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1. INTRODUCTION .

Optimization techniques have many applications in different
fields of engineering. Its use in control theory is the topic
of this report. Classical methods of designing a control
system are largely based on trial and error. The engineer is
given certain specifications and has to use his intuition
and practical experience in trying to find a solution. Often
the design consists of two steps. First a configuration is
chosen, e.g. a PID controller for an industrial process or

a lead-lag compensation for a servo motor. Then a number of
parameters within the given structure have to be determined,
the three gain parameters for the PID controller or the gain
and time constants in the lead-lag network. There are rules
of thumb for choosing the parameters but sometimes they are
not sufficient. The designer might want a tuning of the
parameters that is the best one in a certain sense, e.g.

the one that minimizes settling time. It may be desired to
obtain fixed parameters that give reasonable performance
even if the process parameters vary. In some cases no satis-
factory tuning is found even after long trials. It is then
natural for the designer to suspect that it is actually
impossible to satisfy the specifications with the given
configuration. However, it is not possible to prove this

without a systematic way of choosing the parameters.

One way of getting a systematic approach is to specify a
mathematically defined criterion. The goal of the design task
is then to find a controller that minimizes the criterion. A
survey of the early design methods based on optimization is
given.in Newton, Gould and Kaiser (1957). A drawback of the
methods used there, is that only criteria which can be
computed from explicit analytic expressions are considered.
This limits the application to linear systems and criteria
which are the time integral of the squared error or the
expectation of the squared error. With the development of

computers and computational methods that has taken place in



the last two decades, it is no longer necessary to use only
design criteria that can be manipulated by direct analytical
techniques. The modern numerical optimization algorithms can
be applied to practically all criteria. This is a great
advantage since it permits the designer to choose a criterion
that describes exactly the qualities he desires to have in

the control system.

A complication that arises in most design problems is that
there are several conflicting criteria. The conflict can be
resolved in several ways. One possibility is to introduce

a new criterion that is a weighted sum of the original
criteria. The drawback of this approach is the difficulty

of choosing good values of the weights. An alternative is

to minimize with respect to one criterion and put upper or
lower bounds on the remaining criteria. This results in a
constrained optimization problem. Accepting this formulation
it is also possible to use optimization theory to explore

if the specification can be fulfilled at all with the

chosen configuration. If the global optimum does not

satisfy the specifications, the design problem is impossible

to solve.

In Chapter 2 a survey is given of some different optimization
problems originating in control theory. It is shown that
these problems usually lead to constrained optimization
problems. Some of these are finite dimensional while others

are infinite dimensional.

The general constrained finite dimensional problem is also
called the nonlinear programming problem. As mentioned above,
design problems for control systems with conflicting criteria
can be formulated in this form. Since the constrained opti-
mization is important also in other fields of engineering,
some methods for solving it are considered in Chapter 3.
There exist powerful methods for unconstrained minimization,

e.g. the so-called quasi-Newton methods. In this report the




attention will therefore be focused on methods that convert
the constrained problem into an unconstrained one. The
methods which are studied belong to the combined nmultiplier
and penalty function methods. These methods are based on
the use of a function F(x,u) called the augmented
Lagrangian. F depends on the independent variables of the
constrained problem, x and on a vector of so-called multi-
pliers, u. For a certain value, u, the function F(x,u)

has a local unconstrained minimum at the point, §, which
solves the original problem. This is the basic property

and means that the constrained problem is transformed into
an unconstrained one. Since u is unknown, it is usually
determined iteratively. An alternative is to replace u by

a function UW(x), having the property that u(x) = u. In

3.3 it is shown that F(x,ﬁ(x)) has a local minimum at X%,
under conditions that are more general than those given in
literature. Most of Chapter 3 is devoted to methods where

u is determined iteratively.

Most convergence results for algorithms based on augmented
Lagrangians are derived for methods where F(x,u) is mini-
mized for fixed u before u is updated. In Chapter 3 a method
is presented where a quasi-Newton method is used for the
minimization with respect to x, and u is updated after each
line search in x. It is shown that safeguards can be included
in the method to make it globally convergent. It is also
shown that the local convergence rate is linear for two of
the updating rules for u and superlinear for a third one.
The practical usefulness of the algorithms is demonstrated
in a comparison with other algorithms using a number of

test problems.

In Chapter 4 the infinite dimensional optimal control problem
is considered. The goal is to study the extension of the
methods of Chapter 3 to infinite dimensional problems. The
augmented Lagrangians connected with the equality constraints

defined by the differential equation and the terminal



constraints are studied. Conditions that guarantee that
this augmented Lagrangian has a local minimum which solves
the original optimal control problem are presented. It is
shown that a Riccati equation plays a crucial role in

these sufficiency conditions.

The connection with the usual second order sufficiency
conditions for optimal control problems is given. As in

the finite dimensional case it is necessary to use iterative
methods for the multipliers. A method proposed in literature
is investigated and shown to be linearly convergent. Finally
an extension of the augmented Lagrangian approach to handle
mixed state control inequality constraints is proposed. It
is shown how the method is connected with sufficiency condi-

tions for a local minimum.

In Chapter 5 the use of finite dimensional constrained
optimization methods in the design of control systems is
discussed. A powerful interactive simulation program called
SIMNON was developed by Elmgvist. In Chapter 3 it is described
how an optimization routine is added to SIMNON. This gives

a versatile tool for control system design. The ability of
the optimization routine to handle general nonlinear mini-
mization problems means that many design tasks that are
difficult to handle with conventional synthesis techniques can
be solved. In particular, nonlinearities in the system can be
dealt with. Several examples of synthesis problems solved

using optimization techniques are presented.

An on-line application of optimization is presented in
Chapter 6. The process consists of an o0il burner and the
objective is to maximize combustion efficiency. It is shown
that the best adjustment can be found automatically by a

standard optimization routine of the quasi-Newton type.




Acknowledgements.

I wish to express my sincere gratitude to Professor Karl Johan

Astrém for his stimulating help and guidance throughout the work.

The people at the Department of Automatic Control have helped in
the work by many interesting discussions. In particular I want
to thank Krister M&rtensson who initiated the work on multipli-
ers. I also want to thank Gunnar Bengtsson, Olov Einarsson, Hil-
ding Elmgvist and Lennart Ljung who have given valuable comments
on the manuscript. Leif Andersson, Rolf Braun and Lars Jensen

have been of great help in the experimental part of the work.

I also want to thank l:e forskn. ing. Bertil Reenstierna and Civ.
ing. Lennart Sj&stedt at the Department of Machine Design for

their cooperation in the experiments with the oil burner.

This work has been supported by the Swedish Institute of Applied
Mathematics which is gratefully acknowledged.

Many thanks also to Gudrun Christensen for her excellent typing
of the manuscript and to Britt Marie Carlsson who carefully pre-

pared the figures.




Notation.

With the exception of derivatives explained below, all vectors
are column vectors. The transpose of a vector or a matrix y is
denoted yT.

The derivative of a vector valued function
g7 (%)

g(x) =
gm(X)

is denoted

’agl/axl . agl/axn
agm/axl .o Bgm/axn

i. e. derivatives are row vectors. The second derivative of a

scalar function f is denoted

2 2 2

9 f/BXl ees O f/BXlen
fxx -

2 2 2

9 f/axnaxl...a f/axn
For vectors, H H denotes an arbitrary vector norm. For matrices
it denotes the corresponding operator norm. HaH2 denotes the

/T
norm Va a .

For function spaces the following notation is used.

Cg[tl,t2] denotes the space of n=vector valued continuous. func-

tions on Etl,tz]. The corresponding norm is

€]l g = sup [[£(t) ]|

tlgtjtz




Similarly

C?[tl,tz] denotes the space of n-vector valued continuously

differentiable functions on [tl,t2]. The corresponding norm is

£l = sup [[£(e) ][] + sup  [[£(E)]]
tlftftz tlititz

where f is the derivative of f.

References.

Newton, G.C., Gould, L.A., and Kaiser, J.F. (1957):

Analytical Design of Linear Feedback Controls, Wiley, New York.




2. OPTIMIZATION PROBLEMS IN CONTROL THEORY

There are several different areas of control theory where op-
timization problems can be formulated. To give a motivation for
the optimization theory developed in Chapters 3 and 4, a summa-
ry of some important control problems leading to optimization

is presented.

A control system, see Fig. 2.1, is characterized by an input u,
an output y, a state x and influences from the environment, v.
It will be assumed that the system can be described by differen-

tial equations

% (t)
y (t)

fx () ,u(t),vit),t)
g (x(€) ,ult),v(t),t)

or difference equations

x(t+t) = £(x(t),ult),v(t),t)
y(t) = g(x(t)iu(t) Iv(t)lt)

or a combination of these.

System
u = state x y

Fig. 2.1.




The problem of designing a controller can in very general terms

be stated as follows:

Find a rule for computing u from y such that the system behaves

in a desirable way despite the influences from the environment.

There are several ways in which this design problem may lead to

an optimization problem.

Controller with fixed structure.

A common situation is that the controller has a fixed structure.
The structure may be fixed because a certain type of equip-
ment, e.g9. a PID controller, has to be used. The designer can
also choose a certain structure on the basis of experience. The

chosen structure can also be one in a series to be investigated.

Assume for simplicity that both the controller and the system
are described by differential equations. If p denotes the para-
meters to be adjusted in the controller, the system plus control-

ler is then described by

X(t) = £(x(t),u(t),t)
y(t) = g(x(t),ult),t)
z(t) = k(z(t),y(t),t,p)
u(t) = m(z(t),y(t),t,p)

Introducing a modified state vector

X

z]

and the function f satisfying
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2 (5 ] (£ (x(t) ,u(t) ,t)
E{x(t) PN =
‘ k[Z(t) IY(t) ltrp)

the system can be written
F(t) = F(X(t),t,p)

Many criteria that characterize the performance of a control

system can be written in the form
T

J(x,p) = [ L(X(t),t,p)dt
0

If a fixed initial state of X is assumed, then every value of
p defines a solution §p(t). (It is assumed that T satisfies a
Lipschitz condition for every p, so that the solution X is

unique.) Therefore the function

0y (P) = [ L(X,(t),t,p)dt

OV 1+

is well defined. The resulting problem is therefore the minimi-
zation of a real function of finitely many variables. It is al-

so possible that there are constraints in the problem, e.g.

T
J, (x,p) = é Li(X(t);t,p]dt < Cy
or
Ji(g,p) = max Li(g(t),typ] < Ci i=1, ..., m
Defining
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the problem then becomes

minimize @O(p)
under the constraints @i(p) < 0 i=1, e, m
This is an example of a general nonlinear optimization problem,

sometimes called the nonlinear programming problem.

The reasoning above can easily be extended to the case where
some of the differential equations are replaced by difference

equations, e.g. for a system controlled by a digital computer.

Several examples of optimization of systems with fixed struc-

ture are given in Section 4.3.

Instead of studying a fixed structure controller one can pose

the problem of finding the best control, u on some given time
interval. This is an open loop problem. Examples of this prob-
lem can be found in the aerospace industry where it is required
to compute the optimal trajectory for a space vehicle. An example
involving a container crane is given in Section 4.3. There is an
important difference between discrete time and continuous time

problems.

Discrete time optimal control.

This problem can be formulated:

Minimize
N
J =) Lx(i),u(i),i)

for the system
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% (i+1) = £(x(i),u(i),i)

It is possible to give all sorts of different constraints.

The usual ones are

gj(x(i),u(i),i) <0 jo= 1, oo, my
wj(x(N)) = 0 Jo= 1, eeey m,
x(0) = Xq

The problem can either be regarded as a problem in the vari-

ables

u{0), u(l), ..., u(N)

or in the wvariables

u(0), ve., u(M), x(1), ..., x(N)

with the difference equation as an equality constraint. In both
cases the resulting problem is a finite dimensional constrained
problem. This does not mean that a general nonlinear programming
algorithm is necessarily the best way of solving this problem
because the prcoblem has a special structure that can be taken

advantage of in an algorithm.

Continuous time optimal control.

The problem is toc find a u to minimize

L(x(t),ul(t),t)dt + F(x(T))

&
i
O

for the system
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%(t)
% (0)

It

£(x(t),ult),t)

a

The constraints can be of the form

g(x(t),ult),t) <0
p(x(T)) =0

This problem differs from those treated before because here u
and x are elements in an infinite dimensional space. The con-
straints % = f£(x,u,t) and g(x,u,t) < 0 are also infinite dimen-

sional in nature.

Although this problem is mathematically much more difficult
than the finite dimensional one, there are many parallels in
the theory. In Chapter 4 it will be shown that the numerical
methods for finite dimensional oproblems can, to a large ex-

tent, be generalized to the optimal control problem.

Optimization problems are not only encountered in the design
of control systems. The problem of finding a mathematical mo-
del that describes a physical system can also be formulated as

an optimization problem.

The identification problem.

Consider the problem of finding the value of a parameter o in

a mathematical model of a physical system

x(t+1) = £(x(t),u(t),t,p)
g (x(t),ult),t,p)

—~~
a3
Nt
il

Most identification methods can be formulated as the minimiza-

tion of suitably chosen criterion, that can usually be expressed

as




I = Ly (0),y(1), ..,y ,y_(0),y_(1),..,y_(N))

where ym(t) is the output of the real system, when the model
and the physical system both have the same input. This prob-

lem is a finite dimensional problem.

The conclusion of this brief survey is that, even if optimiza-
tion problems are derived from different parts of control theo-
ry, they can all be formulated as the minimization of an objec-
tive function possibly under constraints. An important diffe-
rence from the mathematical, and to a lesser extent,the algo-
rithmic, point of view is between finite dimensional and infi-
nite dimensional problems. Methods for solving these problems

will be considered in the next two chapters.
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3. THE FINITE DIMENSIONAL PROBLEM.

In this section methods for solving the constrained finite di-
mensional problem are investigated. The methods use the idea of
converting the constrained problem into an unconstrained one or
into a sequence of unconstrained problems. To do this a function
called the augmented Lagrangian is introduced in section 3.1.
Known results from the literature are also given in that section.
These results show that the augmented Lagrangian has a local mi~-
nimum at the solution to the constrained problem. In section 3.2
it is shown that, with mild restrictions on the objective func-
tion, the minimum is actually a global one. Section 3.3 shows
that, when the multipliers used in the augmented Lagranglan are
treated as functions of x, the augmented Lagrangian has a local
minimum under weaker conditions than those given in the litera-
ture. In 3.4 iterative methods based on the augmented Lagrangian
are discussed. The local convergence properties of three diffe-
rent updating methods are treated in 3.5 and it is shown that two
of them converge linearly while the third one has superlinear
convergence. Modifications that give global convergence are shown
in 3.6. Finally the algorithms are tested on numerical examples
and compared with other methods of solving the constrained prob-

lem in 3.7.

3.1. Problem Formulation and Basic Results.

After defining the problem, some standard results from optimiza-
tion theory will be given. First the necessary and sufficient
conditions for a constrained optimum are presented. Then the func-
tion known as the augmented Lagrangian is defined and three theo-
rems showing its basic properties are quoted. These results form

the background of the material presented in sections 3.2 - 3.7.

As shown in section 2, the finite dimensional problem can be sta-
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ted as follows:

minimize f(x)

subject to h(x)

i
o

h(x) = (hy(x), ..., hp(x))T
)T

i

g(x) 20 gx) = (g3x), «ony gy(x)
where x is an n-dimensional real vector and f(x), hi(x) and
gi(x) are real valued functions. The notation g(x) < 0 means
that gi(x) £ 0, 1 =1, ..., m. Let x be a local minimum to

this problem. Define the integer sets A = {i!gi(g) = 0} and
I = {ilgi(§) <0}, i.e. the sets of indices corresponding to

active and inactive inequality constraints respectively.

In what follows it will be assumed that the following condi-
tions hold.

(Cl) In a neighbourhood of x the functions f, h and g are

twice continuously differentiable.

(C2) The vectors (hi)x(z), (gj)x(§), i=1, .., p, § € A are
linearly independent.

The necessary conditions for a local minimum are then given by

the following theorem, the well-known Kuhn-Tucker multiplier
rule.

Theorem 3.1. Assume that x is a local minimum to the constrained

optimization problem and that conditions Cl and C2 hold. Then

there exist uniquely defined vectors : = (;l’ co oy ZP)T and ) =
- = T

= (Aqy ""-Am) such that

£(%) + Wh (X) + iTg (%) =0

h(x) = 0 (3.1)
- m.T - s

A >0 ATg(x) =0 g(x) <0
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Proof. See e.g. Fiacco and McCormick (1968). o

Remark. A point satisfying (3.1) is called a Kuhn—-Tucker point.

Since equation (3.1) is only a necessary condition, a Kuhn-Tuc-

ker point is not always a local minimum. o

To simplify the notation, introduce the vector

It is also convenient to use the Lagrangian
T T
L{x,u) = L(x,u,A) = £(x) + p h(x) + 2 g(x)

Theorem 3.1 then implies that the Lagrangian has a stationary

point at x = X.

In the sufficiency conditions two further assumptions are need-
ed.

(C3) For all vectors z # 0 such that (hi)x(§)z =0, i =1,
veey Py (gj)x(§)z =0, j € A the inequality ZTLXX(Q,G)Z >
> 0 holds.

(C4) x; > 0 for all i € A.

The standard sufficiency conditions used in constrained optimi-

‘zation theory are then given by the following theorem.

Theorem 3.2. Let §, u and_? satisfy equation (3.1) and assume

that Cl1 - C4 hold. Then % is an isolated local minimum to the

constrained minimization problem.
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Proof. See Fiacco and McCormick (1968). o

For convex problems the Lagrangian has the property that

L(x,u) = min L(x,1)
X

see Luenberger (1968). In the general case this is not true.
As shown by Theorem 3.1, Lx(§,ﬁ) = 0, but this stationary point
is not necessarily a local minimum with respect to x. Therefore
Hestenes (1969) and Powell (1969), treating the equality con-
strained case, i.e. where g(x) is absent, introduced the aug-
mented Lagrangilan

o

F(x,1u,0) = £(x) + uh(x) + 5 hx) h(x)

An interesting property of this function is given by the fol-

lowing theorem, shown by Hestenes (1969).

Theorem 3.3. Suppose that all constraints are equality constraints

and that conditions Cl, C2 and C3 hold. Then there exists a con-

stant Sy such that, for c¢ > Cqr FXX(Q,ﬁ,c) is positive definite

and F(x,z,c) has a local isolated minimum at x = x.
Proof. See Hestenes (1969).

The function F can also be written

F(x,uc) = £x) + 55 (ch(e) + )T (chGo + ) - 2 Ty

This suggests an extension to inequality constraints which has

been used by several authors, see e.g. Rockafellar (1974).
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F(x,u,c) = £(x) + 5= (ch(x) + )" (ch(x) + y) -

- QL—LE Wy 2}5 (co(x) + A]E(CGT(X) + ), -

1 .7
55 A A (3.2)

where (g(x) + x)+ = [(gl(x) + Al)+’ ey (gm(x) + Am)+]T and

the notation

{ a if a > 0

0 ifa<o
is used.

For this choice of F, Bertsekas (1973), (1975) has shown the
following result.

Theorem 3.4. Suppose conditions Cl -~ C4 hold. Then there exists

a cg such that FXX(Q,G,C) is positive definite for c¢ > coe Con-~-
sequently F(x,u,c) has an isolated local minimum at x = x if

c > cqe

Proof. See Bertsekas (1973). w]

Since, in general, u is not known, it is natural to study what
happens when F(x,u,c) is minimized for an arbitrary value of u.

Define

GM(u,c) = inf F(x,u,c)
xeM

where M is a neighbourhood of X, GM(u) has the following duali-

ty property, which has been studied by Glad (1973) in the equa-
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lity constrained case and by Rockafellar (1974) and Bertse-

kas (1973) in the general case.

Theorem 3.5. Assume that conditions Cl = C4 hold and let c

be large enough for F(x,u,c) to have a local minimum at x.
Let M be a neighbourhood of x such that

inf F(x,u,c) = F(x,a,c)
XEM

Then the function

Gy (u,c) = inf F(x,u,c)
M
xeM

has the following property

max GM(u,c) = GM(u,c) = F(x,u,c) = f(x)
4 1
Proof.
GM(u,c) = inf F(x,u,c) < F(%,u,c) <
xeM
< £(x) = F(x,u,0) = Gy(u,c) o

The first and second derivatives of GM(u,c) with respect to
v can be calculated, see e.g. Fletcher (1974). The result is

summarized in the following theorem.

Theorem 3.6. Let conditions Cl - C4 hold and let ¢ be large

enough for F%X(E,G,c) to be positive definite. Then there

exists a continuously differentiable function @ (u,c) defined
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in a neighbourhood, ™ of u such that

U,

F(m(u,c),u,c) = inf F(x,u,c), u M

xXeM

m
o

where M is some neighbourhood of X.

In the same neighbourhood, M the derivatives Gu(u,c) and

UI’
Guu(u,c) are defined. The first derivative is

Gz(ulc) = h(p(u,c))
(3.3)
gi(@(u,C)) if Cgi(m(u,c)) + A, >0
Gi.(u,c)
* -k A if cq.(@(u,c)] + A, <0
c i i i -

Assume for simplicity that the indices are ordered such that

il
'_J

cg; (®(u,e)) + 2y > 0 i

i e s g ll

cg; ((u,e)) + 2y 20 i

1 S il+l, eeas, I

and let z be the vector
(h

bid
(gl)X

°
e
°

(gil)x

Then the second derivative can be written
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-zF Tz 0
XX
- 4
Gy (050 1 (3.4)
0 - = T .
c “m-ijy
{ J
where Fxx = Fxx(m(u,c),u,c)o

Proof. The existence and properties of the function ¢ follow
from the implicit function theorem, see Luenberger (1968).
The expressions for the derivatives G _, G are found in Flet-

u uu
chexr (1L974). o

3.2, Properties of the Augmented Lagrangian.

Theorem 3.4 states that F(x,a,c) has a local minimum at x = x.
Suppose x is a global minimum of the constrained problem. It

is then natural to ask if % is also a global minimum of F(x,a,c)
for some choice of c¢. Rockafellar (1974) proved X to be a glo=
bal minimum under fairly general conditions, using a duality
approach. Here the globality of the minimum at x will be inves-
tigated, using more direct methods. First it is proved that the
area, with respect to which ¥ is a local minimum, can be made

arbitrarily large.

Lemma 3.1. Assume that conditions Cl - C4 hold and that f(x) >
> f(x%) for all x # x satisfying the constraints. Then for every
A > 0 there exists a constant c,, depending on A, such that
F(x,u,c) > F(x,u,c)

for all x % x such that || x - x || < A, provided ¢ > Cq -

Proof. Suppose the theorem is false. Then there exist sequences
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‘{x(k)}m and'{c(k)}oo with
1 1

lim c(k) = o

koo

such that

P50 < r(x8,05) < 2@

x - x| g2 for all k

Since the set || x - x || < A is compact, there exists a subse-
quence x J’, converging to some point x with || x - % || < A.
To simplify the notation, the sequence x “3’ will be denoted

x(j) in the remainder of the proof. Then it follows that

| (4) - =7 ' "
(3)y . 3y 4 1 (3) el -
£t S HEDE c(j)] p=7) + c(j)}
- (3) X )
S T c (3) A % (3) A -
B G I (g(x )+ c<j)J [g(“ )+ CU’}
+ +
me
ATA i
) e (3.5)
2 (3)
Taking limits
() ’ j
, (3) u [ (3) -
1 ——| |hx + : hix + ] *
tim S| [+ ] (o) ¢ 5]
_ T
. (g(x(j)) N xj } (g.(xh)) b oA ] < E(X) ~ £(x)
L c + c' +
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(1)

Since c = o, this can be true only if
h(x) = 0

g(x) <0

i.e. only if % satisfies the constraints. The inequality (3.5)

also gives the relation

: B ~T- ~T=
£ s ro0  ly e A
2c 2c

which shows that f(é) < F(x).

From the assumptions in the theorem it then follows that % = .
This means that F(x(j),a,c(j)) < F(§,E,c(j)) for a sequence sa-
tisfying x(j) > %, x(j) + x, which contradicts the fact that

F(X,E,c) has an isolated local minimum at x if ¢ is large enough.

[
The fact that the constant A in Lemma 3.1 can be chosen arbitra-

rily large, does not in general imply that F has a global mini-

mum at x as shown by the following example.

Example 3.1.

fix) = xg - %l h(x) = Xq

x = (0,0) w =0

_ 2 C 2@ Xl
F(x,0,c) = X, + 3 Xq e

which is not bounded from below. However, with some mild further
restrictions on £, h and g, F does have a global minimum at X,

as shown by the following theorem.
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Theorem 3.7. Assume that conditions Cl - C4 hold and that

f(x) > f(x) for all x #+ x satisfying the constraints. In ad-

dition assume that there exist constants A, = and ¢ > 0 such
that F(x,u,cq) 2 £(x) + ¢ for all x satisfying || x - x | > A.
Then there exists a constant <y such that F(x,u,c) has a glo-

bal minimum at x = x for ¢ > Che

Proof. There exists a constant ¢y such that, for c » ¢y, and

%= % >a
F(x,u,c) > £(X) + ¢
Since from lemma 3.1 there exists a o such that F(X,E,C) >

F(x,u,c) for ||x - x| <A, x + X and ¢ > cys it follows that

F(x,u,c) has a global minimum at x for ¢ > max(co,cl)a o

The assumptions can be varied somewhat as shown by the follow-

ing corollaries.

Corollary 1. Assume that conditions Cl - C4 hold and that

f(x) > f£(x) for all x # X satisfying the constraints. Also
assume that there exist constants A and ¢ > 0 such that £(x) >

> £(x) + ¢ for all x satisfying | x - X || > A. Then there

exists a constant Cy such that F(x,u,c) has a global minimum

at x = x for ¢ > Cqy-

Proof. There exists a constant Cq1 such that, for c¢ »> < and
% - %[ > a

L 8T (R + &

2¢ 2

F(x,u,c) f(x) =

Theorem 3.7 is then applicable. u]
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Corcllary 2. Assume that conditions Cl -~ C4 hold and that

£fx) > f(%) for all x * x satisfying the constraints. Let
f(x) be bounded from below and assume that the constraints

satisfy the condition

Q

. €1 T °1 T 1
oty o {5 e« 3 s, ) -

for some constants cy > 0, ¢ >0 and A > 0. Then there exists
a constant = such that F(x,a,c) has a global minimum at x =

= x for ¢ > Co e

Proof.

T —

F(x,,0) > inf £(x) + S= ¢ - 2= 30 > £(0) + 1

X 1

if ¢ is large enough and |[|x - x|| > A. Theorem 3.7 can then be

applied. o

Remark. A simple example of a set of constraints that satisfy

the conditions of corollary 2 is

gi(x) =a; - % i=1, ..., n
gn+i(x) = X; - bi i=1, ..., n
i.e. upper and lower bounds on all the variables. o

The remark shows that theorem 3.7 is applicable to most prob-
lems having f(x) bounded from below, because it is almost always
possible to specify upper and lower bounds on the variables and

then add the extra constraints corresponding to the upper and
lower bounds.
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Using theorem 3.7, the duality result of theorem 3.5 is imme-

diately generalized. The function G(u,c) can now be defined

G(u,c) = inf F(x,u,c)
X

where the infimum is taken with respect to all x.

Theorem 3.8. Let the assumptions of theorem 3.7 be satisfied.

Then, for sufficiently large c,

G(u,¢) = inf F(x,u,c)
X

has the following property

max G(u,c) = G(u,c) = F(x,u,c) = £(x)
u

Proof. From theorem 3.7 it follows that

inf F(x,a,c) = F(x,u,c)

<7
PsS

The rest of the proof is analogous to the proof of theorem 3.5

m}

3.3. Multipliers That Are a Function of x.

In the previous two sections it was shown that F(x,a,c) has a
local and sometimes a global unconstrained minimum at x. The
constrained problem has thus been transformed into an uncon-
strained one. Since u is unknown in most problems, this fact
is not immediately useful. In this section one way of overcom-

ing this problem will be discussed.
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The method to be considered can be found in Fletcher (1970)
and Martensson (1972), for the equality constrained case and
in Fletcher (1973 ) for problems with inequality constraints.
Here only equality constraints will be considered. The idea
is to replace the parameter p with a function 3 (x). The aug-
mented Lagrangian then becomes

W) ,e) = £(x) + T Thi) + § o hix)

F(x,
The function 7 (x) is required to be twice continuously diffe-

rentiable and have the property 1 (x) = u. A natural choice is

=1

V) =~ (hy0h (07 h g (07

If conditions Cl and C2 are satisfied, this choice of ﬂ(x) sa-
tisfies J(x) = pe This follows from equation (3.1). Fletcher
(1970) and Martensson (1972) have proved that if conditions

Cl - C3 are satisfied, then F(x,ﬁ(x),c) has a local minimum at
X = x, provided ¢ is large enough. It turns out, however, that

condition C3 is not needed, when u = }(x) is used.

Theorem 3.9. Assume that x is a local minimum to the constrained

problem and that conditions Cl and C2 are satisfied. Then there
exists a constant Cy such that F(x,ﬁ(x),c) has a local minimum
at x = x for all ¢ » Cq e
Proof. Since hx(§) has full rank and hx is continuous, it fol-
lows that there exists a & > 0 such that hX(x) has full rank in
M= {x| || x - x| < 6}. Then there exists a constant K such

that all elements of hg(hxhz)ml are less than K//n for all x € M.

Since h is continuous with h(x) = 0, it follows that there
exists a 6' > 0 such that || h(x) I 8/4K if || x = §|] < 6",
Let 6" = min(&6/2,6") and define M!' 6"},

A

il

A

= [l =~ x|




29

Let x be a point in M! with h(xO) +# 0 and study the diffe-

rential equation

-1

£(8) = - h ()" (b ()b (0)T) h(x)

The right hand side of this differential equation is a con-
tinuously differentiable function and therefore satisfies a
Lipschitz condition, which implies that a solution exists in

& neighbourhood of Xq e Study the function
P(t) = h(x(t)
It satisfies
P(t) = - 2P (t)

which has the solution
2t

P(t) = P(0)e

Along the curve x(t) it is consequently true that

_ | at
(=) 0l = [l hixg) [l e (3.6)
Since
= x,. - F he (h.ht) "th at
x(t) = %0 0 x( b4 x)

it follows that

¢
x(t) = %] < |lxg - X || + K[ hixy) ||[[ e "dt < 8" + 8/4 < 38/4
0
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The solution x(t) therefore never leaves the set {x| |/ x - X || <
< 38/4} and can consequently be continued indefinitely. From

the inequality

| 2(0) || s K[| hixy) |le "

it follows that

lim x(t) = x

to0

exists. Equation (3.6) implies that h(x) = 0. Then

~
~ N

F(xg:u(xg),c) = F(x,W(x),c) =

(o)

= - é Fo|x(£),u(x(t)),clk(t)at =

(==

T~ | T T, -
g[h Myl (o)

1

li

h + ch’hldt

The function Exhz(hxhi)al is continuous on M and therefore there

exists a constant Kl such that

1

T T s
)

h™N, A (hl) Tth < K[| h || 2

for all x in M. If ¢ is chosen such that c > Kl then

o0

N N T, -1 T
gin Wby (h.hl)"Th o+ ch'hldt »
> (c-K )}o] h(x) szt = (c=K.,) h(x.) |2 > 0

This relation implies that
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- ~
~g

F@O”Mx&,c]> F@,

~

1(x),c) > F(x,%(x),c)

where the last inequality follows from the fact that x satis-

fies h(é) = 0. Consequently
F(x,u(x),e) > F(x,0(x),c)

for all x with || x -~ % || < 8" and h(x) # 0.
Since F(x,g(x),c) > F(E,H(x),c] for all x with h(x) = 0 the

theorem is proved. ui

Corollary. If f(x) > f(x) for all x * x satisfying h(x) = 0,
then F(x,u(x),c) > F(E,E(g),c) for all x # x such that || x - x ||

is sufficiently small.

The result shows that the method employing u = ;(x) is slight-
ly more general than the one using p = E in the augmented Lag-
rangian. F(x,:,c) might not have a minimum for x = x in prob-
lems not satisfying condition C3. This is illustrated by the

following example.

Example 3.2.

— 4 pond WY
f(x) = X, + X1 %, h(x) = Xy
x = (0,0) =0
_ . A c 2
F(x,0,c) = X + X%, + 5 Xq

Since the second derivative of F at x is indefinite, x is not

a local minimum of F. If y = U(x) is chosen, then
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h (x) = (1,0)
(x) = - f = - X

~ 4 2
F(x,u(x),c) = x, + % x]

which has a local minimum at x = x.

The global properties of J(x) are, however, not as favourable
as those of y = y. Even for well behaved functions f and h,
F(x,u(x),c) might not have a global minimum at x. This is shown

by the following example.

Example 3.3.

.2 4, 2
f(x) = X5 + (l+x2)xl
h(x) = Xy
% = (0,0) u=0
~ _ 4
Then p(x) = - 2Xl(l+x2) and
~ 2 2 4 c 2
F(x,u(x),c) = x5 = x](l+x,) + 5 %7
which is not bounded from below.
If y = ; is used then
- 2 4, 2 c 2
F(x,u,c) = F(x,0,c) = Xy o+ (l-!-xz)xl o5 %

which has a global minimum at x = x.

There are also some practical difficulties in using Y(x). To
compute F, not only £ and h, but also fx and hx are needed be-

cause they are used in the expression for u.
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If the derivative FX is calculated, second derivatives of f

and h are required and so on. The extension to inequality con-

straints also has some difficulties because the augmented func-
tion has a gradient which is discontinuous at some points, see

Fletcher (1973). It is therefore interesting to study the ite-

rative methods of updating the multipliers. This is done in the

next section.

3.4. Tterative Methods for the Multipliers.

There are many ways of updating the multipliers iteratively.
Both x and the multipliers can be changed simultaneously, the
multipliers can be updated after some iterations where only x
was changed or the multipliers may remain constant until a
complete minimization with respect to x is finished. The last
alternative, which is probably the most widely used one, can

be summarized as follows.

Algorithm 3.1.

(0)

(o) Choose u and put k = 0.

(1) Minimize F(x,u(k),c(k)) with respect to x. Call the re-

sult x(k) .

(k+1)

and/ or ¢ and denote the result u ;

(ii) Update u(k) (k)
k+1)

c( . Put k =k + 1 and go to step (i).
An example of an updating rule for the multipliers is

JOerl) )

(k)h(x(k)]

A(k+1)
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This method has been suggested by Powell (1969) and Hestenes
(1969) in the equality constrained case and by Rockafellar
(1974) and Bertsekas (1973) in the general case. The updating
formula can be written

(k+1) _ (k) (k)

= .3 i =1, ...
uj My Ch] X J ' r P

_ . (k) . (k) (k)

(= cgj(a ) if cgj(x )+ A5 > 0
A§k+l)_ ng) )
J J

= Agk) otherwise

A comparison with equation (3.3) shows that the changes in the
multipliers are in the direction of the gradient. The method
can therefore be regarded as a steepest ascent algorithm in the

multiplier space.

The following second order formula is then a natural extension.

o (gD () T

uu( =MG1.1

To compute Guu the second derivative of F is needed. A straight-
forward use of this updating rule is then only possible when the
second derivatives of £, h and g can be calculated. However, if
a quasi-Newton method is used to minimize F, an estimate of Fxx
at the minimum is given. If this approximate value of Fxx is
used to calculate Guu' only function values and gradients are
needed. This method has been used by Glad (1973) for equality

constraints and by Fletcher (1974) for combined equality and
inequality constraints.

The essential feature of algorithm 3.1 is that a complete mini-
mization of F is done before the multipliers are updated. As men-

tioned before; several methods are based on the idea of updating
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u more often. Miele et al (1971) use the formula

3 T,-1_ T
u o= (hxhx) hxfx
to update the multipliers after each iteration when using a

conjugate gradient method.

A modification of this method, using the Davidon-Fletcher-
Powell method, is investigated by O'Doherty and Pierson (1974).
Tripathi and Narendra (1972) use the formula

JEFD L) ()

after each line search in a conjugate gradient method. The pa-
rameter o is a step length parameter which is given a value

between 0 and 1.

The idea of updating the multipliers after each iteration with
respect to x seems intuitively to promise faster convergence
than the method of updating the multipliers only when a mini-
mum with respect to x has been found. Therefore this class of
algorithms will be investigated in the remainder of the chap-
ter. The iterations with respect to x will be assumed to be
carried out by a quasi-Newton method, the so called BFGS me-
thod, which is known to be efficient when solving unconstrained
problems, see Fletcher (1972). The discussion is broken down
into three parts. In 3.5 local convergence is studied, in 3.6

global convergence and in 3.7 practical experience.
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3.5. Local Convergence

To study the local convergence, it is first shown that only
equality constraints need to be considered. Then the class of
algorithms to be studied, is presented (algorithm 3.2). Since
this algorithm uses the techniques of the so called quasi-New-
ton methods, results by Dennis and Moré (1974) for the uncon-
strained quasi-Newton algorithms are generalized to the con-
strained case in lemmas 3.2 and 3.3. With these tools, two ver-—
sions of algorithm 3.2 can be shown to be linearly convergent
in theorems 3.9 and 3.10 and example 3.4. A third version of
algorithm 3.2 is then shown to be superlinearly convergent in
theorem 3.12.

Assume that conditions Cl - C4 hold at a point x, which is a
local minimum of the constrained optimization problem. Let ¢
be held constant at a value large enough for FXX(Q,G,C) to be
positive definite. Define

) = {Gw| flx- %) 6, [Ju-3al| <o}

Since local convergence is considered, only points (x,u) that
belong to M(86) for an arbitrarily small § > 0, need to be con-
sidered. Let § be chosen small enough for the following propo-

sitions to be true.
o Fxx(x,u,c) > 0 for all (x,u) in M(8)
o (eg; (x) + Ay) <0 i€ T and
(cg;(x) + 2,) >0 i€ A for all (x,u) in M(s)
Then the inactive inequality constraints can be disregarded

and the active ones treated as equality constraints. Therefore

it is sufficient to study only equality constraints in this sec-

tion.
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An algorithm of the quasi-Newton type is used to perform the
minimization of F(x,u,c) with respect to x. The constrained
minimization algorithm can then be described by the following

equations.

JORL) o 00 L0 )

X ,H ,c)
X(k+l) - X(k) _ 0((k)H(k)F}'l;(x(k),u(k'*'l)’C)
Here H(k) is an approximation of F;ia The step length a<k) is

determined by some procedure for approximate minimization of

P[00 o p0 T (00 OckD) oy 0oL

with respect to o. Since many linear minimization algorithms
first try o = 1, it is of interest to study the special case
a(k) = 1, all k. It will be assumed that H(k) is updated accord-

ing to the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula,

see Broyden (1972) and Fletcher (1972). The notation B(k) =

(H(k)]ml is used. B®) is then an approximation of F__. The

X
full description of the algorithm is

Algorithm 3.,2.

LD 0 00 00
LOFD) ) H(k)Fz(xxk>,u(k+1>,c)
T T
el 00, (509 - g0 0y 00T 00 0 g k)T
(y(k))Ts(k)
(k)Y T, (k) (k) (k)y (k) (K)y~
) (s - H Ty s Y (s

()% ()
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where

(k) _ FT‘&{(k+10 yﬁ(k+lj e} - T X(k) (k+1)

() _  (et1) _ L (R)

The properties of this algorithm depend to a great extent on
the properties of the updating formula for H. Dennis and Moré
(1974) have studied quasi-Newton methods in the unconstrained

case and produced the following useful result.

Lemma 3.2. Let M be a nonsingular symmetric matrix such that
|| Mz - Mty | < b||Mmlw || for some b, 0 <b < 1/3 and some vec-

tors z and w, with w % 0. Then sz > 0 and B can be defined by

T + Z(Z“BW)T B WT(Z“BW)Z zT
T T L2
Z-wW (z"w)

B =B + (z=Bw) z

where B is symmetric. Let |

IM be the matrix norm defined by

Il Q [l = || MQM || where || « || is the Frobenius norm
2
|| P ”F = ,leijl
1]

Then there are positive constants o, oy and 0y (depending only

on M) such that for any symmetric matrix A

= yi y) -1 -1
|B - 2 HM < { 1-00” + ay || Mz = M “w ||/]| M Tw H} c B = Ayt

-1

+ azllz -~ Aw || /]| M “w ||

where 0 < o < 1 and

|| MB-2)w ||
1B = &, [ln |

for B # A
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8 = 0 for B = A

Proof. See Dennis and Moré& (1974). a]
The next lemma generalizes this result to the constrained case.

Lemma 3.3. Assume that FXX(E,Z,C) > 0 and that there exists a
constant K such that

IIFXX(X,UIC) - Fxx(g,ﬂ,c) Il < K(|| x - 2 | + | - o )

for all (x,u) in some neighbourhood of (;,E). Then, if the se-

guence {(xk,uk)} converges to (x,1), there exists a kO’ such

(k)

that H satisfies the following inequality for k > kO

k+ -1,=- =
(RS el HE N I

<A™ Z 4 oW e% - Tl 0y, aye™®)

M 49

where 0 < o < 1, O and a, are positive constants and

(& -1,= - k
oo L B - Gy
- k -1,= - -1 _(k
1) = Gyl ty )
for H(k) * F;i(§,§,c)
oK)~ ¢
for 5K = P (R, 0, )
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/2

- e l
M = FXX(X'U’C)

= max (]| x™®) - 2,

Proof. From the mean value theorem, see Ortega and Rheinboldt

(1970), it follows that

i(x(k+l) (k+1) T( (k)

PRt ,C) - Fx X u(k+l),c) - B X,

HF XX(XIUIC)'

7

=

(X(k+l) - x(k)J u(k+l),C]

+ 0

LA
0
et
g
(£
<
<
—————
b

14

- F (;,;,C) ”“H X(k+l) - X(k)

xx | =

X(k+l) = (k)

< K|max (]| 2010

[P

(k) (k+1) (k+1)

and x are sufficiently close to x and u suf-

if x
ficiently close to an Using the definitions of vy, s, M and ¢

gives

k) _ yPg (k) Il < Ko(k)lls(k) I (3.7)

|y

Since (x(k),u(k)) is assumed to converge to (§,E), there is a
(k)

kO such that, for any ¢ > 0, 4 < ¢ for k » ko. (3.7) then im-

plies that there exist constants Kl > 0, K2 > 0 and kl such that

1 k k ]
S s® <y ® g 2w, 8% (3.8)
Kq

1y % = s 0 <y o 890y 00 (3.9)
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for k > kla

Using (3.9) gives

‘ - - 2
e 0 =t 0 0 sy

< K30(1{)”M=ly(k) “

for some constant K3 > 0., If ko is large enough
s U =y 00 g Lty G0y K2k

and Lemma 3.2 is applicable. =

(k)

From this lemma the asymptotic properties of H can be de~=

duced. They are given in the following lemma.

Lemma 3.4. Let Fxx satisfy the assumptions of lemma 3.2 and

assume that

)

1 §

Then

(k)Fl/Z

. 1/2 - =
llm![Fxé (x,u,c)H s

k—eo

(;ér;rc) I ”F

exists, and

vin|| (8% - rl & 0,0)®) ) =0 (3.10)
k-sco
where §(k) = Y(k)/lly(k)H,
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(k)

Proof. Lemma 3.3 shows that H satisfies an inequality that

is completely analogous to the inequality given by Dennis and
Moré (1974) in the unconstrained case. The result then follows

from their theorem 3.4, u|

Corollary. If, in addition to the assumptions of lemma 3.4,

IIB(k) || is uniformly bounded, then

(k) _ - (k) ”

lim]|| (B Foy (Xru,cC))s

k- o0

= 0 (3.11)

where s

S0 k) s t)

Proof.

| 8% - F )s ) )

(XiUrc) <

XX

(k) R
< %%zjgjmﬁ (R NGRS AT D N (AN |

where || r || < Ko ®) for some x > 0. o

Equation (3.11) does not imply that B(k) converges to FXX(Q,;,C),

(k)

fact, Powell has shown examples for the unconstrained case,
(k)

because it is quite possible that all s lie in a subspace. In

where B does not converge to the second derivative of the mi-
nimum point, see Dennis and Mor& (1974). However, since the up=

dating formula for x in algorithm 3.2 can be written

pkl gt Fi(x(k),u(k+l),c)

it follows that it is not the matrix B(k) itself, but the product

B(k)s(k) that is interesting.
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To prove that

T (k)
o
:%

is convergent, which was one of the assumptions made in order
to show (3.11), it is necessary to specify the function @ of
algorithm 3.2 more precisely. First study the case where g de-
pends only on x

Q(u,x,H,c) = @(x) (3.12)

and ¢ is a continuously differentiable function with @(x) = y.

The function

AN T
¢(x) == (b, (Dh, (x)7) hy (2 (x) (3.12a)

mentioned in sections 3.3 and 3.4, is an example of a choice
of ¢ that satisfies these conditions. With @ given by (3.12)

it is possible to show linear convergence of algorithm 3.2.

Theorem 3.10. Let ) be a number such that FXX(Q,Z,C) satisfies

the assumptions of lemma 3.3 for c > y and let r be an arbit-

rary number with 0 < r < 1. Assume that algorithm 3.2 with @ gi-

ven by (3.12) is used. Then there is a number cl(r) > ¢, such

0
that, for each ¢ > cl(r) there are constants al(r,c) > 0 and

sz(r,c) > 0 with the property that, if

1= =5 <o ana 8 - rlE G0 || < e,
then

k+1 (1 =
[ 3 EPEE [PE

i.e. the convergence is at least linear.
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Proof. The formulas of algorithm 3.2 together with (3.12)

gives
L) (k) H‘k>F§Lx‘k),@(x‘k)),c]
A Taylor expansion gives
O ) g8 [ e 0 - %) 4

+ (R o (%) ) - %]J +a®re,x® - 1)

where || R(c,z) ||/]lz || -0 as z - 0.
The formula can be rewritten
AL R [(F;i(g,i,c) - e )@ )+ hl(Re () -

- F;i(E,L,c)hi(E)@X(Q)](x(k) - %)+

+ W R, x® - 3) (3.13)

Study the quantity
lm._ T =
F . (x,u,e)h, (x)

Let ¢ be a number such that FXX(§,Z,%) is positive definite.
Then, for c > E,

F;i(i,i,c)hi(Q) =
¥)h, (%) ==‘lhT(m =
(x o (X ] . x) =

=

= (F,, (x,u,8) + (c=&h

>

1 =1 = = N T, = 1
= " FXX(X’U’C)hX(X) —
Cc - C C = C

, -1
e L L
I+ hx(X)Fxx(x’u'c)hx(x)]
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Since hy(§) is assumed to have full rank, it follows that

F;i(Qrz,c)hz(Q) >0 as ¢ = o

Now choose a value of ¢ such that

| P L el (e, (B || 5 5 (3.14)
Next choose €y such that

I (Fr G - By @) vl @, )| <5 (3.15)
for all H(k) satisfying

e - r e | < e, (3.16)
Finally choose €, such that

1% R, =™ -5 < 5 =™ -5 (3.17)
for all H(k) satisfying (3.16) and all x(k) satisfying

=% -5 <., (3.18)

Then, if H(k) satisfies (3.16) and x(k) satisfieg (3.18), the
relations (3.13), (3.14), (3.15) and (3.17) give

[] X(k+l) (k)

Y R IAE S

Using the notation

(k)

=1 = =
la™™ = F o (xuee) || =8y
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A -

k

Ex

and applying lemma 3.3 gives the formulas

(l+a£k)Bk + bEk a, b positive constants

rék if Bk < &y sk < ¢

n
A

E]

it

o
O~ §

-

U

and choose BO and 60 such that BO < &
ey

q’ 60 < e, and
g+ We will show by induction that B < &y for
all k. Suppose that this is true for Bi’ 0 < i < k. Then 5i+

5O+bm) < €
<ré;, 0 i<k, and

) < (l+aéi)Bi + béi 0 <i <k

i+l

Define

Then

B

B k
k+1 k
< < )

Y1 Tk

Since

1 =
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i=1
v = expla ] s5)
j=0

it follows that

+bm) < ¢

0

k . k .
Bl S exp(aéojzorj)(80+ bsojzorj) < e™M(p -

Consequently Bk < &g for all k and 5k+l S T all k. o

Corollary. If the assumptions of theorem 3.10 are satisfied,
then

~

| 2% - v G} B s o

Proof. Follows from the corollary of lemma 3.4 and theorem
3.10. o

A similar result can be established for the choice

Q(u,c,H,c) = y + ch(x) (3.19)

Theorem 3.11. Let Sy be a number such that FXX(§,;,C) satlis-
fies the assumptions of lemma 3.3 for c > oh and let r be an
arbitrary number with 0 < r < 1. Assume that algorithm 3.2
with @ given by (3.19) is used. Then there is a constant
cl(r) > ¢y such that, for each ¢ > cl(r) there are constants
sl(r,c) > 0, sz(r,c) > 0 and gB(r,c) > 0 with the property
that, if
(0)

|| -

P
A

€y [IH(O) - F;i(gyﬁ,c) | < e, and

€4 then
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Proof. VWe have
A L P LU I L

u(k+2) _ u(k+l) + ch(x(k+1"))

A Taylor expansion gives

xmﬂ)mm IuH&E‘ MH&HF x&)wg
XX p<
- + R
(k+2) = k k), T k+1 =
n - chﬂ(l’ - g )F}Q{) I - chH )hX u( ) - u (3.20)
where Fxx = Fxx(g’i’c)’ hX = hx(g) and R satisfies
(k) (k+1)
IRAZC = = x|l + 1)~ o0
wm + -
as x(k) - X, u(k 2 - Y.
The matrix in (3.20) can be rewritten
-1 (k) -1 (k) o -LT
(Fxx H )Fxx (Fxx H )hx inhx
-1 (k) _ -1, T _ k) _ o~1y.T
ch, (F -~ H )F _ I-chpF h - ch(H F o Jh (3.21)
As shown in the proof of theorem 3.9, F;ihg can be made arbitra-
rily small by choosing ¢ large enough. The matrix I = chXF;ihz

can be written
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I - ch P in” =
X XX X
¢ 1 B D e
= — 2{ — I + hx(X)Fxx(x’”’c)hx(x)J - — T
(c=¢) " c - ¢ c =~ cC

where ¢ i1s a constant, chosen such that FXX(E,Z,E) is positive

o . ) s -1, T .
definite. Consequently I ghXFXXhX - 0 as ¢ - oo,

Now choose ¢ such that

-1, T
|1 - chXFXXhX || <

ool

-1 T r
he |l =35

H FXX X

Then choose 8H such that

if

e - gt (3.22)

Foyx Il S &y

Next choose an SX such that
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for x(k) and u(k+l) satisfying
[ES N I e S (3.23)
Then, for all x&), T 4ng ) savisfying (3.22) and (3.23)
T S RTINS B TR ST 0 R T

S R )

The remainder of the proof is analogous to the proof of theorem
3.10. o

Corollary. If the assumptions of theorem 3.11 are true, then

k ~
H (B( ) P s(k) H

) - 0 as k - o
%xX

Theorems 3.10 and 3.11 might give the impression that it is ad-
vantageous to choose ¢ as large as possible to get a small 1.
This is usually not true in practice because a large value of

¢ results in an ill-conditioned problem. The reason is that the
ratio between the largest and smallest eigenvalues of the mat~-
rix

F o (%,8,0) = (L (%,u) + ch (¥) h (%))

increases towards infinity as ¢ goes to infinity. This is known
from penalty function theory, see Luenberger (1973). It is then
difficult to get the small values of

fet - rtGie | ana k™ -5

that the theorems require.
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Theorems 3.10 and 3.11 show that (3.12) and (3.19) in algo-
rithm 3.2 give at least linear convergence locally. Dennis
and Moré (1974) showed that, for unconstrained problems, the

fact that II(B(k) - F é(k) H = 0 results in superlinear con-

xx)
vergence. This is not the case for algorithm 3.2 with O de-

fined by (3.12) or (3.19),as shown by the following example.

Example 3.4,

fix) = -=2-(xl + XZ) hi{x) = Xy - 1
Choose
<0 = 0,0)" e 0
H(0) -
0 - Lo 1

Then (3.12a) and (3.19) give the same result and

D) g (&) _ 5 (0) %) = o
(k) _
(k+1) Xy 1
Xl 1
c + 1
i.e. linear convergence.
The formula
. "1 T
Q(u,x,H,c) = (hXHhX) (hthHfX) - ¢h (2.24)

has been suggested by O'Doherty and Pierson (1974), as a modi-
fication of the method used by Miele (1971). A different way
of deriving this formula is as follows. The first order opti-

mality conditions give the following equations.
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F (x,u,c) =0

h(x) =0

Solving these equations using a Newton method gives

T T
Fxxéx + hxéu = TX

. =1 (k)
Replacing Fxx by H

and eliminating 6x gives the formula
for @ shown above. It may also be noted that this updating
formula for y is a natural extension to the case Fx + 0, of

the one given in Glad (1973).

Since the expression for @ in equation (3.24) depends on c

and H, theorem 3.10 is not applicable. Instead we use the

representation
5 () RE( )| [ D) 00 W0, 0, g
h, (x*) o yHFD ) h(x®) (3.25)

L J L

to prove the following theorem.

Theorem 3.12. Let (x(k),u<k)} be generated by equation (3.25).

[As shown above, this is equivalent to the use of (3.24) in
algorithm 3,2.) Assume that c¢ is chosen large enough for
FVX(Q,ﬁ,c) to be positive definite and that

| Py GErre) = B Goive) [ < K(I[x = &) + [ln - 3 ||)

holds for all (x,u) in some neighbourhood of (Q,:). Let r be

a number, 0 <« r < 1, and let z1 denote the vector [XT,HT]W
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Then there exist constants &1 and 82 such that
N2 w2 cx2® oz i
(0)  -1,- -
|| 2 F..(xrue) || < N and
12000« 2 || < e,
Proof. We have
5 (k) hz(x(k)) L) o
hx(x(k)) 0 LUeHl) =
B(k) hz(x(k)) X(k) -3 Fz(x(k),u(k),c}
g0 Fopo &) nl M) - nl@) (x5 -z
= +
h, %) - n_ ) o ku“"" -5
+ rR(z™ - )
where [[R(z(k) - z) H/I]z(k) -z | » 0 as ) L 2. 16 follows
that there exist constants Ep and £, such that
125 2 <e 2™ -z ae
][H(k) - F;i(E,:,c) | < eq and
125 -2 <
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The remaining part of the proof is carried out in the same

way as in theorem 3.10. o

Corollary. If the assumptions of this theorem are true, then

[I(B(k) - Fxx(g,:,c)}s(k) | =0 as k » o
Proof. Combine theorem 3.12 and lemma 3.4. o
To prove superlinear convergence of (3.25), the following lem-

ma from Dennis and Moré (1974) is needed.

Lemma 3.5. Let the eguation £(x) = 0 with solution x = x be

solved by the iterative method

~ -1
L) L O g0y T 00,

If gx(x) is continuous and gX(Q) nonsingular, then

A EY e G Y - By
lim = 0
kesoo k+1 k
[ER e
is eguivalent to
| x%*D) - 5
lim [1 ) — H = 0 (superlinear convergence)
koo "X -

Proof. See Dennis and Mord (1974). =
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The superlinear convergence of the method based on (3.25) can

now be established.

Theorem 3.13. Let

T
<)

T T
(x(k)] ,(u(k))
be generated by algorithm 3.2 using equation (3.24) or equiva-
lently by (3.25). Let the assumptions of theorem 3.12 be valid.

Then z(k) converges superlinearly to z, i.e.

Z(k+l) -7 H
2% -z

lim
koo

Proof. Apply lemma 3.5 to equation (3.25). Superlinear conver-

gence is seen to be equivalent to

) (")) [ G nE@)|[x - k@

h (X (k) ) 0 hX (;é) 0 " (k+1) - (k)

XGGHJ _ XGQ

L0k o)

as k = oo,

This condition is satisfied if

1E% -r e ™ 50, ks

An application of the corollary of theorem 3.12 finishes the

proof. a
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Remark. All the results of this section remain true if the
BFGS updating formula is replaced by the Davidon-=Fletcher-

Powell (DFP) formula. This follows because the DFP formula

is the same as the BFGS formula with H(k) (k)

() g )

replaced by B
and y changing places, see Dennis and Moré (1974).
The detailed calculations for this case can be found in Glad

(1975) . o

3.6. Global Convergence Properties.

In the last section it was shown that three updating rules for
the multipliers used in algorithm 3.2 all gave local conver-
gence. In practice one cannot be sure of having a good enough
starting point for this result to apply and it is therefore
desirable to be able to show global convergence. To do this,
some modifications of the algorithm discussed in the previous

section are necessary.

First a test quantity, a(x,u), that shows if progress is made

towards a Kuhn-Tucker point, is introduced.
This test quantity is then used in a modified algorithm, which
is shown in theorem 3.14 to be globally convergent in the sense

that every accumulation point is a Kuhn-Tucker point.

Introduce the wvectors

wt(x,u) = (hT(x), min (=g (%), )r oeny min(mgm(x),xm]J
and
tT(x,u) = (Lx(x,u) ,WT(x,u))

Note that
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min(wgi(x),ki) =

if and only if

g; (¥) 20, A

v
(]

and gi(x)xi(x) = 0

Consequently t(x,u) = 0 if and only if (x,u) satisfies tle:
first order conditions for a Ruhn-Tucker point, i.e. equattion
(3.1) of theorem 3.1.

Define

a(x,u) = || t(x,u) |

b(x,u) = [|w(x,u) ||
(k)

and let n, r, ¢ and K be real numbers satisfying

0 <n <1, 0 <r <1, K> 1, e(k)> 0, e(k)+ 0 as k » =

Then the modified algorithm can be described as follows.

Algorithm 3.3

0) Choose x(o), u(o) and c(o); put a0= a(x(o),u(o)); eat
i=20, k= 0; put b = some large number.
i) Make a line search in a direction obtained by a quss i-

(1),c(k)} with resrect

to x. Call the resulting value X. Update the approwximation

Newton method for minimizing F(x,u
of the second derivative.

ii) If HFX(g,u(i),c(k))ll < e(k), then go to vi), else ¢©
to iii).
(1)

iii) Update u and X giving u and x. (It is possible &h it

x = X.) If x + X update the approximation of the sec nd
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derivative, using a quasi-Newton formula.

~ ~

iv) If a(x,u) < n a, then put a0=a(:>A§,1A1) and go to v), else go to i).
V) Put x(l+l) = X, u(l+l) =u, 1 = 1i+l. Go to 1) or to
iii). (The choice of i) or iii) does not affect the

global convergence properties.)

vi) put x T - % , p 3+ 2 u(l), i o= i+1,
vii) If b(x(l),u(l)) < rby then go to viii) else go to ix).

viii) Put by = b(x M), 0P, e i1 Go to 111) .

(k+1) (k)

ix) Put c = Kc , put k = k+1 and go to i}.

It is assumed that the updating of u is done in such a way
that » > 0 all the time.

Agsume to begin with that there are no inequality constraints.
The connection between algorithm 3.3 and algorithm 3.2, which
was studied in the last section, is then as follows.

If step iii) uses the updating formula u = ©(x) or u = u(i) +
+ ch(X) and the algorithm goes from step v) to step i), then,
as long as the test at point iv) is satisfied and the line
search at i) gives & = 1, the algorithm is identical to algo-

rithm 3.2 using equations (3.12) or (3.19) respectively.

If instead equation (3.24) is used at step iii) to define x
and u and the algorithm goes from step (v) to step (iii), then
the algorithm is identical to algorithm 3.2 using equation

(3.24) as long as the test in iv) is satisfied.
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Inequality constraints are treated in the following way. Define

Alx) = {1 | cg; (x) + A > 0}

(3.26)
I(x) = {i | cg;(x) + 2 < O}
g(x)T = [gil(x), giz(x), .,.), where i, i,, ... are the indi-

ces belonging to A(x). The updating formulas presented in the
last section are then used for the multipliers corresponding
to the constraints (h(x)T, g(x)T). If the updating formula

gives Ai < 0, for some i, then the value‘xi = 0 is used. The

multipliers i, i ¢ I1(x), are all zeroed.

From Algorithm 3.3 it follows that, if the multiplier updating
is unsuccessful, the method results in the minimization of
F(x,u(i),c(k)] with respect to x. Since quasi-Newton methods

can be constructed to have the property that FX -» 0, 1f the
iterates remain bounded, see Polak (1970), the test at point

ii) will eventually be satisfied. It is shown by Powell (1969),
that if the constraints are satisfied at a point where F(x,u,c)
has a minimum with respect to x, then this point is a solution
to the problem. This means that, if the test quantity b related
to the constraints, has decreased since last time an approxi-
mate minimum for F was found, then the algorithm is making pro-
gress. If this is not the case, then c¢ is increased. Consequent-
ly the penaly function method is used as a last resort to en-
sure convergence, as suggested by Powell (1969). For the penal-
ty function method, convergence can be proved, using a tech-
nique given in Polak (1970). In our case the situation is more
u(i) (1) must be taken care of. However,

complex, since and

it is possible to prove the following theorem.

Theorem 3.14. Let (xa,ua) be an accumulation point of the infinite se-
guence {(x(l),u(l)}}. Assume that (hj)x(xa), 3 =1, ..., DO,

(gj)x(xa), j € A(xa), are linearly independent. Then there
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exists a u, such that (x_,u_+u,) is a Kuhn—-Tucker point. If
(k) b a’"a b

c is bounded then U, = 0.

Proof. Let {(x(lj),u(lj))} be an infinite subsequence converg-

ing to (Xa’ua)° Assume that the test at point iv) is satisfied

infinitely many times for {[X(lj),u(lj))}a Then a(xa,ua) = 0

and (Xa’ua) is a Kuhn-Tucker point. If this is not the case

then the inequality

m

. ' . T .
|]fX(x(lj))+ [c(kj)h(x(lj)) + u(lj)] h [X(lj)) .

. N | . .
+ [c(kj)q(x(lj)) + %(13)}+9x(x(13)) | < ey

is satisfied for all j > jO’ for some jO.

There are two possibilities. If c(k)

is bounded, then the test
b(x(lj),u(lj)) < rbO is satisfied infinitely many times and

i T
b(xa,ua) = 0. This means that h(xa) = 0, g(xa) < 0 and xag(xa) =

= (. Since 8(k) -+ 0, it also follows that

| T T oy _
fx(xa) + uahx(xa) + Aagx(“a) = 0

If on the other hand c(k) = o, then from the inequality above

it follows, using the linear independence of (hj)x, (gj)x, that
h(xa) = 0, g(xa) < 0. Furthermore it follows that

[c(kj)h(x(ij)] . u<ij>} -
+ m

(c‘kj)g(x(ij)) +,A(ij)] >8>0 with

T
“fx(Xa) + o hX(Xa) +- BTgX(Xa)

!
<

8 g (x,) = 0
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Corollary 1. If, in addition to the assumptions of the theorem,

the sequence {(x(l),u(l)]} remains bounded, then there is at

least one accumulation point, which is a Kuhn-Tucker point.

Corollary 2. If the assumptions of the theorem are satisfied

and if there are no Kuhn-Tucker points except (§,a), then, if
the sequence {(x(l),u(l))} remains bounded, it converges to

%, u+ £ e .
(x, ub) for som Uy

Remark 1. Since the updating rule for the multipliers has not
been specified, the result applies to any updating formula, not

just those that were considered in section 3.5,

Remark 2. The only property of the quasi-Newton method, that is
used, is that Fx - 0, when the iterates are bounded. Therefore
the theorem remains valid if any other unconstrained method

having this property is used.

The result shown in the theorem is somewhat weaker than one
would wish. It would be nice to be able to show that the accu=
mulation points are not only Kuhn-Tucker points, but local mi-
nima. This is, however, hardly realistic, as seen from a com-
parison with the unconstrained case, see Polak (1970) . There
it is in general only possible to show that an algorithm has

accumulation points that are stationary points.

3.7. Comparison of Algorithms on Test Problems.

To test the practical usefulness of the ideas behind algorithns
3.2 and 3.3 that were presented in the previous sections, three
optimization routines have been programmed and tested. The gene-
ral structure used in these algorithms is that of algorithm 3.3,
The differences between the algorithms lie in the updating of the
multipliers. This updating is done according to the three diffe-
rent formulas investigated in section 3.5. The algorithms are de-
scribed below.
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Algorithm MINGRA. Step iii) uses the formula

-1
T
" h.) (b, h
= - fT
X
X 9|19, 9,

where § was defined in equation (3.26). The algorithm goes to
i) after step v). If the test at step iv) is satisfied and the
step length a(k) = 1 is used in the quasi-Newton method, then
the algorithm is identical to algorithm 3.2 of section 3.4, with

u given by (3.12a).

Algorithm MINGRB. This algorithm is identical to MINGRA except
that the updating formula for u is

LD L) ()

A(i+l) = A(i) + cg(x(i)) .

If the test at step iv) is satisfied and G(k) = 1 in the line

search, this algorithm is identical to algorithm 3.2 using equa-
tion (3.19).

Algorithm MINGRC. Step i1ii) uses equation (3.24) to update the
multipliers, with h replaced by {%} and u replaced by {%]. From
step v) it moves to step iii). If the test under point iv) is

satisfied the algorithm is identical to algorithm 3.2 using equ-
ation (3.24).

In both MINGRA and MINGRB the line search uses the method of

Fletcher (1972). To take into account different scaling of the

constraints the parameter c is replaced by different parameters

cy for each constraint. The initial values of c; are given by
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4 max (1, [£(x) = £(y) | + |£(y) = £(z) | + |[£(z) - £(y)])

c. =
1

hZ2(x) + hi(y) + b} (2)

where x, y and z are three points near the starting point. The
idea behind the choice is to give all hi the same weight as the
objective function f.

(0)

The starting values used for H and u are always H = I and
(0)
u = 0.

For comparison two other constrained minimization algorithms
are also tested. The first is VFOIA of the Harwell library, see
Fletcher (1973), and the second is the GRG algorithm of Abadie
(1970) .

For the equality constrained problems, the results for the al-
gorithms tested in Glad (1973) will also be given, to get fur-

ther comparisons. These algorithms are

OPF The ordinary penalty function method. F(x,0,c) is mini-
(k)

mized for a sequence c = o, The extrapolation method

of Fiacco and McCormick (1968) is used.
HEPO The method used in Hestens (1969) and Powell (1969).

FLE This method minimizes the function F(x,ﬁ(x),c) given in
section 3.3.. To avoid computation of second derivatives
of £ and h, ﬁx(x) is approximated by the matrix @, which
is updated using the formula

(1+1) (1)

~ i
Q : = Q + (AW - o)

AX)AXT/AXTAX

see Fletcher and Lill (1970), where A}, and Ax are the

differences

AY = ﬁ[x(i+l)) - ﬁ(x(i)], AR = x(i+l) - x(i)
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The initial value of @ is given by a difference approxi-

mation.

In all these methods, the unconstrained minimization is

done by the quasi-Newton method in Fletcher (1972)

The equality constrained problems are the following, which were
also used in Glad (1973).

POW See Powell (1969).

Minimize f(x) = Ry R XX Xy under the constraints
2 2 2 2 2 _ _
hl(x) = %] +ox, 4+ Xy + Xy + X 10 =0
hz(x) = x2x3 - 5X4X5 = 0
ho(x) = %2 4 x5 + 1 =0
3 1 2

starting point x (=2,2,2,-1,=-1)

(-1.7171,1.5957,1.8272,-0.7636,~0,7636)

solution X

PAV See Himmelblau (1972).

s " _ L2 2 2 _
Minimize f£(x) = 1000 %y sz X xlx2 XqXq under
the constraints
2 2 2
hl(x) = X3 + X + X3 - 25 = 0
hZ(X) = 8xl + l4x2 + 7x3 - 56 =0

It

starting point x (10,10,10)

solution (3.512,0.217,3.552)

e
i




EXP
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See Himmelblau (1972).

Minimize
10 10 ]
f(x) = exp(x.)(c. + x, - 1In exp(x.)
izl U * jzl 1)

under the constraints

=
H

>

i

exp(xl) + Zexp(xz) + 2exp(x3) + exp(x6) +

+ exp(x -2 =0

lO)

hz(x) = exp(xé) + 2exp(x5) + exp(x6) + exp(x7) -1 =0

h3(x) = exp(x3) + exp(x7) -+ exp(x8) + Zexp(x9) +
+ exp(xlo) -1=20
where
c; = ~6.089 c, = ~17.164 Cqy = -34.054
c, = -5.914 Cg = -24.721 Ce = -14.986
Cy = -24.100 Cg = ~10.708 Cq = ~26.662
Cig = -22.,179
starting point X, = -2.3 i=1,...,10
solution x = (=3.2,-1.9,-0,24,~w,-0.72,~»,-3.,6,

-4,0,-3.3,-2.3)
See Fletcher and Lill (1270) and Colville (1968)

Minimize

5
f(x) = ) e.x, + ) y
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TRIG

under the constraints

hl(x) = =-==3.;,5x:L + 2x3 + 0.25 =0

hZ(x) = m9x2 - 2x3 tox, - 2,8x5 + 4 =0

h3(x) = le - 4x3 + 1 =0

h4(x) = ¥ + sz + 3x3 + 4x4 + 5x5 -5 =0

where the constants are given by

ej -15 =27 -36 -18 =12

Cij 30 =-20 -10 32 =10
=20 39 - 6 -31 32
=10 - 6 10 - 6 =10

32 =31 - 6 39 ~20

~10 32 =10 =20 30

dj 4 8 10 6 2

(0,0,0,0,1)

starting point x

solution x = (0.3000,0.3335,0.4000,0.4283,0.2240)
Minimize

3 2
£(x) = ) (byB; - £,(x))

i=1

under the constraints

hi(x) = Ei - fi(x) = i=1,...,m

where bi =1, i=wl,...,n, b, + 1, i =1,...,m

n
fi(x) = ;l(Aij Sin(xj) + By .

: cos(xj))
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= fi(§) where x is the point chosen to be the minimum.
s Bi., Eiy bi and x are given in Glad (1975).

The inequality constrained problems are

ROS See Rosen and Suzuki (1965).

o _ .2 2 2 2 _ _
Minimize f(x) = X7 + X, + 2x3 + Xy 5xl 5x2 le3 +
-+ 7x4 under the congtraints

2
gl(x) = x7 + x5 + Ky + %, + X = X, Xgom o, - 8 <0
gz(x) = Xi + 2x§ + x% + in Xy T Xy T 10 < O
93(x) = in + xg + xg + le T Xy T X, - 5< 0

starting point x = (0,0,0,0) (ROSa)
X (3,3,3,3) (ROSDb)
(Olllzr'l)

Il

solution bid
PROG See Colville (1968).

Minimize f£(x) = 5.3578547x§ + O.835689lxlx5 + 37.293239xl -

= 40792.141 under the constraints

0 < 85.334407 + 0.0056858x + 0.0006262x,x, -

2%5 1%4

- 0.0022053x%x.x

3¥5 < 92

90 < 80.51249 + 0.0071317x2X5 + 090029955}{1}(2 +

+ 0.0021813x§ < 110

20 9.300961 + 0.0047026x

IA

3x5 + 0.0012547xlx3 +

+0.0019085x,x, < 25
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78 < x, < 102, 33

LN
]
A
e
Ul
N
~
A
b

27 - 45, 27 45

A
26
W~
A
A
b
w
A

starting point x

solution X

(78,33,27,27,27)
(78.000,33.000,29.995,45.000,36.776)

The results are given in the following table. The entries are
the number of times that (£, fx' h, hX, g, gx) has been evalu-
ated. For the GRG method a separate table is presented because
for this method £, fx’ h, hx, g and g, are not evaluated the

same number of times.,

The first column gives the absolute accuracy in x, that was re-

quired.

acc OPF  HEPO FLE MINGRA MINGRB MINGRC VFOIA

POW 1074 41 37 42 37 41 18 39
PAV 1073 64 54 58 70 - 35 -
EXP 1071 s150 150 76 95 116 >150 140
corl 1074 45 54 18 22 20 15 26
TRIG2 10 ° 22 28 13 17 15 11 14
TRTG4 1070 130 92 53 34 46 21 139
TRIG6 10°° 62 57 35 32 27 25 63
TRIG8 10 2 >150 >150 >150 50 68 148 >150
ROsa 1073 - - - 23 25 26 -
ROSb 1070 - - - 102 106 20 -
PROG 10 ° - ~ - n 95 67 94

For TRIGZ2, TRIG4, TRIG6 and TRIGS8 the number of variables are
2, 4, 6 and 8 and the number of equality constraints, 1, 2, 3
and 4 respectively. The sign - means that the algorithm was not
tested on this problem. The computation was stopped after 150
evaluations and if the desired accuracy was not reached then,

the entry i1s marked ">150".
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Results for GRG, number of evaluations to reach the accuracy

given above:

f £, h,g b rg,
POW 82 33 101 15
PAV 114 26 192 11
EXP 192 73 611 27
COL1 26 17 22 7
TRIG2 24 8 29 6
TRIGA 121 29 230 14
TRIG6 201 59 564 33
TRIGS 235 75 902 29
PROG 67 29 131 11

The comparison between GRG and the other algorithms depends on
the computational effort needed to evaluate £, fx’ h, g, hx and
9 respectively. The other algorithms can be compared directly.
The algorithms MINGRA, MINGRB and MINGRC seem to be promising
although there are occasional bad results for some problems.
Note that, although MINGRC is theoretically superior, having
superlinear convergence while MINGRA and MINGRR have only li-
near, it is not obvious that it is a better algorithm in prac-

tice.

3.8. Summary.

This chapter deals with methods of solving the constrained mi-
nimization problem. In section 3.1 the Lagrangian L(x,u) is in-
troduced. Its important property is that there is a value, u =
= G, of the multipliers such that L(x,a) has a stationary point
at x = x, where x is the solution to the constrained minimiza-
tion problem. The augmented Lagrangian, F(x,u,c) is then presen-=
ted. F(x,u,c) has a local minimum at x = x if ¢ is large enough.

The results in 3.1 are well known from the recent literature in
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optimization and form the basis for the other sections of chap-
ter 3.

Section 3.2 gives additional insight into the behaviour of the
augmented Lagrangian by showing that, for a wide class of prob-
lems, there is actually a global minimum at x = x, if the para-
meter ¢ is chosen large enough.

The fact that F(X,E,C) has a local or a global minimum at x = %
is interesting from a computational point of view. It means
that the constrained problem has been converted into an uncon-
strained one and there are very powerful methods for solving un-
constrained optimization problems. This fact cannot be used di-
rectly, however, because u is in general not known. There are
two ways of overcoming this difficulty. The first is to replace
the parameter u by a function U(x) having the property u(x) = u.
The second one is to use an iterative method which updates u in
such a way that it converges to u. Section 3.3 deals with the
function U(x) in the equality constrained case. The interesting
theoretical result shown there is that F(x,U(x),c) has a local
minimum at x under weaker conditions than those previously

given . Since there are practical drawbacks to this method as
pointed out in 3.3, the alternative of updating u iteratively is

considered in the following sections.

Section 3.4 presents some different iterative methods suggested
in the literature. The algorithm that is chosen for further stu-
dy uses a quasi-Newton method known as the BFGS method to mini-
mize the augmented Lagrangian with respect to x. After each line
search the multipliers are updated. In section 3.5 the local con-
vergence of this algorithm is studied. Three different updating
methods for the multipliers are shown to be convergent locally.
Two of them converge linearly while the third one shows superli-
near convergence. It is also shown that the asymptotic behaviour
of the approximation of the second derivative is the same as in

the unconstrained case.
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In 3.6 modifications are introduced to avoid divergence of the
algorithm when the starting point is far from the solution. It
is shown that the modifications guarantee global convergence

in the sense that every accumulation point satisfies the first

order necessary conditions for a constrained minimum.

The algorithm of section 3.6 has been tested on numerical prob-
lems, using the three different updating formulas of 3.5. The
results are given in section 3.7 where there is also a compari-
son with other methods. The practical performance of the algo-

rithms investigated in 3.5 and 3.6 seems to be gquite promising.

The computationally relevant conclusion for the class of methods

treated in 3.5 and 3.6 can then be summarized.

0 They have sound theoretical properties:

a) Fast local convergence.

b) Global convergence.

) They have solved a number of test problems satisfactorily.

Consequently, these methods appear to represent a useful tool

for solving the constrained optimization problem.
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4. OPTIMAL CONTROL PROBLEMS

As was shown in Section 2, the optimal control problem is in-
finite dimensional. Three types of constraints are considered,
the differential equation, terminal constraints and mixed state-
control inequality constraints. The goal is to treat these con-
straints with methods similar to those used in the finite dimen-
sional case. The differential equation constraint has been trea-
ted by Hestenes (1947), (1969), Rupp (1972a) and di Pillo et.
al. (1974) using an augmented functional which is a direct gene-
ralization of the finite dimensional augmented Lagrangian. A
similar technique has also been used by Rupp (1972b) for isope-
rimetric constraints and by Nahra (1971), M&rtensson (1972) and
O'Doherty and Pierson (1974) for terminal constraints. In 4.2
and 4.3 the properties of the augmented functional are examined,
using a Riccati equation approach. Iterative methods based on
the augmented functional are discussed in Section 4.4. Finally
an extension to mixed state control inequality constraints is
considered in 4.5.

4,.1. Problem Formulation.

The optimal control problem to be studied in 4.2 - 4.4 can he
formulated:
Minimize
T .
I(x,u) = [ L{x(t),u(t),t)dt + F(x(T)) (4.1)
0

subject to

X(t) = £(x(t),ult),t) 0 <t<T
x(0) = a
p{x(m) =0

m
Here x and u are functions belonging to C?[O,T] and CO[O,T]
respectively. The functions f and y are vector valued with n

and r components respectively.




77

The following assumptions are made

0 L and f are three times continuously differentiable with

respect to x and u.

0 L and f together with their first and second derivatives

with respect to x and u, are continuous with respect to t.
0 ' and y are three times continuously differentiable.

0 The minimization problem has a solution denoted (E(t),a(t)]a
Define the Hamiltonian
H(x(t),u(t),p(t),t) =

= L(x(t) ,ult),t) + po(t) £(x(£) ,ult),t) (4.2)
where p is a continuous function of time.
The standard necessary conditions for the optimal control prob-

lem are given by the following theorem.

Theorem 4.1. Let x,u be the solution to the problem defined by

(4.1) and assume that the following regularity conditions are

satisfied.

(i) The matrix wX(Q(T)) has rank r.

(ii) Given any vector z, it is possible to find a continuous

function v such that

he) = £, (x(8),ult), t)n(e) + £ (x(t),ult),t)v(t)
h(0) =0
has a solution satisfying h(T) = z , i.e. the linearized

system is controllable.
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Then there is an n-dimensional vector valued function E(t)

and an r-dimensional vector b such that for all t € [o,T].
-p(t) = H (X(8),ult),plt),t)
p(T) = FL(%(1)) + v ()b (4.3)

i, ((6) ,ule) ,p(e),e) = 0

Proof. See Luenberger (1968). o

4.2. The Optimal Control Problem with a Differential Equation

Constraint

In this case the problem can be written:

Minimize

I(,u) = [ Lix(t),u(t),t)dt + F(x(T))

O 3

subject to

it

%(t) f(x(t),u(t),t) (4.4)
x(0) = a

The idea in Hestenes (1947) and Hestenes (1969) is to form the

augmented function

T
J(x,u,p,c) = I{L(x<t>,u<t),t) + pT<t>[f(x(t>,u<t),t) - x(t) | +
! |

T
+ £ [f‘(x(t);u(t)rt) = i(t)]

2 J
.
\

£(x(t) ,u(t),t) - }"{(t)]}dt + F(x(T)) (4.5)
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Here ¢ is a positive real number and p is a continuous func-
tion. The functions x and u are now allowed to take arbitrary
values, not necessarily satisfying the differential equation
% = f(x,u,t). The condition x(0) = a, however, is still app-
lied. Note that J has a form which is analogous to the augmen-

ted Lagrangian of Chapter 3.

It has been proved in Hestenes (1947) that J(x,u,p,c) has a
local minimum at (QPE) if ¢ is large enough. Here a different
proof, based on the Riccati equation, will be given. It has

the advantage of showing what the lower bound of ¢ is. The con-
nection with the sufficiency conditions in Bryson and Ho (1969)

is also given.

To show that J(x,u,p,c) has a local minimum at (x,u) an expan-

sion is used.

x(t) = x(t) + h(t)

u(t) = u(t) + k(t)

Since the function x belongs to CE[O,T], with x(0) = a, and u
belongs to C%[O,T], only variations h and k satisfying h(0) = 0,

h belonging to C?[O,T] and k belonging to C?[O,T] are of inte-
rest. The functions h and k satisfying these conditions will be

called admissible. The following norms are used

Ihly =sup ||h(t) || + sup [/ H(t) |
0<t<T O0<t<T
Ik llg = sup || k(t) ||
O0<t<T
where || - || denotes an arbitrary vector norm. In what follows,

x and u will often be written for x(t) and u(t), to simplify

the notation.

The expansion can now be written
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T
J (x+h,u+k,p,c) = j{H(x+h,G+k,§,t) - pT(g+h) +
04
o - ST
+ j(f(x+h,u+k,t) - X - h) (f(x+h,u+k,t) -

- % - ﬁ)}dt + F(x(T) + h(T))

where the Hamiltonian H = L + pr is used. Expanding H, £ and

F'in a Taylor series give

- e wm =t mm em T - T o
T (eth,uvk,p,e) = J(x,0,5,0) + [{Hh + Hk - pTAldt + Fh(T) +
0
15, T T T
+ 5 [{h"H _h + 2h"H_k + k"H_kldt +
5 XX XU uu
1 T T.T T.T o T
+ % [ c{h"f f h + k" £.f k + h"h +
Z g X% uu
+2nTele ko~ 2nTEn - 2kTeTh)ae +
XU X u
+ 2T F__h() + R(b,K)
2 XX B
wheare HX, Hu’ Hxx etc. are evaluated along (x,u) and
T

T

IR(h,k) | < e(h,k)f T + 0Th + xTx)ac
0

and ¢(h,k) - 0 as (h,k) - 0 in the norms given above.

Since E satisfies the conditions of Theorem 4.1, it follows
from a partial integration that the linear terms disappear,
Then
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J(§+hra+k;§rc) - J(Xlulpic) =
1 T T T T T
=5 g{h (Hxx+cfxfx)h + 2h (qu+cfxfu)k +
+ kT(H. +cFUf )k + ch'h - 2chTfTh -
uu uu %

- 2ckaTﬁ}dt + hT(T)F__h(T) + R(h,k) =
u XX

= 6%3(h,k) + R(h,k)

2
To prove that 67J is positive, it is transformed into a perfect
square. First observe that for any continuously differentiable

matrix function S, it is true that

L Te T T

J{h'sh + 2h*sh}dt - h™ (T)S(T)h(T) = 0O

0

for all continuously differentiable h satisfying h(0) = 0. The

addition of a term of this form to get a perfect square is used
in the calculus of variations, see Gelfand and Fomin (1963).

Adding this quantity to éZJ gives

T i @
57 = = j{hT(H FCELE +8)h + 2hT (H, +cf £ )k +
0 XX X X Xu ¥ u

"

+ kT(H +cfLE )k + ch'h + 2hT(S-cfl)h - 2ckaTﬁ}dt +
vl u u pr4 i

1.7 ) 3
+ 5 h(T) [Fxx = s{(T) Jh(T) =
(x + a > _+£Te)n T
1 ? uuttux Tu
2 0l 1 7 1

h + [quuu(HuX+L S) + =5 - fx]hJ

u C
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(6 o+ eflr —cfl)
uu u u u
= ¢of cT
u J
( -1 T
k + H o (H  +£.S)h
at +
© =1 T 1
ho+ [£H H  FE8) + 58 - £ ]h
17 -1 -1 T
+ 5 g h[s + Ho = H H H o+ (fxwquuuHuX) S +
=1 ) =1 T 1.2
+ S (E ~fH H SE H f S s“lat +
1 .T
+§h(mwmasmuMm (4.6)

Here 1t is assumed that Huu

is nonsingular. Now the following

theorem is an immediate consequence.

Theorem 4.2. Let (Q,G) be a

solution to (4.1) and let E satis-

fy equation (4.3) of Theorem 4.1. Also assume that

c >0

B (3 (8) ;ult) ,p(t),t]) > 0

t € [o,T]

and that the Riccati equation

1 T

~ & =H__ - H_H M + (f-fH TH )T +

XX wuTuu ux X

1

u uu ux

-1.T 1

+ S(f,~f H "H._ ) - S(f H —f 4= T1)8 (4.7)

U uu ux

s(T) = Fxx

u uu u ¢

where Hxx etc. are evaluated along x, u, has a solution over
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2
the whole interval [0,T]. Then 6 J(h,k) > 0 for all admissible

h and k that are not both identically zero.

Proof. First it is shown that the matrix

=-cf cl

is positive definite for all ¢ > 0. Form

H + chf mch Z
- uu uu u
T T
[z w ] =
-cf el \
\ u
=z H,,2% t c(fuz W) (fuz w) > 0

Equality is attained only for z = 0, w = 0.

Since the second and third terms of 62J in (4.6) disappear,

it
follows that 62J > 0. TE 62J = 0 then
K + H Y(H _+£f 8)h = 0 0 <t <T
uu > Tux Tu = <
h+ (£H T _+£5) +%5 - ¢ )h =0 0<t<T
uuu T Tux Tu C X = -~
Since h(0) = 0, it follows from the unigueness theorem for 1li-

near differential equations that h(t) is identically zero. Then

k is also identically zero. 0

To show that J has a minimum at (Q,G), it is not enough to know

that 62J is positive. It must also dominate the higher order

terms. The result of Theorem 4.2 can, however, be strengthened.
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Theorem 4.3. With the same assumptions as in Theorem 4.2

there exists a constant n > 0 such that

TI M e Mte
6%3(h,k) > n f(h h+h bk k)de
0

Proof. study
2 P T, poTe T
A(h,k,n) = 6°J(h,k) = n J(h h+h h+k7k)dt
0

where n > 0. The value of A(h,k,n) is the same as the value of
623 (h,k) with hT(HXX+cf§fx)h replaced by h' (H,_ +cf £ ~nI)h,

cﬁTﬁ replaced by (c-n)hTh and kT(Huu+Cfou)k replaced by kT(Huu+
+cf€fuwn1)k. It then follows from Lemma A.5 in the appendix that,
if n is chosen sufficiently small, then the Riccati equation cor-

responding to A(h,k,n) exists over the interval [O,T], Since the

matrix

{H + chf - nI mch
uu uu u
mcfu (c=n)T

is still positive definite for sufficiently small n, it follows

that A(h;k,n) > 0 and the theorem is proved. o

This leads directly to the following result, showing that J has

a local minimum at (x,u) .

Theorem 4.4. If the assumptions of Theorem 4.2 are satisfied,

then J(§+h,§+k,§,c) > J(Q,G,E,c) for all admissible h and k, not

both identically zero, and with [[h ||, and ||k ||, sufficiently

small.
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Proof. From Theorem 4.3
J (x+h,utk,p,c) - J(x,u,5,0) = 6°3(h,k) + R(h,k) »

T 7] @ o
> (n - Jem,k) )b h+h TR k) at s o
0

if ||h Hl and Hk]b are sufficiently small and h and k are not
both identically =zero. o

It is interesting to note that the magnitude of ¢ that is re-
quired only depends on the Riccati equation (4.7) (provided

c > 0). The interesting question is of course: is there any c
for which (4.7) has a solution over [0,T]? First note the fol-

lowing result.

Theorem 4.5. If (4.7) has a solution on [0,T] for ¢ = ¢y, then

it has a solution for any c > Cqo

Proof. Let c, >c and define

1

-1.T 1l

Pl = fU.HUU.fU + Eﬁz I
P, = “leT L
2 u uuu c2

Then Pl = P2 > 0. It now follows from Lemma A.2 in the appendix
that Sz(t) > Sl(t), where S, and 5, are the solutions correspon-
ding to ¢y and ¢, respectively. Since from Lemma A.4, the only
way the solution S can fail to exist on an interval [tl,T], is

by going off to minus infinity, it follows that S. exists on

2

any interval where Sl exists. m

Corollary. Either there are no values of ¢ for which (4.7) has
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a solution on [0,T] or else there is a number cy such that S

exists on [O,T] for ¢ > <y and goes to minus infinity for some

t] € [0,T] when ¢ < c;.
Proof. Take cO = inf{all ¢ > 0 such that S exists on the whole
intervall. o

Theorem 4.6. Let the Riccati equation

-1 1 T

= - = nr S S
S Hxx quHuuHux * (£x *uHuuHux) +
e -1 B -1 T,
-+ S(LX quuuHux) Squuufuo
S(T) =F (4.8)

XX

have a solution defined in the whole interval [0,T]. Then there
exists a ¢y > 0 such that (4.7) also has a solution over [0,7]

for all ¢ > coa

Proof. Since the difference between the matrices f HmlfT and

=1 1 uuuu

(quuufu + 3z I) can be made arbitrarily small by choosing c

large, the result follows from Lemma A.5 in the appendix. o

An immediate consequence 1is

Theorem 4.7. Let (QyG) be the solution to (4.1) and let 5 satis-

fy equations (4.3) of Theorem 4.1. Also assume that
B o, (x(8) u(e),p(t),t) > 0 t € [o,T]

and that the Riccati equation (4.8) has a solution over [0,T].

Then there exists a constant Cy = 0 such that J(x,u,p,c) has a
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local minimum at (Q,G) for all c > Co-

Proof. Follows directly from Theorems 4.6 and 4.4. W

The assumptions made in this theorem are the standard second
order sufficiency conditions of problem (4.1), see e.g. Bryson
and Ho (1969). If J has a minimum with respect to arbitrary
(x,u) , then it has also a minimum with respect to the special
choice of (x,u) which satisfies the differential equation

% = f(x,u,t). Since J = I for these (x,u), Theorem 4.7 actual-

ly forms an alternative proof of the sufficiency conditions.

So far, it has been shown that, when Huu > 0, the existence of
a solution to (4.7) over [O,T] is a sufficient condition for J
to have a local minimum at (x,u). The condition is almost ne-

cessary in the sense explained in the following theorem.

Theorem 4.8. Let E satisfy (4.3) and assume that J(x,u,g,c) has
a local minimum at (E,G) for some ¢ » 0. Assume that Huu(§(t),
E(t),ﬁ(t),t) > 0, t € [0,T]. Then the Riccati equations (4.7)
and (4.8) have a solution over [¢,T] for all ¢ > 0.

Proof. For J to have a local minimum it is necessary that
62J(h,k) > 0 for all admissible h and k. Since the solution of
(4.7) exists on [tl,T] for some tl < T (local existence theorem
for differential equations, see Coddington and Levinson (1955)),
it follows that

£

2 _ LT LT T T
6°J (h,k) = g {n (H  +cf £ )h + 20" (A +cf £ )k +

o)

m

+ kU (H +cfif )k + chih -
uu uu
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kv 5t _+fis)n
1 uu X Tu
1
tg
E o+ {f ntm +£s)
U uu uxX U
N
H + chf mch
uu u
mcfu cT
-1 T
k + Huu(Hux+qu)h
=1, T 1
Lh + [quuu(HuX+fu8) + S
1.7
+ o5 h (tl)S(tl)h(tl)
Now choose
k(t) =0 t € [0,t]
ht) = = a t € [0,t,]
tl =1

where a is an arbitrary

the solutions of

k = - Hml(H +£75)h
uu ux u
- -1, s 1.
h = [fuhuu(nux+fu5) + 58 fx]h
h(tl) = g

in [t,,T]. For this choice of h and k

constant vector,

— ] =

£ 2
2., I Jje T C
§7J(h,k) = 5 a g {tz (HXX+CIXfX) + tz
1 1
1 7T
-+ ‘2”' a S(tl)a,

Qi
n

and let h and k be

C

PAN%*

t

(£ +fT)}dt a +
p:d X
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Since the h and k used here can be approximated arbitrarily
well with continuous k and continuously differentiable h, it
follows that 62J(h,k) > 0 also for this choice of h and k.
Then

1 2
T T t T c . ct T
a S(tl)a > a é Z§ (Hxx+cfxfx) o+ Z? T Zﬁ (fx+fx) dt a
1 1 1 (4.9)

for any vector a. Now suppose that S goes to minus infinity
for t = tz, 0 < t2 < T. Then (4.9) must be violated for some
t, € [tZ,T]u Consequently the solution to (4.7) exists on

[s,T] for any ¢. From Theorem 4.5 this is true also for the

solution to (4.8). o

Corollary. If the solution to (4.7) goes to minus infinity for
some t € (0,T), then J(x,u,g,c) does not have a local minimum

at (x,u).

Example 4.1. Shortest distance between a point and a great

circle on a unit sphere.

Let the given point be at the origin O of a latitude=longitude

coordinate system and let the great circle be the meridian o =

= O(lq,
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Then dsz = (d@)2 + (cos @ do()2 and the problem is to minimigze

u + cos 8 duo

SN
0

where

6 =u 6(0) =0

The Hamiltonian is given by

H = Vuz + cosze + pu

The first order necessary conditions are

u

vu® + cos“e

, _ Cos O sin @
Pm

J 2 2

u~ + cos“e

+ p =0

They are satisfied by u = 0, 9 =0, 5 = 0. The second deriva-
tives of H evaluated along u, 8, p are
Huu = 1 Hu@ = 0 Hee = - 1

The Riccati equation (4.8) then becomes

ds _ . .2
m-a—a"’- 1 S S(O(;L)

[63]

it
=

with solution
S(a) = - tan(almm)

The second order sufficiency conditions are satisfied if 0 <

< Gy < n/2. The Riccati equation (4.7) becomes
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with solution

tan V1 + S (al”a)

‘L'l
i+ =

The lower bound of ¢ is then

m
for 0 <« 0y < 5

4.3, Extension to Terminal Constraints.

With terminal constraints the problem can be written:

Minimize

T
Tlxou) = [ L{x(t),u(t),t)at + F(x(T))
0

subject to

k() = £(x(t),u(t),t)
x{0) = a
v(x(T)) = 0

Terminal constraints have been treated by Nahra (1971), M&r-
tensson (1972) and O'Doherty and Pierson (1974) . They replaced
F(x(T)) by
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‘ , c o :
Fla(m)) + b () + 2 9T (x(r) )y (x (1) )
2

and iterated on the multipliers b. The combination of this
idea with the methods of the preceding section will now be
studied.

Define
T T
J(x,u,p,b,cl,cz) = I{L(x,u,t) + p [f(x,u,t) - ﬁ] +
0

c T
L (s -5 (fene - 8 Ja o
2

, c
+ F(x(T)) + blw(x(T)) ;2 wT(X(T))w(x(T))
2

The following theorems, analogous to the ones of Section 4.2
can be proved.

Theorem 4.9. Let E and b satisfy equation (4.3). Assume that

¢y > 0r ¢y 20, H o (x(t),u(t),p(t),t) >0, t € [0,7], and that
the Riccati equation

e -1 P ool B
S = Hox quHuuHux + (fx quuuHux) S+ S(fx quuuHux)
=-1_.T 1 ,
- S(quuufu + Ez- I)s
_ T =
S(T) = FXX + czwxwx + zbi(wi)xx (4.10)

has a solution over [0,T]. Then J(x,u,g,g,cl,cz) has a local

minimum at (X,G).

Proof. Follows from Theorems 4.2 - 4.4 with F replaced by

F + Eiw + E% wTw, o
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Theorem 4.,10. Assume that J(x,u,gyg,cl,cz) has a local minimum
at (E,G) and that Huu(§,a,§,t) >0, t € [O,T], Then the Ricca-
ti equation (4.10) has a solution over [¢,T] for arbitrary & >
> 0.

Proof. Analogous to the proof of Theorem 4.8. o

It is interesting to study some special cases. First, let ¢ de-

termine x(T) completely.

Theorem 4.11. Let y(x(T)) have dimension n. Assume that the re-

gularity conditions of Theorem 4.1 hold and that p and b satis-

fy equation (4.3). Assume that

(1) Ho, &) ,ult) ,ple),t) > 0 t € [o,T]

(ii) There exists a symmetric matrix SO such that the Riccati

eguation
- é = HXX - HXHHZIiEIUX * (fxwqu;éHux) TS +
+ S(£ ~£ A TH ) - SE H_TElS
s(T) = SO (4.11)

has a solution in [O,T].

Then there exist constants cqy > 0 and cy > 0 such that J(x,u,

p,b,cl,cz) has a local minimum at (Q,u).

Proof. There exists a value of c¢

+ Zbi(wi)
£ H gl
u uu u

T
5 such that Fxf % é@wxwx +
x > SO. The difference between (quuufu+E§ I) and

can be made arbitrarily small by choosing ¢ large
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enough. The result then follows from Lemmas A.l and A.5 in the

appendix. o

The simplest type of terminal constraint is xi(T) = di for some
indices i. For easier notation assume that the variables are or-

dered such that

2
[E)
E—l.
6]
H
R
)
®
H
i
~
+
b..d
=

Theorem 4.12. Let the terminal constraint be given by (4.12)

and assume that b and p are defined by (4.3). Assume that

(1)  H__(x(t),u(t) ,p(t),t) > 0 t € [0,7]

au |

(ii) There exists an rxr-matrix A such that the Riccati equa-
tion (4.11) with

has a solution on [0,T].

Then there exist constants cq and Cy such that J(x,u,g,g,cl,cz)

has a local minimum at (x,u).

Proof. Analogous to Theorem 4.11. i

Example 4.2. Shortest distance between two points on a sphere.

The difference compared with Example 4.1 is the boundary condi-

tion 9(@1) = 0. The Riccati eqguation (4.11) becomes
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-d8 o g 2 g2 S(ay) arbitrary
da
with solution 8§ = - tan(aoma), where %y can be chosen arbitra-

rily. To prolong the existence of S as much as possible %
should be taken close to Oy n/2, which corresponds to large
values of S(dl)a The sufficiency conditions are then satisfied

on the interxval 0 < & < w - ¢ for any ¢ > 0.

The Riccati equation (4.10) bhecomes

- 8= -1 - el )s?
do 1
5(0) = ¢y

with solution

tan V1 + Qh(a = Q)
Cl 0]
g = =
i+ 2
1
where
. 1
arctan V1 + -—— ¢
cq 2
% T %1 7
A X

The wvalues Cq and C5 for which S exists on [Ogal] are given by

tan[% - V1 + = a1]

1 J
c, + > 0 see Fig. 4.1,

Vio+ «SIM

1
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c
21 |c,=0.68

|

|
57 |

i

! Region where ¢4 and c,

| are large enough for a1-

|

I

|

B e e g e cen e e A A A A A A AV =0.46

04— ‘-
Fig. 4.1.

Example 4.3. See Bryson and Ho (1969).

Vertical A
distance a
X1
B
h
g
| |

Horizontal
distance

Study the motion of a rocket in a constant gravitational field.

The thrust has a constant magnitude a, but the thrust angle B8
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is a control variable. If X, denotes the vertical component of

the velocity, the equations of motion are

Xl = X,

XZ = a sin B8 - g

2, (0) = x,(0) =0

2 (T) = h x,(T) = 0

The objective is to maximize the horisontal velocity component

for t =T . This gives the loss

The Hamiltonian is
H==-acos B + Dq¥o + pz(a sin B-qg)
The first order necessary conditions are

p; =0
Py =~ Py

sin B + P, COs B =0
This gives a control strategy of the form
tan B = At + B

where A and B are determined by the boundary conditions. Along

the optimal trajectory we have

XX %B

a

H = a cos [ - ap, sin B =

BB > 0

cos B
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0 1 0 ]

a cos gJ

The Riccati equation (4.10) becomes

P | _ -1.7T . 1
S = fXS + Sfx S(fBHBB.ﬁB t Cl I)s
S(T) = c21
For c, = 0 the solution is S(t) = 0 all t. This means +that any

¢; > 0 and Cy 2 0 will be sufficient for J to have a local mi-

nimum at the solution to the problem.

4,4, Tterative Methods.

The results of the previous two sections are only useful if p

and b have the correct values 5 and b. Therefore iterative me-
thods of updating p and b in such a way that they converge to

E and b must be studied. A natural way of updating p was sug-

gested by Hestenes (1969) and used by di Pillo et.al. (1974).

The updating rule is

i i i ] ey (1)
where X(i) and u(i) are the values that minimize the functio-
nal J(X,u,p(l),b(l),cl,cz). The multiplier b is updated using

a similar rule by Nahra (1971) and O'’Doherty and Pierson (1974).

p (41 ()

+ czw(x(l)(T)]

Note the similarity between these updating rules and the updat-
ing rules used in Chapter 3, algorithm 3.1. The convergence pro-
perties of these updating methods will now be studied. First con-

sider the minimization of J for fixed p and b.
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_ ! T N
J(x,u,p,b,cl,cz) = élL(x,u,t) + p (f(x,u,t) - x) +
c T
+ ui(f(x,u,t) - %) (E(x,u,t) - k)}dt +
2
T ¢ T
+ F(x(T)) + b y(x(T)) + = y(x(T)) v(x(T))
2

This problem is of a standard form studied in the calculus of
variations. The minimum therefore satisfies the Euler equa-

tions, see Gelfand and Fomin (1963) .

- w@w(p + ¢ (£-%)) = Lt 4 fip + c

£ (F-%)
dt X X

1

T
b4

T T
+ Wb C,

[p+cl(‘m%)]th = F .

PI‘ - III T _ . _
Lu + £.p + clfu(f %) =0 (4.14)
Introducing
P + cl(fmi) = g b + czw = r
Te
H(x,u,p,t) = L(x,u,t) + p £(x,u,t) and

©(x,b) = F(x) + bly(x)

these equations can be written

i

% f(x,u,t) + L (p=¢)

€1

- & = H}T{(Xrulgit)

Hu(xlulglt) = 0
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x(0)

il
o
<
—
b
+3
N’
il
Q!H
~
I
]

i
hS)

g(T)

Let h, k, n, @, g and d denote the deviations from the optimum

i.e.
h =x - % k =u - u n=2¢£-=Dp 0 =t
d=5b~-b

Then the equations are

h = f(x+h,u+k,t) - f(x,u,t) + g;(q“n)

. T,= . = = - =
- n = Hx(x+h,u+kpp+n,t)‘m Hi(x,u,p,t)

Hu(§+h,3+k,§+n,t) =0

h(0)

i
o

p(R(T) + (D)) = gz(emd)

n(T) = oL (R(T) + h(T),B + ) = oy (X(1),B)

eS

The linearized version of these equations is

. 1 1
ho=fh+ £k = =1 + =g
X u Cl Cl

~ h =H _h+H k+ fon
XX Xu X

L

. ; T
Huuk - Huxn + fun = (

h(0)

it
(e

(1) = (e-d)

i

n(T) = o h(T) + wi@

x
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where Hxx’ qu etc. are evaluated along (x,u,p).

If Huu > 0, k can be expressed as
o o1 B
ko= Huuquxh Haufyn

This gives the following two point boundary value problem.

-1 1.7 1 1

h = (f mfuhuuﬂux)h = (quuuf; - ElI)n -+ E-lC_[
. I ~ ~1.T_.T
n- (Hxx quﬂuuﬁux)h (HYUHUH ot )”
n(0) = 0 h(T) = —(0-d)
by c
2
My = T
n(0) = o h(T) + y 0 (4.17)
Let
3
®ll<trs) ®12(t,5)
d(t,s) =
Azl(trs) @22(t,5)

be the fundamental matrix of this system of linear differential
equations and let S be the solution of the associated Riccati

equation

. ~ -1 -1 T
- 5 = Hyy quHuuHux * (fx quuuHux) S+
=1 -1.7T 1
+ S(L quuuHux) - S(fuh - +~z I)S
5(T) = Fxx + Th, (wl)xx + czwxwx (4.18)

Note that this Riccati equation is identical to (4.10). Assume

that there exist cg and Cg such that (4.18) has a solution on
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[0,T] for ¢y > cg, Cy 2 cg, In what follows, only values of c;

e 0 0 . . !
and ¢, satisfying ¢ » Cys G, 2 ©j will be studied.

The two point boundary value problem (4.15) can be represented

as an integral equation, using the technique of Falb and de Jong
(1969). A short description is given in the appendix. It is con-
venient to regard 6 as a function on [0,T] satisfying the diffe-
rential equation ® = 0. The boundary conditions of the linearized

problem (4.17) can then be written

I 0 0][h(0) 0 0 0 h (T) 0
‘ T
0 0 0f|n(0)| + {op, ~T wy |[n(m] = |0
1 1
0o 0 o0lle(o) 3 0 —-=1||6(T) -4
“U}Q C2 \ ] ‘ CZ

The linearized problem is boundary compatible if the following

matrix is nonsingular

(T 0 0
A= |p D - D ( o} = O T (4.19)
%x P11 21 Py ®12 22 by .
) 1
b 211 Uy ®1 2 “E;I
where @, . = o, . (T,0).
ij ij

A is nonsingular if
(®,,(T,0) = (9, *c T ) &, 4 (T,0)
w2 Pux oV’ P12 7 )

is nonsingular. Since this matrix is related to the solution of

the Riccati equation (4.18) by

-1
S(E) = (Dyy (T,8) = (0 CoPip,) Py, (T, L))

T 0 o
(P tCop b, )@y (T, 8) = @,y (T, )]
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the nonsinularity follows from the assumption that S(t) exists
on [0,T].

Note that the eguation

Hu(§+h,ﬁ+k,§+n,t) = 0

defines k uniquely in terms of h and n if h and n are sufficient-
ly small. This follows from the implicit function theorem, see
Luenberger (1968), since Huu(Q,G,E,t) > 0. The solution of (4.15)

can now be written

h -0
T = = T~ = T
nl = K(t) mx(xQT) + h(T),b + 8) - @X(x(T),b) - 0 (T -y +
- m r p— — _ﬂ_];___
0 p(¥(T) + h(T)) - y h(T) 55 @
. £(x+h,U+k,s) - £(%,0,8) - f.h - £k + = q
X u Cl
+ [ G(t,s) .ds
0 HY (%,3,Pis ) ~ He (%4h,0tk,Btn,s) +H h + H k + £
' A yasy < ’ 2N, <% U Xﬂ
0
(4.20)
with k given by Hg(§+h,a+k,§+n,t) = 0. K(t) and G(t,s) are the

Green's matrices associated with the linear two point boundary

value problem (see Lemma A.6 1in the appendix).

Theorem 4.13. There exist constants ¢ > 0 and § > 0 such that

for all continuous functions g and all d with || q ||, < 6 and
| @]l < &, there exists a unique solution, (h,n), to the integ-

ral equation (4.20) satisfying [['h ||, + || n |, + | © ly < ¢-

Proof. The integral equation can be written as an operator equa-

tion
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h = Ty(h,n,0) + Ay 0 9

= TZ (hin ,8)

=
|

6 = T5(h,n,0) + A d

2
where T, are maps from an[Q,T] to CS[O,T] and A; and A, are
linear maps. Let o be a real number, 0 < « < 1. Then from equa-

tion (4.20) it follows that there exists an € > 0 and a 6 > 0
such that

P.
it

< alllny=ny Il + 1lny=ny Il + Tleg=o, Il ) 1, 2, 3

for all hl, h2’ Nyr Ny el and 62 satisfying

g o+ g I+ Hley 11 s e L= 1,02
It also follows that

700,000 +a, ~all s lla Il = llall

1 T500,0,0) + 8, «all < |la, [l - llall

Define n = max(l]hl H . []q H,l|A2 H . lld H). Choose ¢ such
that

1l - «

n s é&

<&, ||a]] < 6. The conditions of

for g and d satisfying [lq HO
the contraction mapping Lemma A.7 in the appendix are then sa-

tisfied and the theorem is proved. o

To study the solution h, k and n for small values of g and b it

is desirable to have an approximate representation.
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Theorem 4.14. Let (h,n) be the solution of the nonlinear prob-
lem (4.15). Then

h 0 (q
T
nl = K(t)| 0O + f»ém G(t,S) |{0|ds + r(q,d)
. 0 €1
9 -2+d 0
2

where || r(g,d) HO/(Ilq ”O + ]ld]l) -0 as (q,4) - 0,

Proof. From (4.20) it follows that

1 2
g tukon) | s 35 (10 g+ 1 llg + 1€ 1ly)

and consequently
2
Hndflg = Unllg + ellg s & (lhllg+ lInilg+ [1el)"+

TR lally + 1hall)

for some constants Ky and Kza Let ¢ be the constant defined in
Theorem 4.13 and let €1 = min(l/ZKiye). Then, for sufficiently
small || g || and || d ||, (1/1-a)n < g1+ where o and n are defined
as in Theorem 4.13. Consequently || h HO + || n ”O + ey <
< 1/2K, for sufficiently small | a HO and || d ||. This gives

Indflg + nllg + Hellgs28,(llally + I1all)

Using this in the expression for ]]Ti(h,n,@) || gives the de-

sired bound on r{(qg,d). o

Corollary. Letfﬁ, 7 and B denote the solution to the linearized
boundary value problem (4.17). Then the solutions of the nonli-

near and the linearized problem are related by
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{h 5%
n = ?IJ ’+ r(qid)
9 &

where || r(q,d) HO/(liq g + Il ]]) »0 as (q,d) - 0.

Proof. The solution to (4.17) is given by

~ 1
h 0 -]
N T €1
nl = RK(t)| 0 + [ G(t,s) !0 |ds (4.21)
e -=d 0
C22 0

With this result it is possible to investigate the convergence
rate of the iterate method of updating the multipliers. As men-

tioned at the beginning of this section, the algorithm will be
assumed to be the following:

Algorithm 4.1,

(i) Choose starting values p(o), b(o), put 1 = 0.

(ii) Minimize J(x,u,p(l),b(l),cl,cz); let the result be x(l),

u(l) B

(iii) Update the multipliers

Sy o ) gy o f(x(i),u(i),t) =2 (1)

p U 2 p )y (x ) (my)

put i = i + 1 and go to (ii).

It is assumed that cq and ¢, are held constant, c¢
> C
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Theorem 4.,15. Let p(l) and b(l) be generated by Algorithm 4.1.

Assume that

(i) o and b satisfy equation (4.3).
(ii) the linearized system

% = £ (x,u,t)h + £ (x,u,8)k

is controllable.

(iii) H_ (x,u,p,t) > 0 t € [0,T]

(iv) The Riccati equation (4.18) has a solution on [O,T] for
0 0

C] = €1y Cy = Cye

(0)

Then there are constants cq 2 cg, Cy 2 cg such that, if p

.. (0)

and b are sufficiently close to 5 and b then

o o - -
BBy 1Y B g k(e - B g+ 16 < B

HP(

where K is an arbitrary number in (0,1).

Proof. Using the notation

p(i) - q(i) L (1) i

(1) _ 5 o (@) L) gl g )
the updating formula can be written

(141) _ (1)

e

oy (£, 4 g k@ o)y

+ c. R

. l(hﬁi)ik(i)]
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a =g ey n @y v e r (0@ ()

252
where

1=y (k) 1o/ (lln Il + 1% 1) = o, (k) = 0
1Ry (2) NI/ || = o, z2 >0

If ﬁr ﬁi § and k denote the solution to the linear two point

boundary value problem, then it follows from Theorem 4.14 that

q(i+l) - q(i) + Cl(fgﬁ(i) 4 fu]';(i) 3 g(i)) + R3(q(i),d(i))
a = a oy B my v r, (g1 ,a)) (4.22)
where

=g () g/ (lally + llall) - o, (q,d) ~ 0

From (4.16) it follows that

£ i) PACO RN CO NS B €N

+ £ k (i))
u cy

p R = o= (e g

Using these expressions in (4.22) results in

(1+1) (1)

. — ) r (q),a )

aH ) g g () gty

From conditions (i) - (iv) it follows that the linear problem

(4.17) has a solution for Cy = ®, C, = oo, Then K(t) and G(t,8)

go to finite limits as Cy = ®, C, » w, From (4.21) it then fol-




lows that there are values cqp 2 cg and Cy 2 cg such that

| | o |
I g+ e, < Sra™ g+ e

For these values of = and Cy then choose § such that

12 @ a1 < S ra® g+ ra®
for || q(i) HO + att) ' < 6 . Then
- i | |
Ha 0+ a1 cx(ra™® g, + 1a®
0 0
for | q'® |, + 112l <.
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Theorem 4.15 shows that Algorithm 4.1 can be used to solve the

optimal control problem. However, this algorithm is based on

the minimization of J for fixed values of the multipliers. This

is not a trivial problem, even if it is simpler than the origi-

nal optimization problem because the differential equation and

terminal constraints are eliminated. Di Pillo et al. (1974)

have studied this problem and shown that a conjugate gradient

method can be used. The optimization problem can then be solved

using only quadrature and without the solution of any differen-

tial equations.
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The results will now be extended to inequality constraints on

the state and control variables. The problem is then:

minimize

I(x,u) =

O

L(x(t),ult),t)dt + F(x(T))

under the constraints

X(t) = £(x(t),u(t),t) t € [0,T]
x(0) = a
g(x(t) ,u(t),t) <0 t € [0,T] (4.23)

where g is a g-dimensional vector function, three times conti-
nuously differentiable with respect to its arguments. For simp-
licity it is assumed that there are no terminal constraints.
The extension to terminal constraints is only a straightforward

combination of the results of this section and those of 4.3.

The necessary conditions of the problem defined by (4.23) are

given by the following theoremn.

Theorem 4.16. Let (§,G) be the solution to (4.23) and assume

that gu(g,a,t) has full rank in [0,T]. Define
T T
H(x,u,p,A,t) = Lx,u,t) + p £(x,u,t) + 2 g(x,u,t)

Then there exist functions p(t) € Ci[O,T],_;(t) € C%[O,T] such
that




13 == HX(}?IGiE?E}”\!t)
- i — T :'; Iny!

p(T) = FX(A(L))

Hu<§,3,§,i,t) =0
T - o

g(x,u,t) <0

A(t) >0

t € [0,T]

.
m

[0,7]
t € [0,T]
t e [0,T]

t € [0,T]

Proof. See Luenberger (19268).

The logical extension of the finite

ing inequality constraints would be

function

il
J(Xiulpi A,C,0) = fl
0

4=

L

Hcg(x<t),u(t),t) + x(t)Jf_
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(4.24)

dimensional method of treat-

to use the augmented loss

L(x(t),u(t),t) + pT(t){f(x(t),u(t),t) - i] +

T
[f(x(t),u(t),t] - &} (f(x(t),u(t),t) - k} +

. (cg(x(t),u(t),t) +7A(t)1+ “‘AT(t)A(t)]}dt +
L J .

+ F(x(7))

(4.25)

It is difficult to analyze this expression directly because the

last term under the integral sign is not twice continuously dif-

ferentiable. Therefore J will be derived in the following way,

using an idea of Rockafellar (1973) for

the finite dimensional

case. Transform the inequality g(x(t),u(t),t) < 0 to an equality
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( \
gy (x(6) jule) &) + v (r)

. = 0

e

Gy () u(e) 8] 4 Vo (k)

using the auxiliary variables vl(t), ooy vg(t), Then study
- - T .
Jy (x,u,v,pyasc,0) = I{L(x,u,t) + p (£(x,u,t) - %) +
0

+ S (E(xu,t) - 2)" (£(x,u,0) - %) o

+ XT(q(x,u,t) + V) + (g (x,u,t) + V)T

njQ

- (g(x,u,t) + 3)}dt + F(x(T))

where
2
Vi
vV = .
2
v
d

For simplicity the time dependence of x, u and v has been sup-

pressed in the terms in the integral.

Now expand J, to second order around the optimum (x,u,v). Then
P 1

=

ET, |
{Hh + H k - pThldt + F h(T) +

O

1 { T T T
+ e Z
5 h Hxxh-+2h quk + k Huuk +

OV




113

T s e\ T 7
w4 e (£.04E ken) T (£ hef k-h) +

P = ~ Raid T e = ~t o
+ o (g (x+h,u+k,t) + V(V+w)) (9 (x+h,utk,t) + V(v+w))}dt +

1.7
+ 5 h CP)FXXh(TW + R(h,k) (4.26)
whera
Al 0
A= ‘.
6 A
q

The term R(h,k) satisfies

TTnTT
R(h,k)|/f(h"h+h h+k"k)dt - 0, (h,k) = 0
0

Assume the following regularity conditions

o For each g; there is a finite set of disjoint intervals

1.2 3 .4
Iy o= {legeei]s [e5.850 «o0}

such that g, (x(t),u(t),t) =0, t € I,, and g, (x(£),u(t),
t) <0, t ¢ I;-

0 The multipliersvki(t) satisfy
1,2 3 .4
Ay (e) >0, t o€ {(ti’ti)’(ti’ti)’ eon})

The main result is then

Theorem 4.17. Let Q(t,¢) be a diagonal matrix whose elements sa-

tisfy




114

. 1 2 3 4
[ 1 if t € {[ti+8,tim8], [ti+€,time],..,}
(O (trg) =

L 0 otherwise

and define

~ m
lex Hyx t 99,09,
~ T
How = Hyy F 9929,
~ T
Hou = Hyu F 79,99,

Assume that ¢ > 0, ¢ > 0, that

o (K (8),u(e) o), X(e) ,£) >0 t € [o,1]

and that the Riccati equation

- s =8__ -F FMW +s(e-f FW o4
KX XU uu ux X u uul ux

e oyl Te _ & =1 T é
+ (£ =-fFH "H )'s s(fuﬂuufu 4 = I)S

5(T) =F (4.27)

has a solution in [O,T] for some value & > 0,

Then Jl(x,u,v,g,i,c,c) has a local minimum at x,a;v.

Proof. To simplify the notation, the case where there is only
one constraint, inactive in [O,t), active in [tl,T], will be
considered. The general case is a straightforward extension.

Equation (4.26) can then be written

AJl = Jl(§+h,§+k,§+w,§,i,c,o) - Jl(x,u,v,p,x,c,o) =
L T+ an TME 4ot e -cfY) [k + Ah
=L uu u u u 1 at +
2 - .
Oih + 2.h -cf cT h + A.h
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t,+e t.+g
1 L - - - 232 1 L2
+ 5 f g(g(x+h,u+k,t) + (vtw) ) dt + 5 f2Aw d +
0 tl
1t
+ = f2aw”dt + R, (h,k) + R, (w)
2 1 2
t, +e
1
where
_ =1~ T
Al = Huu(ﬂux+fu8)
_ v-1 &~ T B 1
AZ = quuu(Hux%qu) fx + - S

and R, sa-

S is the solution to the Riccati equation (4.27). Ry 5

tisfy

'r o
Ry (h,) |/f T ThexTk) ae - 0 (k) - 0
0

P T
[Rz(w)\/ [ wwdt > 0 w - 0

“1

Using the same reasoning as in Theorems 4.2 and 4.3 it now fol-
lows that

T cTe T T T T 2
A3y 2 (n = ey (h,k)) [(ATh+h™k™ + k'k)dt + (A = py(w)] [ widt +
0 tote

t.+g
1t _ - o,
-+ Z j (g (X+h,u+k,t) + (V+W)] dt
0

where n > 0 and pl(h,k) - 0, (h;k) - 0 and pz(w) - 0 as w —» 0.
Then AJl > 0 for all (h,k,w) that are sufficiently small and not

all identically zero. o
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Corollary. If (4.27) has a solution on [0,T] with O = Q(t,0)
and the other assumptions are valid, then Jq has a local mini-

mum at (x,u4,v).
Proof. If (4.27) has a solution on [0,T] for Q = Q(t,0), then

from Lemma A.5 in the appendix it has a solution for Q = O(t,¢)

for some ¢ > 0, o

The minimization with respect to v can be done explicitly. The

part of Jq that depends on vy is

(7); =

O

{ii(t>(gi(x(t),u(t),t) + vi(t)J -

2
+-§= (gi (x(t) ,u(e),t) + vi(t)} ]dt

The minimum is reached by minimizing the integrand at each in-

stant of time. The value of vi(t) is therefore the one that mi-

nimizes

A () VG (6) + g, (x(6) ue),£)vi(e) + vy (e)
The result is

vi(e) == [m A = oogy (x(t) ult),t) )

Using this wvalue of v, in (J1)i gives

(T = E f% [(Ogi(x’u't) +-7i}if“-;i]dt

It then follows that

J(x,u,p,2,c,c) = min Jl(x,u,v,p,x,c,o)
v
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Theorem 4.18. Under the same assumptions as in Theorem 4.17 it

follows that J(x,u,g,a,c,o) has a local minimum at (Q,H).

Proof. Since Jl(x,u,v,ﬁ,i,c,c) > Jl(i,a,G,é,X,c,c) it follows that

V — e
= J(i,a,p,i,c,o) for all (x,u) in a neighbourhood of (x,u).

Theorem 4.19. Let the assumptions of Theorem 4.16 be valid. A

sufficient condition for (;,G) to be a solution to (4.23) is
that E and A satisfy (4.24), that

Ho, X(8) () ,p,%,t) >0 0 <t<T

and that the Riccati equation

- é - HXX - HXHHZIJELHLZ&X
(HXHH;&EEHE}T;) (Suﬂgiai) o (EUH;iHuXJ&X) *
* S (5 < EHLG Y T GE T Gt S0 ¢
+ (fx - qu;éHux + qu;iEE(guH;iEE)nl(guHaiHux_ gx))TS -
- 8 (gl = Fulady Guldy) T e )8
s(T) = F (4.28)

XX

has a solution over the whole interval 0 < t < T. Here Bx =

= Q(t,0)g,, §, = a(t,0)g,, i.e.

gx(§<t>,6<t>,t)1,

for t where g, is active
Ji 1

* lO for t where gi is inactive

and analogously for §u°
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Moreover, if thess sufficiency conditions are satisfied, then
there exist ¢ and ¢ such that J(x,u,p,2,c,0) has a local mini-
mum at (x,u).

Proof. The matrices ﬁgx’ H__ and ﬁuu in equation (4.27) can be

xXu
rewritten as follows

~ _ NTN

Hi = Hu t 9919

S NS, RS, PV, 155 ISP P, S PUR |

Hou = Huy Huugu(o I+guHuugu) Iutuu

e PR S, PV 05 ISP PV, S RS Y
Houlux = HuuHux Huugu(o I+guHuugu) (guHuuHux gx)

Then the Riccati equation (4.27) can be written

- é = HXX B HXU.HZIJ;HUX + (quH:éNE“’gi) (%} I+§JHH;1];'§$) - (EUHI_J.E;HUX_SX)
+ (£, - qu;iHux + qu;igg(% I+§uH;$§E)ml .
. (guﬁgiﬂuxmgx))Ts +
- elekel - el e ke ¢ L s

s(T) = F__

Since the difference between the coefficients of the two Riccati
equations can be made arbitrarily small by choosing ¢ and o large
enough, it follows that if (4.28) has a solution over the whole

interval, so has (4.27). =i
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Example 4.4, Study the linear-quadratic approximation of the

problem in Example 4.1

As was shown, x = 0, u = 0, is a solution for T < n/2. For

T > §/2, there is no lower bound on J. Introduce the constraint

lu| <1

or

gl(u) =1 -1 <20
gz(u) = =-u-=1<0

Due to the symmetry of the problem, there are two symmetrical
solutions (u,x) and (4,%) with u = - U, x = - ¥. Study the so-

lution with positive u. Then only 9q is of interest

H = % u2 - % xz + pu + a(u-l)

The necessary conditions are

il
o

% =0 x(0)

i
<

p =X p (T)

For T > n/2, they are satisfied by
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1. t € [O,tl]

u = -

~B sin (t-T) t € [t,,7]

(€ t e [0,t]
¥ o= B

B cos (t-T) t € [tl,T]

1 2,2
L. 3 (ty-t%) te [o,t]

0 t € [tl,T]
where B = - l/(sin(tle)]. The point tl is given by 1 + t
¢ tan(t,=T) = 0, which has a unigque solution in

1
Riccati equation (4.28) is

- §=-1 - g te [t
-8 ==-1 t € [o,
S(T) =0

This gives

S = = tan(T-t) t € [ty

wn
il

t -~ tl - tan(thl)

in this case

;7]

tq ]

rT]

t € [O,tl]

1
(T-n/2,T) . The

and the second order sufficiency conditions are satisfied for

any T > 0,
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4.6, Summary

In the optimal control problem three types of constraints have
been considered in this chapter. These are the differential
equation, the terminal constraints and mixed state control in-
equality constraints. The constraints have been treated by the
formation of a functional J, which is a direct generalization

of the augmented Lagrangian in the finite dimensional case. J
depends on a parameter ¢, which is the weight assigned to the
part of J that is a quadratic form in the constraints. This pa-
rameter must be chosen large enough for J to have a local mini-
mum at the solution to the original problem. It is shown that
the magnitude of c that is required, is determined by a Riccati
equation, which is closely connected to the ordinary sufficien~
cy conditions. The theorems in this chapter only prove that J
has a local minimum. For the finite dimensional case it was pos-
sible to prove global optimality under fairly general conditions.
We remark that it is not straightforward to extend these results
to the optimal control problem. The reason is that lemma 3.1
uses the fact that a closed bounded set is compact. This is not

true in an infinite dimensional space.

The iterative method investigated in Section 4.4 is completely
analogous to the Hestenes-Powell algorithm discussed in 3.4. Tt
was shown in Chapter 3 that methods that update the multipliers
after each iteration in x, are efficient. A natural continuation
of the work presented in this chapter would therefore be to in-
vestigate the generalization of these methods to the optimal con-

trol problem.
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4.7. Appendix.

Properties of the Riccati Equation.

Here some interesting results about the Riccati equation are
collected. Most of them can be found in books about linear
quadratic control theory, e.g. Brockett (1970) or Anderson and

Moore (1971). Another useful reference is Ma&rtensson (1972).

We will write the Riccati equation in the form

— S(t) = BU(E)S(£) + S(E)A(E) + O(t) - S(£)P(t)S (&)

S(1) =

where A, 0 and P  are matrices whose elements are continuous
functions of t and QO’ Q and P are symmetric. It follows from
standard theorems for differential equations that S(t) exists

at least on a sufficiently small interval ty £ t < T. Moreover,
the only way in which 8§ can fail to exist is by having some ele-
ment which becomes unbounded. In what follows, M > N, where M
and N are symmetric matrices, means that M - N is nonnegative

definite and M > N means that M - N is positive definite.

It is useful to rewrite the Riccatl equation as an integral

equation. Introduce the fundamental matrix ¢ (t,T) satisfying

&g, m) = (A(t) = 3 P(E)S(E))4(t,M)

¢(TIT) = T
Then we have

T

S (t) 6 (s,£)Q (s)¢(s,£)dS + ¢ (T,£)0¢ (T, t)

I
e
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Lemma A.l. For the Riccati equation

-5 =2aTS + 8A+ Q ~ SPS
let Sq and S, be the solutions corresponding to S(T) = Q% and
5(T) = Q% respectively. Then if Qg > Qé it follows that Sz(t) >

> 8, (t) for all t € [tO,T] where [tO,T] is an interval on which

1
both solutionsgs exist.

Proof. We have

N < = = 1 T e - - .
= ¢ (5,751) = (A-PS,) 7 (S,-51) + (5,787) (A-PSy)

2
SZ(T) - 5, (T) = Qpy = Q

Regarding this as a Riccati equation in S, - S, we get, usin
g 2 1 d g

the integral egquation representation above

1

fI'
S, = 8y = ¢ (T,£) (0§-0g) ¢ (T,t)

where ¢ (t,T) now is the fundamental matrix corresponding to

A = PSl 5

Lemma A.2. Let Sl and S, be the solutions of the Riccati equa-

tions
. T

-~ S =AS8 + SA+ Q- SPS S(T) = Q
: T

- 8 =A"S + SA + Q - SP,S S(T) = Qq
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respectively. If Py > P, then S,(t) > Sy(t) for all t € [tOyT],

where [tO,T] is any interval on which both solutions exist.

Proof. We have

d . o T
=gt (8,781) = (A-P,8,) 7 (s,

=51) + (S,7S;) (A~P,5,) -
(8,81)P,(S,=5;) + S (Py-P,)S;
8,(T) - 84(T) =0

Using the integral equation form this can be written

T
S,(t) = 5, (¢) = £ ¢T(s,t)sl(lePZ)Sl¢(s,t)dS

Lemma A.3. Let Sl and Ss be the solutions of the Riccati equa-

tions

- & =2a%s + sa + 0, - 8PS S(T) = Q4
and

-~ & =2a"S + sa + 9, - SPs S(T) = 9,

respectively. Then if Q, > Ql it follows that Sz(t) > Sl(t)
t € [tO,T], where [tO,T] is any interval on which both solu-

tions exist.
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Proof. We have %
T T
52(8) = 81(6) = [ ¢ (5,0)(9,70;) g(s,t)ds

where ¢ is the fundamental matrix corresponding to

We can now deduce the following result.

Lemma Azéu If P > 0 then there exists a continuous matrix R(t)

such that S(t) < R(t) on any interval [tO,T] where S exists.

Proof. From Lemma A.2 it follows that S(t) < R(t) where R is

the solution to the linear differential equation.

-~ R = AR + RA + Q R(T) = Q

From this lemma it follows that, to prove existence of S(t) on
some interval, all that is needed is a lower bound on S on that

interval.

Lemma A.5. Let S be the solution of the Riccati equation

-5 =2a"s + SA + Q - SPS S(T) = 0

and assume that S exists on the interval [tO,T]m Let § be the
solution to the Riccati equation where A, @ and P have replaced

A, Q and P. Then there exists an & > 0 such that S also exists

on [tO,T] if I]Z - B < &, |[§ - Q| < ¢ and []5 =P < e.




126

Proof. Since the right hand side of the Riccati equation is a
continuous function of &, A, Q and P the result follows from
general results for nonlinear differential equations, see Cod-

dington and Levinson (1955).

Two point boundary value problems.

A linear two point boundary value problem can be written
y = V(t)y + £(t) My (0) + Ny(l) = c
where V, M, N are p p matrices and f,c and y are p vectors.

Definition. ( Falb and de Jong (1969) )

The set {V,M,N} is called boundary compatible if (i) V(t) is
measurable with [|V(t)||< m(t) for an integrable m(t), and
(ii) det( M + No(1,0)) # 0 where o(t,s) is the fundamental mat-
rix of y = V(t)y.

{V,M,N} is a boundary compatible set if and only if the linear

two point boundary value problem has a solution for all f and c.

Lemma A.6. Let D be an open set in RP and let I be an open set
in R containing [0,1]. Suppose that (i) F(y,t) is a map of D x I

into D which is measurable in t for each fixed y and continuous
in y for each fixed t; (ii) there is an integrable function m(t)
such that ’!F(y,t)’l <m(t) on D x I; (iii) g(y) och h(y) are
maps of D into D; and (iv) {V(t),M,N} is a boundary compatible
set. Then the boundary value problem

3; = F(y,t), g(y(0)) + h(y(l)) = c

has the equivalent representation
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y(t) = H(t){c-g(y(0))-h(y(1))+My(0)+Ny (1)} +
1

+ f G(t,s){F(y(s),s)-V(s)y(s)} ds
0

where the Green”s functions H(t) and G(t,s) are given by

H(E) = o(t,0) (M+No(1,0)) *
and
5 (t,0) (M#N0 (1,0)) Mo (0,s)  O<s<t
G(t,s) = { -1
~o(t,0) (M#NO (1,0)) " INo (1,8)  t<s<l

where ¢(t,s) is the fundamental matrix of the linear system

y = V(t)y.

Proof See Falb and de Jong (1969).

Contraction mapping theorem.

Lemma A.7. Let Y be a Banach space and let S(yo,r) be the

closed sphere in Y with center Yo and radius r. Let T map Y into
Y and suppose that (i) T is defined on D(yo,r) and (ii) there

are real numbers n and o with n>0 and 0<a<l such that
T yg) -yl < n

sup | [T(w)=T(v) [|/||u-v[]| <a<l

u,ves

and n/(l-a) < r

Then there is a unique fixed point of T in S.

Proof. See Falb and de Jong (1969).
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5. INTERACTIVE OPTIMIZATION OF DYNAMIC SYSTEMS WITH RESPECT
TO PARAMETERS.

It was shown in Chapter 2 that the optimization of a control
system with fixed structure gives rise to a finite dimensional
optimization problem with constraints. In this chapter the

problem will be considered more in detail.

A number of design methods proposed in the literature are dis-
cussed in Section 5.1 and it is shown that they all lead to a
constrained optimization problem where the criterion and con-

straints have a particular structure.

A problem when using optimization methods is that it is often
not clear which mathematical criterion is the appropriate one.
Usually the designer has a vague intuitive idea of what he
means by a "good" system, but it is difficult to translate it
into a criterion and constraints that can be used by an opti-
mization method. In practice, the optimization is therefore

an iterative procedure. The designer has to try several diffe-
rent criteria and study the corresponding optimal systems be-
fore he is satisfied. It is also often necessary to investi-
gate several different controller structures. To make the com-
munication between designer and optimization program efficient,
it is therefore very useful to have an interactive program. The
implementation of the optimization as a part of an interactive

simulation program is considered in Section 5.2.

Finally, the usefulness of the design approach considered in
this chapter is demonstrated in a number of examples in Section
5.3.
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5.1. Discussion of Criteria.

A large number of design criteria have been suggested in the
literature. In this section some of the more common ones will
be examined and it will be shown that they all lead to the fol-
lowing problem formulation:

minimize wg(p) (5.1)
p) < 0 i=1, ..., m

subject to wi(

where p is a vector containing the controller parameters to be

determined. The functions ¥, are given by

11

o, (p) = | L(x(t),p,t)dt + M(x(T),p) (5.2)
0

or

mi(p) = max L(x(t),p,t) (5.3)
tl§t5t2

where x is the solution of

x(t)
x(0)

£(x(t),p,t)
a (p)

il

(5.4)

il

In some cases the original formulation may not involve any cri-
terion to be minimized, only a set of inequalities to be satis-
fied

@i(p) < 0 i=1, ..., m (5.5)

Some or all of the differential equations in (5.4) may also be
replaced by difference equations and the integral in (5.2) may
be replaced by a sum. To simplify notation, the following dis-
cussion will be confined to the continuous time formulation of

(5.2) = (5.4). The extension to discrete time is usually trivial.
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Most criteria given in the literature are related to a specific
type of input and initial condition. The input might be either
a disturbance or the command signal for a servo-mechanism. For
the specified input the criteria are then functionals defined
on the state space trajectory of the system. If the input is
stochastic in nature, the criteria are usually expectations of
the functionals. Criteria related to deterministic inputs are

first considered.

The quadratic criterion

J = [ e“(t)dt (5.6)
0

where e(t) is the difference between the actual output and the
desired output is widely used for single output systems with
deterministic input signals,see Newton, Gould and Kaiser (1957).
This criterion can be approximated arbitrarily well by a cri-
terion of the type in (5.2), if T is chosen large enough. The
advantage of this criterion is that, for a linear system, J

can be calculated as an explicit function of the coefficients
describing the system. For low order systems the optimization
problem can then be solved analytically. The criterion is often

combined with a constraint of the type

[ 22 (t)at < cC

0

where z is the signal at some point in the system where it is
essential to limit the magnitude. For example z might be the

input of an amplifier that saturates for high signal levels.

Graham and Lathrop (1953) investigated different criteria for
the design of servo mechanisms required to give an output re-
producing the input. They found that the criterion (5.6), used
for linear systems with a step as input, often give an optimal

system that is poorly damped. The optimum is usually very flat;
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parameter changes that are large enough to give a significant
change in the response of the system, alter the value of the
Criterion very little. Therefore Graham and Lathrop also

studied the criteria

Iy = [ Je(t) |at
0
J, = g tle(t) |dt
7. = [t e?(r)at
39

JZ was especially recommended because systems that are optimal
with respect to J, usually also are "good" from many other

points of view.

Martens and Larsen (1975) have suggested the following crite-

rion for a step input.

J = | @(tmT)ez(t)dt (5.7)
0
where
1 z >0
8(z) =
0 z < 0

This criterion does not penalize the error until after the time
1. Martens and Larsen show that with an appropriate choice of ¢,

the criterion gives a response that is very well damped.

For a linear system on state space form

°

Ax <+ Bu
Cx

il
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it is natural to use the guadratic criterion

(XTle + quZu)dt

o
i
O g

which can be considered as a generalization of the criterion
[e+]

[ e?(v)at

0

discussed above.

If all the state variables are available for the controller,
it is well known, see e.g. Anderson and Moore (1971), that the

optimal control is given by

u = Kx
where
K = Q;lBTS

and S 1s given by the solution to the stationary Riccati equa-

tion

T -1

ATS + SA + Ql - SBQZ BTS = 0

It is interesting to note that the control law is optimal for

all choices of initial conditions x(0).
Since the solution in this case has a special structure that
can be used in the computations, there is no point in using a

general nonlinear optimization routine.

However, the fact that a feedback from all state variables is
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required can be a disadvantage in some cases. Therefore it is

also interesting to study output feedback
u = Ry
The problem then becomes:

Minimize

+ CTKTQZKC)X(t)dt (5.8)

_ 7 .r
J(K,xy) = g X" (t) (9

where ¥ satisfies
x(t) = (A + BRC)x(t)

In general the optimal XK depends on what value of x(0) is cho-
sen. One way of dealing with this problem is to choose a speci~-
fic value of x(0), e.g. a value corresponding to the most com-
mon disturbance. A different approach is to use a weighted va-

lue of the initial states. The criterion can be written
T

J(K,x(0)) = x(0) " S(K)x(0)

where

S(K) = [ e !AFTBKC) t(Ql 4 CTKTQZKC)G(A+BKC)tdt
0

If the initial states are assumed to be distributed with equal

weight over the unit sphere, the criterion becomes

Jl = tr S5 (K)

see Levine and Athans (1970).
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If different values of x(0) are given different weights, the

criterion becomes

J, = tr S(K)R (5.9)

where R is a weighting matrix. This form of the criterion can
also be derived from a stochastic point of view, see Martens-
son (1970). Let x%(0) be a stochastic variable. Then, if E de-
notes expectation,

T
E x(0) "8(K)x(0) = tr S(X)R
where
T
)

R =E x(0)x(0

S(K) can be computed in several different ways. It is the so-

lution of the algebraic equation

(A+BKC)TS(K) + S(K) (A+BKC) + 0, + CTKTQZKC = 0 (5.10)

It can also be computed from a matrix differential equation
X = (A+BKC)X

X (0)

il
o]

S (K) XT(t)(Ql + CTKTQZKC)X(t)dt

Il
o8

which is of the form (5.2). A discussion and comparison of dif-

ferent ways of calculating S can be found in Hagander (1972).

An important class of systems consists of servo-mechanism that
are required to produce an output that is a reproduction of the

input. The system behaviour is then often specified for step and
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ramp command signals. The asymptotic behaviour is defined by
the error coefficients enr Cqr eeo If e(t) is the error, i.e.
the difference between the command signal and the output, and

the command can be expressed as a polynomial in t then

e(t) = equ + el + ezﬁ + .. as t - w
The transient behaviour can be fairly well described by the
following data for the step response, see Fig. 5.1. The output
is denoted y(t). It is assumed for simplicity that the ampli-
tude of the step is 1.

A

o The settling time TS is the smallest value of time for which

ly(0) = v el = ¢ Yot all t > T_

The value of ¢ is usually 0.0l or 0.05.
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o The delay time T, is the time it takes for the step response

d
to reach half its final value.

o The rise time Tr is the time it takes for the step response
to go from 0.1 to 0.9 of its final wvalue.

o The overshoot M is (max y(t) -y )Y o

ref

Usually these specifications for the step response are combined

with restrictions on the error coefficients.

We will now study how these quantities can be expressed in the
form of (5.2) or (5.3). Since the error coefficients can be ex-
pressed explicitly in p, they are a special case of (5.2). If T

is sufficiently large the overshoot can be written

MO = max y(t) -1
O<t<T

which is of the same type as (5.3). The settling time, Ts' is

more difficult to handle. TS itself is often a discontinuous

function of p and is therefore not well suited for numerical cal-

culations. A specification of the type

can, however, be rewritten

max y(t) <1 + ¢
t>t)

min vy (t)
£t

v
s
§
™

and these specifications are of the type (5.3).
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The delay time T3 and the rise time Tr can be expressed in the

following way

T
Tq = g 0 (0.5~y(t) )dt
. |
T, = [{o(y(t) - 0.1) - 6(y(t) - 0.9)}dt
0

where 9 has the property

B(z) =

and T is sufficiently large. The use of these formula assumes
that y(t) remains above the values 0.5 and 0.9 respectively
once it has passed them. For very oscillative systems the ex-
pressions will therefore give an incorrect value. Since the
specifications are likely to define a system whose oscillations
are fairly well damped, this will, however, usually not cause

too much trouble.

A different type of design criteria are based on disturbance
models using stochastic processes. The criterion is then usual-
ly to minimize the average deviation from the desired output.

If the system i1s linear we can write

E(s) = G(s)V(s)

where E and V are the Laplace transforms of the error and the
disturbance respectively. If the performance of the system is
defined as the mean of the squared error

J = Ee2

and i1f the disturbance is a weakly stationary stochastic pro-

cessg, then
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1 leo
J = —— [ G(s)G(=s)¢,(s)ds

2ni —ie
where ¢, is the spectral density of V. If ¢, is a rational
function, J can be expressed explicitly in the coefficients
of G and ¢y, see Astrdm (1970). This means that the criterion

is a special case of (5.2). An alternative way of evaluating

the criterion is to compute
< 2

J = [ e"(t)dt
0

for the deterministic input
v(t) = h(t)
where h is impulse response of the system Gv(s), satisfying

Gy (8) Gy (=8) = ¢y, (s)

In this way the stochastic has been converted to a determinis-

tic problem of the type considered before.

An application of parametric optimization of a system subject

to stochastic disturbances is given by Vandierendonk (1972),

who describes the design of an autopilot for airplanes. The sys-
tem is of the form

x = Fx -+ Glu + GZ”
r = Hx + Du (5.11)
y = Mx

where x is the state variables, u the input, y the measurements
and n white noise. The vector r contains physical quantities

for which wvalues close to zero are desired. The control law has
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the form
u = Ky

and the elements in K have to be determined. The criterion to

be minimized is
J = ErTQr

when the system is in steady state. The criterion can be re-

written

J = tr (H+DKM) 0 (H+DKM) P (5.12)

where P = Ex T, P can be calculated from

(F+G{KM)P + P (F+G,KM) + GG = 0 (5.13)

1

The criterion is of the same form as the deterministic crite-
rion (5.9), (5.10).

Asshown above, minimization of the averadge value of a quadratic
criterion for a linear system leads to a minimization problem

equivalent to a deterministic one.

In a more general case, where the system is described by nonli-
near differential equations, the computation of the criterion
involves the solution of a partial differential equation, the
Fokker-Planck equation. Since the computational work involved
when doing this is usually excessive, one might try a simpler
approach. One way is to optimize the regulator parameter for a
particular realization of the stochastic process describing the
disturbance and replace expectations with time averages. The
problem is then converted to a problem of the deterministic type.
If the realization is long enough one can expect that the solu-

tion obtained is close to the solution of the original problem.
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So far it has been shown that, for a wide variety of proposed
design criteria, the functions w; are of the type described by
equations (5.2) or (5.3). BAs remarked in (5.5) the problem might

not be an optimization problem, but a problem of the form

Find a p such that

@i(p) < 0 i =1, ..., m (5.14)
A natural way of solving this problem, however, is to convert
it into an optimization problem. One way of doing this is to

choose one of the functions ®;, as a criterion. This gives the

problem

minimize @ (p)

subject tofmi(p) <0 i=1, ..., m (5.15)
i #k

Let the solution to this optimization problem be denoted p. If
@k(E) < 0 the original problem is solved. If on the other hand
@k(p) > 0, then the original problem is impossible to solve. In
principle the optimization therefore makes it possible to deter-
mine when a set of specifications are impossible to satisfy. One
has to be careful in practice, however, because most numerical
methods give only local minima, and it is difficult to ascertain

if a result 1s actually the global minimum.

A different approach is to form the loss function

m
F(p) = ) w0 (p)] (5.16)
i=1
where
. (p) if @, (p) > 0
o (@), =1 © i

0 if 9, (p) <0




143

This loss function has been suggested by Zakian (1973). F(p)
has the property that all points p satisfying (5.5 ) are glo-
bal minima to F(p) with F(p) = 0. The problem is therefore
solved by the minimization of F. Since the minimum of F is in
general not unique, the solution which is obtained will depend
on the starting point of the numerical optimization algorithm.

A third method is to solve the problem

minimize y(p)

subject to @i(p) < 0 i=1, e, m (5.17)
where ¢y is an arbitrary function. If ¢y = constant is chosen and
the augmented Lagrangian of Chapter 3 is used with u = 0 as star-

ting value for the multipliers, this method will be equivalent
to the use of (5.16).

5.2. Implementation.

From the standard form of the design problem described in the
previous section, (5.1) - (5.5), it follows that a program that
can solve this problem must contain the following numerical al-

gorithms.

o An algorithm to solve differential equations.

o An algorithm for constrained optimization.

As mentioned in the introduction to this chapter, it is also a
great advantage if the program can be used interactively. A pos-

sibility to plot the optimal response is also desirable.

The desired facilities have been obtained by the inclusion of
an optimization routine in the interactive simulation program
SIMNON. This program is described in Elmgvist (1975). Some of

its important properties are:
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o Systems consisting of differential and difference equations

can be handled at the same time.

o The system can be described by several separate subsystems

that are connected together.

o A system can be described either in FORTRAN or in a special

simulation language.

o It is easy to change both parameter values and the structure

of the system.

o The response of the system can be plotted on a display.

Algorithms for constrained minimization are described in Chapter
3, where it is shown that methods based on the so-called augmen-
ted Lagrangian are quite promising. The methods discussed in
Chapter 3 use derivatives of the objective function and con-
straints. In this application, however, it is more convenient

to use algorithms that only need function values. Tt is possible
to compute derivatives of most of the criteria discussed in 5.1,
but it involves more work for the user, who has to supply more

information.

For unconstrained problem it is known, see Fletcher (1972), that
quasi-Newton methods, where the analytic gradient is replaced

by a difference approximation, are quite efficient. It is there-
fore natural to use one of the algorithms of Section 5, and use
difference approximations where gradients occur. The natural
choice is then MINGRB since, in that algorithm, gradients are
not used in the updating of the multipliers. An algorithm called
OPTA, based on the algorithm MINGRB and with gradients of the
augmented Lagrangian computed by difference approximations has
therefore been included in SIMNON.

The procedure when designing a control system using the optimi-

zation facility in SIMNON is then as follows. The user writes
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down a description of the system and the criteria either in
FORTRAN or in the simulation language of SIMNON. The user then
gives initial values to the regulator parameters that are to
be optimized. When the optimization is started, the user can
watch the response of the system plotted on a display, and ob=-
serve what progress is made by the optimization routine. The
fact that the optimization is done interactively has the fol-

lowing advantages.

o Choice of step length for difference approximation of deri-
vatives. This choice can have great effect on the performance
of the optimization routine and is often difficult to make.
When using an interactive program it is easy to do a few tri-
al runs to see that the chosen step length gives reasonable

changes in the performance index.

o Choice of starting point. It is easy to make some preliminary

experiments to find a reasonable starting point.

o Choice of time interval. In the integral in equation (5.2), T
should usually be large enough to cover all the transient be-
haviour of the system. This is easily checked because the

system response is plotted.

o Stopping criterion. It is difficult to find good stopping cri-
teria for optimization problems where only function values
are available. The interaction helps in two ways. The user
can restart the algorithm if he is suspicious of the result
or he can stop the algorithm before the exact optimum is found

if he is already satisfied with the performance.

o Choice of controller structure. It is easy to try out the ef-

fects of different controller structures.

o Choice of criteria. It is easy to see how changes in the cri-

teria affect the performance.
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o Choice of weights for the constraints. The parameter c¢ in
equation (3.2 ) must be chosen large enough, as discussed
in Chapter 3. With the interactive program, too small a va-
lue of ¢ can quickly be detected and a more suitable value

inserted.

o "Helping the algorithm". The user can immediately observe
if the algorithm is making slow progress. He can then use
his knowledge of the problem in trying to figure out the
reason, e.9. bad scaling of variables, bad choice of step
length for the difference approximation, bad starting point.

The required changes can then be made immediately.

5.3. Examples.

The first example is a simple one, containing only one parame-

ter to be optimized.

Example 5.1. Double integrator controlled by relay.

X1 X2

-1 |

This problem is studied by Fuller (1967). The problem is to de-

termine K, i.e. the slope of the switching line of the relay.

The system behaviour is measured by the integral of the squared
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time S
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Fig. 5.2. Response of optimal relay control system for %x(0)=(0,1)

X2
3_
14 u
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time s

Fig. 5.3. Response of optimal relay control system for X(O)=(O,4)T
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position error
o] .

J = xg(t)dt
0

for initial conditions

it
o

%41 (0)

!
Al

%5 (0)
The following results were obtained

theoretical values

a =1 K = 0.4652 K= 0.4610
J = 0.7645 J = 0.7643

a = 4 K = 0.9224 K=10.9219
J = 24.45¢ J = 24.46

The theoretical values are computed from K = 0.46096[afl/2 and
J = O.7643]a]5/2, see Fuller (1967). The response of the opti-
mal system is given in Figures 5.2 and 5.3. The SIMNON commands

needed to solve this problem are presented in the appendix.

Example 5.2. Lead compensation.

This is an example of a classical design problem for feed back

systems. The following system is given.

u ef i!i" 1 y
K Gk(S) sls+1) (s +2) 1
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With Gk(s) = 1 and K = 1 the system has the step response shown

in Fig. 5.4, The performance can be described by the following
data:

Settling time (5%) T, = 3.6s
Overshoot M = 15%
eO:O

el = 29

where eq and el are the error coefficients.

Fig. 5.4. Step response for Gy = 1 and K = 1.

It is desired to make the system about three times as fast with-

out sacrificing other properties. The desired performance is
then
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The classical way of achieving this 1s to use a lead network.

G (3) = s+t b
S + bN
There are then three coefficients to determine: K, N and b. The
error coefficient 2, is automatically zero because of the inte=-
gration in the open system. The coefficient e, can be calcula-

ted analytically

2N
K

€1

The condition T, < 2.9 can be rewritten as follows:

max yv(t) < 1.05
2.9<t

min  y(t) > 0.95

The overshoot condition can be written

max y{(t) < 1.15
0<t

One possible way of attacking the design problem is to formu-

late the following optimization problem.

Minimize max y (t)
0<t

under the constraints
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max y(t) = 1.05 < 0

2.9<t

0.95 - max y(t) < 0
2.9<t

N-K=<20

The resulting parameters are

K = 4.83 N = 4.37 b = 0.54

The optimal step response is shown in Fig. 5.5.

1
M—
0.57
>
5
e
Cj) O T T T 1 I T | 1 T |
0 5 10

Fig. 5.5. Step response for K = 4.83, N = 4.37 and b = 0.54.

Another way to convert the design problem to an optimization

problem is to use the criterion, see (5.16)
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2
J = (max y(t) - 1.17)% + {max y(t) - 1.05)% +

2.9<t .
. 2 iy 2
+ [0.95 = max v (t) + (NﬂK)+
2.9<t .

This criterion does not give a unique value to K, N and b
because there is a whole area in the parameter space where J

is identically zero. The choice of K, N and b therefore depends
on the starting point for the minimization. For the starting

point

K

the result is

K= 4.19 N

i
(o8}

.72 b = 0.54

with the response shown in Fig. 5.6.

o
m—
S

Fig. 5.6. Step response for K = 4.19, N = 3.72 and b 0.54.
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If the starting point

1.0 N = 1.0 b =1.0

is chosen instead, the result is

K =

3.08

il
<

.56 b .64

Z
i
N’

with the response of Fig. 5.7,

1=
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Fig. 5.7. Step response for K

Which one of

01-

the step responses shown in figs. 5.5-5.

3.08, n = 2.56 and b

¢+ 10

= 0.64.

7 that is

to be preferred depends on the particular application. If no

overshoot at
fig. 5.6 can
the response
it gives the

response.

all is tolerated, the responses in fig.
be used. For manual control, e.g. in an
in fig. 5.7 would probably be preferred

operator a more distinct feeling of the

5.5 and
aircraft,
because

system
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Example 5.3. Tuning of PI- and PID-controller,

The system consists of two identical tanks and a valve con-

trolling the input flow as shown below.

— >F———

v

It is assumed that the transfer function from the input of
the valve, u, to the input flow, X3y is 1/(1+Ts). The equations

describing the system are

X

5= - 2 yagEg 4 =
A A
%, = 2 Vigu. - & /agwo
2 9%, k)
A
. _ 1 1
X3—= rb]X:))‘f“*r:'Lil,
ik T

where a is the effective area of the tank outlet and A the cross
section of the tank. The control is done by a PI-controller using

the measurement of the level in the lower tank.
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1 t
u(t) = Kle(t) + — f Q(T)dTJ
T T
where ¢ = r - X5 and r is the desired value. The constants K

and T are chosen to give a good response when r is changed
suddenly at a time when the system is in a steady state. As
measure of a good response a criterion of the type propossed in
Martens and Larsen (1975) is used.

J= [ Je(t)|at

where to is the time when r is changed and tl is chosen to in-
dicate how quickly the system is required to response. With the
following values of the constants

A = 19.6 cm r = 30 cm

a = (.43 cm2 xl(O) = 20 cm
T = 3g XZ(O) = 20 cm
tl = 30s x3(0) = 85,18
the result of the optimization is

K = 1.88 T = 18.7

I

with the response shown in Fig. 5.8.

For a PID-controller

t
a0 = x[e(®) + 2 [ etoar + T80

TI
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Fig. 5.8. Optimal response of tank system with PI-controller.
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Fig. 5.9.

Optimal response of tank system with PID-controller.
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the optimal choiee of K, TI and TD’ using the same criterion
as for the PI-controller, is
X = 3.96 TI = 3.05 TD = 5.37

The optimal response is shown in Fig. 5.9,

Example 5.4. Min-max criterion.

In Example 5.1 it was shown that the optimal slope of the switch-
ing line was dependant on the initial value x2(0). If K-values

computed for a large XZ(O) are used for small x2(0)—values, the

system becomes slow, see fig. 5.10.

34

Fig. 5.10. Response of relay control system for K = 0.92.

cp-d
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If, on the other hand, a K-value computed for small x2(0)—values

is used when XZ(O) is large, the system becomes very oscillative,
see fig. 5.11.

Fig. 5.11. Response of relay control system for K = 0.46.

One way of getting a compromise value for K is to use the follow-

ing criterion
J(K) = max(Jl(K),Jz(K))

where
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Jl(K) = g xé(t)dt for XZ(O) = a;
< 2
Jy(K) = B é x5 (t)dt for x,(0) = a,

and B8 is a weighting factor, which is necessary, since without
it the loss corresponding to the large XZ(O) would always do-
ninate. To minimize J directly can lead to problems for the mi-
nimization routine, since J usually has a discontinuous deriva-
tive at the minimum. Therefore the problem is reformulated,

using an auxilliary variable z.

Minimize zZ
under constraints Jl(K) < Z

J2(K)

A
N

The problem has been solved for a; = 1, a, = 4 and p = 32. (This
is the natural weight, considering the theoretical results in

Ex, 1.)

The result is

K= 0.71 J J, = 0.80

2

The multipliers corresponding to the two constraints are

A, = 0.62 A

1 = 0.40

2

The response is shown in Fig. 5.12.
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Fig. 5.12. Optimal response of relay control system with min-

max criterion.

For the weighting factor g = 16 the result is

0.85 J, = 1.53

Ay = 1

K = 0.89 Jl

= 0 .00

Al

Tn this case Jz dominates and the solution is the same as in

Example 5.1.
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Example 5.5, Control of a container crane.

The crane which is more fully described in M&rtensson (1972),
consists of a trolley moving on a gauntry. The container to be
lifted is attached to the end of a cable. The configuration is

shown below.

r—=

L e

We consider the problem of moving the container between two gi-
ven positions with the least control effort. The system is de-

scribed by the following equations.




le2

X, =~ g sin XB/XS - 2x6x4/x5 = u; cos x3/x5
Xg = X¢

¥6 T Yy

where

X = horizontal position of trolley

X, = horizontal velocity of trolley

Xy = angle between cable and the vertical

x4 = derivative of XB

Xg = length of cable

Xo = derivative of X
ug = acceleration of trolley
U, = acceleration of cable length

The optimization problem is:

Find uy and u, such that the system is transferred from

2

T
x(0)" = (0,0,0,0,12,0)
to

T

x(20)" = (20,0,0,0,6,0)
and

20
J = (ui+u§)dt

0

is minimized. This problem is infinite dimensional (ul and u
are functions on [O,ZO]) and can therefore not be attacked di-
rectly by the optimization routine used. However, we will trans-

form the problem into a finite dimensional one. The method cho-
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sen is probably not the most efficient one for solving the prob-
lem, but it illustrates the versatility of the combined optimi-

zation and simulation program.

From Lemma 4.1 it follows that the necessary conditions are

Ay =0

Ay == )y

33 = A4(g COs x5 ~ uy sin XB)/XS

5\4 = - A3 b 20, x/x,

iS = - A4(g sin Xy + 2X4X6 + uy cos x3)/x§

i6 = 2A4x4/x5 - AS

Uy = - O,5>\2 + OaSA4 cos x3/x5

u, = -~ O”5A6

together with the differential equations for Xeys eeoy X The

problem is then a two point boundary value problem. This prob-
lem can be solved by choosing Al(O), ooy A6(Q) as variables
to be optimized and

J = (xl(ZO) - 20)2 + x2(20)2 + x3(20)2 + x4(20)2 +

+ (x5(20) - 6)% + x,(20)2

6

as criterion to be optimized. The result is shown in Figs. 5.13
and 5.14.

This method of solving the two point boundary value problem,
so-called "shooting", sometimes leads to difficulties. The rea-
son is that to each eigenvalue u of the linearization of the x-
equations, there corresponds an eigenvalue -p of the A-equations.
If the physical system is very well damped the A-equations are
then highly unstable and numerical difficulties occur. In the
equations describing the crane, all eigenvalues lie on the ima-

ginary axis and no problems arise.
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Fig. 5.13. Optimal control policy for the container crane.
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Fig. 5.14. Optimal trajectory for the container. The positions

of the container and cable are shown with 2 s intervals.

Also notice that in the problem formulation given here there are
no state constraints. In practice, see Martensson (1972), such
constraints may be necessary. Some other method, e.g. differential

dynamic programming , must then be used.

An Application.

The optimization facility of SIMNON has also been used by Holm-
berg and Svensson (1975) to compute a regulator for a boiling
water reactor. The model of the physical process has 14 state
variables, 2 inputs and 5 outputs. The 10 coefficients of an
output feedback control law were computed by the optimization

routine.
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5.4 Appendix.

Here the SIMNON systems used in Examples 5.1 - 5.5 are presen-

ted. For Example 5.1 the command sequence is also given. A de-

scription of the SIMNON language used to define systems and of

the SIMNON commands can be found in Elmgvist (1975). The use of
optimization in SIMNON is described in Glad (1974).

Example 5.1

The system description is

CORTIMUOUS SYSTEM RELAY
STATE X1 X2 1LOS

DEr DXL DX2 DILOS

fWPUT K

DYRAMIOCS

CRzReX1+X2

U lF X200 THEN <1, ELsE 1,
UOHz=~ALF A Y] =Xl /K-ALFA®X2/K
Dxd=lF ARS(CXI<ERS AND AHS(XL)<R THEN UCH FLSE U
Oxe=x1

DILDSzY2axn

ALF A
FRPSI0. 01

END)

CONMNECTING SYSTEM COMN
TIEE TiH

LUk

4

T=TiM=-THEL

[

The variable UCH is used to describe the chattering motion, which
l! < K. UCH gives the

mean value of the actual control which switches infinitely fast

takes place on the switching line when |x

between +1 and -1. The background theory is described in Ander-
son and Moore (1971).
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The following command sequence is used. The text within quotation
marks is only used for comments and does not belong to the com-

mands.

LET MPEAR,DPTA=1 TERE T OPTiMlzEY
5,0PTa=G
ST ORTA RELAY CONN [
PAR TINC:S  "LENGTH OF TI
>INIT %214 AN T IAL VALUE
Paebllsd HINTTIAL VALUE
PELOT % 1 (T)  PVARIAHLES
PAERES -1 1 "SOALING UF
>l MU FSTART THE SIHMULATION

IRy

o
~
],
T

FOR BVALUATION OF THE LDSS®

=i T0 BE OPTIMIYZE
AON DISPLAYT
HGPLAYY

DR T IR ZAT EONY

~

Example 5.2
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Example 5.3
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Example 5.4

Two copies of the system RELAY described in example 5.1 are used.
They are called RELAY and RELCO and are started with different

values of X, The connecting system is
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6., ON LINE OPTIMIZATION OF AN OIL BURNER

An example of a practical optimization problem is the adjust-
ment of a burner to obtain the most efficient combustion. To
do this manually can be time consuming and it is therefore of

interest to try out automatic methods for reaching the optimum.

This chapter describes the use of a numerical optimization al-
gorithm on line to perform this task. Section 6.1 describes

the o0il burner and the arrangements that were made to allow
computer control. In 6.2 the modifications of the algorithm re-
quired by the on-line use are discussed. The results of practi-

cal experiments are presented in 6.3.

6.1, Description of the Process.

The physical process is an oil burner installation of the type
used for heating of small houses. The burner itself is of a new
type developed at the department of Machine Design at the

Lund Institute of Technology, see Reenstierna (1975). The essen-
tial difference compared to an ordinary burner is that the com-
bustion takes place in the alcohol=-aldehyde phase and gives a
blue flame. This makes it possible to get complete combustion
with little excess air. The physical background is described in
Fritsch (1961).

The new burner was to be tested with various nozzles and turbu-
lators. In each case the burner has to be adjusted for opti-
mum combustion. Since it is fairly laborious to do the adjust-
ment manually, it is of interest to study the possibility of ad-

justing the burner automatically using a computer.

A schematic description of the process is given in Fig. 6.1.
The oil flow is controlled by an oil pump and the air flow by

the velocity of a fan and the variable opening at the inlet to
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ail_flow (constant)
Burner flue gases
air flow
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fan inlet (CO + HZ)
speed opening
for air
stream
Fig. 6.1

the burner. The draught through the chimney can also be con-
trolled. The contents of carbon dioxide (COZ) and carbon mon-
oxide and unburnt hydrogen compounds (CO + HZ) in the flue ga-
ses can be measured. The problem that is studied is to find
those values of fan speed and inlet opening for the air stream,
which give the best combustion, for fixed wvalues of 0il pressure

and draught.

The combustion should be complete, i.e. give a negligible va-
lue of the (CO + Hz) measurement. On the other hand there should
be as little excess air as possible to minimize the heat loss
through the chimney. When complete combustion takes place, the
incoming oxygen either remains as oxygen or reacts to form car-
bon dioxide. The minimization of the oxygen content of the flue
gases 1s therefore equivalent to the maximization of the CO2

content.

The connections between the computer and the process were done
in the following way. Because of the distance between the compu-

ter and the process, a Hewlett-Packard Coupler/Controller was
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placed at the process. The data transmission between the Coup-
ler/Controller and the computer, a PDP-15, was then done digi-
tally. The output from the PDP-15 was given by the Coupler to

a digital-analog converter where it was converted to voltages

in the range =10V to 10V. Measurements were made by a digital
voltmeter operated by the Coupler and sent to the computer.

Fig. 6.2 shows the arrangement. A description of the Coupler/
/Controller and the programs used can be found in Jensen (1973),
(1974) .

The fan was driven by a thyristor controlled DC-motor and the
thyristor control unit could be connected directly to the DA

converter.

The air intake was controlled by an electric motor via a chain,
see Fig. 6.3. The position was measured by a potentiometer con-
nected to the shaft of the motor. The air inlet opening could
then be measured as a voltage. To control this opening, the DA
output gave a reference voltage to a relay servo which drove

the motor until the measured and desired voltages agreed.

The measurement apparatus, see Fig. 6.4, takes a sample of flue
gas every two minutes. The CO2 content is observed by measuring
the decrease in volume of the gas sample after it has passed
through a liquid absorbing the CO,. Every second measurement
the gas sample is passed through an oven, where unburnt compo-
nents are oxidized to carbon dioxide and water, before the gas
passes through the absorbing liquid. This means that every se-
cond measurement gives the COzmcontent and the measurements in
between give (CO2 + CO + HZ)Bcontent. The (CO + Hz)mcontent is
thus arrived at by taking the difference between two successive

measurements.

The output of the measuring apparatus is in the form of a
pointer writing on a moving chart. To get an output that could
be read by a voltmeter, a mirror was fastened to the axis of
the pointer. A light beam was reflected by this mirror on to a

light sensitive potentiometer, see Fig. 6.5. An overall picture

of the process is shown in Fig. 6.6.
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Fig. 6.2. On line optimization of

0il burner.
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oil pump DC-motor burner positioning

for fan motor

Fig. 6.3. Burner with oil pump, DC-motor for the fan and po-

sitioning motor for the variable air intake.
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light potentio-

source meter measuring cylinder

-absorbing liquid

Fig. 6.4. Gas analyzer. A sample of gas is taken into the cylin-
der to the left. After passing through the big bottle containing
a liquid that absorbs COZ’ the gas volume is measured in the cy-

linder to the right. The volume measurement is transferred to
the pointer.
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mirror pointer

light

source

‘light sensitive

potentiometer

Fig. 6.5. Readout arrangement for gas analyzer. A mirror is
attached to the same axis as the pointer. A light beam is re-

flected by the mirror on to the light sensitive potentiometer
in the centre.
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gas analyzer

tele-
type

oil burner installation

Fig. 6.6. The o0il burner installation with analyzer. The tele-

type is used for communication with the Coupler/Controller.
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6.2. Problems that arise in On Line Optimization.

In principle the optimization algorithm works in the same way
when it minimizes a mathematically defined function and when

it minimizes a criterion given by a physical process on line.
In the first case the function value corresponding to a certain
parameter value is requested from a subroutine, in the second
case the parameter values are given as inputs to the process,
and the loss function received as output. The main difference
is, of course, that the physical process gives a value of the
loss function which is influenced by measurement errcrs. This
may impair the working of the algorithm quite seriously. In
this application, an algorithm based on a guasi-Newton method,
see Fletcher (1972), is used. The gradients are calculated from
difference approximations. It is possible that an unfortunate
combination of measurement errors will make the computed search
direction an uphill direction, stopping (at least momentarily)

further progress.
Simplified versions of minimization algorithms based on diffe-

rence approximations can be analyzed from a stochastic point of

view. The stochastic approximation algorithm
Lol (n) Y(1.'1)Df(x(n))

(n)

where Df(x(n)) is the difference approximation of fx at x

oyl - 1 oo (n) (n) (n) B
[Df(x: )]i (2™ 1™ e,
- f(xin), ey Xén) - h(n), .,J]

has been analyzed by Kiefer and Wolfowitz (1952). Kushner (1972)
has studied some generalizations of this scheme. It is possible
to prove that the algorithm converges with probability one to a

point where fx = 0, if
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Y = o
ZY(n)h(n) < o
(n) 2
ZY — & o
p ()2

and with weak restrictions on the noise and the loss function.

In Kushner (1972), the modification of the search direction to

- uMpg ()

(n)

is also considered. If the matrices H satisfy

0 <« alI < H(n) < gZI for some €4

convergence with probability one can still be proved.

Since the line search in the Quasi-Newton method is more compli-
cated than the one considered above, the theoretical results do
not apply directly. Still, they show that it is reasonable to

try a method based on difference approximations of the gradient.

A problem that has to be considered is that the algorithm might
take too large steps. This can lead to an adjustment of the air
flow that extinguishes the flame and stops the optimization. To
reduce this risk, the line search algorithm was altered so that

an upper limit on the change in each variable was inserted.

Another problem arising from the fact that the values of the
loss function are disturbed by noise is the following. The algo-
rithm stores the value, f* of the best point obtained. During
the line search the new values of the loss function are compared
with £° and a new point is only accepted if a value lower than
" is obtained. This is a normal procedure in most optimization

algorithms irrespective of the method used. However, when the
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loss function is obtained from a physical process, difficulties
might occur in the following way. The stochastic disturbances
acting at the moment of the measuring of £* might give an abnor-
mally low value of £*. Since it will then be very difficult to
find any value which is lower, the progress of the algorithm
will be stopped. Another cause of difficulties is drift in the
process. If the value of £ used for comparison was obtained
long before the present measurement, it might not be relevant
for the comparison. To get round these difficulties, it is ne-
cessary to reset the value of £ by making a new measurement of
it. In the algorithm used this is done every time there is a
failure to obtain an improved point in a line search. This re-
setting of the value of £f* can also be initiated by manual in-
teraction during the minimization, if some abnormal behaviour

of the process is observed.

As pointed out in the discussion in 6.1, the criterion can be

stated as the maximization of COZ“content while keeping (CO + HZ)“

content low. A natural criterion is then

J = - Yoo, t k

Yy
9 CoO

where

YCo, = measurement of Cozﬂconcentration

Yeo measurement of (CO + HZ)“concentration
and J is to be minimized. The constant k gives a suitable weigh-
ting of the objectives of maximizing COz—content and obtaining
complete combustion. A disadvantage with this criterion is that
a large weight is given to Yeor which is a more uncertaip mea-
surement than Yoo ! because it is a difference between two measu-
rements of the same order of magnitude. A possible modification

is to use

n
J = - yco2 + [max(O,yCde)]
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Here d is threshold level. If Yo is below this level, the

(CO + Hz)acontent is congidered to be zero. This is natural,
since even if the combustion were ideal, one would obtain a
value of Yoo different from zero caused by the normal fluctua-
tion of the measurements. By choosing a value of n greater than
1, it is possible to penalize large values of Yoo More than

small ones.

6.3. Experimental Results.

The results of three experiments are given below. Since the mea-
surement apparatus was fairly slow - each function evaluation
required 8 minutes - the experiment length has been limited to
about 25 function evaluations. Therefore the asymptotic proper-
ties of the optimization algorithm remain to a large extent un-
known. What the experiments show is the ability of the algorithm
to give a fairly rapid decrease of the loss during the first ite-

rations.

The numerical values of fan speed, Py and air inlet opening, Py
that are given are the output voltages from the D/A converter.

For the fan, 0 corresponds to zero speed and 10 to maximum speed.
For the air opening, -10 corresponds to the fully open and +10

to the fully closed position. For the loss function the lower
bound corresponding to ideal combustion is about 2.9, correspon-
ding to a COz-content of 15.2%. An increase in the loss function
of 1 unit corresponds to a drop in the C02—content to about 11.5%,
assuming there is no (CO + Hz)—content. These figures are only
approximative because the calibration of the measurements varies
a little from one experiment to another. The exact values of CO2
and (CO + Hz)—content at the optimum are given for each experi-
ment.
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Different nozzles and turbulators were used during the diffe-
rent experiments. Since the physical properties are altered
appreciably by the change of nozzle and/or turbulator, the sha-

pes of the loss functions are quite different for the different
experiments.

Experiment 1. This experiment was performed April 24, 1975,

The lowest loss function value was registered after 17 evalua-
tions for Py = 4.9 and p, = 4.1. The value of the loss is 3.14
and corresponds to 14.6% CO, and 0.1% (CO + Hz)o The loss is
computed from - Yco, * 7”5yCO' See fig. 6.7.

Experiment 2. This experiment was performed on May 15, 1975,

The best value of the loss is the one reached on the 15th func=-
tion evaluation. It is attained for Py = 6.3, P,y = 3.6 and the
loss is 3.32. The CO2 content at this point was 14.7% and the
(CO + Hz)mcontent less than 0.1%. The loss is computed from

= Ycopy * 7.5Y54- See fig. 6.8.

Experiment 3. This experiment was performed on June 18, 1975.

The lowest loss occured after 9 and 19 evaluations. The loss was
in both cases 2.68 corresponding to 14.4% CO, and less than 0.1%
(Co + Hz)n It was attained for by = 5.5, py = 4.1, and Py = 5.4,
P, = 3.8 respectively. The loss is computed from - yco, *+ 40

+ [max(y_-0.02,0)]%. see fig. 6.9.
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At the end of the experiments the differences between loss func-
tion values are so small that stochastic errors dominate. As dis-
cussed in Section 6.2, a suitable step length reduction rule
should make it possible for the algorithm to converge despite
these errors. The limit on experiment length has not made it pos-
sible to test this in practice.

However, the results of the experiments show that it is quite
possible to use an optimization algorithm in on line applica-
tions. In this case the optimization is intended only for the
experimental testing of the oil burner. In normal use the bur-
ner would be used with a fixed setting. However, for burners
operating in a big plant, it might be possible to consider per-
manent use of an on line optimizer. The burner could then be
held at an optimal operating point under all conditions. This

may be an interesting comtinuation of the present work.

The different phases of the optimization are indicated below the
plot of the loss function. "D" means calculation of the difference
approximation of the gradient and "L," means line search. The dif-
ference approximation requires four function evaluations because
central differences are used. Notice that most of the improve-
ment is achieved in a single line search. In experiment 2 there

is a delay because the first search direction is a bad one and

the improvement comes in the second line search.
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