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Preface

Most industrial processes have saturations and other nonlinearities and con-
straints which make control more difficult. When the controllers have inte-
grators the nonlinearities may give a severe deterioration of the performance.
Some of the constraints are almost unique for certain processes and require
special solutions. However, saturations are always present and then general
solutions can be applied.

My interest for these nonlinearities and the methods for protecting con-
trollers and processes from their negative effects grew substantially during the
work with my licentiate thesis. As one part of that work a full-scale control
system was implemented at the Kidppala Sewage Works, Lidingd, Sweden.
A large part of the work at Kappala dealt with process nonlinearities and
constraints. Then my research gradually specialized on anti-reset windup (or
anti-windup for short) in control systems with saturations. One reason was
that the saturation is a common nonlinearity while many of the constraints
at Kdppala are more special.

A great deal of papers and reports have been written on anti-windup.
They mostly consider anti-windup in the context of set point changes. In
some cases disturbances give highly undesirable responses in cases where the
responses for set point changes are satisfactory. One such case was discovered
during laboratory experiments for undergraduates at the department. Using
disturbances it is possible to derive design rules for anti-windup. In the
thesis this has been done for two anti-windup methods for PID controllers.
For one of the methods, which is in common use, the design. rule gives good
performance both for set point changes and disturbances. ‘

One usual comment about anti-windup in PID controllers is that it is
an already solved problem. This thesis, however, shows that some of the
well-known solutions may give deteriorated performance in experiments with
disturbances. The reason is simply that the closed-loop system is nonlinear.
Any input signal or initial condition that has not been considered may give
poor performance. This also holds for the design rules in this thesis, but
they are of more general nature than design rules which are based only on
set point changes. The analysis has also added more insight into the anti-
windup problem.
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Introduction

This thesis is devoted to some of the problems arising in control systems
when actuator nonlinearities interfere with the linear control. Saturations,
i.e., constraints in magnitude and rate of the actuator are ¢ommon actuator
nonlinearities. An example is a control valve which ranges from closed to
fully opened and also has a limited rate of change. Large command signals
and disturbances require large control signals, which then may be outside the
allowed range or change too fast for the actuator. Other common actuator
nonlinearities are, e.g., backlash and hysteresis. - -

Consequences of these nonlinearities are controller windup, instability,
and limit cycles. In general, windup denotes an undesirable transient in the
process output caused by, e.g., saturation when a controller with integrators
is used. Open-loop unstable controllers, phase-retarding controllers and other
controllers with slow stable modes give similar problems. In case of instability
or limit cycles the process output grows towards infinity or some boundary,
e.g., a full or empty tank, or it oscillates with a constant nonzero amplitude.
Anti-windup (or anti-reset windup) denotes precautions in the controller to
protect it from winding up.

This thesis focuses on proportional-integral-derivative (PID) controllers
and their anti-windup. The reason for specializing on PID controllers is that
they are (still) the most common controllers. E.g., in Japan more than 90%
of the installed controllers are PID controllers. Further, all aspects of anti-
windup in PID controllers are not yet fully understood. Usually, the anti-
windup is tuned or derived to handle set-point changes. In this thesis PID
anti-windup will be treated for disturbances, e.g., measurement noise and load
disturbances. In general, anti-windup which is well tuned for disturbances




Chapter 1 Introduction

will also give good set-point performance, while disturbance performance may
be very bad when anti-windup is tuned for set-point changes. Many of the
PID anti-windup methods can be used also for general controllers.

In most plants there are not only single-loop controllers and saturations.
Cascaded control loops are frequently used. Feedforward and multiple-input
multiple-output controllers are also used. Other constraints than saturations,
e.g., maximum or minimum values of states or measurements are common.
These issues are not covered in this work. The author has, however, in earlier
work, see, e.g., Rundqwist (1986) and Rundqwist (1988), dealt with windup
problems in cascaded control loops where the master controller is a self-tuning
controller with integral action. In this control loop the saturation limits for
the master controller are unknown until some of the actuators (control valves)
are saturated. During special conditions (start of a compressor) it is necessary
to deliberately introduce windup in the controller, otherwise a severe pressure
rise would be obtained. Other plant constraints also had to be considered.

This thesis covers the following topics: A survey over different meth-
ods of handling control systems with saturations is given in Chapter 2. The
survey includes a classification and unification of many published methods.
In Chapter 3 some anti-windup methods for PID controllers are examined
and design rules are derived. In Chapter 4 the anti-windup methods and de-
sign rules for PID anti-windup are examined in simulatioiis' and experiments.
Conclusions and suggestions for future work are given in Chapter 5. Prelim-
inary results regarding design rules and evaluation of anti-windup have been
reported in Rundqwist (1990).

The main results in the thesis are design rules for anti-windup methods
for PID controllers. It is clearly demonstrated that the responses to mea-
surement noise and impulse disturbances to the process are sensitive to the
choice of anti-windup parameters. Responses to set-point changes and load
disturbances are much less sensitive and, most important, they are well be-
haved when anti-windup is well chosen with respect to measurement noise
and impulse disturbances.

10




Anti-Windup Methods
— A Survey

This chapter contains a survey and classification of methods and results re-
garding control systems with saturations, where many published methods
are unified. One class of anti-windup methods is evaluated, using a simple
example. There is a bias towards PID controllers in this chapter, although
the surveyed anti-windup methods are not limited to PID controllers. Gen-
eral controllers, which are designed to handle saturations, are also briefly
discussed. :

2.1 Classification of Anti-Windup Methods

A common way to design a controller is to neglect actuator nonlinearities
and design a controller based on a linear model, typically with specifications
on stability, performance and robustness. To ensure a correct stationary out-
put from the process the controller often contains integrators. In other cases
unstable controllers result from the design procedure. This is the case when
the desired closed-loop bandwidth is significantly higher than the open-loop
bandwidth, see Lilja (1989), or significantly lower, Sternby (1990). Another
case is a controller where an unstable mode attempts to capture an exponen-
tially increasing demand in the control signal, see Axelsson (1989). In reality
nonlinearities are always present and they must be accounted for.

The first class of anti-windup methods presumes a given linear controller.
When the actuator saturates the feedback path is broken. Integrators and

11




Chapter 2 Anti- Windup Methods — A Survey

unstable modes must then be prevented from growing too large. Slow stable
modes, e.g., in lag controllers, also grow large during saturation and thus also
need to be limited. This can be done by a modification of the controller which
is active only during saturation. These anti-windup methods are classified
as modified realizations of linear controllers. The term modified realization
includes a number of ad hoc methods which are added to a linear controller
in order to cope with actuator linearities. Anti-windup methods for PID
controllers are among these methods. The purposes of these methods are
to both stabilize the controller and to give the controller states, e.g., an
integrator, good values during saturation.

Another approach to controller design is to include the actuator non-
linearity already at the design stage and the result is denoted nonlinearly
designed controllers. This covers both linear and nonlinear controllers. Con-
trollers based on mathematical programming are also included in this class.

Some of the nonlinear design and modified realization methods are also
available for controllers for multiple-input multiple-output systems.

Discussion

The issues of stability, performance, and robustness are equally important
for control systems with constraints. In case of a satiration nonlinearity
sufficiently small inputs and initial values keep the process and controller in
the linear region where the closed-loop system is stable by design. Thus the
control system has a stability region. By either a nonlinear design method
or a modified realization it may be possible to extend the stability reglon
Sometimes the region can be extended to the whole state” space

The nonlinear design methods and the modified realizations must result
in satisfactory performance. Usually only command signal performance is
considered, while performance for disturbances is neglected. Noise distur-
bances causing controller saturation may result in a poor performance while
command signal performance is satisfactory.

The term saturation is well-known and widely used to describe that a
control signal exceeds actuator limits. In this work the term desaturation
is used to describe that the control signal has ceased to exceed to these
limits. The term resaturation is used to describe that saturation occurs after
desaturation during the same transient.

The following sections in this chapter give a survey of anti-windup meth-
ods based on modified realizations (Sections 2.2-2.5), and nonlinearly de-
signed controllers (Section 2.6). Analysis, discussions and examples are given.
In Section 2.7 some analysis methods for nonlinear systems, the describing
function method and circle criteria, are briefly recapitulated. These methods
are later used for analysis of anti-windup problems.

12




2.2 Modified Controller Realizations

2.2 Modified Controller Realizations

In this section a number of modified controller realizations will be classified.
Most of them originate from PID controllers and are often called anti-windup
methods. Thus much of the discussion will focus on the integrator in a PID
controller. Therefore PID controllers are briefly recapitulated. For a detailed
discussion of PID control, see Astrém and Higglund (1988).

A simple textbook PID controller is

V(s) = K(1 + % + %)E(s) (2.1)

where K is the controller gain, T; and Ty are the integral and derivative
times respectively, N is a filter factor, V is the control signal and E is the
control error. The actuator nonlinearity, e.g., a saturation, is part of the
process. Usually a saturation is included also in the controller, such that
only a saturated control signal is the input to the actuator. The saturation
limits in the controller must then agree well with corresponding limits in the
actuator. The saturated control signal is

u(t) = sat(v(t)) T (2.2)
where the unit gain saturation function is given by

Umax 1L U > Umax ;
Sa‘t(u) =43 u if Umin <% < Umax - k (23)

Umin ifu < Umin

and where umayx and umin are upper and lower controller limits respectively.
Besides limiting the control output with a saturation, it is also common to
limit the derivative part or limit the rate of change of the control signal.

Classification of Modified Realization Methods

The modified realization methods intend to prevent controller states from
growing large during saturation, and, in some cases, to give the controller
states good values. One approach, used in conditional integration methods,
is to switch off integration at certain conditions. Another approach is to
use feedback from the control signal and the saturated control signal, such
that the difference between the signals drives the control signal to a good
value. This approach has similarities with state observers and is denoted
the observer approach. In a third approach the controller input is limited
in order to avoid growing controller states. These three groups of modified
realizations will be discussed in more detail in the following sections.

13




Chapter 2 Anti- Windup Methods — A Survey

2.3 Conditional Integration Methods

The purpose of an integrator is to remove steady-state errors in the process
output. A simple approach to avoid integrator windup is to switch off inte-
gration when the controller is far from steady-state. Five basic methods for
switching off integration will be discussed. :

C1 Stop integrating when the control error is large, i.e., when |e(t)| > eo.
C2 Stop integrating when the controller saturates, i.e., when u # v in (2.2).

C3 Stop integrating when the controller saturates (as in C2) and the control
error e has the same sign as the control signal v.

C4 Limit the integrator ¢ such that, e.g., [¢(t)| < 7o.

C5 Stop integrating and assign a predetermined or computed value to the
integrator when a specified condition is true.

Methods C4-C5 are classes of methods while C1-C3 are exact descriptions.
The methods are characterized by an if ... then ... else-structure in
the controller code where the integrator is updated either proportionally to
the control error or by an entirely different expression. The update is usually
a discontinuous function. o

Methods C1-C2 are textbook methods. They are raf%lsr used in practice
but are useful in the comparison below. Method C3 is found in, e.g., Fertik
and Ross (1967) and Gallun et al. (1985), where it is used in position form
digital PID controllers, and in Phelan (1977, p. 187), where it is used in
analog PI and PID controllers. Method C4 is sometimes called the “Intelli-
gent Integrator”, see Phelan (1977, p. 117), Krikelis (1980) and Krikelis and
Barkas (1984). It is also used in commercial controllers, e.g., the TL106 from
Fisher Controls. Method C5 is used mainly during start-up.

Evaluation of Conditional Integration Methods

The conditional integration methods will now be compared. Their behaviors
are illustrated using a simple example.

ExAMPLE 2.1

Let the process be an integrator, 1/s, with PI control where K = T} = 1.5,
i.e., the closed-loop system has natural frequency w = 1 rad/s and relative
damping ¢ = 0.75. The controller output is limited to the interval [—1,1]. -
The performance for different initial values will be presented in a phase plane,
where the integral part, ¢, of the controller is plotted versus control error
e. Set-point changes correspond to initial values e # 0, i = 0 and load
disturbances correspond to e = 0, ¢ # 0. ]

14




2.3 Conditional Integration Methods
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Figure 2.1 Evaluation of method C1, which suspendsintegration when |e| > eo,
using Example 2.1. The integrator state ¢ is plotted versus control error e. The
stationary points are the origin and the thick solid lines, at which « = 0 when
integration is suspended.

Method C1

In Figure 2.1 method C1, which suspends integration when le| > eg, is simu-
lated using Example 2.1. The stationary points are in the origin and at u = 0
when |e| > eg. Thus all set-point changes without load disturbances (which
in this example has i = 0 initially) are handled well, but trajectories with
large initial values of 7 get stuck at e # 0. Note that this may happen for ¢
such that umin < 7 < %Umax, see Figure 2.1. The main drawback in method
C1 is that integration may be stopped even if u is far from saturation, i.e., in
the “linear strip” around u = 0, and integration may not be resumed. Thus
it is not advisable to use this method.

Method C2

Method C2 is a natural modification of method C1: integration is suspended

during saturation but continuesin a “linear strip” around u = 0. In Figure 2.2
method C2 is simulated using Example 2.1. The origin is the only stationary
point. However, large initial values for the integrator, give large overshoots
since integration is stopped until desaturation. It would be advantageous to
resume integration as soon as the control error has changed sign. Feedforward
signals added to the control signal, causing saturation, may also give large

15
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Chapter 2 Anti- Windup Methods — A Survey
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Figure 2.2 Evaluation of method €2, which suspends integration during con-
troller saturation, using Example 2.1. The origin is the only“stationary pomt
The method gives chattering at the thick solid lines.

overshoots. If the process has finite gain there are stationary points e =
—Gp(0) umax for large positive 7 and € = —Gp(0) umiy for large negative 1
outside the “linear strip”. Using method C2 the process is.then stuck at.one
of the output limits.

Method C3

Method C3 is a modification of method C2 where the integral is updated if
the saturation and the control error have opposite signs, even if the controller
is saturated. In Figure 2.3 method C3 is simulated using Example 2.1. The
overshoot for trajectories with large integrator initial values are smaller than
for method C2. Feedforward signals causing saturation do not give large
overshoots either. There are no stationary points outside the “linear strip”
for processes with finite static gain.

Comparison of Methods C1, C2 and C3

Methods C1-C3 have an almost identical performance for set-point changes,
when ¢ = 0 initially. There are, however, differences between the meth-
ods when the integrator ¢ has large initial values. Method C3 is best for
Example 2.1, since it has only one stationary point and in general smaller
overshoots.

16




2.8 Conditional Integration Methods

A
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> T T 6—9
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Figure 2.3 Evaluation of method C3, which suspends integration during con-
troller saturation unless the control error is in the opposite direétion, using Ex-
ample 2.1. The origin is the only stationary point. The method gives chattering’
at the thick solid lines.

Chattering

Methods C2 and C3 have a common problem. Sliding-modes may appear if
the saturation disappears for non-zero control error because the input to the
integrator is discontinuous in v — v. The discontinuity can be removed by
introducing a boundary layer which makes % continuous in both e and v —v.

Then, e.g.,

)
max(fi%e,%e), fv<u
di K .
;i_t-_< -ﬁe, ifvo=u (2.4)
K
min(fife,—gje), ifv>u

\ i 7

where f; may be given by

=1, fu=v
<1, f0<|u—v|<e (2.5)
=0, if lu—v|>e¢

min(e, [u — v|)

fi=1-
€

and € is the width of the boundary layer, a suitable fraction of “max — Umin.

17




Chapter 2 Anti- Windup Methods — A Survey

Figure 2.4 Evaluation of method C4, which limits the mtegrator to the interval
+ip, using Example 2.1. Hard feedback is used on 1 if || > o7 The origin is the
only stationary point. The method gives chattering at the thick solid lines.

In a continuous-time PID controller ¢ can be less than 1% of the control in-
terval but in a discrete-time PID controller € must be 10-20% of the interval.
Otherwise chattering is not eliminated. Thus the width € of the boundary
layer is problem dependent, i.e., methods C2 and C3 has a tuning parameter,
E.

Method C4

In Figure 2.4 method C4, which limits the integrator such that |i| < 4, is
tested using Example 2.1. The integration limits coincide with the controller
limits, i.e., 50 = 1. If || > 4o “hard” feedback brings i back to the desired
interval. This method has chattering and thus requires a boundary layer.
Compared with methods C2 and C3 there is a considerably smaller over-
shoot for cases where both e and 7 have large initial values, but when ¢ = 0
initially, the method gives larger overshoots than methods C2-C3. Desat-
uration occurs when e = 0. Earlier desaturation and smaller overshoot is
obtained for smaller 7, but then a load disturbance ly, where umax > lp > 10,
such that the load could have been balanced by the control signal, instead
gives a stationary error.

It is thus clear that the limits for integration must be chosen such that
the control signal u can use the full span of the actuator. If the control limits

18




2.3 Conditional Integration Methods

are asymmetric or the set point y, and the output y are weighted differently,
asymmetric integration limits are required. The limits may then depend
on both the set point and controller parameters, as well as the controller
limits. This is noted in, e.g., French and Cox (1990), where method C4
is used in a state feedback controller with integral action. The integration
limits are adjusted both by a feedforward term, based on predicted load, and
a feedback term, based on control error. These enhancements make their
method resemble tracking anti-windup, see Section 2.4.

Discussion of the C5 Methods

In these methods the integrator is assigned a special value when integration
is suspended. In controllers with a “batch unit”, see Shinskey (1988), the
preload 7o is a value assigned to the integrator when the controller saturates.
Thus the control signal is

v(t) = Ke(t) + o (2.6)

during saturation. Separate preloads for upper and lower saturation can
be given. Integration continues when the controller desaturates. Thus the
preload 7y determines when the controller desaturates. Thereby the amount
of overshoot can be adjusted. Although this method has a different imple-
mentation, it is almost equivalent to method C4 in Figure 2.4 if 19 = up.x at
upper saturation and vice versa.

A similar approach is suggested in Thomas et al. (1983), where the
integral part is “continuously” updated during saturation”from the process
output y(t) and a load estimate l;. The exact update for the controller in
(2.1) is given by

o y(t)
‘l(t) = Fp + lo (2.7)
where K, is the (estimated) static process gain. The update formula is

derived for a PI controller and first order process. The control signal during
saturation is

v(t) = Ke(t) + lp + y(t) (2.8)
Ko
This method is practically equivalent to preload, since ly and K, correspond
to 79, and then also to method C4 in Figure 2.4.

In Kramer and Jenkins (1971) an optimal control error e* for desatura-
tion, and a corresponding integral part ¢j are determined. However, since a
smooth desaturation is a prerequisite in the optimization, the method turns
out to be equivalent to preload in the sense that 7§ in fact determines when
the controller desaturates. The value i, however, in this approach depends

19




Chapter 2 Anti- Windup Methods — A Survey

on the set point y,, the controller limits and parameters and, finally, the
process. A different 1§ is used during rate limiting.

Rosza (1989) uses the limited integrator, method C4, with an extension
for override control in a digital PID controller. The integral part is then
updated such that

i(t) =u(t—1) when wu(t—1)#uv(t—1) (2.9)

where u(t — 1) and v(t — 1) are the override and control signals respectively
of the previous sampling instant.

The “cutback” method, see Howes (1988), is used in, e.g., the Eurotherm
EM-1 controller. The operator determines two values of the process output
where the controller desaturates. These values are called upper and lower
“cutback points”. They are used when approaching the set point from above
and below respectively. The cutback method is equivalent to assigning a
specified value to the integrator when the process output y is outside the
cutback interval, and the method is thus equivalent to preload.

The C5 methods are primarily designed for large set-point changes. They
are very similar to method C4. By choosing i and (lo, K}) in (2.6) and (2.7)
respectively the overshoot is adjusted. Methods C4-C5 have the drawback
that integral action may be lost, if 2y or (lp, K;) are carelessly chosen. The
“cutback” method, as presented in Howes (1988), is designed for the starf-up
problem. Saturation and anti-windup in the presence of disturbances are not
at all considered in the paper.

Summary A

In Figure 2.5 methods C1-C4 are compared for one initial condition, namely
y = —2.8 (i.e., e = 2.8) and 7 = 2.4 using Example 2.1. Method C1 does not
resume integration for the chosen initial condition, and thus get a stationary
error. Method C2 has slightly higher overshoot than method C3, because C2
does not resume integration until the controller desaturates. When method
C3 is used integration resumes when the control error changes sign. Above
it was pointed out that methods C1-C2 (may) have stationary point outside
the origin. Thus method C3 is the best out of C1-C3.

Method C4 has the lowest overshoot and the fastest desaturation in
Figure 2.5. However, comparing Figures 2.3 and 2.4, method C3 has smaller
overshoot and faster desaturation if instead ¢ = 0 initially. For Example 2.1, .
where the process is an integrator, = 0 and e # 0 are the initial conditions
corresponding to a regular set-point change without any disturbances. If the
possible difficulties in choosing integration limits for method C4 are added,
e.g., parameter and set-point dependencies, the conclusion is that method
C3 is better than C4, since it is simpler and more robust. In the sequel only
method C3 will be used when conditional integration is tested.
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2.3 Conditional Integration Methods
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Figure 2.5 Comparison between methods C1-C4 using Example 2.1 for the
initial condition y = —2.8 (i.e., e = 2.8) and i = 2.4. Method C1 does not
resume integration, which explains the static error. Method C2 has slightly higher
overshoot than C3 and method C4 desaturates faster than the other methods. For
other initial values method C3 desaturates faster than method C4.
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Figure 2.6 PID controller with anti-windup based on tracking.

The C5 methods are restricted to the start-up problem in (batch) pro-
cesses where it is reasonable to assume that (load) disturbances at the oper-
ating point do not cause saturation. This is an important special case.

All conditional integration methods have at least one parameter to tune,
e.g., €g, ig, etc. For methods C2-C3 a boundary layer width £ needs tuning.
A boundary layer was used in method C4 as well and may be necessary in
some of the C5 methods too. In Kramer and Jenkins (1971) a first order
process model must be given.

2.4 Observer Methods

e
Ed *

In this section anti-windup methods similar to state observers will be dis-
cussed. In a controller based on a state observer all controller states are
stable if the observer uses the saturated control signal u and the process out-
put y for reconstruction of process states. Thus windup will not occur in such
a controller, even if the controller saturates. A general anti-windup strategy
is then to treat all controllers as if they were based on a state observer.

In controllers with integral action, e.g., PID controllers, it is common
practice to use nonlinear feedback from the control signal, see Figure 2.6.
This is a special case of the observer interpretation of a controller. The
approach is often denoted tracking or back calculation and will be discussed
first.

Tracking or Back Calculation

The idea of back calculation was proposed by Fertik and Ross (1967) for a
velocity limited incremental PI algorithm. The idea is that the controller
state is recomputed such that the controller output is exactly at the satura-
tion limit. During velocity saturation the controller thus tracks given inputs
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u=umin .

Figure 2.7 Evaluation of tracking anti-windup with T; = T; using Example
2.1. Trajectories starting on the dashed lines remain there Wntil desaturation.
The origin is the only stationary point.

and outputs. Fertik and Ross also suggested that the controller state is kept
constant during position saturation, i.e., they combine back calculation and
conditional integration. Further, they found that back calculation is not a
good method for (incremental) PID controllers since it “.. results in a de-
layed derivative action which can cause overshoot of the controlled variable
...”. Here they instead prefer conditional integration by method C3, see Sec-
tion 2.3 . Back calculation and conditional integration is also combined in
Dreinhoefer (1988).

For a position form PID controller back calculation recomputes the in-
tegral part to match given inputs and outputs. It was found advantageous
not to reset the integrator in one sampling period but dynamically with a
time constant T;. This is in the sequel denoted tracking. A rule of thumb
given in the literature for the choice of T; has been T} ~ T, where Tj is the
integral time. Figure 2.6 shows a block diagram of a PID controller with
tracking anti-windup. Thus the main idea in tracking (and back calculation)
is to give good values to the controller states.

In Figures 2.7-2.8 tracking anti-windup is evaluated using Example 2.1.
See also Figures 2.1-2.4 where conditional integration methods are evaluated.
For T; = T; the overshoot depends on the initial value of 7. For larger ini-
tial values of e the trajectories converge to the asymptotic (dashed) lines.
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v

Figure 2.8 Evaluation of tracking anti-windup with T; = T;/100 using Exam-
ple 2.1. All trajectories (for the chosen initial conditions) “ifimédiately” follow
the controller limits, but there is no chattering. :

Then the performance is similar to the best obtainable for method C4, see
Figure 2.4. For tracking anti-windup, however, T; < T; results in earlier de-
saturation but disturbances are still handled well comparéd to method C4,
since the integrator ¢ is not restricted to stay within any predetermined in-
terval. For Ty = T;/100, see Figure 2.8, the integrator 7 is “immediately”
given a value such that the controller is at the saturation limit, which re-
sults in an early desaturation and a small overhoot. In Figure 2.9 the time
responses for Ty = T; and T} = T;/100 are compared for the initial condition
y = —2.8 (i.e., e = 2.8) and ¢ = 2.4 using Example 2.1. Compare Figure 2.5.
For Ty = T; and method C4 the performance is almost identical. This was
discussed above. When T; = T;/100 the overshoot is very small due to the
fast desaturation of the controller.

The discussion indicates that a small value of T} is advisable. However,
it will later be shown that T} = T;/100 is a much too small value due to large
disturbance sensitivity. Besides Ty > 0, for stability of the controller, there -
is no lower limit for T; reported in the literature.

Controllers with tracking are discussed in, e.g., Astrém (1987), Glatt-
felder and Schaufelberger (1983), Glattfelder et al. (1983), Glattfelder and
Schaufelberger (1986), and Glattfelder et al. (1988). Kapasouris and Athans

(1985) use tracking anti-windup for an integrating multivariable controller.
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Figure 2.9 Comparison between tracking time constants T; = T; and T} =

T:/100 using Example 2.1 for the initial condition y = —2.8 (i.e., e = 2.8) and
1 = 2.4. For T; = T; the performance is almost identical to that of method C4
in Figure 2.5. When T} = T;/100 the controller desaturates much faster and the
overshoot is very small. ’

The Observer Approach

Now the general observer based anti-windup will be discussed. In state space
formulation a feedback controller is viewed as a combination of an observer
and a state feedback. This leads to ideas on how anti-windup should be
included in a controller. Consider the following example.

EXAMPLE 2.2
Assume that the process is given by

dz

& —Az+B

g ~Aart b (2.10)
y=Cz

and that state feedback and observer gain vectors L and K respectively and .
the gain L, have been computed for the controller

&
% =(A—KC)i+Bu+ Ky (2.11a)
v=—L&+ Ly, (2.11b)
u = sat(v) (2.11¢)
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The observer (2.11a) does not suffer from windup since & is only updated
from the process input and output. From the observer design 4 — KC is a
stable matrix. O

The following anti-windup method was originally given in Astrém (1983) and
is also described in Astrém and Wittenmark (1990). The idea is to resemble

the structure of the observer based controller (2.11). Consider the following
realization of a controller

d

75— =Fz + Gryr — Gyy
v=Hz+ Dy, — Dyy (2.12)
u = sat(v)

where F' may be an unstable matrix. The general way to avoid windup in
(2.12) is similar to tracking anti-windup, i.e., use feedback from v — v. Then

d_: = Fz + Gy, — Gyy + M(u — v)
=(F ~MH)z +(Gr — MD, )y, — (Gy — MDy)y + Mu  (213)

v=Hz + Dryr - Dyy Tt

u = sat(v)
IfH=—-L,M=B,F—-MH=A— KC etc., the correspondences with
(2.13) and the observer and state feedback in (2.11) are obvious. Therefore |
the anti-windup method in (2.13) is denoted the observer approach M must
be chosen such that F' — M H is a stable matrix.

The observer approach can be used for controllers given by transfer func-
tions as well. Assume that the original controller is given by

V(s) = Gy (s)Yo(s) — Gpa(s)Y (s) = (H(sI — F) ™G + D,)Y:(s)

— (H(sI - F)™G, 1 D,)Y(s) 219

Introducing anti-windup compensation by the observer approach yields

V(s) = Gyr(s)Yr(s) — Gp()Y (5) + W (s)(U(s) — V(s))
= Gys(8)Yn(s) — Gpp(s)Y (s) + H(sI — F)*M(U(s) — V(s)) (2.15)
u(t) = sat (v(t))

if the anti-windup in (2.13) and (2.15) coincides. The controller can also be
given on polynomial form, e.g.,

R(s)V(s) = T(s)Yr(s) — S(s)Y(s) (2.16)
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Figure 2.10 A control system with saturation and anti-windup by the observer
approach. Gyt, Gy and W are given in (2.14) and (2.15).

Introducing anti-windup compensation by the observer approach yields

Ao(3)V () = T(2)Ya(s) — S(s)¥ (s) + (Aols) — B(s)) U(s)

2.17
u(t) = sat ('v(t)) g s ( )

where the observer polynomial
Ay(s) =det(s] — F + MH) (2.18)

if the anti-windup in (2.13) and (2.17) coincides. Anti-windtp by the observer
approach can be described by the block diagram in Figure 2.10.

Tracking and back calculation are special cases of the observer approach
where unstable states, e.g., integrators, are stabilized by feedback during
saturation while stable states are left unaffected. For the PID controller in
(2.1), tracking anti-windup according to Figure 2.6 is obtained if

1
M = [%’;], W(S):s_flf; and Ao(s):(s—f——fll—,;)(s—l-%) (2.19)

for the state space, transfer function and polynomial forms respectively. For
the PID controller R(s) = s(s + N/T3). Thus A,(s) clearly shows that .
tracking anti-windup moves one controller pole from 0 to —1/7; while the
other pole is unaffected.

Many versions of anti-windup can be summarized in the formulas above.
In Walgama and Sternby (1990) a number of different anti-windup methods
for, e.g., discrete-time PID controllers have been interpreted in terms of their
equivalent observer polynomials A,.
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Many anti-windup methods in the literature are special cases of the ob-
server approach. In Parrish and Brossilow (1985) a dead-beat observer is used
for a discrete-time lead/lag controller. Dead-beat observers are also used in
adaptive controllers in, e.g., Abramovitch and Franklin (1987), Abramovitch
et al. (1986) and Payne (1986). Here the dead-beat observer is a consequence
of the prediction model A

#(t +1) = Ay(t) + Bu(t) = b (2) (2.20)

which is used in the parameter estimation. In Zhang and Evans (1988) a
dead-beat observer is used for a rate constrained adaptive controller. In
order to rewrite the suggested controller to the polynomial form (2.17) the
saturation function must be replaced by a rate saturation function. This
illustrates that the saturation can be replaced by other nonlinearities.

Segall et al. (1991) derive a discrete-time one-step optimal correction for
a saturated controller. The resulting controller can be interpreted in terms
of R, S, T and A, polynomials (or polynomial matrices).

The conditioning technique, see Hanus et al. (1987), is another special
case of the observer approach. The idea behind this technique is to compute
the “realizable reference” ¥, i.e., the reference value that, given the controller
state z and process output y in (2.12), would just saturate the controller, i.e.,

u = sat(v) = He + D,§, — Dyy (2.21)

Then ”
w—v=Dp(Gr —Yr) - (2.22)

If D, is left invertible g, can be computed and is then used instead of y, in
the differential equation in (2.12). This is equivalent to letting M = G, D;!
in (2.13). If D, is singular the left inverse D}, i.e., DI D, = I, is used instead
of D,. The controller states z are then not directly affected by the reference
signal y, during saturation. The eigenvalues of F — G,.D;1H are equal to
the transmission zeros of the controller.

The conditioning technique is also discussed in Hanus (1988) and Hen-
rotte (1988). Banyasz et al. (1985) use the conditioning technique for an
adaptive PID controller with error feedback.

Observer Interpretation of Back Calculation

Back calculation is a special case of the observer approach. It may be inter-
esting to see where back calculation places the observer poles. Two cases,
incremental and position PI controllers will be examined.
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EXAMPLE 2.3—Incremental PI controller
Fertik and Ross (1967) discuss the velocity limited incremental PI controller

z(k + 1) = e(k)
Av(k) = —Kao(k) + K (1+ ) e(k) (2.23)
Au(k) = sat (Av(k))
with sampling interval h. A backward-difference is used when approximating
the derivative. Thus the state is #(k) = e(k — 1). Back calculation means
"adjust the state to match given inputs and outputs”. Thus the state up-
date should use the effective or realizable control error e*(k) that would just
saturate the controller, i.e.,
Au(k) — Av(k)
K(1+h/T;)

z(k+1) =e"(k) = e(k) + (2.24)

Rewriting and identifying the matrices F', H and M in (2.12) and (2.13) gives
that the observer polynomial, see (2.18), is

T;

Ao(2) = det(al = F + MH) = 7 = oy

(2.25)

The observer pole, from (2.25), equals the zero in the transfer function for ‘
(2.23). Hence back calculation and the conditioning techmque are equivalent
for (2.23). In continuous time the corresponding time constant is T = T;. O

EXAMPLE 2.4—Position form PI controller
The corresponding position form PI controller in Fertik and Ross (1967) is

z(k+1) =a(k)+ K% e(k)

o(k) = o(k) + K (1+ ) e(k) (2.26)
u(k) = sat (v(k))
Thus the state z(k) is the integral of the control error. Back calculation

means “adjust the state to match given inputs and outputs”, i.e., determine
the state z*(k) such that

u(k) = 2*(k) + K (1+ %) e(k) (2.27)
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and use ¢*(k) in the state update. Then

e(k+1)=c"(k) + K% e(k) = u(k) — Ke(k)
o (2.28)
:w(k)-'_KTf e(k) +u—v

Identifying the matrices F, H and M in (2.12) and (2.13) gives that the
observer polynomial, see (2.18), is

Ao(z) =det(zl —F+ MH) =z (2.29)

i.e., a dead-beat observer. In continuous time the corresponding time con-
stant is T' = 0. O

Thus the equivalent observer poles depend on which entity is back calculated.
Back calculation of the integral part gives a fast observer pole while back
calculation of the control error in an incremental algorithm gives a moderate
speed of the observer pole.

Multivariable Extensions

g e

There is some freedom left in the anti-windup when a multi-variable controller
is unsaturated in some of the control signals. In Campo and Morari (1990)
direction preservation combined with the conditioning technique is used on
ill-conditioned multivariable plants. The direction preservation scales the .
control signals such that the maximum control signal is-at the saturation
limit while the others are proportionally scaled down. This seems to be an
important issue for ill-conditioned plants which are very sensitive to changes
in control signal direction.

In Hanus and Kinnaert (1989) the approach taken is to determine the
“best” realizable reference which would just saturate the controller. This ref-
erence signal is then used to update the controller states by the conditioning
technique. There are two suggestions for determining the reference signal,
the first is a quadratic programming problem for all reference inputs and the
other orders the references in increasing order of importance. If m inputs are
saturated the first m (less important) references are recomputed by quadratic
programming. In some cases this is an alternative way of obtaining direction
preservation.

Summary

Many anti-windup methods suggested in the literature can be interpreted
as observer-based anti-windup, although not all authors are aware of this
interpretation. With only a few exceptions, e.g., the conditioning technique
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and dead-beat observers in adaptive controllers, there are no general guide
lines for how to choose the observer poles. In tracking anti-windup only one
pole is placed and a rule of thumb has been to choose —1/T;. In Chapters 3-4
the choice of observer poles for PID controllers anti-windup will be treated.

2.5 Input Limitation Methods

The main idea in these methods is to limit the controller input such that
saturation is avoided. A simple approach is to low pass filter the reference
signal, which gives a slower response, but the controller does not necessarily
remain unsaturated. In order to avoid slowing down the closed-loop system
for small signals a jump-and-rate-limiter may be used instead of a low pass
filter. Small signals are not affected by the limiter, but larger signals are
limited both in initial magnitude and rate of change. It is, however, still not
guaranteed that saturation will not occur. Irrespective of how the reference
signal is filtered, disturbances may cause saturation and thus windup.

In Pajunen and Steinmetz (1987) a time-varying reference model is used
in order to combine both minimum-time and unsaturated control signals for
an adaptive controller. This approach is rather similar to using a jump-and-
rate limiter. In Noguchi et al. (1987) a time-varying moving average (MA)
filter is placed between the controller and the actuator. Although the filter is
not placed at the controller input the basic idea is the same. In case of large
control signals the filter is supposed to “spread out” the control action such
that the actuator remains unsaturated. For small control signals the filter
has no influence. The filter is included in the adaptive control design. Both
methods contain ad hoc rules and are incompletely specified with respect to
the order and parameters of the filters.

Kapasouris’ Method

In Kapasouris (1988), Kapasouris et al. (1988, 1989) a type of input limitation
is used for multivariable controllers with integral action. For stable processes
a diagonal gain A(t) is placed at the controller input, see Figure 2.11, where
0 < A(t) < 1. The value of A(t) is chosen such that the controller K(s)
never saturates. For large set-point changes the response of the system is
approximately only slower than it would have been without the saturation. .
The method is computationally intensive and requires an on-line or off-line
computation of g(z), the maximum norm of the desired control signal v(%),
for t > 0 and “all” initial values zy of the controller when ¢ = 0. Then g(z)
is used on-line, in block N in Figure 2.11, to determine a A(¢) such that the
control output v(t) does not saturate.
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Figure 2.11 The controller structure in Kapasouris (1988) for stable processes.

2.6 Nonlinear Control Design

This section more briefly reviews a class of controller design methods and
algorithms where a saturation or other nonlinearity is (more or less explic-
itly) accounted for. None of the methods or algorithms are evaluated and
discussions are short. The main contribution in this section is a classification
of the presented methods. However, the diversity of these methods makes it
impossible to cover the whole area in a few pages. The intention is instead
to briefly present some interesting classes of design methods and algorithms.
These methods do not presume a given linear controller. Both linear and
nonlinear controllers result from these methods.

Optimal Control

The linear quadratic problem

1 T
min 3 / (:cTQm + guz) dt
b 0
¢ = Az + Bu, z(0) =z,
() <1

(2.30)

was studied in the early 1960’s, see, e.g., Rekasius and Hsia (1964) and John-
son and Wonham (1964). In Frankena and Sivan (1979) a nonlinear optimal
control law is derived for a stable linear system.

The optimal control problems above does not result in controllers with
integral action. If this is desirable then %—'t‘—, or Au in discrete time, must
replace u(t) in the loss function. Solving optimal control problems with
saturations is far more involved than, e.g., using observer-based anti-windup.

Further, the results are very restrictive and hardly ever used.
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Open-Loop Optimal Feedback Methods

This is a class of controllers which is of practical use. In a number of opti-
mization based control methods, e.g., generalized predictive control (GPC),
see Tsang and Clarke (1988), and dynamic matrix control (DMC), see Cutler
and Ramaker (1980), mathematical programming is used to obtain an opti-
mal sequence of control signals. Only the first control signal is used, and then
the optimization problem is solved again at the next sampling instant. This
type of controller is denoted open-loop optimal feedback (OLOF) controller or
receding horizon controller. Linear and quadratic programming solutions of
such problems, are found in, e.g., Gutman (1982), Chang and Seborg (1983),
Garcia and Morshedi (1986) and the two references above.

Both equality and inequality constraints for states and control signals
can be added in the optimization. In both GPC and DMC the prediction
models use control increments, Au, thus these methods yield integral action.

Robotics Methods

An industrial robot is often supposed to follow a well defined path. Typical
such applications are arc welding and gluing. Especially in the latter case
robot speed is a limiting factor. Therefore a number of minimum-time ap-
proaches have been taken in order to speed up the operation of robots. In
Dahl (1989) an interesting method of avoiding sensitivity for disturbances
and unmodelled dynamics is used.

Quasilinearization Methods -

Design methods based on describing function theory has been proposed for
design of controllers for nonlinear systems. Both sinusoidal input describ-
ing functions (SIDF) and random input describing functions (RIDF) are
used. Saturations are among the nonlinearities covered by these methods.
In, e.g., Taylor and Strobel (1984) SIDF’s are used for designing nonlinear
PID controllers. In Haber et al. (1989) a similar PID controller is designed
by a time-domain approach, using a pseudo-random binary signal. RIDF’s
are used by Suzuki and Hedrick (1985). The obtained PID controllers have
extra nonlinearities or error dependent gains in order to compensate for the
plant nonlinearities, which are not necessarily saturations.

Quantitative Feedback Theory

The quantitative feedback theory, see Horowitz (1963), has been extended
to handle saturations for both stable and unstable plants. Results are re-
ported in, e.g., Horowitz (1983) and Horowitz and Liao (1985). For linear
systems a two-degree-of-freedom problem is solved resulting in a compen-
sator G and a prefilter F. In the paper Horowitz (1983), a compensator
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Figure 2.12 The anti-windup structure in Horowitz (1983).

H around the saturation is added, see Figure 2.12. G and H affect the
loop gain L, = H + PQ, seen from control input to saturation, similar to
observer-based anti-windup. The design idea is to make L, ~ K/s, i.e., to
approximate an integrator. There is one significant difference between this
method and observer-based anti-windup. Here the compensator H always
gives linear feedback around the saturation. In observer-based anti-windup
there is nonlinear feedback which influences the closed-loop system only dur-
ing saturation. The paper Horowitz and Liao (1985) deals with unstable
plants and there a time-varying saturation is added in the controller in order
to prevent saturation in the control signal. Thus there are similarities with
Kapasouris’ method, see Section 2.5. TRt

’

Stabilizing Methods I

A number of design methods focus on stability despite the saturation. In
Gutman and Hagander (1985) a state feedback controller.is designed using
Lyapunov functions. If the process is unstable a low gain svi’;ability feedback is
designed, and then, based on the Lyapunov function for the stabilized system
a second “high-gain” state feedback is designed. The two feedback signals
are added and saturated.

Another group of methods uses the conic sector inequality

1 1
sat(u) 3 u” < 3 Izl (2.31)
for a unit gain saturation. Then a standard control problem is solved for
the nominal process G(s)/2 and finally robust stability is checked for the
nominal process and controller plus perturbation. In Chen and Wang (1988)
the Bellman-Gronwall Lemma is used for checking robust stability while the
standard control problems are state and output feedback. In Chen and Kuo
(1988) the LQG approach is used in order to find a controller for the nominal
process. The controller must then also satisfy an H*°-condition in order to
guarantee robust stability. In some cases a controller satisfying both nominal
closed-loop stability and robust stability for the saturated system does not
exist.
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Stabilizing Methods II

Another group of methods found in the literature instead uses the strategy
of designing linear state feedback controllers which never saturate. In Kosut
(1983) a state feedback controller is determined such that the states never
leave an a priori known set S. In Gutman and Cwikel (1986) a variable
structure linear state feedback controller is derived. Vassilaki et al. (1988)
and Benzaouia and Burgat (1988) also treat similar problems.

Summary

Out of the reviewed methods the OLOF methods are often used in practice,
especially for control of chemical processes. One reason is simple constraint
handling. Compared to the process time scale the computation time is usually
sufficiently short on modern computers. In the robotics area the research
activity is high in the area of minimum-time controllers.

2.7 Theory

This section contains a short resume of some of the-available theory for
analyzing stability of nonlinear systems. The main focus is on systems which
can be separated into one linear dynamical part and a nonlinear function.
Methods and theorems for single-input single-output (SISO) nonlinearities
will be briefly presented. In later chapters they are used for stability analysis.

In contrast to linear systems a nonlinear system may -be only locally
stable, i.e., large deviations from the stationary point may yield instability.
Further limit cycles and chaotic behavior may appear. The stability analysis
for nonlinear systems is also harder than for linear systems. In general, only
sufficient (and conservative) conditions for stability are obtained.

There are a number of different stability definitions, such as bounded-
input bounded-output (BIBO) stability, asymptotic stability, uniform asymp-
totic stability, uniform asymptotic stability in the large, absolute stability,
etc. For linear time-invariant systems some of them coincide, e.g., the dif-
ferent versions of asymptotic stability, but they do not necessarily coincide
for nonlinear systems. A more general discussion on stability definitions is

found in, e.g., Narendra and Taylor (1973).

Frequency Domain Analysis of SISO Systems

A process and controller with a saturating actuator can in many cases be re-
duced to a standard configuration with a linear system having nonlinear feed-
back. One example is the observer based anti-windup methods presented in
Section 2.4. Disregarding the reference signal, they can be put in a standard
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Figure 2.13 A linear system G with nonlinear feedback f in a standard con-
figuration for stability analysis.

form with a linear system G having nonlinear feedback f, see Figure 2.13.
For a unit gain saturation, (2.3), the nonlinearity obeys the sector condition

0<klgi(%ﬁgk2=1 (2.32)

where o is the input to the nonlinearity, f(0,t) =0, and t is time. Then the
linear system G is given by - ,

G_Gﬂ,Gp—W
14+ W

where G, is the process transfer function, Gy, is the feedback path of the
controller and W the anti-windup transfer function, see (2.14-2.15).

Note that conditional integration methods, see Section 2.3, cannot be
reformulated into the structure in Figure 2.13 with a linear time-invariant
system G. When integration is suspended G has lower order than normally.

For the observer-based anti-windup methods stability can be examined
by the describing function method and circle criteria.

(2.33)

Describing function analysis is an approximate method where the non-
linearity is replaced by a describing function N(a), see Atherton (1975). Here
a sinusoidal-input describing function is used, where a is the amplitude of the
sinusoidal input to the nonlinearity. A limit cycle in the closed-loop system
or an unstable closed-loop system is predicted if

G(iw)N(a) +1=0 (2'34)

i.e., if the Nyquist curve G(iw) intersects the curve —1/N(a). For the satura-
tion (2.3), the curve —1/N(a) is the interval (—o0, —1] of the real axis. Thus,
if the linear part G, (2.33), has at least one intersection with this interval,
limit cycles or instability is predicted.
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Circle criteria are based on Lyapunov stability and give sufficient condi-
tions for absolute stability, see Narendra and Taylor (1973). There are a few
different circle criteria, which differ in the type of nonlinearity they allow.
The circle criteria are here only formulated for the saturation nonlinearity,
i.e., for any time-invariant memoryless nonlinearity obeying sector condition
(2.32). The Circle Criterion, which allows a time-varying nonlinear function
f(o,t) but also gives the most conservative conditions for closed-loop absolute
stability, is stated first.

THEOREM 2.1—The Circle Criterion (Narendra and Taylor (1973))

If the linear system G(s) has all poles in the open left half plane and has
nonlinear feedback — f(o,t), where f(o,t) obeys sector condition (2.32) the
closed-loop system is absolutely stable provided that

ReG(iw)+1>0, Vuw (2.35)
O

The Popov criterion requires a time-invariant nonlinearity f(o).

THEOREM 2.2—The Popov Criterion (Narendra and Taylor (1973))

If the linear system G(s) has all poles in the open left-half plane and has
time-invariant nonlinear feedback — f(o), where f(o) obeys sector conditions
(2.32), the closed-loop system is absolutely stable provided that there exists
a real constant a such that

Re ((Gliw) +1)(1 + aiw)) 20, Vo~ (236)

1
Remark. Theorem 2.2 thus requires that the Popov locus

Tp(w) = (Re G(iw), Im G(iw))

lies to the right of a line through —1 with slope a™1. O

The unit gain saturation is also monotonically non-decreasing, i.e.,

0=my < f(G'l)_f(O'z) <msy=1 (2'37) .

g — 02 -

In Foss (1981) it is shown that the Popov criterion, the Off-Axis Circle Cri-
terion and a third criterion from Dewey (1966) can be unified for all nonlin-
earities obeying (2.37). This theorem is now stated.
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THEOREM 2.3—The Unified Off-Axis, Popov and Dewey Criterion

If the linear system G(s) has all poles in the open left half plane and has time-
invariant monotonic nonlinear feedback —f(o), where f(o) obeys condition
(2.37), the closed-loop system is absolutely stable provided that there exists
a real constant a such that

Re ((Gliw) +1)(1 + aiw™)) > 0, Vo (2.38)

where n = —1,0 or +1. O
Remark. Theorem 2.3 thus requires that either of

o the Popov locus I'p(w) = (Re G(iw),w Im G(iw))

e the Nyquist locus G(iw)

o the Dewey locus I'p(w) = (Re G(iw),Im G(iw) /w)

lies to the right of a line through —1 with slope a™1. O

Integrators The three circle criteria, Theorems 2.1-2.3 are only formu-
lated for asymptotically stable processes G(s). A simple pole in s = 0,
i.e., an integrator, is allowed in Theorems 2.1-2.2 if the nonlinearity is such
that k; > 0 in the sector condition (2.32). Similarly, if the nonlinearity is
such that m; > 0 in (2.37) Theorem 2.3 still holds if G(s) has an integrator.

Thus, since m; = 0 in (2.37) for a unit gain saturation, Theorem 2.3
cannot be used if G(s) contains an integrator. Since k; > 0 in (2.32) Theo-
rems 2.1-2.2 may be used when G(s) contains an integrator.

Frequency Domain Analysis of MIMO Systems ’ ‘

The theorems above are not applicable for systems with multiple nonlin-
earities. Besides multivariable processes with nonlinear feedback this type
of problem also appears in single-input single-output controllers, e.g., when
the derivative or the rate of change of the control signal are limited in PID
controllers. Then stability analysis must be formulated as a multiple-input
multiple-output problem. Some analysis methods found in the literature are,
e.g., the Moore-Anderson Theorem, (see, Narendra and Taylor (1973)), the
multi-loop circle criterion, see Safonov and Athans (1981), and structured
singular values, see Doyle (1982).

Time Domain Analysis

The methods used for time domain analysis of nonlinear systems aim at either
deducing asymptotic stability in the large or at estimating a maximum region,
denoted stability region, such that asymptotic stability holds in that region.
For first and second order systems, phase plane analysis is a simple method
for determination of the stability region.
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For high-order systems other methods, e.g., the second method of Lya-
punov, must be used. For the Lyapunov method the drawback is that a Lya-
punov function must be found in order to prove stability. In Weissenberger
(1968) and Willems (1969) the regions of asymptotic stability is estimated for
systems which violate a sector condition for large inputs o. In Wu (1986) and
Wu and Schaufelberger (1988) the result from Willems (1969) is extended to

handle multiple-input multiple-output nonlinearities.

2.8 Summary

This chapter contains a survey of published methods for handling control
systems with saturations. The methods are classified and unified. They are
divided into two main groups. The first group, modified realizations, starts
with a given linear controller and then adds some algorithm with the pur-
pose of giving good values to the controller states. Here the traditional PID
anti-windup methods are found. The modified realizations were subdivided
into conditional integration methods, observer-based anti-windup methods and
input limiting methods. A comparison of conditional integration methods,
high-lighting deficiencies in the methods, is believed to.be.new. One of the
methods, denoted C3 in Section 2.3, was judged best. The reasons were sim-
plicity of the method and an over-all good performance. The term observer-
based anti-windup unifies many published anti-windup methods, where the
authors often seem to be unaware of the observer interpretation.

The other group of methods, nonlinearly designed controllers, is much
more diverse. It is characterized by that the nonlinearity is accounted for
already at the design stage or in a multi-step optimization. A major difference
between the modified realizations and the nonlinearly designed controllers is
the computational complexity of the latter group, either on-line or at the
design stage. This explains why observer-based anti-windup and conditional
integration are widely used.

Some of the methods are completely specified, e.g., the conditioning
technique, see Hanus et al. (1987). Other methods have tuning parameters,
e.g., a tracking time constant, see Section 2.4. There is a lack of design rules
for how to select tuning parameters in order to achieve small deviations,
short settling-times, etc. Further, in many cases only set-point performance
is considered, while disturbances are neglected in evaluations.

The rest of the thesis focuses on the last two issues, namely derivation
and evaluation of design rules for two observer-based anti-windup methods
using two particular disturbances. The evaluation will also cover set-point
changes and load disturbances. For comparison, conditional integration by
method C3 will be included in the evaluation.
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PID Control with
Anti-Windup

From this chapter and onwards only PID controllers will be discussed. A
large number of PID controllers in industry motivates this specialization.
The simplicity of the PID controller also gives good insight into the windup
problem, which may be used for anti-windup in general controllers. ’

After a more detailed introduction of PID controllers and anti-windup
methods, stability properties of two observer-based anti-windup methods are
investigated. From this investigation one may conclude that fast anti-windup
is the best choice. The behavior of the controllers is also examined for im-
pulse disturbances to the process and sinusoidal measurement disturbances.
For these disturbances fast anti-windup turns out to be unfeasible. Further
analysis of these cases leads to design rules for the two anti-windup methods.
In the analysis and the design the noninteracting PID controller, see below,
is used because it is the most general form of the PID controller.

3.1 PID Controllers

In Section 2.2 a simple PID controller, (2.1), was introduced. Now a few
PID controllers, which are more practically useful, will be discussed. These
controllers are treated in more detail in, e.g., Astrém and Higglund (1988)
and Shinskey (1988). The first PID controller in this chapter is a slight
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extension of (2.1), such that

S;i (Yr(s)—Y(s)) iTST?—WY(s)} (3.1)

where Y,(s) is the set point, Y(s) the controlled output, V(s) the control
signal, K the controller gain and T; and Ty the integral and derivative times
respectively. This controller is denoted the parallel form or the noninteracting
PID controller, since there is no interaction between the three modes in the
controller. The derivative part is filtered with a time constant T;/N, where
the filter constant N is in the range 3-20. This also limits the maximum
derivative gain to N. A state space model is then

%:[g —J\?/Td]H[K(/)Ti]y’”[JI\(fﬁ:]y (3.2)

v = (1 —KN]m+ [Kb)y,— (K(1+N))y

V(s) = K{bYr(s) -Y(s) +

Compared to (2.1) the set point is no longer differentiated. Parameter b is
useful for adjusting the closed-loop step response. The controller introduces
a zero at s = —1/(bT;) and the choice b = 1 may give a too large overshoot.
A lower value for b moves the zero away from the origin, which reduces the
overshoot. b = 0 gives a controller structure known as “Integral on error
only”, where the feedforward path only contains an integrator.

In commercial single-loop controllers, see Higglund -(1990), the most
usual form of the PID controller is the serial form or the interacting con-
troller, which has a PI and a PD part in series. Then

V(o) = K (Fo) (o) = e V(6 (3.3

where T} and T are the interacting integral and derivative times and K' is
the interacting gain. The set point is not differentiated. In this realization
the three modes in the controller interact.

The interacting PID controller was simpler to implement in, e.g., pneu-
matic controllers. Later the same controller was translated into electronical
controllers and microprocessors. Backwards compatibility was perhaps one -
important reason for not changing the controller structure.

When T; > 4Ty in (3.1) simple formulas relate the parameters in the
two PID controller realizations. One way of realizing the PI part in (3.3) is
by positive feedback of the actuator output, see Figure 3.1. This realization
automatically gives tracking anti-windup, see Section 2.4, with T} = T}.
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1 <
1+ STi' h
K'e u
_> —>1 Actuator

Figure 3.1 Integral action by positive feedback of the actuator output.

Discrete-Time PID Controllers

Today most PID controllers are implemented in computers. They are mostly
used with sampling intervals small enough to justify continuous-time design.
Using a forward-difference approximation of the integral part and a backward-
difference approximation of the derivative part, the sampled version of (3.1)
is

(k) = K (br () = (k) + 7 — (08 = (k) = N7 22 4(8) (3.0

’

where
Ty

TS NhyTy

h is the sampling interval, and q is the forward-shift op’éi';itor. Other ap-
proximations are also used, but for short sampling intervals the differences
between different approximations are negligible.

The velocity form PID controller is common in computer implementa-
tions. Then the control increment Awv(k) = v(k) — v(k — 1) is computed
ie.,

(35)

b

h _
8o() = K (b3n() ~3(8) + (1 — D)~ 1)
' (3.6)
h -1 A?

—(T—1>q y(k)—N*r1 il ))
where ¢! is the backward-shift operator and A =1 — ¢~ . Such algorithms
are often denoted incremental algorithms. Av(k) is fed either to an actuator
with built-in integral action, e.g., a stepping motor, or to a cascaded integra-

tor which then outputs the control signal v(k). Note that the velocity form
cannot operate in P- or PD-mode.
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w

=
y Vv u y
AN Gy —#=]Actuator —1 G,

—Gy =

Figure 3.2 A control system with saturation and observer-based anti-windup.
Gys and Gyp are given by (3.1) and W depends on how the observer is chosen.

Discussion

dv

As we mentioned in Section 2.2, limitations on the derivative part and on %3

or Av(k) are sometimes used besides the saturation in PID controllers.

The PID controller must also be able to operate without derivative ac-
tion, i.e., as a PI controller. In a continuous-time realization, e.g., (3.2), it is
sufficient to let N = 0 in the computation of v. In the differential equation,
however, it may be desirable to have N /T4 > 0 since the stable state z, will
then continue to track —y, which will result in bumpless transfer from PI
to PID control. A similar arrangement is necessary in a discrete-time PID
controller. ‘

Besides (3.1) and (3.3) a few other parameterizations of PID controllers
are found in literature and commercial controllers. They can usually be
reparameterized into the same form as (3.1) or (3.3). The same thing also
holds for the discrete-time counterparts. Error feedback, i.e., equal feedback
and feedforward parts, is used in some cases.

Since the noninteracting PID controller (3.1) is the more general form
compared to the interacting PID controller (3.3), only (3.1) or its discrete-
time counterpart (3.4) will be used in the sequel.

3.2 Anti-Windup Methods for PID Controllers

Some of the anti-windup methods described in Sections 2.3-2.4 will now be
applied to PID controllers. First the observer-based anti-windup methods,
see Section 2.4, and then conditional integration, see Section 2.3, will be
discussed.
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The realization in (3.2) of a PID controller has the same structure as
(2.12). Hence observer-based anti-windup methods can be described by either
the transfer function W in Figure 3.2, or equivalently by the matrix M or the
observer polynomial A, = det(sI — F + M H), see Section 2.4. A state space
model of the interacting PID controller (3.3) is, using the diagonal form,
almost identical to (3.2). Both F and H have identical structure for the two
controllers and thus observer-based anti-windup is identically described.

Continuous-Time PID Controllers

In tracking anti-windup only the integrator pole is moved. For the PID
controller (3.1-3.2) it has been found, see (2.19), that

1
M= ﬁ] W(s):—;; and Ao(s):<s+%)<s+%> (3.7)

0 541

The conditioning technique, i.e., when M = G,.D;! in (2.13), gives

1

1 1 N
bT; W= — o= W8+ — .
o |’ ar, ond A4 <3+bT,- ,,(HTd) (3-8)

M =

which is a special case of tracking anti-windup. However, the conditioning
technique is for other controllers than (3.1), usually not a special case of track-
ing anti-windup. For the general case, the observer approach, the observer
polynomial A4, is chosen such that :

A, =det(s] — F + MH) = 5% + 2(wps + w? (3.9)
and then
ngd
_ N
M= T, ( N>2 N 2w, 1 (3.10)
KN\ " T,) TKN )
and

_ (2wo¢ — N/T4)s + wi
s(s+ N/Ty)
Unless it is explicitly stated, { =1 in the sequel. Without derivative action

(3.9-3.11) are meaningless. Instead the observer approach is equivalent to
tracking anti-windup for this particular case.

W(s)

(3.11) -
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Discrete-Time PID Controllers
Tracking anti-windup in a discrete-time PID controller (3.4) is described by

h
— h 1 h
M = 1(;t ] , W= im and A,(q) = (q—1+‘ﬁ)(q—7) (3.12)

similarly to the continuous-time case. For the matrix M a state space real-
ization corresponding to (3.2) is presumed. If 7; = h one pole is placed in
the origin. This implies that the integrator is immediately reset to a value
such that the controller is exactly at the saturation limit. This is denoted
back calculation, and is discussed in Section 2.4, especially in Example 2.4.
The conditioning technique is equivalent to T; = bT;. A more general choice
of observer poles, corresponding to (3.9), may also be used.

Incremental Algorithms

In an incremental PID controller, e.g. (3.6), there is no integral part that
winds up during saturation. However, the derivative and proportional parts
may give undesirable transients, see Fertik and Ross-{(1967). A common
anti-windup implementation of (3.6) is ’

o) = (k= 1)+ K (b3 (8) = () + (i = )un(l — )
N 2 ' ~ © (3.13)
- <E - 1)3/("’ —1) ~ Ny 1_—7q‘:1‘3/(k))

i.e., the control increment is added to the saturated control signal u. Then
the excess Av is discarded. It is easily verified that (3.13) is equivalent to
Ao,(q) = q(q — 7), ie., tracking with Ty = h. Other choices of observer
polynomials A,(g) in discrete-time PID controllers are discussed in Walgama

and Sternby (1990).

Conditional Integration

After an evaluation in Section 2.3 a conditional integration method denoted
C3 was judged best. This method is used in the sequel when conditional
integration is tested and discussed. In method C3 the integral part is kept
constant until the control error changes sign or the controller desaturates.
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Nonlinear function

— f

—G =

Linear dynamics

Figure 3.3 A linear system G with nonlinear feedback f in standard configu-
ration for stability analysis.

3.3 Stability Improvements when using Anti-Windup

In this section the stability improvements using observer-based anti-windup
will be analyzed. The block diagram in Figure 3.2 can be put in the standard
form in Figure 3.3. The nonlinearity f is a unit gain saturatlon, and

GGy — W
1+ W

where G, is the process transfer function, Gy, the feedback part of the con-
troller, and W is the anti-windup transfer function.

The negative inverse of the describing function N(a) of a unit gain sat-
uration, see Atherton (1975), is the interval (—oo,—1] of the real axis, see
Figure 3.4. If G(iw) intersects this interval, instability or limit cycling is
predicted by the describing function method. From the Off-Axis Circle Cri-
terion it follows that it is necessary that G(iw) does not intersect the interval
(—o0,—1].

This condition is not sufficient. Although the Nyquist curve G(iw) in
Figure 3.4 does not intersect the interval (—oo,—1], the conditions for abso-
lute stability by the Off-Axis Circle Criterion are not satisfied. Thus neither
stability nor instability can be concluded. In a few test cases of this type
instability was not observed even if G(iw) was very close to —1 without
intersecting —1/N(a). However, an intersection of —1/N(a) quickly leads
to instability or limit cycles. The analysis below concentrates on avoiding
—1/N(a). This can be easily checked by investigating the variation of the
argument of G + 1, where

G = (3.14)

Gbep +1

G+1—
+ 1T W

(3.15)
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Off-Axis line

Im

Figure 3.4 Example of a Nyquist curve G(iw) where the describing function
method does not predict instability or limit cycles, since G(iw) and —1/N (a.),
where N(a) is the describing function for a saturation, do not intersect each other.’
The dashed line through -1 always intersects G(iw). Thus sufficient conditions
for stability by the Off-Axis Circle Criterion, Theorem 2.3, are not satisfied.

It suffices to examine (1 + W (iw))™! to see how arg(G(iw) # 1) changes with
the anti-windup parameters.

From (2.15) it follows that W = H(sI — F)"'M, where H, F and M

are matrices in the state space realization (2.13) of the controller, i.e.,

t=Fe+Gryr — Gy + M(u —v)
v=Hz+ D,y, — Dyy

u = sat(v)
The controller can also be written, (2.17),

Ao(s)V(s) = T(s)Yr(s) — S(s)Y (s) + (Ao(s) — R(s)) U(s)
u(t) = sat (v(t))

It follows from Kailath (1980, pp. 198, 651) that

1 _ det(sI — F) _ R(s)
1+W(s) det(sI—F+MH) A,(s)

(3.16)
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'
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Figure 3.5 Tracking anti-windup is added to the Nyquist curve G(iw) in Fig-
ure 3.4. Both the original curve and the curve with anti-windup is shown. For
the latter curve the geometric condition for absolute stability by the Off-Axis
Circle Criterion is satisfied. One point on the original Nyquist curve is traced
(for constant w) to the new Nyquist curve. The phase advance is dominant for
low frequencies, while G(iw) changes only marginally for high frequencies.

Thus (1 + W(s))™! is the ratio between the characteristi¢’ equatlons for the
controller and the observer respectively.

The stability properties of G + 1, with respect to the negative real axis,
can now simply be examined. It is often desirable that arg(G(iw) + 1) in-
creases, i.e., that arg(l + W(iw))™! > 0 in order to avoid the negative real
axis. Thus it is often desirable that arg W (iw) < 0.

Stability Improvement using Tracking Anti-Windup
In tracking anti-windup, see (2.19), the anti-windup transfer function is

1

W(s) = sT

where T} is the tracking time constant. Note that this is valid for all con-
trollers with integral action where only the integrator is “adjusted” during

saturation. Hence
1 .STt

1+W 1+ T,

which always has positive phase and an amplitude less than one. In fact,

(3.17)
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(1 + W(iw))~! describes a semi-circle in the first quadrant with end points
in 1 and 0 and thus has a phase in the interval [0°,90°]. The following result
can thus be established.

RESULT 3.1—Stability improvement using tracking anti-windup

With tracking anti-windup the argument of G(iw)+1 increases by an amount
in the interval [0°,90°] and |G(iw) + 1| decreases when the tracking time
constant T} decreases from co. Thus G(iw) is moved counter clockwise away
from —1/N(a). O
Result 3.1 is illustrated in Figure 3.5. The phase advance does not guarantee
that stability can be proved using any of the circle criteria. If the loop gain
GrGp, i.e., without saturation, satisfies a number of conditions it is, however,
possible to prove absolute stability for tracking anti-windup. This is shown
in the following theorem.

THEOREM 3.1-—Absolute stability for tracking anti-windup
The linear system (3.14) with tracking anti-windup

1
W=—
STt

has nonlinear feedback f. If
1. G, is asymptotically stable
2. Gfp has one integrator but is otherwise asymptotically stable

3. the nonlinearity f is monotonically non-decreasing such that f(0) =0
and A "
Osf(o-l)_f(O-Z)Sl

o1 — 09

4. there exist real constants a and 3, where ¢ = —1 and 0 < a < oo, such
that

Re ((Gps(iew)Gpiw) +1)(1 + ia)) >0, V w>0
Re ((Gpalit)Gp(iw) +1)(1 +i8)) 20 i w>wp

Re ((Gfb(iw)Gp(iw) +1)(1 +z,3)) <0 if 0<w<wg

then the closed-loop system with tracking anti-windup is absolutely stable
for 0 < Ty < oo. O

Proof: With tracking anti-windup the transfer function

o OnGy—W
14+ w
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©1

Gy (io) Gp(i )

Figure 3.6 Illustration of Theorem 3.1. Gyp(iw)Gyp (iw) is the lopp gain without

saturation. ;

is asymptotically stable. To apply the Off-Axis Circle Criterion it suffices to
show that

Re ((G(iw)"l"l)(l—}—i'y)) = Re (Gfb(iw)Gp(iw) +1

W(iw) +1

(14+i7)) >0 ¥  (3.18)

is satisfied for 0 < T; < oo and some finite 4. From 4. it is clear that this
condition is satisfied without anti-windup, i.e., when T} = co and a = 4. In
the worst case there exists a > 0 such that Re ((G(iwa) +1)(1+ia)) =& > 0
and Re ((G(iw1) + 1)(1 +ic)) = € > 0 where ¢ is very small, w; > wg and
w; < wg, see Figure 3.6. With T; = §~, where § > 0 is small, the variation
of the argument of G(iw) + 1 is larger for w; than for w, since

1 T 1 iy
— —arctanw;, T} > arg — — arctan wy T}

T Wiwr) 2 T+ W(iws) 2
for wy > wy. This also holds for w] ~ w; and w) ~ wy. Hence if
Re ((G(iw;) +1)(1+ i'y)) —e>0
then Re ((G(iw}) + 1)(1 +4v)) > & > 0 where 8 < v < a. Absolute stability

for Ty = 6=, where § is small, then follows from the Off-Axis Circle Criterion,
since the geometric condition (3.18) is satisfied.
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In the other limit, when T; = §, where § > 0 is small, all points of G+ 1,

except points for which w is very large, have obtained a phase advance of

7/2. Thus
Gfb(iw)Gp(iw) +1 .
0V
Re ( 1+ W) (1+i8) >0V
and then absolute stability for T, = § > 0, where § is small, follows from the
Off-Axis Circle Criterion, since the geometric condition (3.18) is satisfied.
Since all points with w < wg have larger phase advance than points with

w > wg it follows that absolute stability also holds for § < T; < 61, since
condition (3.18) cannot be violated. ]

Stability Improvement from Observer-Based Anti-Windup

Equation (3.16) can also be written

1 R(s (s + a;)
TFW(s) -~ Ay(s) H L5 5) (3.19)

where —a; are the controller poles and —b; are the observer poles. Tracking
anti-windup, see above, can then be described by a; =0, by = 1/T} and
b; = a; for 7 = 2,...,n. Thus tracking anti-windup can be interpreted as if it
“moves” one controller pole to an observer pole. The enumeration in (3.19)
is not unique but is assumed to be such that Y |5; — a;| is minimum. This
avoids uninteresting cases in the enumeration. :

In observer-based anti-windup a pole in the origin (al = 0) is always
stabilized (b; > 0), which implies arg(1 + W)~! > 0. Other controller poles
may also be moved by the anti-windup and their effects on arg(1+ W)~ will
now be investigated.

A single real pole 1If a single real pole is moved by the anti-windup the
argument of (1 + W)™! increases by

zw-}—a,

w w
o(w) = arg - = arctan — — arctan — (3.20)
b; a; i
When a; < 0 or b; < 0 the principal branch of arctan is not used, but arctan
instead returns values in [Z,3F]. Thus b; > a; & ¢(w) >0 VY w > 0, i.e., if
the pole is moved “to the left” by anti-windup the argument increase of
(1+ W)™ is non-negative, see Figure 3.7.

If a number of real poles are to be moved, it is seen from Figure 3.7 that
it is advantageous to first move the poles closest to the origin (or the unstable
poles). Then a large phase advance is obtained for small w (low frequencies)

while high w does not give much difference in the argument.
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A Im

Figure 3.7 Graphical proof of positivity of (3.20). ¢ > 0 when b; > a; and
w > 0.

Complez-conjugated poles When stable complex-conjugated controller
poles (including double poles) are moved by anti-windup the argument of
(1 + W)~! increases in two simple cases:

1. The poles are moved radially away from the origin, i.e., constant relative
damping (o and increasing natural frequency wy. ~* E

s

2. The poles are moved away from the origin, parallel to the imaginary
axes.

Graphical proofs, similar to Figure 3.7, are easily constructed. In these two
cases the relative damping is non-increasing. A condition for obtaining rela-
tive damping 1 without argument decrease of (1 + W)~! will now be given.

LEMMA 3.1—A circle for argument increase of (1 + W)™!
Complex-conjugated controller poles, with natural frequency wo and relative
damping (p, can be moved by anti-windup to the point —w, on the real axis
without argument decrease of (1 + W)™!, provided

wp > — (3.21)

All poles (wo, (o) which satisfy equality in (3.21) for a fixed w, are located
on a circle with radius w,/2 centered in (—w,/2,0).

Proof: The lemma is proved for the special case wy = 1. The general case

is obtained by rescaling. Let ¢ = w,/(o, ¥y = w/{y, ¥ = /1 — ¢%/¢o and
wo = 1. Then, for s =tw and 0 < { < 1,

82 +2(s +1

(5 + wn)? =p(y) = arctan(y-+1)+arctan(y—1)—2arctan % (3.22)

arg
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where
Further p ) 0
® 1 z
Ty = — 3.24
7P e ke promery il (3:24)
ie.,
dy 2 2
—(0) = ——rn — — 3.25
dy (0) 1+42 = (3.25)

which is positive if ¢ > 1492, If ¢ < 1+1? then p(y) < 0 for small y. ¢(y),
(3.22), has local extrema with respect to y = /2 if

GRS DR GRS N Gt S S

z—1 z—1

z

Kz >1+49%=(?ie,w,> (", then (3.26) has only one positive solution
21, i.e., there is only one positive solution y; to

L(y)=0 e (3/.27)

From (3.23) and (3.25) it now follows that ¢(y) > 0 V y > 0, since ¢(y)
is continuous and there is only one local extremum, which then must be
positive. In the general case, when wg # 1, it thus required. that

Wo
Wp > —

~ o

in order to get non-negative p(y).
Other poles, which satisfy equality in (3.21), have real and imaginary

parts
<— wOCO,:i:wM/l - Cg) = (— wrg‘g,j:w,.CM/l - Cg) (328)

It is easily verified that (— w2, wrlo/1 — Cg) describes a circle with
radius w,/2 centered in (—w,/2,0). O

All anti-windup methods do not move all poles away from the origin. This
is illustrated in an example.
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EXAMPLE 3.1—The observer approach for PID controllers
From (3.11)
_ (2wo — N/Ty)s + wi

W(s) s(s + N/Ta)

ie.,
1 _8(s+ N/Ty)
1+ W(s) o (8 + wo)?
If arg(1 + W(iw))~! > 0 is desired, it is necessary that wy > N/(2Ty). In
many cases, see Chapter 4, wy is instead chosen such that wy < N/(2Ty),
ie., arg(l + W(iw))™! < 0 for some frequencies. The closed-loop systems are
usually stable unless wy is very small. O

Most of the points on G(iw) + 1 can tolerate phase decrease without causing
instability due to intersection of the negative real axis. To guarantee that
G(iw) + 1 does not intersect the negative real axis it is sufficient that

max arg (W(iw) + 1) < 7 + minarg (Gp(iw) - Gyp(iw) + 1) (3.29)

Summary

g e

The main result in this section has been rules for how to choose observer
poles for a controller, such that the variation of the argument of G + 1 is
non-negative. Thus instability or limit cycles, due to intersections between
G(iw) and —1/N(a), where N(a) is the describing function for a saturation,
can be avoided. However, absolute stability by any of the circle criteria is
not guaranteed, except in special cases. ’

When a non-negative variation of the argument for G(iw) + 1 is desired,
the derived anti-windup rules all say: “move the poles farther away from the
origin”. However, in the next few sections, where disturbances are considered,
this will not always be a good choice.

3.4 Disturbances

The discussion in previous section focused on stability issues when anti-
windup is used. The results indicate that a small tracking time constant T
or a fast observer is the best choice. Then limit cycles are avoided although
absolute stability cannot always be proved.

However, experiments in the laboratory show that, e.g., a small tracking
time constant T} is not a good choice when there are disturbances. Fast
anti-windup may lead to a highly undesirable result in such cases. This is
illustrated for two different disturbances.
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Figure 3.8 Set-point change and impulse disturbance response for the labora-
tory double-tank process in Example 3.2. Notice that after the disturbance the
control signal first saturates at the lower limit, and then qulckly desatura.tes and,
resaturates at the upper limit. This causes the tank level (y) to remain well over
the set point for a while, before it decays to the set point.

ExXAMPLE 3.2—Impulse disturbance

A PID controller with tracking anti-windup is used for cOntrol of the lower
level in a laboratory double-tank process, consisting of two cascaded tanks,
see also Section 4.1. If a cup of water is quickly poured into the lower tank, a
very undesirable response is obtained when a small tracking time constant T}
is used, see Figure 3.8. The reason is that when T} is small the integrator in
the PID controller is adjusted too fast, which for this particular disturbance
makes the controller resaturate at the wrong controller limit. The disturbance
is well approximated by an impulse. O

EXAMPLE 3.3—Measurement noise

A PID controller with fast tracking anti-windup is used for position control of
a DC servo, see also Section 4.2. If a measurement disturbance, in this case a
high-frequency sinusoidal disturbance, is added to the position measurement -
when the controller is close to saturation, a position offset is obtained, see
Figure 3.9. The reason is that the disturbance saturates the controller during
one part of the period. During the saturated part of the period the value of
the integrator is quickly adjusted, due to fast anti-windup, but during the
unsaturated part of the period the integrator value changes much slower. A
larger tracking time constant would give smaller offset. O
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Figure 3.9 Simulation of set-point change, load and measurement disturbances
for the DC servo in Example 3.3. During the load disturbance. the controller is
close to saturation in stationarity. Then a sinusoidal measurément disturbance,
partially saturates the controller and causes an offset in the process output y.

The two examples clearly show that fast anti-windup may lead to undesir-
able results when disturbances occur. Note that in Example 3.3 both the
set-point change and the load disturbance was handled “well with a small
tracking time constant. Thus the sensitivity for the impulse disturbance and
the measurement noise in the two examples cannot be predicted when only
set-point changes and load disturbances are used for evaluation of the anti-
windup. Instead special investigations are required, which will be presented
in the next two sections. The insight obtained from these investigations will
be used for derivation of design rules for anti-windup, e.g., limits for the
choice of tracking time constant Tj.

3.5 Impulse Disturbances and Anti-Windup Design

In previous section it was demonstrated that the effects of disturbances may
be highly undesirable if the anti-windup is too fast. In this section the ef-
fects of impulse disturbances will be analyzed. The analysis will give insight
into the combined effects of PID control with anti-windup and impulse dis-
turbances. From this insight design criteria may be formulated. The criteria
then lead to design rules for the anti-windup, e.g., limits for the tracking time
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d

——{ Gy Gals) |— =

Figure 3.10 The process G, = G1 Gy is separated in two parts. Disturbances
d act only on Gj.

constant 73;. A drawback with this approach is that closed-loop stability is
not guaranteed, but has to be checked separately. The main results in this
section are the insight on the effects of impulse disturbances, and design rules
for anti-windup parameters.

Problem Formulation

The impulse disturbance is a good model of a relatively fast disturbance, see,
e.g., Example 3.2. For mechanical systems a collision may be modeled by an
impulse.

The effects of impulse disturbances will now be analyzed. The distur-
bance is assumed to enter as shown in Figure 3.10. Two"cases are studied.

Case A Relative degree one disturbance influence

Assume that the relative degree of G5 is one, and (3 is scaled such that

lim sGy(s) =1 e " (3.30)
A simple example is
1
G = 31
28) = s (3.31)

An impulse disturbance d(t) = dy - §(¢) then results in an immediate change
dy in the process output y.
Case B Relative degree two disturbance influence

Assume that the relative degree of G5 is two, and G5 is scaled such that
slim s2Ga(s) =1 (3.32)

A simple example is

1
(s +a1)(s + az)

An impulse disturbance d(t) = dg - §(¢) then gives an immediate derivative
change dy in the process output y.

Ga(s) =

(3.33)
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Figure 8.11 The two cases of impulse disturbances, i.e., (3.31) and (3.33) re-
spectively, are shown in a simulation of the double-tank process from Example 3.2.
Case A corresponds to pouring a cup of water in the lower tank, and case B to
pouring the cup in the upper tank. The integral of the control error is zero for
both disturbances when anti-windup is not in effect.

The process transfer function G, = G; - G is assumed to have a relative
degree of at least two. If the relative degree of G}, is one there is usually not
much use for the derivative part in the PID controller. The assumption of a
relative degree of at least two also simplifies the analysis immediately after
the impulse disturbance.

Let the state space representation of the process in-Figure 3.10 be

z = Az + Bu + Ed

3.34
Y= Ca (3.34)

The impulse response from the disturbance input is -

° $(i—1)

hy(t) = Ce*E =CE+CAEt+---= > f; =] (3.35)
- !

where §; = C A""' B are the Markov parameters. In case A, CE =1 and in
case B, CE = 0 and CAE = 1. Similarly, CB = 0 since the relative degree
of Gp is at least two. The two disturbances are shown in Figure 3.11. When
a PID controller is used the integral of the control error is zero both in the
unsaturated case and in the saturated case without anti-windup, provided
that the closed-loop system is stable. In the latter case the response usually
has large overshoots. )
The approach taken in the analysis and design is to study the control
signal v(¢) in the following case. Assume that the set point y, = 0, the con-
troller limits #min < 0 and uymax > 0, and that all initial conditions are zero.
Further, assume that a positive impulse do§(t) to the process G, immediately
saturates the controller at the lower limit %.,i,. Since all feedback, except the
anti-windup in the controller, is broken, the block diagram in Figure 3.2 can
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Figure 3.12 When y, =0, d(t) = do5(t) and the controller is saturated at the
lower limit %mj, the block diagram in Figure 3.2 can be redrawn into this block
diagram.

be redrawn as shown in Figure 3.12 provided that the process G,, is separated
as shown in Figure 3.10. The control signal v(t) will be studied in cases A
and B. The idea is to choose the anti-windup such that v(t) satisfies some
design criteria which will be formulated below. e

Formulation of Design Criteria

The design criteria for anti-windup are based on the insight gamed from the
following example.

P
Ed

EXAMPLE 3.4—Tracking anti-windup for case A
A simulation of the double-tank process, see Example 3.2, and PID control
with tracking anti-windup is tested with an impulse dlsturbance. Process
outputs y and control signals v for different tracking time constants 7T, are
shown in Figure 3.13. A rather large value of N, the derivative filter constant,
is used in these simulations. The PID controller is then close to an ideal PID
controller which has N = oco.

Initially v(t) resembles a negative impulse, which is caused by the deriva-
tive part in the controller. Immediately after the impulse, the value of v
depends on the tracking time constant T;. In the worst case the controller is
immediately desaturated, see the dotted line in Figure 3.13. Compare also
Example 3.2. For larger values of T} the desaturation is not immediate and
for very large values of T; the desaturation comes very late, see the dashed
line in Figure 3.13. Note the under- and overshoots in y respectively for small
and large T;. O

From Figure 3.13 it is thus clear that a moderate value of the tracking time
constant T; gives a good performance. Small and large values of T} do not
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Figure 3.13 Simulation of three cases of tracking anti-windup performance
for an impulse disturbance in case A. For large tracking time constants T; the
control signal desaturates too late, which causes excessive overshoot. For a too’
small tracking time constant the control signal instead resaturates at the opposite
limit, which causes undershoot. For a moderate tracking time constant the two
extreme cases can be avoided and good performance is obtained. The processis a
simulation of the double-tank process from Example 3.2. A large derivative filter
constant, N = 50, was used in this simulation. Time ¢, will be defined later.

give good performances. An immediate desaturation gives undershoot and if
desaturation occurs after the control error has changed sign a larger overshoot
may be expected.

For case B there is no step change in the process output and thus no
impulse from the derivative part in the controller. Then the anti-windup does
not affect the initial value of the controller. However, the choice of, e.g., T},
affects the desaturation time for the controller.

The design criteria for anti-windup are chosen as follows.

Design criterion 1 The control signal must not desaturate immediately
after the impulse disturbance. This demand is relevant only in case A. O

Design criterion 2 The control signal must desaturate before the control
error changes sign for the first time after the impulse disturbance. O

Before proceeding to the analysis of anti-windup, the design criteria will be
slightly reformulated in order to get practical and simple test quantities. The
phrase “immediately after the impulse disturbance” implies that the right
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limit value v(0y) of v(t) at time ¢ = 0 is the interesting quantity when design
criterion 1 is checked. Assume that the Laplace transform of v(t) is

V(s) =vo +v18 +v28% + -+ + Vp(s) (3.36)

where V,(s) is strictly proper. The right limit value v(04) is given by the
initial value theorem

v(04) = a]i’rr;o sVp(s) (3.37)

see, e.g., Kailath (1980). If V(s) is not strictly proper v(t) contains impulses
6(t), etc., at time ¢ = 0.
Design criterion 1 can be written: v(04) < Umin- O

The following criterion is usually simpler to evaluate, but it is not sufficient.

Design criterion 1I' The control signal must at least satisfy the inequality
v(0+) < 0. ]

As long as the controller remains saturated after the impulse disturbance,
the control signal is

o e

Gfb w Umin
S LIS VAT A S _
1+W + 1+W s (3.38)
see Figure 3.12. The process output ié e
Umin |
Y =G, . + Gady (3.39)
or in time domain
Y(t) = H(t)umin + h2(t)do (3.40)

where H(t) is the step response of G and hy(t) the impulse response of Gs.

DEFINITION 3.1—Time ¢,

When the saturated control signal u(t) = wmin, see the dashed lines in Figure
3.13, the control error changes sign for the first time at time ¢ = ¢,. Thus ¢,
is implicitly given by the equation

y(ty) = H(t, Yumin + ha(ty)do = 0 (3.41)

If this equation has more than one positive solution, ¢, is chosen as the
smallest of these solutions. O
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If the desaturation time is t4, i.e., 4 is the smallest positive solution to v(t4) =
Umin, design criterion 2 requires ty < ¢y. Both 4 and t, are, however, rather
complicated to determine since two nonlinear equations must be solved. This
can be done numerically, but little insight is gained and the design rules are
not easily formulated.

It is, however, in many cases possible to evaluate v(t), given by (3.38),
at time ¢ = 1, and still satisfy design criterion 2, provided a few assumptions
are valid. In fact, time ¢, does not even have to be determined. It is sufficient
to know that y(t,) = 0 and %(ty) < 0 provided % = ¥pin. Then, presuming
U = Umin, v(ty) is given by relatively simple expressions. Note that v(t)
computed in this way does not give the correct value of the control signal
after desaturation at time t4. However, if v(t4) = Umin then it is clear that
for v(t) given by (3.38), i.e., when u = unin

{v(t) > Umin

ty) 2 Umi 42
DR (RS (3.42)

See the solid signal v(¢) in Figure 3.13.

Design criterion 2' The control signal v(t), given by (3.38), must satisfy
v(ty) > Umin Where ¢, is defined in Definition 3.1. O

Remark. If v(t) oscillates then resaturation may occur in the interval [t} 1,].
Design criterion 2' is not valid for such control signals. O

% T A

Analysis and Design of Tracking Anti-Windup
Now (3.38), i.e., A
Grb W Unin
V=- Y .
1+W + 14+4W s
will be further analyzed for tracking anti-windup in a PID controller. Then,
see Sections 3.1-3.2,

_ K (N+1)32 +(N/Td +1/Ti)s —{—N/(Tde)
o S(S+N/Td)

Grp

1
W= —
STt
To simplify the analysis for tracking anti-windup the PID controller is for the
moment assumed to be ideal, i.e., the derivative filter is neglected by letting .
N — oo. This approximation is reasonable when Ty > 3T;/N. Then

Gfb _ Td32+3+1/Ti
1+W s+1/T; (3.43)
:K(Tds—l— (1-—E) I )
Tt 1+3Tt
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where . T
d t
=—=— — 3.44
and the control signal v(t), from (3.38), is
dy T
o(t) = —KTa (1) - K(1 - T)y(t)
(3.45)

t
1 -
- Kf(Tt)/ T e~/ Tey(5) ds + (1—e t/T‘)umin
0

The design idea is to choose T; such that design criteria 1 (or 1') and 2' are

satisfied for v(¢). Recall that

y(t) = H(t)umin + hZ(t)dO

dy dh, (3.46)
where H(0) = h(0) = 0 since the relative degree of G, is at least 2. Further,
in case A

Rk

ho(t) =CE+ CAEt+---=1— oyt +--- ,
(3.47)

dd—’;z(t) = CE§(t)+ CAE+ CA*t +..- =6(t) —a; + CA’Et + ...
where CAFE = —a; has been introduced. Hence

e

d
y(04)=dy  and %(0+):—a1do

If a3 > 0 then y(t) has a negative derivative for small ¢, see, e.g., Figure 3.13.
For t ~ 0 in case A, the control signal is

v(t) = —KTy(8(t) — a1)do — K(1 - %‘)d0 (3.48)

i.e., there is a negative impulse in the control signal at time ¢ = 0. The
impulse comes from the derivative part in the controller and affects the inte-
grator via the anti-windup. Hence the right limit value of the control signal
is

T,
v(04) = K(T‘t‘ + Tyay — 1) do (3.49)

To satisfy design criterion 1, i.e., no immediate desaturation or v(04) < wmin,
it is required that
Tq

T >
* 7 T— 1Ty + wmin/ (K do)

(3.50)

63




Chapter 3 PID Control with Anti- Windup

Here the lower limit for T} depends on both i, and the impulse magnitude
dy. Design criterion 1', i.e., v(04) < 0, corresponds to the limiting case when
Umin — 0 or dg — oo. Since v(04) is already obtained by an approximation,
i.e., N = oo, the simpler design rule implied by design criterion 1’ is chosen.

RESULT 3.2—Design limit for tracking anti-windup in case A
For satisfaction of design criterion 1, i.e., v(04) < 0, it is necessary that

Tq

T P
g p—

(3.51)

where a; = —CAE, and C, A and E are defined in (3.34). O

Design criteria 1 or 1' can never be satisfied when the following Result holds.

RESULT 3.3—Immediate desaturation
If 1 — a;T4 < 0 the controller desaturates immediately, irrespective of how
T} is chosen, since then v(04) > 0, see (3.49). O

The continued analysis in this section requires that at least 1 — a7y > 0 but
Result 3.2 must also be satisfied. Cases where 1 — a; Ty < 0 will be studied
in simulations in Chapter 4. g

The simplicity of Results 3.2-3.3 depends on the approximation N = oo
in Gyp. If N is finite (3.43) and (3.45) also contain the pole —N/T; and
the mode e *V/T4 respectively instead of only —1/T; and e~ */T, Further,
v(04+) = —K(N + 1)dy which is independent of Tj. y

According to design criterion 2, v(ty) — umin > 0 is*required.” Thus,

using (3.45) and (3.41)

ty
dy 1
t — Umin = —KTy; —=(t - K I ’_(ty_-’)/Tt d
'v( y) U d dt( y) f(Tt)!Tt e y(s) S (352)

—_ e~tll/Tf

Umin

Since Umin < 0, %(ty) < 0 and y(t) > 0 for 0 < t < ¢, it is clear that
v(ty) — Umin > 0 if f(T3) < 0. Thus the sign of f(Ty), (3.44), has to be
checked, where

Tq Ty
Ty =28 _ 142t
f( +) T, + T
which has the local minimum
4T,
fmin = 4/t =1 for Ty =+/TiTy (3.53)

T;
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and if T; > 4Ty

: AT,
F=0 for ﬂ:%éi L—ﬁ) (3.54)

If T; > 4T, the obvious choice is to make f(T3) < 0.

RESULT 3.4—Design limits for tracking anti-windup
Design criterion 2', i.e., v(ty) > ¥min, is satisfied when T; > 4T; and T; is
chosen such that

T; 4Ty T; 4Ty

14 f1— <T, <=t - :

2(1 1 T,->_Tt"2<1+ 1 Ti) (3.55)
Without derivative action the design limits are 0 < Ty < T5. 1

In case A Result 3.2 must also be considered. However, it may happen that

Tq

——F>T;
1——(11Td >

also when T; > 4Ty. If then T} > T4/(1 — a1T4) > T; the controller will not
surely desaturate either at time ¢ = 0 or at time ¢ = ¢,. Design criterion 2'
is then not surely satisfied. A possible conclusion is that T; must always be
less than (or equal) to T; even if Result 3.2 is violated.

RESULT 3.5—Revised design limits for tracking anti—winc‘fi;p'
It is necessary that T is chosen such that

0<T,<T; (3.56)

If possible Results 3.2 and 3.4 must also be followed. O

If T; < 4Tq it is still possible that v(ty) > umin for some T, but it is difficult
to prove in the general case. A possible strategy is to approximately minimize
the integral term in (3.52), which now is positive. Neglecting initial conditions

tﬂ
1
I=f(T) / € D Ty (s)ds ~
o Tt (3.57)

= 1) - (u(t) - T (1) + 1254 )~ )
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The following observations can then be made

1. Ify(t,) =0 and & (t) < 0 is constant, minimization of f(T}) - T3, i.e.,
choosing Ty = T3/ 2 minimizes I.

2. In other cases the minimizing T; depends on y(t). The second best choice
is then to minimize f(T%), the coefficient in front of the integral, i.e., to

choose T; = /T;T}.
When T; > 4Ty both Ty = T;/2 and T; = +/T;Tq satisfy Result 3.4. When
T; < 4T then /T;Ty > T;/2. Hence T; = 1/T;T4 is a “safer” choice in case A,
when Result 3.2 also must be satisfied.

RESULT 3.6—Design rules for tracking anti-windup
The two design rules

T, = /T;T; (3.58)

T, = (3.59)

ao|

both satisfy Result 3.4 when T; > 4T;. When T; < 4Ty the two choices
approximately minimize the integral (3.57). If y(¢) has a constant derivative
at time ¢t = ¢, then T; = T;/2 minimizes the integral. The choice T} = /T;Ty
minimizes the coeflicient in front of the integral in (3.57) and is better when
Result 3.2 must be satisfied. O

Small values of T; In the results above small values of T; are excluded,
since the derivative filter in the controller cannot be neglected when T; <
3T;/N. In case A T} is also limited by Result 3.2. In case B it may, however,
be possible to use small values of T;. This will now be investigated.

Above the derivative filter was neglected when T; > 3T;/N. For small
values of Ty it is instead reasonable to neglect the “integrator” dynamics

when T; < Ty/(3N), i.e., letting sT; — 0. Then the control signal, (3.38), is

Gfb 1 Umin
V =— Y
1+W + 1+W s
1 N2\ N® 1 1 (3.60)
- K 1 = s - o
Tt<(N+ )s + (T,- Td) T2 s+N/Td) Y+ 5 Lmin
Hence
N2
o(t) = - KT, ((N %0+ (- 5 )u®
(3.61)

N® |
T / eI Tay(s)ds | + wmin
d

0
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3.5 Impulse Disturbances and Anti- Windup Design

Integration by parts gives

t t
N3 N2 d d?
—(t—8)N/Ty _ _ a %Y —(t—-)N/T. & Y
= /e W(s)ds = 7-u(t) - Np () + T [ e “Y(s)ds
0 0

(3.62)
which yields
T, d / &
o(0) = K gra(§) ~ KT gl — KTy [N 5)do s (363)

0

Evaluated at time #,, when y(¢,) = 0 and %(ty) <0,

t
dz
v(ty) — Umin = ——KTt%(ty) — KT\T, / e—“—s)N/TdE-t—g(s) ds  (3.64)
0

If %%’— < 0, at least during the last part of the time interval [0,t,], design
criterion 2' is satisfied, i.e., the controller desaturates before the control error
changes sign. e

RESULT 3.7—Fast tracking anti-windup in case B
Fast tracking anti-windup, i.e.,
Td '
0< T < — o ' (3.65
<1 < 3N : ( )
is in case B a sufficient condition for desaturation according to design crite-
rion 2', provided

d?y
W S 0 for 0<t S ty
or at least during the last part of the interval, e.g., for ¢, — 3Ty /N <t < t,.

O

Synthesis of design rules Now Results 3.2-3.7 will be synthesized into
design rules for tracking anti-windup in cases A and B respectively. In the
synthesis a result from Section 3.6 is also considered. There it is shown that
larger tracking time constants Ty are preferable.

RESULT 3.8—Design rule for tracking anti-windup in case A
Choose
T; Tq

T, — min<Ti,maX(\/Tde, 5 ,m)> when 1 — a1 T3 >0
T, when1—a;7T; <0

(3.66)
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Normally this rule chooses the largest value of +/T;Tq and T%/2, but when
a1Ty grows Results 3.2 and 3.5 are applied. When a7y > 1 immediate
desaturation is obtained and the analysis was discontinued, but Ty = T} is
suggested for this case too. O

RESULT 3.9—Design rule for tracking anti-windup in case B

Choose
T, = min(T,-,max(\/T,-Td, %)) (3.67)

Now immediate desaturation need not be considered. However, due to the
result in Section 3.6 small values for T}, see Result 3.7, are omitted. O

These rules are valid if 7; > 3T;/N, when one controller mode may be
neglected. When T; > 4T, the design criteria are satisfied (sufficient condi-
tions), except when Result 3.2 demands a value of T} outside the interval in
(3.55). This completes the analysis and design of tracking anti-windup with
respect to impulse disturbances.

Analysis and Design of Anti-Windup by the Observer Approach

The observer approach anti-windup will be analyzed snmlar to tracking anti-
windup. Thus the control signal, i.e., (3.38),

G Y+ W umia

V:—l-}-W 1—|—W' s

will be studied in case A and B when

(N—I—l)s + (N/Tq +1/T:)s + N/(T:Tq)
s(s+ N/Ty)
(Zwo ——N/Td)s—}—wo
s(s+ N/Ty)

Gy

W(s) =

see Section 3.1-3.2. In the observer approach both controller poles are moved
to —wg by the anti-windup. The process output is given by (3.39), i.e.,

Y = Gp==i | Ghdy
8

In contrast to tracking anti-windup the derivative filter cannot initially be
neglected in the analysis. The transfer function

Gfb
1+W

=K(N+1+

go3 + g1 > (3.68)

(s wo)?
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3.5 Impulse Disturbances and Anti- Windup Design

is proper and

N 1
9o ==+ = —2(N 4+ 1L)wp
Ta T (3.69)
N .
a1 = T.T,

Since (3.68) is proper it follows that V(s) is strictly proper, i.e., v(t) does
not contain impulses at time ¢ = 0.

In case A the controller is immediately saturated if
v(04+) = —K(N + 1)do < %min (3.70)

In case B the controller is not immediately saturated. However, for small
times ¢ when the controller has not yet saturated

dv
E(t) ~—K(N +1)d, (3.71)

Thus, if dj is sufficiently large, the controller quickly saturates. For s1mphc1ty
this case is treated as if the controller saturated at time £ = 0.

Further analysis of v(t) for ¢ & 0 is deferred until later. For the continued
analysis it is assumed that v(t) remains saturated for a while. Then it follows

from (3.38) and (3.68) that

e

V(1) — Umin = — K(N + 1)y(t) — Kgo /(1 —wgs)e %yt — s)ds

i

— Kg; /se_“"”y(t —8)ds

0
- ((% — w0>t + 1> 0t min

From design criterion 2' this quantity should be positive at time ¢ = ¢,. A

From the definition of time %, see (3.41), it is clear that y(¢) > 0 for
0 <t <ty and y(t;) = 0 in both cases of impulse disturbances. Thus
v(ty) — Umin > 0 if

(3.72)

91<0 and go=0 (3.73)
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Chapter 8 PID Control with Anti- Windup

since then all terms are zero or negative. Thus it is required that

N
<
W = Td
N 1 1
> . ~ 3.74
NEVN T VITa (374
1 1

”°=z—u“v‘:ﬁ(%+%) ~ o,

All conditions may be satisfied if T; > 4T3 and N > 1/2.
RESULT 3.10—Design rule 1 for anti-windup using the observer approach

Design criterion 2', i.e., v(ty) > %Umin, is satisfied when T; > 4Ty, N > 1/2,
and wy is chosen such that

1 N 1 1
= —_— | — P — ~ — 3.75
wo 2(N+1)(Td+T.-> 2T, (3.75)
O
If T; < 4Ty it is still possible, but in general hard to prove, that v(¢y) —wmin >
0. It is, however, possible to approximately minimize the integral terms in
(3.72), compare tracking anti-windup. Neglecting initial conditions
b
I= / (go(l —wps) + gls) e “%y(t — s)ds (3.76)
0

1 2 dy 3 2 \d%y ,
== t -2 )% S L O W
> (gly(y)+ (00 200 ) )+ (G- Zow) T+
The following observations are made.
1. If y(¢y) = 0 and %(ty) < 0 is constant, 2¢g; < wogo, i.e., wy > 2/T;,
makes I < 0 and design criterion 2' is satisfied.

2. In other cases the minimizing wy depends on y(t).

Thus three quantities, 1/(2Ty), 1/4/T:T4 and 2/T;, are lower limits or exact
conditions for wy. When T; > 4T,; then 1/(2Ty) is the larger of the three
quantities, otherwise 2/T; is largest.

RESULT 3.11—Design rule 2 for anti-windup using the observer approach
The general design rule

1 2

satisfies Result 3.10 when T; > 4T,;. When T; < 4T; design criterion 2’ is
satisfied for the special case when y(t,) = 0 and y(¢) has a constant derivative.
]
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3.5 Impulse Disturbances and Anti- Windup Design

If y(t) is not well approximated by a straight line the following design rule
may be better to use.

RESULT 3.12—Design rule 3 for anti-windup by the observer approach
Choose

1 1
- - = , 3.78
W = max ( Ty’ 2Td> ( )
When T; > 4T Result 3.10 is satisfied. When T; < 4Ty then at least g; = 0
but go > 0 in (3.72). O

For large wy the controller desaturates rather quickly. There is, however,
one significant difference compared to tracking anti-windup. The initial value
of the controller is v(04+) = —K(N + 1)d, in case A, irrespective of wy. This
value does not give any upper limit for wg similar to the lower limit for T}
in Result 3.2, ie., T3 > T4/(1 — @1Ty). However, for large wo and relatively
small times ¢ a minor result is obtainable from an investigation of v(¢) in
case A.

Assume that we > N/Ty. Then

Grp s
K(N 1) — s 3.
1+W - KN+ )(s-l—wo)2 ( /79)

w 2wps + wd
—
1+W (.S +(.¢J0)2

(3.80)

Further, neglect H()umin in y(t), i.e., consider only the disturbance impulse
response hy(t)dy in case A, see (3.40). This is reasonable if time ¢ is relatively
small. Then from (3.38),

32

(5 + wo)?

V-2 (KN +1)Gado + u‘;‘“‘) (3.81)

8

If the impulse response hy(t)d, is almost constant for small ¢, i.e., ha(t)dy ~

dy, then
s

Yos
V=20 o (KN +1)do +tmin) - g .
p (N+1)do +u (5 + wo)? (3.82)
i.e.,
v(t) — Umin = — (K(N +1)do + Umin) - (1 — wot)e™ 0! (3.83)
Thus desaturation occurs for time ¢; = w; ', if the simplifications above

are valid. In Figure 3.14 this is tested and verified for a simulation of the

71

[




Chapter 8 PID Control with Anti- Windup

omegao =
umax 42 1 1/2 1/4

umin 1/8

—5;

10 N/Td =1/3

-‘15 T T 1 ]
0 5 10 15

Figure 3.14 Anti-windup by the observer approach for a simulation of the
double-tank process in Example 3.2. The desired control signal v(t) is shown for
different large wo. When wg > N/Tj; it is seen that the desaturation time #g is
such that woty ~ 1. When wy < N/T; then woty is larger. For large wq v(%)
resaturates and then remains at v = umax a while before the final desaturation.

double-tank process in Example 3.2. For wy > N/Ty it thus seems possible
to estimate the desaturation time #4 from the relation tjwy =~ 1. When
wg < N/Ty4 the product tqwy > 1 in Figure 3.14. If a minimum value for the
desaturation time ¢4 is specified, it is thus possible to get an approximate
upper bound for wy.

T

’

RESULT 3.13—Design limit for the observer approach in case A
A desaturation time ¢4 > o, where ¢y is some predetermined or desired value,

is approximately obtained if
1 ;
wy < — .~ ’ (384)
to -0
1

Remark. When wy < N/Ty the upper limit in (3.84) is probably conserva-
tive.

RESULT 3.14—A lower limit for the desaturation time in case A
For a given value of wy, the desaturation time 4 is (approximately) such that

1
tg > — .
a2 (3.85)
O

Design rules Two general design rules, see Results 3.11-3.12, suggesting

w 1 2 d 1 1
=max [ —, — an wp=max | —, ————
0 2Ty’ T; ’ 2T, T;Ty
have been derived for the observer approach. Their performance are, however,

not predicted but has to be evaluated in simulations and experiments. In case
A the design limit in Result 3.13 may be used.
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3.5 Impulse Disturbances and Anti- Windup Design

Summary

In this section anti-windup by tracking and the observer approach have
been analyzed for process impulse disturbances. Design criteria for the anti-
windup methods have been formulated and design rules have been derived.
When T; > 4T, sufficient conditions for satisfaction of design criteria were
obtained. When T; < 4T, the obtained conditions may be sufficient in the
special case when the process output has constant derivative. In other cases
the conditions have to be evaluated in simulations or by experiments.

When T; > 4T, the noninteracting PID controller can be converted to the
interacting PID controller (3.3). Hence corresponding design rules for anti-
windup in an interacting PID controller are always sufficient for satisfaction
of design criterion 2. However, it may in some cases be necessary to make an
exact parameter conversion for finite N instead of the simplified conversion
which only holds for infinite N.

The obtained anti-windup design rules will be tested in simulations and
experiments on a number of different processes in Chapter 4. The evaluation
will also reveal if the design criteria are well chosen.

3.6 Sinusoidal Measurement Disturbances.-

If the measurement signal y is contaminated by a sinusoidal disturbance large
enough to cause partial controller saturation the anti-windup mechanism will
cause an offset in the output y. This is most noticeable when the controller
is close to saturation, and was demonstrated in Example-3.3. The size of
the offset depends on the speed of the anti-windup, e.g., the tracking time
constant T3 or the observer bandwidth wy.

One immediate way of eliminating the disturbance is to filter the mea-
surement signal. This is, however, feasible only when the disturbance fre-
quency wq > w, the crossover frequency. If wq is relatively close to w,, say
wqg < bSwe, then the filter cannot both damp the disturbance well and be
negligible in the loop gain. This is the type of situation considered, although
a high disturbance frequency is assumed in the derivation below. If the con-
troller is not close to saturation then the amplitude n; and the frequency
wq are assumed to be such that the resulting oscillations in u and y are in-
significant, and there is no offset in the process output y if the controller has
integral action.

PID Controllers and High Frequencies
For high frequencies the feedback controller transfer function (3.1), has the
property
lim Gpp(iw) = K(N +1) (3.86)
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which is assumed to be valid for w > 3N/T;. For discrete-time PID con-
trollers, however, the high-frequency behavior also depends on the choice of
the sampling interval h. To avoid aliasing only frequencies w < w/h are
considered. For high frequencies the feedback path of a discrete-time PID
controller, (3.4), is

- h %
i why — — N. 2 3.87
wEI;-l/thb(e ) K(l oT; 1+7) (3.87)
where, from (3.5),
Tq
T= 5
Nh+Ty

Thus, if h — 0, then v — 1, and (3.87) will coincide with (3.86). The two

equations are assumed to be sufficiently close if both

27 Nh
__Ar 77 o5 3.88
g <5% and 1- L= S0 <% (3.88)
ie., if
. T‘i T d TR L&
< min (35 7o) " 5

Usually T; > T4/N, thus it is the derivative part that limits the choice of
sampling interval h. The limit in (3.89) is slightly conservative. E.g., in
Astrém and Wittenmark (1990) a 2-6 times larger sampling interval is sug-
gested. A -

When (3.89) is satisfied continuous-time and discrete-time PID con-
trollers thus have the same high-frequency behavior. The anti-alias filter
in the discrete-time PID controller can then be discussed in the same way
as the filter above. Thus a disturbance with frequency wq may both be in-
sufficiently damped by the anti-alias filter and have a high frequency with
respect to the controller parameters.

One goal with the derivation below is, loosely speaking, to be able to
avoid controllers with a large “high-frequency gain” close to saturation. The
high-frequency sinusoidal disturbance is a good tool for this purpose. The
exact meaning of “high-frequency gain” will become clear later.

Derivation of OQutput Offset

The effects of one-sided (upper) saturation, as illustrated in Figure 3.15, will
now be investigated. Consider deviations from a stationary point close to
upper saturation, i.e., let y, = y = v = v = 0 before the noise disturbance
has been applied. Further, umax > 0 is small and up,;, = —oo since only one-
sided saturation is considered. With obvious changes partial lower saturation
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nqsin @4t

_thq

Figure 3.15 Block diagram for the one-sided saturation problem. Gp is the
process transfer function, Gy, is the feedback path of the controller and W is the
anti-windup transfer function.

can be treated. The disturbance frequency wy is assumed to be high, such
that Gp(iwd) ~ 0, Gfb(’iwd) P~ K(N + 1) and W(iwd) zO.e

The goal of the derivation below is to obtain an estimate of the bias
Yo in the process output y(t¢), which is caused by a sinusoidal measurement
disturbance n = n; sinwgt. It is an application of the SBDF (sinusoidal+bias
describing function) method, see Atherton (1975). The mput to the nonhn— ,
earity in Figure 3.15 is i

v(t) = vo + v; sin(wgqt) | (3.90)

where v; = K(N + 1)n; if the sign change in —GY; is neglected. The output
from the nonlinearity is

u(t) = uo + uy sin(wqt) + ug sin(2wqt) + - - - (3.91)

In the SBDF method only the bias and first harmonic are considered, and
the output is then written

4(t) = Novg + Nyv; sin(wgt) (3.92)

where Ny and N; both depend on vy and v;. Ny is the gain of the bias and
Ny is the gain of the first harmonic. When determining the output offset
only the bias term is necessary, since Gp(iwg) ~ 0. Thus

1 1
w9 = Novg = vo +v1P9 =19 + 11 <<§ - %) sin ¢ — - cos ¢> (3.93)

5




Chapter 3 PID Control with Anti- Windup

where
. Umax — Vo
¢ = arcsin —

: (3.94)

At the limit of saturating at all uymax = v1 and v9 = 0, ie., ¢ = =/2.
If umax = 0 then vy = vy, ie,, ¢ = —7/2. Thus &, € [-1,0]. For low
frequencies -

1
sTi and W(S) = ;—TZ
where T, = T for tracking anti-windup and Ty, = N/(w2T};) for the observer

approach, see Sections 3.1-3.2. The low frequency gain of the process, G,(0),
may be infinite. Thus, for zero frequency

Gry(s) =

(3.95)

Yo = Gp(O) Uy

K
vy = / ( T —1o + ——(UO — ’vo)) (396)
ug = vg + v1Pg

When vy is constant

KT,
T Yo = Ug — V9 = V3 @0 _— (397)

and the offset may be computed.

RESULT 3.15—Stationary offset for sinusoidal disturbance
During partial upper saturation caused by a sinusoidal dlsturbance the bias

vg in v(t) is determined from the nonlinear equation. B
v+ 1 @0(’00,'01) q)p =0 (398)
where
$,=1—— 1 (3.99)
P KTuGph(0) '

and @ is given in (3.93). When vy (and thus ®;) is known the estimated
stationary offset is

Yo — @o’nl (3100)

Since —1 < @ < 0 it follows that yo < 0 and bounded at partial upper -
saturation. (|

Solving the Nonlinear Equation (3.98)

In order to estimate the offset yo (3.98) must be solved numerically. From
the structure of (3.98) an iterative solution is appealing.
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ALGORITHM 3.1—Tterative solution of (3.98)
Let
vy =K(N+1)n,
_ G,(0)KT.,
Y GH(0)KTy, — T

V0,0 = Umax

Then iterate from k = 0 until convergence

. Umax — Vo,k
¢ = arcsin ———

Al
1 . 1
Sor = (5 — %) sin ¢ — - cos ¢
v
Vo k41 = _@_1 Dok
g

Having found vy = v9,00 and thus ®¢ = @ o the offset estimate f is given

by (3.100). O
The stability of Algorithm 3.1 is now to be examined.

LEMMA 3.2—A bounded derivative
With vy, ® and ¢ from (3.93)

d 6 1
E’l‘)‘(')'('l)l@o) = "7; et 5 S [—1,0]

Proof: Straightforward differentiation yields

d _d® d¢

(—i-’v—o'('vlq}o) = vlﬁ . E’;(;
. 1 ¢ 1
*”1((5 - 5) cos ¢) (= 3res) (3.101)
= % - %— € [-1,0]

LEMMA 3.3—Stability of Algorithm 3.1
The iteration in Algorithm 3.1 is stable if

KTyGy(0) _ 1
T; 2

Proof: The iteration can be described by vo x+1 = f(vo,x). From numerical
analysis it is well known that the iteration converges if |}%| < 1. Using
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Lemma 3.2

da | _|¢_ 1 ;
= — =8 <[P =|l - ———=| <1
dvg T 2 125 < 12| l KTwGp(O)‘ <
if the given condition is true. O

If the condition in Lemma 3.3 is not true, then Algorithm 3.1 is not stable
if |®o| is sufficiently large. Due to the structure of (3.98) there is no obvious
way of “iterating in the other direction”. Instead (3.98) is then most easily
solved by some algorithm for finding roots in an interval or by squaring and
finding the local minimum. Such algorithms cover all cases for ®,, and can be
found in, e.g., Forsythe et al. (1976). They are also included in, e.g., Matlab.

A Test Quantity
From (3.100) it follows that

[Jo| =
where @ is the solution of (3.98).

T:(N +1)

DEFINITION 3.2—High-frequency to DC gain

The high-frequency to DC gain Kgp is defined as TS )
[go] _ Ts(N +1) "
Kyp = = ¢ 3.103
HD =~ 7 [l (3.103)
Since |®¢| < 1 with equality for umax = 0 and G,(0) = oo, the maximum
high-frequency to DC gain is A
T:(N +1
KHDmax = LW +1) (3.104)
Tw
O

Remark 1. From (3.104) it is clear that both N and T, can be used for
reducing Kgp max without affecting the nominal design parameters K, Tj,
and Tj. O
Remark 2. Without anti-windup, i.e., W(s) = 0, and T,, = oo, it is easily
seen from (3.96) that yo = 0. Thus, it is clear that the offset is caused by the
anti-windup mechanism (if the disturbance is present). O
Remark 3. Consider a process with at least one integrator, i.e., G,(0) = ‘
Without saturation the control error is e = 0 in stationarity. If the controller
is saturated in stationarity, then || - oo. However, in the case considered
in this section a constant e # 0 is obtained in stationarity. O

Remark 4. TFor the interacting PID controller (3.3) the results above hold if
K is replaced by K',T; by T! and N + 1 by N', where the prime indicates

parameters in the interacting controller. O
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For tracking anti-windup T, =Ty,i.e.,

T,'(N -+ 1)

3.105
T (3.105)

KHD,max -
This quantity is reduced by choosing the largest possible T; and a small value
of N. The design rules (3.66-3.67) give T;/2 < T; < T;, and then

N +1< Kgpmax < 2(N +1)

Hence the ratio between the estimated offset §p and the disturbance ampli-
tude n; may become as large as 2(N +1). E.g., if N = 20, T; = T;/2,
Gp(0) = 0o and umax = 0 a 1 % disturbance amplitude gives an estimated
offset o of 42 %. If umayx > 0 and the process has finite static gain, then
smaller offsets are obtained.

For the observer approach T, = N/(wiTy),i.e.,

N+1

KHD,max = ngdTi —_— = “-’gTdTi (3106)

If the design rule wo = max((2Ty)*,2/T), i.e., (8.77), is used, then
KHD,ma,x > 1

with equality when T} = 4T4. If wy = 1/4/T;Ty, i.e., (3.78), then Kyp max =
1.

Comparison Thus the observer approach usually gives’; controller where
the maximum noise sensitivity is much smaller compared to tracking anti-
windup. Note that when T; = 4T, and the design rules are followed, then the
observer approach has minimum noise sensitivity (= 1) while tracking anti-
windup has maximum sensitivity ( = 2(N + 1)) However, when T; > 4T, >
0 the observer approach also has high noise sensitivity, when the design rule

in (3.77) is used. When wy = 1/4/T;Ty the observer approach always has a

low noise sensitivity.

Summary

As will be demonstrated in Chapter 4, the estimated output offset g, in
(3.100), is very accurate provided the disturbance frequency wy i sufficiently
high. Then the feedback through W is eliminated for high frequencies, see
Figure 3.15. A rule of thumb is that if [W(iwg)| < 0.25 the feedback from
W is negligible. Since the input to the nonlinearity then is sinusoidal the
describing function gives an accurate estimate of the DC component in the
output from the nonlinearity. For lower frequencies, when W is not negligible,
a smaller offset |yo| is obtained.
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3.7 Summary

After an introduction of PID controllers and some anti-windup methods a
number of design rules and results for anti-windup by tracking and the ob-
server approach have been derived. The rules and results are based on per-
formance for process impulse disturbances and sinusoidal measurement noise.
Stability properties have also been investigated.

In Section 3.3 it was found that if the anti-windup moves controller poles
away from the origin then better stability properties are obtained. This is
partially in conflict with the results based on disturbances, since they may
require the opposite. The different design rules and results will now be briefly
summarized. In Chapter 4 they will be tested in simulations and experiments.

Tracking Anti-Windup

In Result 3.1 it is shown that when T} decreases from oo, the Nyquist curve,
(2.33),

Gro(iw)Gp(tw) — W(iw)

14+ W(iw)

moves away counter clockwise from the interval (—oo,—1] of the real axis.
Thus limit cycles can be avoided. Further, tracking anti:windup mainly af-
fects the low-frequency part of G(iw). It is in general not guaranteed that
closed-loop stability can be proved by, e.g., circle criteria. However, Theo-

rem 3.1 proves absolute stability for 0 < T; < oo when G’(zw) satisfies a few
special conditions.

G(iw) =

A test quantity for noise sensitivity close to saturation is K HD,max, the
maximum high-frequency to DC gain, see Definition 3.2, which for tracking
anti-windup is
T,'(N -+ 1)

T;

This quantity is reduced by choosing the largest possible T} and a small value
of N.

In Section 3.5 two design rules for T; were derived. In case A, (3.66),

KHD,max -

T; Ty

—_—— hen 1 — a1 T,
5 1—a1Td>) when a1Ty >0
T; when 1 —a;73 <0

and in case B, (3.67),

min (Ti, max(y/T Ti,—
T, =

T; = min(Ti,max(\/T,-Td, %))
When T; > 4T, the design criteria are satisfied.
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The Observer Approach

In Example 3.1 it was noted that when wy < N/(2T4) then G(iw), (2.33),
looses phase with respect to the point —1 for sufficiently large w. Sufficiently
small wy may result in a closed-loop system that either limit cycles or is
unstable. If wy > N/(2T;) the stability properties are similar to those of
tracking anti-windup. Thus limit cycles are avoided, but closed-loop stability
may not be guaranteed by circle criteria.

The noise sensitivity close to saturation is given by the maximum high-
frequency to DC gain, see Definition 3.2, which for the observer approach
is

KHDmax = wiTyT; N+1

This quantity is reduced by choosing the smallest possible wy. At the cost of
changing the linear performance Ty and T; may also be reduced.

Using impulse disturbances, see Section 3.5, the following design rules
have been derived.

_ 1 2 d _ 1 1
wp = Imax (-2—13, E) an W — max <'2—1,’;, ﬁ)
When T; > 4Ty, i.e., wg = (2Td)_1, the design criteria are satisfied. When
wo = 2/T;, the design criteria are satisfied in a special case.
In case A , it is possible to approximately limit the desaturation time
from below. Then wy < 1/t, gives a desaturation time t4 > t,, Where t, is a

-,

prescribed minimum desaturation time. o

Without derivative action the observer approach coincides with track-
ing anti-windup, since there is only one controller pole. The design rules for
wy are, however, not valid.

Comparison

From stability point of view T; < oo and wy > N/(2Ty), respectively, guar-
antee increased phase and thus less risk for limit cycles. The impulse based
design rules for the observer approach, however, gives reduced phase, while
there is no such conflict for tracking anti-windup.

When the design rules for impulse disturbances are used the noise sen-
sitivity close to saturation is considerable smaller for the observer approach -
compared to tracking anti-windup. The performance for impulse disturbances
will be compared in simulations and experiments.

81




Evaluation of
Anti-Windup for
PID Controllers

s
N

In this chapter the design rules and design criteria from Chapter 3 for track-
ing anti-windup and the observer approach will be tested on different pro-
cesses. For comparison conditional integration (method T3) is also tested.
The processes covered are, e.g., inverse-response processes, time-delay pro-
cesses and unstable processes. The first two processes, a double tank and
a DC servo are “nice processes” where a PID controller is sufficient to get
arbitrary pole-placement. For the other processes arbitrary pole-placement
cannot be obtained by a PID controller. However, several of them are ex-
amples of process types which often are controlled by PID controllers. The
analysis and evaluation is more extensive for the first three processes, while
the rest of the processed are discussed more briefly.

4.1 The Double-Tank Process

The double-tank process, see Figure 4.1, consists of two identical cylindrical
cascaded tanks and is used for basic experiments in the control laboratory in
Lund, see Astrdm and Ostberg (1986). In this section the double-tank process
will be used for evaluation of the anti-windup design rules in case A, i.e., the
relative degree one case. The control signal is pump speed, which determines
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dy

'

Figure 4.1 The double-tank process.

the flow rate into the upper tank, and the process outpiit is the level of the
lower tank. The double-tank process has been used in Example 3.2 and when
the design criteria for impulse disturbances were established, see Section 3.5.
Thus it is reasonable to expect that the design criteria are well chosen for
this process and that anti-windup which satisfies these criteria also gives good -
performance. A '

After linearization the transfer function from pump speed to the level in
the lower tank is

a
Gy(s) = (S_f__;); (4.1)

Parameters o &~ 0.015 (s™') (at approximately 50% level) and 3 ~ 0.05 (s™1),
thus the time constant for one tank is approximately 70 seconds.

An impulse disturbance d; = dy6(¢) is a good model for pouring a cup
of water in the lower tank. The disturbance transfer function is, with appro-
priate scaling,

1
s+«

In Section 3.5 this case, where the relative degree of G5 is one, was denoted
case A. Case B, which corresponds to pouring a cup of water in the upper
tank will not be treated. The reason is that the upper tank is not large
enough. Not even a full upper tank gives a derivative of the lower level which
is large enough to saturate the controller. This is partly due to the nonlinear

Gz(s) =

(4.2) |
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Figure 4.2 The Nyquist curve of the loop gain Gy (iw)Gp (iw) for the double-
tank process shown in two different scales.

tank dynamics where the flow rate out of a tank is proportional to the square
root of the level.

The double-tank process is controlled by a PID controller, (3.1), which
has parameters K =5, T; =40 s, Ty = 15 s and N = 5. To get an overshoot
of 10 % the set-point Welghtmg b = 0.3. The dominating closed-loop poles
are —0.057 and —0.026 4 0.039:. The complex-conjugated poles have natural
frequency 0.046 and relative damping 0.56.

Stability

When tracking anti-windup and the observer approach are used the system
can be divided into a linear system G with nonlinear feedback. Thus circle
criteria, see Section 2.7, may be used to investigate stability. From (2.33),
the linear system is
Gbep -W

1+W

where G, is the process transfer function (4.1), Gyp is the feedback path in the
controller and W is the anti-windup transfer function, see Sections 3.1-3.2.
The conditions for using Theorem 2.3, e.g., the Off-Axis Circle Criterion, are
satisfied if G has no integrator. Thus T} < oo, for tracking, and wy > 0, for -
the observer approach, are necessary conditions for using the theorem. The
stability results now follow.

G =

Tracking anti-windup The Nyquist curve for the loop gain GGy, is
shown in Figure 4.2. Since Gy, G, and the Nyquist curve Gy (iw)Gp(iw)
satisfies the conditions in Theorem 3.1, the closed-loop system is absolutely

84




4.1 The Double-Tank Process

stable for 0 < T} < oo. The closed-loop system is thus always stable with
tracking anti-windup.

The observer approach The Off-Axis Circle Criterion is satisfied for
0.012 rad/s < wy < 2.9 rad/s and then absolute stability holds. For wy <
0.012 rad/s G(iw) has two intersections with the negative real axis to the
left of —1. Describing function analysis then predicts a “hard-excited” limit
cycle, which also has been observed in simulation. For wp > 2.9 rad/s the
closed-loop system is not necessarily unstable, and instability has not been
observed either. It is thus necessary that wy is neither too small nor too large
in the observer approach. Otherwise stability is not guaranteed.

The Anti-Windup Experiment

A standard experiment is used to test the anti-windup methods. In simu-
lations the linear tank model (4.1) is used with a control signal v € [0,1].
The process and controller starts at stationarity with all signals zero. The
experiment is as follows:

1. Start-up: at time ¢ = ¢, = 0 the reference y, = 1.

2. Impulse disturbance: at time t = ¢; the disturbance dy(¢) = 0.5 (¢ — ¢;)
changes the process output toy = 1.5. Thisis a modél 6f quickly pouring
a cup of water into the lower tank.

3. Load disturbance: at time ¢ = ¢; a load on the upper tank, d; = —0.65,
is introduced.

4. Noise disturbance: at time ¢ = t,, a high frequency sinusoidal disturbance

(0.004 - sin t) is added to y(t).

The four parts of the anti-windup experiment have been de51gned to satu-
rate the control signal in one or both directions. The first two experiments
are also performed experimentally on the double-tank process. Then corre-
sponding discrete-time PID controllers and anti-windup methods are used.
Experiments 2 and 4 are used for evaluation of the results in Sections 3.5-3.6.

A simulation of the anti-windup experiment is shown in Figure 4.3. No-
tice that without anti-windup the overshoots are large. Further, the measure-
ment noise hardly influences the process output. This observation confirms
Result 3.15, and a later remark, that the steady-state offset is zero without
anti-windup.

Tracking Anti-Windup

Combining the design limits in Result 3.2 and 3.5, T; must satisfy the in-
equality
Ty

—— = 19.4 T <T; =40 4.3
1—0!1Td s < t= ° ( )
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Figure 4.3 A simulation of the standard experiment without anti-windup gives
large overshoots due to integrator windup. To facilitate comparisons with later
simulations the longer settling times without anti-windup are compensated by a
longer simulation time on the same time scale. The measurement noise does not
give any steady-state offset of the process output.




4.1 The Double-Tank Process

where a3 = a = 0.05. Since T; < 4Ty design criterion 2' is not surely
satisfied. The general design rule for tracking anti-windup, (3.66), yields
Ty = /TiTy = 24.5 s. The value T; = T;/2 = 20 s from Result 3.6 will also
be tested. For the conditioning technique T; = bT; = 12 s, which is below
the lower limit in (4.3).

The high-frequency to DC gain, see Definition 3.2, which for tracking
anti-windup has the maximum value (3.105), i.e.,

Ty(N +1) 240
T, T

KHD,max =

also limits T} from below if Kz p max is limited from above. When the design
rules are followed Ky p max = 2N = 10, i.e., the stationary offset may in the
worst case be about 10 times larger than the disturbance amplitude.

In Example 3.2 fast tracking (equivalent to back calculation) with T; =
T;/40 = 1 s has been demonstrated. For the impulse disturbance fast tracking
anti-windup gives a deteriorated behavior, see Figure 3.8.

In Figure 4.4 the tracking time constant T; = 24.5 s is tested in simula-
tion together with T} = Ty = 15 s, which is too small according to Result 3.2.
Both cases desaturate well before the control error changes sign and thus
design criterion 2' is satisfied. When T} = 24.5 s and T, =20 s the results are
very similar. When T; = 15 s the control signal has a high peak value shortly
after desaturation. The result is then a slightly prolonged settling time for
the process output, but it is not as bad as when T} = 1 s in Figure 3.8.

Conclusion The design rules Ty = /T;T4, and Ty = T;/2 both result in
good performance for case A of the impulse disturbance on the double-tank
process. If Result 3.2 is violated, i.e., when T; < 19.4 s, an unnecessarily long
settling time is obtained. When T} < 19.4 s, see Figure 3.8, the deterioration
is severe for the impulse disturbance. O

In Table 4.1 offsets yo during the noise disturbance are given for a few values
of T;. Both predicted offsets gy, see Result 3.15, and obtained offsets yq
are given. Due to the load disturbance umax = 0.05. In this evaluation
wg = 10 rad/s and the amplitude n; = 0.004, compare the last part of
the experiment. For lower frequencies wq smaller offsets are obtained. The
predicted and obtained values of yp thus agree well.

The Observer Approach

Since the process output y is well approximated by a straight line when
U = Uni, after the impulse disturbance, see Figure 4.3, it is reasonable to
apply Result 3.11 which for this particular case gives sufficient conditions
for desaturation before the control error changes sign. Thus wy = 2/T; =
0.050 rad/s. If a minimum desaturation time #4 is specified then Result 3.13
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Figure 4.4 Simulation of the anti-windup experiment for tracking anti-windup
with Ty = /T;Tg = 24.5 s (solid), and T; = T3 =15 s (dashed), on the double-
tank process. Except for the impulse disturbance the performances are almost,
identical. When T} = 15 s the control signal has a high peak value after desatu-
ration and the process output has a prolonged settling time. When T; = 24.5 s
the performance is good all over. For T; = 20 s and T; = 24.5 s the performances
are very similar.

Table 4.1 Comparison between predicted offset §o and obtained offset Yo during
a noise disturbance 0.004 - sin{10¢) for tracking anti-windup.

T; Yo Jo

T; = 40 —0.00528 —0.00530
Ti/l() =4 —0.0391 —0.0390
Ti/IOO =04 —0.128 -0.129

gives the upper limit we < 1/t4. In Figure 4.4, for tracking anti-windup,
the controller desaturates after about 10 s in the fastest case. Thus we <
0.100 rad/s will not give faster desaturation in the observer approach either.

In Figure 4.5 the choices wy = 2/T; = 0.05 rad/s and wy = 0.100 rad/s
are compared in simulation. The design criteria are satisfied in both cases,
but when wy = 0.100 rad/s the desaturation and prolonged settling time is
similar to the case Ty} = Tq = 15 s for tracking anti-windup. However, the
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Figure 4.5 Simulation of the anti-windup experiment with antl-wmdup by the
observer approach for wo = 2/T; = 0.050 rad/s (solid} and wo, = 0.100 rad/s
(dashed). When wo = 0.050 rad/s the de51gn criteria are satlsﬁed but wy =
0.100 rad/s is a slightly too high value for wg since an unnecessarily Iong settling
time and relatively fast desaturation is obtained for the impulse disturbance. The
design criteria are, however, satisfied also in this case.

s

desaturation now occurs after almost 20 s while it was after about 10 s when
T; = 15 s for tracking anti-windup. Anyhow, it is clear that wy < 0.100 rad/s
avoids prolonged settling time.

In Result 3.12 two other design choices for wy are given. It is not shown
in any figure, but for the choice wy = 1/(2T4) = 0.0333 rad/s the demand on
desaturation before the control error changes sign, i.e., design criterion 2, is
not satisfied. Further, the choice wy = 1/4/T;Ty = 0.041 rad/s is just at the
limit of satisfying this demand.

Conclusion The design rule wy = 2/T; results in good performance for
case A of the impulse disturbance on the double tank process. It is also clear
that wy should not be chosen very much larger than 2/T;. O

In Table 4.2 the offsets yo during the noise disturbance are given for some val-
ues of wy. Both predicted offsets §j, see Result 3.15 with T,, = N/(w2Ty), and
obtained offsets yy are given. Just as for tracking anti-windup, see Table 4.1,
the disturbance has frequency wqy = 10 rad/s and amplitude n; = 0.004. Due
to the load disturbance umax = 0.05. The predicted and obtained values of
Yo agree well when the observer approach is used.
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Table 4.2 Comparison between predicted offset §o and obtained offset yo during
a noise disturbance 0.004 - sin(10t) for anti-windup by the observer approach.

Wwo Yo Z)o
0.025 —0.00042 —0.00041
0.033 —0.00072 —0.00073 -
0.041 —0.00109 —0.00111
0.050 —0.00163 —0.00164
0.100 —0.00626 —0.00630
1.5,%: T
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Figure 4.6 A simulation of the anti-windup experiment with observer anti-
windup. The case (wp,¢) = (0.051,0.78) (solid) is IAE-optimal for the impulse
disturbance and the case (wo, () = (0.056,0.32) (dashed) is IAE-optimal for the
set-point change. The latter case has an almost time-optimal performance for
the set-point change but a deteriorated performance for the impulse disturbance.
The first case has an over-all good performance.

General pole-placement in the observer approach The pole-place-
ment in the observer approach has so far been rather restrictive. This sim-

plifies the derivation of design rules, but does not lead to the best possible
performance. By means of optimization it is, however, quite straightforward
to obtain other observer poles which give “better” performance for either
the set-point change or the impulse disturbance. In Figure 4.6 two Integral-
Absolute-Error (IAE) optimal observer pole-placements are tested in sim-
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Figure 4.7 The disturbance IAE optimal tracking time constant T} versus the
filter factor N.
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ulation. The choice (wg,¢) = (0.051,0.78) is IAE optimal for the impulse
disturbance. The performance for the other parts in the experiment is also
good. The choice (wo,{) = (0.0055,0.32) is IAE optimal for the set-point
change. The control signal is similar to the time-optimal bang-bang solution
for the set-point change. For the impulse disturbance this pole-placement
gives a deteriorated performance.

Sensitivity

The evaluations above may depend on, e.g., the impulse magnitude, set point,
controller limits, etc. Therefore the sensitivity for a few parameter variations
will be tested. Controller parameters K, T; and Ty are not changed in this
evaluation. The filter factor N and the impulse magnitude dy were chosen
as test parameters. Larger values of N has a small influence on the linear
closed-loop system and the impulse magnitude dy is usually unknown.

The filter factor N determines the initial control signal

'v(0+) = —-K(N + 1)d0

see, e.g., (3.70), and then also the amount of “reset” of the integrator. There-
fore N may influence the choice of anti-windup speed. In Figure 4.7 it is
shown, for the impulse disturbance, how the IAE optimal tracking time con-
stant Ty depends on the filter factor N when other parameters are constant.
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Table 4.3 IAE optimal values of T; and wp for impulse disturbances of different
magnitudes.

Impulse Tracking Observer
magnitude T: [s] wo [rad/s]
0.7 22.1 0.065
0.5 25.0 0.064
0.3 27.5 0.065
0.1 25.5 0.078

For small values of N, i.e., less reset of the integrator, larger T; values are
optimal but for higher values of N the optimal T; converges to a constant
value between +/T;Ty = 24.5 s and T;/2 = 20 s.

In applications the magnitude of the impulse disturbance is usually un-
known in advance. Therefore the IAE optimal T; and wy are determined for
a number of different impulse magnitudes. The result is shown in Table 4.3.
As expected the optimal pole locations vary with the impulse magnitude.
For tracking the optimal time constants are rather close to v/T;T; = 24.5
s. For the observer approach the optimal natural frequency wy is, with one
exception, close to 0.064 rad/s ~ 2.5/T;.

Thus the design rules for tracking anti-windup and the observer ap-
proach give reasonable values for T; and wg respectively, also in terms of
a small Integral-Absolute-Error (IAE) for impulse dlsturbances of different
magnitude and for different filter factors N.

Conditional Integration

Conditional integration anti-windup is tested in an experiment in Figure 4.8.
The method handles start-up and disturbances properly. A closer look at
a corresponding simulation reveals that at start-up the performance is close
to what is obtained from back calculation, i.e., T; & 0, and for the impulse
disturbance the performance is close to that of T; = T; and wo = 2/7T; for
tracking and the observer approach respectively. Thus the design criteria are
satisfied. In simulation the offset yo during the noise disturbance is —0.00218.

Other Anti-Windup Methods

It will now be demonstrated that fast tracking anti-windup combined with
a limited derivative part or a limited rate of change of the control signal do
not improve performance sufficiently for the impulse disturbance. For the
limited derivative, see Figure 4.9, the impulse disturbance requires a very

92




4.1 The Double-Tank Process

0-8 T T T T T T T
5 4
=
150 200 250 300 350 400
0-8 T ¥ T T T T T
0.6 -
= 04F .
02r E
0 1 1 1 1 L 1 L
0 50 100 150 200 250 300 350 400

Figure 4.8 Experiment with start-up and impulse disturbance on the double-
tank process with conditional integration anti-windup (method C3) in the PID
controller. The reference signal is dashed.
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Figure 4.9 A simulation of the anti-windup experiment with T = T;/100
and limited derivative action. The limitations max |d(t)| < 1.5 (solid line) and
max |d(t)] < 0.5 (dashed line) are tested.
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Figure 4.10 A simulation of the anti-windup experiment with T; = h = 1s for
a discrete-time PID controller. The control SIgnal has a limited rate of change
such that max |Au(f)| < 0.1 (max — Umin) * h, i.e., 10% per second ,

small derivative limit for a satisfactory response. Then the controller would
practically be a PI controller, which is unfeasible during normal control. For
the limited rate of change of the control signal, see Flgul:e 4.10, the result
is similar. The use of a discrete-time PID controller in” this 51mulat10n is
motivated by the easier implementation of a rate limit for the control signal.
Then back calculation, i.e., tracking with T; = h, was used as anti-windup.
These two methods are thus not capable of giving a satisfactory performance
for case A of impulse disturbances.

Comparison of the Anti-Windup Methods

The three anti-windup methods, i.e., tracking anti-windup, the observer ap-
proach and conditional integration (method C3), all satisfy the design criteria
with respect to impulse disturbances. Parameters must of course be chosen
according to the design rules. In order to make a more refined comparison
the methods are compared by their minimal Integral-Absolute-Error (IAE) -
for the impulse disturbance and the set-point change. The IAE:s and corre-
sponding optimal parameters are shown in Table 4.4, together with parameter
values and IAE:s for the design rules. The values of the IAE:s for conditional
integration are shown for comparison.

94




4.1 The Double-Tank Process

Table 4.4 IAE values for set-point change and impulse disturbance for the best
cases of the compared anti-windup methods. CI denotes conditional integration.

Method Case Parameter TAE IAE
impulse set point
CI 17.7 49.0
Tracking set point T,=8s 30.6 48.9
impulse T, =25s 16.9 49.9
design rule T: =24.5s 16.9 49.9
Observer set point wo = 0.14 rad/s 24.7 48.8
impulse wo = 0.064 rad/s 16.2 49.6
design rule wo = 0.050 rad/s 17.0 51.0

The optimal cases for the set-point change result in faster anti-windup,
i.e., faster observer poles, compared to the optimal cases for the impulse
disturbance. Notice that the disturbance optimal parameters, i.e., Ty =25 s
and wo = 0.064 rad/s, result in a relatively small increase of the IAE’ for
the set-point change. On the other hand the set-point optimal parameters,
i.e., Ty = 8 s and wy = 0.14 rad/s, cause a high increase of the IAE for the
impulse disturbance. The reason is the fast desaturation after the impulse
disturbance. ~L :

>

It is thus clear that optimizing or tuning the anti-windup with respect
to set-point changes may give an unsatisfactory result for disturbances. This
is similar to standard controller tuning rules, see Hang (1989). Tuning the
anti-windup with respect to the impulse disturbances gives only a negligible
reduction of performance for set-point changes.

It is also noticeable that the anti-windup design rules, i.e., T, = 24.5 s
and wg = 0.05 rad/s, result in parameter values relatively close to the dis-
turbance optimal parameters. Further, conditional integration anti-windup
results in good performance for both the set-point change and the impulse
disturbance.

The offsets for the noise disturbances can also be compared. From Ta-
bles 4.1-4.2 it is clear that predicted offsets iy agree well with obtained offsets
Yo. Further, the offsets are smaller when the observer approach is used, which
confirms the discussion in Section 3.7. Conditional integration gives an offset
Yo between the offsets for tracking and the observer approach.
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Summary

For tracking anti-windup the design criteria are not necessarily satisfied when
T; < 4T;. However, the result of the general design rule, i.e., Ty = /T;Ty =
24.5 s, turns out to satisfy the design criteria and also gives a relatively small
Integral-Absolute-Error for the impulse disturbance.

For the observer approach the design rule wo = 2/T; = 0.050 rad/s
is confirmed for the case when the response of the disturbance impulse is
well approximated by a straight line. Conditional integration anti-windup
also performs well. The offsets for noise disturbances close to saturation are
small for all three methods.

4.2 A DC Motor

The DC motor in this section is a mechanical system with position/angle
control where the control signal is electrical torque. Physically relevant im-
pulse disturbances are torque impulses, i.e., the DC motor is an example of
case B with a relative degree two disturbance impulse response. Thus the
output is continuous for impulse disturbances. This particular process and
the chosen controller also has the property of being closéd-loop unstable for
large signals when the controller has a saturation but not any Windup,/ see
Figure 4.11. This process has also been discussed in Yang and Leu (1989).

A DC motor has inertia J and damping D. Neglecting fast dynamics
the transfer function from electrical torque u to measured angle y is

,‘

1

Gp(s) = s(Js+ D) (4.4)

In order to satisfy the scaling requirement in (3.32) the transfer function from
torque disturbances is G2(s) = JGp(s).

Parameter J = 1 and D = 0.01. The motor is controlled by a PID
controller (3.1) with K = 3, T; =35, Ty = 299/3s~ 1s, N =5 and
b = 0, i.e., an "Integral on error only” PID. Neglecting the derivative filter
the closed-loop poles are all in —1.

Stability

The stability analysis for the DC motor with PID control is similar to the V
analysis for the double tank. The nonlinear feedback is a unit gain saturation
and the linear dynamics is, (2.33),

_ GpGp—W  Go—-W
Gs) = 1+W 1+ W
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Figure 4.11 The Nyquist curve Go(iw) for the loop gain without anti-windup
shown in two scales. Im G(iw) > 0 for w < 0.57 rad/s and vice versa.

where Gy is the feedback path in the controller, G, the process, and W is
given by (3.2). Go = GpGyy is the loop gain without anti-windup.

The Nyquist curve Go(iw), see Figure 4.11, intersects the negative real
axis at approximately —9 for w = 0.57 rad/s. If a saturation nonlinearity
is introduced in the loop describing function analysis predicts an unstable
limit cycle. Thus the closed-loop system is stable for small signals but goes
unstable for sufficiently large signals, see Figure 4.12.

Tracking anti-windup From Result 3.1 it is known that tracking anti-
windup gives a phase increase (with respect to the critical point —1) in the
interval 0 —90°. A sufficiently small T} will thus eliminate intersections with
the interval (—oo,—1] for G(iw). However, since arg Go(iw) < —180° for
w < 0.57 rad/s, it is impossible to make Re G(iw) + 1 > 0 for all w. Since
Gy has one integrator, only the Popov criterion remains if absolute stability
is to be proven. However, the endpoints of the Popov curve, given by

r0) = 5t (1- 7t - - i) -

D

1
Pp(ico) = iz

(4.5)

violate the stability condition if T; < J/D. This is clearly the case for the
given parameters and thus absolute stability cannot be proven by available
theorems.

For 3.70 < T} < oo the Nyquist curve G(iw) has two intersections with
the negative real axis. The describing function method predicts a “hard-
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Figure 4.12 Outputs and control signals for the saturated case without anti-
windup. The saturated control signal is limited such that |u(%)|:< 0.25. The set
points are y» = 2 (solid), which gives a stable response, and y, = 2.7 (dashed),
which gives an unstable response. The stability limit for set-point changes is
yr A 2.65.

excited” limit cycle, i.e., sufficiently large signals result in a-stable limit cycle.
The existence of limit cycles has been verified in simulations for 7; > 3.85.

The observer approach For 0.57 rad/s < wo < 2.5 rad/s absolute stabil-
ity is proved by the Popov criterion. The endpoint I'p(ic0) = ¢(2wy — N/Ty)
has negative imaginary part if wg < N/(2T;). When the rest of the curve
I'p(iw) has negative imaginary part this upper limit for wq is a sufficient limit
for absolute stability. For wo < 0.57 rad/s the describing function method
predicts “hard-excited” limit cycles, which have been verified.

The Anti-Windup Experiment

The anti-windup experiment for the DC-servo is very similar to the double
tank experiment, see Section 4.1.

1. Set-point change at time t = ¢, = 0, where y, = 2.
2. Impulse disturbance at time ¢ = ¢;, where d(t) = —§(¢ — ¢;).

3. Load disturbance at time ¢t = #;, where d(tf) = —0.24. With a load
d = —0.24 the effective input u + d to the DC motor is in [—0.49,0.01].

98




4.2 A DC Motor

80 100
_
80 100
0 20 40 60 80 100

Figure 4.13 Experiment with tracking anti-windup, where 7, = T; = 3 s
(solid), Tt = +/T;T4 = 1.73 s (dashed) and Tt =Ty =15 (d@s%}-déotted).

4. Noise disturbance at time ¢t = ¢,, a sinusoidal disturbance 0.005 sin(30¢)
is added to the measurement y(t).

Without anti-windup the impulse disturbance gives an unstable solutmn and -
the load disturbance results in a solution close to a limit ejcle.

Tracking Anti-Windup

According to Result 3.5 T; must satisfy 0 < Ty < T; = 3 s. Since T < 4Ty
design criterion 2' is not surely satisfied. The general design rule in (3.67)
gives Ty = /T;T3 = 1.73 s

In Figure 4.13 the tracking time constants Ty = T; = 3 5, Ty = /Ti Ty =
173 s and T; = Ty = 1 s are tested. All three choices of T} satisfy design
criterion 2', i.e., an early enough desaturation, but the choice T, = T; = 3 s
gives a significant overshoot for the impulse disturbance. The other two cases
have an acceptable performance.

In Table 4.5 the offsets yo during the noise disturbance are given for .
some values of T;. Both predicted offsets 7y, see Result 3.15 with T\, = T,
and obtained offsets yo are given. Due to the load disturbance uy,, = 0.01.
Except for T; = 0.1 s the predicted and obtained values of yo agree well. For
small values of T; the obtained offsets are smaller than the predicted offsets,
since the disturbance frequency is then not sufficiently high.
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Table 4.5 Comparison between predicted offset §p and obtained offset yo during
a noise disturbance 0.005 sin(30t) for tracking anti-windup.

Ty Yo Jo

6.0000 —0.0090 ~(0.0091
3.0000 —-0.0179 —0.0181
1.5000 —0.0358 —0.0363
1.0000 —0.0537 —0.0544
0.5000 —0.1058 ~—0.1089

0.3000 —0.1780 ~0.1814
0.1000 —0.5139 —0.5443

The Observer Approach

Since T; < 4Ty none of the design rules for the observer approach guarantees
that design criterion 2' will be satisfied. The design rules in Results 3.11—
3.12 give wo = 2/T; = 0.67 rad/s and wy = 1//T;Ty = 0.58 rad/s, where the
last value is barely inside the stability limits. The choice wp = 1 /(2Ty) =
0.050 rad/s will give limit cycles, see the earlier stability*aralysis. ,

In Figure 4.14 the value wg = 0.67 rad/s is tested.” The controller de-
saturates early enough for the impulse disturbance, i.e., design criterion 2’
is satisfied. The overshoot is, however, significant. The set-point response is
not satisfactory.

et
-

Conclusion Design criterion 2 (and 2') demands that desaturation occurs
before the control error changes sign. This is satisfied both for tracking anti-
windup and the observer approach. The performance is, however, not good.
Large overshoots are obtained after the impulse disturbance even if design
criterion 2 is satisfied. A possible conclusion is that design criterion 2 is not
well chosen for this particular process. This will now be investigated.

Evaluation of Design Criterion 2

Since the damping D in (4.4) is relatively small the DC motor is well approx-
imated by a double integrator. For the double integrator it is well-known
that it is not sufficient to desaturate when the control error changes sign.
Instead both desaturation and resaturation at the opposite limit must oc-
cur well before the control error changes sign, otherwise the control error
oscillates several periods before decaying to zero.

The fastest decay to zero is obtained for the time-optimal bang-bang
solution, see, e.g., Leitman (1981). The insufficiency of design criterion 2,
when applied to the DC motor, may be explained by the time-optimal control
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Figure 4.14 Experiment with anti-windup by the observer approach using wo =
2/T; = 0.67 rad/s. Both the set-point response and the impulse response are
unsatisfactory. T

law for the double integrator. A detailed derivation of the results below are
found in Appendix A.
The double integrator

d*y
T = (4.6)
|u| S Umax

with initial values y(0) = 0,9(0) = 9o < 0, has a time-optimal controller with

switch times
90| - J ( 1 >
t = 1+ —
! Umax \/-2.

- (47)
iy = ] (1 +\/§>
Umax
Inserting numerical values J = 1,9 = —1 and umayx = 0.25 the switch times

are t; =6.8 s and t3 =9.7 s. At time t = 5 the controller switches to v = 0.
If the control signal is constant, & = umax, the control error changes sign at
time

for the double integrator. For the DC servo t, ~ 7.9 s. Obviously design
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A
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Figure 4.15 The time-optimal control signal with switch times #; and ¢;, and
a control signal v(t) with desaturation time #; and resaturation time #,.

criterion 2, which demands desaturation not later than time ¢ = t,, is insuf-
ficient.

Tracking Anti-Windup Revisited

In Appendix A the conditions for T}, such that the controller desaturates
before the first switch time #;, are derived. It may be noted that if |go]| is
sufficiently small, in this case |yo| < 0.85, the controller always desaturates
before the first switch time. On the other hand, if || is sufficiently large, in
this case |go] > 2.43, the controller never desaturates before the first switch
time %, irrespective of T;. Then there will always be overshoots after the
impulse disturbance. This illustrates a fundamental difference between the
non-linear time-optimal controller and the “linear” tracking method.

Even if T} is chosen such that ¢4 = ¢;, i.e., the desaturation time equals
the switch time t;, there may be a small overshoot in the impulse response
because v(t) does not resaturate immediately, see Figure 4.15. The necessary
condition to avoid overshoot may instead be t,. < t; where t, is the resatu- .
ration time. This, however, involves the linear closed-loop dynamics and is
not further analyzed.

From (A.8) it is found that ¢4 < ¢; if T; < 1.9s when g = -1, J = 1
and Umax = 0.25. For T} = 1.9 s a small overshoot may be expected. This
is verified in the simulation in Figure 4.16. In this figure it is also found
that Ty < 1.3 s is a sufficient condition for avoiding overshoot. This may be
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Figure 4.16 Experiment with tracking anti-windup and the impulse distur-
bance when Tt = 1.9 s (solid), T: = 1.7 s (dashed) and T; =1:3 s (dotted).

s

compared with the general tracking design rule, which gives Ty = /T;Ty =
1.73 s. For large impulses even smaller tracking time constants T} will be
necessary if overshoots are to be avoided. This gives a larger sen51t1v1ty for -
measurement noise close to saturation, see Section 3.6. A

The Observer Approach and the Time-Optimal Controller

The time-optimal controller and anti-windup by the observer approach has
only been compared in simulations. It was then found that wy > 1.1 rad/s is
sufficient for ¢4 < ¢; and wy > 1.2 rad/s gives no overshoot. For larger |y
a larger wy is necessary if overshoot is to be avoided, but when |gy| > 2.6
there is always an overshoot. Thus a large wy seems to be the only reasonable
choice as long as the noise sensitivity close to saturation, see Section 3.6, is
not too high.

Comparison of the Anti-Windup Methods

Now the three anti-windup methods, tracking anti-windup, the observer ap-
proach and conditional integration, will be compared. For tracking and the
observer approach T} and wy respectively are chosen such that the estimated
desaturation time t4 = ¢;, the optimal switch time. Thus T} = 1.9 s and for
the observer approach wg = 1.07 rad/s. In Figure 4.17 the three methods are
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Figure 4.17 Comparison of the observer approach with wg = 1.07 rad/s (solid),
trackmg anti-windup with T} = 1.9 s (dashed) and condltlona.l integration (dot-
ted) using the standard experiment.

s

Table 4.6 Performance summary for the impulse and noise disturbances for
tracking anti-windup with T} = 1.9 s, the observer approach with wy = 1 07 rad/s
and conditional integration (denoted CI).

e
X

Tracking Observer CI
tq (s) 6.75 6.74 7.00
overshoot 0.17 0.055 0.5
IAE (impulse) 11.00 10.75 11.96
Yo (noise) -0.028 -0.012 -0.004

compared using the anti-windup experiment. The performance with respect
to the impulse and noise disturbances are summarized in Table 4.6. )
From both Table 4.6 and Figure 4.17 it is clear that the observer ap-
proach is superior to tracking anti-windup. Despite equal desaturation time
tq the overshoot is significantly less, and the stationary error during the noise
disturbance is also smaller. Conditional integration desaturates too late and
thus overshoots substantially. However, conditional integration has a small
stationary error during the noise disturbance. For set-point changes and load
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disturbances the differences between the methods are insignificant. The main
drawback with the anti-windup methods is that either simulations or a com-
parison with the time-optimal controller is necessary if overshoots are to be
avoided, and this is still not always sufficient. For large impulses there will
always be overshoots.

Summary

Design criterion 2, formulated in Section 3.5, is not a good criterion for a
process which is almost a double integrator. The resulting design rules will
thus not always work well for such processes.

4.3 Inverse-Response Processes

In this section two inverse-response processes will be used for evaluation of
anti-windup design rules. For both processes a PID controller is not sufficient
for obtaining arbitrary pole-placement. The first of the two processes is

1—3s

‘; = — et g 4.
P(s) s(s | 1)2 (1 8)
with the disturbance transfer functions
G(s)—1 d Gy(s) = ! ' (4.9)
_— a = e . .
2 s n 2 s(s+1y '

in cases A and B respectively.

The Controller and the Closed-Loop System

The process (4.8) is controlled by a PID controller (3.1) with parameters
K =1047,T; =750 s, T; = 1.15 5, N = 14 and b = 0.4. The parameters,
except b but including NV, are obtained by a method described in Appendix B.
The closed-loop system has four poles with real part —0.32 and a 5:th pole
approximately at —N/Ty. The closed-loop system is about as fast as possible
without getting too sensitive to parameter variations.

In Figure 4.18 a set-point change and impulse (cases A and B) and load -
disturbances are shown both for the linear closed-loop system and when a
saturation |u| < 0.1 is introduced without anti-windup precautions in the
PID controller. The deterioration due to windup is obvious. In the sequel
noise disturbances are omitted from the experiments. The result from Section
3.6 has already been verified.
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Figure 4.18 The anti-windup experiment for (4.8) during linear PID control
(solid line) and saturated PID control without anti-windup (dashed line). After
the set-point change there are two impulse disturbances (cases A and B) and a”
load disturbance.

Stability

The closed-loop stability for (4.8) with PID control and amti-windup may be
checked by circle criteria. Due to the process integrator the Circle and Popov
Criteria, Theorems 2.1 and 2.2 respectively, must be used. In Figure 4.19
the Nyquist curve for the loop gain GfbGp is shown. The loop gain does
not intersect the negative real axis below —1. Thus the describing function
method does not predict limit cycles for tracking anti-windup. For T} <
0.78 T; = 5.85 s absolute stability is proved for tracking anti-windup by the
Popov Criterion. Similarly absolute stability holds for the observer approach
when wy > 0.073 rad/s. In this case wy < 0.073 rad/s gives two intersections
with the negative real axis, and then “hard-excited” limit-cycles are predicted
by the describing function method.

Tracking Anti-Windup

According to the general design rules (3.66)—(3.67) T, = Ti/2 = 3.75 s is
to be chosen. It is interesting to also compare T} = VI;Ty = 2.9 s and
T, =Ty =1.15s. The design limits for T}, see Result 34,are1.42s < Ty <
6.1 s. When these limits are satisfied the anti-windup ought to satisfy design
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Re
Figure 4.19 The Nyquist curve for the loop gain Gfb(s)\Gp(s) for (4.8).

criterion 2', i.e., desaturation before the control error changes sign after the
impulse disturbance. In case A, the relative degree one impulse disturbance,
T; > Ty is required by Result 3.2. Otherwise fast desaturation is obtained.

In Figure 4.20 two choices of tracking time constant are compared in the
anti-windup experiment. The two choices Ty = v/T:Ty and T; = T} /2 (not
shown) give almost identical results, but T; = +/T;Ty gives smaller overshoots.
When T; = T, fast desaturation is obtained in case A but the result is better
in case B.

The Observer Approach

According to the design rules in Results 3.10-3.12, wy = (274)~! = 0.43 rad/s
should be chosen. This is a sufficient condition for satisfaction of design
criterion 2', i.e., desaturation before the control error changes sign, which
also is verified in Figure 4.21. The overshoots are slightly larger than for
tracking anti-windup with T; = /T;T; = 2.94 s. Thus it is possible to use a

slightly larger wy without degraded performance. ’

Conditional Integration

Conditional integration by method C3, see Section 2.2, is tested in Figure 4.21
with good results. Comparing with Figure 4.20, where tracking anti-windup
is used, it may be noted that conditional integration has a set-point response
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Figure 4.20 The anti-windup experiment for (4.8) with tracking anti-windup
where T; = +/T;Tg = 2.9 s (solid line) and T; = T4 = 1.15 s (dashed). ,
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Figure 4.21 The anti-windup experiment for (4.8) with anti-windup by the
observer approach where wy =0.43 rad/s (solid) and for conditional integration
anti-windup (dashed).
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Table 4.7 IAE values for set-point change and impulse disturbances for the best
cases of the compared anti-windup methods. CI denotes conditional integration.

Method TAE TIAE IAE
set point impulse A impulse B
CI 8.32 3.20 2.70
Tracking T;=24s 8.06 2.85 2.44
T,=21s 8.08 2.80 2.37
T, =156 s 8.18 2.89 2.29
Observer wo = 0.57 rad/s 8.02 2.86 2.49
wo = 0.71 rad/s 8.10 2.77 2.35
wo = 0.91 rad/s 8.19 2.91 2.28

which is similar to a relatively short tracking time constant (7% ~ T;) and
impulse disturbance responses which are similar to a larger tracking time
constant (T; ~ T;/2). Conditional integration satisfies design criterion 2,
i.e., desaturation before the control error changes sign after the impulse dis-
turbances. : /

Comparison of the Anti-Windup Methods

The three anti-windup methods were also compared by using the Integral-
Absolute Error, IAE. Set point and impulse optimal values of T} and wq
respectively were determined, and then the IAE was determined in these
cases and for conditional integration. The result is summarized in Table 4.7.
Conditional integration has the largest IAE values, both for set-point changes
and the impulse disturbance. The differences between tracking and the ob-
server approach are small.

In contrast to the double tank process, see Table 4.4, the set-point and
impulse IAE values are not very sensitive to parameter changes. Further,
the impulse optimal anti-windup is faster, i.e., smaller T} and larger wyg, than
the anti-windup for the set-point change, while it is the opposite relation for
the double tank process. The optimal anti-windup is also slightly faster in
case B, i.e., relative degree two disturbances, than in case A.

Another Inverse-Response Process

This processes is given by

(4.10)
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Figure 4.22 The anti-windup experiment for (4.10) with tracking anti-windup
where Ty = +/T;Tq = 3.43 s (solid) and T; = T; = 1.2 s (dashed).

i.e., the right half plane zero is closer to the origin compared to (4.8). This
makes (4.10) harder to control. The disturbance transfer functions and con-
troller limits are the same as for (4.8). For the present process only a short
evaluation of the anti-windup design rules will be made. =~ (

The following PID parameters were determined by the method in Ap-
pendix B; K = 0.3, T; = 9.8, T; = 1.2, and N = 12. The set-point weighting
b= 0.4. According to the general design rules (3.66)—(3.67) Ty = T;/2 = 4.9 s
should be used. The choice Ty = +/T;Ty = 3.43 s is also interesting to con-
sider. The general design limits, according to Result 3.4, are 1.4 s < T} <
8.4 s. Absolute stability is proven by the Popov Criterion for 0 < T} < 4 s.

Tracking anti-windup In Figure 4.22 the tracking time constants T, =
Vv IiTq and T; = Ty give good responses, while T; = T;/2 (not shown) has
larger overshoots. For case B Ty = T, is best while a slightly larger value
would be best for case A. Design criterion 2, i.e., desaturation before the
control error changes sign, is satisfied. For Ty = Ty a fast desaturation is °
obtained in case A.

The observer approach In Figure 4.23 anti-windup by the observer ap-
proach is tested. According to the design rules in Results 3.10-3.12, wy =
(2T3)~' = 0.42 rad/s should be chosen. This is a sufficient condition for
satisfaction of design criterion 2, which is confirmed in Figure 4.23. Absolute
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Figure 4.23 The anti-windup experiment for (4.10) with .anti;windup by the
observer approach where wg =0.42 rad/s (solid) and for condltlonal integration,
anti-windup (dashed).

stability is proven by the Popov Criterion for 0.16 < wy < 1.67 rad/s. The
overshoots are slightly larger than for tracking anti-windup with T} = 3. 43s.
Thus wy may be slightly increased without loss of performance.

Conditional integration, see Figure 4.23, also gives an accept‘able per-
formance.

Summary

The tested non-minimum phase processes both verify the design limits for
tracking anti-windup. However, it seems more favorable to use the shorter
tracking time constant T} = +/T;T4 than T; = T;/2 which is suggested by the
design rules (3.66)—(3.67). For the observer approach the design rules give
an wgo which is sufficient for the design criterion but still slightly too small.
Conditional integration gives an acceptable performance.

4.4 An Unstable Process

The design rules for tracking anti-windup and the observer approach will
now be tested on an unstable process. However, for unstable processes with
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limited control input sufficiently large inputs or initial conditions cause an
unstable closed-loop system. The use of good anti-windup will, on the other
hand, increase the ability to cope with large signals. Smaller controller limits
or a faster unstable pole are other ways of easily obtaining an unstable closed-
loop system.

The process used in this section is an unstable modification of (4.8),
namely

1—3s
s —0.05)(s + 1)2

Gols) = (4.11)

The anti-windup experiment is otherwise identical to the experiment in Sec-
tion 4.3 with controller limits 4 0.1. The disturbance transfer functions are

1 1
Clo) =g d Ga(e) = (s — 0.05)(s + 1)

4,12
s — 0.05 ( )

in cases A and B respectively. For (4.11) the PID parameters are K = 0.49,
T;=8.6s,T; =1.2s,and N = 15, which were determined by the method
in Appendix B. The set-point weighting is b = 0.4. In Figure 4.24 severe
windup effects are noticed.

Tracking Anti-Windup

According to the general design rules for tracking anti-windup, (3.66)—(3.67),
T; = T;/2 = 4.3 s should be chosen. The choice T} = /T; 1Ty = 3.2 s is also
interesting to test. For satisfaction of design criterion 2,1.e., desatiiration
before the control error changes sign, Result 3.4 yields T} € [1.44,7.16]. To
avoid immediate desaturation, Result 3.2 yields T} > 1.15 s.

Using tracking anti-windup, see Figure 4.25, it is clear that both T, =
VIiT4 = 3.2 s and T; = 1.15 s gives good responses, and design criterion 2 is
satisfied in both cases. The choice Ty = T;/2 = 4.3 s (not shown) gives larger
overshoots but is otherwise satisfactory. When T; = 1.15 s the controller
desaturates for a short moment after the impulse in case A. Thus the choice
Ti = vIiTy = 3.2 s seems to be the best choice, where the process output y
approaches the set point slightly faster than for the other choices of T}. In
case B the performances are also close.

The Observer Approach

In Figure 4.26 anti-windup by the observer approach is tested. According
to Result 3.10 wo = (2T;)"! = 0.42 rad/s should be chosen. As can be
seen in Figure 4.26 this choice satisfies design criterion 2 for the impulse
disturbances, and also gives a good performance for the set-point change and
load disturbance.
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Figure 4.24 The anti-windup experiment for (4.11) during linear PID control
(solid) and saturated PID control without anti-windup (da.she&) for both cases A,

and B.
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Figure 4.25 The anti-windup experiment for (4.11) with tracking anti-windup

where T; = /T;Tq = 3.2 s (solid) and T; = 1.15 s (dashed)
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Figure 4.26 The anti-windup experiment for the unstable process (4.11) with
anti-windup by the observer approach where wy = (2T4)~! = 0.42 rad/s (solid),
and with conditional integration anti-windup. .

Conditional integration, see Figure 4.26, gives an acceptable perfor-
mance, which also satisfies design criterion 2.

e
o

Summary

The chosen unstable process verifies the design rules derived in Section 3.5,
provided that the controller has sufficiently large limits compared to the
inputs and initial conditions. Further, using tracking anti-windup in case A,
it seems better to use T3 = /T;Ty than T; = T;/2, which was suggested in
the design rule in (3.66).

4.5 Time-Delay and High-Order Processes

In this section the high-order processes

e—sT
Gole) = o wnd Gp(s)zﬁ (4.13)

will be used for evaluation of the design results from Section 3.5. A PID
controller is not sufficient for obtaining arbitrary pole-placement for any of
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the processes when T' > 0 or n > 2. Both processes have the disturbance
transfer functions

1 1
P and Ga(s) = GEie

Ga(s) = (4.14)

in cases A and B respectively, and thus, using the notation in Result 3.2,
a; = 1. A characteristic of both processes is that the controller gain K
must be decreased and both the integral and derivative times T; and T; must
be increased when T and n in (4.13) increases. Thus 1 — a;T; decreases
and becomes negative if Ty > 1. In such cases the controller desaturates
immediately when tracking anti-windup is used, see Result 3.3. Using these
two processes for some values of T' and n, respectively, it is possible to evaluate
the design rules for anti-windup from Section 3.5. Especially in case A, where
fast desaturation must be avoided, the design rule (3.66) for tracking anti-
windup gets a good evaluation.

Another characteristic of these high-order processes is that it is relatively
hard to get windup problems. The reason is small gains K and large integral
and derivative times T; and Ty4. This is illustrated in Figure 4.27 where four
different tracking time constants are compared. The only visible difference
occurs for the case A impulse disturbance at time ¢ = 50. Otherwise, the
control is linear or, in case B, only negligibly saturated. Using the experiment
in Figure 4.27 the anti-windup methods and parameters are hard to compare.

If instead only the impulse disturbances are used in an experiment where
the controller is close to saturation the anti-windup methods are more easily
evaluated. This is illustrated in Figure 4.28. Thus the eitperiment from
Figure 4.28 is used for evaluation of the different anti-windup methods. After
a start in stationarity with all signals zero the two impulse disturbances
occur at time ¢t = 5 and ¢ = 50. The controller limits are um,,x = 1.0 and
Umin = —0.1.

The two processes in (4.13) are now to be compared for a number of
time delays T and orders n respectively. In each case a number of anti-
windup methods and parameters will be compared. In order to get a compact
documentation of the evaluation the integral-absolute-errors (IAE) for the
impulse responses will be reported in tables. Note that the IAE as such does
not evaluate the design criteria, i.e., if the controller desaturates before the
control error changes sign (design criterion 2) or if there is a fast desaturation .
in case A (design criterion 1). However, from the earlier evaluations it is
clear that both too late and too early desaturation give impulse responses
with larger IAE. Thus the TAE may be used as a measure of how well the
design criteria are satisfied. However, it will be commented if design criteria
are violated.
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Figure 4.27 Experiment with tracking anti-windup for the time-delay process
with T = 3 s. Tt = oo (solid), i.e., no anti-windup, Tt = T; (dashed), T: = VT3T3
(dotted) and T; = T4 (dash-dotted). The set point is also dotted. The controller’
parameters were determined by the Ziegler-Nichols ultimate gain method.
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Figure 4.28 Experiment with tracking anti-windup for the n-th order process
when n = 4. T} = oo (solid), i.e., no anti-windup, T: = T; (dashed), T; = /T;Ty
(dotted) and Ty = T4/(1 — a1 Ty) (dash-dotted). The set point is also dotted.
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Table 4.8 Template for how the IAE:s are reported for the time-delay process
(4.15). For each case of time delay T the PID parameters are given. For each of
the impulse case, A and B, six IAE:s are reported in positions according to this
table. CI denotes conditional integration.

T K T, Ty IAE (x)
Tt = 00 Tt = T-,'
T
T K T, T, T,=+yTiTa Ti=—"2_
1-— ale
1
= = Cl
wo 2Ty
The Time-Delay Process
The time-delay process
—aT

Gp(s) = (s Ty (4.15)
will now be used for evaluation of the anti-windup metlods. For simplicity
the Ziegler-Nichols ultimate gain method is used to determine the PID pa-
rameters. The derivative filter constant N = 10. Since T; = 4T; for Ziegler-
Nichols parameters it follows that /T;Ty = T;/2 = 2T,. Thus there are fewer
test cases for the tracking and observer anti-windup methods compared to -
when T; # 4T},. '

The TAE:s are reported in Table 4.9 according to the template in Ta-
ble 4.8. The case T} = oo means no anti-windup and is reported in the
upper left corner for each of the two impulse cases. When T > 1 the case
Ty =T4/(1 — 01 Ty) < 0 is omitted.

Tracking anti-windup In case A, where the design rule in (3.66) is eval-
uated, there are two limits for T; which separate different cases in the design
rule. When T; < 0.5 the design rule says T; = T;/2 = +/T;Ty. When
0.5 < Tq < 0.75 the design rule says T; = Ty4/(1 — a1T4) and finally, when
Ty > 0.75 the design rule says T; = T;. This is also verified in Table 4.9
where the corresponding positions are marked in boldface. This also holds
when Ty > 1, i.e., when immediate desaturation is obtained. When Ty > 1 -
the choice T} = T /2 = /T;T; gives larger IAE than no anti-windup at all.
In case B it is immediately clear that the design rule in (3.67) is not
verified by the IAE:s. Computing the actual values of T; in the different
cases it is found that for time-delays T' < 2 the smallest of the tested values
of T} gives the smallest IAE. For larger time-delays T; = T} gives the smallest
IAE. The reason and limit for this change is not clear. However, according to
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Table 4.9 Obtained IAE:s in the two impulse cases, A and B, for processes
(4.15) with time-delays T. The positions for different anti-windup cases are given
in Table 4.8. The best IAE:s are written in boldface.

T K T; T, IAE (A) IAE (B)
0.800  0.459 2.003 1.072
0.3 4.36 1.24 0.31 0.409 0.450 1.015 1.008
0.439  0.425 1.042  1.023
0.825  0.501 2.048 1.158
0.6 2.40 1.80 0.45 0.472 0.511 1.046 1.038
0.474 0.466 1.099  1.072
0.862  0.540 2.116  1.268
1.0 1.62 240 0.60 0.593 0.499 1.083 1.131
0.527  0.536 1.182  1.159
0.900 0.545 2.196 1.369
1.5 1.23 3.05 0.76 0.720  0.559 1.186 1.389
0.606  0.702 -1.284  1.270
0.930 0.571 2.269  1.432
2.0 1.04 3.64 0.91 0.843  0.772 1.331 1.833
0.689  0.780 1.397  1.362
0.953 0.648 2334 1.487
2.5 093 421 1.05 0.972 1.494 '
0.759  0.800 1.526 1.453
0.967 0.745 2.390 1.557
3.0 0.86 4.77 1.19 1.107 1.663
0.817 0.810 1.667  1.582

Astrom et al. (1989) the Ziegler-Nichols design is not recommended for the
time-delay process (4.15) when T > 2, since these processes have normalized
dead-times greater than one. Then the linear performance is not good and -
thus cautious anti-windup may be necessary. Using other PID design rules

it may be advantageous to use faster anti-windup.

The observer approach The only tested value of wy is wy = 2/T; =
Compared with tracking anti-windup the observer approach has
slightly larger IAE. For the cases when T < 1 design criterion 2, i.e., desatu-

(ZTd)_l .
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Table 4.10 Template for how the IAE:s are reported for the high-order process
(4.16). For each order n the PID parameters are given. For each of the impulse
cases, A and B, nine IAE:s are reported in positions according to this table. CI
denotes conditional integration.

n K T Ty IAE (x)
T, =
T;
T =T; T: = 0]
T
n K T:i Td Tt = ﬂTd Tt = d
1-— ale
1 1
= — W —
“o T omy * T VTl
2

ration before the control error changes sign, is at the hm;t of being satisfied,
but for larger T the criterion is well satisfied. . ’

Conditional integration In case B conditional integration performs well
compared to the other two methods. In case A the performance is reason-
ably good for smaller time delays T' < 1 and when 7' = 3. In between the
performance is not so good, but clearly better than no anti- Wlndup

The High-Order Process
The high-order process

Gp(s) = ( n 1)n (4.16)
will now be used for evaluation of the anti-windup methods. The PID pa-
rameters are determined by the method in Appendix B. The derivative filter
constant N = 10. In the test cases T; # 4Ty. Thus there are a few more anti-
windup cases to evaluate. The IAE:s are reported in Table 4.11 according to
the template in Table 4.10. When Ty > 1 the case Ty = Ty/(1 — a;Ty) <0is

omitted.

Tracking anti-windup In all cases in Table 4.11 the integral time T} <
474, which implies +/T;Ty > T;/2. Further Ty is sufficiently large to make

Tg

—_— 1T,
1-— ale > ihd
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Table 4.11 Obtained IAE:s in the two impulse cases, A and B, for processes
(4.16) with order n. The positions for different anti-windup cases are given in
Table 4.10. The best IAE:s for tracking anti-windup and the observer approach
are written in boldface.

n K T Ty IAE (A) IAE (B)
0.836 0.671
0.503  0.607 0.424 0.353
3 2.72 234 0.61 0.597 0.494 0.353  0.377
0.474  0.470 0.403  0.400
0.466  0.508 0.398  0.390
0.889 0.761
0.558 0.713 0.558 0.467
4 1.13 2.86 0.77 0.691  0.594 0471  0.577
0.576  0.566 0.554  0.548
0.556 0.731 0.543  0.516
0.929 0.828
0.562  0.788 0:650 0.555
5 082 3.24 0.89 0.757  0.767 0.561  0.740
0.641  0.626 0.663  0.656
0.612 0.792 0.648 0.616
0.959 o~ 0.877
0.568 0.871 0.705 0.602
6 0.70 3.65 1.02 0.830 0.610
0.679  0.661 0.736  0.727
0.642 0.819 0.719  0.689
0.977 0.914
0.594 0.952 0.737 0.624
7 0.63 4.07 1.15 0.902 0.634
0.703  0.682 0.786  0.776
0.659 0.832 0.766  0.739

in the test cases. However, for the tested orders n in case A, the design rule
in (3.66) is verified in the sense that Ty = min(T},T4/(1 — 01Ty)) should
be chosen. It may be noted that Ty = /T;Ty gives smaller IAE:s than
T; = Ti/2. In case B the smallest test values, i.e., Ty = T;/2, gives the
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smallest TAE:s. Further in case B, tracking anti-windup is the best of the
three tested methods, when the smallest test value of T (= T;/2) is used. In
case A tracking anti-windup is best for orders n > 4.

The observer approach In both case A and B the largest of the test
values, i.e., wg = 2/T;, gives the smallest IAE:s. In case A the observer
approach is better than tracking anti-windup for orders n < 4. However, in

case B both tracking anti-windup and conditional integration are better in
terms of smaller IAE:s.

Conditional integration In case A conditional integration does not per-
form very well compared with tracking anti-windup and the observer ap-
proach. An exception is the case n = 3 where it is comparable with tracking
anti-windup. However, in case B conditional integration is better than the
observer approach but not as good as tracking anti-windup.

Summary

The design rule in (3.66), for tracking anti-windup in case A, has been verified
for both processes. Note, however, that this design rule has not been tested
for all cases. In case B the main result is to use a small tracking time constant
which contradicts the design rule in (3.67). However, for larger time-delays
in the time-delay process (4.15), it is better to use T; = T; than a smaller
value of T;. The reason may be poor performance for the Ziegler-Nichols
design when the time-delay is sufficiently large.

For the observer approach the design rules in Results 3.11~3.12 are ver-
ified on the high-order process (4.16). When T; = 4Ty, e.g., for the time
delay process (4.15), these design rules all give the same value of wy. Con-
ditional integration performs reasonably well in the test cases. It is not the
best method, but not always the worst either.

Tracking anti-windup is in general the best of the tested anti-windup
methods. This is, however, only valid for the tested parameter values. If T}
and wy are tuned for minimum JIAE it may very well be the case that the
observer approach is best, compare Sections 4.1-4.2.

4.6 Poorly Damped Processes

It is well-known that PID controllers are not well suited for controlling pro-
cesses with poorly damped complex poles. Typical examples are mechanical
systems with resonances. The reason is that a PID controller is unable to
damp an oscillatory mode. One possibility is, however, to choose the con-
troller zeros such that they cancel some of the process poles. For complex
poles this can only be done when the parallel form (3.1) of the PID controller
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is used. The serial form (3.3) has real zeros which make such cancellations im-
possible. Thus this approach cannot be used in most commercial single-loop
PID controllers. A few aspects of cancellation will now be discussed.

Cancellation of Poorly Damped Poles

In an ideal PID controller the controller zeros are given by

, 1 1
8+ =35+

70 g = O (4.17)

which is trivial to match with process poles given by
52+ 2¢wps +wi =0 (4.18)

However, the poles and zeros do not match sufficiently well unless the deriva-
tive filter factor N is very large. This is particularly noticeable when the
relative damping ¢ is small. Hence the derivative filter must be included in
the cancellation design.

For the nonideal PID controller, with a derivative filter, the controller
zeros are given by

TR LE

1 /N 1 N 1 '
2 o il . —
s +N+1(Td+T,-)S+N—|—1 1y = (4.19)

To match the process poles one extra condition is necessary. Let

el
-~

Td ponand aT‘i . ' : (4.20)

(4.21)

The relative damping has, with respect to a, a minimum for « = N. Thus
the process poles can be matched by controller zeros if

1

.- £ (4.22)
wWo

Ta=N-T;
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4.6 Poorly Damped Processes

When the relative damping ¢ is small the filter constant N must be very
large if cancellation is desired. This explains why cancellation fails when the
derivative filter is neglected for too small values of N. The design equations in
(4.22) give the smallest possible N for cancellation. Other relations between
T; and T,; than Ty = N - T; requires larger N for cancellation.

The controller gain K must finally be chosen such that a sufficient gain
or phase margin is obtained. The result is usually a fairly low gain, hence
the closed-loop system has low bandwidth.

In order to avoid exciting a poorly damped mode by set-point changes,
the derivative part must act on the set point too. This gives high initial
control signals for step changes of the set point. However, disturbances will
excite the poorly damped mode and due to the controller zeros the control
signal will not counteract.

Cancellation is a linear operation which thus requires that the control
signal is not saturated. If saturation occurs for set-point changes the poorly
damped mode is excited. Anti-windup does not make the situation better,
in some cases anti-windup instead causes poorer performance than no anti-
windup at all. The basic issue for these control systems is instead to avoid
saturation. Low controller gain K or “realizable references”, i.e, reference
signals which can be reproduced by the process, are means, for avoiding sat-
uration. /

Summary

PID controllers are not well suited for control of processes with poorly damp- -
ed poles. It is possible to choose the controller zeros such that they cancel
one complex pole pair, provided the parallel form PID controller is used.
Usually a large derivative filter constant N is necessary for the cancellation.
The cancelled mode is excited by disturbances or if the control signal is
saturated. The best performance is obtained by avoiding saturation rather
than introducing anti-windup.

4.7 Summary

A number of design rules for PID anti-windup methods have been compared
in this chapter. In a standard experiment with a set-point change and load, .
noise and impulse disturbances the design rules give different performances.
The impulse disturbances give responses characterized by either an immediate
change Ay in the process output (case A) or an immediate derivative change
Ay in the process output (case B), see Section 3.5. Usually the impulse
disturbance responses are sensitive to the choice of anti-windup method and
corresponding parameters. The responses for set-point changes and load
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disturbances are much more insensitive to these choices. Thus anti-windup
design must focus on impulse disturbances rather than on set-point changes
and load disturbances. The design criteria used when deriving the design
rules for impulse disturbances were

1. noimmediate desaturation for the controller (in case A), and
2. desaturation before the control error changes sign.

The design criteria behind the design rules for anti-windup as well as the
results for sinusoidal measurement disturbances will be discussed.

The PID anti-windup methods tested in this chapter were tracking anti-
windup, anti-windup by an observer approach and a conditional integration
method denoted C3, see Section 3.2.

The Design Criteria for Impulse Disturbances

The two design criteria for impulse disturbances, see Section 3.5, seem to
have been well chosen. Anti-windup parameters which satisfy the design
criteria usually give a good performance, both subjectively and in terms of
a low integral-absolute-error (IAE) for the process output. An exception
is processes which resemble double integrators, see Section 4.2. For such
processes design criterion 2 does not work. It was shown.that for sufficiently
large impulse disturbances the process output will oscillate several times, no
matter how the anti-windup parameter is chosen.

For processes of higher order the two design criteria may give contra-
dictory demands on the tracking time constant T in case A. The discussion
leading to Result 3.5, which conjectures that design criterion 2 is more im-
portant than design criterion 1, has been verified in simulations.

Offset during Measurement Disturbances

The result from Section 3.6 regarding the offset yo during a sinusoidal mea-
surement disturbance has proven to be accurate. However, for a sufficiently
low disturbance frequency, compared to the anti-windup bandwidth, a smaller
offset than predicted is obtained.

Tracking Anti-Windup for Case A

The general design rule in (3.66) has essentially been verified. An exception is
that Ty = /1T, generally has given better performance in terms of overshoot -
and IAE than T; = T;/2. The latter choice is thus omitted, which gives the
final design rule.

Tq
m)) Whenl—ale>0

T; when 1 —o1T; <0

min (Ti, max (\/T‘,-Td_,
Tt -

(4.23)
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where o; is defined in Result 3.2. This formula usually gives the result
T, = TiT4 but for high-order processes a larger value of T; is obtained
when a; > 0. Empirically this design rule is valid both when T; > 4Ty and
when T; < 4Ty.

Tracking Anti-Windup for Case B

The design rule (3.67) has not been verified. Instead counterexamples have
been found where the smallest of the tested values of T} have given the best
performance. Small values of T}, compare Result 3.7, generally give good
performance for case B impulse disturbances, but a drawback is then a larger
noise sensitivity close to saturation, see Section 3.6

The design rules Ty = +/T;T4 and T; = T;/2 satisfy design criterion 2 and
give reasonably good performance. An exception was processes which resem-
ble double integrators, where sometimes poor performance may be obtained
irrespective of how T} is chosen.

A compromise, with respect to the above observations, is to suggest the

design rule
T, = min (v/TiTa, %) (4.24)

If both cases of impulse disturbances are probable it is safer to design, for
case A. "

The Observer Approach

Design rule 2 for the observer approach, i.e., -

1 2

is sufficient with respect to design criterion 2. In some cases, e.g., for some of
the time-delay processes, the design rule is at the limit of satisfying the design
criterion. For processes which resemble double integrators poor performance
may be obtained irrespective of how wg is chosen, compare tracking anti-
windup.

Comparison between the Anti-Windup Methods

From the evaluation in this chapter it is clear that tracking anti-windup is a
general robust anti-windup method for PID controllers. In case A the design
rule in (4.23) is very good. However, it requires knowledge of oy = —fs,
where f; is a Markov parameter in the disturbance transfer function. In
case B the design rule in (4.24) gives reasonable performance while a small
value of T; usually gives the best performance. However, if both case A and
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B disturbances are to be expected, small values of T} are unfeasible. The
noise sensitivity must also be taken into account.

Design rule (4.25) for the observer approach is satisfactory with respect
to the design criterion, but the resulting performance is usually not as good
as for tracking anti-windup. A nice property is that the design rule is valid
for both impulse cases. Further, it is in a number of cases possible to find a
value of wg, which gives better performance in terms of settling time, integral-
absolute-error, overshoot, etc., than the best choice of T;. The drawback is
that the choice is specific for each process and set of controller parameters.
No guidance is obtained from the design rule. The design rule is not valid
for PI controllers. Thus this method is not suitable for general purpose use,
but the benefits can be utilized in dedicated PID controllers.

Except for processes which resemble double integrators, conditional in-
tegration anti-windup has a reasonably good performance, but usually not as
good as tracking anti-windup and the observer approach. A boundary layer
width ¢ may require tuning. The simplicity of the method, however, still
makes it attractive to use.

kal
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Conclusions

This thesis has mainly dealt with the anti-windup problem in PID controllers.
In Chapter 2 a number of anti-windup and related methods were surveyed
and discussed. Some of these methods are feasible for use in PID controllers.
However, the lack of design rules for choosing parameters in these meth-
ods was noted. It was also noted that when the choice of parameters were
discussed it was mainly in the context of set-point changes, not disturbances.

Anti-Windup Design Rules for PiD Controllers . :

A few implementations and anti-windup methods for PID controllers were
discussed in Chapter 3. Two anti-windup methods, tracking anti-windup
and the observer approach to anti-windup, see Section 3.2, were treated more
extensively. Some stability issues, namely the changed phase of the transfer
function
GpGpp — W

1+ W

relative to the point —1, were analyzed. For tracking anti-windup arg(G(iw)+
1) increases with decreased tracking time constant T;. A stability theorem
for tracking anti-windup was given. The theorem is valid for all continuous-
time single-loop controllers with integral action. For the observer approach,
however, arg(G(iw) + 1) may decrease and eventually cause instability for
sufficiently small wg. This is natural since G is then approximately a double
integrator plus extra lag from the process.

In Section 3.5 design rules for the choice of tracking time constant T}
and the observer natural frequency wy were derived. The derivations were
based on two cases of a impulse disturbances to the process, giving

G =
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A. a step change in the process output, and
B. aramp change in the process output.

The responses in process output y and the control signal v turn out to be
sensitive to the choice of T; and wq respectively. The design rules were based
on two criteria, namely

1. noimmediate desaturation (in case A), and

2. sufficiently fast desaturation (in both cases), such that the controller
desaturates before the control error changes sign.

Sensitivity to measurement noise close to saturation was also treated. It
was found that sinusoidal measurement noise, which causes partial controller
saturation, gives a constant offset yg in the process output if anti-windup is
used. Without anti-windup there is no offset. The results given are valid for
sufficiently high disturbance frequencies. For lower frequencies smaller offsets
are obtained.

Evaluation of Anti-Windup Design Rules

In Chapter 4 the design rules from Section 3.5 were tested on different pro-
cesses. The noise sensitivity was tested on two of the_processes, and the
offsets obtained agreed well with the offsets derived in Chapter 3.

The design rules for tracking anti-windup were found to be reliable in
the evaluation, especially for case A. Thus tracking anti-windup based on
the given rules is a robust anti-windup method well suited for use in general
purpose PID controllers. o~

The observer approach is, however, not as good as tracking antl—wmdup
The design rule for the observer approach sometimes gives values for wy which
just satisfy the design criteria. It is in some cases possible to tune wy for better
performance, even better than tracking anti-windup, but the design rule gives
no guidance. Further, the design rule is not valid for PI controllers. Thus the
observer approach is not a good method for anti-windup in general-purpose
PID controllers. It may be used in dedicated PID controllers where the extra
amount of manual fine tuning pays off.

A conditional integration method, denoted C3 in Section 2.2, was also
tested for comparison. The general performance for this method is not as
good as for tracking anti-windup. In most cases set-point changes are handled
well, but for disturbances the performance is not so good.

The anti-windup methods are given the following ranking:

Tracking anti-windup, which has good design rules and performance.
Conditional integration, where the main advantage is simplicity.

The observer approach, where good performance often requires manual
fine tuning. The design rule is not valid for PI controllers.
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The anti-windup methods do not work well for sufficiently large disturbances
on processes which resemble double integrators. In such cases the process
output oscillates several times before the output approaches the set point.
For unstable processes it is critical that the disturbances are sufficiently small.

Suggestions for Future Work

A natural extension of this work is to examine the performance of cascaded
PID controllers and controllers with selectors.

Anti-windup for more general controllers, e.g., high-order controllers
with integrators (or unstable modes) is another extension. However, the
design method based on impulse disturbances, see Section 3.5, is perhaps
not very rewarding. The simplicity of the anti-windup design rules for both
tracking anti-windup and the observer approach depends on that the design
rules were derived for either only one observer pole or two equal observer
poles. For two or more unequal poles the conditions obtained may be more
complicated and possibly contradictory, unless sufficient approximations and
simplifications can be made.

The results on output offset due to measurement noise can be generalized
to high-order controllers. Note, however, that if the feedback path in the
controller, Gyp, has high-frequency roll-off there will not be any offset for
high-frequency disturbances. For mid-frequency disturbances offset will be
obtained, but the size of the offset is not given by the formulas in Section 3.6.
The transfer function Gy, has high-frequency roll-off, e.g., when the design is
based on an n:th order observer for an n-th order process.

Another extension of this work is anti-windup for raulti-variable con-
trollers. Similar to the single-variable case the anti-windup must give the
controller states good values. A difference is that the unconstrained control
signals must also be given good values. This is particularly important for
ill-conditioned multi-variable processes. Some work has been done on multi-
variable anti-windup, see, e.g., Kapasouris (1988), Campo and Morari (1990),
and Hanus and Kinnaert (1989). Design based on impulse disturbances has
probably the same drawbacks as for high-order controllers. The design cri-
teria are not obvious either. In order to avoid a combinatorial explosion of
anti-windup cases it is probably better to use some type of optimization. Un-
fortunately general insight may be hidden behind (computationally intensive)
computer algorithms.
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Derivations for
Section 4.2

Time-Optimal Control of a Double Integrator
For a double integrator
d’y . ‘
— =1 P .
di? (A1)
|’U,| S Umax ’

the time-optimal controller may be described by a switching curve in the
(y,9)-plane, see, e.g., Leitman (1981). On one side of the switching curve
U = —Umax and on the other side v = Umax.

For a specific initial value problem the controller may also be specified
by the switching times at which the controller switches from .y t0 —Umax
and vice versa. The initial value problem y(0) = 0, §(0) = 9o, corresponding
to case B of an impulse disturbance, see Section 3.5, has the switching times

|?Jo|'J( 1 )
11 = 14+ —
! Umax \/§

t2=M(1+ﬁ)

umax

(A2)

At time t = ¢, the controller switches to u = 0.
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Appendiz A Derivations for Section 4.2

Tracking Anti-Windup for a Double Integrator
For the initial value problem at hand, i.e., §(0) = go < 0, y(0) = 0 and

U = Umax

. . umﬂ.x . .
9(t) = do + —5—1 = go + Gt
lu 2 2 (A.3)
— . - max — 0 t . s
y(t) =dot + 5 —t* =got + o
When this solution is inserted in (3.38), i.e.,
Gfb w Umax

— Y
14+W +1—+—W 3

and the simplification N = oo is used, the control signal for a PID controller
with tracking anti-windup is

. — T . T umax
v(t) = —KTygoe t/Te 4 (—Ki,—:-yo +KTt(T: — 1) 7 )t
2
_ T Ymax KTy ( L5 L _ ),
+ (1 € ) (umax + T Tt Td 111 )/‘tIth (Tz 1) Yo
Umax K Ty 12
B JXT- t 2 (A-4)
For t > 3T}, i.e., e /Tt ~ 0, the approximate control signal is |
-~ _ umaxKTt th Tt .
'U(t) = Umax + "*—‘J—<T't - Td - f) + KTt(i - 1)y0
A.
+ KTt 70 + KT (Tt 1) Umax ¢ umaxKTt t2 ( 5)
T; 7 "\ 7 JT; 2

Solving (A.5) for ¢ = ¢4 such that 9(¢4) = %max, the following equation for
an ellipse in the (T%,t4)-plane is obtained.

. . 2 2.2
217 — 2T, (td+11-+ b ) ; (td+T,-+ kL ) =T 2 _om,
Umax Umax Umax
(A.6)
The ellipse is centered in (0, —J9o/umax — T;) and has the major principal
axis at slope 1.62. The ellipse has two intersections with the line t4 = 37T},

where one intersection is for positive t; and T;. Note that ¢; > 37T, is required
for the approximation in (A.5).
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Comparison between Tracking Anti-Windup and the Time-Optimal
Controller for a Double Integrator

The ellipse (A.6) has zero or two intersections with the line ¢4 = #;, the
optimal switch time from (A.2). If

T; < 6Ty | (A.7a)

and

|y0|

\/_Tumax
1
3T *

Tq
—_ — A.Tb
127 2) (A.7b)

then there is no intersection, and then t4 < #; for all Ty. If (A.7) does not
hold t4 < ¢y if

1 1 Jlo|
T, < T ——T
t 1 +2\/§umax

2' Ny 2
- fsrg m J[yo|+T LT
8uzzna.x 2\/§umax T;

TR LA

(A.8)

In order to obtain t4 > 37T; it is necessary that

J
T; <Tipp = 5 ( [9o] "Ti>

Umax ) ‘ (A 9)
o)) ()

Note that if (A.7) holds T}; is undefined and only T;; remains as an upper
Lmit for T;. When 0 < T} < T}; < T} the desaturation time ¢4 is given by

y 2.
td = J|y0| -|— Tt T + \/J yo + Tiz - 2T—de - th (A.]_O)

umax max

max T
|90 > \/ET,-EL_T (1 +4/1+ 2%) (A.11) -

then the intersections between t; = t; and the ellipse are for T; < 0 and
T; > t4/3. Thus tqy > t; irrespective of T}.

However, if
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PID Parameter
Optimization

g

For processes described by rational transfer functions of sufficiently high order
or with right half plane zeros the closed-loop poles cannot be arbitrarily
placed by a PID controller. Hence the obtainable bandwidth and damping
of the dominating closed-loop poles are restricted. The key question is then:
How do we obtain a well damped closed-loop system with maximum or close
to maximum bandwidth. Among earlier approaches to this question are,
e.g., the dominating pole design, see Astrém and Higglund (1985), where
approximate formulas for the dominating poles are used for analysis and
design.

With modern control design packages and fast computers it is, however,
feasible to use simple but “exact” brute force methods for maximization of
the closed-loop bandwidth, with damping restrictions, or similar performance
measures.

Here the following approach is taken. Introduce the performance index

J = maxRep;(K,T;, T4, Gp) (B.1)

where p; are the closed-loop poles for unit feedback of the rational transfer
function G, and the feedback transfer function of the PID controller (3.1).
Then minimize J with respect to K, T; and T;. This approach makes sense
when the closed-loop poles cannot be placed arbitrarily far into the left half
plane. The minimization may be performed, e.g., by a Nelder-Meade simplex
algorithm for unconstrained minimization of multivariable functions. Initial
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values of K, T; and Ty are chosen to be the parameters from the Ziegler-
Nichols ultimate gain method, see Ziegler and Nichols (1942). Other initial
values may give convergence to other local minima of J.

It turns out that the obtained minimum is sensitive to small parameter
deviations. To reduce the sensitivity some type of uncertainty must be taken
into account. Parameter uncertainty may be introduced in the process model,
but here controller parameter uncertainty is used. The closed poles when each
of the controller parametersis perturbed a factor +¢, where c is a few percent,
is checked together with the nominal closed-loop poles. E.g., for the nominal
controller gain K the gains K = (1 +¢)K and K = (1 — ¢)K are also tested.
The derivative filter factor N may be included in the optimization, but has
otherwise a default value of 10. The filter factor is in either case perturbed a
factor ¢c. Thus 16 “corners” in parameter space are obtained when the four
PID parameters are perturbed in the prescribed way. In the performance
index to be defined, (B.2), the 16 corner values and the nominal controller
parameters are used, thus in total 17 sets of closed-loop poles are examined.
The performance index is then

Jir :m;a.xRep,-j(K,ﬂ',Td,G’p,c) (B.2)

which then is minimized with respect to K, T; and T for 17 parameter sets
(index j), using, e.g., the Nelder-Meade smlplex algorithm.

The Nelder-Meade simplex algorithm is available as the function FMINS
in Matlab. FMINS requires a function which computes the value of the
performance index, and initial values for the parameters. It is optional to
specify a tolerance for convergence, the default value 1073 i used througliout.
Two examples will now demonstrate the method. In both examples the filter
factor N = 10 and the perturbation factor ¢ = 0.05. The computational
burden will be reported. The CPU-time was measured on a SUN Sparcstation
SLC, with internal memory 8 MB and execution speed 12 MIPS, for a single
user.

ExaMmpPLE B.1
Consider

1

(s+1)

In Table B.1 Ziegler-Nichols parameters and results from the optimization
are presented. From J and (n;, it is clear that the optimal parameters in .
both cases give closed-loop systems that are roughly twice as fast and far
better damped than Ziegler-Nichols parameters. For a 5 % perturbation in
parameters the parameters that minimize J give closed-loop poles that, in
the worst case, are back at the Ziegler-Nichols value for J, while parame-
ters that minimize Ji7 in the worst case only get 10 % closer to the imagi-
nary axis. Minimizing J requires 24 s CPU-time, 0.15 Mflops and 100 steps

G(s) = —
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Appendiz B PID Parameter Optimization

Table B.1 PID parameters, maximum real part and minimum relative damping
Cmin of closed-loop poles with (Ji7) and without (J) perturbation ¢ for Exam-
ple B.1.

Case K Ti Td J Cmin J17 Cmin
Z-N 2.39 3.14 0.785 -0.27 0.27 .
min J 0.570 250 0.614 -0.58 0.95 -0.30 0.80

min Ji7 1.13 2.86 0.771 -0.48 0.59 -0.44 0.54

Table B.2 PID parameters, maximum real part and minimum relative damp-
ing {min of closed-loop poles with {Ji7) and without (J) perturbation ¢ for Ex-

ample B.2.

Case K T; Ty J Cmin Jiz Crmin
Z-N 0.399 544 1.36 -0.15 0.48

min J 0.447 6.27 1.10 -0.34 0.66 -0.20 0.45
min Ji7 0.453 7.59 1.13 -0.33 0.51 -0.27 0.44

e

in the Nelder-Meade algorithm. Minimizing Ji7 requires 173 s CPU-time,

1.7 Mflops and 66 steps in the algorithm. O
EXAMPLE B.2 .
Consider .
— 38
Gls) = s(s+1)2

In Table B.2 Ziegler-Nichols parameters and results from the optimization are
presented. The optimized parameters give in both cases closed-loop systems
that are roughly twice as fast as when using Ziegler-Nichols parameters. The
minimum relative damping has increased slightly. For a 5 % perturbation in
parameters it may be noted that parameters that minimize J give closed-loop
poles that, in the worst case, are back at almost the Ziegler-Nichols value for
J, while parameters that minimize Jy7 in the worst case only get 20 % closer
to the imaginary axis. Minimizing J requires 14 s CPU-time, 0.06 Mflops
and 64 steps in the algorithm, while minimizing J;7 requires 187 s CPU-time,
1.25 Mflops and 83 steps. In Section 4.3, where this process also is used, the
filter factor N was included in the minimization. Hence slightly different
controller parameters were obtained. O

Thus it is clear that the optimization moves the closed-loop poles consid-
erably farther into the left half plane compared to Ziegler-Nichols tuning.
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Figure B.1 The dominating closed-loop poles for the process in Example B.2
when the controller from minimization of Ji7 is used. A fifth*pole is located in
—9.5 % —N/Tj.

The minimum relative damping also increases although the damping is not
as such included in the performance indices J and Ji7. In Figure B.1 it is
demonstrated that the minimization essentially results in 4 closed-loop sys-
tem where a number of poles have equal real part. ;

The different parameter sensitivities in the two cases is also demon-
strated. At the cost of a slightly slower nominal closed-loop system when J;7
is minimized the perturbed closed-loop system is not significantly slower.

Summary The resulting PID parameter optimization method in this ap-
pendix consists of minimizing Jy7, i.e., (B.2), with respect to K, T} and T}.
Optionally N may be optimized but has otherwise the default value 10. In
this optimization only the closed-loop poles, and thus only the feedback part
Gyp in the controller, are considered. The set point weighting b in the PID
controller (3.1) is not determined but has to be selected by other methods.
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