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A COMPUTATIONAL ALGEBRA FOR GEOMETRIC CONCEPTS
IN LINEAR SYSTEM THEORY

Gunnar Bengtsson

ABSTRACT

Abstract algebraic concepts appearing in the geometric state
space theory are transformed to a computable form. Two basic
algorithms consisting of a gaussian procedure and a rearrange=—
ment of matrix elements are used. Algebraig expréssmons and
sequences are broken down inte elementary steps in which these
two algorithms can be applied. In this way computational
algorithms are obtained for (A,B)-invariant subspaces, caon-
trollability subspaces, system zeros and_minimql system inverses.
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1. INTRODUCTION,

The control theory for linear multiwvariable systems has
during the last few years developed from a mainly matrix-
based theory towards a more general algebraic theorxy [5,
8,12}, Practical use of this theory must be based upon
computer-aided design techniques [1,4,9] which permit

the designer to utilize the results from theory without
knowing the whole algebraic background. Such techniques
require fast and accurate algorithms. The algorithmic aspect
of the theory is therefore important in practice.

.The geometric state space theory, based upon linear maps and

vector spaces, was introduced by Wonham and Morse {6,11].
This theory has later been used to develop a rather extensive
theory for linear systems {2,3,6,?,10—fg§ . The results are,
however, not always given on a form which directly can be
used for computations. A rather typical problem is to eval-

~uate a seguence of the form

UO = Ker(C)
(1L.1)

vV =y, na"t

ir1 T Yy Vy + B8)

where Vi,B denote subspaces; © and A and C linear maps. The
purpose of this report is to transform such seguences into
a sultable computable form.

‘A linear subspace will be represented by a basis on a

certain form, deroted unity form. The advantage of this ve-
presentation is that the'previous computations in a seqg-
vential procedure like (1.1) can be ussed to minimize the
amount of computation in the next step. Moreover, such
problems as orthogonalization, solving linear equations and
taking inverses become only a matter of rearrangement of
matrix elements.
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Two basic algoritms are used in the report. The transformat-
tion algoritm (TA) computes a unity basis for a given set of
vectors and solves simultaneously a linear equation using a
gaugsian procedure. The orthogonalization algoritm (OA) con-
putes a unity basis for the orthogonal complement of a given
subspace. All the algebraic expressions and saguences are
broken down into elementary steps where these two algoritlmms.
¢an beg applied. In this way computational algorithms are ob-
tained for invariant subspaces, controllability subspaces,
system zeros and minimal system inverses.

The repoit is organized as follows. In Section 1 some notations
are given. Two basic algorithms are presented in Section 2. The
coneept of (A,B)-invariant subspaces is treated in Section. 3.
Controllability subspaces are the topic of Section 4.

Finally, in Sections 5 and 6, computational algorithms

are given for system zeros and minimal inverses

Notations .

The reader is assumed to be familiar with the notations used
in [12]. An additional set of notations and symbols are used
here to simplify the treatment of matrices and matrix forms.

Let R be a matrix with dimension n,xe'm, . Then Rij' Rey and
Ri‘ are the (i,3):th element, the i:th column and the i:th
row respectively in R. Let Q be another matrix with dimen-
sion n,x m2"If n=n,, the matrix R * Q is defined as the
block matrix [R Ql. Analogously, if my =1, , the matrix

R A Q is defined as the block matrix R]. By & the left

operand is assigned the evaluated valu® of the right oper-

ands, e.g. ¥ a ©/s. .

A n x m matrix V ofi the form




0 ... 80 - oW il
01 ....0 40 - row i2

::::><:::; | (1.2)

0 0 ... 01 - TOW lm

where the crosses indicate arbitrary real values, is said
to be on unity form. A set of vectors which have the same
form as the columns of (1.2} is said to be a unity basis.

For a matrix V on unity form, a gtructure vector &(V) is

introduced as 6(V) = [:'L_.L 12 . im] where ik equals the row
number for the position of "1" in column k, cf. (1.2). The
columns in V (1.2) may be permuted.

Matrices are used as representatives of subspaces in the
sense that the subspace is assumed to be spanned by the

column vectors. By a basis matrix we then mean a matrilx

whose columns are linearly independent. Note that a matrix on
unity form is always a basis matrix.

Remark: The following evaluation rules for the symbols
* and A follow directly from the definitions

1]

A(R * Q) AR * AQ

it

(R A Q)B RB A BB
and in subspace notation
Im(R * Q) = Im(R) + Im(Q)

Ker(R A Q) = Ker(R) n Ker(Q)

Example 1. The matrix V = (A{R * Q)a (8 * T))}* D is the




-he block matrix

AR AQ
s T

v/

BASIC ALGORITHMS.

ﬁonly two basic algorithms are needed to evaluate the algebraic
~expression considered below. The first algorithm, the Trans-
 formation Algoritm (TA), computes a unity basis for a given
set of vectors ard solves simultaneocusly a linear equation.
'The second algorithm, the Orthogonalization Algoritm {QAY,
.computes a unity basis for the orthogonal complement of a
given subspace. The latter subspace is assumed to be described
by a unity basis,The only operation of this algorithm is re-
arrangements of matrix elements. Since no other algorithms

are used, this means that all the numerical inaccuracies are
tied to one single algorithm,namely TA.

The Transformation Algorithm.

Let Q be an n x m matrix of the form
Q =N, * R (2.1)

where the submatrix NO is given on unity form with structure
5(Nﬁ)’ The purpose is to find a unity basis for Im(Q). The
known internal structure of @ should thereby be used. If N
denotes this basis, there exists a nonsingular mxm matrix

P so that '

QP = {NO #* R)P = N % 0 ' (2.2)

where 0 denotes a zero matrix of suitable dimension, Let Y
be a given pxm matrix and consider the linear eqguation




which shall be solved for X,

Theorem 1. There exists a solution X to the equation (2.3)
if and only if

(YP).; = 0_ i € [s+1l,...,;m]} (2.4)

where s is the number of columns in N and P is defined by
{2.2): Moreover, if solutions exist, one is given by

X’é(N). = (YP).J :i £ [1,2,..-,?]_ !
{2.5)

J
X‘k = elsewhere

Proof. Consider the eguation (2.3) and multiply from right by
P, i.e.

QP = X{N * 0) = XN * ¢ = ¥YP (2.6}

It follows dirctly that the last .
m~s columns of YP must be zero, i.e. (2.4) is a necessary

condition for a solution to exist. Sufficiency is shown by
construction. Consider X defined by (2.5). It follows that

n 2
XNY,. = ¥ X,.N,. = I X. N .
(XM gy = = B T E Kiean Nean

Since M is on unity form it follows from the definition of
& (N) that

0 r#j
Ysani3 T o1 r=3
Thus
(XN)ij = Xié(N) .Kl = (YP)ij i € {l,u--fp] jE [1;.-;;5]
3

Sinece the last m~s columns in YP are zero, and P is nonsingular,
X must be a solution to (2.3). o




Remark: One use of the structure vector §(-) is illustrated
by this theorem. '
Consider now an algorithm which_given Q = NO * R, 6(N0) and
Y produces N, &§(N) and 2 = ¥P, Such an algorithm computes a
unity basis for Im{Q) and solves the linear equation (2.3)
by Theorem l. Moreover, the computations can be made simul-
taneousgly according to the folloWing algorithm. By initiali-
zation, let & denote a generalized structure vector for
defined by

6 = 6(N0)* 60 6 = [-1 -1 ... -1]

where the negative values indicate the columns that are not
on unity form. By use of §, it is not necessary that the
gsubnatrix Ny appears as in{2.1). The columns of N, and R may
be permuted.

o

1 Set 6j=0 for all columns Q.j that are zero. Normalize

~1 80 that

it

all columns Q'j for which aj

Q-j & Q-:}/iiQ-jH . Y.j 4 Y-J/ithjEf

2  Zero the rows é(No)i, i.e. perform for all columns
Q. for which 6j=-lr

Q.. a Q.. - r Q
3 3 8,>0 6y3
You &4 Y., - b3 Q AN
J Ios 50 O3 K

The .iaitialization of the algorithm is thereby concluded.

3° Find the maximal element (is,js) in all the columns Q‘j

for which éj=~1. If the maximal element is zero or if
6 is nonnegative, then go to 5°. Otherwize set

b i . - : Y.. X, ., y
& ig Q i a Q JS/Q1%3$ 5, JS[QJSJS




4 Zero the row is, i.e. perform for all j=l=j_S

Q--AQ.:"Q -Qar Y--AY.-"'Q- -Y;c
1g37 Jg 3 J igd" '3

Set 6j=0 for all columns that are zero. Go to 3°,
5 Permute the elements ofi § so that the s positive numbers

are situated in the first s positions in ascending order.

Perform the same permutations on the columns of ¥ and Q.

Then

N = 5 first columns of ¢

7 o= Y

&§(N) = 8 first elements of §

Remark: The following tests of zero have turned out to be
favourable. In step 1° first test if R in (2.1) is zero
by computing

max [iQ..li=1r < ¢
5.==1 7
3

If R is zero go directly to step 5°. The column Q.j is con~-
sidered to be zero if

1

iiQ«jli/r < 8,

in step 2° and 3° use absclute test of zero by
IiQ'jEQ < e,

Note that the columns of Q are initially normalize (step 1%).

The known internal étructure of Q0 (2.1} is utilized by the
algorithm. The columns of NO are taken as the first gembers
of the basis. The remaining vectors are computed from R. In
this way 6(N0} is used to minimize the amount of computation.




this is of special importance in the sequential procedures
described below.

The outcome of the Transformation Algorithm is written
formally as

(N,Z) = TA(Q,Y) (2.7)

where use of internal structure in ¢ is assumed.

The Orthogonalization Algorithm.

Let V be an m-dimensional subspace of r" with basis matrix V.

The purpeose is to find a suitable basis for Vl. If V is given

on unity form this is a simple problem. In fact, a unity basis
for v is obtained by rearranging the elements of V using

the structure vector §(V},

Assume that V is on unity form. The Orthogonalization Algorithm
goes as follows.

1° set 8(V) = [rl x,
set of integers € [1,2, ..., nl which are not elements

voo ¥l and let dy,d,, .0 i g be the
of 6(V). Arrange thgse integers so that ik < ik+l‘

2 Form a n * (n-m) matrix B and an (n-m)-vector 5(B} &as

5(B) = Iil o < 'n_m]
f v s
By . ={l =k 5,k € [1,2,...,n-m]
K 0 4%k
B, . = -V

rkj ijrk j E [1,2,...,.‘(1"111] ke [1,2,...,1‘&]




©

L
57 A basis matrix on unity form for V is given by B

with structure §(B).

The algorithm is best illustrated by an example.

Example 2. Let V be a basis matrix for ¥ where

'F&1 Oy Oy

v |1 0 o
ay a5_ P
ay oy g
0 1 0
%10 %11 %42
0 0 1

Then V is on unity form with &(V) = [2 5 71. Applying OA
to V we get

~ -
10 0 0
B = | "% T¥ "%y -&,
0O 1 o o
0 0 1 o
TOy Oy t0g -l
0 0 0 1
Ty TUg T8y <Oy,
- -t
8B) = [ 3 4 6]

It is immediately verified by taklng scalar products that
B is a basis matrix for Vi, L=

Note the important fact that only rearrangements of matrix
elements are performed in OA. No numerical inaccuracies are
thus introduced. The outcome of OA is written formally as




10

B = OA{V) _ {2.8)
where V must be on unity form. If V is spanned by the columns
of V which is not on unity form, then a basis for the orthog~
onal complement is obtained in two steps by

(Qf.r‘) = TA(V,+)}

B = OA(V)

where all the numerical inaccuracies are tied to TA.

3. INVARIANT SUBSPACES

n n m n
Let A:R - R and B:R" - R” be two linear maps. A subspace
Vo R is by definition (A,B)-invariant [11] if there exists
a linear map F:R® » R™ so that

(A + BF)V < V _ (3.1}

A necessary and sufficient condition for such a linear map
to exist is [11]

AV <« V 4B (3.2)
Generally, if V is (A,B)-invariant there are many lineax
maps F satisfying (3.1). Denote the class of all such F

by -E:'(U)' ioea

F(V) = {F | (A+BF)V < V} - . {3.3)
Let V <R® be a given subspace spanned by the columns of V.
Consider the following algorithm which simultaneously tests
(3.2), computes a map F that satisfies (3.1) and computes the

restriction (A+BF)IV.

1° perform (G,*) = TA(V,*).and let ¥ and m be the number of
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éoiumns in V and B respectively.

Perform (8,Y) = TA((VEB)T, (a&V)') and let s be the number

of columns in S.

3 Define a (r+m}xr matrix X by

o (941 T Vi3 i€ [1e00s2] 3 € [Lresess]

X L=0 elsewhere

and partition the matrix ¥ as X = Xy A X, where Xl is
rxr and X2 is mxy,

We have

(a} Condition (3.2) is satisfied if and only if Y.j =)
for j € [s+1,...,x+m]
{b) A mxn matrix F in F(V) is given by

2l 0: 9% I 1€ {l,...m} je {l,...,r]

Fi6 (%) 2749

j
0

Fik = elgewhere

(¢) The restriction of (A+BF) to V is giwven by (A+BF) |V =

X

The wvalidity of the algorithm is verified in the following
way. Tlrst note that V produced in step 1° is a basis matrix
on unity form for V. In step 2% and 3° the equation

~

AV = (V * B)X

iz solved, cf. Theorem 1. A solution to this eguation exists
if and only if (3.2) is true. Theorem 1 then verifies assertion
(a) in step 4°, Moreover, by the partition of X in step ao

~

AV = {V * B)(Xl A X2) = VXl + BX2 (3.4)
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Using Theorem 1 once more, it follows that F is a solution
to the equation FV ==X, since V is on unity form. A substi-
tution into (3.4) yields )

(A + BF)V = ?le

which shows that the assertions (b) and (¢) hold.

Note that all the computations are made in the first two
steps where TA is applied. In the following steps rearr-
angement of matrix elements are performed by means of the
structure vectors 5(8) and 5(%) which are produced by TA.

Maximal Invariant Subspaces.

Let ¢ be a givem subspace of g%, There is a unigue maximal
(A,B)-invariant subspace, VM, contained in U. The subspace
UM is produced by the following seguence [11]

UO = 7
(3.5}
_ -1
Ui = Ui”l A A (Ui_l + B}
. , . _ M.
If & is the least integer sugh that Ua = Va+l’ then V9= Vq'

Moreover, the sequence converges in at most dim(P) steps.
To obtain a form where TA and OA can be applied, take the
orthogonal complement of the seguence (3.5):

L
VO = D
L (3.6)
= y- Ty - L
1TV P AW, B

A tramslation of this sequence to a computational form is
made in the following algorithm.

1° Initialize by setting
TA(DJ‘ *)

OA(VO)
(Poi’) = TA(VO*BI'}

<

Lo
0D ~
I 0
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RO = OA(PO)

2 In step i compute

- . T i
(Sir‘) = TA(Si""]_* A Ri_ll‘)
Vi = OA(Si)
(Pit') = TA(Vi*BI’)
Ri = OA(Vi)

1f the number of columns in V, and V,_, are the same
set g =i, otherwlse:set iti+l and go to 2°.

3° V, 1s a basis matrix on unity form for U¥

To show the equivalence between the algorithm and the

sequence, use the facts that Vi'si’Pi and Ri are basis

matrices for Ui' V+

i V; + B and v, + B)lrespectively.

The advantage of using a procedure  like TA in this context
L

i~-1
by a unity basis S, ,, the internal structure &({S; ;) can be

is well illustrated by this algorithm. Since ¥ is described

utilized so that only some additional vectowms:from a basis
L
Vs

of AT(Ui + B)Lare taken in order to form a basis Si for
cf. step 2°. The same argument appljies to the computation

of Ui + B . In this way the amount of computation, and thereby
also the numerical inaccuracies, are decreased.

4, CONTROLLABILITY SUBSPACES.

Let A:R™ » R” and B:R™ = R™ be a pair of linear maps. A sub-
space R of R" is a controllability subspace [11] if

R={A+BF | BN R)Y=BAR + (A+BF) (BNR) + 5. + (a+BF)D %BAR) (4.1°

for some linear map F:R" » 8™, It can be shown [12] that R is
a controllability subspace if and only if the following two

conditions are satisfied




14

(i} R is (A,B)~invariant
(4.2}

(ii1) R = {A + BF| B n R} where F € F(p)

In order to use (4.2) we must generate the controllable sub-
space for a given pair (A,B). This is done in a sequential
way in the following algorithm.

Set BO = B and (SO,-) = TA(BO,-)

In step 1 perform Bi e ABi_l and (Si") = TA(Sinl*Bi")‘
If the number of columns in $;.1 and S, are the same set
a = i and go: to 3°, Otherwize set ia i+l and go to 2°,

3% a unity basis for {A|g} is given by Sa'

The reason why TA is not directly applied to the controlla-
bility matrix [B AB .:. A" 'B] is that the latter matrix may
require an excessive storage if m and n are large. For instan-
ce, if n=20 and m=5, which is rather moderate for a lagge sys-
tem, the storage requirement isrdik words for the controlla-
bility matrix only. This disadvantage is avoided by the seqg-
uential procedure of the algorithm.

The condition (4.2} for controllability subspaces can now
be tegted. Let R = Im(R).

1°  Testiif R is (A,B)~-invariant by using the first algorithm
in section 3. If so0, compute an F € F(R) by the same al-
goxithm. If R is not (A,B)-~invariant set g=-1 and go
° :
to 47,

2° Compute a unity basis for B {1 R by utilizing B n R=
(B4 rEyL

(M,*} = TA(B,-)
S = OCA(M)
(N, ) = TA(R, )}
V = OA(N)

i

(T, ) = TA(V&S )
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Q = OA(T)
Then @ is a basis matrix on unity form for BnR.

Compute a basis matrix Z for the rontrollable subspace
for the pair (A+BF,Q) by applying the first algorithm
in section 4. If the number of columns in 2 and N are
equal set =1 , otherwize g=-1. Go to 40.

4° g is a controllability subspace if and only if o=1.

M

A maximal ‘controllability subspace R contained in a given

subspace P is given by [ 11]

A

=({A+BF§{ Bqp Iy ' (4.3)
where UMis the maximal (A,B)-invariant subspace contained

in 9 and F § E(U?}. The computation of V™ and F is described
in section 3. A basis matrix B for anncan be computed as is
indicated in step 2° above. The maximal controllability sub~
space is then obtained as the controllable subspace for the
pair (A+BF,B).

5. S8YSTEM ZEROQS.

Consider a linear timeinvariant system S(A,B,C), i.e.

%X = AX + Bu y = Cx

A set of complex numbers, the system zeros, can be defined
using the concepts discussed in the preceding sections 2,3
Since the system zeros contain much information about the
system and its properties, they are most valuable at a design

stage.

Let UM and RM be the maximal (A,B)-invariant and controllability
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respectively contained in Ker (C). Introduce the following

polynomials
M
dv(s} = ch.p. for (A+BF)I|V
(5.3)
; M
dr(s) = ch.p. for (A+BF)IR

, M 3
where F € F(V ). Since UM: RM'by the maximal property of
o) :
vV, it follows that dr(s) divides dvfs). Another polynomial

dz(s) ig then defined as their goutient,i.e.
dz(s) = dV(S)/dr(S) (5.2)

The zeros of the polynomial dz(s) are defined as the system
zeros for the system S8(A,8,C) [2,3,7 1. The system zeros can
be computed straightforwardly by using the algorithms des~
cribed in the preceding sections. It may, however, be favour-
able to perform the computations for the maps restricted to
UM since smaller dimension will be involved. In order to ex-
plain thls more directly, let B VM and Rg be basis matrices

for B fi U, UM and K respect1Ve1y. Then L0

] M
(& + BE)Y = VA (5.3)

where A is a matrix representation of (A+BF)§VM; Moreover,
let B be a solution of

iy M-
B =VTHB {(5.4)

A solution exists since BM is a basis matrix for BnV™. The
subspace R lS equai to the controllable subspace for the
rair (A+BF, B ), cf. (4.3). The controllability matrix Q for
this paix becomes using (5.3) and (5.4)

M M M -
o) B % (A+BF) B *... *(A+BP)" 1M

i

M - — JR
= V' (Bx AB* .....* A0T1E)

M o~ e ]
ABx .... * AT1E)

where r=aim(/7). Thusg
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where R is a basis matrix for R ={A|B}. This aleo means
that

it
=1
PRl

(A + BF)[R

The polynomial dz(s) then eqguals the guotient of the ch.p.
for A and ﬁ%ﬁ, i.e. the system zercs are the uncontrollable

modes for the pair (A,B).

The system zeros algorithm then goes as follows.

1° compute a unity basis B for Ker(C) by

T
(8;+) = TR{(C,.)
D = QA(S)
2° Compute the subspade VMusing the second algorithy in
section 3. )
3° Compute A = (A+BF):Wﬁusing the first algorithm in section
3.
4° Compute a basis B for Bndﬁusing step 2° in the second

algorithm in section 4. Set the rxd matrix B, where r=
dain() and d= aim{BaM), as

.

B,. = (M

i:} M) i€ {l,...,r} je [lpnc-,dE‘

5 (v 3

5° Compute a basis matrix R on unity form for the controllable
subspace of the pair (A,B) using the first algorithm in
section 4. Let R = OA(R). Define a %x% matrix Az’ where
r is the number of columns in R,by

(B,) 44 =z§.ﬁ>ia(§)j 103 €L1,00e /7] (5.5)

6° The eigenvalues of A are then the system zeros for
5(a,B,C)
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The only step that may need further explanation is step 5°,
In order to compute the uncontrollable modes for the pair
(5,B), & similarity transformation T YAT can be made with

ES

T = R * 5§ , where

~

Ss(r) 17t 1€ {1,...,r]

Sy = 0 - elsewhere

It is eastly verfied that RS = I. Now, the inverse of T exists
and has the form

1 = x A RY

for some matrix X. The similarity transformation of A then
yields '

o
1

2

- “ e & AP 7
where Az =R¢AS. The evaluation of {(RA)S is the same as (5.5)
because 0f the special simple structure of S.

In- the system zero algorithm, the computations haye been broken
down into a number of elementary steps. In each of these steps
maximal use is made of known internal structure. In fact, the
algorithm has turned out to be fast and accurate, Note that
this algorithm computes the invariant factor of lowest

degree for a proper transfer function matrix. In this case

the computation is based upon a minimal realization triple
(A,B,C). The compﬁfation of invariant factors can thus be

done without using transformations to Smath- MacMillan or
Smith canonical forms. |
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6. INVERSE SYSTEMS,.

System inverse of minimal dynamical order are thouroghly
treated in [2,3} ..An abbreviated version of the results are
given below as a basis for a computational algorithm. Only
the construction of minimal left inverses will be considered.
A minimal right inverse is obtained using the duality, i.e.
by computing a minimal left inverse for the dual system.

Consider the system S(A,B,C), i.e.

X = Ax + Bu x(0}) =0
(6.1)

y = Cx
where x €1B%; u € R™ and y € RP and A,B and ¢ are linear maps
between thé appropriate vector spaces., Let VMbe the maximal
(A,B)~invariant subspace contained in Ker(C). By the left
invertibility condition, B{W''=0 cf. [121, it follows that R®
can be factorized into independent subspace as

RE=x 08 6V (6.2)

where f is any extension space. Transform the systém {6.1}
by applying a state feedback and a change of basis for the
state space as

u=¥Frx 4 uo

where F ¢ E(UM). The matrix T is giveh by

3

T =X B =

where ﬁ, B and v are basis matrices for X, B. .and UMrespectively.
The transformed system has the.following block structure
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"Zq _ A ¢ Zq . B
. = . Uy
Z 4 X Al j= 0
y =1I¢ ol zy
{6.5)
2
u =[F Fl zy|+ u,
2]
There exists a polynomial matrix N(p) [2] such that
N(ply = 2y p = d/dt (6.6)

il.e. z, can be reconstructed from the output without any
knowledge of the input Ug . A minimal left inverse is then
directly obtained as '

*

W ﬁw + Ki{ply

X {6.7a}
u =Fy + M{p)y
where
K(p) = En(p)
M(p) = (F + B (pI ~ A))N(p) (6.7b)

The essential computational steps are the construction of
UM and N(p). The subspace vM is obtained using the second
algorithm in section 3. A polynomial matrix N{p) satisfying
(6.6) can be computed by a sequence. -Letf-Ri be a set of

linear maps satisfying

(6.8)

x

..._l_
= Ker(Ri) + CA B
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Ker(Ry) = CB + CAB + ... + gal~iz

2t ¢ be the [irst integer such that Ker(Ra) = RP. Then by
successive differentiation of the output in (6.5)

. i :
Riy(l} = R;CA 24 i€ [0,1,...,0=1]}
Hende
Riply = Qzy
where

a-1 i o-1 —
R{p) = & R;p Q= a R,CA

By the special properties of 3, B and C , cf. [2] , it is
not difficult to show that ¢ has a left inverse Q. Thus

N(p) = QR(p)
The Minimal Left Inverse Algorithm goes as follows.

1° Compute a unity basis vWeith structure 6(VM) ﬁer.UMusing
*
the second algorithm in section 3. Let r=dim{V ).

2 Parforin (8,0} = TA(B*VM, Ir+m)' Let s be the number of
columnsg in S.57The system is left invertible if and only
ifg=m+r.

3” Choose an extension basis X using the structure vector
a5 . = Z |1\‘= ’
85(8) as ¥ th o e Kn—s} where Xy [0...0 1.0,..0]
and the vosition ik of "1" is such that ik ¢ 6(8). Note
that the number of rows in 8 which doesn,t contain "1"
is ewactly n~g, ci. {1.2)
4% so

St P = block diag(In_S,,Q) and perform (-, i ) = TA(
-~ M '_,l A .

% %5, . Then ¢ =T L = (x * B * vH~L,




Compute
TAT = All A12 0 -5 TR =
Bay By By ®
R3p Ry Ba3| T
cr = [¢; ¢, 0]
n-s m r
Then with the same notations as in {6.7)
A = Ay Ay, A= (Ay; Ayl B = Ay,
Ry Ba2
F =0 F == A B = [0
I
C =1(c; ¢,
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Compute recursively the maps R, by seétting Cy = c, RG = I,

PO = 0 and HD-':I and (SQ,QO} = TA(C{} R HO) and
¢ = B .
(Pyqre) TA(P,*C,B,.)
T
Ri+l - QA(Pi+1)
H;,; = block diag(Q,,I. ) ry,,= no. in Ry
i+l

Cipp = G428
(S...s Q,,,) = TA(S,*Co_ .RY _,H,, .)

i+l 7141 A S R 1R M K A

Proceed the recursive calculations until in one step «

the number of coliumns in Sa eguals n-¥. Then é =

and RO""’

Ra are computed

T
o

The minimal left inverse is obtained by substitution

into (6.7).




The validity of the algorithm can be shown in a similar
way as has been done in the preceding sections, by inter-
preting the operations of the basic algorithms TA and Oa,

7 . EXAMPLES

The computer programs that ‘Have been developed from the
results of this paper will be described in a separate
report. To indicate the computing time involved and the
accuracy that can be achieved, let us compute the systen
zeros for a physical system, a drum boiler. '

Different types of models for a drum boiler are thoroughly
described in [16]. Here we will use a fifth order model
from[17}. The linearized equations for a drum boiler
around a certain operating'point can be written as

x = Ax + Bu + Gv
where the state variables are

X, = drum pressure (bar)

Xy = drum level {m)

x., = drum liguid temperature (OC)
X, = riser wall temperature (OC)

e = steam quality (%)

The control variakles are

o
it

heat flow to the risers (kJ/s)

feedwater flow (kg/s)

[
i

and the disturbances are

v = load changes (har)

23
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Numerical values for 3,B,C and G for a power station
boiler with a maximum steam flow of about 350t¢h are
calculated in [17]. The drum pressure is 140 bar and
the operating point is 920% full load. From [137lwe have

-

~0.129 0.000 0.396x10"> 0.250x107% ©0.191x10"
0.326x1072 0.000 -0.779x10"% 0.122x1073 -0.621
A = 0.718x10"% 0.000 -0.100 0.887x107° -0.385x10%
0.411x107% 0.000 0.000 ~0.822x10""  0.000
| 0.361x1077 0,000 0.350x207% 0.426x107% -0.743x107}
[ 0.000 6.139x1072] [ 0.995¢107"
0.000 0.359x10 % ~0.318x10" %]
B = 0.000 -0.989x10 2 G = |-0.232x107%
0.249x10”% 0.000 0.000
| 0.000 ~0.534x107° | | -0.381x207" ]

For different choices of output signals different sets

of system zeros are obtained. If vy = Lxl x2] are considered
as output signals and u as input signal, the system zeros
are computed to be

Z = {-0.06u467, -0.36802}

and if y = [Xl x2 x3} are considered as oufput-signals,
the system zeros 'become

Z = ¢ (empty space)

The computation time in this example is 34 ms on a UNIVAC
1108 computer. The accuracy of the computations can be
estimated by comparing with the computations for the corre-
sponding dual system{ the dual system has the same system
zeros as the original system). The computation in this
example turns out to be correct up to 8§ digits (single pre-

cision is used in the programs).

1

1
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