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THE DESIGN OF A ONE DIMENSIONAL HEAT DIFFUSION PROCESS.

B. Leden

ABSTRACT.

This report presents the construction of a thermal process inclu-
ding the electronics required to perform measurement and control
the process. The control domain of the temperature is 20°C - 30°C.
The thermal process has an almost unidirectional flow of heat.
The influence of the environment on the stationary temperature
distribution is analysed in detail. At an ambient temperature of
25°C the influence maximally reaches 0.02°C. Further a swift and
stable temperature servo is developed. The servo makes use of the
Peltier effect. The solution time (5% of final value) at a 2°C
temperature change in the input variable is 5 sec. The long term
stability (12 hours) falls below 0.001°C. The complete scheme of
a cascade compensation of the servo is given. The dynamics of the

process are discussed.
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1. INTRODUCTION.

The constructed laboratory process will allow experimental stu-

dies of a one dimensional heat diffusion process tied to a pro-

cess computer. Problems on identifying and controlling multiva-

riable and infinite order systems will be considered. The pro-

cess will be studied mainly from two different aspects, viz. the

identification and the state reconstruction and control aspects.

(i)

(i1)

The identification aspect:

The conduction of heat in a one dimensiocnal heat diffusion
process 1s well described by the partial differential equa-
tion

32u/ox? - -l-—- su/at = 0
éz

The variable u = u(x,t) denotes the temperature in the pro-
cess at a point x at time t. This equation may be trans-
formed into an infinite dimensicnal system of ordinary dif-
ferential equations. From this aspect the identification ex-
periments are interesting. The identification results may
be compared with the & priori known model.

The state reconstruction and control aspect:

The state reconstruction problem consists of the determina-
tion of the temperature profile out of an optimum mixture of
mathematical model calculations on line and measurement on
line. Out of the knowledge of the actual profile, the tempe-
rature profile should be controlled in an optimum way, to a
desired profile by means of the controllable boundary tempe-
ratures. Among other things linear quadratic control theory
will be applied. The study includes numerical methods for
optimization with a process computer as well as measurement

and filtering problems.




The system configuration appears in chapter 2. A brief descrip-
tion of the blocks forming the system and the system require-
ments are also presented here. The requirements are the ones sa-
tisfied by the system. Thus the performance figures of the sys-
tem may readily be found.

Chapter 3 deals with the construction of a swift and stable tem-
perature servo, making use of the Peltier effect. The servo
comprises a PID regulator and a nonlinear compensation, intro-
duced in the feedforward path. The step responses of the servo
to a temperature change of +1°C, #2°C, and :4°C are shown in
Fig. 3.4.4, The effect of the saturation obtained in the servo
may be studied from those figures. The transient response in 3
different points of the servo is found in Fig. 3.%4.2 and 3.4.3.
The figures show clearly the effect of the nonlinear compensa-
tion. The solution time (5% of final value) of the servo reaches

5 sec. at a 2°C step change in the input variable.

We are concerned with the problem of insulation in chapter 4.
The temperature distribution in a thin rod is evaluated on the
assumption, that the thermal losses from each surface element
are proportional to the temperature difference between the en~-
virorment and the element. As a consequence of the evaluation
we conclude, that the system requirements camnot be fulfilled,
provided that a conventional insulation technique is employed.
A soluticn to the problem is achieved by enclosing the rod in
a heat shield controlled as the rod. A detailed analysis of the
stationary temperature distribution of the process is carried

out.

In chapter 5, finally, the dynamics of the process and the mea-
surement results are presented. A modal analysis shows, that the
transfer function between the end point temperature and the tem-
perature at an arbitrary point on the rod contains an infinite
number of negative real poles. The unit step responses of the
process are calculated and appear: in Fig. 5.1.3. The measure-
ment results are shown in sections 5.3.2 and 5.3.3. Section 5.3.2

treats the stationary case. The temperature distribution of the




rod at different boundary temperatures may be studied from Tables
5.2.1 and 5.2.2. The control domain of the temperature is 20°C -

- 309C. In the domain the influence of the environment on the tem-
perature distribution maximally reaches 0.02°C, provided that the
ambient temperature is 25°C. Section 5.3.3 considers the nonsta-
tionary case. The influence of the environment and the servo on
the step responses of the process may be studied from Fig. 5.3.1
and 5.3.2. The influence rapidly decreases as the measuring point
is removed from the excitation point. In the reduced temperature
range 24°C - 26°C the influence falls below 0.003°C for x 3 /2.




2. A GENERAL DESCRIPTICN OF THE SYSTEM,

2.1. A Bleck Diagram of the System.

The system configuration is shown in the block diagram, Fig. 2.1.1.
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Fig, 2.1.1 - A block diagram of the system.
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The diagram shows that the system comprises a thermal process,
7 temperature transducers and 2 servo loops, forming so-called
temperature servos. The system input variables are u; and up,

and the system output variables y;, ¥y ... y7.

The thermal process is made of a straight homogenecus copper rod
with constant cross section. The red is enclosed in a copper
shield. The shield yields an almost unidirectional flow of heat
in the rod. A conventiocnal heat insulation surrounds the shield.
The silver plate connects thermally the end surfaces of the rod
and the shield. The Peltier elements, connected to the silver
plate, supply the power necessary to control the end temperature
of the rod. The coolant serves as a reference temperature to the
Peltier elements. The rod has 9 equal spaced small holes. Two
holes are situated in the end surfaces and 7 along the rod. A

sensor can be mounted in each hole.

The transducers are of two types. The cormection between the bo-
dy temperature TOC of the sensor and the output voltage e volts

of the transducer is
e = (25 + T) (2.1.1)

where the plus sign applies for type 1 and the minus sign for

type 2. The temperature range of operatiocn is 20°C - 30°C. The
output voltages of the transducers type 1 are the output variables
of the process dencted y;, V2, V3 «.. ¥7 in the block diagram.

The transducer type 2 is used in the servo loops. The voltage-
temperature characteristic- of the transducers are shown in Fig.
2.1.2.

The servo loops include 5 blocks, cne of which is the transducer
type 2. The other bilocks are a summing amplifier, a PID regula-
tor, a power amplifier, and the Peltier elements with cooler. The
end temperatures of the rod are controlled by means of the system
input variables u; and u,. An input signal u volts yields the sta-

ticnary end temperature T°C where

T = (u+ 25) (2.1.2)
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Fig. 2.1.2 - The voltage-temperature characteristic of the tem-
perature transducer type 1 and type 2. Temperature
range 20°c - 30°C.

The sensing element of the transducer is a thermis-

tor.

2.2. A Summaxry of the Different Blocks.

The temperature transducer consists of a one thermistor Wheat-
stone bridge and a differential amplifier. The amplifier detects
the unbalance of the bridge, which is fed by a stable reference
voltage. The linearity error of the transducer reaches 0.01°C in
the temperature range 20°C - 30°C. A detailed description of the
transducer is found in |3|. The summing amplifier has two inputs
and is inverting. The PID regulator is made up of a serie connec-
tion of an integrating compensation and a lead compensation. The
regulator contains a compensation for the nonlinearity of the
Peltier elements. The power amplifier supplies a maximum direct
current power of 130 watts at the resistive load 1 ohm. The power
is limited by the PID regulator to 80 watts. The gain of the amp-
lifier is 10 times. The Peltier elements generate a maximum coo-

ling effect of 46 watts. The maximum heating effect is essential-




ly greater but is limited by the regulator to 46 watts. The mag-
nitude and direction of the current supplied to the elements cont-
rol the magnitude and direction of the flow of heat through the
elements. A more detailed description of the summing amplifier,
the PID regulator, the power amplifier and the Peltier elements
appears in section 3.2, 3.3 and 3.4.

2.3. System Requirements.

In the introduction it was mentioned,:that the constructed ther-
mal process was intended to allow experimental studies of a cone
dimensional heat diffusion process, tied to a process computer.
It was also stated, that the process should be studied from main-
ly the identification and the state reconstruction and control
aspect. Some experiments, especially the identification experi-
ments, require that a quite accurate realization of the one di-
mensicnal heat diffusion process is available. However, it has
not been possible to obtain a precise bound for the influence of
the environment and the servos on the measured performance of the
process. The philosophy has been to build the process as accura-
tely as possible with a reascnable amount of effort. The reguire-
ments below are fulfilled by the system and are the measured per-
formance figures. It should also be pointed ocut, that the conduc-
tion of heat in a real specimen with a . unidirectional flow of
heat is not perfectly described by the one dimensional heat dif-
fusion equation. The accuracy of a physical realization of this

equation is thus limited.

The control domain of the temperature is 20°C - 30%C. In this do-

main we now specify at an ambient temperature of 25°C.

Heat insulation:

(1) The influence of the environment upon the steady state tem-
perature distribution of the rod should be within 0.02°C.




Transducer:
(ii) The linearity error of the transducer must be below 0.02°C.

(iii) The drift (12 hours) of the transducer must be within
0.001°C

(iv)  The short time stability (1 min.) of the transducer should
fall below 0.0002°C. '

Sexrvo!
(v) The stationary error of the servo must be below 0.01°C.

(vi) The solution time (5% of final value) of the servo to a

reference temperature change of 2°C must be within 5 sec.
(vii) The drift (12 hours) of the servo should fall below 0.001°C.

(viii) The short time stability (1 min.) of the servo should be
better than 0.0002°C.

The extreme requirements on the drift and stability of the trans-
ducer and servo make it possible to utilize a narrower tempera-
ture range for the experiments without having the accuracy spoiled
by noise and drift. This may in scome cases be of great advantage
as the solution time of the servo increases considerably when the
input signal essentially exceeds 2°C. The linearity of the emp-
loyed transducers is improved as the temperature range is reduced
symmetrically around the mid point temperature 25°C,

Section 5.1 shows that at an irrational point the transfer func-
tion between the end temperature of the rod and the temperature
of the irrvatiocnal point contains 10 poles to the right of the cont-
rol poles of the servo. Thus we conclude that the process may be
properly excited. The employed transducers found in |3| fulfil spe-

cifications (ii), (iii). and (iv).



3. A TEMPERATURE SERVO.

3.1. A Block Diagram of the Servo.

The block diagram of the servo is presented in Fig. 3.1.1.

PID Power Cooler Coolant
requlator amplifier A .
R et B’L t
Temp < 21 Peltier element

transducer type?2|: ) ll

Fig. 3.1.1 - The block diagram of the servo.

The servo comprises & blocks. The open loop system is formed by
the serie connection of the power amplifier, the Peltier elements,
and the transducer. The input and output variables of the open
system are the input signal of the power amplifier and the out-
put signal of the transducer respectively. The open system is
approximately linear as small Input signal amplitudes appear.

The Bode plotsof the uncompensated and the compensated system:are
shown in Fig. 3.1.2. The PID regulator, placed in the feedfor-
ward path, is a serie compensation. The compensation yields an
improved swiftness and stability of the servo, and reduces the

static error to zero.
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3.2. A Design Criterion of the PID Regulator.

The PID regulator consists of a cascade connection of an in-
tegrating compensation. (1 + 1/Ts). and a lead compensation
K(s + b)/(s + EN).

U(s) BE X Y{s)
Ts S+
°_<—* K oebN C

Fig. 3.2.1 - The block diagram of PID regulator.

The transfer function of the compensatiocn is

s +Db
s + bN

K(1 + 1/Ts)

(3.2.1)

The integrating compensation reduces the static error coefficient
to zero, required by the system requirement (v).The parameters K,
T, b. and N should be determined, e.g. from the Bode diagram of
the open loop system, to give the servo an optimum transient be-
haviour and a solution time below 5 sec. The parameter b is cho-
sen to make crossover cccur within a long section of -20 dB per
decade slope. This insures an adeguate phase margiﬁ. The phase

margin may be increased or decreased by adjusting K.

As a rule of thumb the parameter T should be chosen to make the
integrating compensation cause a phase lag of 5 at crossover.

Such a choice affects only the stability of the closed loop sys-
tem slightly and yields a static error quickly tending to zero.

The lead compensation improves the transient behaviour of the
system by giving a positive phase shift at crossover. The maxi-

mal phase-lead angle obtained by the compensation is




iz.

¢ o T arctg{ (VN ~ 1/vl)/2} (3.2.2)

and occurs at the angular frequency bvN. The limiting phase-lead
angle of eq. (3.2.2) is 90°, Clearly, the angle readily obtain-
able from the compensation is not much greater than 60°. The
choice N = 10, which prevents the feedforward path to become too

susceptible to noise, often appears in practice.

The rules of thumb presented above suggest

,
K= 24
| 1T = 0.0853
b= 3.1 (3.2.3)
LERH

The K value gives the compensated system the phase margin 35°.
The choice of T results in a phase lag of 1.4° at crossover.
Further, the choices of b and N give a phase-lead angle of 33°
at crossover. According to eq. (3.2.2) a maximum phase-lead
angle of 56° may be obtained, provided that the frequency bvN
equals the crossover frequency. This suggests a larger b value.
In practice the chosen b value is found "optimum". The discre-
pancy may be caused by the rapid phase angle decrease at cross—

over,

The bandwith of the system is 4.l rad/sec. From Fig. 3.4.4.it
appears, that the solution time (5% of final value) of the servo
is 5 sec. at a 2°C change in the reference temperature. The sys-

tem requirement (vi) is thus satisfied.
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3.3. A Design of a FID Regulator.

The integrating compensation is realized with the circuit 3.3.1.

Cc
R ——1 R3 R4 Rf
L1 ¥
Ry
eln 91 S, - e t
e — . ou
2 Ly
Rg

Fig, 3.3.1 - The realization of the integrating compensation.

The compensation contains an integrator and a differential amp-
lifier. The integrator is connected to the differential ampli-
fier via a voltage divider. This provides an artificial increase
of the characteristic time RC of the compensation. A realization
of the compensation involving one operational amplifier is rea-

dily found for time constants T of the order of 1 sec.

Provided, that the loading effect of Ry on R3 and Ry is negli-
gible, i.e.

R]_ >> R3//R1§ (3-3.1)

the following relations between the voltages ej, e,, e and
@ ut hold

Re 1+ R/R
Cout™ " T &1 ¥ ez (3.3.2)




ik,

R, 1 |
e = =~ e — e, dt (3.3.3)
in
Ry + R, RC

It should be cobserved. that e, = &, .+ The transfer function
Gcl(S) of the circuit is readily obtained by substituting eq.
(3.3.3) into (3.3.2) and making a laplace transformation. The
procedure yields

1+ Re/Ry Re Ry 1+R/Ry1 1]
Gp(8) = ———— |1+ = £~ (3.3.4)
1+ R, /Ry Ry Rz + Ry 1+ Re/Ry RC'sJ

By introducing the gain factor K; and the time constant T the

transfer function may be written

K1 + 1/Ts) (3.3.5)
where
1+ Rf/Rl
K; = (3.3.6)
i+ Rg/Rz
Rf Ry 1+ Rg/Rz 1

1T = — - — (3.3.7)
R Ry + Ry 1+ R/R) RC

In the previocus section the parameter T was determined. We have

1/T = 0.053 (3.3.8)

The time constant T is thus 19 sec. The nonlinear ccmpensation,

described later, requires a gain factor K; of approximately 5.
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We now rather arbitrary put

R = 390 ko
C = 6.8 yF

| Ry =R, =R, = 39 kg (3.3.9)
Ry = 8.3 ko

| Re = 400 ke

The moderate value of the resistance R will prevent the input off-
set current of the operational amplifier from causing damaging
disturbances on the performance of the integrator. Further, the
moderate value of the capacitance C allows us to find a low-leak-
age capacitor of small dimensions.The choices of R;, R, and Ry
need no comments. The value of R; gives a resistance R,, which
satisfies the inequality (3.3.1). The choice of Re is due to the
requirement of the gain K;. Combining eq. (3.3.7) and (3.3.8) we
find

R, = 700 @ (3.3.10)
Finally, we obtain from eq. (3.3.6) and (3.3.9)

Ky = 5.6 (3.3.11)
The transfer functicn (3.3.5) hence is

5.6(1 + 0.053/s) (3.3.12)

The circuit diagram of the lead compensation is found in the Fig.
3.3.2.
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Ry
R
S |
ein o—:}—-—__”_ Ry Ry
c

eout

Fig. 3.3.2 - The circuit diagram of the lead compensation.

The nonlinear compensation employed requires, that the output
swing of the operational amplifier is +10 volts, while the maxi-
mum permitted input swing of the power amplifier is +1 wolt.
Therefore the voltage divider should be intreduced., The trans-

fer function G_,(s) of the lead compensation is

Ry s+b
GCZ(S) = - Kz (3.3.13)
Ry + Ry s + bN

whera

b = 1/(R,C) ‘ (3.3.14)
N =1+ Ry/Ry (3.3.15)
Ko = Rf/R1 (3.3.186)

The parameters b and N were determined in the previcus section.
We found

b = 3.12
(3.3.17)

=
]

11
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We now again rather arbitrarily choose

R, = 100 ke
Ry = 10 ko (3.3.18)
Rq = 1ka

According to eq. (3.3.14), (3.3.15) and (3.3.17) we obtain

C=3.2 yF
(3.3.19)
Ry = 10 kn

It now remains to choose Rf to obtain a phase margin of 35°, As

shown in section 3.2 this requirement implies

K = KjKp = = 24 (3.3.20)

This finally vyields

Rf = 470 ko (3.3.21)

An insertion of the parameter in the transfer function (3.3.13)
gives

s + 3.1
s + 34

GCZ(S) = - 4,3 (3.3.22)
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3.4. Open Loop System, a Nonlinear Compensation and Transient

Performance of the Servo.

The circuit diagram of the summing amplifier is found in the
complete scheme of the compensation Fig. 3.4.1 . The transfer
function between either input and the output of the amplifier

is

1
1+ Ts

y L = 0.033 (3.4.1)

which tends to -1 for small frequenciés s. The dynamics of the
amplifier do not affect the transient performance of the servo,
but makes it less susceptible to noise components in the input
signal. The corner frequency of the transfer function is 30 rad/
/sec. The tolerance of the employed input and feedback resistan-
ces is 0.1%. The reference temperature of the servo is obtained

from a stable zenerdiode bridge.

The power amplifier supplies a maximum direct current power of

130 watts at the resistive load 1 ohm. The gain is 10 times, and
the input and output impedances are 500 kohms and 25 mohms res-
pectively. The output noise (RMS) at short-circuited input and

1 chm load is 0.3 mvolts. The cut-off frequency (-3 dB) of the
amplifier is 18 kHz. The actual load is 0.8 chms, giving a maxi-
rum power of 100 watts. The Peltier elements require the maximum
power of 80 watts at an output current of 10 amp. A detailed dese-
ription of the amplifier may be found in [4].

The Peltier element is made of a semi-conductor and consists of
36 pairs of different doped small bars, joined with copper |
bridges. The current through the elements pump heat from one
side of the element to the cother side. The direction of the flow
of heat is altered by a reversed current. The power transferred
through the element is as a first approximation proporticnal to
the magnitude of the current. However, the process occurs with

ohmic losses.
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If a constant temperature difference exists across the element
the relation (4.3.2) holds

P =gl + kyI2 (4.3.2)

where P denotes the power, supplied by the element, and I the
current through the element. The quotient k;/k, is 10 - 20 amp.
The maximum cooling effect is obtained at the current 10 amp at
zero temperature difference across the element and reaches 23
watts. Each servo contains two Peltier elements. Thus a maximum
cooling effect of U6 watts is generatgd.

The nonlinear compensation is found in Fig. 3.#.1. The first
compensation, consisting of a single zenerdicde, is inserted
across one of the feedback resistances of the differential amp-
lifier. The compensation gives the amplifier a voltage depen-
dent gain. In a case, where a large positive input signal is
applied to the servo, the zenerdiode is forward biased, yielding
a short-circuit of the feedback potentiometer. In the opposite

case the diode is not active.

The second compensation is a limiter, made up of two different
zenerdiodes, comnected in series. The limiter is found across
the feedback resistances of the lead compensation. The bounds
of the output of the coperational amplifier concerned become

5.6 V for a positive cutput and 9.3 V for a negative output.
These bounds are chosen so that approximately the same maximum
heating and cooling effect is obtained in the Peltier elements.
The employed diodes have a steep forward characteristic, yield-
ing a limiter with sharply-defined bounds. Note, that the limi-
ter prevents the operational amplifier of the lead compensation
from being overlcaded. Also note, that small changes in the in-
put signal never activate the nonlinear compensation, which

creates a linear band in the servo.

The transient response in three different points in the servo
may be seen in Fig. 3.4.2 and 3.4.3. The change in the input
signal is 1 V and ~1 V respectively. The effect of the nonli-
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near compensation may be studied from those figures. In Fig.
3.4.4 the step responses of the servo is shown at an input vol-
tage change of +1 V, £+2 V and #4 V. The solution time of the
servo increases considerably when the reference input change es-
sentially exceeds 2 V.

The meximum steady temperature difference between the servo in-
put signals reaches 0.01°C. The drift (12 hours) of the servo

is below 0.001°C and its short time stability (1 min.) is within
0.0002°C. Thus the system requirements (v), (vii) and (viii) are
satisfied.
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Fig. 3.4.4 - The step responses of the servo at different refe-

rence temperature changes.
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4. APPROACHES TO THE PROBLEM CF INSULATION.

4.1, Fundamentals of Conduction of Heat in Solids.

In this section we are concerned with the differential equation
describing the conduction of heat in an isotropic homogenecus
solid. This equation turns out to be a nonlinear paftial diffe-~
rential equation. Only in a case, where the thermal properties
of the solid are Independent of the temperature the well-known

heat conduction equation is obtained.

Let u = u(r,t) be the temperature at a point ¥ of the solid at
time t. Further, let heat be produced in the solid, so that at
the point r at time t, heat is supplied at the rate Q = Q(T,t)
per unit time per unit volume. Denote the thermal conductivity,
the density and the specific heat of the solid by k, p and ¢
respectively. These quantities are functions of the temperature

U. An energy balance yields

L
oy

3t ax ax

PRy PRI N1 B (4.1.1)
3% oz 3z '

Observing, that the thermal conductivity k depends on u, this
equation becomes

2 2 2

2 2 2
W g3, 3%y 3Ty 4 Bk fBul , fau)  fou (4.1.2)
ay 37

ot ax?  ay?  3z?} au

X

If the thermal conductivity k is independent of the temperature,
the factor sk/3u vanishes, and eq. (%.1.2) is simplified to

+ 3%u + 32y - gc

ax?2  ay?  az? kot

au

= - Q/k . (4.1.3)

This is the well-known heat conduction equation. However, in ge-
neral the thermal properties of the solid depend slightly on the
temperature. The following expressions apply for copper in the
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temperature range 20°C - 309C.

kK = kol + aul); Ko
c = cpl(l + Bul; ¢
P = 0ol + yud; oy

1

3.8 W/em °Cy
0.3% J/g °C;

8.9 g/cm?;

o

B

-

H

- 3 107%/%C (4.1.14)
3 107%/% (4.1.5)

- 0.5 107 /°C (4.1.6)

The subscript o refers to the temperature 20°C.

Eg. (4.1.2) may be reduced to a simpler form by introducing the
variable 6 = 8(r,t), |2].

u

6 = - f k(E)ds
ko

(4.1.7)

The conductivity k¢ is merely introduced to give & the dimension
of temperature and is the value of k at u = 0. Eq. (4.1.2) now

becomes

2 2 2

a%0 , 8% 2%  pc 38 _ _ Q.
ax®  aycr  3z2 k3t kg

(4.1.8)

where pc/k depends on 8. The case of staticnary one dimensional

flow with no heat generation is of particular interest. Eq. (4.1.8)

may then be written

2
.g.......e_.:D

dxz

(4.1.9)

(4.14.,10)

i.e. the temperature gradient of the variable 6 is constant.
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From eq. (4.1.7) it follows

du ky de
- (4,1.11)
dx k dx

According to eq. (4.1.4) and (4.1.10) an integration of this re-
lation yields

2 (4,1.12)

&
1]
o
-+
N
Q
[on

For the sake of simplicity it is assuﬁed, that the temperature at
x = 0 is zero. bmploying eq. (4.1.12) u may be expressed as a

function of x. The following approximate expression is obtained.
u(x) = ax - 7 ea’x? oax << 1 (4.1.13)

The relation (4.1.13) is shown graphically in the figure below

for ¢ less than zero. This sign is applicable for copper.

»

0

Fig. 4.1.1 - The stationary temperature gradient in an isotropic

homogeneous slab.
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In the figure the point P; and origo denote two arbitrary points,
spaced at a distance % from each other. The vertical distasee.
Au(x) between the function (4.1.13) and the straight line is rea-
dily calculated. We obtain

L
2

Aulx) = = aa?x(L-x) (4.1.14)

The maximum value of Au is achieved at x = /2 and reaches
Mle/2) = -33: 0a?p? (4.1.15)

Given that the solid is copper and the temperature difference bet-

ween the two points 10°C we have approximately

at = 10 (4.1.18)
which yields according to eq. (4.1.4) and (4.1.5)

pu(e/2) = 6.003°%C (4.1.17)

We now conclude that the temperature distribution in a perfectly
insulated isotropic homogenecus copper rod, whose end surfaces
are kept at constant temperatures, is not linear. As illustrated
in the Fig. 4.1.1, the temperature gradient in such a rod increa-
ses slightly with increasing temperature. However, defining the
departure from linearity as in eq. (%.1.14) we know, that the ma-
ximum linearity error in a temperature interval of 10%¢ only comes
up to 0.003°C. Finally, it is mentioned, that nonstationary heat
conduction in a solid, whose thermal properties are temperature

dependent, is not simply handled.
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4.2, A First Approach to the Problem of Insulation.

In this section we consider the conduction of heat in & rod. The
quotient of the radius and the length of the rod is assumed to
be so small, that the temperature at all points of the cross sec-
tion may be taken to be the same. The problem is thus cne of cne
dimensional flow. ﬁ

The rate of loss of heat from each element on the surface of the
rod is proposed to be proportional to the temperature difference
between the element and the envircnment. The latter temperature
is constant. Assume, that the rod has.a constant area of cross
section A, the perimeter p and the surface conductance H. Fur-
ther, let the ambient temperature be U,. Then the rate Q = Q(x),
at which heat is lost by transmission at the surface per unit

volume per unit time, is

Hp(U - Ug)

Q= (4.2.1)
A

where U = U{x) is the temperature of the rod at the point x. The

rod is supposed to be covered by an insulation and be of length &.

Uy Qlx) Uy
Servo Servo
U{x)
0 [
X

Fig. 4.2,1 ~ The rod and the serve covered by a conventional in-

sulation.
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Neglecting the dependence on temperature of the conductivity k,
the specific heat ¢ and the density 6, the differential equation

of conduction of heat in the rod can be obtained from eq. (4.1.3).

We find

Hp(U - Ug)

Q

32U/3x2 ~ £ aU/ot & ———— . (4.2.2)
K KA

Taking Uy as the zero of the temperature scale, this equation be-

COMes

22u/ox? - 22 gu/st = HBY (4.2.3)
K KA

where

u(x) = UGx) = Ug (4.2.1)

In the steady case we find

d2u/dx? = HRY (4.2.5)
KA

If the end surfaces of the rod are maintained at constant tempe-
rature U, and we put

42 = BB (4,2.6)
kA
eq. (4.2.5) becomes
d2u/dx? - p2u = 0 0 < x< g
us=u =U -1, ®x =0 (4.2.7)

u Lli-'-‘Ul—UO Xzﬂ:




31.

The solution of eq. (4.2.7) is given by

sinh p{4-%x) + sinh ux u
sinh ut

u(x) = i (4.2.8)

A perfect insulation gives the constant temperature u; along the
rod. The deviation au(x) from this ideal temperature reaches its
maximum at x = &/2, owing to the symmetry of the construction.
Defining

Au(x) = u(x) - uy (4.2.9)
we obtain
sinh %&
p/2) = |2 ———— ~-liuy (4.2.10)
sinh uf Ji

This temperature difference will be used as a measure of the in-
fluence of the environment upon the process. The expression con-
tains a parameter p, which is a function of the unknown surface
conductance H.

Fourier's law may be applied to yield the rate of flow of heat

qg into either end surfaces of the rod. The law implies

qo =z kA QE
dx
X

= - kA[gl"-J = a bleosh pimd) (4.2.11)
X=2

=0 dx sinh g

If heat is supplied to one end of the rod at a known rate, eq.
(4.2.11) offers a very favourable way to determine y and hence

H. Noting, that the lateral loss of heat q, from the rod is equal
to the flow of heat, supplied at the end surfaces, we get

q = QqG (4.2.12)

L

In practice y is often small, so that the hyperbolic functions
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in eq. (%#.2.10) and (4.2.11) may be replaced by the first terms
of their series expansions. Thereby very handy expressions are
obtained, valid for uf << 1. We find

au(e/2) = ~ %-uzizulg uf << 1 (4.2.13)
ang

-1 2 '
Qo = 5 KA utupy ug << 1 (4.2.14)

A substitution of eq. (4.2.14) into (4.2.13) considering (4.2.12)
yields

3?.(:1JL

Au(R/2) = - —_ i << 1 (4.2.15)
KA

ool

Recalling that w; = Uy ~ Uy a substitution of eq. (4.2.6) into
(4.2.14) considering (4,2.12) gives

q, = Hpa(Uy - Ug)ds pi << 1 (4.2.16)

Observing, that pf denotes the total surface through which the
fiow q, is transmitted, we conclude, that H at a first approxi-
mation equals the over-all ccefficient of heat transfer, referred
to the surface pt. Denoting the total thermal resistance between

the rod and the environment by R we have

U - U
q, = ——— (4.2.17)
R

according to the definition of R. Combining eq. (4.2.18) and
(4.2.17) we obtain

He—; ul << 1 (4.2.18)
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From this expression the surface conductance H may be determined.
it is quite simple shown that eq. (4.2.18) for small values of

the product ut yields a surface conductance somewhat smaller than
the one obtained in reality. The total thermal resistance R is

the sum of the individual thermal resistances, i.e. the resistance
R; of the insulation and the two contact resistances Ry; and Rys .
Thus

R = Rl + Rll + R?_z (4.2-19)

In the figure below the rod of radiusfri, surface S, and conducti-
vity k, . and the insulation of radius r,, surface S, and conducti-
vity k, are shown. Denote the contact coefficient of the two bounda-
ry layers by h;, and h,. Then we have according to |1]

Boundary

Fig. 4.2.2 - A crosscut of the rod and the insulation.
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inlro /vy )
Ry &
2N4k;y
IRy o= 2 (4.2.20)
h; Sy
Rzp = 1

Let the dimensions of the rod and the insulation be given by

r = 0.70 cm
81 = 2.0 102 cm?

i ro = 25 am _ (4.2.21)
S, = 7.1 10° com?

L £ = 45 am

and put

h; =h, =5 10 */em2 ©c

3.8 Wam °C (3.2.22)

,'_?ﬁ‘
H]

7 10" i/em °C

kal
8
1]

The low values of the contact coefficients are obtained on the
assumption, that natural convection takes place in the boundary
layers. The conductivity k; is the one for copper. The value of
the conductivity k, is achieved by a high test insulation. An in-

sertion of the parameter values in eq. (4.2.20) yields

R, = 18°C/v
Ry, = 10°C/wW (4.2.23)

R,, = 0.3°C/W
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Putting
Uy = 25°%
o (4.2.24)
U, = 30°
the loss of heat g, is given by eq. (4.2.16). We find
q, = 0.18 W (4.2.25)

Provided, that ut << 1 the temperature difference Au(L/2) may be
calculated from eq. (4.2.15). We have’

ale/2) = -0.19°C (4.2.26)

The factor ut is 4.5 10"2

environment is 0.02°C, according to the system requirement (i).

. The maximum permitted influence of the

Thus the temperature difference Au(i/2) must be reduced approxi-
mately 10 times. An analysis shows, that this is not possible as
long as a conventicnal insulation technique is used.

The evaluation above is carried out under the assumption, that
the loss of heat from each element on the surface of the rod is
proportional to the temperature difference between the element
and the environment. This assumption is justified, if the ther-
mal radiation q,, from the rod, being proportional to the fourth
power of temperature, is neglectable. An upper limit of the ra-
diation is achieved by taking the insulation to be a black body.
Dencting the emissivity of copper by e we find

. b i
q, = usls-[{Ui T = (U + T ) ] (4.2.26)

where ¢ is the Stefan-Bolzmann consitant and Tabs = 273,15°C. The
emissivity of polished copper is

e = 0.10 (4.2.27)
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An insertion of the parameter values show
q, = 0.06 W (4.2.28)
Hence the radiant heat transfer maximally reaches 33% of the con~

duction heat transfer. The radiant heat transfer will henceforth

be neglected.

4.3, A Final Approach.

From the previous secticn it is clear, that any conventional in-
sulation technique cannot be employed to solve the problem of in-
sulation. Such a technique results In an excess of the specified
limit of the influence of the environment. A vacuum technique may
be utilized. The used technique is the one sometimes found in
equipments used for determination of the conductivity of solids.
The bar is enclosed in a heat shield. In an ideal case the shield
should be controlled sc, that the temperature difference between
equidistantly situated points on the bar and the shield is kept
at zero. Such an arvangement should, however, complicate the
construction essentially. From the evaluation, presented below,
it follows, that very satisfying results even can be achieved,
despite that only the end surfacesof the bar and the shield are

kept at the same temperature.

Fig. 4.3.1 - The bar enclosed in a heat shield.
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The rest of this section will be devoted to the calculations of
the bar temperature V(x) and the shield temperature U(x) in a
case, where the end surfaces of the bar are maintained at the
constant temperature Vi. In the evaluation we allow a tempera-
ture drop between the end surfaces of the bar and the shield.
The end temperature of the shield is U;. The bar and the shield
are covered by a conventional insulation. The environment is air
of constant temperature Ug. Further, the length of the bar and
the shield is 4. The temperature profile V(x) gives a good
measure of the quality of the construction. The heat flux from
the bar is essentially less than the flux from the shield in

any reasonable construction.

Assuming the loss of heat from each surface element to be pro-
portional to the temperature difference between the element and
its environment, the temperature U(x) can be obtained from eq.
(4.2.4) and (4.2.8). Putting

2 Hypy
Uz =
kA,

(4.3.1)

where H, is the surface conductance, p, the perimeter, A, the

cross section and k the conductivity of the shield, we find

sinh uy{2~x) + sinh u,x
sinh Uo k

The calculation of the temperature V(x) is more involved as the
temperature U(x) is not constant. The differential equation of
conduction of heat in the bar can, however, be obtained from eq.
(4.2.2). Denoting the conductivity k, the specific heat c, the
density e, the surface conductance H;, the perimeter p;, and the

cross section A; of the bar we have

pa Hip:
32V/9x? - — aV/at = —— (V - U(x)) (4.3.3)
' X kAl
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Putting
2 Hp
uz = rer————— (4.3.4)
KAy
u; = Ul - Ug N (4.3.5)
and making the variable transformatien
vix) = V() - Uy (4.3.6)
eq. (4.3.3) becomes
pC 2 sinh pp{(2~x) + sinh uox
92v/ax2 - — av/dt = uplv - y (4.3.7)
k sinh uod
In the stationary case we find
2 , sinh y,(g-x) *+ sinh y,x
d?v/dx? - yyv = - : u, 0 <x<y
sinh uo 4
) (4.3.8)
vV =V, = VE - UO x=0
VsV o= Vl - UO X =4

The solution of eq. (4.3.8) is

- . ’ 2
sich p;{-x) + sinh u;x U1

V(X): V1+T_~mz-n
sinh u; & IS I TP

sinh u,(4-x) + sinh upsx  sinh u;(2-%x) + sinh uyx|
Y - u‘l
sinh Ua & sinh u1k

(4.3.9)
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From this equaticn it can be seen, that v(x) tends to the cons-

tant value vy, as yy; and uo tend to zero, i.e. as the insulation
becomes perfect. let the deviation av(x) from the ideal tempera-
ture v} be defined by

Aviz) = vix) - v (4.3.10)

CGwing to the symmetry of the construction, the deviation Av

reaches its maximum at x = 2/2. A serie expansion of eq. (4.3.9)

yields
2 4 ’
avie/2) = - % upaflvy ~ up) ¢ 5%3 ui vy - 1) -
5 2 2 L
T LA Hpf << I, upl << 1 (4.3.11)

This expression shows, that if a perfect thermal contact is ob-
tained between the end surfaces, i.e. U; = Vi, the temperature
difference Av(L/2) will be proportiocnal to the fourth power of
uf. In practice there will always be a small temperature drop

between the two end surfaces. From the next section it follows,

that the relation below approximately holds
Vy, - U; = vy - u g 0.04°C (4.3.12)

at an ambient temperature 25°C.

Before the temperature differences Au(&/2) and av(%/2) can be
calculated all data of the construction must be available., The
radius rj, the surface S;, the contact coefficient h; of the bar,
the radius r,, the surface S,, the thickness d,, the contact co-
efficient h, of the shield and the radius r;, the surface Sj,

the conductivity kg, the contact coefficient hy of the outer in-
sulation are given in the specification below. Here also the con~
ductivities k and ki of the bar and shield and the inner insula-~
tion respectively and the length & appears.




r
5

T2

dz

From

of the outer insulation may be calculated. Eq. (4.2.20) yields

0
Ry = 7.9°C/W
0 O
Ry, = 2.6°C/W (4.3.14)
0
Ry, = 0.5°C/W
Putting
U, = 25%
o (4,3.15)
U1=30{:

and taking u,t << 1 the loss of heat g, and the surface conduct-

ance H, of the shield are according to eq. (4.2.16) and (%4.2.18)
given by

Go = 0.US W : (4.3.16)
H, = 1.2 107" Wem? OC (4.3.17)

ug.

= 0.70 cm

= 2.0 10% cm?
= 2.7 om

= 7.6 102 cm?
= G.15 am

13 om ' (4.3.13)

i

= 3.7 103 cm?

= 45 cm

=hy, =hs =5 107 wem? c
= 3.8 Wam °C

= ko = 7 107" Wem °C

‘ 0 0
this specification the thermal resistances R;, R;,, and R,,
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Observing, that the cross section A; of the shield is equal to
A2 = 2HP2d2 (4.3.18)

the coefficient p, and the temperature difference Au(%/2) may
be found from eq. (4.3.1) and (4.2,13). We get

uy = 1.4 107° 1/am (4.3.19)

aule/2) =-0.26%C (4.3.20)

considering ust << 1.
The factor us% is 0.65,

It now remains to determine the difference  Av(L/2). This cannot
be done until the coefficient uy, which is a function of the un-
known surface conductance Hjy, is known. It is immediately clear,
that an upper limit of H) is the value of the contact coefficient
cbtained in a layer of air, where natural convection takes place,

i.e. approximately 5 107" wem? Cc.

From specification (4.3.13) the resistances R%, R%l, and R%z of

the inner insulation may be obtained. We get

Ry = 7.1°C/W

Ry = 12°C/u (4,3.21)

Ry, = 2.6°C/W

Hence the total resistance Ri is
o
Ry= 21°C/W | (4.3.22)

and according to eq. (4.2.18) the surface conductance H; is

H = 2.4 107 wem? °C (4.3.23)

taking ;2 << 1. An approximation of the loss of heat q; from the
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bar may be obtained by employing eg. (4.2.17), where the tempera-
ture difference U; - Up is put equal to the mean temperature diffe-
rence between the bar and the shield, i.e. V; - U; - %-Au(l/Z). We
get

qi = 0.90 1072 W (4.3.24)

Eq. (4.3.4), (4.3.13) and (4.3.23) yield
- -2
up = 1.3 10 © 1/cm (4.3.25)

Hence the factor u;f i1s 0.61. Given, that u;f and us% may be taken
as much less than 1 eq. (%.3.11) finally yields

av(e/2) = - 0.01°C (4.3.26)

The calculated temperature difference Av(R/2) is well within its

specified limits.

4.4, End Surface Contact.

The insulation method, described in the previous section, requires
that the end surfaces of the bar and the shield are kept at almost
the same temperature. As only the end temperature of the bar is
controlled the quality of the thermal contact between the two end
surfaces must be high; A silver plate thermally connects : -

the two surfaces. The choice of the thickness of the plate becomes
a compromise between the requirements of a small temperature drop
in the plate and a swift settlement of the temperature to a refe-
rence temperature change.

A calculation of the temperature drop in the plate follows below.
The same case is discussed as in the previous section, i.e. the
end temperatures of the bar are 30°C and the ambient temperature
is 25°C. From the previous section it follows, that the flow of

heat into the bar may be neglected compared with the flow into
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the shield. Consider a circular silver plate of radius R and
thickness d connected to Peltier elements so  that a constant

effect per unit volume is generated in the plate.

Denote the total effect, emitted from the elements by gg. The

heat Q, supplied to the plate per unit volume per unit time, is

qg
Q= : (4.4.1)
nR2d

Neglecting the variation of the thermal properties of silver with
temperature, the temperature distribution in the plate may be ob-
tained from eqg. (4.1.3) by means of a transformation of coordi-

nates. In a cylindrical coordinate system we find in the steady

state

1d{ au Qo

——dp ] = - (4.4.2)
r dr| dr NMR?dk

where U = U(r) is the temperature in the plate at the radius r.

An integration of eq. (4.4.2) fromr = 0 tor = r yields

dU qO
—_—= - r (4.%.3)
dr 2NIR2dk

A second integration between the same limits yields

Ulr) - U(0) = - r? , (b b)

YIRZdk

Consequently the searched temperature drop U(R) - U(0) is

20!

U(R) - U0) = - (4.4.5)

Lndk




" uy,

The flow of heat gy into the shield is given by eq. (4.3.16).
The thickness d and the conductivity k of the plate appears in
the specification below.

d=0.20 em C(4.4.6)
k = 4.2 Wem °C (4.4.7)
Using these values we find

UC) - U(R) = 0.04% (4.4.8)

The temperature difference is acceptable. The silver plate, used

in the constructed process, is quadratic, a fact that does not
affect the results appreciably. The connection of the cooler, the

Peltier elements, the plate, the bar, and the shieid are shown in
full-size in the figure below.

Shield zzsb=i]1
4
2 — - Cooler
7
2 Peltier elements
2 .
7 Silver Plate .

Bar

Coolant

Wi vl

MRS

- Fig. 4.4,2 - A full-size flgure of the connection cf the cooler,

the Peltier elements and the plate.
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Finally it is mentioned, that all basic equations involved in

this chapter may be found in |1].
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5. FUNDAMENTALS OF THE DYNAMICS Of THE SYSTEM AND MEASUREMENT
RESULTS.

5.1. Dynamics of the System.

Under ideal conditions the constructed process is described by

the partial differential equation

92U/ax2 - -1? aU/at = 0 ' (5.1.1)
=3

The variable U = U(x,t) denotes the temperature in a point x of
the rod at time t.

u(o,t) Ulx,t) UL,y
[ ] ‘_/ |
I -
. X

1

{

Fig. 5.1.1 - The ideal rod.

The diffusivity constant of the solid is denoted a?. We have

a? = k/pe (5.1.2)
The quantities k, p, and ¢ are the thermal conductivity, the den-
sity and the specific heat respectively of the rod. The length

of the rod is %£. The variable transformation

t' = t/t; v = 24/a? (5.1.3)

transforms-eq. (5.1.1)-into

32u/mx2 - 3L~au/at' =0 (5.1.4)
22
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where u = u{x,t').

The equation does not contain any material constants explicitely
and turns out to be somewhat simpler to handle than the original
equation. Of obvious reason 1 is mentioned the time scale factor.

The initial and boundary conditions of eq. (5.1.4) are

u(x,0) = 0 ¥x ' (5.1.5)
u(0,t") = u(t")
{5.1.8)
u(f,t') = ux(t")
Introduce

¢ {ulx,t")) = a{x,s")
< (ul(t'))

L (U2(t')]

81(s") (5.1.7)

8o(s')

where { 1is the laplace operator. Eq. (5.1.4) may be transformed
into an ordinary differential equation by a Laplace transforma-
tion. Considering the initial condition (5.1.5) we find

d%e/dx? - 89 = ¢ (5.1.8)

The boundary conditions of eq. (5.1.8) are

8(0,s') = 81(s") ( |
5.1.9

8(2,8")

1t

02(s")

The solution of eq. (5.1.8) with the boundary conditions (5.1.9)
is

sinh 2% /&7 sinh % /5T

0(x,s') = 01(s") % g, (s") (5.1.10)
’ sirh V5" sinh Va7
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Hence the transfer function (time t') between the temperature at

a point x of the rod and the left end temperature is

sinh E%E /st

6" (x,s") = - (5.1.11)
sinh va?

A modal analysis shows, that this transfer function may be writ-
ten

o sin A-x k.

£
G (xs) =21 § D 0cxcs (5.1.12)

k=1 s! + 12k2

Transforming eq. (5.1.12) back to time t we find that the trans-
fer function between the temperature at a point x of the rod and

the end temperature is

© sin A-x Ttk

2
6Gx,s) = 21§ 1L
k=1

(5.1.13)

n2k2
T

g +

The transfer function contains an infinite number of negative

real poles

= - 12K2/1 k $ 9 (5.1,1%)

Sk

The integers ki are the integers, satisfying

s 12X
Sln[—f~ Hki] ¥ 0 (5.1.185)

At an irrational point x there does not exist any integers k.,
satisfying eq. (5.1.15). Note, that the poles sy do not depend
on the position of the point x.
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The time constants AV corresponding to the poles S5 are

T, = ©/(n%32) K # ks (5.1.18)

A 45 cm long copper rod yields

T, = 188/k? sec.,

K = - 0.53 107° k2 rad/sec.; k # ky o (5.1.17)

Sk
The negative real part of the control poles of the temperature

servo 1is

Re{scp} z 0.60 rad/sec. (5.1.18)

Hence at an irrational point x the transfer function (5.1.13} con-
tains 10 poles to the right of the control poles of the servo.
The location of the poles Sy and the control poles of the servo

is shown in the complex frequency s plane below.

A :
The control poles of the servo Im

The poles s of the heat pro

Fig. 5.1.2 - The lccation of the poles Sy of the one dimensional
heat diffusion process and the control poles of the

servo in a complex s plane.
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At a rational point scme of the marked poles are missing. The
unit step responses v(x,t) at a point x can readily be calcula-
ted from eq. (5.1.13). We find

w2 ® sin ¥ w2
k+1 T :
v(x,t) 2 —— - — § (~-1) T ————— e (5.1.19)

R K

The formula is well suited for numerical calculations. The step
responses v(x,t); for x = 8/8, 2&/8, ..., 74/8, are plotted in
the Fig. 5.1.3. The time scale factor 1 is chosen to 1.

x=1/8
//
x=21/8
N /"/——____—
/ x=31/8
Ve /_-—__—_
| x=41/8
[
x=51/8
x=61/8
/| /,,-——-—-’“""”‘"’"
7 x=71/8
/
ST or T 02z 7 03 | 04 ' 05 ' 05

Time, seconds

Fig, 5.1.3 - The unit step responses v{x,t) of the cne dimensional

heat diffusion process.

0.7
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Eq. (5.1.19) implies, that the stationary temperature distribu-

ticn in an ideal rod is linear.

5.2. Stationary Temperature Distributicn of the System.

The measurement of the steady state temperature distribution of
the system has been performed in two different cases. In the
first case the end temperatures of the rod are kept equal and
varied from 20°C to 30°C with the temperature increment 1°C.

The measurement results are found in Table 5.2.1. The temperature
errors AT = ey - (T = Tp), Tg = 25°C, are calculated on the as-
sumption, that the output of the transducers are related to the
temperature T exactly by eq = T - Tg, Ty = 25°C, in the range
20°C - 30°C. The table shows, that the registered temperature

is somewhat too high for temperature below 25°C and scmewhat too
low for temperature above 25°C. The maximum temperature ervors
are obtained at the end points of the temperature range, i.e.

at 20°C and 30°C. Approximately equal errors are obtained at the
end points. These facts are stated by eq. (4.3.9). The maximum
temperature error reaches 0.02°C. The postulated maximum error
is 0.01°C according to eq. (4.3.26).

In the second case a temperature gradient is introduced in the
rod. The different values of the end temperature of the rod are
found in Table :5.2.2, The ideal profile for this case should
be linear. The temperature errors AT = e, - (T - Ty), Tq = 25°C,
are evaluated under the same assumption as before. Note, that
there is no longer a perfect correlation between the sign of the
temperature errors AT and the sign of the cutput. This may be
caused by the linearity errcr of the transducer. However, the
maximun temperature error in Table 5.2.2 reaches 0.020C. Thus

the system requirement (i) is satisfied.

The stationary temperature difference between the mid point of
the rod and the shield are measured in a case, where the end tem-

peratures of the rod are kept at the constant temperature 30°c.
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The difference reaches 0.30°C. The value agrees with the one
given by eq. (4.3.20). The maximum temperature drop in the sil-

ver plate reaches 0.67°C.

All measurements have been performed with a digital volimeter
with the long term accuracy $0.01% of full scale and *0.02% of
reading. The ambient temperature was 25°C.
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5.3. Step Responses of the System.

The measurement of the step responses of the system has been per-
formed with a data logger. A start command cornects the input sig-
nals through ascending channel numbers to the digital voltmeter
of the logger at each sampling period. The sampling period was

10 sec.

The step responses in the seven measuring points on the rod are
recorded in three cases. In all cases one servo is kept at a cons-
tant temperature, 25°C, while an input step of approximately 1.8°C
is applied to the other servo. The stép is chosen so that the
latter servo temperature remains in the range 24.1°C - 25.9°C. A
negative input step first occurs. The responses vc(x,t)g X = /8,
28/8, ..., 74/8, are recorded until stationary conditicns are
achieved, which takes approximately 25 min. The responses v, (0D 5
X = 4/8, 20/8, ..., 74/8, to a positive input step of exactly the
same magnitude as in the previous case, are then registered. The
same steady state temperature distribution as initially obtained
should now almost occur. The first described procedure is finally
repeated. The recorded step responses are this time vé(x,t),

X = /8, 24/8, ..., 7%/8.

The linearity and stability of the step responses are checked by

calculating the differences

DCH(x,t) = v (x,0) - v (x,t) - (Vh(x,t) - vh(x,ﬁ)];
¥ = /8, 28/8, ..., 72/8 (5.3.1)
DCC(x,t) = v (%,0) - v_(x,t) - (vé(x,o) - vc(x,t));

x = /8, 20/8, ..., 74/8 (5.3.2)

at each sampling event. The termé VC(X,G), vh(x,O), and Vé(x,o)
accounts for the fact, that the output voltages do not equal zero
at t = 0. In Fig. 5.3.1 the differences DCH(x,t), x = /8, 24/8,
voes 7%/8, are shown. |
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0.03
(&) /I/B
= 0.02 \
= 20/8
T
8 //3!/8
@ 001 ) /I.EIB
(&
g | //S{IB. 61/8, 71/8
E.
© 0,00 |
@
£
[
-0.01

0 40 80 120 160 200
Tirme , seconds

Fig. 5,3.1 - The differences DCH(x,t), x = /8, 24/8, ..., 74/8,
as a function of time t at an input temperature
change of 1.8%C.

The spikes, appearing in the vicinity of origo, originate:; from
the nonlinear components of the servo. For increasing x the spikes
are decreasing or attenuated. The maximum differences DCH(x,t),

X 3 /2, are below 0.002°C. The differences DCC(x,t) are all with-
in 0.002°C,

A measure of the deviation between the recorded step responses
vc(x,t) and the theoretical responses vth(x,t) is given by

2~x vc(x,D) - vc(x,t)
IMIH(x,t) = - vth(x,t);
[ VC(X,U) - VC(X,W)

x = /8, 20/8, ..., 7%/8. {5.3.3)
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The differences DMIH(x,t) are evaluated at each sampling event.

0.04

0.03

0.02

0.01

The differences DMTH(x,t),°C

0.00

- 0.0}

/8

2/8

38

4118
51/8, 61/8, 7U/8

I-'__'_'_'__——-'."’

40 80 120 160 200 240

Time, seconds

Fig, 5.3.2 - The differences IMTH(x,t), x = /8, 2./8, ..., 7%/8

- as a function of time t at a unit input step change.

Fig. 5.3.2 shows the differences IMIH(x,t) as a function of time.

Note, that the measured responses are scaled before the evalua-

tion of the differences DMIH(x,t) is performed. The spikes near

origo are thus approximately twice as large when referred to

the actual input step. The time scale factor 1, involved in the

calculation of vth(x,t), is chosen so that an optimum fit (min-

max criterion) between the responses is obtained. We £ind

T = 1740
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The theoretical scale factor is obtainable from eq. (5.1.3). We

have

Tth = 1856

The discrepancy between the scale factors is caused by the dyna-
mics of the servo. The thecretical calculations are performed on
the assumption, that a perfect step is applied to the servo. Pro-
vided, that the length & is known, the evaluation of the time
scale factor t is nothing but an evaluation of the diffusivity
constant k/pc of copper. The influence of the servo and the en-
vironment on the recorded responses maximally reaches 0.07°C.

The value is obtained at the point 2/8. As the measuring point

is removed from the excitation point the influence is decreased
and falls below 0.003°C for x > £/2.

The employed data logger has a long term accuracy of #.01% of
full scale and#.02% of reading. The variation of the length of
the sampling period is kept within 0.1%. A perfect synchronism
has been achieved between the start command of the logger and
the change of input voltage to the servo. Corrections are made
for the time displacement between the reading of the different
channels within the same sampling period. The ambient tempera-
ture was 25°C.
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APPENDTX.
SYSTEM CONFIGURATION.
The system comprising of a heat process, a 18" modular rack, an

interface to the digital computer PDP-15, a power control unit,

a power amplifier, and a fan unit is shown in the Fig. Al.

Fig. Al - The system configuration.
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The heat process, covered by a conventional heat insulation, ap-

pears in Fig, A2. The cooler, connected to the Peltier elements
and the attachment of the 9 cables, containing the temperature

sensors, may be studied from the picture.

Fig. A2 - The heat process, covered by a conventiocnal heat insu-
lation.

All electronics, the power amplifier and the power control unit
exciuded, required to control and perform measurement on the heat

process are contained in the 18" modular rack.
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Fig. A3 - The 19" modular rack.

The rack comprises 8 modules. They are enumerated from the left
to the right a 8" module, containing the supply voltage, a 1"
module, containing the reference voltage feeding the bridges of
the transducers, four 1" modules, containing the 12 temperature
transducers, a 2" module, containing the summing amplifier and
the compensation of the servo. and. finally. a 1" module, con-
taining among other things two differential amplifiers. Banana

plugs are used to connect the different modules.




