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Saito, Quintiere and Williams (1) developed an integral equation derived from 

quasisteady thermal flame spread theory to describe spread up a thick solid. 

Allowance was made in this purely thermal model for a varying rate of pyrolysis 

and the relationship between flame length and burning rate was linearised. They 

discussed asymptotic solutions to their equation and derived the requirements for 
two-dimensional propagation both for a step function pyrolysis rate m" = 

constant up to a burnout time and an inverse square root variation. 

Here their integral equation is solved analytically by Laplace Transform and is 

also applied to pyrolysis which decreases exponentially with time. The three 
conditions for propagation are compared, all being of the type 

where 

I< is constant 

Q" is a characteristic heat release rate 

t. is the ignition time 
'g " a characteristic of the duration of pyrolysis 

Q", t. and tg are obtained under the rate of heating imposed by the 
flame 

'g 

In those flames which spread indefinitely a comparison is made with Hasemi, 

Yoshida and Noharals (2) asymptotic theory. Some limitations of quasi-steady 

theory are considered. 
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List of symbols 

Flame height constant 

Thermal inertia 

Rate of production of gaseous fuel per area 
Heat of combustion for unit mass of gaseous fuel 

Heat flux from flame per unit area 

Energy release rate from ignition source 

Time 

Temperature 
Pyrolysis temperature 

Surface hmperature 

Initial temperature 

Velocity of pyrolysis front 

Total heat release per unit width 

Position of the flame front 

Initial value of xf 
Position of the pyrolysis front 

Initial value of X 
P 

Decay coefficient for mass loss rate 

Ln(x / X  ) in equation (41) 
P PO 

Characteristic ignition time 



1. Introduction 

Saito, Quintiere and Williams (1) (SQW) have discussed a thermal theory of 

upward flame spread on thick solids which leads to an integral equation for the 

velocity of spread. 

Certain approximations were required for this equation to be obtained and as- 

sumptions, some similar and some different, have been used by Hasemi, Yoshida 

and Nohara (2) (HYN) in developing another theoretical but related approach. 

Saito et.al. discussed the solution of their integral equation at short times and 

at long times, but here a general analytic solution is obtained and evaluated for 
certain conditions. 

This paper also develops the solutions, considers the approximations and compares 

the two theories SQW and HYN. The main assumptions (both explicit and im- 

plicit) in common are: 

1. The material is homogeneous and its thermal properties are constant with 
temperature. 

2. Chemical kinetics are excluded, so very fast (as well as very slow) rates 

of spread are not fully dealt with and extinction conditions are therefore 

only discussed approximately. 

3. The flame length xf depends on a power of W' the rate of convected 

heat release per unit width of flame front. 

The main assumptions which are different are: 

1. The model of Hasemi et.al. seeks an asymptotic solution and does not 

accommodate initial conditions. The SQW theory does include a represeuta- 

tion of initial conditions including flame from a pilot or auxiliary burner: 

the adequacy of this representation is discussed below. 

2. The theories- differ in their treatment of the relationship between flame 

length ,yf and total rate of heat release W' per unit width. Both consider 



Saito et.al. however choose a linearized form 

Xf - W' 

for mathematical convenience; their data being equally expressible by either 

form. We shall show below how the 213 power law form can be linearized 

under some useful conditions. 

Hasemi et.al, introduce the pyrolysis length X and write 
P 

W '  and assume, again for mathematical convenience, that - T 1 2  is a constant. 

X P 
This obviates the need for an integral representation of xf as in the SQW 

theory. 

3. Hasemi et.al. also discuss the "steady state" form i.e. when burn out 

occurs at the same rate as the forward extension i.e. X is constant. 
P 

They show this gives a lower bound for the dependence of V on X . 
P 

4. In the SQW model heat transfer only occurs at constant flux within the 

region xf>x>x . Experimental correlations are used by Hasemi et.al. These 
P 

include a variable heat flm over the region xf>x>x and heating ahead 
P 

of the flame. 

2. The model of Saito. Quintiere and Williams 

Saito, Quintiere and Williams develope an integral equation for V, the propaga- 

tion velocity of the pyrolysis front, when the relationship between heat release 

and flame length is made linear. They discuss their solution both for the initial 

condition and for long times. Criteria for propagation are derived. Haserni et.al. 

only discuss asymptotic solutions, one for a flame in which X remains constant - 
P 

i.e. the rear burns on as far as the front advances and the other for extending 

X with no burn out. Before comparing these two theories we shall give a for- 
P 

mal solution to the integral equation derived by Saito et.al. Starting from 



they obtain1 

where t = t / r  

q;2 -1 
and T = [ 4 

Kpc(Tp-Ts) 

(lii) 

q; = the uniform flux from the flame to the material over the distance 

xf - xp. This flux is taken as zero beyond the flame, a restriction not imposed 
in Hasemi's model. 

K, p, c are the thermal conductivity, density and specific heat, all assumed 
constant and uniform. 

T is the pyrolysis temperature (= T. in Hasemi's model), Ts is the initial 
P 'g 

surface temperature beyond the pyrolysis zone. 

Xfo-X 0 where V(o) = --.--E 
T 

Xfo is the initial value of xf, the flame length, and is the initial value of 
PO 

X ~ '  
the position of the pyrolysis front. Note KQo = xpo. 

where K is given by 

1Further details are given in connection with equations (51) and (52). 



q is heat release for unit mass of gaseous fuel - assumed constant. 

m"(t) is the rate of production of gaseous fuel. Various forms for mM( t )  
are considered by Saito et.al. 

Note that this formulation derived form equation (l i)  does not allow the flame 

to die out when V becomes zero. We shall however continue with these equa- 
tions. 

Saito, Quintiere and Williams point out that for small E 

whilst if propagation persists 

V(t) becomes proportional to v(o)efft 

where ]Z~(c )e -~ '  d i  = 1 determines a It is thus possible to discuss the roles 
of a [= Kqml'(o)] and parameters in the form of mt '( t) .  

However, there is a formal solution of equation (lii) viz if we take the Laplace 

Transform 

J 0 
then 

The inversion theorem (for E as the time variable) is 



where y exceeds the real part of all singularities i.e. the roots of 

which is akin to the result given by Saito, Quintiere and Williams for an 

asymptotic form. 

If we consider ignition being effected by radiation so that 

then 

m" 1 
- - 

m + P =  1 a n d G =  a P 
a - l  

When c -> 0, F is O(l/p), p -> m 

the result discussed by Saito et.al. 

Saito et.al. discussed two forms of mH(t )  - viz 

m"(6) = m"(0) 0 < € < to = 0 = € > 6, ( l0 )  
referred to as Curve 1 

E and m"(c) = - referred to as Curve 2. 
f i  

However here we discuss primarily a form used by Magnusson and Karlsson (3) 

viz 



where y = /3r and to which we refer as Curve 3. 

For Curve (1) 

1 F = 2[1-e-~c0] - - 
P P 

1 q l - e - ~ c o ] -  - 
and G = E' a - l  

This has close similarities with Hasemi's model which we discuss below. The 

For finite fo inversion is alge- 
braically cumbersome. 

The condition for a real root 

l - F = O  

is that a p. > 0 exists where 

p, + 1 - a + ae-*oto = 0 

and the limiting condition is obtained from 

-P c 1 = a c e  o o  
0 

results given by Saito et.al. 

requirement for continued burning is clearly a>]. 

this and 



i.e. V = aE&fi - 1 

(a - l )  [ p i l - a B & a  

The denominator can be factorised into 

where e = a E m 2  with inversion into analytic functions involving the error fun- 

ction. 

Propagation leads to an asymptotic solution 

For Curve 3 

and 

V = 1 a-l 

The denominator has real roots only if 



and the asymptotic solution is then 

Note that in SQW notation 

In what follows we shall refrain from using the variable c = t / ~  and use the 

Laplace Transform defined in term of denoting the operator by "S" instead of as 
"p" above. 

From equation (l i)  and the same quasi-steady assumption that V = dx /dt we P 
have 

and, from equation (4ii) 

from which 

Further development depends on the forms of m" and Q. 

In terms of the original variables with the more general form 



and with Q(t) assumed to be a constant Qo, we have 

2 V = (As + B)/(s + CS + D) 

where, since KQo - 
- Xpo 

9 
If C2 > 4D > 0 and C is -ive both Y1 and Y2 are +ive, if C- > 4D > 
0, and C is +ive, both are negative and spread must eventually stop. 

Initially Ylt and Y2t << 1 

and V(t) 4 A + [B+A(Y1+Y2)]t A + (B-AC)t... 

Because A is +ive spread can start, but only accelerates if 

The time of peak V(t) is obtained as 

which is real and positiiie if B > AC. 



When 4D > C2 the exponentials eYlt and eYzt become trigonometric functions. 

Propagation will only initially accelerate if B > AC but eventually it ceases. 

Unlike the case when Y1 and Y2 are negative and the propagation dies out 

asymptotically it ceases at a definite time when C2 < 4D. This time can be 

shown after some algebraic manipulations of equation (32) to be 

3. Linearisation 

The SQW approximation of a linear relation between xf and heat release can be 

regarded as an approximation to a non-linear relationship. 

and since we need to emphasize behaviour near to the initial condition then 

and we need to define a mean value for 

and introduce an extra fictitious heat source equal to 

If flames are regarded as a region of uniform temperature then in the lower 

parts gas will accelerate under buoyancy and for a line plume the inflow 



velocity of entrainment air will, at a height z, be proportional to z1I2, so that 

below a height za the entrainment air is proportional to z:l2 per unit width of 

flame. If the pyrolysis rate is uniform the mass flow up to the height of the 

pyrolysis zone is proportional to z . Then a crude identification of flame height 
P 

zf as the height to a particular degree of dilution or air/fuel ratio leads to 

This is the conventional relationship. However the pyrolysis rate increases with 

height eg. as za ( a  > 0) then 

and zf a z 2/3(1+a) 
P 

and the dependance of zf on z moves from a 213 power dependence towards 
P 

one nearer unity (if a < 312). 

4. The model of Hasemi et.al. 

In the HYN model there is no difference between initial and asymptotic condi- 

tions and an exponential solution is introduced into the equations to solve them. 
Thus writing the conventional heat condition equation 

where T becomes T. (=Tp) when X = 
'g x ~ '  they introduce an experimental 

function for q"(x/xf) and the relationship 



which leads to 

If now we introduce q k  = constant for X < X < xf and = 0 for X > xf P 
we can compare the two models. Bearing in mind they use 

we obtain 

where T has the same definition as given by Saito et. al. 

dx  
Equation (45) has been derived on the presumption that 2 is exponential 
whilst the pyrolysis front moves from one value of X to where the flame front 

P 
then was i.e. xf. 

X f  . xf-X X 
Ln- 7 --..P + higher powers of 4 

X~ X~ X 

The first term leads to 

which is the equation used by Saito et.al. 

The origin of this equation is a steady relate theory in which the temperature 
rise is zero at X = xf and Tp  - T at X = X . In between it rises accor- 

0 P 
ding to the conventional square root law (in time) associated with the heating 

of 0 semi infinite solved by a constant flux. 



No constraints can be applied to the surface temperature at t = 0 ecxept that 
T = T for X I. X but clearly in discussing the initial behaviour of the 

X P P 
flame this problem has to be considered. Clearly if T = To X > xp one 

X 
could expect some step by step process since the pyrolysis zone could not extend 

until all the zone X < X < xf were heated at once: a process which, in a 
P 

different context has been discussed by Emrnons (4). 

5. The relations hi^ between Y ,  and xp 

Saito et. a1 use the linear forms 

Hence 

The HYN model omits the first and last terms, the pilot and the effect of the 

lessening value of m1I(x), so permitting the approximation xf/xp = constant. As 

illustrated above there is an implied requirement that (a- 1) << 1 so as to 

xf- X X f  
make the two models similar ---P Ln -. 

X~ X~ 

Both models can be extended to include a transient variation in Ts, if it is a 
uniform one resulting from a uniform imposed radiation .flux. This cannot describe 

a real initial condition where there is little likelyhood of a discontinuity between 

T. or T and Ts just above the zone of pyrolysis. In this context it is im- 
'g P 



portant to note that for Ts + T. r + 0 and the importance of X is reduced - 
'g' 

i.e. the role of charring is lessened (see equations (29) + (35)). 

In this sense ( r  0) the exponential asymptotic begins earlier in real time and 

one is then only concerned with the asymptotic solution. 

6. Conditions inhibitine u~ward  s ~ r e a d  

For a general discussion of the failure of the flame to spread we omit m: and 
consider Q(t) = Q. so that B = 0. The condition for upward spread (B > 
AC) is now that C is -ive; were C +ive there would be no acceleration and 

propagation would slow down and eventually stop with the reservations made 
regarding the formulation of the theory - especially as it effects the initial 

stages and the extinction (with xf = xp indefinitly). 

We write integrating equation (32) 

which with B = 0 

For the condition C +ive and c2 > 4D, Y1 and Y:, are negative and 

the pyrolysis does not grow. From equation (l i)  

= X,+ A/(Yl - Y2) [(1+Yld eYlt  - ( i + ~ ~ ~ ) e ~ 2 ~ ]  

We note that a t  t = 0 



Since B = 0 ,  the pyrolysis zone does not spread for C r  > 1 and the flame 

only grows, later to subside from its initial xfo (> X ) to the lower distance 
PO 

XPO 
if 0 < C < l / r .  

If however Y 1  and Y 2  are complex we have V = 0 at to give by equation 

(38), which for B = 0 gives 

The important condition C 2  = 4D that seperates an extinction mode from a 

propagating mode (when C < 0 )  or extinction at to or asymptotically (C>O) is 

obtained readily 

2 C r  can be written as l - a + pr and D r  as /3r (with B = 0 )  

so extinction results if 

2 i.e. pr lies between ( l  - 6)' and ( 1  + h) . For PT = (1 - h)', (see also 

equation 25) 

C r  = 2 & l - 4  < 0 whereas for PT = ( 1 + m 2 ,  C r  = 2&(1+&) > 0 

The various zones are shown in Fig (1) 



hopogotim ends 
asymptotically in 

Pmpagatmn ends 
at D finite tame ------ D 

!xopogntion 

Fig. 1 Zones of propagation & non-propagation. 

From a practical point of view the conditions at  the start of upward spread are 

of more practical importance than the asymptotic behaviour of faster and faster 
spread because the time of spread is more determined by the slow initial spread. 

It is therefore essential to develop the theory with a view to examining the 

early behaviour in particular. 

If we cease distinguishing between the two kinds of non-propagation and consider 

only the condition for indefinite propagation we can compare the conditions de -  

rived by Saito et.al. for two forms of mi ' ( t )  and the third form used by 

Magnusson & Karlsson. We shall compare them on the basis of equal total heat 

output (or M mass loss) and introduce a time t at  which half this total has 
112 

been delivered. We take for simplicity m: = 0. For the SQW Curve (1) m" = 

m; constant for O<t<tg. 

Hence M = m" tg  
0 

* 
The corresponding mass flux m " defined 



* 
is m I t  = m" 

0 

For the SQW Curve (2) 

and M = 2mg l 'ctB 

Note this differs from Saito et.al.'s own choice of e,. The characteristic m ' "  is 
2mbJ and t 

112 t ~ / 4 '  

For the exponential form we assume there is no cut off in m" SO that 

m" 
M = 9 

Hence p = l / t B  

m" o m" and 0 
- e-Dtl/2) = - 2 

For curve (1) Saito et.al. give the minimum value of a = Kqm" o for propaga- 
tion as 

= 1 + 1/X + Ln (a/X) (57) 

where X = tig/tB (t. = T). 
'g 

In terms of a' = Kqma and X' = t. /t we have a' = a and X' = 2X. 
Ig U2 

For curve (2) Saito et.al. give 



where a '  = 2a and X'= 4X i.e. a '  = - * JXT 
f i  

2  For curve (3)  9 = (1 - &) / r  and f i  = ,/G - 1 

i.e. a > (JP?: + = (1 + m2 

The three relationships of a l (X' )  appear in Fig ( 2 ) .  

The differences are small except near the origin because there the inverse square 

root gives an instantaneously infinite m" a t  t= 0. 

Fig. 2 



All the quasi steady models give a single functional result 

* 
Kqm " = funct(t. / t  ) 

% 112 

K is a constant. 

All the quantities are measurable qm" being Q" the rate of heat release. All 

quantities m", tg, tig are to be obtained under the same heat flux as from the 

flame. One could choose a different characteristic time but it has to be related 

to tB  by the variables included above of which one is implicit viz the jQ" dt 
* 

the total heat release "H" which defines Q = H/2t1/2 

One could therefore use, as a means of correlating data 

The choice of definition of t has been somewhat arbitrary, but clearly the 
112 

calculated results indicate that a relationship of the above form can be obtained 

which (provided the initial values of m" are not infinite) will be expected to be 
very similar for a range of mM(t )  characteristics. 

7. Limitations to auasi steadv theory. 

Were the initial conditon on the surface X < X < xfo to be a zero rise 
PO 

above ambient instead of that corresponding to the quasi-steady model we could 
not expect any propagation for a constant m" unless t. < tB. The shaded area 

'g 
on Fig (2) shows the extent of the "error", for this case. This is a problem 
get to be examined. 



8. Conclusion 

Fairly obviously, because of approximations in and omissions from the mathema- 

tical description given here, one cannot expect too close an agreement between 

theory and physical reality. However it does seem that the theory developed by 

Saito, Quintiere and William can be profitably extended. It would seem that the 
condition cu > 0 discussed by Saito et.al. and elaborated there can be adapted 
to provide a criterion of the form KQ: < function (t. / t  ) for inhibition to 

1g 112 
indefinite propagation. Q: and t are obtainable from small scale heat, release 

ig 
data as can t. . Differences between the SQW and the HYN models have been 

'g 
discussed and whilst the SQW model appears to deal with initial conditions an 

xf-x 
examination shows that implicit in them is the unstated constraint << 1. 

*D 
Further theoretical studies allowing for initial temperatures between T; and T 

P 
outside the initially pyrolysing zone, need to be made. 
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