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FOREWORD 

This thesis comprises the following reports: 

/1/ Bankvall, C.G., Heat transfer in fibrous materials. 

National Swedish Building Research, Document D:4, 1972. 

/2/ Bankvall, C.G., Natural convective heat transfer in insulated 

structures. 

Lund Institute of Technology, Building Technology, Report 38, 

1972. 

Detailed information on the theoretical and experimental investi­

gations, as well as information on references etc. can be found in 

the two original reports. 

Lund, November, 1972. 

Claes Bankvall 
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thermal conductivity 
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2 m 

kg/m3 

K 

W/m K 

N/m2 

SI-units ha.ve been used unless clearly stated otherwise in the 

context. 
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INTRODUCTION 

Effective thermal insulations are of considerable importance in 

the field of building physics, due to increasing requirements of 

comfort, and the necessity of reducing costs. A more effective 

utilization of the insulating materials, requires further know­

ledge of their properties. This is especially true for many types 

of high-performing thermal insulations with complicated mechanisms 

of heat transfer. It is not possible to judge the behaviour of an 

insulation inside a structure without knowledge of the different 

ways of heat transfer in the material itself. 

Most highly insulating materials are porous, i.e. they usually 

contain large amounts of air or other gas. The pore system can be 

closed, as in many cellular plastics, or open, as in mineral wool. 

In an open-pore material the transport of heat dµe to conduction 

and radiation can be further increased by natural of free convec­

tion, i.e. heat transported by a gas-flow due to temperature­

induced differences in gas density. 

Permeable materials with complex mechanisms of heat transfer, like 

mineral wool, have often presented difficulties when evaluating 

building structures where these materials have been used for insu­

lation. The first part of the present report discusses the basic 

mechanisms of heat transfer in a fibrous material, the second part 

deals with the natu.ral convective heat transfer in the insulated 

space or structure. This basis of division corresponds to the 

original reports (cf. Foreword). The problem of forced convection 

and protection from wind is not taken up in this study. 
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a 

1-a 

FIG. 1. Model for conduction due to solids and gas in porous 
material with open pore system, unit volume. 

FIG. 2. Model for conduction in fibers and fiber contacts (solids). 
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FIG. 3. Model for radiation in fibrous material. 



2 MECHANISMS OF HEAT TRANSFER IN (FIBROUS) INSULATION 

The basic mechanisms of heat transfer in a porous, in this case 

fibrous, material are: conduction in solid phase constituting the 

insulation, radiation within the material and conduction due to 

the gas confined in the insulation. 

In order to evaluate the thermal conduction the material may be 

treated as a combination of a solid phase anda gas phase. The 

simplest method is to combine the two extreme limits of the 

thermal conductivity of a two-phase mixture. This is shown in 

FIG. 1 fora material with an open pore system. In the part a 

of the unit volume the two phases are parallel in respect to the 

heat flow, and in (1 - a) they are in series. The porosity, E 

of the material is given by 

( 1 ) 

The thermal conductivity due to conduction in solids (fibers) AF 

and conduction due togas AG' in FIG. 1, is 

A A 
( ) ( ) s g 

AF+ A = a· 1-s A + a·sp Ag+ 1-a .E •A + 'l-s )·A 
G ps Ss \ S g 

(2) 

A is the.thermal conductivity of the solid phase and A of the s g 
gas. If the gas pressure in the material is reduced, the thermal 

conductivity of the gas, in that case, 

A = A ge g 

pL 
0 

pL + E T 
0 

A is given by 
ge 

( 3) 

p is the pressure, T the temperature and E a constant depen­

ding upon the gas. L the "effe,ctive pore diameter" or the mean 
0 

distance between fibers can be calculated from 

( 4) 

where D is the mean diameter of the fibers. 

The conduction in solids, i.e. in fibers and fiber contacts, AF' 

can be calculated separately if the structure of the material is 
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FIG. 4. The total thermal conductivity of a fibrous material as a 
function of mean temperature (- calculated values, 
• measured values). 
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known or can be assumed, for example as in FIG. 2. Such a model 

will, however, only give a very approximate value for AF. 

The radiation in the fibrous material will be absorbed, transmit­

ted, reflected and scattered by the fibers. Thus it is very 

difficult to give a physically complete and correct picture of 

this mechanism of heat transfer. If the fibrous material is con­

sidered as consisting of disoriented fibers in layers at right 

angle to the heat flow, the model in FIG. 3 may be considered. In 

the figure, d is the thickness of the material, L 
0 

the dis-

tance between fiber layers and T and T 
o n 

the wall temperatures. 

It is also assumed that the walls and the fiber layers behave as 

grey, non-transparent bodies with emissivity z: 
0 

and L If the 

temperature difference is moderate in comparison to the absolute 

temperature, then the effective thermal conductivity due to radia­

tion AR can be calculated from 

4cr • L 
S O 

. T 3 
m 

(~ - 1)) 
{., 

0 

(5) 

where T 
m 

is the mean temperature of the material and the factor 

B = f( E) decribes the radiational properties of the fibers and 
-8 2 4 fiber layers (er = 5·7·10 W/m K ). If d > L 

S O 

then 

A = 4cr • L R s o B T 3 
m 

and z: 
0 

(6) 

The total effective thermal conductivity of the fibrous material 

is given by 

(7) 

When the material is evacuated, the remaining effective thermal 

conductivity is AF+ AR' and AG is, consequently, the maximal 

decrease in thermal conductivity that can be expected. Three un­

known factors have been introduced in the models, B and an arbi-

trary pairing of and a. 
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FIG. 6. The mechanisms of heat transfer in a fibrous material 
(-- calculated values, 11 measured values). 



A detailed experimental investigation of a fiber glass material of 

different densities was made in a one sided guarded hot plate, with 

the heat flow directed downwards so as to avoid convection. The 

radiation coefficient was found to vary linearly with the tempera­

ture (0-50 °c) and the density (15-80 kg/m3 ). The parameters ES' 
varied linearly with the density. FIG. 4-6 show results and 

from these measurements. 

The influence of the mechanisms of heat transfer on the effective 

thermal conductivity of the fibrous material can be summarized as 

follows 

• conduction due togas contributes the largest part of the 

thermal conductivity in the range of density studied (15-80 

kg/m3 ) 

• radiation is of greatest importance for low density materials 

and leads to high values of thermal conductivity in these 

cases. 

• conduction in solids is important in high density materials 

where it can lead toan increase in the thermal conductivity 

value. 

• increasing mean temperature of a material gives an increase 

in its thermal conductivity value. This is especially notice­

able at low densities due to radiation. 
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FIG. 7. Schematic temperature and flow fields in natural convective 
heat transfer in a vertical air space (h/d ~ 10). 
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3 NATURAL CONVECTIVE HEAT TRANSFER IN INSULATED STRUCTURES. 

Natural or free convection can be considered as the heat transfer 

by flow of fluid due to the interaction between the field of 

gravity and temperature-induced density variations in the fluid. 

This isa fairly well known phenomenon in the air space and in 

order to understand the heat transfer due to convection in an 

insulation it is suitable to observe the two extreme limits from 

the point of view of heat transfer. 

One extreme limit of the porous insulation is the solid structure 

which is reached as the porosity of the material decreases. The 

other extreme limit is reached as the porosity increases and is 

the air space (or uninsulated structure). When the basic physical 

mechanisms of heat transfer are known in a material without con­

vective gas flow, the question is under what circumstances natural 

convection will be of importance to the total effective thermal 

conductivity of the insulation, for example when installed in a 

wall. In order to understand the phenomenology of natural convec­

tion, valuable information can be gained from the available-know­

ledge of the behaviour of the air space. 

It is possible to show theoretically that the convective heat 

transfer through a vertical air space, with height h and thick­

ness d, can be expressed dimensionlessly as the ratio between the 

thermal conductivity with convective flow in the space, Ä and ev 
the conductivity in the stagnant air, Ä. 

Ä 
ev = Nu= f(Ra, h/d) (8) 
Ä 

When no convective flow is present the Nusselt number Nu, will be 

equal to one. The Rayleigh number is 

_ g t:,T • d3 
Ra - a. v. T ( 9) 

m 

g is the gravitational acceleration, /::,T the temperature diffe­

rence over the space, T its mean temperature, a the thermal 
m 

diffusivity of the air and v its kinematic viscosity. 
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FIG. 9, Convection cells in horizontal air space. 
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FIG. 7 schematically shows the behaviour of the convective flow 

and heat transfer in the vertical space. The flow is directed 

upwards at the warm side and downwards at the cold side. The air 

flow leads to deformations in the temperature field, as compared 

to stagnant air. The temperature gradients at the boundary surfaces 

are changed and the total heat transfer through the space is in­

creased. This is due to the warming and cooling, respectively, of 

the air as it flows along the surfaces and at top and bottom passes 

from one side to the other. The heat flow over the height of the 

wall is correspondingly deformed. FIG. 8 shows the natural convec­

tive heat transfer in a space of different aspect ratio (h/d). 

The heat transfer due to natural convection in a horizontal air 

space heated from below, which is the interesting case, can be 

shown to set in at a critical Ra-value (cf. FIG. 9) of 1700, i.e. 

for natural convection 

Ra g f:.T h3 
( 10) = :::::. 1700 a . \) . T 

m 

where h lS the height of the space. 

When a permeable material is introduced as insulation in an un1n­

sulated (air) space the resistance to air flow in the space will 

increase. This can be expressed by the specific permeability coef­

ficient 

B = 
0 

n 
grad p 

( 11 ) 

where Q is the volume flow across the cross-sectional area A, 

and n the dynamic viscosity of the air. 

Generally speaking the permeability is the fluid conductivity of 

the porous material and the value of B is determined by the 
0 

structure of the material. FIG. 10 shows experimentally measured 

permeability values parallel and at right angle to the fiber layers 

indifferent mineral wool insulations. 

The natural convective flow and heat transfer in an insulated space 

can now be calculated in much the same way as in the case of the 
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air space. 

The convective heat transfer in the vertical space (cf. FIG 11) 

is given by 

Nu= f(Ra , h/d) 
0 

together with the appropriate boundary conditions. 

( 12) 

The modified Rayleigh number, Ra , describes the influence from 
0 

specific permeability B , and is defined by 
0 

Ra = C . o air,o 

d • t:,.T • B 
0 

Ä 
0 

( 13) 

where Ä 
0 

is the thermal conductivity of the material at stagnant 

air. The coefficient c . 
air,o 

depends solely upon the air, and 

varies with the mean temperature, as is shown in FIG. 12. 

In the same way as for the air space the air flow in the insulated 

space deforms the temperature field and for this reason alters the 

heat flow patterns at the vertical isothermal boundaries. The 

changes in the velocity, temperature and heat flow fields, as well 

as the convective heat transfer can be calculated numerically for 

different boundary conditions and aspect ratio. FIG. 13 shows an 

example of this. 

As in the case of the horizontal air space, it can be found that 

there exists a critical modified Rayleigh number value above which 

natural convection will be present in the permeable space. The 

critical Ra -value is 

Ra 
0 

0 

= c . air,o 

h t:,.T • B 
0 

Ä 
0 

= 4 'IT2 ( 14) 

The boundary conditions and the aspect ratio (~ 0) are of little 

iriterest in this case. 

The theoretical results have been verified by experimental inves-
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FIG. 13. Natural convective heat transfer in permeable space with 
isothermal vertical and insulated horizontal boundaries. 
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investigations in guarded hot plates and by measurements on insu­

lated wall structures. These investigations have also shown the 

influence of small air spaces and openings within the insulated 

space. This permits the following conclusions to be drawn: 

The natural convection in a fully insulated space is governed by 

the modified Rayleigh number, Ra the aspect ratio, h/d and the 
0 

boundary conditions. The Ra -value can be calculated as in FIG. 
0 

14 (cf. last page) or from the previous equations. Full informa-

tion on the influence of boundary conditions and aspect ratio can 

be found in the original report (cf. Foreword). 

• In the case of the horizontal space a critical Ra -value = 4 n2 
0 

exists. If only normal building physical applications are 

considered, the temperature of the warm side can be assumed to 

be 20 °c and on the cold side it is seldom below -20 °c. In 

FIG. 15 the minimal specific permeablility-values necessary to 

exceed the critical Ra -value at ~T = 40 °c and T = O 0 c o m 
are given as a solid line for different \ -values and h = 

0 

0.30 m. This figure gives an indication of what the con<litions 

have to be to induce natural convective heat transfer in the 

horizontal space. 

• In the vertical permeable space, the situation is slightly 

more complicated, since both aspect ratio and boundary condi­

tions often influence the amount of natural convective heat 

transfer in the space. In order to investigate the implications 

of this under normal applications, assumptions are made similar 

to those in FIG. 15, ~T = 40 °c, T = 0 °c and d = 0.20 m. 
m 

Unlike the horizontal case no critical Ra -value exists in the 
0 

vertical case. The condition, for 5 % natural convective heat 

transfer is therefore illustrated in FIG. 16 for different 

specific permeabilities, B0 and thermal conductivities, \ 0 • 

The Ra -value when calculating this figure was taken from FIG. 
0 

13 and is valid for those boundary conditions. The aspect ratio 

was chosen as one, since this represents a situation with approx­

imately maximal convective heat transfer. 
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• In general, it can be concluded that in normal temperature 

conditions, the natural convective heat transfer in an insu­

lated space takes very high permeability values to be of any 

importance, and that if uncontrolled air spaces and slits 

are introduced into the insulating structure, any amount of 

convective heat transfer can be expected. In this case, know­

ledge about the behaviour of the air space_is useful to esti­

mate the ultimate result. 
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