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SOME PROBLEMS
OF PLUME THEORY SMOKE MOVEMENT
AND THE ONSET OF FLASHOVER

P.H. Thomas
Department of Fire Safety Engineering
Lund University,
Sweden



PREFACE

The three papers comprising this report are each concerned with various aspects
of the application of scaling, plume theory in the assessment of the hazards
from smoke and flashover, the design of smoke control in buildings and the
interpretation of experiments.

Philip Thomas
Lund, December 1939
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Summary

Attention is drawn to some of the limitations of conventional plume theory,
some differences between axi—symmetric and line plumes, and some rationalisation
which is possible in correlating data for the flow from wide vertical openings.

The paper is more a summary and a series of notes than a lenglhy exercise

in the subject.



1. Introduction and Backeround

A number of topics relevant to conventional plume theory need examination
before discussing details of its application to design, if only to demonstrate the
limitations of theory beyond which resolution of detail is not possible.

1.1 Conventional plume theorv

Plume theories such as those used by Thomas, et al. (1) Heskestad (2), Zu—
koski et al. (3), Hinkley (4) and Morgan and Marshall (5) are partly theore—
tical and partly empirical.t There is an empirical content even in basic
numerical modelling since turbulent flow is based on statistical theories of tur—
bulence. Conventional plume theory is based on time averaged quantities and
this distorts the descriptions of momentum and kinetic energy. This however
does not have a primary effect on the theory of plumes so long as similarity
can be assumed, for then the fluctuating component is proportional to the mean
and the form of the resulting relationships between dimensionless variables is
affected only in the empirical coefficients which are derived from experiments.

1.2 Basic ideas and similarity

The theoretical part of plume theory is based on the continuity of the vertical
mass flow expressed in terms of the concept of entrainment, the conservation of
convected heat or buoyancy, and the vertical buoyancy producing a rate of
change of momentum. The idea of an entrainment coefficient "a" was introdu—
ced by Morton, Taylor and Turner (6). Its constancy depends on the conserva—
tion of the horizontal distributions of vertical velocity and temperature rise (or
of density difference). The nature of the distribution defines the value of "a";

for example « for a "top hat" plume is 42 greater than that for a Gaussian
distribution (7) when mass and momentum are both equal for the two types of
distribution.

IHinkley's application to plumes of a formula derived for flames is virtually
wholly empirical.



1.3 The clagsical axi—svmmetric weak plume

If, conventionally, we assume « is constant and "p" is assumed constant

(= p,) except in the buoyancy term we obtain for the conservation of mass

d 2 _ ‘
¢ T [b pw} = obuwp, (1)
where ¢, is a constant dependent on the choice of horizontal distribution, "top
hat", Gaussian etc, b is the effective radius of the plume and "w" is the

vertical velocity..

The momentum equation is

(prwz) = g}32Ap (2)

%Q«

Co

where Ap = Py — P 8 is the acceleration due to gravity and Co is another
constant. The conservation of heat is

2
ce, fb” = Q (3)
where Cq is a third constant.
€, €y and cg are obtained from various integrals of the Gaussian or "top hat"
distributions. Allowance can be made for a different scale for velocity "w" and

temperature rise ¢ These equations lead, for the flow a long way from the
source, to

%0) - ¢, [p gCQ ]2/3. ng (4)

0po z
) J1/3 1
and W= Cp —EQT (5)
6 [pocp OJ z1]3

where g is the acceleration due fo gravity
TO is the ambient absolute temperature
p,, the uniform density

¢, is the specific heat of the fluid at constant pressure



QQ is the rate of heat release
z is the height above the virtual source.

The constants of proportionality depend on the choice of distribution and on
In practice they are used to define "a'.
The question arises as to what is the correction for "strong" plumes i.e. where

one allows for the different density in all terms.

Thomas et al. (1) used p instead of py In the denominator of Eﬁ%n[; and in
\ C- Q' o e 1/3 .

the term for mass m' = c_p"E This leads to terms in [1 + G/TO] or

[1 + O/TO 2/3 but more recent considerations suggest other forms with a
better theoretical basis.

1.4 The weak and strone axi—svmmetrical plume

Morton (8) considered both strong and weak axi-symmetric plumes in terms of
the simplification of the "top hat" profile and, following Thomas (9) using
Ricou and Spalding’s (10) analysis {see below), proposed

a = a oo, (6)

With this equation and the substitution of B = b‘/p?po and values of Cps €y
and ¢y appropriate to a "top hat" profile, equations (1), (2) and (3) become

d 32
Cl_dE(B pow) = a,Bup, (7)
d p2 2 2 A 2
CQ_EI—?:(B Pow) = gB “FE = gB U/TO (8)
2
C4lcp9p0w}3 = Q@ (9)

and pfl = N



These are the equations for the weak plume with "b" replaced by b\/pfpo.

The conventional assumptions are made, viz. no effective pressure differences and
negligible vertical diffusionl.

Workers at the Factory Mutual Research Corporation have published three pa—

pers (11), (12} and (13} claiming 6’/'1‘0 gives a better correlation of data? than
does 8/T.

1.5 Some prohlems

We note that the mathematical transformation is not possible if the distribution
is not the simple "top hat" forma. The assumption of Gaussian distribution is
however arbitrary, based on an empirical description of a bell shaped distribu—
tion which is clearly nearly Gaussian, but only a more detailed analysis can
discuss this aspect of plumes.

We now need to consider line plumes and further problems arise. We first re—
consider the derivation of equation (6). Ricou and Spalding (10) correlated
experiments on jets where there were significant density differences between p of
the injected fluid and Po of its ambient surroundings. They gave the following
equation

= KMy )2 (10)

where m is the mass flux, M the momentum flux and K is dimensionless.

. 9
Thomas wrate dm/dz as proportional to &bwpo and M as proportional to pwgb“

and deduced equation (6). However similar experiments have not been done for
2—dimensional plumes and jets for which m and M cannot be the relevant
guantities; these are the values for unit length i.e. m', M' respectively. It is
not clear how to adapt equation (10) to include m' and M' and retain a

'This is in effect the "free boundary layer" approximation and depends on the
flow being predominantly vertical. It begins to fail when there is significant
necking or expansion near a finite source.

2With no doubt an additional comment by the Bellman.



dimensionless quantity! Perhaps equation (6) is the more fundamental. But if it
is there are further problems with line plumes.

One is that in principle, the inflow into an ideal (infinite) plume is constant
at all distances from the plume to infinity and presumably subject to
disturbances a long way from the plume. A second is as follows.

Recasting equations (1), (2) and (3) with b instead of b? (and different but
constant values for Cpr Cy etc and Q replaced by Q' i.e. the rate of thermal
energy release per unit Jength of line), cannot exploit any wvariation of Morton's

transformation with o =afo\/p7,00. Only if @ = constant can such a transforma—
tion he made, viz

i
b= bp/p, (11)
However, as yet, line plumes have only been discussed in terms of a constant

a and we are now forced to examine the theory of line plumes in the light of
above comments.

1.6 The Lee and Emmons line and strip plume theory

Lee and Emmons, (11) on whose work Morgan and Marshall (5) based their
analysis, wrote their equations in term of buoyancy deficiency, not convected
heat. This leads to their results being given in terms of %1 = %ﬁ (7 being
0 0
L . . 0 .
specific weight = gp} which Morgan and Marshall replaced by . Treating
[ O-{-y

the denominator T as different from To may be a better approximation than
earlier ones but is not justified by appeal to Lee and Emmons because they
assumed p=p o iD all terms other than in buoyancy, the driving force for line
plume. Consider a "top hat" strong line plume with constant a.

d
QEE(bwp) = 2a-0wp0 (12)
55;( wp) = 284p (13)

and QCppﬂwb = Q' (14)



The use of equation (11) gives

gz(b'w) = qw (15)
%g(b'wgpo) = B%‘Q‘Pob' (16)
and cp'HpOwb' = (17)

. - Ap _ 0§
where Ap appears as > T;

The Gaussian distribution can be accommodated by assuming w and ¢ are

Gaussian in a transformed horizontal scale ¢ = jgpdr/po.
- 12 9
viz.0 o exp (-— Iépdl} /b"Ap,, (18i)
r 2 2
and w o exp [w Jopdz'] /b7, (18ii)

Attempting to allow for the distinction between p and P, requires an analysis
beyond that of simple plume theory and the assumptions as to the nature of
the profile which may be related to a transformed horizontal scale. Clearly one
must appeal to experiments or perhaps numerical modelling.

2 Flow out_of openings.

2.1 The use of plume and hydraulic theory for enclosure fires.
We use "weak" plume theory and allow for the flow into and out of an
opening in ways appropriate to shallow layers or deep layers; intermediate layers

must be dealt with by the method of Prahl and Emmons (15). We also write

Q = m'cp0 {19)



when Qé refers to the flow of convected heat leaving unit width of opening at
a temperature rise of # and mass flow m' for unit width.

The results are shown in Fig.! for the three configurations shown in Fig.2. In
addition Thomas (16) has shown that the power law formulae of McCaffrey and
Quintiere {17} can be written, within the limits of data as

m1
gQq
H ""'_)T"”“
pocp 0

‘1/3 = (.15 + 0.04

Note we have removed the dependence on heat transfer but Q' is here Qfethe
net energy leaving the opening (see also 2.3).

2.2 Numerical Modelling

The above "zone" modelling of flows ought to be subject to computational
analysis (by '"field" modelling). That it has not been is perhaps one reason for
the present difficulties. One relevant analysis has however been made by Blay,
Turhault and Jourbert (18) allowing for temperature dependent density (in all
terms). They analysed the two—dimensional system shown in Fig.3.

and studied 3 conditions without heat loss (Q' = Qé)

1. Q' = 10 ¥kW/m, H = 025 m
2. Q' = 200 kW/m, H = 25 m
3. Q' = 400 kW/m, H = 25 m

and wrote that the results followed scaling laws

(a) 6 o (/5

(The ~1/5 in their paper is clearly a misprint.)
9 —_—
b) V « Q'”/BH 1/10 in the hot zone

and ¢) V « (Q'H)E/FJ in the cold zone
where V s velocity.



The "expected" @ (for weak plumes) scales as 9—6 so the larger this is
H

the greater the ratio of the f calculated by Blay et al. to the conventional 6.

¢

In the expression { L

H fﬁﬁr—r/?’

o‘plo

. ' . . ' 4/5 :
we substitute 9 for m' and # is proportional to Q . The expression
cp@ {}1372

is then proportional to 9_1/ 6 and curves of this form, matched to others at
/T, = 1 are shown in Fig. 1.

2.3 Summary _of Comments on Enclosure fires.

The flow out of wide openings can be described by

m'

n|—84Q 1/3:23m 773 = & (26)
R

PoCpto 0

where £ 1s a weak decreasing function of temperature. The approximate method
of interpreting the McCaffrey—Quintiere regression makes "k" a weak increasing
one but this is probably due to the limitations imposed on the treatment of
the heat loss term, which is described elsewhere (16). The treatments given of
the various equations for enclosure flows, supported by the numerical analysis of
Blay, Turhault and Jourbert suggest that data should be examined by evalua—
ting "&" and examining its variation with window and compartment geometry,
and perhaps the geometry of the position and size of the fire, and the hot
layer temperature.

The relation above is the basis for combining a 2 and 3 dimensional plume
(19) avoiding calculation of edge effects. Thus:

m = 7-Q1/3(L+,u.z)2/32 (27)
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reduces to the axi—symmetric plume equation for ]-Z: >> 1 and for the line

plume when % << 1. The two constants v and p are determined by these
limits which are correctly described and so can be used as a first approxima—
tion for intermediate situations (z can be adjusted to accommodate a virtual
source i so desired).

3. The Egquivalent Gaussian Source

For a plume with velocity decreasing asymptotically to infinity away from the
axis the term "b" is characteristic of its width. However there is a real
average temperature defined by flow and heat. For a "top hat" profile the
average and maximum temperatures are the same but for the Gaussian distri—
bution they are not. Since a plume maximum temperature cannot rise when the
distribution changes from a "top hat" to a Gaussian distribution as it must
when emerging from a nozzle or slit or from a layer burning around a corner
there must be a drop in the average temperature and if thermal energy is to
be conserved in the model of the flow the mass must be increased. The ratio
of average to maximum temperature in the Gaussian flow of Lee and Emmons
is about 2/3 so there must be an apparent entrainment of about 50% when
the "top hat" profile becomes a Gaussian flow.

An FEquivalent Gaussian Source can he provided which matches a "top hat"
profile in mass as well as heat and momentum but then its peak temperature
must be presumed to be higher and it is in effect "fictitious". The real tem—
peratures will necessarily be less. This is clearly an area where experimental
study and numerical analysis are overdue.

4. A Paradox

Lastly we consider what might happen if a plume is disturbed along its ver—
tical axis. Conventional plume theory treats the local horizontal velocity as

proportional to the local vertical velocity which for a line source is constant in
the far field. I such a plume were interrupted by, say, a horizontal insulated



il

wire grid which did not deflect the central axis there would necessarily be a
loss of vertical momentum and velocity and so of entrainment. The lesser dilu—
tion implies that the temperature at some level above the disturbance in the
new far field would be raised! Does this happen? Are the conventional assump—
tions governing mean values, similarity, neglect of pressure etc sufficiently robust
to describe this relatively simple effect?

9. Conclusion

Several details concerning the application of plume theory have been discussed

though some have more relevance to the interpretation and correlation of vali—
dating experimental data. Perhaps the most important points concern the dis—
tortion of simple scaling by the secondary effects of rises in temperature.

The ecalculation by Blay et al. confirms that the discrepancy between actual
temperature and temperature rise predicted from conventional scaling laws rises
as temperature rises. S50 does the use of B/(TO+0) instead of O/T o but
whether the latter is a fortuitous expression of the first effect is not clear. 1f
it is, it should be recognized as such (requiring further numerical calculations)
and not treated as a corollary of the Lee and Emmons theory which it is not.

Little has been written here about the conditions for finite sources where mass
and momentum flows do not match as in the far field so that the plume ini—
tially necks or expands. The remarks about similarity however are apposite since
a flame is not Gaussian near its base but has a biomodal distribution. The
remarks about the fluctuating component of energy and momentum are also
apposite, especially in connection with the interface between a plume and a
layer. It is hoped that in these notes there has been enough comment and
exposition to demonstrate some of the limitations within which engineering ana—
lyses for plumes applies.

There is clearly scope for some more experimental work and numerical analysis.
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Figure 1 Comparison of types of flow out of compartments
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{b) Line source ot base of wall

(c) Fully developed fire (following Kawagoe's model)

Fig 2 Configurations of flow from openings
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Figure 3 The scenario of Blay, Turhault & Joubert
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FURTHER COMMENTS ON THE FLOW OF GASES
FROM VERTICAL OPENINGS WITHIN SHOPPING
MALLS.

Morgan and Hansell (1) conclude their April comment on Law's (2) February
comment on Gardner's (3) paper with the result that the fire power Qf
necessary to produce flashover in a room of height "H" (with wide openings)
depends on H as

Qf (lf 171'2-4

They say the result for an "“ideal" case is Q; a n,

McCaffrey et at. (4) employ 600°C temperature rise as a criterion of flashover.
This i3 not far in excess of temperature rises typical of flames reaching the
smoke layer in the upper part of the space so if one recalls correlations of
vertical flame heigth "L" with firepower Q these results are easily understood.
Thus McCalfrey (5) derived

Loa Q™ (1)

so for II{L ¥ 0(1) at {flashover

Thomas's (6) correlation can be rewritten as

210.3
B o 9} 2

P5

where the original D — a linear dimension characteristic of fire area — is here
replaced by P the perimeter to which it is proportional for a given shape of
flame base.
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For 1151— ~ 0(1) we havel

and if one were to write Pan/ 2 one would obtain

Qf o H2.9

These relationships are independent of compartment dimension or window width
provided the size of the flames is determined by enfrainment unimpeded by the
window. The criterion of flames reaching half way, or all the way, up to the
ceiling is on the safe side of a flashover criterion and expresses conditions near
to it.

Morgan and Hansell (1) contrast in detail McCaffrey et al's regression equation,
which Law (2) pointed out as more appropriate for narrow openings, with
Babrauskas's (7) equation based on much of the same data’.

A comparison between those equations and others has been made by Thomas
(8) from which it appears that not too much significance should be attached to
their different forms. There are reservations to the use of all such equations,
inside as well as outside the range of the experimental data, many of them
mentioned by Morgan and Hansell. There is rather less significance to their
phrase "a quite different function" than might be inferred especially in view on

the restriction or Aw/AyH to less than 2000, as will be seen from Thomas's
graphical representation in reference (8).

It should be noted generally that two equations

_ o, n.m
y = Ax1x2

and y = C + LD)(1 + EX2

IThe indices 1.65 and 0.85 add up to 2.5 because the origin of equations (1)
and (2) is dimensionless. The index in equation (2) was obtained from
statistical analysis as 0.31. Had it been 0.33 equation (3) would have been the

familiar QQPHB/Q.

2There are some misprints in the form quoted. If Q is in kw both coefficients
are too small by 1000.
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both have three disposable constants and can fit the same data in limited
ranges of x, and x, according to how much scatter one accepts in the repre—
sentations of the data.

It is possible to rewrite the regression of McCaffrey et al. in terms appropriate
to wide openings. If, then, Qéx the convected energy emerging per unit width
is used instead of the energy Q' emitted inside per unit width of openings, one
can show that the heat loss term has little influence on the expression

m'

poﬂl B ox }1/3

P OCpTO
The heat loss referred 1o and expressed in the McCaffrey et al. regression
refers to a uniform temperature. One needs simple procedures for dealing with
the horizontal temperature gradiants due to loss to the ceiling in three dimen—
sional flow and one would have to lean heavily on the criterion of flashover as
a criterion of hazard and on the assumptions of a uniform depth of layer and
of motion predominately in one direction.

Perhaps, in view of these problems, one could regard the decisive condition for
the outset of the hazards of flashover as flames reaching the smoke layer, or
say H/2 because it is likely to be a necessary condition for flashover {and a
conservative one). For small compartments it is little different from the criterion
of {lashover itself. For large compartments it introduces — as it perhaps

should — a factor of safety.
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SOME COMMENTS ON RECENT CALCULATIONS AND
DATA ON VOID-SCREEN DEPTHS

The data presented by Morgan and Marshall (1) in the March issue of the
Journal supplement those published earlier by Marshall (2) and have attracted
comment by Hansell (3): they deserve further comments. Their Fig (5) shows
the variation of Adw — the difference between the hot gas layer depths “dw”
and “dm”, respectively near and farther from the fire — and '"d m" itself. Stan—
dard deviations are quoted but it is not clear whether the statistical analysis
accommodates the special features of such a presentation in which the variations
in the two gquantities themselves are likely to be correlated. The same uncer—
tainty also applies to Hansell's (3) analysis. In Marshall's correlation the mall
width W and the exit width W o Were the same but they are different for
the new data.

Fig (1) shows the original measured quantities “dw” and "dm" against "W exn‘
The small negligible difference in "dw" between data for shop widths "W sh“
equal to 7.5 and 5 m (scaled up size) is 0.08 m but, allowing for this reduces
the scatter in the data for '*dw" and makes the departure of the data for
Test 13 more obvious. There is a smaller effect on "dm” but data from Test
13 and Test 14 depart noticeably from the general trend.

The scaling requires equality of Q/SE’/2 where Q is fire power and S a di—
mension characterizing the scale eg. mall height "H". In the range considered Q

(i.e. Q/S5/“) did not significantly affect the relationship between "dw" and
"dm". So the scaling presumably takes the simplified form

Ady dn  w Wex  Wa (1)

LS, . . .
S S S S

where F means "a funetion of".

Any other geometric ratios would also be included in I. Following Morgan and
Marshall's implication that "dm" incorporates all the effect of Wex and treating
the small effect of Wy, as negligible, we have
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Ad d
w m W
L= [ @)

where F2 is another functional relationship.

It is such a relation which has presumably been used to scale up the small
scale experimental data to a 5 m high mall. Morgan and Marshall observe
"that it is not generally true that Adw is independent of the mall width .
but only that it is true for one particular geometry". This i3 correct so long
as "geometry" includes size as well as shape; but the data are presented
without reference to the 5 m height and this it would seem needs to be
explicit. Whilst dw and dm may be independent of height "H" for shallow
layers one must entertain the possibility that there is a physical dependence for
thick layers approaching half the mall height.

Hansell describes the data by

2
AdVV = m‘"(]—Lndnl) (3)

which we rewrite as

W
o (Ln»S~ + LnS)S Ad

l—Ln—%l ~ LnS
where in equation (3) N is 2, but here must be regarded as possibly depending

Ad d
on S. For given values of w»gﬂ %’i and Sﬁl we obtain from equation (4)

dN N 1 1
ds — I+ raw T lw—Lndm

So for W ~ 7.5 m and ém ~ 5 m (roughly mid—values of the data)

dN 4, d8

NT T 5
j.e. a small change in S produces a three times larger change in N for given
dimensionless ratios. The constant 2 is not independent scale and maybe rather
sensitive to It.
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A general equation of the type of equation (2) above can express relationships
between dW and d_ . which are independent of scale but for that they would
need to be proportional to each other. This they are not and one must treat
extrapolation with caution.
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