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ABSTRACT 
 
Many popular direction-of-arrival (DOA) estimators rely on the 
fact that the array response vector of the array is Vandermonde, 
for example, that of a uniform linear array (ULA). Array 
interpolation is a preprocessing technique to transform the array 
response vector of a planar array of arbitrary geometry to that of 
a ULA over an angular sector. While good approximation within 
the target sector is attained in the existing array interpolation 
approaches, the response of the interpolated array in the out-of-
sector region is at best partially controlled. Accordingly, out-of-
sector signals, especially those highly correlated with the in-
sector signals, can degrade significantly the performance of 
DOA estimators (e.g., MUSIC with spatial smoothing) that rely 
on the Vandermonde form to work correctly. In this paper, we 
propose an improved array interpolation approach that takes into 
account the array response over the full azimuth. We present also 
numerical examples to demonstrate the shortcomings of the 
existing approaches and the effectiveness of our proposal. 

 
 

1. INTRODUCTION 
 
Since the inception of array signal processing, uniform linear 
arrays (ULAs) have received by far the most attention. This is 
due in large part to their uniform spatial sampling which results 
in their array response vectors having a Vandermonde form. This 
form is central to the derivation of many important DOA 
estimators such as root-MUSIC [1], MUSIC with spatial 
smoothing [2], and root-WSF [3].  

ULAs are, however, not always used in practice. Practical 
considerations such as hardware cost and the size and shape of 
the mounting platform [4],[5] can restrict the choice of array 
geometry. Moreover, ULAs cannot provide 360° of coverage in 
the azimuthal plane which is necessary in many applications 
such as radar, sonar and wireless communications. 

To provide 360° of coverage, one has to deploy planar arrays 
such as uniform circular arrays (UCAs). However, the array 
response vector of a planar array is, in general, not 
Vandermonde. A number of techniques have been proposed to 
transform this vector to Vandermonde form. One such class of 
techniques is array interpolation, first proposed by Bronez [6], 
and later under different formulations by Friedlander [4] and 
Pesavento et al. [7]. In array interpolation, the array response 
vector of the planar array is mapped using a transformation 
matrix to that of a ULA over an angular sector in the azimuth, 
called the in-sector. Thus the approach involves sector-by-sector 

processing to cover the full azimuth [4]. Array interpolation has 
been combined with different DOA estimators, for example, 
root-MUSIC [4] with spatial smoothing in [8], ESPRIT in [9], 
MODE (or root-WSF) in [10], and PR-JES in [11]. Recently, the 
successful application of array interpolation to seismic detection 
[12] also helped establish its practicality. 

In the work of Bronez [6], the transformation matrix is 
derived by minimizing the total response of the interpolated 
array under the constraint that the transformed array response 
vector matches the ULA array response vector over a grid of 
angles within the in-sector. Thus the out-of-sector response is 
reduced but not totally suppressed. In contrast, in the works of 
Friedlander et al., see for example [4], [5], and [7]-[10], the 
transformation matrix is found as the LS solution that best maps 
the array response vector of the planar array to that of a ULA for 
a finite set of angles within the in-sector. Although this method 
is simple, it is intuitively incomplete as it neglects the out-of-
sector response. More recently, Pesavento et al. [7] pointed out 
that the out-of-sector response should not be neglected. They 
proposed a different formulation to attenuate the out-of-sector 
response to a preset level while minimizing the error in the in-
sector. Their formulation can thus be regarded as a more refined 
version of the Bronez formulation. Pesavento et al. showed that 
their formulation can be written as a second order cone (SoC) 
problem which allows it to be solved efficiently using the 
SeDuMi MATLAB toolbox [13]. While this formulation can 
produce better results than that of Friedlander [4], it must allow 
for a roll-off region where the response is unaccounted for. 

Other related developments include the recent works of 
Hyberg et al. [14] and Bühren et al. [15]. The aim of both 
methods is to reduce the bias in the DOA estimates which is an 
artifact of the Friedlander formulation. In [14], the authors 
cleverly incorporate the performance of the DOA estimator into 
the design of the transformation matrix, while in [15], the 
authors proposed the use of shift-invariance transformations to 
take advantage of the search-free ESPRIT algorithm and to 
circumvent the need for the interpolated array to be a physical 
array. Whilst both methods will reduce bias, like Friedlander, 
they also ignore the out-of-sector response. 

In this paper, we show that DOA estimation with the 
Friedlander and Pesavento formulations can yield poor results 
when the received signals are highly correlated and are not all 
confined to the in-sector. This is due to the fact that, just outside 
the in-sector, the gain of the interpolated array is still significant 
while the phase response has deviated significantly from being 
Vandermonde. DOA estimators that rely on the Vandermonde 
form may thus not be able to deal with received signals in this 



region properly. We propose in this paper a new formulation to 
address this limitation. In particular, the new formulation deals 
explicitly with the entire out-of-sector region by setting a target 
response for this region in addition to the target response for the 
in-sector region. Here, we use MUSIC with spatial smoothing to 
visualize the impact of out-of-sector response on DOA 
estimation of in-sector signals, though in practice root-MUSIC 
[4] is more suited because it gives better performance. 

 
2. SIGNAL AND ARRAY MODELS 

 
Consider a planar array with N elements. The nth component of 
the array response vector ( )θa , 1, ,n N= … , to a narrowband 
signal of wavelength l arriving from azimuth angle1 [ , ]θ π π∈ −  
is given by 

 ( )( ) ( ) exp cos sinn n n na G jk x yθ θ θ θ=  +   , (1) 
where 2k π λ= , and ( )nG θ  and ( , )n nx y  are the complex gain 
pattern and location of the nth element, respectively. The 
azimuth angle θ  is measured from the positive x-axis in the 
anti-clockwise direction. Suppose the interpolated ULA has M 
elements and is aligned along the y-axis. The pth component of 
its array response vector ( )θb , 1, ,p M= … , is given by 

 ( )( ) exp 1 sinpb jkd pθ θ=  −   , (2) 
where d  is the inter-element spacing of the ULA. 

Suppose the planar array receives L narrowband signals, 
1( ), , ( )Ls t s t… , each arriving from a distinct direction 
1, , Lθ θ… . The array output vector is given by 

 ( ) ( ) ( )t t t= +x As n , (3) 
where [ ]1( ) ( )Lθ θ=A a a" , [ ]1( ) ( ) ( ) T

Lt s t s t=s " , ( )tn =  
[ ]1( ) ( ) T

Nn t n t" , ( )nn t  is the noise output of the nth sensor 
(assumed white, circular complex Gaussian and i.i.d. across the 
elements), and ( )tn  and ( )ts  are assumed to be stationary, zero 
mean, and uncorrelated with each other. The linear 
transformation on the output of the array is given by 

 ( ) ( )t t=y Tx , (4) 
where T is the M ¥ N transformation matrix. Note that T will 
color the sensor noise at the interpolated array output. Hence, 
pre-whitening is required before we apply any DOA algorithms. 
Interested readers are referred to [6], [4], [7], [14] and [15], 
respectively, for the Bronez, Friedlander, Pesavento, Hyberg and 
Bühren formulations to find T. 
 

3. PROPOSED APPROACH 
 
3.1. Problem Formulation 
The principal idea of the new formulation is to approximate the 
array response vector of the interpolated array to that of a ULA 
within the in-sector and concurrently control its response over 
the entire out-of-sector region. The weighted least-squares 
(WLS) formulation is given as follows 

 2min ( ) ( ) ( ) ( )W s d
π

π
θ θ θ θ θ

−
−∫T

Ta b , (P5) 

where ( )W θ  is the weighting function and ( )s θ  shapes the 
ULA response. The WLS solution to (P5) is well known. The 

                                                 
1 Although the proposed approach can be generalized to the 
elevation plane [4], for convenience, all signals are assumed to 
be in the azimuth plane of the array. 

design of the shaping function ( )s θ  is arbitrary, provided the 
following requirements are met: (i) An ability to suppress out-of-
sector signals to allow sector-by-sector processing to proceed 
satisfactorily; and (ii) ( ) 1s θ =  in the in-sector region, i.e., the 
in-sector response should approximate that of a ULA. 

Clearly, the rectangular function will satisfy the above 
requirements but the discontinuity at the sector edges will result 
in large transformation errors. A better ploy is to roll-off 
smoothly the response from the edges of the in-sector to the 
edges of the image sector such as that defined by the raised 
cosine function 
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s π θ θ
θ π

θ θ

θ θ θ π θ

π θ θ π

−
−

 ≤

= + < ≤ −

 − < ≤

, (6) 

where [ ]0 0,θ θ θ∆ = −  is the in-sector region. The raised cosine 
shaping function was found to give a good overall error 
performance for different in-sector sizes. 

It should be noted that the idea of controlling the out-of-
sector response can also be formulated in other ways, e.g. as a 
minimax problem with constraints on the in-sector error. The 
weighted least squares formulation (P5) is considered here 
because of its simplicity. 
 
3.2. Interpolated Array 
As a rule of thumb, the elements of the interpolated array should 
be placed in close proximity to the actual array [4]. For a UCA, 
the ULA can be placed along the diameter of the UCA with the 
two end elements on the circumference of the UCA. 

Once the aperture of the ULA is fixed, we next determine the 
number of elements in the ULA. First, we note that M is 
bounded from below by the requirement that 0.5d λ < . This 
condition arises from the fact that the proposed formulation has 
an extended roll-off region and the condition is required to 
prevent spatial aliasing. We next note that it might be desirable 
to have a large M to increase the degrees of freedom. However M 
cannot be too large since this will increase the condition number 
of T as the rows of T become more linearly dependent; and as 
discussed in [4], an ill-conditioned T should be avoided. 
 

4. NUMERICAL EXAMPLES 
 
In this section, we evaluate and compare the performances of the 
Friedlander, Pesavento, and our proposed formulations. The 
DOA estimator is MUSIC with forward-backward spatial 
smoothing (FBSS) [2] and sector-by-sector processing. The 
array is a UCA with radius 1.913r λ=  and 30N =  elements. 
The interpolated ULA has 11M =  and an in-sector size of 72∞. 

For the Pesavento formulation [7], the out-of-sector sidelobe 
constraint is set to 15 dB to ensure adequate suppression of the 
out-of-sector response. This corresponds to a 30 dB attenuation 
in the power response. We set the roll-off (or “don’t care”) 
region2 on each side of the in-sector to 30° to ensure a smooth 
roll-off and a better-conditioned T. The number of grid points 

                                                 
2 Even though Pesavento et al. do not specifically mention a roll-
off region in their formulation, it must exist since optimization is 
performed at discrete angles and the interpolation error can grow 
unacceptably large if the roll-off region is too narrow. 
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chosen for the in-sector and out-of-sector regions are 30 and 
100, respectively, and the minimax criterion [7] is invoked. 

Fig. 1 shows the beampattern of the interpolated ULA as well 
as the magnitude response of each interpolated array element for 
the Friedlander formulation. As can be seen, as a result of 
ignoring the out-of-sector response, the Friedlander formulation 
can suffer from severe distortion in this region. The phase 
response of each interpolated array element can also be shown to 
be severely distorted in this region. However, note that the roll-
off is not immediate and there is a region beyond the ±36∞ edges 
of the in-sector region where the magnitude and phase responses 
remain close to the target ULA response. 

Fig. 2 shows the beampattern and the magnitude response of 
each interpolated array element for the Pesavento formulation. It 
is clear that good suppression of the out-of-sector response is 
obtained beyond the roll-off region. However, in the roll-off 
region, the gain is still significant and thus phase distortions in 
this region can distort DOA estimation (see Fig. 3).  

In the first study, we consider for the three formulations, the 
performance of MUSIC with FBSS. The UCA is oriented with 
an element at 0∞. The signal scenario consists of three correlated 
signals, each with an SNR of 10 dB and arriving from -5∞, 5∞ 
and 30∞ (all in the in-sector). The correlation coefficient between 
the first signal and the second or third signal is / 6je π , while it 
is 1 between the second and the third signal. For FBSS, three 
subarrays and the exact covariance matrices are used. We use 

( ) 1W θ =  in (P5). The multi-sector MUSIC spectra with the 
three formulations are given in Fig. 4. As expected, when all 
correlated signals are in the in-sector region, the three 
formulations can resolve the signals correctly.  

In the second study (see Fig. 5), we repeat the first study, but 
with the third signal moved from 30∞ to 50∞, i.e., to the roll-off 
region. As can be seen, both the Friedlander and proposed 
formulations are able to resolve all DOAs accurately while the 
Pesavento formulation failed to resolve the closely spaced 
signals at 5∞ and -5∞. The out-of-sector signal at 50∞ has a 
negligible impact on the Friedlander formulation since at 50∞, 
the response of this formulation is still well behaved (see Fig. 1). 
In contrast, the Pesavento formulation failed because, as can be 
seen from Figs. 2 and 3, the phase response at 50∞ is severely 
distorted while the magnitude response is still significant. 

In the third study (see Fig. 6), we repeat the second study but 
with the third signal moved from 50∞ to 70∞, which is just 
outside the roll-off region. Again, the proposed approach can 
resolve all signals correctly. However, we now see a reverse in 
trend between the Friedlander and Pesavento formulations. This 
is because the out-of-sector signal now falls in the badly 
distorted region for the Friedlander formulation, while it is 
effectively attenuated in the Pesavento formulation. 

Though not shown, we report here that all three formulations 
were able to resolve the three signals correctly in the above three 
studies if they are mutually uncorrelated. This confirms the 
earlier finding that out-of-sector uncorrelated signals have only a 
minor impact on the performance of in-sector DOA estimation 
[4],[10]. In addition, we note that all three formulations gave 
biased DOA estimates because of the transformation error. In 
particular, depending on the choice of array and design 
parameters, the proposed formulation may give larger biases than 
the other two formulations. This can be remedied by modifying 
(P5) to incorporate constraints to limit the transformation error. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Power response of the Friedlander formulation 
for each of the 11 virtual elements. Five pairs of curves 
overlap due to symmetry. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Power response of the Pesavento formulation for 
each of the 11 virtual elements. Five pairs of curves 
overlap due to symmetry. Edges of roll-off regions 
marked by vertical dashed lines. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Phase error of the Pesavento formulation for each 
of the 11 virtual elements. Edges of roll-off regions 
marked by vertical dashed lines. 

Finally, we emphasize that while the above numerical studies 
give the comparative performances of the different formulations 
for the array interpolation approach, the main thrust is to 
demonstrate the limitations in the existing formulations and 
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highlight the ability of our proposed formulation to deal with a 
general signal scenario. 

 
5. CONCLUSIONS 

 
Array interpolation can greatly simplify array signal processing 
for arbitrary planar arrays. However, the existing formulations 
can have problems with coherent out-of-sector signals interfering 
with the DOA estimation of the in-sector signals. We proposed a 
new formulation to take into account the array response over the 
entire azimuth and confirmed with numerical examples the 
effectiveness of our approach in mitigating the malevolent 
influence of coherent out-of-sector signals. 
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Fig. 4. Multi-sector MUSIC spectra for the first study 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Multi-sector MUSIC spectra for the second study 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Multi-sector MUSIC spectra for the third study. 


