LUND UNIVERSITY

High-Level Problem Solving Languages for Computer Aided Control Engineering

Astrt')m, Karl Johan; Mattsson, Sven Erik

1987

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

Astrom, K. J., & Mattsson, S. E. (1987). High-Level Problem Solving Languages for Computer Aided Control
Engineering. (Research Reports TFRT-3187). Department of Automatic Control, Lund Institute of Technology
(LTH).

Total number of authors:
2

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY
PO Box 117

221 00 Lund
+46 46-222 00 00

Download date: 18. May. 2025

https://portal.research.lu.se/en/publications/3a6b037b-10ce-4009-bce1-6659d6c5a5d3

CODEN: LUTFD2/(TFRT-3187)/1-020/(1987)

High-Level Problem Solving Languages
for Computer Aided Control Engineering

Karl Johan Astrém
Sven Frik Mattsson

STU project 85-4808

Department of Automatic Control
Lund Institute of Technology
March 1987

Department of Automatic Control
Lund Institute of Technology

P.O. Box 118

S5-221 00 Lund Sweden

Document name

Report

Date of issue

1987-03-31

Document Number
CODEN:LUTFD2/(TFRT-3187)/1-020/(1987)

Aunthor(s}

Karl Johan Astrom
Sven Erik Mattsson

Supervisor

Sponsoring organisation
The National Swedish Board of Technical
Development (STU contract 85-4808)

Title and subtitle

High-Level Problem Solving Languages for Computer Aided Control Engineering

Absiract

implemented and tested.

The purpose of this work has been to view CACE packages as high level problem solving languages. This
approach gives a good unified way to view and analyse different packages. By collaborating with other groups
we have been able to make a reasonable coverage. The notion of system is fundamental in contro] engineering
and the representation of systems in CACE. The study showed that system representations are pootly delt
with in existing CACE systems. A special study was therefore made of this problem. Different ways to
describe systems have been investigated in the study. It has been shown that interconnected systems are
conveniently described using object-oriented programming. A small prototype to test the ideas has also been

Key words

tations

Computer Aided Control Engineering; Computer Aided Control System Design; Software; System Represen-

Classification system and/or index terms (if any)

Supplementary bibliographical information

Security classification

ISSN and key title ISBN
Language Number of pages Recipient’s notes
English 20

The report may be ordered from the Department of Antomatic Control or horrowed through the Universiiy Library 2, Box 1010,

5-221 03 Lund, Sweden, Telex: 33248 lubbis lund,

Contents

1o Inbroduction ...t i i e e e 4
2. Assesment of Some Existing Packagesooooviveviriinninnnnnn.. 6
2.1 Available Packages.....coviiiiiiiin 6

2.2 Examples of System Representationsovovviviniivii., 9
Matrix Languages o ovuvuuer et et eree it e ieeeenrenraeennn, 9

4 T) £ 9

D IBCUSS 0N © ettt it it i e e e e s 10

3. Requirementsc.uiiiiiiiiiiiiniiii i i 11
4, System SITUCLUTEiiuiuii ittt it e e e e e, 12
Methods ..o 13

System Operationsovtviitiiiiii i i 14

5. System Behaviour ... 15
6. Conclusions . .vvvit it i e e 16
Acknowled@ements st it e e 16
References ... i 17

1. Introduction

One of the most important conclusions from earlier projects is that it is fruit-
ful to view a system for Computer Aided Control Engineering (CACE) as a
high level problem solving language. The original plans for the project “High
Level Problem Solving Languages for CACE” (STU project 85-4808) was to
investigate existing CACE system from this point of view. In this project
we could benefit from the collaboration with the Science and Engineering Re-
search Council (SERC) in United Kingdom. Many design tools were reviewed
by the UMIST group as part of their work. By participating in this work we
got a good overview of the features of existing packages viewed as high level
problem solving languages. We also did some experiments and efficiency stud-
les which were fed into the work. A summary of the results is given in Munro
et al (1986). System representations emerged as a key issue from these studies.
The reason for this is that the notion of systems is an essential factor in all our
work. Therefore we concentrated our efforts on system descriptions. In this
work we could also draw on the previous experiences from Simnon (Elmqvist,
1975) and Dymola (Elmqvist, 1978). Astrém developed a notion which allowed
a generalization of Simnons system notion to cover hierarchically connected
subsystems. This notion can also be extended to cover noncausal systems.

Systems can be represented in many different ways. There are graphical
representations like block diagrams, signal flow diagrams and bond graphs.
There are also mathematical representations like state space models and input-
output relations which come in many different forms, matrix fractions, impulse
responses, frequency responses. When working with control systems it is fre-
quently useful to use several different representations of a system.

Only fairly primitive ways of representing systems are used in current
CACSD systems. Typical examples are the Matlab derivatives where systems
are described by matrices. A slightly more sophisticated representation is
used in the simulation language Simnon. This representation recognizes that
a system has the properties, inputs, outputs and states. Simnon also allows
a system to be described as an interconnection of subsystems. However only
flat interconnections are allowed.

A more flexible way to describe systems can be based on object-oriented
programming. A general structural description of hierarchically connected 8ys-
tems can be constructed from simple ingredients by making a system an ob ject
with the properties Name, Inputs, Qutputs, Subsystems and Connections.

It is also necessary to add behavioural descriptions to obtain a useful tool.
This is done by creating new objects which describe behaviour. A system can
then inherit both structure and behaviour, Behaviour can be characterized
in many different ways. A state description is one of the simpler alterna-
tives. This can be covered by introducing the object StateBehaviour with
the properties States, StateTransitionMap and OutputMap. The behavioural
descriptions should also allow a given system to be described by models of
different complexity. Apart from the detailed quantitative descriptions it is
also useful to be able to deal with qualitative descriptions of behaviour.

To implement these notions we had good input from a visiting scientist
Dr Wolfgang Kreutzer. A simple prototype was implemented in ExperLisp

4

on a Macintosh. It is described in Astrém and Kreutzer (1986). The proto-
type admits hierarchical system representation and symbolic manipulation of
the system descriptions, The experiments with the prototype indicate that
the approach is one way towards implementation of powerful CACE systens.
This work also clearly indicated that object oriented programming was a very
natural tool for this type of work. Some exploratory studies were also carried
out using a SmaliTalk implementation on the Macintosh.

The report is organized as follows. An assessment of some existing CACSD
packages are given in Section 2. Requirements on system representations are
given in Section 3. Sections 4 and 5 deal with representation of system struc-
ture and behavior. Some conclusions are drawn in Section 6.

2. Assessment of Some Existing
Packages

A number of different design packages have been investigated. In this work we
have drawn from the experiences of several other groups. We have had a direct
collaboration with professor Neil Munros team at UMIST. In the development
of the ECSTASY project they have compared a number of different software
systems. We have also learned much by being a test site for the EAGLES
project at the Lawrence Livermore National Laboratory (LLNL), California.
Many ideas have also been exchanged with the group at ETH in Ziirich and
with the developers of CTRL-C, MATRIXY and PC-Matlab.

In the collaboration with the UMIST team we have locked into the follow-
ing packages CTRL-C (Systems Control Technology, 1984), MATRIXx {(Inte-
grated Systems, Inc., 1984; Shah et al, 1985), ACSL (ACSL, 1986), DELIGHT
(Polak et al, 1982), TSIM (Ca,mbndge Control Limited, 1983), CLADP (Ma-
ciejowski and MacFarlane, 1982), CSS (Munro and Bowla,nd 1984), and the
Lund packages {Astrém 1983 1985). The features examined include user in-
terfaces, infrastructure, and tools. A summary of the findings are given in
Munro et al (1986). The results have also been fed into the specifications of
the ECSTASY project (SERC, 1986) which aims at a short range design. An
assessment of existing packages is also given by Cellier and Rimvall (1986).

One thing that emerged from the studies was a need to look deeper into
the representation of dynamical systems. This has also been reinforced by
interaction with the vendors of CTRL-C and MATRIXY. They are now trying
to introduce graphics front ends but they have to do a lot of patching because
they lack a good systems concept. The same is true for the developers of
simulation software. See Cellier and Rimvall (1986). We therefore decided
that it would be a good complement for us to take a deeper look at the
representation of systems.

Section 2.1 contains a list of packages which are available at the depart-
ment. The data structures available in the packages are indicated. Section 2.2
takes a closer look a the system representation concepts of some packages,

2.1 Available Packages

In our laboratory we have access to a number of software packages. First we
have those developed at the department (Astrom 1983, 1985):

Simnon Simulation program for Nonlinear systems. Interactive sim-
ulation program for nonlinear continuous and discrete time
systems with facilities for optimization and use of experi-
mental data. Simnon allows a system to be described as
a flat interconnection of subsystems. There are two types
of subsystems: continuous and discrete time. See Elmgqvist
(1975) and Elmqvist, Astrém and Schénthal (1986).

Idpac Identification Pa,cka,ge. Interactive program for data anal-
ysis and identification of linear systems using parametric

6

Synpac

Modpac

Polpac
Lispid

Dymola

and non-parametric (covariance spectra) methods. Has a
data structure for ARMAX models. Signals, frequency re-
sponses, spectra eic. are treated as vectors and matrices.
See Wieslander (1980a).

Synthesis Package. Interactive program for design of feed-
back and feedforward controllers for multivariable linear
continuous or discrete systems; Pole placement by state-
feedback, LQG, KBF. Has a data structure for systems
on state space form with covariance matrix descriptions of
white noise inputs. The description of a system may coi-
tain multiple representations. Signals, frequency responses
etc. are treated as vectors and matrices. See Wieslander
(1980c).

Analysis and transformations of models. See Wieslander
(1980b).

Polynomial oriented analysis and design package.

System for off-line identification of nonlinear continuous
time sysfems.

A new simulator concepts with hierarchical structures and
model types. See Elmqvist (1978).

We have also access to software developed outside the department. Besides
the references given a general reference is ELCS (1987). ELCS stands for the
Extended List of Control Software and is a collection of one-page summaries
on computer-aided control engineering packages and related software libraries.
The summaries are written by the software developers. ELCS contains more
than 80 software descriptions.

ARGOS

Blaise

CAMP

CES

CC

A Real-time Graphical Operating System. Has facilities
to create, display, control, manipulate and edit graphical
structures. Tools for defining linear systems by graphical
sketching of block diagrams have been implemented using
ARGOS’ facilities. See King and Gray (1985).

General purpose command driven CACSD package which
supports several data structures as real, complex and poly-
nomial matrices, lists and macros. See Delebecque and
Steer (1985) and Delebecque (1986).

Camp Aided Modeling Program. A pre-processor that de-
rives nonlinear state cquations from bond graphs, block
diagrams and their combination. See Granda (1983).

Swansea Control Engineering Station. Supports creation
and editing of block diagrams and signal flow diagrams in a
Macintoshlike style. The concepts for describing behaviour
are under design and focused on linear systems. See Barker
et al (1986, 1987).

Complete Control. Analysis and design of linear control sys-
tems of the following types: classical, sampled data, multi-
rate, state-space, multivariable, and optimal (LQR, KBF,
LQG). Has data structures for transfer functions, trans-
fer function maftrices, state space systems, real madtrices,
simulation output, and frequency files. See Thompsson

"

CSS

CTRL-C

ENPORT-6

DELIGHT

EAGLES and M

LSAP

MATLAB

PC-MATLAB

(1984, 1985). This package can also communicate with PC-
Simnon,

UMIST’s Control System Software. On-line analysis, de-
sigh and simulation of linear (either continuous or sam-
pled data) MIMO control systems. A closed loop system
is described by four components: the plant G and three
compensator blocks. These blocks could be defined in the
form of polynomial system-matrices, state-space equations

and transfer-function matrices. See Munro and Bowland
{1984).

Interactive program based on MATLAB for analysis and
design of multivariable control systems. The only data
structure available is the complex matrix, See Systems
Control Technology (1984) and Little et al (1984).

Bond graph processor for nonlinear systems. See Rosen-
code {1985).

Design Laboratory with Interaction and Graphics for a
Happier Tomorrow. General purpose, optimization-based,
interactive CAD-system. The basic langunage is UNTX and
Fortran inspired with extensions to handle matrices. On
top of this various application oriented features could be
added. Omne such extension is DELIGHT.MIMO oriented
al multivariable control system design. See Polak et al
(1982), Nye and Tits (1982) and Nye (1983).

Environment for Advanced Graphics (LLNL) Engineering
Systems on workstation computers, EAGLES is meant to
bean environment to engineering tools with an emphasis on
graphical interfaces. The M language processor is one part.
The M language handles general expressions involving com-
plex variables, polynomials, transfer functions and matrices
of these types. The part of the M language dealing with
matrix manipulation is quite similar to MATLAB. String
manipulation is also supported. M has also Simnon-like
constructs for defining ordinary differential and difference
equations for dynamic simulation. See Lawver and Poggio
(1985), Gavel et al (1985) and EAGLES (1986).

Linear Systems Analysis Package. An interactive program
with graphics for the classical analysis and design of linear
control systems. Allows for the definition of rational trans-
fer functions, either Laplace or Z-transforms. See Herget

and Tilly (1985).

Matrix Laboratory. Interactive program for numerical lin-
ear algebra and matrix computations. The capabilities
range from standard tasks such as solving linear equation
systems and inverting matrices, through eigenvalue prob-
lems and matrix functions, to fairly sophisticated tools such
as the singular value decomposition. The only data struc-
ture available is the complex matrix. See Moler (1980).

IBM-PC Version of MATLAB with graphics and tools for
identification and control systems design and analysis. See

8

Little and Moler (1987).

SANDYS Simulation and Analysis of Dynamic Systems. Interactive
program for simulation of dynamic systems described by
ordinary differential and algebraic equations as well as dis-
crete events. See ASEA (1984).

SUNS Sussex University Nonlinear Software. A set of programs
for determination of limit cycles, assessment of their stabil-
ity and plots of the solutions waveforms. The program can
handle various configurations from single loop relay systems
to more complex nonlinearities and some cases MIMO con-
figurations and sampled systems. The linear part is speci-
fied by giving a rational transfer function and the nonlinear
part by selection from a menu. See Atherton et al (1985).

2.2 Examples of System Representations

Some examples of system representations used in current CACSD packages
are given in this section.

Matrix Languages

Linear timeinvariant systems can be described using arrays. Such systems are
conveniently handled in some matrix language like MATLAB (Moler, 1980),
or its derivatives MATRIXY (Integrated Systems, Inc, 1984; Walker et al,,
1984a,b; Shah et al, 1985), CTRL-C, (Systems Control Technology, 1984;
Little et al., 1984). A system is represented as a matrix quadruplet in CTRL-
C.In MATRIXY it is represented as a system matrix and an integer which gives
the order of the system. It is, however, clear that it is not sufficient to only
have matrices. A detailed discussion of this is found in Astrém (1984). There
are a few more data types like polynomials and transfer functions in Blaise
(Delebecque and Steer, 1985), IMPACT (Rimvall, 1983, 1986; Rimvall and
Cellier, 1984, 1985) and EAGLES, (Gavel et al, 1986). A more sophisticated
data structure for systems was used in the Lund packages (Astrém, 1983,
1985). Our experiences indicate that it would be very useful to have even
more flexible concepts.

Simnon

The system description used in the simulation language Simnon, (Elmqvist,
1975), includes system descriptions for continuous and discrete time systems.
A continuous system corresponds to a state models described by an ordinary
differential equation like

dr
FRRAL) (2.1)
¥= g(a;, U, t)

where 2 is the state vector, u the input vector and ¥ the output vector. The
Simnon representation is -

CONTINUDUS SYSTEM <system identifier>
INPUT <list of inputs>

OUTPUT <list of outputs>

STATE <list of states>

DER <list of derivatives>
TIME <variable>
Computation of cutputs
Computation of derivatives
Parameter assignment
Initial value assignment
END

The standard state space model for a discrete time system is

#(try1) = flag, v, t)

(i) = gz, up, tk) (2'2)

where {3} is a sequence of sampling points. Tn Simnon such a system s
described as

DISCRETE SYSTEM <system identifiery

IKPUT <list of inputs>

GUTPUT <list of outputs>

STATE <list of states>

NEW <list of new states>

TIME <variable>

TSAMP <variable>

Computation of outputs

Computation of new values of the states
Update the TSAMP-variable

Modify states in continuous subsystems
Parameter assignment

Initial value assignment

END

Notice that this description is analogous to confinuous systems. There is
however a new variable TSAMP which gives the next time that the system
should be sampled. In Simnon it is also possible to conmnect subsystems by
using a connecting system which is described by

CONNECTING SYSTEM <system identifier>

TIME <variable>

Computation of inputs

Parameter assignment

END

The notation in Simnon is very natural for a control engineer. Long experience
of using it has also shown that it is very easy to teach and use.

Discussion

The matrix based languages lack a proper system concept. This means that it
is difficult fo implement operations which are naturally viewed as operations
on a system. We cannot make the natural abstractions used in system theory.
Low level matrix operations have to be used instead. Simnon has a notion
of systems. A drawback with this notion is however that it only admits flat
interconnections. Particularly when dealing with large systems it would be
desirable to have an hierarchical interconnection of subsystem, One possibil-
ity to do this was suggested in Astrdm (1984). A more flexible approach is
suggested in this report. Since Simnon is a simulation language there are also
only a limited number of system operations which are supported.

10

3. Requirements

We will now briefly discuss some key issues in system representation. An
important requirement is that the descriptions introduced should admit hi-
erarchical system representations. Another is that it should be convenient
to express systems composed of regular patterns of similar components in a
convenient way,

To discuss suitable system descriptions we must also know how they are
typically used. Typical operations on a system may be to:

Combine several subsystems into a new subsystem.
Expand a system into its subsystem.
Find interconnected loops.
Compute steady state operating points.
Compute steady state input-output relations,
Simulate.
Linearize,
Describe region of validity of linearized model.
Analyse stability, reachability and observability.
Make a Kalman decomposition.
Compute system inverses.
Compute sensitivity functions.
Compute well-conditioned linear representations.
Find linear characteristics like:

poles and zeros,

transfer functions,

frequency curves.
Transform system representations.
Perform and validate control design.
Make model reductions.
Fit parameters to experimental data.
Find graphical representations.

Some of these operations are conveniently done numerically. Others re-
quire formula manipulation. It is therefore essential that the system can sup-
port numerical as well as formal calculations.

To describe systems it is thus necessary to have a rich structure which
makes it possible to describe hierarchical interconnections of subsystems where
each subsystem in turn is composed of subsystems. The subsystems may be
of different {ypes. They may be described in terms of state models, as input-
output relations like impulse responses or transfer functions. We also have a
need for descriptions of different complexity.

11

4. System Structure

Representation of system structure is a key element when dealing with complex
systems. Graphical representations, like block diagrams, signal flow diagrams
and bond graphs are common for this purpose. They can be used to present
details of subsystems as will as to give an overview of systems. In a block
diagram description a subsystem is represented by a box and interconnections
by lines between the boxes. See Figure 4.1. A line can Tepresent a simple
connection which tells that the variables at the connections are the same.
It can also represent a more complex situation where several variables are
involved. It is common practice to introduce arrows to indicate causality
when this is possible. There may also be special symbols to denote simple
operations like addition and multiplication of signals. There are many related
descriptions like signal flow graphs and bond graphs.

To capture descriptions like block diagrams it is necessary to introduce
the notions of subsystems and interconnections. In this report we will only
consider systems with well defined inputs and outputs. Such a system can be
regarded as an abstraction of a box with input and output terminals. It can
be represented as an object with the variables

Name

Inputs
Outputs
Subsystems
Connections

The inputs and outputs can be simple variables but they could also be ob jects
with properties like units, range, etc. A primitive connection is a pair of input
and output terminals. The connection implies that the corresponding terminal
variables are the same. To avoid ambiguity the name of the associated system
is also given. The notation (Regulator sp) denotes the terminal sp of the
regulator. The system in Figure 4.1 can be represented as follows

MR A e o Em N R e mm Em MY e b omm R A e mE EE A e e Em Em e e mm AN e mm mm e e

myv _ |Regulatorjl———m| Process | s

AR s am et o R R o E R R e e e Em R A e e e e R M e v me me e e ma

Figure 4.1 Example of a hierarchical block dizgram. The ClosedLoopSystem is
composed of two subsystems Process and Regnlator,

12

Name ClosedLoopSystem

Input r

Cutputs y

Subsystems Regulator Process
Connections r (Regulator sp)
(Regulator cv) (Process u)
(Regulator mv) (Process y)

y (Regulator y)

The regulator has the representation

Name Regulator
Input mv sp
Outputs cv
Subsystems nil
Connections nil

It thus has two inputs, mv the measured value and sp the set point. It has
one output the controlled variable cv. The regulator has no subsystems and
consequently no connections. In such a case the corresponding variables will
be not be given.

The process in Figure 4.1 has the representation

Name Process
Input u
Outputs y

This notation is simple, natural and quite powerful.

Methods

A system structure has a number of associated operations. Examples of basic
low level constructor and destructor function are

MakeSystem
AddInputs
Dellnputs

Basic query and selector functions of the type

Inputs?

Inputs
are also needed to work with a system structure. The function Inputs? re-
turns true if the subsystem has inputs and the function Input returns all
inputs to a given subsystem. These functions operate on one level only. There
are also primitive display functions like

ShowSystem

and a system editor which admits a structured editing of a system.

The functions discussed so far relate to a particular system only. For a
system with subsystems it is also of interest to find all attributes of the system
and of all associated subsystems. This is done by the functions

AliInputs

All0utputs

A118ubsystems

Al1Connections

It is sometimes also desirable to show the attributes hierarchically correspond-
ing to the the subsystem hierarchy. This is done by the functions

13

HierarchyOfInputs
HierarchyDfQutputs
HierarchyOfSubsystems
HierarchyOfConnections

Several functions are useful in order to explore the structure of a system. There
are some auxiliary functions which are useful to explore the connections. The
functions

InputsConnectedTo
DutputsConnectedTo

return the systems which are connected to the inpuf and output terminals of
a given system, The function

ContainedIn

gives all the systems which contain a given system as a subsystem.

A loop is a closed path obtained by scanning a connection of subsystems
in the direction defined by the input-output causality. The functions

Loop?

Loop

AllLoops

tell if a given subsystem is contained in a loop, gives a loop associated with a
given subsystem and all loops associated with a given system. These functions
can be used to trace a given collection of subsystems.

System Operations

It is convenient to have a number of operations which act on a system and
generate new systems. This is accomplished by the functions

Agpgragate

Disaggregate
The function Aggregate applies to a collection of subsystems and gives a new
subsystem, The appropriate connections are generated from the aggregated
subsystems.

There are also a number of other system operations which are useful to
form composite systems from simple ingredients. Typical examples are

Invert

ParallelConnect

SeriesConnect

FeedbackConnect

These operations will have to operate on many different properties of a system.
They will create new system with the appropriate properties.

5. System Behavior

Only topological properties of a system i.e. structure and interconnections,
have been discussed so far. To describe a system it is also necessary to describe
how it behaves. Systems behavior is a very rich field. Examples of categories
of behavior are

Static

Qualitative
StateSpace
StochasticStateSpace
StochasticInputlOutput
LinearStateSpace
TransferFunction
TransientResponse
DescribingFunction

These categories can be described as objects. The static behavior can be
described by a nonlinear function. Several methods are needed to work with
static behavior e.g.

FindOutput

FindInput

Linearize

MaxGain

MinGain

DegrseDfLinearity

OperatingRange
Qualitative behavior attempts to describe some gross properties of a system
like gain, time constants, and estimate of largest dynamic gain, some measure
of nonlinearity, and some measure of how deterministic a system is. Associated
with these properties we also need methods to obtain these properties from the
more detailed representations. The ideas developed for automatic tuning of
1@dﬁmﬂmemMemddkmmmpmpmeS%Aﬂmmamﬂhg&md@%@
It is quite useful to allow qualitative system descriptions because it allows
qualitative reasoning about system properties. In large systems composed of
many subsystems we may e.g. neglect an interconnection if a system with a
very low gain is connected in parallel with a system with a very high gain. In
a simulation where we are exploring phenomena in a time scale of minutes we
may use static models for subsystems whose time constants are less that one
tenth of a second,

1t is also very useful to introduce the ValidityRange property to indicate
the region of validity of the model. This can be described as a subset of the
product of the input spaces and the state spaces. With such a feature it is
possible to write a simulation program which will raise an exception if the
state of the system goes outside the region of validity during a simulation.

15

6. Conclusions

The purpose of this work has been to view CACE packages as high level
problem solving languages. This approach gives a good unified way to view and
analyse different packages. Because of budgetary constraints the project was
smaller than originally planned. By collaborating with other groups we have
however been able to make a reasonable coverage. A study of different packages
has shown that system representations is a key issue which is poorly delt with
in existing systems. A special study was therefore made of this problem.
Different ways to describe systems have been investigated in the study. It
has been shown that interconnected systems are conveniently described using
object-oriented programming. A small prototype to test the ideas has also
been implemented and tested.

Our experiences indicate that the system description proposed is natural
and easy to work with, A complete system for describing system structure
can be implemented following the ideas outlined.

A graphics user interface of the type described in Elmqvist and Mattsson
(1986) and Mattsson et al (1986) is a natural interface to the descriptions.
Exploratory work along these lines is under way.

The work has been influential in shaping the future of the CACE project.

Acknowledgements

The results of this paper were obtained as part of the project Computer Aided
Control Engineering (CACE} at Lund Institute of Technology. We are grateful
to the National Swedish Board of Technical Development (STU) who has
supported this project under contract 85-4808. We also would like to thank
Wolfgang Kreutzer and Karl Erik Arzén for many useful discussions,

16

References

ACSL (1986): ACSL - Advanced Continuous Simulation ILanguage —
Reference Manual, Fourth Edition, Mitchell and Gauthier, Assoc., Inc.,
Concord, Mass., USA.

ASEA (1984): “SANDYS — Anvindarhandledning, H6000,” ASEA, Visters,
Sweden.

AsTrOM, K.J. (1983): “Computer Aided Modelling, Analysis and Design of
Control Systems—A perspective,” IEEE Control Systems Magazine, Vol
3, No. 2, May 1983, 4-16.

AsTrOM, K.J. (1984): “Computer Aided Design of Control Systems,” in
Bensoussan and Lions (Fds.): Analysis and Optimization of Systems,

Springer Lecture Notes in Control and Information Sciences, Springer,
Berlin.

AsTROM, K.J. (1985): “Computer Aided Tools for Control System Design—A
perspective,” in M. Jamshidi and C.J. Herget (Eds.): Computer-Aided
Control Systems Fngineering, North-Holland, pp. 3-40.

AsTrOM, K.J. and HAGGLUND, T. (1984): “Automatic Tuning of Simple
Regulators with Specifications on Phase and Amplitude Margins,” Auto-
matica 20, No. b, 645-651.

AstrOM, K.J. and W. KREUTZER (1986): “System Representations,”
Proceedings of the IEEE, Control Systems Society Third Symposium on
Computer-Aided Control Systems Design (CACSD), Arlington, Virginia,
September 24-26, 1986, Also available as internal report TFRT-7330.

Atuerron, D.P., O.P. MCNAMARA, M.D. WaDEY and A. GOUCEM (1985):
“SUNS: The Sussex University Nonlinear Control Systems Software,”
Proceedings of the 3rd IFAC/IFIP International Symposium CADCE’S5 on
Computer Aided Design in Control and Engineering Systems, The Technical
University of Denmark, July 31 — August 2, 1985, pp. 173-178.

Barxer, H.A., M. CueN, C.P. JoBLING and P. Townsenp (1986):
“Interactive Graphics for the Computer-Aided Design of Dynamic Systems,”
IEEE International Conference on Systems, Man and Cybernetics, Atlanta,
Georgia, October 14-17, 1986.

Barker, H.A., M, CreN, P.W. GranT, C.P. JoBLING and P. TOWNSEND
(1987): “The Development of an Intelligent Man-Machine Interface for Com-
puter-Aided Design, Simulation and Implementation of Control Systems,”
IFAC World Congress, Munich, Germany, 1987.

CAMBRIDGE CONTROL LiMITED (1983): “TSIM-User’s Guide, Reference
Manual,” Cambridge Control Limited, Cambridge, UK.

CELLIER, F.E. and M. RiMvaLL (1986): “Computer-Aided Control System
Design Techniques and Tools,” CERL-Report: 86/04, Dept. of Electrical &
Comp. Engineering, University of Arizona, Tucson, Arizona.

DELEBECQUE, F. and S. STEEr (1985): “The Interactive System Blaise
for Control Engineering,” CADCE ’85, 3rd IFAC/IFIP Symposium on

17

Computer Aided Design in Control and Engineering Systems, Lyngby,
Denmark, July 31—-August 2, 1985, pp. 44-46.

DELEBECQUE, F. (1986): “Some Remarks About the Design of an Interactive
CACSD Package: The Blaise Experience,” IBEE Control Systems Society,
Third Symposium on Computer-Aided Control Design, Arlington, Virginia,
September 23-26, 1986.

EAGLES (1986): “BAGLES/Controls — Documentation,” Lawrence Liver-
more National Laboratory, Livermore, California, USA.

ELCS (1987): “The Extended List of Control Software, ELCS,” Number 3,
February 1987, (Eds.) D.K. Frederick, C.J. Herget, R. Kool and M. Rimvall,
Dept. of Automatic Control, ETH, CH-8092 Ziirich, Switzerland.

Ermovist, H. (1975): “SIMNON - User’s Manual,” CODEN: LUTFD2/
TFRT-3091, Department of Automatic Control, Lund Tnstitute of Technol-
ogy, Lund, Sweden,

Eimquist, H. (1978): “A Structured Model Language for Large Continuous
Systems,” Ph.D Thesis CODEN: LUTFD2/TFRT-1015, Department of
Automatic Control, Lund Institute of Technology, Lund, Sweden.

EumqvisT, H. (1985): LICS - Language for Implementation of Control Sys-
tems, Report CODEN: LUTFD2/TFRT-3179. Department of Automatic
Control, Lund Institute of Technology, Lund, Sweden.

EuMQvisT, H., K.J. AsTrOM and T. SCRONTHAL (1986): SIMNON — User’s
Guide for MS-DOS Computers, Department of Automatic Control Lund
Institute of Technology, Lund, Sweden.

EimqvisT, H. and S.E. MarTsson (1986): “A Simulator for Dynamical
Systems Using Graphics and BEquations for Modelling,” Proceedings of
the IEEE Control Systems Society Third Symposium on Computer-Aided
Control Systems Design (CACSD), Arlington, Virginia, September 24-26,
1986.

Gaver, D.T., C.J. HerGeT, and B. S. Lawver (1986): “The M
Language—An Interactive Tool for Manipulating Matrices, Systems and
Signals.,” Dynamics and Controls Group, Engineering Rescarch Division,
Lawrence Livermore National Laboratory, Livermore, California.

GRANDA, J.J. (1983): “A Guide to Using Camp,” Department of Mechanical
Engineering, California State University, Sacramento, California.

HergeT, C.J. and D.M. TiLry (1985): “Linear Systems Analysis Program,”
in Jamshidi, M. and C.J. Herget (Eds.): Computer-Aided Control Systems
Engineering, North-Holland, Amsterdam, The Netherlands, pp. 53-60.

INTEGRATED SYSTEMS, INC (1984): “MATRIXX User’s Guide, MATRIXx
Reference Guide, MATRIXy Training Guide, Command Summary and
On-line Help,” Integrated Systems, Inc., Palo Alto, California.

Kivg, R.A. and J.O. Gray (1985): “A Flexible Data Interpreter for
Computer Aided Design & Simulation of Dynamic Systems,” CADCE
"85, 3rd IFAC/IFIP Symposium on Computer Aided Design in Control
and Engineering Systems, Lyngby, Denmark, July 31-August 2, 1985,
pp. 87-91.

18

Lawver, B. and P. PocGaio (1985): “BAGLES Requitements,” Computer
Systems Research Group, Engineering Research Division, Lawrence Liver-
more National Laboratory, Livermore, California.

LiTTLE, J.N., A. EMAMI-NOEINT, and S.N. BANGERT (1984): “CTRL-C and
Matrix Environments for the Computer-Aided Design of Control Systems,”
in Bensoussan and Lions (Eds.): Analysis and Optimization of Systems,
Lecture Notes in Control and Information Sciences, Springer-Verlag, Berlin,
Also in Jamshidi, M. and C.J. Herget (eds) Computer-Aided Control Sys-
tems Fngineering, North-Holland, Amsterdam, The Netherlands, 111-124.

LirTie, J. and C. MoLErR (1987): “A Preview of MATLAB,” The
MathWorks, Inc., Sherborn, MA, USA.

Macierowski, J.M. and A.G.J. MACFARLANE (1982): “CLADP: The
Cambridge Linear Analysis and Design Programs,” Control Systems
Magazine 2, 4, Dec 1982, 3-8, Also in Jamshidi, M. and C.J. Herget (Eds.)
(1985). Computer-Aided Control Systems Engineering, North-Holland,
Amsterdam, The Netherlands, pp. 125-147.

MarTssoN, 5.E., H. ErmMgvisT and D.M. Brick (1986): “New Forms of
Man-Machine Interaction,” Final Report 1986-09-30, STU project 84-5069,
STU program: Computer Aided Control Engineering, CACE, Report
CODEN: LUTFD2/TFRT-3181, Department of Automatic Control, Lund
Institute of Technology, L.und, Sweden.

Mu~Nro, N. and B.J. BOWLAND (1984): “Computer Aided Control System
Design Software — User’s Guide,” Control Systems Centre, UMIST,
Manchester, UK.

Munro, N., J.M. EpMunDs, G, Bowk, 5. GoobrFELLOW, W. SWINDELLS
and D. LoMas (1986): “Examination of various control system design
software facility,” Control Systems Centre, UMIST, Manchester, UK.

Moikr, C.B. (1980): “MATLAB - User’s Guide,” Department of Computer
Science, University of New Mexico, Albuquerque, USA.

Nyg, W.T. and Tirs, A. (1982): “DELIGHT for Beginners,” Memorandum
No. UCB/ERL M82/55, Electronics Research Laboratory, College of
Engineering, University of California, Berkeley.

Nve, W.T. (1983): “DELIGHT. An Interactive System for Optimiza-
tion-Based Engineering,” Memorandum No. UCB/ERT, M83/33, Electron-
ics Research Laboratory, College of Engineering, University of California,
Berkeley.

Povak E., P. SigceL, T. Wuu, W.T. NYE and D.Q. MaYNE (1982): “DE-
LIGHT .MIMO: An Interactive Optimization-Based Multivariable Conirol
System Design Package,” IEEE Control Systems Magazine 2, No. 4, Dec
1982, 9-14, Also in Jamshidi, M. and C.]. Herget (Eds.) (1985): Com-
puter-Aided Control Systems Engineering, North-Holland, Amsterdam, The
Netherlands, pp. 139-147.

RiMvALL, M. (1983): “IMPACT, Interactive Mathematical Program for
Automatic Control Theory, User’s Guide,” Department of Automatic
Control, Swiss Federal Institute of Technology, ETH-Zentrum, Zirich,
Switzerland.

19

RivvaLL, M. (1986): “Man-Macine Interfaces and Implementation Issues
in Computer-Aided Control System Design,” Ph.D Thesis, Department of
Automatic Control, Swiss Federal Institute of Technology, ETH-Zentrum,
Zirich, Switzerland.

RiMvart, M aund F. CeLLIER (1984): “IMPACT Interactive Mathematical
Program for Automatic Control Theory,” in Bensoussan and Lions (Eds.):
Analysis and Optimization of Systems, Springer Lecture Notes in Control
and Information Sciences, Springer, Berlin.

RimvarL, M. and F.E. Ceruier (1985): “A Structural Approach to
CACSD,” Computer-Aided Control Systems Engineering, North-Holland,
Amsterdam, The Netherlands, pp. 149-158, In Jamshidi, M. and C.J.
Herget (Eds.).

Rosencops (1985): “ENPORT-6 — User’s Manual,” Rosencode Associates,
Inc., Lancing, Michigan, USA.

SERC (1986): “Control and Instrumentation — Subcommittee Review,”
August 1986, Science and Engincering Research Council Engineering
Board, Information Engineering Committee, Control and Instrumentation
Subcommittee, Swindon, UK.

SHAH, 8.C., M.A. FLoyp aNp L.L. LEEMAN (1985): “MATRIXy: Control
and Model Building CAE Capability,” in Jamshidi, M. and C.J. Herget
(Bds.): Computer-Aided Control Systems Engineering, North-Holland,
Amsterdam, The Netherlands, pp. 181-207.

SYSTEMS CoNTROL TECHNOLOGY (1984): “CTRI-C A Language for the
Computer-Aided Design of Multivariable Control Systems, User’s Guide,”
Systems Control Technology, 1801 Page Mill Road, Palo Alto, CA.

Trompsow, P.M. (1984): “User’s Guide to Program CC, Version 2,” Elec-
trical Engineering Department, 116-81, California Institute of Technology,
Pasadena, California.

THOMPSON, P.M. (1985): “Program CC: Technical Information,” Proceed-
ings of the 2nd IEEE Control Systems Society Symposium on Com-
puter-Aided Control System Design (CACSD), Santa Barbara, California,
March, 13-15, 1985.

WALKER, R., C. GREGORY, JR. AND S. SHAH (1984a): “MATRIXX: A Data
Analysis, System Identification, Control Design and Simulation Package,”
Integrated Systems, Inc., Palo Alto, California.

WALKER, R., S.C. SHAH AND N.K. GUPTA (1984b): “Computer-Aided
Engineering (CAE) for System Analysis,” Proc. of the IEEE 72, No. 12,
17321745,

WIESLANDER, J. (1980a): “Idpac Commands — User’s Guide,” CODEN:
LUTFD2/TFRT-3157, Department of Automatic Control, Lund Institute
of Technology, T.und, Sweden.

WIESLANDER, J. (1980b): “Modpac Commands ~ User’s Guide,” CODEN:
LUTFD2/TFRT-3158, Department of Automatic Control, Lund Institute
of Technology, Lund, Sweden.

WIESLANDER, J. (1980c): “Synpac Commands — User’s Guide,” CODEN:
LUTFD2/TFRT-3159, Department of Automatic Control, Lund Institute
of Technology, Lund, Sweden.

20

