | X eCos
board b
Koala 68332 16 1Mb | 1Mb X
Khepera 68000 16 |256kb| 64kb X
Palm V DragonBall, 16 2Mb | 34kb X | PalmOS
MC68253 v.3.1.1

Table 5.1 The target platforms for the IVM.

112

Configu
Target ration
Q oS Reference
System Processor Clock | Memory 2 i
(MHz) |Flash|RAM | & | &
Controller PPC 25 X
for IRB
(industry
robot)
ABB PPC 860 25 8Mb X
AC800M
controller
Ericsson X Enea
R320 RTOS
iPaq Intel 206 32 32 X | Pocket
StrongARM PC
Intel XScale 333—- 0 2Mb X libe
XScale 766

Table 5.1 The target platforms for the IVM.

The projects in which the IVM has been utilised are listed below:

Research project on ABB Corporate Research, autumn 1999. The
IVM was ported to a development board from ATMEL as a prepara-
tory study of Java.

Research project on Ericsson, autumn 1999. The IVM was ported to
a low-end mobile phone. Initiatory evaluation of Java technology in
mobile phones was performed.

Master thesis, winter 1999. The task of the master thesis work was
to port the IVM to a palmtop (see [Palm99]).

Student project, autumn 1999. The IVM was ported to the AVR
development board for real-time control of a servo. The IVM was
split to fit it into the small memory of the development board.
Research project for Bluecell, autumn 2000. The IVM was ported to
an ARM based computer system developed by Bluecell as an initial
evaluation of the IVM as a component in a product.

Product development for Bluecell and TAC, spring 2001. Bluecell
implemented Java midlets for supervision of the control systems of
TAC. The Java programs were transported wirelessly and they
were based on the J2ME API and MIDP. The wireless network
layer was written in C. The IVM was utilised as the JVM in the
final product.

Master thesis on ABB, autumn 2001. The IVM was integrated into
the control system of ABB to support Java programs (see
[TAHGO2]).

Research project, summer 2001. The IVM was almost successfully
ported to a Khepera robot.

Research project with Computer Science in Lund, Department of
Control in Lund, and DIKU, Department of Computer Science at
the University of Copenhagen, spring 2002. The project targeted

113

dynamic Java code exchange between semi autonomous systems,
i.e. a control computer (Pentium and GNU/Linux) and a Koala robot
[Bon02]. The communication was via Bluetooth. The Bluetooth
stack was written in Java together with the control code of the
Koala. The control computer also ran Java with the IVM to control
a beam.

Research on XScale, spring 2003. Thread scheduling was adapted to
the different clock frequencies the XScale to minimise the power
consumption (see [FGO2] for more information about power con-
sumption).

114

Chapter 6,

Related work

In the diverse market of Java virtual machines, there are some related to
embedded systems and others are related to real-time. The API has to be
adapted to embedded systems and real-time. Two competing real-time
specifications have emerged in addition to our approach: the real-time
specification for Java (see [RT'SJ00]) and the Real-Time Core Extensions
(see [JCRE]) from the J-Consortium. Another method to enable Java in
real-time embedded systems is to convert the Java program to C, and add
real-time garbage collection, real-time threads, and real-time scheduling.
In our approach, the real-time concepts are concealed from the program-
mer as much as possible, while the real-time API specifications are explic-
itly expressed in an APIL.

The related work in this section describes the real-time API specifica-
tions, the embedded APIs, real-time JVMs for embedded systems, and
Java-to-C conversion in real-time systems.

6.1 Java Real-Time API Specification

Real-time Java work has been focused on further specifications of the vir-
tual machine and the API. The concepts that need to be specified more are
threads, scheduling, the memory management, and the garbage collector.

Real-Time Specification for Java
The real-time Java expert group! has written a Real-Time Specification
for Java (see [RTSJ00]), i.e. an API for Java where real-time issues are

1. The expert group consists of representatives from different companies and uni-
versities, e.g. Sun Microsystem Laboratories, Lucent, Mitsubishi Electric, Carn-
egie Mellon, and the University of York. The group has three parts: a technical
interpretation committee, an advisory team, and the original specification develop-
ment core team. More information about the specification and the group can be
found at www.rtj.org.

116

addressed. Real-time threads are introduced with more specified execu-
tion behaviour than ordinary Java threads. Other covered topics are
scheduling, memory management, synchronisation, and timers.

The difference between our approach and the solution provided by the
real-time specification is that time critical threads utilise manual memory
management instead of automatic memory management. The program-
mer is burdened with memory management and exposed to the tradi-
tional errors, i.e. dangling pointers and memory leaks. Our approach
avoids these problems by maintaining automatic memory management
for time critical threads. The garbage collector is scheduled as an ordinary
thread. The RTSJ introduces complex concepts and lowers the simplicity
of Java. For example, four new memory areas are introduced: heap mem-
ory, immortal memory, scope memory, and physical memory, where our
solution utilises only one, the heap.

6.2 Java platform

There are many standardised Java APIs targeted for different system
requirements and demands, ranging from enterprise computers to smart
cards. An API that is called Java 2 Micro Edition, J2ME, covers the
embedded systems. This API is further divided into subsections to suit
specific areas of embedded systems. The other Java platforms are the
enterprise edition (J2EE), the standard edition (J2SE), and Java Card.
Figure 6.1 shows the different platforms. In the smaller APIs, some speci-
fications are removed from the virtual machine. The virtual machine for
the J2ME/CLDC configuration is designed for resource-constrained tar-
gets. It requires 160kb-512kb to execute. Suns implementation, the Kilol
virtual machine, KVM, is derived from the Spotless research project. The
Card VM implements only the fundamental functionality of the JVM
Specification. It omits dynamic class loading, the Security Manager, final-
isation, threads, cloning, access control in Java packages, and garbage col-
lection (an optional object deletion mechanism is offered). Only the
following types are supported: boolean, byte, short, and int (optional).

1. It was so named because its memory budget is measured in kilobytes (whereas
desktop systems are measured in megabytes).

117

Servers, enter- Servers, High-end PDAs, Mobile phones, Smart cards
prise computers personal com- embedded entry-level
puters devices PDAs
Optional
Packages ~~—")
Optional W
P
ackages Optional
Packages W
Java 2 .
Platform, Personal Profile Optional
Enterprise Edition Pel{:t;grfn Packages
(J2EE) Standard Ed)ition B Pgrs;))nal ! Mobile
(J2SE) asic Profile Information
TFoundation Device Profile
Profile
Connected Device Connected
Configuration Limited Device
Configuration
Java Card
JVM JVM JVM KVM o d VT

—
Java 2 Platform, Micro Edition (J2ME)

Figure 6.1 The Java architecture consists of an API and a JVM. There are
various sizes of the APIs targeted for different systems.

Java 2 Platform, Micro Edition

The J2ME architecture is composed of a virtual machine and a minimal
set of class libraries that are designed to provide the functionality for a
particular range of devices, sharing similar characteristics. Currently,
there are two J2ME configurations: the Connected Limited Device Config-
uration (CLDC), and the Connected Device Configuration (CDC). CLDC is
smaller than CDC and designed for devices with slow processors, limited
network, and limited memory, for example, mobile phones and PDAs. Fur-
ther, it addresses core Java libraries (java.lang and java.util), input and
output, networking, security, and internationalisation. The following
areas, though, are not addressed: application management (installing,
launching, and deleting), user interface, event handling, and interaction
between the user and the application. In addition to this, the float and
double data types are not supported and error handling is limited. CLDC
can be utilised on systems with a minimal memory of 128kb to 512kb.
CDC targets devices with a minimum memory of 2Mb — for example,
high-end PDAs and communicators.

On top of the fundamental API, it is possible to add optional packages,
or profiles. For example, in the CLDC there is a Mobile Information
Device Profile (MIDP) that is designed for mobile phones. It contains a
user interface, network connectivity, local data storage, and application
management. CDC, on the other hand, contains profiles with more func-
tionality. The foundation profile is the basis of the personal profile, PP,
(support for full GUI, and applets), and personal basis profile, PBP, which
is a subset of PP. Other optional packages are developed for Bluetooth,
web services, wireless messaging, multimedia, and database connectivity.

118

The CLDC relaxes the JVM Specification at the following points: no
floating-point data types (float and double), no Java native interface
(native code is linked directly into the JVM), no Java level class loaders,
no reflection, no thread groups or daemon groups, no finalisation of class
instances, no weak references, and limitations on error handling.

6.3 Java virtual machines for embedded systems

On Sun Microsystems many embedded virtual machines for Java have
been developed. The embedded API is specified and a real-time specifica-
tion has been developed. The embedded virtual machines from Sun are
considered in a separate subsection, while other embedded JVM imple-
mentations are listed in another subsection. Existing real-time JVMs are
listed and described in a following subsection.

6.3.1 Embedded JVMs from Sun

The JVMs from Sun that addresses the embedded systems have been
developed from research platforms (JavalndJava [JIJ98], and Spotless) to
the commercial variants (KVM and CLDC HotSpot Implementation VM).
At this date, no official attempt to establish real-time Java in embedded
systems has been performed by Sun.

Spotless system

The Spotless system is a JVM and a class library implemented by Sun
Microsystems Laboratories, suited for small systems, e.g. palmtops and
embedded systems [JDP]. It manages dynamic class loading, the complete
bytecode set, garbage collection, and multi-threading. The goal of the
Spotless project is to create the smallest possible “complete” JVM. The
Java Card and Embedded Java are subsets of Java. They do not support,
for example, dynamic class loading, garbage collection. The creators iden-
tify program criteria for consumer device manufacturers as portability,
and fast learning curve for developers, which is well in line with the phi-
losophy of standard Java.

The functionality of the Spotless is a straightforward JVM without
memory-consuming optimisations like just-in-time compilation. However,
quick bytecodes are included to increase the performance of the runtime
system. The major memory consumption is, however, the classfiles and
the classfile library. A small subset of the standard non-graphical classes
has been implemented without redundant methods and classes that are
seldom utilised. The number of exceptions is kept at a minimum. Folding
them together has reduced dependencies between classes. The Spotless
JVM starts with nothing and add only what is necessary, rather than
starting with the complete JDK and removing what is not needed.

The internal class structure is similar to the IVM constitution. How-
ever, the garbage collectors do not seem to be incremental, and the thread
switching seems to depend only on bytecode counting. The native methods
are included in the machine instead of implementing the large Java
Native Interface [JNI99].

119

The first target system of the Spotless was a Palm. The size of the
Spotless JVM is 30kb - 50kb depending on platform and debug informa-
tion. It performs 30% - 80% of the JVM in JDK 1.1 (without JIT compiler).
The size of the needed heap is tens of kilobytes. The code is and consists of
14000 lines distributed on 25 C/C++ files. The code is written to be reada-
ble (well commented) and easy to understand.

It is unclear if it is possible to download Java programs that are not
known beforehand, for example, Java MIDlets.

KVM

The first commercial JVM for embedded systems developed by Sun is the
KVM. The size of KVM is between 40 - 80kb depending on compiler
options and target platform. A normal application would use about 256kb,
of which the heap is half (128Kkb).

A pre-verification tool that is typically run on another machine before
the classfile arrives to the VM in the embedded system supports verifica-
tion. Classfiles are given an extra “stackmap” attribute to support fast,
and memory effective verification (5% larger classfiles).

A “ROMiser” tool for converting classfiles into a format that is directly
linkable in the virtual machine has been developed, reducing the start-up
times considerably. The tool is named Java Code Compact, JCC. The
result is a C code file that is compiled and linked together with the KVM.

CLDC HotSpot Implementation Virtual Machine

The latest addition to the JVM from Sun is the CLDC HotSpot Implemen-
tation Virtual Machine, which incorporates a JIT compiler. The optimisa-
tions execute an order of magnitude faster (10 - 20 times) than the
interpreted variant. The compiled code uses four to eight times as much
space as the original bytecodes. Only the most frequently used parts of
the application, i.e. the hotspots, are compiled to keep the memory con-
sumption at a low level. A statistical profiler keeps track on the number of
times a method is executed. The basic optimisations of this one-pass JIT
compiler are: constant folding, constant propagation, and look peeling.
The target platforms are 12-32MHz processors with at least 512kb mem-
ory, i.e. mid- to high-end mobile phones.

Java Card VM
There exists a Java Virtual Machine specification for small-memory
embedded devices (see [JCVMS]), e.g. smart cards, together with a
shrunk API, and a small runtime system. The typical application is an 8-
bit or 16-bit processor architectures with 1.2kb RAM, 16kb EEPROM, and
32kb ROM. The Java Card Application Interface (see [JCAPI]) is a small
subset of the java.lang package with added functionality for security and
communication between applications, Java Card Applets. The runtime
system is specified in the Java Card Runtime Environment Specification
(see [JCRE]). It explains how to utilise Java Card Applets and how they
can interact with each other.

The JCVM Specification restricts the applications to be single
threaded, thus removing some functionality of the language and invali-
dating the java.lang.Thread class and related classes. Dynamic class load-

120

ing and garbage collection is not supported. Finalisation of objects is
omitted. Further, the security manager in the J2SE API is removed. An
applet firewall is introduced to keep objects unreachable from other appli-
cations. Cloning is removed, and native methods are not permitted. The
following types are removed: char, double, float, and long. Integers could
optionally be removed. Only one-dimensional arrays are supported. How-
ever, exception is fully supported. Only a few exceptions and errors of the
virtual machine are not included from the J2SE specifications.

Classfiles are considered to large to fit into the environment of Java
Card. Instead, a Java Card Converter collects classes in a package into
the Connected Applet format (CAP). Symbols, i.e. the CAP interface, in
the CAP are placed in an export file. Linking of many packages is resolved
with the aid of the export files. CAP files are loaded into a terminal, typi-
cally a “powerful” computer that prepares the applet that is executed by
the virtual machine of the “card” computer.

Since the target platform has a limited address space, many bytecodes
are unnecessary. Every class is limited to 256 static methods and 256 vir-
tual methods (2 different types * 128 methods per type). Every class may
only be instantiated 255 times, and the maximum length of a method is
32767 bytes.

These restrictions are well in line with those of the IVM. However, the
aim of the IVM is to add multi-threading and garbage collection to the
same target platforms as those of Java Card.

6.3.2 Embedded virtual machines

Many Java virtual machines, like the KVM, are targeted towards embed-
ded systems. Typical features of those are that some features of the JVM
Specification are not supported to make the machine smaller. The sup-
ported API is often a subset of the J2SE API or the J2ME/CLDC PAI.
Applications tend to focus on concurrent systems, and not hard real-time
systems.

SimpleRTJ

The simpleRTdJ (see [SRTJ]) is a Java architecture for concurrent memory
limited embedded system without a RTOS. The footprint of the system
can be 17-19kb with almost all features of Java. Floating-point types are
optionally included in the runtime environment. The classes of a Java
application are bundled together by the classlinker and linked with
native code and the simpleRTJ source files to form a native code binary
image that can be put in the embedded system. The JNI is not supported.
Many classes from the standard libraries are supported. SimpleRTJ is
developed by RTJ Computing Pty. Ltd. in Perth, Australia.

WABA

An attempt to migrate Java for embedded systems is the open source
Waba virtual machine (see [WABA]). The Waba classfile and bytecode for-
mat are strict subsets of the classfile and bytecode format supported by
Java. The primary target platform for Waba has been PalmOS, but it has
been ported to many different operating systems.

121

The Waba language, virtual machine, and classfile format were
designed to be for small devices. Features that would use substantial
amounts of memory or that were deemed unnecessary for small devices
were omitted from the design of the Waba language and platform, e.g.
exceptions, floating-point arithmetic, and limited address space (32kb).
Waba has a rewritten subset of the core functionality of the J2ME/CLDC
API, with some simple user interface routines. Waba programs may run
in a Java environment, however, the contrary is not always the possible.

Waba was designed for small, usually mobile, devices. Waba virtual
machines are available that are under 72.3kb in size (including founda-
tion classes) and that run programs in less than 10K of memory. The VM
takes 40KB of executable code on Motorola 68K processors, and about
double that on a Pentium.

A more powerful Waba variant, Superwaba (293kb with classes and
VM) executes faster and contains a larger subset of Java.

6.3.3 Real-time Java Virtual Machines

These machines are focused on achieving hard real-time behaviour.

6.3.4 JamaicaVM

This JVM implementation is made by Aicas real-time in Karlsruhe (see
[SW]). Their JVM is suited for hard real-time applications in embedded
systems. The program builder takes a set of classfiles and produces a C
source code file that is compiled by a C compiler to an object file that is
linked together with other Jamaica VM files into a single executable. The
builder can run in a smart mode that omits symbols, and unnecessary
code, i.e. this selective compilation removes code that cannot be utilised
during runtime, at the expense of reflection, and dynamic class loading.
The classfiles may be transformed completely to C code, or to memory effi-
cient intermediate internal bytecodes that are interpreted. The C code
executes faster than the bytecodes, however, it is more spacious. The byte-
codes are linked with an interpreter to form an executable. The Jamaica
VM identifies classfiles as the largest memory consumer. Compaction of
classfiles reduces the size of classfiles up to 50%, and smart linking up to
90%. Just-in time compilation is completely omitted since it takes to much
time to convert the code, which results in a pessimistic real-time analysis.

Jamaica VM supports J2SE (however, not all the classes have been
implemented). Native methods are interfaced by the relatively memory
consumptive JNI 1.2 (added optionally) or by their own and more compact
Jamaica Binary Interface, JBI.

A simple “HelloWorld” program (62 Java bytecodes) compiles to a
150kb executable on a PowerPC. If smart linking is activated, the applica-
tion shrinks to 130kb, of which the VM is 120kb. The RAM utilisation for
is 260kb, of which 1,8kb are utilised as a heap by the application.

The real-time is supported by an exact and incremental real-time gar-
bage collection and profiling tools. All threads are real-time threads. Any
higher priority threads are guaranteed to preempt lower priority threads
within a fixed worst-case delay. The profiling tool determines the worst-

122

case execution is given for any code, by counting the number of executed
bytecodes in every method. The memory analyser determines the memory
consumption. It finds the amount of memory that is actually used by the
application and how long time the maximal time the GC will interrupt the
application. A larger heap reduces the, the smaller worst-case GC execu-
tion interruption of the garbage collector. The exact size of the heap and
the number of threads, but also the classfile API affects the size of the
executable. The parameters are given to the Jamaica compiler. Threads
are preemptied after a set number of intermediate instructions, i.e. a
more efficient form of bytecodes. It makes the preemption mechanism
simple to port. Native methods do not affect the real-time behaviour. We
assume that the native code may be preemptied in the same fashion as
the compiled Java code.

6.3.5 PERC

Kelvin Nilsen and his company NewMonics put aside the Java certifica-
tion process from Sun, in favour own ideas. NewMonic’s Java environ-
ment is named PERC and it consists of a development environment
besides the JVM and the classfiles (J2SE). PERC can handle hard real-
time with the support of an incremental, copying, and exact real-time GC.
The systems consist of approximately 50000 lines of code. Optimising
ahead-of-time and just-in-time compilation is supported. The develop-
ment environment supports debugging, simulation, and performance tun-
ing, e.g. maximum number of heap allocation regions, and CPU time
dedication to threads. ROMised bytecodes are also supported. It seem
that the target architectures (ARM, Intel X86, XScale, ARM, MIPS, and
68K) are in the more advanced end of the embedded systems market.

6.3.6 JBed

A full-featured real-time JVM for embedded system is the JBed from
Esmertec (see [JBed], and [JBed99]). JBed supports both ahead-of-time
compilation and classfile conversion during runtime. Real-time is
achieved by compilation to the platform before execution. A step towards
the real-time specification for Java has been taken with Tasks. They are a
subset of ordinary threads, but add real-time characteristics. A task may
be specified to complete within a certain deadline, or utilise a specified
amount of CPU time. The scheduler implements an earliest deadline first
scheduling algorithm [Pil00].

J2ME/CLDC 1.0 and MIDP 2.0 are supported. JBed, in its static form,
and the CLDC classfiles occupy 210kb on an ARM7 code.

6.3.7 Kertasarie

A german JVM implementation, called Kertasarie, claims to handle real-
time in embedded systems. The Kertasarie VM implements its own native
threads based on the OS threading model (green threads). Priority inher-
itance is implemented to avoid priority inversion. The machine occupies
typically 60-80kb and the API occupies about 200kb (ROM or RAM).

123

Another 100-200kb RAM is needed during execution. Classes may be
“preloaded” to increase the start-up time. Many parts of the machine are
modularised and can be selected or removed from a VM. Hard real- time
issues have yet to be proved for the Kertasarie JVM.

6.3.8 Summary

Spotless and Javalndava is remarkably simple. The idea of describing a
JVM in Java and then generating C/C++ code of that code is appealing.
Object layouts could be suited for the platform, e.g. a fast but memory
consumptive 8-bytes aligned offset to every attribute, or a compact byte
alignment of object attributes. However, the real-time aspects are lacking
in Spotless, but Spotless would be well suited for real-time modifications.

PERC is complex. The real-time aspects are complex and require
extensive knowledge of the runtime system. The simplicity of Java is lost.

e VMs from Sun are targeted for embedded systems without real-time
requirements. They leave a large embedded system segment between 1-
8MHz, 32kbROM, and 10-32kb RAM. The Java Card VM is too limited to
provide high-level features. However, there it is relevant to the industry
to be able to write high-level code for that segment.

6.4 Java to C compilation

Many real-time applications are written in C (or a “safe” subset of C). To
achieve real-time functionality, concepts of threads, scheduler, and pre-
dictable execution time and predictable memory utilisation are added.
Java provides a standardised way to utilise threads. Scheduler implemen-
tation, however, is not standardised in Java. Memory management is
standardised in Java with the garbage collector. Memory analysis tools
have to be added to guarantee the memory utilisation.

A Java to C compiler could enable the benefits of Java to the program-
mer while maintaining the traditional real-time language community.
This approach is utilised in the JamaicaVM, and the PERC system
described in Section 6.3.4, and Section 6.3.5. Another approach is the
Java2C compiler written by Anders Nilsson, [NE01]. Java2C converts the
Java code into C and adds garbage collection and a predictable kernel, i.e.
threads and scheduler. A hard real-time kernel has been developed by
Torbjérn Ekman [Ek00], for the AVR processor. The binary code had to be
analysed by hand to produce the WCET. The GC implements the Garbage
Collector Interface, GCI, which enables different garbage collectors to be
utilised without changing the generated C code.

A preliminary performance estimation of the Java2C execution and
the IVM reveals 5 to 10 times faster execution of the generated C code.

124

Chapter 7

Future work and conclusions

In this work, a foundation has been laid for further work. Even though
the principal objectives, i.e. merging real-time and high-level program-
ming languages, have not been proven, no obstacles have appeared to pre-
vent the merge either. Future work, however, will conclude the
integration after more work has been done on the WCET analysis.

Many other interesting topics related to the IVM have appeared dur-
ing the implementation of the IVM. The IVM serves as a good foundation
for further explorations into the real-time domain. The following subjects
are discussed as future work: how to adapt the IVM to real-time, more
general real-time issues, and optimisations of the IVM. Interpretation
and compilation that run together in embedded systems could be studied
to determine if the benefits form the domains are possible to join. During
the development of the IVM, many interesting topics were discovered.
Code replacement during execution of real-time applications would be an
interesting continuation of the real-time IVM. The Meta Virtual Machine,
MVM, could be created to describe a JVM and to generate the machines.
The minimal language is a spin-off to describe a language that is portable
by itself. At an architecture level, the split machine presents an intrigu-
ing situation where nodes could communicate with each other.

7.1 Real-time adaptations

To achieve predictable behaviour of the virtual machine, the following
parts must be implemented:

¢ Predictable bytecodes — all bytecodes in the machine must have a
WCET.

e Code execution analyser — the control flow must be analysed
together with the memory utilisation.

¢ Predictable scheduler — the scheduler must be predictable and
implement a predictable scheduling algorithm.

126

¢ Real-time garbage collector — the garbage collector must be predict-
able.

The three first parts have been implemented in the IVM. However, the
current garbage collector is not completely adapted to real-time. Real-
time analysis remains to be implemented before WCET can be deter-
mined for the bytecodes and the scheduler. The code execution analyser is
implemented but not integrated into the machine.

7.2 Real-time code replacement

Preliminary work has been conducted to replace code during execution in
the IVM. With a real-time virtual machine, as stated in the previous sec-
tion, the code replacement could be performed during execution of real-
time programs. Two approaches of code replacement are considered. First,
the fine-granular approach replaces segments of code by, for example,
adding a “backpack” of the new code, and inserting a method call where
the code is replaced (see [BM83]). The other approach is to exchange com-
plete modules, plug-ins (see [JDP]).

Code replacement requires another computer and a network to com-
municate the new code to the real-time machine. The network does not
have to be deterministic in the sense that information is transmitted
within a determinable period. However, together with a real-time
machine, the performance may probably be increased with a deterministic
network.

Another related issue is to study the real-time behaviour of a system
that could download binary code as well as bytecodes.

7.3 Interpretation and compilation co-operation

Interpreted code and complied code could co-exist in the same application.
Time critical code sections could be compiled and the other code could be
interpreted to save space. For example, in a real-time application, a con-
trol loop could be compiled to increase the performance of the control sys-
tem. The other code could be left interpreted. However, the compilation
would be performed offline and not in a JIT fashion because JIT compila-
tion often require vast amount of memory. Interpretation is often bur-
dened with slow performance, but it often has smaller method sizes, and
benefits from portability. Compiled code often requires more space, per-
forms better, and is difficult to port to other systems.

The Java2C-compiler developed by Anders Nilsson (see [NEO1]) is
especially interesting to study in the relation to the IVM since the object
design is the same, and the interface to the garbage collector has been
developed in co-operation.

7.4

127

Optimisations

There are many sections of the IVM code that should be optimised for
both speed and size. Development of the machine has been concentrated
upon basic functionality, i.e. to get the machine to work. When optimisa-
tions have been performed, the size has always been considered before

speed.

The following list is a selection of optimisations that are interesting to
implement and study:

Exception optimisations — the machine require many exceptions
that are similar in structure. Since they are similar, they could be
handled differently to decrease the memory consumption. For
example, exception classes could be created, as they are needed, to
save memory. Real-time related exception classes should be gener-
ated before the entrance of the real-time loop. In the split machine,
the necessary exceptions should be loaded on demand.

Compressed file systems — the classfiles consume significant
amount of memory. Compression could reduce the size of the class-
files significantly. Many Java systems have already adopted com-
pression to their classfiles (see [SRTJ] and [WABA]).

Remove arrays with zero elements — currently in the IVM there are
many zero sized arrays. Memory could be saved if these zero sized
arrays would be removed by, for instance, a check everywhere an
array is accessed. Measurements should be performed to show how
much is gained by removal of zero size arrays.

Organise global data structures — the final size of global tables is
determined when all the classes have been loaded. To support
tables with variable size, they could be implemented as a linked
list, or as small arrays linked together. However, the tables are
extensively utilised during class conversion that renders linear
search algorithms inefficient. To improve the table access, it could
be implemented as a hashtable, or as another performance increas-
ing data structure. The penalty would be larger memory consump-
tion.

Bytecodes optimisations — since it is possible to modify the internal
bytecodes arbitrarily, it would be interesting to study variations of
the bytecode instruction set, or a combination of bytecodes and
binary code. Platform specific bytecodes could utilise hardware
more efficient and a reduced instruction set reduces the size of the
virtual machine.

Interface method optimisations — analyse the interface methods to
find a faster bytecode variant for real-time embedded systems. The
class linking could try to create interface arrays where the inter-
faces are located at the same offsets — the interface array could be
extended to hold all the interfaces. Every interface would then
acquire a unique offset that is utilised to locate its method array
independently of which class template is utilised. Another approach
to improve the performance of interface method calls is to guess the
interface location in the interface method array by adding a guess

128

operand to the interface bytecode. A good guess is the last interface
index that was found. That approach, however, has as bad WCET
behaviour as the worst case is a linear search for the method array.
As bytecodes are changed in this approach, they must not reside in
ROM. It would be interesting to study different approaches to the
interface method localisation.

¢ Inlined class templates — the information in the class template is
consists of many references to other data structures, e.g. the virtual
method table, and the constant table. These data structures could
be inlined in the class template itself to increase performance.
Memory consumption may even decrease with inlined data struc-
tures because the number of objects, and object heads, is smaller.

¢ Other optimisations techniques — ordinary optimisation techniques
should be implemented and evaluated. For example, caches for field
and methods, constant propagation etc.

7.5 Measurements

Performance and memory measurements should be conducted in depth on
the IVM. Interpretation is not as fast as compiled code, but it may be
more memory efficient. The performance bottlenecks and the benefits
should be pinpointed. Different target platforms and the two machine
variants should be utilised in the tests.

An in depth study of the performance (speed and memory) of the vir-
tual machine would make clear the bottlenecks and the advantages with
interpretation. For example, how much performance is lost by the mem-
ory efficient virtual method calls in the bytecode, or how much memory is
gained by removal of floating-point types and long integer types (32- and
64-bits). How much space is saved by the symbol table?

Since the memory requirement of the IVM is crucial, it is interesting to
get a grasp of the classfile sizes and the sizes of the contents of the class-
files. The classes of the following APIs should studied: J2SE, J2EE, and
J2ME. More information about the APIs can be found in [J2SE], [J2EE]
and, [J2ME], respectively. The measurements on the classfiles concern
size of constant pool, size of fields, methods etc. How many symbols can be
reused? How much of the symbols are only utilised as reference and
descriptive purposes? How much is gained if only the necessary parts
remain?

The sizes of the data structures in the machine should be measured in
detail. The split machine should also be taken into account. Its internal
structure differs from the homogeneous machine. Ideally, only the neces-
sary data structures should reside in the split machine.

7.6 Meta virtual machine
A meta virtual machine, MTM, describes and generates virtual machines.

There are many different requirements for different platforms. In the
IVM, the port specific information is collected in a module that is modified

129

according to the specific platform. However, there always arise new
demands and desires that are not thought of in the original design. It is
desirable to test and evaluate new ideas quickly. For example, object lay-
out could implement four-byte aligned data, which is desirable in 32-bits
architectures, or one-byte aligned attributes in 8-bits processors.

New ideas could be implemented and tested without thorough knowl-
edge of the virtual machine code. A future project idea is to implement a
meta virtual machine and use Java as the description language (see
[JIJ98]). To further describe the machine in a more expressive way is to
utilise a symbol language, e.g. the notation language described in
[[ve98.3]. This section discusses and presents design ideas for a MVM
implementation in Java.

7.6.1 Template and class structure

It is essential to describe the internal structure of the JVM. This could be
done in MVM as Java classes. The internal data structures that have to
be described are the template structure of the IVM. It consists of:

Classes

Arrays

Interfaces

Primitive classes

Instances of classes, arrays, interfaces, and primitive classes
Methods

Method activations (or instances)

The layout of the classes in the generated machine should be described by
classes in the MVM. The attributes in a class of a generated machine
should be described as attributes in the MVM.

7.6.2 Obiject layout

The object layout of a virtual machine should depend on the underlying
processor architecture. In addition, different requirements such as mem-
ory utilisation, performance, and hardware considerations, e.g. mapping
of an object to hardware port, may affect the object layout. The MVM
could describe the different object layouts in an object-oriented fashion.
Figure 7.1 describes three different object layouts: objects with four-bytes
aligned attributes, one-byte packed attributes, and an object layout that
maps a hardware port. To map a hardware port directly may avoid trans-
lation overhead, as data in one representation must be converted to data
that suits another representation. For example, an IP-packet may be
mapped directly onto a Java object.

Some processors utilise different reference sizes, e.g. 16-bits references
or 24-bits references. If the address space is four-bytes aligned, there is
only need for 14-bits to fully cover a 16-bits address space. Reference sizes

130

should be reflected in the object layout. In Figure 7.1, 2-bytes and 4-bytes
references are also taken into consideration.

4-bytes alignment, 4-bytes references

(IOPort) A
short a a b p L
byte b
A D
int i a b p i c g d e

AN RAAA RALS RARS RAN SAAH RALE LA 5558
1-byte alignment, 2-bytes references k}

b a i . .
5 internal fragmentation
short c
B g dba cp i eq
byte d
byte e

1-byte alignment, 2-bytes references,
hardware port mapping

bagp 1 d c e
|||III|III|I I|||I||

IOPort
<

»
al L

Figure 7.1 Different object designs would easily be expressed in the meta vir-
tual machine. The figure contains three different object designs. The variants
are: four-bytes alignment, one-byte alignment, and hardware specific consider-
ations.

Other requirements may also influence the object design. In a system
with a small memory, a non-moving garbage collector could be considered,
even if it results in fragmentation. An object consists of an object head,
e.g. GC-information, a template reference, and synchronisation informa-
tion. If the memory is limited to 256 memory blocks, a reference could be
expressed with only one byte. In those systems, an object head could con-
sist of three bytes: template reference, GC-information, and synchronisa-
tion information, e.g. an index to a monitor pool, or a direct reference to a
monitor object. If the block size is four bytes, the remaining byte could be
an attribute of reference type, a boolean type, or a byte type. The complete
memory area would then be 1kb. A more realistic block size would be
eight bytes, resulting in a 2kb heap. The VM could be equipped with a
minimal interpreter optimised for an address space covered by 8-bit
addresses. Drastic modifications like the minimal object design could be
performed with the MVM. The effects could directly be compared with
other alternative object designs.

7.6.3 Code generation

The MVM could be designed to generate C code for those segments that
would benefit from faster execution. Primarily, the MVM could be exe-
cuted as a Java program. However, a minimal amount of C code genera-
tion from the MVM code is necessary to bootstrap the generated virtual
machines. As the core code for the virtual machine is generated, the rest
could execute as bytecodes. One advantage of a two-language representa-
tion of the same description is that a comparison would reveal bottle-
necks.

131

The generation of the core VM code could also be expressed in the
MVM by adding descriptions of the code generation of the core. In the gen-
erated VM, the interpreter’s bytecodes could be specially designed for a
specific instruction set, e.g. a limited address space, or a digital signal
processor. Different interpretation algorithms could be expressed without
too much work. Optimisations, such as inlining, could be added. Virtual
machines could easily be generated and compared. Another code genera-
tion example is how the interpreter should be expressed in C code. One
direct approach is to implement the interpreter as a switch statement,
where each case alternative corresponds to a bytecode. There exist more
efficient interpretation methods, e.g. by storing addresses as bytecodes,
where the bytecode is implemented as a code sequence and located by a
simple jump-instruction (the bytecode).

Another code generation consideration is to map the stack and the
local variables on processor registers to increase performance. Bytecodes
have been mapped to registers in a JIT compiler (see [ACL98]).

The interface to the code generation should be interesting to general-
ise. The design of an interface that accommodates the different require-
ments is an interesting problem.

7.6.4 Summary

A Java virtual machine generator could be a solution to test and compare
the different requirements and optimisations that has emerged during
the development of the IVM. Platform specific requirements could be
obliged in a safer and more controlled way. A test suite could generate
comparison tests of the generated machines. To raise the abstraction
layer from the current C-code of the IVM to Java would result in code that
is more secure and reduce the debugging time significantly. Most of the
debugging sessions of the IVM revolve around errors in the hand coded
garbage collector interface.

The interface to the machine description should be open and suffi-
ciently simple to implement modifications. The meta virtual machine
addresses these problems.

7.7 The minimal language

Another approach to platform independence is to create a bootstrap lan-
guage that is implemented in the language itself and that require as
small platform support as possible. The platform specific parts should be
simple to port to any other language that is supported by the platform.
When those initial parts have been compiled, the bootstrap procedure
begins. The language should be able to build itself.

A direct approach would be to express the language on basic assembly
level operations, for example, load from memory, store, and perform a cal-
culation.

132

7.8 Real-time issues

Schedulers in C and Java

It would be interesting to study the difference between schedulers imple-
mented in Java and in C. Java schedulers benefit from a Java interface to
the scheduler that enables simple scheduling modifications. Schedulers in
C, should be faster, but must be compiled together with the machine. The
performance, time of context switching, and the size should be compared.
Threads would also be interesting to implement in Java and in C.

A scheduler is responsible for the execution in its environment. Other
schedulers may be instantiated inside the environment of another sched-
uler. The combination of many schedulers in one application would be
studied in deeper detail. Communication between real-time environments
within one application has not been studied in detail, to my knowledge.

Native threads co-existing with Java threads

It should be interesting to study threads in Java that are mapped to the
thread handling routines of the underlying operating system. Benefits
from, for example, a real-time kernel could be integrated into the VM. A
combination of native threads and threads handled by Java should be
interesting to study in detail.

Native threads require a stack for every thread. The WCLM size of the
stacks is relevant to determine. A study of the native thread memory uti-
lisation could be integrated into the memory analyser, if the code is anno-
tated.

Predictable C-stack sizes

The size of the C-stack may vary during execution, especially if native
methods are utilised. A predictable VM must be able to keep track on its
WCLM of the C-stack. If native methods do not allocate dynamic memory,
or call other methods outside the machine, the memory consumption of
the C-stack can be determinable by profiling. To enable recursive native
method calls, a more thorough analysis has to be performed to determine
the WCLM for the C-stack. With some annotations about the memory
behaviour in the native C-methods, a memory profiler can provide the
WCLM.

Different context switching points
Currently the context switch may be performed after the execution of a
bytecode. Other context switching points would be interesting to study, for
example, after each line of source code ([SIM89]), after the execution of a
method invocation and backward jump, or in specific context switching
bytecodes that are inserted by the class loader. The execution of a given
number of bytecodes before a context switch would enable the benefits of
RISC architectures. The registers in the processor do only need to be writ-
ten back before a context switch.

To allow preemption everywhere during execution, even in the middle
of a bytecode, is another interesting approach. The IVM could serve as a
test bench for preemption, and it could be compared with other context
switching alternatives.

133

Real-time application debugging

Real-time applications often tend to be more complex to debug than ordi-
nary applications. One problem is often to reproduce the error. With the
IVM, a debugging context switch could be performed after every bytecode
to increase the predictability of the multi-threaded program. This
extreme thread switching could also put pressure on the functionality of
the application. Some real-time errors could be forced to appear and
repeated with this kind of extreme context switching.

Memory efficient synchronisation

The Java Language Specification states that every object should have a
lock. However, in embedded systems, the locks take considerable memory
space, and not all the locks are utilised during runtime. An idea is to cir-
cumvent the unnecessary memory consumption is to give the impression
that every object has a lock. Only the necessary objects are equipped with
locks. This can be achieved in many ways:

¢ Lazy-evaluation — create locks as they are needed. This approach is
time-consuming, and burdens real-time applications.

¢ Lock pool — create a limited amount of locks that are reused. This is
time efficient since all locks are created during the start of an appli-
cation. However, the amount of locks may be difficult to determine.

e Static analysis — the application is analysed before runtime and the
necessary locks are created. The ability to download new classes is
prohibited with static analysis. Code outside the analysis may uti-
lise objects as locks that are not determined as locks by the ana-
lyser.

¢ Dynamic analysis — give every thread its lock that the thread uti-
lises to lock objects (see [Blo00]).

It would be interesting to study the efficiency and the memory consump-
tion for the different approaches.

WCET analysis

The determination of the worst-case execution time for a Java program
should be performed by addition of all the WCETSs for the bytecodes in the
most time-consuming execution path of the program. The bytecodes exe-
cution times are calculated on a deterministic processor by adding the
binary code for each bytecode. The WCET of a bytecode must also incorpo-
rate the execution of read-and-locate the next bytecode.

After the execution every bytecode, the interpreter checks if there is a
pending context switch, and if so, the active thread is rescheduled. The
WCET for the scheduler has also to be added in the scheduling analysis.
The scheduling analysis determines if the application is schedulable.

Real-time garbage collector

The exact and incremental RTGC is scheduled as a thread. Higher prior-
ity threads can interrupt its execution. Lower priority threads are not
considered time critical. They are executed after the high-priority threads
have had their memory allocations managed by the GC-thread. The mem-

134

ory management of low-priority threads are performed incrementally as
they occur in the code, while high-priority threads only performs minimal
memory management work when they are running.

Real-time analysis feedback to the programmer

The real-time analysis could be included in a tool to provide a program-
mer with feedback of the real-time analysis. The execution time of a code
sequence could be shown and utilised in a scheduling analysis. A real-
time expansion of an existing incremental development tool would be
preferable, e.g. eclipse (see [Eclipse]) or applab (see [Bja97]).

The tool should also show the worst-case live memory. The program
has to be annotated with memory comments to support the WCLM analy-
sis. As the annotations are changed, the memory analysis is performed
again.

Periodic jitter

The preemptive context switches in the IVM are performed only after the
execution of a bytecode. The time to finish the bytecode execution imposes
an extra time overhead to take into account during scheduling analysis
and in the control loop. The occurrences of the periodic jitter for two
threads are depicted in Figure 7.2. The figure also shows a presumed dis-
tribution of jitter times, where the worst-case jitter time marks the execu-
tion of the longest bytecode.

thread Jitter time
jitter time Jitter Jitter Jitter
B
A
time
frequency runtime jitter time distribution

most common jitter time

avyrage-case jitter time

worst-case jitter time

Jitter time
Figure 7.2 Threads have to finish their currently executing bytecode before a
context switch can occur.

135

7.9 Communication between nodes

The nodes in a split machine can communicate with each other, and not
only with the supervisor, since they have access to the same network. The
co-operation of many nodes may result in semi automated computer sys-
tem architecture. Inter node communication would also be a step towards
ubiquitous computing. Java can serve as a powerful interface language
between nodes. A project in this direction is the Java code transfer project
over Bluetooth (see [Bon02]) where the IVM was run in a control compu-
ter and a Koala robot. Bytecodes were transmitted to the control compu-
ter that later ran the downloaded program. The system architecture in
semi-autonomous systems would be interesting to study in deeper detail.

7.10 Conclusions

This thesis constitutes a foundation on which further work can be imple-
mented to empirically prove that real-time and embedded systems can
achieve the desirable consequences of high-level object-oriented program-
ming languages without significant modifications or adaptations. Only
some parameters for the GC are required, for example, memory allocation
speed of high-priority threads, together with annotations in the code, to
reach this end, however, it still has to be proven. The approach to imple-
ment a virtual machine on top of the hardware platform seems to be a
good balance for safety critical systems. They have to rely on statically
verified code. In safety critical systems, every compilation would require a
new time-consuming verification of the compiled code — even small
changes of the source code could result in major changes in the binary
code. A VM could be a good tradeoff. It can be compiled and verified once
for the platform. All the programs that are executed by the VM run in a
safe environment.

A major contribution of the IVM is to open the runtime system from
native C code. Threading and garbage collection are possible to modify
and even adapt to an already existing runtime system. Integration of the
IVM into another system is simplified through this possibility to reach the
internals of the IVM from native C code. No other VM enables this possi-
bility. Other JVMs require at least a specific memory area for the machine
and they cannot cooperate with a GC or a scheduler that already operates
in the underlying runtime system. Most common is a JVM that require
complete control of the hardware platform — an unthinkable sacrifice for
many applications.

Even though the goals of the project have not been empirically proven,
no obstacles have emerged during the implementation this far. WCET and
WCLM analysis remain to be calculated and verified, and the complex
integration of a RTGC and a predictable RT kernel into the IVM is left as
future work. Together with the RT analyser and a scheduling analyser,
the system would be complete to prove the goal of modern high-level pro-
gramming languages in RT embedded systems. All the parts have been
developed and verified separately, but they all have to be collected

136

together in one application- The IVM serves as the link to all the men-
tioned parts.

References

[ABW90]

[ACL98]

[AD97]

[AT36]

[Big98]

[Bja97]

[B1o00]

[BMS83]

N.C. Audsley, A. Burns and A.J Wellings. Hard Real-Time Scheduling:
The Deadline Monotonic Approach, Proceedings of 8th IEEE Workshop
on RealTime Operating Systems and Software, Atlanta, GA, USA,
ppl127-132, 1990.

Ali-Reza Adl-Tabatabai, Michal Cierniek, Guei-Yuan Lueh, Visgesh
M. Parikh, James M. Stichnoth. Fast Effective Code Generation in a
Just-In-Time Java Compiler, SIGPLAN ’98, ACM 0-89791-987-4/98/
0006, Montral, Canada, 1998.

0. Agesen, D. Detlefs. Finding References in Java Stacks. OOPSLA’97
Workshop on Garbage Collection and Memory Management, Atlanta,
Georgia, October, 1997.

Alan Turing. On computable numbers, with an application to the
Entscheidungsproblem, Proceedings of the London Mathematical
Society, Series 2, 42 (1936), pp 230-265.

L. A. Bigagli. Real-Time Java — A pragmatic Approach, Master thesis,
LU-CS-EX:98-12, Dept. of Computer Science, Lund Institute of
Technology, Lund, 1998.

Elizabeth Bjarnason. Interactive Tool Support for Domain-Specific
Languages, Licentiate thesis, Department of Computer Science, Lund
University, Lund, 1997.

A. Blomdell. Efficient Java Monitors, Technical Report ISRN
LUTFD2/TFRT--7593--SE, Department of Automatic Control, Lund
Institute of Technology, Lund, Sweden, 2001.

Boris Magusson. Code-Objects: a support for incremental compilation,
LUTFD2/(TFCS-3005)/(1-15)(1983) & LUNFD6/(NFCS-3005)(1-15)/
(1983), Department of Computer Science, Lund Institute of
Technology, August, 1983.

[BMRSS96]Fran Buschmann, Regine Meunier, Hans Rohnert, Pater Sommerlad,

[Bon02]

Michael Stal. A System of Patterns — Pattern—Oriented Software

Architecture, John Wiley & Sons Ltd. 1996.

Mads Bondo Dydensborg. Implementation of Dynaminc code and state
transfer with Java via Bluetooth, Department of Computer Science,
University of Copenhagen, July 2002.

[BOSW98] Gilad Bracha, Martin Odersky, David Stoutamire, Philip Wadler.

Making the future safe for the past: Adding Genericity to the Java

138

[CAN91]
[C78]
[C++91]

[CEO00]

[Der74]

[DNM68]

[Eclipse]
[EHA00]

[Ek00]

[FGO2]

[GCI02]

[Ges03]

[GHJV95]

[GR83]

[Hen98]

[HePa96]

[Ive98.1]

[Ive98.2]

[Ive98.3]

Programming Language, In OOPSLA Proceedings, October 1998.

Bosch, Postfach 50, D-700 Stuttgart L. CAN Specification, version 2.0
edition 1991.

B. W. Kernighan and D. M. Ritchie, The C Programming Language,
Prentice-Hall, Englewood Cliffs New Jersey, 1978.

Bjarne Stroustrup, The C++ programming language (2nd ed.),
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 1991

A. Cervin and J. Eker: Feedback Scheduling of Control Tasks, In
Proceedings of the 39th IEEE Conference on Decision and Control,
Sidney, Australia, December 2000.

M. L. Dertouzous. Control Robotics: The Procedural Control of
Physical Processes, Information Processing 74, North-Holland
Publishing Company, 1974.

0.J. Dahl, K. Nygaard, B. Myrhaug. Simula 67 Common Base
Language, Technical Report, Publ. no. S-2, Norwegian Computing
Center, Oslo, 1968.

http://www.eclipse.org/org/index.html

Johan Eker, Per Hagander, Karl-Erik Arzén. A Feedback Scheduler
For Realtime Controller Tasks, Proceedings of IFAC Control
Engineering Practice 2000.

Torbjorn Ekman A hard real-time kernel with automatic memory
management for tiny embedded devices, Master thesis, Department of
Computer Science, Lund Institute of Technology, Lund University,
Lund, 2000.

Flavius Gruian. Energy-Centric Scheduling for Real-Time Systems,
Doctorate thesis, Department of Computer Science, Lund Institute of
Technology, Lund Univerisy, Lund, Sweden, December 2002.

Anders Ive, Anders Blomdell, Torbjérn Ekman, Roger Henriksson,
Anders Nilsson, Klas Nilsson, Sven Robertz—Gestegard, Garbage
Collector Interface, Proceesings of NWPER’02 — Nordic Workshop on
Programming Environment Research, Copenhagen, August, 2002.

Sven Gestegéard Robertz. Flexible automatic memory management for
real-time and embedded systems, Licenciate thesis, Dept. of Computer
Science, Lund University, May 2003.

E. Gamma, T. Helm. R. Johnson, J. Vlissides. Design Patterns:
Abstraction and Reuse of Object Oriented Design, Addison—Wesley,
Reading, 1995.

Adele Goldberg, David Robson. Smalltalk-80: The Language and its
Implementation, Addison-Wesley Publishing Company, 1983.

R. Henriksson. Scheduling Garbage Collection in Embedded Systems,
Doctorate thesis, Dept. of Computer Science, Lund University, July
1998.

John L. Hennessy, David Patterson. Computer Architecture A
Quantative Approach, Morgan—Kaufmann, second edition, 1996.

A. Ive. Adaption of a Mailbox to a Real-Time Garbage Collector,
Technical report, LU-CS-TR:2002-225, Deptartment of Computer
Science, Lund Institute of Technology, Lund University, Lund,
January, 1998.

A. Ive. Runtime Performance Evaluation of Embedded Software,
Proceedings of NWPER’98 — Nordic Workshop on Programming
Environment Research, 1998.

Software Architecture Notations. Software Architecture - An overview
of the state-of-the Art, University of Karlskrona/Ronneby, Department
of Computer Science and Business Administration, Ronneby, april,
1998.

[J2EE]

[J2ME]
[J2SE]

[JBed]
[JBed99]
[JCAPI]
[JCRE]
[JCVMS]
[JDP]
[JIJ98]
[JLS00]

[JL96]

[JNI99]
[JVM99]

[HS02]

139

Shannon, Bill. The Java 2 Platform Enterprise Edition Specification,
v 1.3, Sun Microsystems, Inc., August 2001.

J2ME CLDC API 1.0, Sun Microsystems, Inc., 2000.

Java 2 Platform, Standard Edition, v 1.4.1 API Specification, Sun
Microsystems, Inc., 2002.

Jbed ME Java technology for Small Handheld Devices.
http://www.esmertec.com/download/pdf/Jbed_ME_White_Paper.pdf
JBED: Java for Real-Time Systems, Dr. Dobb’s Journal, November,
1999.

Sun Microsystems, Inc. Java Card 2.2 Application Programming
Interface Specification, September 23, 2002.

Sun Microsystems, Inc. Java Card 2.2 Runtime Environment
Specification, May 13, 2002.

Sun Microsystems, Inc. Java Card 2.2 Virtual Machine Specification,
May 13, 2002.

The JDrums project, http://www.ida.liu.se/~jengu/jdrums/

Antero Taivalsaari. Implementing a Java Virtual Machine in the Java
Programming Language, Techical report TR-98-64, Sun Microsystems
Laboratories Inc., march 1998.

K. Arnold, J. Gosling, D. Holmes, Java Language Specification Third
Edition, The Java series, Addison-Wesley, June, 2000

Richard Jones, Rafael Lins. Garbage Collection — Algorithms for
Automatic Dynamic Memory Management, ISBN 0 471 94148 4, John
Wiley & Sons Ltd, 1996.

S. Liang. The Java Native Interface Programmer’s Guide and
Specification, The Java Series, Addiston-Wesley, 1999.

T. Lindholm, F. Yellin. The Java Virtual Machine Specification Second
Edition, The Java series, Addison-Wesley, 1999.

The dJava HotSpot Virtual Machine, v1.4.1, d2, Sun
Microsystems Inc., technical paper, September, 2002

[KMMN91]Bent Bruun Kristensen, Ole Lehrmann Madsen, Birger Mgller-

[KMLOO]

[KM93]

[LR80]

[Lan00]

[Lin51]

[LL73]

[Lun99]

Pederson, Kristen Nygaard. Object oriented Programming in the Beta
Language, Matematisk Institut, Aarhus Universitet, draft,
Septemper, 1991.

Kelvin D. Nilsen. Simanta Mitra, Steven J. Lee. Method for efficient
soft real-time execution of portable byte code computer programs,
United States Patent 6,081,665, June, 2000.

J. L. Knudsen, O. L. Madsen. Language Implementation. In Object-
Oriented Environments — The Mjplner approach, edited by J. L.
Knudsen & al., Prentice-Hall International Ltd., 1993.

B. W. Lampson, D. D. Redell. Experiences with Processes and
Monitors in Mesa, Communications of the ACM, Vol. 23, No. 2, 1980.

M. Landqvist. Porting and Evaluation of an Embedded Java Virtual
Machine on Palm OS, Master thesis, LU-CS-EX:2000-4, Dept.of
Computer Science, Lund Institute of Technology, Lund, February,
2000.

Carl Von Linné. Linnaeus’ Philosophia Botanica, ISBN 0198501226,
Oxford University Press, June, 2003.

C. L. Lui, J. W. Layland. Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment, Journal of the
ACM, Vol. 20, No 1, 1973.

T. Lundqvist. A Static Timing Analysis Method for Programs on High-
Performance Processors, Licentiate thesis, Dept. of Computer
Engineering, Chalmers University of Technology, Goteborg, 1999.

140

[Mag84]

[NEO1]

[Ngro9]
[Palm99]

[Per00]

[PERCO02]
[Pil00]

[Rez98]

[RTCEO00]

[RT'SJ00]

[RTCO00]

[SCADA]

[SIM89]

[Spotless]

[SLRIO0]

[SRTJ]
[STL95]

[STK300]

[SW]

[TAHGO2]

Boris Magnusson. Contributions to execution environment design
applied to Simula, Doctorate thesis, Department of Computer Science,
Lund Institute of Technology, Lund 1984.

Anders Nilsson, Torbjorn Ekman. Deterministic Java in Tiny
Embedded Systems, Processdings of ARTESO01, Department of
Computer Science, Lund, 2001.

Lund University, Sweden.

Tor Ngrretranders. Mdrk vdrlden, Albert Bonniers Forlag AB, ISBN:
9100570702, Sverige.

Neil Rhodes, Julie McKeehan. Palm Programming — The Develope’s
Guide, O'Reilly & Associates, Inc, January 1999.

P. Persson. Predicting Time and Memory Demands of Object-oriented
Programs, Licentiate thesis, Dept. of Computer Science, Lund
University, 2000.

Differentiating Features of the PERC Virtual Machine, White paper,
Newmonics Inc., August 2002.

Markus Pilz. Earliest Deadline First Scheduling for Real-Time Java,
Paper at Embedded System Conference Europe 2000.

Ali-Reza Adl-Tabatabai, Michal Cierniak, Guei-Yuan Lueh, Vishesh
M. Parikh, James M. Stichnoth. Fast, Effective Code Generation in a
Just-In-Time Java Compiler, SIGPLAN’98, Montreal, Canada, ACM
0-89791.987-4/98/00006.

J Consortium. International J Consortium Specification, Real-Time
Core Extension, Revision 1.0.14, 2000.

G. Bollella, B. Brosgol, S. Furr, D. Hardin, P. Dibble, J. Gosling, M.
Turnbull. The Real-Time Specification for Java, Addison-Wesley,
2000.

J Consortium. International J Consortium Specification — Real-Time
Core Extensions, Version 1.0.14, September, 2000, Available at http://
www.j-consortium.com/rtjwg/rtce.1.0.14.pdf
http://www.ab.com/abjournal/nov1999/departments/prodfocus/
scadaarch.html

Data Processing - Programming Languages - SIMULA, Swedish
Standard SS 63 61 14 (1987), available through ANSI.

Antero Taivalsaari, Bill Bush, Doug Simon. The Spotless System:
Implementing a Java System for the Palm Connected Organizer,
Techical report TR-99-73, Sun Microsystems Laboratories Inc.,
february 1999.

L. Sha, R. Rajkumar, J. P. Lehoczky. Priority Inheritance Protocols:
An Approach to Real-Time Synchronization, IEEE Transactions on
Computers, Vol. 39, No 9, 1990.
http://rtjcom.com/files/simpleRTJ-TechInfo.PDF

Stepanov, A.A., Lee M. The Standard Template Library, Tech. Rep.
HL-95-11(R.1), Hewlett-Packard Laboratories, Palo Alto, California,
Feb. 1995.

STK300 Complete development system for the Atmel ATmegal28
microcontrollers, Datasheet, Kanda Systems Inc.,
http://www.kanda.com/datasheet/STK300wb.pdf

Fridtjof Siebert, Andy Walter. JamaicaVM -- User Documentation,
The Virtual Machine for Real-time and Embedded Systems.
http://www.aicas.com/jamaica/doc/html/index.html

T. Andree, H. Gustavsson. Extended Support for Java in Control
Systems, Master thesis, Department of Computer Science, Lund
Institute of Technology, Lund University, February, 2002.

141

[Ung84] D. M. Ungar. Generation scavenging: A non-disruptive high
performance storage reclamation algorithm, ACM SIGPLAN Notices,
19(5):157-167, April 1984.

[WABA] Guilherme C. Hazan. Frequently Asked Questions.
http://www.superwaba.com.br/faq.asp#wabaxsw

[WaDa71] Arne Wang and Ole-Johan Dahl. Coroutine sequencing int block
structure environment, BIT 11, (1971).

142

Appendix A

Bytecode execution time calculation

The WCET calculation of the bytecodes in the IVM are analysed by hand.
The execution time of the binary code produced by a bytecode, is summa-
rised. No considerations of how caches changes the execution time are
included. The following figure shows an examples of a bytecode, their
binary code and their execution time calculation.

144

Pseudo Code: C-code:
case IADD: // push(pop() + pop()); case IADD:
int val2 = pop(); top--;
int vall = pop(); stack[top-1] += stack[top];
int res = vall + val2; pC++;
push (res) ; break;
inc pc;
break;
Expanded C-code:
case 96:
((*ivm->ap) ->valueStackTop) -= 1;
((*((uint32**)ivm->ap)) [((*ivm->ap) ->valueStackTop)-1]1) =
(uint32) (

((int32) ((* ((uint32**)ivm->ap))
[((*ivm->ap) ->valueStackTop)-11))
+ ((int32) ((* ((uint32**)ivm->ap))
[((*ivm->ap) ->valueStackTop)]))
)

((* ivm->ap)->pc)++;

break;

Optimised 68000 assembler:

L117:
movel a5@(4),al //
movel a0@,al //
subgw #1,a0@(20) // int val2 = pop();
movel a5@(4),al // ivm->ap
movel a0@,al // *
clrl dO
movew a0@ (20),d0 // (() =>vST
1s11 #2,4d0

movel a0@(d0:1),dl //ivm->ap[vST]
addl dl,a0@(-4,d0:1)// + ivm->ap[vST-1]

movel a5@(4),a0l //ivm->ap
movel a0@, a0l
jra L459
.even
L459:
addgw #1,a0@(16) //->pc++

Hand optimised 68000 assembler: Execution Time (cycles):
L117:

subgw #1,a0@(20) 12
clrl doO 2
movew al0@(20),d0 12
1s11 #2,d0 2
movel a0@(dO0:1),dl 16
addl dl,a0@(-4,d0:1) 18
jra L459 1
.even
L459:

addgw #1,a0@(16) 12

Appendix B

Access flags

Applicable to
Modifier Value
class | field | method

ACC_PUBLIC 0x0001 . . .
ACC_PRIVATE 0x0002 . . g
ACC_PROTECTED 0x0004 . . |
ACC_STATIC 0x0008 . St
ACC_FINAL 0x0010 . . . (%
ACC_SYNCHRONIZED | 0x0020 e |=
ACC_SUPER 0x0020 | o =
ACC_VOLATILE 0x0040 . 2
ACC_TRANSIENT 0x0080 . fﬁ
ACC_NATIVE 0x0100 - |
ACC_INTERFACE 0x0200 | o g
ACC_ABSTRACT 0x0400 | o . |2
ACC_STRICT 0x0800 .
ACC_SHADOW 0x0002 . N
ACC_INTERMEDIATE 0x0040 . |E
ACC_PRECOMPACT 0x1000 (%
ACC_INTERFACEMARK | 0x2000 E
ACC_INIT 0x80 =

Table 0.1

146

Appendix C
Method efficiency

The number of pointer dereferences, for the three different method calls,
to find a method description is shown in Table 0.2. The purpose of the
table is to briefly show the overhead introduced in the IVM compared to
efficient C code. Optimisation techniques, as method inlining, could dras-
tically reduce the overhead of the search for the method description.
Every reference in the IVM is counted as two actual pointer dereferences.
Offsets and indices are counted as one dereference.

Number of indirection steps

Method call Remarks
M “Efficient” C
static 9 0 The method pointer is
located in the code.
virtual 9 2
interface 7 + C*N 2 + N*D N is the size of the number

of interfaces in the interface
array. C and D is the time
compare two interface
references, and to run the
search algorithm.

Table 0.2 The table shows the number of indirection steps to find the method
description in the IVM and in an “efficient” solution.

Interface method descriptions lookups are dependent on the unpredict-
able location of the interface in the interface array. In the worst case, the
complete interface array has to be searched before the correct method
array is found. This unpredictable behaviour could be circumvented with
the implementation of a hash table interface lookup. This, for example, is
implemented in the hotspot engine from Javasoft (see [HS02]).

Different method optimisation techniques that are relevant to the IVM,
are presented in Section 7.4.

Appendix D

Exceptions and memory utilisation

Some exceptions are generated by the JVM itself. Others are related to
specific bytecodes, while some span over several bytecodes. The supported
API often adds more exceptions that are always necessary. About 50
exceptions and errors necessary for the JVM are depicted in Figure 0.1
together with basic exceptions from the API. Java applications may later
add more exceptions, but those in the figure are necessary for every appli-

cation.
| I:xceptlon | | Error |
[vmnwm

nternalerror stractiviethoderror

HRuiimeEkxception |

[ArthmeficException |
IArrayStoreException

ICannotRedoException
ICannotUndoException

ClassCastException
ICMMException
IConcurrentModificationException
EmptyStackException
lllegalArgumentException
lllegalMonitorStateException
llegalPathStateException

T
utOfMemoryError
tackOverflowError
nknownError

lassCircularityError
lassFormatError

UnsupportedClassVersionError

ExceptionininitializerError

IncompatibleClassChangeError

llegalStateException AbstractMethodError
imagingOpException lllegalAccessError
IndexOutOfBoundsException InstantiationError
issingResourceException NoSuchFieldError
INegativeArraySizeException NoSuchMethodError

INoSuchElementException

oClassDefFoundError

INullPointerException
ProfileDataException
ProviderException
RasterFormatException
[SecurityException
[SystemException
UnsupportedOperationException

UnsatisfiedLinkError
erifyError

Figure 0.1 The exceptions and errors necessary for the JVM are described in
about 50 classes.

The classes of the exceptions and errors occupy much memory. A sensi-
ble optimisation would be to represent each exception as a number
instead of a complete class. The class could then be constructed during
runtime if the memory is not exhausted. The exception could then be
instantiated from the class. In the IVM, all classes are loaded prior to the
main-class.

148

	1.1 Embedded systems
	Figure 1.1 Even though the embedded systems are much simpler than the gen eral-purpose systems, they have other attractive chraracteristics.
	1.1.1 Embedded systems overview and restrictions
	Figure 1.2 The size of the blocks in a computer system varies depending on the type of the system.

	1.1.2 Embedded operating systems
	Figure 1.3 A program is tightly coupled with the operating system if it is able to utilise the operating system threads as its own. Otherwise, it is loosely cou pled; it has to manage its own threads.

	1.2 Real-time programming
	1.2.1 Predictability
	1.2.2 Context switch
	Figure 1.4 The context switch is not immediately performed as it is requested. The figure shows delays that occur when the context switch is requested until it is performed.

	1.2.3 Schedulability
	Static cyclic scheduling
	Fixed priority scheduling
	Earliest deadline first scheduling
	Feedback scheduling

	1.2.4 Real-Time Garbage Collection
	Figure 1.5 The snapshot of the logic analyser shows how the GC thread co- operates with the high-priority threads and low-priority threads. The six lines show, from above: GCWork - the total GC thread execution time, HiPrio, RTGC, LoPrio - th...

	1.2.5 Summary

	1.3 High-level Programming Languages
	Productivity - the ability to create software products is determined by the programmer’s knowledge in programming and by the sup port from programming tools, e.g. the programming language.
	Robustness - a robust programming language is characterised by well-limited concepts, error recovery mechanisms, and the ability to handle heavy program utilisation.
	Extendibility - the code size should reflect the program functionality and not increase dramatically as new features are added to a large program.
	1.3.1 Modern object-oriented programming languages
	1.3.2 Java
	1.3.3 Real-time aspects of Java
	Figure 1.6 Locks are located inside objects that are locked through the syn chronized statement and method calls to synchronized methods.

	1.3.4 Related work
	Real-time Java specifications
	Real-time Java compiler

	1.3.5 Summary

	2.1 Java Virtual Machine Overview
	Figure 2.1 This overall structure of the Java Virtual Machine shows the main parts, i.e. the modules and memory areas, according to the JVM specification.
	The heap is the runtime data area. Objects and arrays are located on the heap, which is managed by the garbage collector.
	The method area is shared among all threads. It contains constants, class descriptions, method data, and code.
	The runtime constant pool contains the symbols and constants of classes. The information is relevant to transform the class into an internal representation or to examine the class retrospectively.

	2.2 Modules and interfaces
	Figure 2.2 The overall structure of the Infinitesimal Virtual Machine shows its modules, interfaces, and memory areas. The difference from the original JVM specification is the real-time analyser and optimiser in the class loader.
	The verifier checks if the classfiles are well formed and secure to exe cute.
	The resolver converts bytecodes into an internal form.
	The real-time analyser creates real-time information about the code for the scheduler.
	The initialiser initialises the loaded classes.
	The interpreter executes the bytecodes.
	The scheduler schedules threads.
	The garbage collector works together with the scheduler to uphold real-time characteristics.
	The platform specific methods - the IVM support methods that are platform dependent.
	The thread and monitor methods - support for different thread and monitor implementations are implemented in this module.
	Native: support of and access to native methods
	Port: support methods for the IVM
	GCI: garbage collector interface
	Thread: interface to context switch and thread handling
	Monitor: access to lock handling
	2.2.1 File interface
	2.2.2 Native interface
	Figure 2.3 One part of the native interface describes how native code should be added into the IVM. The Java native extractor supports the programmer with a default native method implementation that fulfils the native method interface.
	Figure 2.4 In the IVM, the native methods are identified as numbers that are utilised in a switch statement to locate the method, when the native method is to be executed. The switch statement is generated by the native code generator from th...

	2.2.3 Port specific interface
	2.2.4 Garbage Collector Interface
	Figure 2.5 The garbage collector utilises strings formed from the grammar to locate pointers in objects. Variable size entries indicate that the number of pointers or bytes is found in the object itself at the location.
	Figure 2.6 The object descriptions show where the GC references are located in objects. The references are counted and the space between references is given in bytes. Variable length is given as the number 254. It shows that the corre spondin...

	2.2.5 Thread interface
	2.2.6 Bytecode conversion interface
	Conversion of symbolic bytecodes
	1. Class references
	2. Virtual methods references and object field references
	3. Static method and field references, and constants

	Minimal bytecode instruction set
	Figure 2.7 The Java bytecode instruction set contains mainly operations on the stack and data transfer to and from the stack.

	Unnecessary bytecodes in embedded systems

	2.2.7 Discussion

	2.3 Internal data structures
	2.3.1 Object design
	Figure 2.8 The object structure layout consists of an internal overhead for managing the object and the attributes described in the object’s class.

	2.3.2 Templates
	Figure 2.9 The template structure in the IVM shows how the objects and tem plates relate to each other in the IVM system. Methods are marked as classes since they are created during class loading.
	The design of a template head
	Figure 2.10 The templates describe its children. The meta meta template is also its own subtemplate.

	Templates for classes, arrays, interfaces, and primitive types
	Activation templates
	Figure 2.11 The activation template contains information that is common to all method calls of the method.

	2.3.3 Inheritance structure
	Figure 2.12 The inheritance structure describes the type and content of objects.

	2.3.4 Java class structure
	Figure 2.13 The Java class structure describes relations of objects and classes.

	2.3.5 Internal memory and data structures

	2.4 Split machine
	Figure 2.14 The split machine is suited for systems with a more powerful computer, the supervisor, connected to interpreter nodes. The supervisor con tains the class loader and prepares classes to be sent to the nodes.
	Figure 2.15 The overall structure of the Java Virtual Machine shows the main modules and interfaces. The greyed interfaces and modules are related to the split machine. Two separate memory areas are needed for the class loader and the interpr...
	2.4.1 Interfaces and modules of the split machine
	Figure 2.16 The different layers of the communication between the IVM and the class loader are designed to support different implementations.
	Command protocol - defines commands and the representation of the transport classfile.
	Ivm control - sends commands and objects to the IVM node.
	Initialisation of the IVM node’s internal data structures

	2.4.2 Memory model
	2.4.3 IVM references
	Figure 2.17 In the IVM, the array would be referred to by an object reference. Only the garbage collector is aware of the direct pointers to the array. Elements in the array are accessed by an index. Internally, the elements of a general obje...

	2.5 Runtime
	2.5.1 Method calls
	Figure 2.18 The design of a method call in IVM describes the utilisation of the heap for all Java frames instead of one stack for every thread. The greyed area in the frame shows the references in the local variable area and the stack.
	1. Allocate the new frame.
	2. Initialise internals of frame:
	3. Transfer the execution point to the new frame.

	2.5.2 Java runtime
	2.5.3 JVM runtime
	Figure 2.19 Ready queues for different priorities help the scheduler to keep track on which thread it has to execute. Sleeping threads are woken as their sleeping time expires and re-inserted into their priority queue. This system con tains 1...
	Figure 2.20 The ordinary workings of the scheduler consist of preemption due to expired time slice, and voluntary rescheduling, i.e. yielding and sleeping. When a thread terminates, rescheduling occurs to the next thread in line.
	Java locks
	Figure 2.21 The workings of a lock can be described with two queues associ ated with it. They are the waiting queue, where the active thread is placed when trying to acquire an occupied lock. The other queue is the event queue. As the thread ...
	Figure 2.22 The workings of the monitor M are shown graphically. However, the exact implementation may vary from system to system. In pictures v-vi the notified threads are sorted into the waiting queue. According to the Java speci fication, ...

	The Java runtime access
	Table 2.1 The classes in the J2SE API that relates to thread handling are Object and Thread.

	2.5.4 Preemption models
	Table 2.2 Preemption is crucial in real-time systems. The table lists some alternatives of where preemption points can be inserted into the code.

	2.5.5 Alternative runtime design

	2.6 Preloaded classfiles
	1. No classes are preloaded. Everything is loaded and converted during runtime. This approach is time-consuming but flexible.
	2. Some classes are preloaded, typically the API. The application itself is not preloaded. Flexibility is maintained reasonably well together with shorter start-up times.
	3. Every class is preloaded. This inflexible approach speeds up the acti vation of the application.

	3.1 Fundamental runtime data structures
	Figure 3.1 The template hierarchy of the program example shows how the instances and the templates are connected.
	Figure 3.2 The contents of the newly created virtualMan-instance are a tem plate reference and a strength-attribute as declared in the class.
	Figure 3.3 The runtime situation in the figure shows two frames when the main-method has called the useSuperPower-method. The main-method does not have a dynamic father (null).

	3.2 IVM runtime system in detail
	3.2.1 Interpreter
	3.2.2 Method calls
	Figure 3.4 The frame contains the runtime state of a method. The greyed area of the frame contains the references in the local variables and the stack.
	Figure 3.5 The picture shows the frame template and a frame of the method.
	1. Locate the method template.
	2. Allocate the new frame.
	3. Initialise the frame:
	. Set all references to null (performed during allocation).
	. Set template, dynamic father, program counter, and stack tops.
	. Transfer arguments.
	4. Transfer the execution point to the new frame.
	Figure 3.6 The example code contains a virtual method call, a static method call, and an interface method call in the main-method.
	Figure 3.7 The static method call is performed by locating the method tem plate of the method, and then a new frame is allocated and initialised with arguments and a dynamic father to the caller.
	Figure 3.8 The method template of the virtual method call, useSuperPower, is found via the object, virtualMan, which receives the method call.
	Figure 3.9 Interface method templates are located through the interface and an offset to the method.

	Native method calls
	Synchronised methods

	3.2.3 Runtime template hierarchy
	Figure 3.10 The template hierarchy of the program example shows how the instances and the templates are connected.
	Figure 3.11 The three types of method templates differ in size.

	3.2.4 Signal handling
	Figure 3.12 After the execution of a bytecode, the machine checks whether the surrounding system has sent a signal to the machine or to a Java application.
	Figure 3.13 Asynchronous method calls to the surrounding system contain information about the sender and arguments. The answer is converted to an event by the signal dispatcher, and sent to the sender.

	3.2.5 Context switch
	Figure 3.14 The procedures of the coroutine methods (call, detach and initial ise process) are depicted in the figure.

	3.2.6 Process and scheduler structure
	Figure 3.15 Schedulers in the machine are implemented in Java and executes as Java threads. This simplifies the implementation and integration into applications. Many schedulers can co-exist on the same heap but with separate class environments.
	Figure 3.16 The class diagram shows the relations of the thread, the thread manager, and queue classes. A thread can exist in three different states.

	3.2.7 Exceptions
	3.2.8 Garbage collection
	Figure 3.17 The complete layout of an instance consists of attributes declared by the class of the instance, i.e. an object head, and GC fields.

	3.3 Real-time aspects
	1. Existence of preemption points after the execution of every bytecode, and in some cases inside time-consuming bytecodes.
	2. There are worst-case execution times for bytecodes, context switches, and the scheduler.
	3. The GC is adapted to real-time.
	4. The code is annotated to limit large data structures and recursive method calls.
	3.3.1 WCET analysis
	Figure 3.18 The program example is shown in terms of its bytecodes and their WCET.
	Figure 3.19 The basic block structure of the program examples shows the con trol flow. The worst-case execution time of the main-loop is calculated for the scheduling analysis. The black circles hold the WCET for the blocks.
	Figure 3.20 The WCET calculation for the control loop depends on the longest control path of the code. Recursive methods must be limited by the program mer.
	Figure 3.21 Bytecode optimisations may reduce the method size and the WCET.

	3.3.2 WCLM analysis
	Figure 3.22 The code contains memory allocations whose memory consump tion cannot be determined without the support from the programmer via anno tations.

	3.3.3 Scheduling analysis

	3.4 Discussion
	LEGEND
	Figure 4.1 The class loader converts the classfiles into internal runtime data structures that are more suited for interpretation.
	4.1 Classfile conversion overview
	4.1.1 Conversion requirements
	4.1.2 Classfile structure
	Figure 4.2 The figure contains a small Java program and its classfile repre sentation. The <init> method is the name of the constructor. Types are coded with letters, e.g. I is int, V is void, and Z is boolean.

	4.1.3 Class loading
	Table 4.1 The classfiles may be stored in different places. It is the task of the class-loading phase to handle the different storage locations.

	4.1.4 Class linking
	1. Transfer the symbols of the classfile into global symbol tables.
	2. Organise the class and generate class information, i.e. method tables, object layout, garbage collector information etc.
	3. Convert the bytecode.

	4.1.5 Class initialisation
	Figure 4.3 The initialisation order of the four classes is determined by inher itance and class utilisation. The execution of the program (main) may com mence after the initialisation.

	4.2 Class linking and memory utilisation
	1. Parse the constant pool.
	2. Transfer constants and create shadow templates.
	3. Create a reference array to hold all the references to fields and meth ods.
	Figure 4.4 The constant pool of the program example is stored in temporary arrays. Shadow templates (Hero, SuperPower, and Villain) are created for classes that are referred but not already loaded.
	Figure 4.5 The static fields in the classfile are added to the constant arrays. The machine does not discriminate between constants and static fields.
	Figure 4.6 All the methods in the classfile are converted to method templates that are stored in a temporary methods array. Static methods are extracted and put in the class template. Virtual methods and interface methods are sepa rated after...

	4.2.1 Deep and shallow template references
	4.2.2 Finishing linking and memory utilisation
	1. Calculation of offsets to attributes and object size.
	2. Generation of garbage collector information.
	3. Generation of the interface array.
	4. Generation of the virtual method array.
	5. Conversion of the deep references in the bytecode.
	Figure 4.7 The contents of a template are dependent on information in other templates as depicted in the graph. Furthermore, bytecodes depend on informa tion in other templates and on the bytecode itself.
	Figure 4.8 The four interfaces and two classes reuse method descriptions and a method array in their runtime representation.
	Figure 4.9 When classes implement interfaces, all the interface methods placed in an interface array correspond to the interface. In some cases the same method templates can be reused.
	Figure 4.10 The structure of virtual methods is dependent on inheritance.

	4.2.3 Memory allocation during class conversion
	. Constant pool type array
	. Reference constants
	. Value constants
	. Implemented interfaces
	. Implemented methods
	. Implemented virtual and interface methods
	. Virtual methods
	. Reference constants and static reference field array
	. Value constants and static value field array
	. Interface method array and corresponding interfaces
	. Field description array
	. Class template symbol table
	Figure 4.11 The lifetime of data structures are marked in the diagram. Crea tion is marked in a darker hue. The data structures marked in the last column are utilised during runtime.
	Table 4.2 Parts of the constant pool may be removed at an early stage in the classfile conversion in order to save memory.

	4.2.4 JVM start-up classes
	4.2.5 Detailed reference analysis
	Figure 4.12 The figure depicts where accesses and references to other tem plates occur in a class template. References from the bytecode only access non- bytecode information, thus enabling bytecode resolution in one class at a time.

	deep - offset to static fields in class
	deep - offset to attributes in object
	deep - offset in virtual method table
	shallow - index to the class and
	deep - offset in static method table
	shallow - interface index and deep - reference to method descriptions
	shallow - index to class
	shallow - index to class (during conversion)
	(and object size (deep) during execution)
	Table 4.3 Some bytecodes require information located in other classes.
	4.2.6 Verification
	1. Classfile structure check. The contents of the classfile must be rec ognizable and correctly formed.
	2. Further classfile analysis:
	2.1. Type check of symbolic references, e.g. the superclass refer ence has to be of a class type. This pass does not check the sym bolic references in the bytecode, nor does it check if the symbols can be resolved.
	2.2. Semantic check on keyword final. This pass also ensures that final classes are not superclasses of other classes and that final methods are not overridden.

	3. Data and control flow analysis. Every method is checked for:
	3.1. Method end. The code must not end in the middle of a byte code; neither must it fall off the end of the code.
	3.2. Type check of operands. Every bytecode must utilise oper ands of the correct type. The stack, the local variables, and the symbolic references have to contain the corresponding operand type.
	3.3. Branch check. Every branch in the code must land within the method on a new bytecode. Exception handlers have to be cor rectly limited.
	3.4. Overflow and underflow check. Accesses to local and stack variables must be within the stated limits.
	3.5. Stack outlook. For every position in the code, the stack has to contain the same types independent on which code path taken to reach the code.

	4. Last checks:
	4.1. Symbolic type consistency check. The symbolic types must correspond to something real. This check may be delayed until execution (lazy evaluation).
	4.2. Access check. Every method call and every field access has to be accepted according to the access modifiers, e.g. public, pack age public, protected, and private.

	4.2.7 Discussion
	4.3 Loading converted classfiles
	Table 4.4 The two different types of converted classfiles are simpler and much faster to integrate into a runtime system than ordinary classfiles.
	Figure 4.13 The class image contains preconverted classes, and all other objects on the heap. The object handles are utilised by some garbage collector algorithms, and the roots contain all the roots that the garbage collector needs to locate...

	4.4 Split machine
	Figure 4.14 The configuration of the split machine places the class loader in the supervisor computer and only the interpreter in the node. The class loader can support many nodes.
	4.4.1 Memory model
	4.4.2 Communication between supervisor and node
	1. Locate the reference from where the object will be referred.
	2. Create the object.
	3. Set its value parts.
	4. Set references.
	1. object reference . start from template table · offset to SuperHero template · offset to static fields · offset to ourHero
	2. create object (captainJava) · number to SuperHero template
	3. send values
	4. object reference . start from template table · offset to SuperHero template · offset to static fields · offset to ourHero · offset to sidekick
	5. create object (interphaze)
	6. send values
	7. set references set reference at offset “partner”: . start from template table · offset to SuperHero template · offset to static fields · offset to ourHero
	8. object reference . start from template table · offset to SuperHero template · offset to static fields · offset to ourHero · offset to partner
	9. create object (voidMaster)
	10. send values
	11. set references reference at offset “partner”, set to: . start from template table · offset to SuperHero template · offset to static fields · offset to ourHero

	4.5 Bytecode conversion
	4.5.1 Symbolic reference resolution

	ldc, ldc_w, ldc2_w
	symbolic location to constant
	Represent location as index into one constants array.
	getfield,
	putfield
	symbolic attribute reference
	Replace reference with off set to attribute.
	getstatic, putstatic
	symbolic class ref erence and sym bolic static field reference
	Replace class reference with index to class. Replace field reference with index to field.
	May increase bytecode size.
	invokevirtual, invokespecial
	symbolic method
	reference
	Replace method reference with index to method.
	invokestatic,
	invokeinterface
	symbolic method
	reference and
	symbolic class/ interface refer ence
	Replace class/interface ref erence with index to class/ interface. Replace method reference with index to method.
	new, anewarray, multinewarray
	symbolic class
	reference
	Replace class reference with index to class.
	instanceof, checkcast
	symbolic class
	reference
	Replace class reference with index to class.
	athrow
	symbolic class
	reference
	Replace class reference with index to class.
	Table 4.5 Bytecodes that access information in a class must be resolved. Symbolic, i.e. textual, references are replaced with indices into tables. Methods, attributes, and fields are represented as indices.
	4.5.2 Memory limitation bytecode changes

	The maximal number of attribute positions in an object is reduced from 216 to 28.
	The maximal number of static fields in a class is reduced from 216 to 28 and the maximal number of classes is reduced from 216 to 28.
	The maximal number of local variables cannot be larger than 28.
	The maximal number of virtual methods in a class is reduced from 216 to 28.
	The maximal number of static methods implemented by a class is reduced from 216 to 28 and the maximal number of classes is reduced from 216 to 28.
	Effects are similar to invokestatic.
	Replace bytecodes with <TYPE>load op1 variant.
	Table 4.6 Modifications of the bytecode instruction set may affect the size of the interpreter or the bytecodes.
	4.5.3 Real-time bytecode changes
	Table 4.7 The table shows all original and type neutral stack related bytecodes that have to be converted due to the split stack. The representations of new bytecodes are shown. They are tagged with _ref or _val if they are related to the ref...

	4.6 Control flow analysis
	5.1 Target platforms

	X
	[STK300]
	X
	X
	X
	X
	eCos
	X
	X
	X
	PalmOS v.3.1.1
	X
	X
	X
	Enea RTOS
	X
	Pocket PC
	X
	libc
	Table 5.1 The target platforms for the IVM.
	6.1 Java Real-Time API Specification
	6.2 Java platform
	Figure 6.1 The Java architecture consists of an API and a JVM. There are various sizes of the APIs targeted for different systems.

	6.3 Java virtual machines for embedded systems
	6.3.1 Embedded JVMs from Sun
	6.3.2 Embedded virtual machines
	6.3.3 Real-time Java Virtual Machines
	6.3.4 JamaicaVM
	6.3.5 PERC
	6.3.6 JBed
	6.3.7 Kertasarie
	6.3.8 Summary

	6.4 Java to C compilation
	7.1 Real-time adaptations
	7.2 Real-time code replacement
	7.3 Interpretation and compilation co-operation
	7.4 Optimisations
	7.5 Measurements
	7.6 Meta virtual machine
	7.6.1 Template and class structure
	7.6.2 Object layout
	Figure 7.1 Different object designs would easily be expressed in the meta vir tual machine. The figure contains three different object designs. The variants are: four-bytes alignment, one-byte alignment, and hardware specific consider ations.

	7.6.3 Code generation
	7.6.4 Summary

	7.7 The minimal language
	7.8 Real-time issues
	Figure 7.2 Threads have to finish their currently executing bytecode before a context switch can occur.

	7.9 Communication between nodes
	7.10 Conclusions
	[ABW90]
	[ACL98]
	[AD97]
	[AT36]
	[Big98]
	[Bja97]
	[Blo00]
	[BM83]
	[BMRSS96]
	[Bon02]
	[BOSW98]
	[CAN91]
	[C78]
	[C++91]
	[CE00]
	[Der74]
	[DNM68]
	[Eclipse]
	[EHÅ00]
	[Ek00]
	[FG02]
	[GCI02]
	[Ges03]
	[GHJV95]
	[GR83]
	[Hen98]
	[HePa96]
	[Ive98.1]
	[Ive98.2]
	[Ive98.3]
	[J2EE]
	[J2ME]
	[J2SE]
	[JBed]
	[JBed99]
	[JCAPI]
	[JCRE]
	[JCVMS]
	[JDP]
	[JIJ98]
	[JLS00]
	[JL96]
	[JNI99]
	[JVM99]
	[HS02]
	[KMMN91]
	[KML00]
	[KM93]
	[LR80]
	[Lan00]
	[Lin51]
	[LL73]
	[Lun99]
	[Mag84]
	[NE01]
	[Nør99]
	[Palm99]
	[Per00]
	[PERC02]
	[Pil00]
	[Rez98]
	[RTCE00]
	[RTSJ00]
	[RTC00]
	[SCADA]
	[SIM89]
	[Spotless]
	[SLR90]
	[SRTJ]
	[STL95]
	[STK300]
	[SW]
	[TAHG02]
	[Ung84]
	[WABA]
	[WaDa71]

	0x0001
	0x0002
	0x0004
	0x0008
	0x0010
	0x0020
	0x0020
	0x0040
	0x0080
	0x0100
	0x0200
	0x0400
	0x0800
	0x0002
	0x0040
	0x1000
	0x2000
	0x80
	Table 0.1

	9
	0
	9
	2
	7 + C*N
	2 + N*D
	Table 0.2 The table shows the number of indirection steps to find the method description in the IVM and in an “efficient” solution.
	Figure 0.1 The exceptions and errors necessary for the JVM are described in about 50 classes.

