Total abrogation of collagen II-induced arthritis and the B cell response to type II collagen using suboptimal doses of a topoisomerase II antagonist.

Verdrengh, M; Jonsson, I-M; Zaether, O; Bajtner, Estelle; Holmdahl, Rikard; Tarkowski, A

Published in:
Annals of the Rheumatic Diseases

DOI:
10.1136/ard.61.9.829

Published: 2002-01-01

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal
Total abrogation of collagen II-induced arthritis and the B cell response to type II collagen using suboptimal doses of a topoisomerase II antagonist

M Verdrengh, I-M Jonsson, O Zaether, E Bajtner, R Holmdahl, A Tarkowski

Background: Collagen-induced arthritis (CIA) is the most commonly used model of rheumatoid arthritis (RA). In both CIA and RA there is an increase in the cellular content of the synovium, this being dominated by macrophages.

Objective: To assess the impact of etoposide, a topoisomerase II antagonist known to induce monocyte apoptosis, on the development of CIA.

Methods: Mice were primed and booster immunised against collagen II (CII). One group of mice was treated with etoposide two days before CII immunisation and then on four consecutive days weekly until the end of the experiment. The second group of mice was injected with etoposide on four consecutive days a week starting 40 days after CII priming. The third group of mice were controls receiving phosphate buffered saline (PBS). The mice were examined for development of arthritis, numbers of circulating leucocytes, serum CII antibody, and cytokine concentrations.

Results: None of the mice given etoposide before CII immunisation developed arthritis. Serum concentrations of anti-CII antibodies were undetectable in these mice, whereas they displayed significantly increased concentrations of interferon γ and interleukin 6. In addition, the CII specific B cell responses in the draining lymph nodes were highly suppressed. Also, mice treated with etoposide at the onset of clinical arthritis showed reduced frequency of their disease by 50%.

Conclusion: There was a striking disease alleviating impact of topoisomerase II antagonist on the course of CII-induced arthritis.

Materials and Methods

Female B10.QxDBA/1 age matched mice were used in all experiments. Arthritis was induced by intradermal injection at the base of the tail with 50 μl of 100 μg rat collagen II (CII) emulsified with an equal volume of complete Freund’s adjuvant containing Mycobacterium butyricum (Difco, Detroit, MI, USA). Mice were boosted with the same volume and concentrations of CII emulsified in incomplete Freund’s adjuvant (Difco) 21 days after the first immunisation.

Etoposide (Bristol Myers Squibb AB, Bromma, Sweden) was injected subcutaneously at a volume of 150–200 μl etoposide, corresponding to 12.5 mg/kg. The dose of etoposide was chosen according to earlier studies. The mice were divided into three groups. One group (n=17) was treated with etoposide two days before immunisation with CII and then on four consecutive days weekly until the end of the experiment 61 days later. The second group (n=17) was similarly injected with etoposide starting 40 days after CII immunisation. The third group comprised controls (n=17), receiving treatment with phosphate buffered saline (PBS). Before the start of the experiment, six mice in each group were bled for haematological analyses.

The clinical and histopathological signs of arthritis were evaluated as previously described. Details of flow cytometry and haemocytometry determinations have been previously reported. Serum concentrations of immunoglobulins and cytokines were measured as previously described.

To test the effect of etoposide on the immune response of draining lymph nodes, mice were immunised with CII emulsified in complete Freund’s adjuvant in both hindpaws and the base of the tail. One group of mice was treated with etoposide two days before immunisation and then on four consecutive days weekly until they were killed on day 10. The second group of mice comprised controls receiving treatment with PBS. On day 10, the mice were killed and draining (popliteal and inguinal) lymph nodes were taken for FACS analysis. Supernatants from lymph node cells incubated with CII in vitro were evaluated by enzyme linked immunosorbent assay (ELISA) for CII antibodies.

Statistical comparisons were made by the Mann-Whitney U test and χ2 test with Yates's correction. All values are reported as means (SEM).

Results

Treatment with etoposide two days before immunisation with CII completely inhibited induction of the disease. Throughout the disease, the mice treated with etoposide showed significantly less severe septic arthritis. In septic arthritis, the absence of bacterial clearance by monocytes and macrophages resulted in septicemia and increased mortality in mice treated with etoposide. The aim of the present study was to assess the impact of etoposide treatment on the development of CIA.

Abbreviations: CIA, collagen induced arthritis; IFNγ, interferon γ; IL, interleukin; PBS, phosphate buffered saline; RA, rheumatoid arthritis; CII, type II collagen
the course of the experiment (almost nine weeks) none of 19 mice pretreated with etoposide (etoposide pretreated) displayed any clinical signs of arthritis (fig 1). Mice that received etoposide 40 days after immunisation (etoposide treated) did not develop arthritis with a lower incidence than the controls. At the end of the experiment 29% (five of 17) of the treated mice did not show any clinical signs of arthritis (fig 1). Mice that received etoposide two days before immunisation (etoposide pretreated) displayed any clinical signs of arthritis (fig 1). Histopathological analyses confirmed the clinical findings. None of the etoposide pretreated mice displayed synovial hypertrophy or bone or cartilage destruction. By contrast, none of the etoposide treated mice exhibited arthritis versus 53% (nine of 17) of the controls. At the end of the experiment 29% (five of 17) of the treated mice exhibited arthritis versus 53% (nine of 17) in the control group (fig 1).

Figure 1 Effect of etoposide treatment on arthritis frequency in mice immunised against collagen II. Mice were treated with etoposide two days before immunisation and then four times a week (etoposide pretreated; n=19), or 40 days after immunisation and then four times a week (etoposide treated; n=17), or left untreated (controls; n=17).

Table 1 Serum concentrations of collagen II specific antibodies, immunoglobulins, IFNγ, and IL6 in mice receiving etoposide†

<table>
<thead>
<tr>
<th>Manipulation</th>
<th>Mice (n)</th>
<th>Anticollagen II antibody (µg/ml)</th>
<th>Total immunoglobulin concentration (mg/ml)</th>
<th>IFNγ (U/ml)</th>
<th>IL6 (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etoposide pretreated</td>
<td>18–19</td>
<td>8 (1)***</td>
<td>9.2 (0.5)***</td>
<td>1848 (248)*</td>
<td>117 (21)***</td>
</tr>
<tr>
<td>Etoposide treated</td>
<td>17</td>
<td>289 (47)*</td>
<td>8.5 (0.8)***</td>
<td>2094 (199) **</td>
<td>179 (21)***</td>
</tr>
<tr>
<td>Controls</td>
<td>16–17</td>
<td>424 (47)</td>
<td>13.2 (0.8)</td>
<td>1202 (175)</td>
<td>53 (7)</td>
</tr>
</tbody>
</table>

*p<0.05; **p<0.01; ***p<0.001 v controls. †Data are expressed as mean (SEM). Mice were treated with 12.5 mg/kg of etoposide two days before (etoposide pretreated) or 40 days after (etoposide treated) collagen immunisation.

Table 2 Flow cytometry and in vitro analysis of lymph node cells from mice treated with etoposide*

<table>
<thead>
<tr>
<th>Treatment</th>
<th>FACS CD19+/B220+ cells (% of gated lymphocytes)</th>
<th>ELISA Anti-CII antibodies (OD value) (Mean)</th>
<th>Immunohistochemical scoring</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F4/80+/cells</td>
<td>CD11b+cells</td>
<td>CD19+cells</td>
</tr>
<tr>
<td>Etoposide (n=3)</td>
<td>59.2 (12)</td>
<td>0 (0)</td>
<td>2 (0)</td>
</tr>
<tr>
<td>PBS (n=3)</td>
<td>63.7 (4.2)</td>
<td>1.2 (0.1)</td>
<td>2.3 (2.3)</td>
</tr>
</tbody>
</table>

*The lymphocytes were stained with CD19 and B220. Also, supernatant from lymph node cells challenged with CII in vitro was tested in ELISA for CII antibodies. Immunohistochemical scoring (using a scale from 0 (0%) to 8 (88%–100%)) was on sections taken from lymph nodes of mice treated with etoposide or PBS and stained with F4/80, CD11b, CD19, B220, CD4, or CD8.
production after long term etoposide treatment it is suggested that the drug is a highly potent inhibitor of newly activated B lymphocytes.

Earlier findings have implicated macrophages as the main target for etoposide in modulating effects on inflammatory diseases. In the present experiments we could not confirm a depletion of monocytes or macrophages in blood or in draining lymph nodes. Also, serum concentrations of cytokines originating from monocytes were higher in mice treated with etoposide than in controls. In this context, both proinflammatory and anti-inflammatory properties have been ascribed to IL6 and IFNγ 10–12.

The most striking effect on immune functions in our experiments is the dramatic effect on the B cell response to CIA. Together with the fact that CIA is largely mediated by CH antibodies binding to cartilage and thereby triggering an immune complex mediated arthritis it is likely that the main effect of etoposide on CIA is mediated by directly or indirectly suppressing B cell function. Overall, our study shows a beneficial impact of etoposide treatment on the course of CIA. Based on the above findings we think that clinical trials of etoposide treatment in patients with RA would be of interest.

ACKNOWLEDGEMENTS
This work was supported from the Göteborg Medical Society, the Swedish Association against Rheumatism, the King Gustaf V:s Foundation, the Swedish Medical Research Council, the A-G Crafoord Foundation, the Swedish Association against Rheumatism, the King Gustaf V:s Foundation, the University of Göteborg, the Nanna Svartz’ Foundation, the Inflammation Network, the Infection and Vaccination Network, and the A M E Wolff Foundation.

Authors’ affiliations
M Verdergh, I-M Jonsson, O Zaether, A Tarkowski, Department of Rheumatology, Göteborg University, Göteborg Sweden
E Bajtner, R Holmdahl Section for Medical Inflammation Research, Lund University, Lund, Sweden

Correspondence to: Dr M Verdergh, Department of Rheumatology, Guldhedsstagen 10A, S-413 46 Göteborg, Sweden; margareta.verdergh@rheuma.gu.se

Accepted 18 March 2002

REFERENCES