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Science may be described as the art of systematic over-simplification. 

Karl Popper, 1982 
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Introduction 

Diabetes Mellitus 

The diagnosis diabetes mellitus refers to the 

abnormal regulation of plasma glucose. Cur-

rently, diabetes mellitus is considered to be 

manifest when the plasma glucose concen-

tration exceeds 7 mM during fasting and/or 

11 mM 2 hrs after a 75 g oral glucose chal-

lenge, according to the criteria set by the 

World Health Organization[1]. It is caused 

by defect insulin secretion and/or action[2]. 

The name diabetes originates to the Greek 

word for siphon and mellitus that means 

honey, referring to the thirst and excessive 

flow of (sweet) urine exhibited by untreated 

patients[3]. The main divider between most 

cases of diabetes alludes to the lack (type-1 

diabetes) or presence (type-2 diabetes) of -

cells in the islets of Langerhans.  

Type-1 diabetes normally presents early 

in life, typically following an autoimmune 

destruction of the -cells, and requires re-

placement of insulin (insulin-dependent dia-

betes mellitus, IDDM). There is large geo-

graphic variation in the prevalence of type-1 

diabetes, with incidence rates >20 per 100 

000/year throughout most of Europe and 

North America, while <10 in most of South 

America, Africa and Asia[4]. The prevalence 

is increasing steadily world-wide. Scandina-

via – Sweden and Finland in particular – is 

severely affected with incidence values as 

high as >30 cases/100 000 inhabitants and 

year. Currently, there are approximately 70 

000 patients with type-1 diabetes in Sweden 

alone[5].  

Signs of type-2 diabetes include defec-

tive insulin secretion from -cells and typi-

cally also partial resistance to the effects of 

insulin in the body. Type-2 diabetes does 

not always require treatment with insulin 
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(hence its former name non-insulin-

dependent diabetes mellitus, NIDDM) and 

is typically associated with abdominal obe-

sity. The genetic predisposition is strong, 

polygenic and complex and estimated to ac-

count for 40-80% of disease risk[2]. Type-2 

diabetes is classed as a pandemic and directly 

affects at least 300 000 people in Sweden 

alone and more than 150 million people 

world-wide. This number is estimated to 

reach 300 million by 2025; an increase 

mostly taking place in developing coun-

tries[5, 6].  

On top of type-1 diabetes (representing 

~15% of all cases) and type-2 diabetes 

(~70%), other forms of diabetes include (but 

are not restricted to): late-onset autoimmune 

diabetes in adults (LADA, ~10%)[7], direct 

monogenetic effects on insulin release or 

action (Maturity Onset Diabetes of the 

Young [MODY], ~5% of all DM cases)[8, 

9], gestational diabetes, drug- or chemical-

induced diabetes and infections causing dia-

betes. Genetic association and linkage analy-

ses of the human genome lead to a growing 

awareness of the influence of genetic com-

ponents in diabetes, and the classification of 

diabetes may have to adapt accordingly.  

The islets of Langerhans 

The pancreas is both an exocrine gland and 

an endocrine gland. In the exocrine part, 

lobules of acinar cells produce pancreatic 

juice that is secreted through the pancreatic 

duct into the small intestine, containing en-

zymes required for the digestion of carbohy-

drates, fat and protein. The endocrine pan-

creas is also referred to as pancreatic islets, or 

islets of Langerhans. They are clusters of 

cells dispersed among the acinar cells, each 

consisting of about 1000 cells. A human 

pancreas contains 500,000 to one million 

islets[10]. Their main function is to main-

tain glucose levels in the blood within certain 

boundaries, which is of high importance for 

the body as glucose is the main energy source 

for most organs and the sole supply of energy 

for the brain. Glucose concentration is con-

trolled by very accurate secretion of polypep-

tide hormones into the blood, most notably 

insulin and glucagon. The islets are hetero-

geneous and contain phenotypically distinct 

cell types, such as insulin-secreting -cells 

(~70% of total islet cell number), glucagon-

producing -cells (~20%) and somatostatin-

releasing -cells (~5%). The remaining cells 

secrete other hormones such as ghrelin and 

pancreatic polypeptide. In addition, the - 

and -cells produce islet amyloid polypep-

tide[11] and the -cells synthesize peptide 
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YY[12]. Insulin and glucagon have opposite 

effects on the blood glucose level. In the 

body, glucagon opposes the actions of insulin 

and their ratio determines the intricate con-

trol of gluconeogenesis and glucogenoly-

sis[13]. Glucagon is a catabolic hormone 

that triggers energy stores (mainly liver and 

muscle) to release glucose to the blood, while 

the anabolic hormone insulin stimulates glu-

cose uptake. 

Following a meal, the plasma glucose is 

elevated. Glucose in the blood equilibrates 

across the  -cell membrane via the glucose 

transporter 2 (GLUT2) (but note that in 

man accumulating data implicates 

GLUT1[14]). Inside the cell, glucose is 

phosphorylated by glucokinase forming glu-

cose-6-phosphate that enters glycolysis and 

the Krebs’ cycle, followed by an increase of 

ATP at the expense of ADP. The resultant 

increase in the cytoplasmic ATP:ADP-ratio 

closes the ATP-dependent potassium chan-

nels (KATP-channels). This causes membrane 

depolarization that in turn leads to opening 

of voltage-gated Ca2+-channels. Ca2+-influx 

via these channels and the subsequent in-

crease in [Ca2+]i at the release sites then trig-

gers exocytosis of insulin-containing gran-

ules. This is referred to as the “triggering” 

pathway of insulin secretion (Figure 1). In 

addition, glucose exerts an amplifying effect 

which is exerted at a level distal to the eleva-

tion of [Ca2+]i. The identity of the second 

messenger remains to be established but 

there is some data implicating NADPH[15] 

but changes in ATP and ADP have also 

been proposed to be involved[16].  

Insulin secretion is modulated, but not 

triggered, by increased cAMP levels result-

ing from, for example, binding of incretin 

hormones GLP-1 or the islet hormone glu-

cagon (secreted by neighbouring  -cells) to 

receptors on the -cell membrane. The ef-

fects of cAMP are both protein kinase A 

(PKA)-dependent and -independent[17] 

and are found to potentiate insulin secretion 

by stimulation of the release process itself as 

well as the recruitment of granules to the 

release sites[18]. Somatostatin inhibits insu-

lin release through the action of hormone-

specific G protein-coupled receptors culmi-

nating in the activation of the protein phos-

phatase calcineurin[19] and presumably de-

phosphorylation of key exocytosis-regulating 

proteins.   

Much less is known about the regula-

tion of glucagon secretion from the -cells. 

However, it is clear that they are electrically 

excitable and that glucagon secretion associ-

ates with the generation of electrical activity. 

Glucagon is released by Ca2+-dependent exo-

cytosis of glucagon-containing secretory 

vesicles. Glucose inhibits glucagon release 

but the exact mechanisms involved remain 
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debated. For example, -cells are equipped 

with KATP-channels of the same type as in -

cells. In the -cells, closure of KATP-channels 

triggers membrane depolarization and insu-

lin secretion. KATP-channels are active in the 

intact -cell and their closure results in 

membrane depolarization[20]. This leads to 

the somewhat surprising conclusion that 

glucose leads to closure of KATP-channels in 

-cells but that the resultant depolarization 

results in inhibition of secretion in the -cell 

rather than stimulation as is the case in the 

-cell. Clearly, it is essential to establish the 

precise ion channel complement in the -

cell.  

Gene expression of insulin 

The insulin gene is a small (~1400 bp) and 

highly conserved gene separated into three 

exons residing on chromosome 11 in man. 

The genome of mice, rats, some frogs and 

fish contain two actively expressed insulin 

genes (insulin I and insulin II) with minor 

base-pair differences but with identical pro-

tein sequence[21, 22]. Insulin I is likely a 

functional retroposon of insulin II, meaning 

that an RNA-mediated duplication-

transposition event some 35 million years 

ago inserted a copy of the insulin II gene, 

including the promotor region, at another 

location in the genome. Multiple copies of 

genes are frequently found in the genome 

but they are normally silent, known as pseu-

dogenes. In this case, however, both variants 

are abundantly expressed in the -cell and 

appear regulated in unison, most likely ex-

plained by the similarities in the ~400 bp 

region 5’ of the transcriptional start sites[21, 

22]. Translation of the spliced ~600 bp 

mRNA generates an 11.5 kDa polypeptide 

called preproinsulin that contains four dis-

tinct parts: a signal peptide responsible for 

transport to endoplasmic reticulum; a pep-

tide called chain C; and the insulin A- and 

B-chains. The C-peptide connects the A- 

and B-chain and aligns three disulphide 

 

Figure 1. Insulin release in a -cell. Signals from 

glucose metabolism indirectly control most aspects of 

insulin production and release. Green and red arrows 

indicate a stimulating and inhibitory effect respec-

tively. See text for full description. 
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bridges which are essential for correct fold-

ing. Preproinsulin is cleaved to proinsulin by 

removal of the signal peptide, and it is trans-

ported to the Golgi for storage in vesicles. 

Inside the secretory vesicles, the C-peptide is 

cleaved off in a reaction catalysed by pro-

hormone convertase and carboxy peptidase. 

This leaves the mature insulin protein that 

precipitates with zinc to form microcrystals. 

Transcription of the insulin gene(s) is 

stimulated by glucose to replenish the intra-

cellular stores following insulin release. In 

one study, -cells were exposed to high glu-

cose concentration for 15 minutes. Tran-

scription of the insulin gene peaked after 30 

min and cytoplasmic insulin mRNA content 

was 2- to 5-fold higher than basal levels 60-

90 min after stimulation[23]. The fact that 

cytosolic mRNA levels do not mirror the 

transcription is a consequence of the long 

lifetime of the insulin mRNA molecule and 

that it is also under metabolic control. Other 

studies have observed similar effects, al-

though the time course was slightly 

slower[24, 25].  

Glucose metabolism alone generates 

signals initiating insulin gene transcrip-

tion[26], possibly acting through phosphati-

dylinositol 3-kinase (PI3K) and mitogen 

activated protein kinase (MAPK)[27, 28], 

and is required for initiation of insulin gene 

transcription. The upstream region of the 

insulin gene contains numerous transcription 

factor-binding site sequence motifs. This 

may account for the cell-specific expression 

of insulin and regulation by external fac-

tors[27, 29]. Two types of motifs, termed A-

boxes and cAMP response elements (CRE), 

are of particular importance. The A-boxes 

bind the pancreatic duodenal homeobox-1 

(PDX-1) transcription factor, which is a 

major activator of not only the insulin gene, 

but also other islet-specific genes such as 

Glut2, glucokinase, IAPP and soma-

tostatin[24]. It has been suggested that 60% 

of insulin transcriptional activity is depend-

ent upon binding of PDX-1 to the A-box 

regulatory elements[30], and it is required 

for both the stimulating effect of glucose 

metabolism as well as the negative feedback 

by insulin itself[28]. PDX-1 is also consid-

ered one of the major players in early com-

mitment of the primitive gut to pancreatic 

fate and in the maturation of -cells[31].  

Incretin hormones, such as glucagon-

like peptide 1 (GLP-1) or glucose-

dependent insulinotropic peptide (GIP), 

increase the intracellular concentration of 

cAMP by receptors coupled to adenylate 

cyclases[32]. cAMP regulates the transcrip-

tion of genes with CREs by PKA-mediated 

phosphorylation of CRE binding proteins 

(CREB) and CRE modulators (CREM). 

However, the major effect of cAMP on in-
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Figure 2. Cell population heterogeneity in protein (a) and mRNA (b) levels. (a) depicts E. coli expressing two 

fluorescent proteins (cfp shown in green and yfp in red) under the same promoters. Fully synchronous expression 

would give all yellow cells, but noise in the gene regulation causes variation both in the correlation and total

amount of protein. Image courtesy of Elowitz et al [55]. (b) shows Ins1 mRNA levels in 125 -cells, quantified 

by qRT-PCR (derived from Paper I). Ins1 is an abundant transcript and the expression levels are log-normally 

distributed in the population.

sulin transcripts is not at the transcriptional 

level, but is exerted by regulating mRNA 

stability in the cytoplasm[33]. In the pres-

ence of 17 mM glucose, the rate of degrada-

tion decreases significantly compared to 3 

mM glucose[34]. Somatostatin decreases 

insulin mRNA stability by ~30%[35], the 

glucocorticoid dexamethasone also induces 

degradation of insulin transcripts[36]. By 

contrast, GLP-1 increases insulin mRNA 

stability in the -cell[37, 38]. 

Embryonic stem cells 

The human embryonic stem (ES) cells are 

the only cells that, to our knowledge, have 

the ability to transform to any human cell 

type (pluripotent). In addition, they can pro-

liferate in an undifferentiated state, allowing 

them to renew[39]. Obviously, the potential 

of these cells in regenerative medicine is 

enormous and have been suggested as treat-

ment for a long list of diseases, one of which 

is diabetes[40]. However, it is a daunting 

feat to simulate the natural development and 

trigger stem cells into differentiation to 

primitive gut tube, pancreatic endoderm and 

finally a hormone secreting endocrine 

cell[41]. So far, these attempts have been 

unsuccessful but promising data were re-

cently presented[42]. 

Human ES cells are derived from the 

inner cell mass of the mammalian blastocyst, 

and the transcription factors Pou5f1(Oct4), 

Nanog and Sox2 are key regulators the 

maintenance of the cells. Manipulated cells 

lacking at least one of these regulators and 

do not maintain the characteristic pluripo-

tency and self-renewal capacity[43, 44]. Lit-

tle is known about this regulation but the 

expression of these factors rapidly drops as 

differentiation is initiated. 
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Single-cell biology 

Cells have a remarkable ability to cooperate 

and jointly construct complex structures such 

as tissues, organs or whole organisms. These 

constructions are normally accurately tuned 

and respond to stimuli with high precision. 

During development, cells differentiate to 

specialised cell types, each with particular 

functions in the environment they reside. 

How are these actions in billions of cells 

coordinated? One way is for every cell to 

function as an exact miniature of the entire 

organ. The cells would act independently of 

each other, and respond identically to stim-

uli. A large bulk of data, discussed below, 

indicates that this is not how it works. In 

many aspects, individual cells exhibit a very 

high degree of variability and cells within a 

seemingly homogeneous population may 

exhibit great variation in the responses to 

identical stimuli. 

Figure 2 illustrates heterogeneity in a 

cell population with respect to gene expres-

sion. Early indications of population hetero-

geneity came from studies of  -galactosidase 

formation in bacteria[45, 46] and human 

leukocytes[47, 48]. Investigations of an en-

hancer action using transfected reporter 

genes showed a 100- to 1000-fold difference 

in gene expression between cells exposed to 

identical stimuli[49]. Also in pancreatic -

cells, large cell-to-cell differences in meta-

bolic and transcriptional responses were ob-

served in a number of early studies[50-54] 

(see also Figure 3). More recently, engi-

neered gene networks have given new in-

sights to the cell-to-cell variation by observ-

ing expression levels of fluorescent proteins 

in living bacteria[55] and yeast[56, 57]. 

They noted two kinds of variation: 1) vari-

able expression over time but with some dif-

ferent proteins varying in unison, i.e. they 

were correlated; and 2) uncorrelated fluctua-

tions in expression levels (termed ‘extrinsic’ 

and ‘intrinsic’ noise, respectively). The word 

noise has become the collective term for all 

cell-to-cell variation, regardless of whether it 

originates from subtle environmental differ-

ences, genetic or epigenetic modifications, 

variation in cell states (such as cell cycle pro-

gression), stochastic fluctuations in gene 

transcription and (indeed) experimental 

variation. However, small changes in local 

environment is believed to have only minor 

effect on noise, and hereditary modifications 

take too long time to explain the relatively 

fast changes observed[58]. The idea that 

stochastic – random – variation has a major 

effect on gene expression and cell variability 

has been strengthened the last few years[55-

57, 59-66] and today noise is often used 

synonymously to random fluctuations. This 

means that even cells with the same genome, 
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share the same history and that live in the 

same environment may display random dif-

ferences – some small, other more some sig-

nificant.  

It was suggested already fifty years ago 

that when a cell is exposed to an increasing 

stimuli, the probability of a response – not 

the size of it – increases[46]. This is referred 

to as a binary, all-or-none, response, result-

ing in a highly heterogeneous population of 

cells exhibiting a bimodal distribution. Since 

then, this phenomenon has been reproduced 

several times[67-71]. Clearly, this is not the 

case for all mechanisms in the cell, as a 

graded response is seen in for example 

GABAA receptors[72] and Ca2+-induced 

exocytosis in  -cells[73]. In fact, cells most 

likely possess the whole spectrum of re-

sponses, including graded as well as binary 

responses. A graded response will give rise to 

a gradually increasing dose-response curve, 

while a binary response corresponds to a 

sharp rise in response within a narrow dose 

range. In other words, sigmoidal curves with 

similar start- and end-points but with widely 

different slope factors (nh) (Figure 4). Cells 

may exhibit both types of regulation and 

cells may switch between graded and binary 

responses[67, 74]. 

Stochastic variation of gene ex-
pression 

Gene expression, defined as the reactions 

controlling the abundance of gene products, 

influences most aspects of cellular behaviour. 

The majority of genes have only two active 

copies in the genome, and the initiation of 

transcription relies on binding of TATA 

binding protein, transcription factor IIB and 

other transcriptional activators to attract the 

RNA polymerase II[75]. In addition, regula-

tory elements mediate the degree of expres-

sion by binding to the promoter region. 

Prior to this, the chromatin needs to be re-

modelled to make the DNA accessible to the 

transcription machinery[76]. The origin of 

the stochastic variation in gene expression 

has not been elucidated. However, one ex-

planation postulates that since many steps in 

this chain of events rely on the random en-

 

Figure 3. Heterogeneous gene induction. Showed here are intact islets infected with AdIns-GFP and incubated 

for 48 hrs in 2–20 mM glucose. As the glucose concentration is raised, the number of GFP-positive cells in-

creases. Picture courtesy of de Vargas et al [50]. 
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counter of molecules, some of which are pre-

sent in small quantities, the process becomes 

intrinsically stochastic[61, 62, 77]. There is 

an ongoing debate on the influence of ran-

dom (intrinsic) noise on gene expression. 

While most studies conclude that intrinsic 

noise is the main contributor to the observed 

cell-to-cell variation, there are indications 

that external factors (e.g. global events af-

fecting the whole cell to the same degree, for 

example the number of polymerases, ri-

bosomes, cell-cycle position and cell size) 

dominate[55, 78, 79]. Its influence could 

depend on the gene expression level, as low- 

and medium-abundance transcripts appear 

to be mostly affected by intrinsic noise and 

not so much by external factors[59, 80]. 

Could there be an advantage of random 

fluctuations in mRNA and protein levels? It 

probably makes cells more adjustable to 

rapid changes in the environment and more 

tolerant to stress[66, 81] – skills of central 

importance to a unicellular organism. Multi-

ple steady states could be populated more 

quickly, allowing cell differentiation during 

development[82, 83]. Combined with a 

positive feedback loop of a particular regula-

tory protein, a cell population could diverge 

into two subpopulations by allowing random 

fluctuations[67, 84]. However, for some 

genes, random fluctuations in gene expres-

sion are likely to be disadvantageous. This 

includes genes required for the survival of 

the cell and genes that are part of important 

multi-protein complexes. Indeed, it has been 

shown that such genes have lower stochastic 

noise than most other genes, implying that 

noise is under evolutionary pressure[59, 63, 

85, 86]. This indicates that the cell has a 

means to control noise in gene expression. 

Consider a protein with low transcrip-

tion rate followed by high rate of translation 

Figure 4. Sigmoidal dose-response curves illustrat-
ing graded and binary responses (a) and probabilistic 
response model (b). The numbers indicate slope factors

(nh). (b) shows five cells with a probabilistic binary

response (red). The accumulated response for the

whole population (green) approaches a graded shape

as the number of cells increase. This illustrates that in 

large populations there is no way of telling a prob-

abilistic from a deterministic model of gene expres-

sion. 
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and another protein with high transcription 

and inefficient translation. Experiments on 

the bacteria B. subtilis show that the produc-

tion of the former protein generates more 

noise than the expression of the latter[66, 

85, 86], an idea supported by theoretical 

models of gene expression[62, 87]. Similarly, 

experiments in yeast suggest that more effi-

cient promoter activation would decrease 

noise levels[56, 57, 88]. The inclusion of a 

negative feedback loop (such as a transcrip-

tion factor affecting its own expression nega-

tively) can also be envisaged to reduce 

noise[89, 90]. Another way for cells to lower 

noise is to increase the number of gene cop-

ies in the genome[66], suggesting a possible 

explanation to why mice and rats have two 

functional insulin genes – it decreases noise. 

Noise reduction is probably energetically 

costly for the cell and switching between 

noisy states and less variable conditions may 

be a way for cells to minimize the unfavour-

able effects of noise while still making use of 

its benefits and save energy[91]. 

Two recent studies provide the largest 

sampling of single cell gene expression to 

date[59, 63]. The researchers investigated 

protein noise properties in yeast and found 

that the noise of a particular gene is inversely 

proportional to the mean expression level of 

that gene, indicating that fluctuating mRNA 

levels is the major source of protein noise 

while gene activation and mRNA translation 

do not vary considerably between cells. This 

suggests that mRNA numbers are generally 

low (often 1-2 molecules, [63]), resulting in 

a Poisson distribution of transcripts, and the 

rate of translation high (~1200 proteins pro-

duced per mRNA, [59]). In one of only a 

few studies on mammalian cells, Raj et al 

show a somewhat different picture in higher 

eukaryotes than what is observed in bacteria 

and yeast [65]. They measured mRNA 

molecules with high precision, showing evi-

dence of ‘transcriptional bursting’, i.e. short 

periods of massive mRNA production, sup-

porting the idea that gene activation is the 

major source of noise. Similar conclusions 

are drawn from experiments showing tran-

scriptional events in living cells, in real-

time[83, 92-94]. A likely explanation for 

transcriptional bursts is chromatin remodel-

ling, implying that it is not the mRNA pro-

duction per se that is responsible for the ob-

served noise, but upstream events. However, 

bursting is observed also in bacteria (that 

lack chromatin structure) so there must be 

other factors involved[93]. Raj et al also ob-

serves that up-regulation of a gene generates 

larger bursts, but with unaltered frequency, 

somewhat contradicting the assumption that 

stronger stimulation increases the likelihood 

of expression initiation[64, 68, 70]. Burst-

like behaviour of gene expression of genes 
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required for cell survival might appear haz-

ardous, but since the half-lives of proteins 

are generally much longer than that of 

mRNA molecules, the fluctuations on 

mRNA level are buffered. 

In conclusion, single-cell noise is a 

phenomenon that, although predicted 

early[95], has not been possible to investi-

gate in detail until recently. The underlying 

mechanisms are only starting to come forth, 

but it is clear that stochastic variation is a 

fundamental property of cell physiology in 

general and gene expression in particular. 

Emerging technologies allowing quantita-

tive, non-interfering measurements of single 

molecules in (ideally) living cells will help 

“clear the fog”. 

Aims of the study 
The purpose of this work was primarily to 

establish a method for detecting and quanti-

fying mRNA transcripts in single cells and 

to combine this method with patch-clamp 

recordings on the same cells. The specific 

goals were to: 

1. correlate electrophysiological char-

acteristics to gene expression pro-

files (hormones, ion channels, etc) 

in pancreatic islet cells; 

2. elucidate the discrepant Na+-current 

inactivation properties in - and -

cells by single-cell measurements of 

Na+-channel isoforms;  

3. study transcriptional noise in pan-

creatic islet cells and tumour cell 

line, and determine how widely 

cells in a population differ from 

each other;  

4. investigate the effect of increasing 

glucose concentration on insulin 

and glucagon mRNA levels in sin-

gle cells and confirm or rule out 

bimodality; and 

5. characterize early differentiation of 

human embryonic stem cells by 

studying key transcription factors 

and their correlation within indi-

vidual cells. 
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Methods 

Much of the work behind this thesis lies in 

the development of the methods used. The 

choice of the appropriate technology, detec-

tion chemistry, reagents and conditions re-

quires thorough testing and optimization. 

Specific detection of minute amounts of 

mRNA is currently only possible with two 

methods: Fluorescent In-Situ Hybridization 

(FISH) and the Polymerase Chain Reaction 

(PCR), and variants thereof. They both rely 

on single stranded oligonucleotides base-

pairing with the intended target, but from 

there they go separate paths. In FISH, la-

belled probes allow localization of mRNA in 

cells fixed on microscope slides and coupled 

with a signal amplification strategy, such as 

Tyramide Signal Amplification (TSA)[96] 

or tandem array probe binding sites[97], 

detection of single mRNAs can be 

achieved[65, 98]. Traditionally, the PCR 

runs in a solution and does not allow collec-

tion of spatial or temporal data, as the cell is 

normally sacrificed during analysis (with 

some exceptions [99]). Generally, PCR de-

tects its target more specifically than FISH 

due to the single sequence-recognizing ele-

ment (the probe) used in FISH while PCR 

uses two or three (primers and probe). In 

addition, the temperature cycles of PCR 

greatly increases specificity compared to iso-

thermal hybridization. Variants of FISH to 

assay mRNA in living cells (Fluorescent In 

Vivo Hybridization, FIVH) have been pre-

sented using molecular beacon probes[100], 

RNA aptamers [101], and MS2 tandem 

repeats together with the fusion protein 

MS2-GFP[83, 93, 101-103]. A concern 

with all experimental methods in living cells 

is that the hybridization of probes may inter-

fere with the translation or degradation of 

mRNA. 

Initially, we tested both FISH- and 

PCR-based methods for single cell mRNA 

assessment, but soon settled for the PCR-

method due to its superior sensitivity, speci-

ficity, compatibility with patch-clamp meas-

urements, and higher quality of quantitative 

data. We developed methods to collect sin-

gle cells and reliably isolate RNA that en-

sured high success-rate and good yield. Fig-

ure 5 shows an overview of the procedures 

and below are all steps described in detail: 

Patch-clamp measurements 

The patch-clamp technique is the most ver-

satile method to measure ion fluxes, mem-

brane potential, and changes in membrane 

capacitance in single cells. Currents (in the 

pA- to nA-range) are recorded by electrodes 

positioned on either side of the cell mem-

brane and amplified by ultra-sensitive elec-

tronic amplifiers. Measurements are of two 
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Figure 5. Patch-clamp recording and expression analysis on the same cell. A patch pipette (a) is used to record 

the membrane currents from a single cell that are amplified in the patch-clamp amplifier (b). The electrode is 

positioned on the cell surface using a micromanipulator (the process viewed via the objective of the microscope).

Using a dedicated cell collection pipette (c), the intact cell is brought to a test tube (d) containing 2 μl lysis buffer. 

The tube is incubated at 80 C for five minutes (e) and allowed to cool. At this stage the sample may be stored at

-80 C for extended periods of time. A reaction mixture containing the reverse transcriptase enzyme, dNTP, 

buffer, RNase inhibitor and RT-primers is added to the sample and incubated at 37-55 C (f), according to the 

chosen temperature protocol. The resulting cDNA is split into vessels containing PCR-primers and PCR mas-

termix, which subsequently are temperature cycled (g) with simultaneous fluorescence detection giving readout

in the form of amplification curves (h). 

Numbers indicate the years a Nobel Prize was rewarded: In 1975 Howard Temin and David Baltimore re-

ceived the Prize in Physiology or Medicine, partly for their discovery of the reverse transcription enzyme; in 

1991 Erwin Neher and Bert Sakmann were given the Prize in Physiology or Medicine for the development of

the patch-clamp technique; and in 1993 Kary Mullis was presented with the Prize in Chemistry for the inven-

tion of the polymerase chain reaction 
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kinds: 1) current-clamp, in which the mem-

brane potential is recorded; and 2) voltage-

clamp, where the current crossing the mem-

brane is recorded. A glass capillary shaped as 

a pipette with a tip diameter in the μm 

range, mounted on a micromanipulator, al-

lows connection with the inside of the cell. 

In this thesis the standard whole-cell con-

figuration was used for all measurements 

(Paper IV). In this recording mode, the 

membrane patch between the pipette and 

the cell is ruptured thereby permitting pi-

pette contents to enter the cell and vice versa.  

Single-cell collection and lysis 

Compared with cell culture and patch-clamp 

recording, RT-PCR and other methods of 

molecular biology have different needs and 

standards when it comes to cleanliness and 

purity. While infection is a great threat for 

the cells in culture, it is normally a minor 

issue for molecular work on nucleic acids. 

On the other hand, factors unimportant for 

cell work, such as nucleases (e.g. DNases and 

RNases that are very abundant in the pan-

creas) and enzymatic inhibitors are a source 

of "headache" in molecular biology. The cell 

itself also contains enzymes capable of de-

grading mRNA, and there are numerous 

proteins binding to nucleic acids making 

them less accessible for the primers, probes 

and enzymes used by the researcher. Most 

importantly, the mRNA itself can have 

strong secondary structures obstructing the 

analysis[104]. In addition, we were con-

fronted with the problem of getting the cell 

from the culture dish into an RT-PCR com-

patible test tube. 

Some reports indicate that it is possible 

to collect mRNA from cells by sucking the 

cytoplasm into the patch-clamp pipette[105-

108]. We abandoned the idea early due to 

low yield and poor reproducibility with pan-

creatic islet cells, although there are cases 

where it remains the sole option (i.e. when 

recording from intact pancreatic islets) 

which works albeit with a low success rate. 

Instead, we used a dedicated cell-collection 

borosilicate glass pipette to collect the intact 

cell. This has the advantage that the cellular 

mRNA is exposed to degradation for shorter 

time and that the complete cell, and not just 

a part of it, is collected. The pipette was 

emptied in an RNase- and DNase-free tube 

using a custom-made device, basically a 

micromanipulator holding the pipette and a 

solid tube holder mounted on a support. 

The cell is emptied into a lysis buffer. 

We evaluated a number of methods to dis-

rupt the cell membrane and make the 

mRNA accessible for reverse transcription, 

some of which are presented in Paper I. Our 

experience was that no single method, such 

as repeated freeze-thaw cycles, proteinase K 
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treatment, detergents or heat incubation, is 

essential for successful analysis, but some – 

most notably detergents and heat incubation 

– improve yield. We also evaluated the pres-

ence of carriers, inert molecules that limit 

adverse adhesion effects by covering surfaces, 

without noting any big effect. In the end, we 

recommend low concentrations of the strong 

protein denaturant guanidine thiocyanate 

combined with brief heat incubation as the 

preferred choice for cell lysis and mRNA 

preparation. Standard laboratory practice 

suggests purification of the mRNA prior the 

reverse transcription[109]. However, after 

evaluation of this step we feel that the risk of 

losing sample was higher than the potential 

gain, especially as we saw no inhibitory ef-

fects of down-stream reactions of either the 

lysis buffer, extracellular buffer or the cell 

itself. 

Reverse transcription 

The enzymatic reaction of converting RNA 

to DNA is referred to as “reverse transcrip-

tion” (RT), and is catalyzed by RNA-

dependent DNA polymerases known as re-

verse transcriptases. These enzymes are 

naturally occurring in retro-viruses, and most 

enzyme species available on the market today 

originate from the Moloney Murine Leuke-

mia Virus (MMLV) and Avian Myeloblas-

tosis Virus (AMV)[104]. MMLV-based 

RT-enzyme has a natural RNase H activity, 

potentially causing sample degradation[110], 

which has promoted the development of 

genetically engineered enzymes lacking this 

feature[111]. The action of reverse transcrip-

tases is similar to that of other DNA poly-

merases. The reverse transcription is initi-

ated with the binding of a single stranded 

oligonucleotide to the mRNA, serving as a 

starting template for the reverse transcrip-

tase. The transcriptase elongates the oli-

gonucleotide, commonly referred to as ‘RT-

primer’, in the 5’ to 3’ direction by adding 

free nucleotides (dNTP) complementing the 

mRNA sequence and creating a DNA:RNA 

hybrid helix. Thus, the DNA sequence 

(cDNA) is the reverse complement sequence 

to the mRNA and it can be used as template 

in PCR (see below). 

The efficiency of the RT-reaction is 

highly variable and unpredictable, depending 

on choice of enzyme, RT-primer, tempera-

ture protocol and reagent concentra-

tions[112-115]. However, as shown in Paper 

I the reaction is highly reproducible if the 

conditions do not change between experi-

ments, emphasizing the need of identical 

reaction conditions throughout a study[116]. 

The nature of the target mRNA influence 

the reaction yield greatly, in particular the 

secondary structure[104, 117]. A high incu-

bation temperature reduces secondary struc-
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tures, which has motivated many enzyme 

manufacturers to engineer RT-enzymes that 

are more tolerant to heat, allowing incuba-

tion temperatures up to 55 ˚C. Attempts to 

reduce mRNA secondary structures are pre-

sented and discussed in Paper I. It should be 

pointed out that the absolute quantification 

in Papers I-III is based on the assumption 

that the efficiency of the reverse transcrip-

tion is constant and close to 100%. RT-

efficiency is measured with RNA standards 

and our previous study indicates efficiencies 

up to 80% with the reaction conditions 

used[115]. This means that our estimates of 

mRNA copy number will be slightly lower 

than the true value. 

Analysis of mRNA from individual 

cells put the reverse transcription reaction to 

test. Accurate quantification requires high 

and consistent yields. To detect signals from 

rare transcripts (sometimes down to single 

mRNA molecules), the enzyme must reverse 

transcribe with good accuracy. Template 

accessibility and removal of inhibitors were 

discussed in the previous section, but also in 

the pure sample the potential of optimiza-

tion of the RT reaction is great. We assessed 

the effect of RT-priming (both its kind and 

concentration) and temperature profile (Pa-

per I). RT-primers are available as stretches 

of thymine nucleotides (oligo(dT)), random 

sequences or oligonucleotides targeting spe-

cific genes (gene-specific primer, GSP). 

Oligo(dT) primers, usually 15-18 nucleo-

tides long, chiefly bind to the poly-adenine 

tail attached to 3’-end of most mRNAs. In 

theory, the products generated from RT 

with oligo(dT) primers are a complete 

stretch of cDNA containing a single copy of 

the entire gene. In reality however, this is 

not the case due to mRNA degradation and 

unspecific binding of primer. Still, oligo(dT) 

is considered the first choice of RT-

primer[118]. Random primers, usually six 

nucleotides long and referred to as random 

hexamers, bind randomly throughout the 

transcriptome and the ribosomal RNA. This 

strategy is suggested for poor quality RNA, 

but the risk of generating multiple cDNA 

copies of the mRNA has given rise to con-

cerns about the quality of the quantitative 

data[119]. However, our data are reassuring 

in this context and indicate that random 

hexamer priming does not generally give 

higher reaction yield than for example 

oligo(dT) (Paper I). Gene-specific priming 

ideally results in a homogeneous cDNA of 

only the intended target. The disadvantage is 

the cDNA can only be used for a single tar-

get, limiting its use for rare samples where 

analysis of multiple genes is required. 

Nucleic acid hybridization is the basis 

for binding of both RT- and PCR-primers, 

but the process is far from exact and predict-
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able adding another degree of complexity to 

the RT-PCR process. Complementary oli-

gonucleotides join or separate in a stochastic 

manner. External factors, such as tempera-

ture and ionic strength, affect the probability 

of a particular hybridization. The melting-

point of a particular sequence is perhaps a 

misleading description as it only denotes the 

temperature at which 50% of the strands are 

hybridized (which is the same as saying that 

the strands are base-paired 50% of the time). 

Non-complementary base-pairing is seen in 

for example micro-RNA[120], demonstrat-

ing the flexibility of nucleic acid hybridiza-

tion. This effect is particularly pronounced 

in reverse transcription where the reaction 

temperatures are low. It is therefore not sur-

prising that products that should not form 

using a particular priming strategy neverthe-

less are found and often at fairly high levels 

(Ståhlberg A, personal communication). 

Even reverse transcription without RT-

primers cDNA generates products. This 

probably occurs by using the mRNA itself as 

primer and illustrates the random nature of 

the reaction. 

Quantitative PCR 

Real-time PCR, or quantitative PCR 

(qPCR), was derived from the classical po-

lymerase chain reaction in the early 

1990s[121] by simultaneous monitoring of 

the DNA template amplification process. 

The temperature cycling, heat-stable Taq 

polymerase enzyme and oligonucleotide 

primers resulting in an exponential increase 

 

Figure 6. Quantification of DNA templates with PCR. (a) shows the exponential fluorescence increase (loga-

rithmic scale) due to PCR amplification of three samples with known starting copy number (grey) and one un-

known sample (red). A fluorescence threshold is set arbitrarily and the number of PCR cycles it takes for the 

amplification curve to reach this threshold is termed the cycle of threshold, Ct (arrows). A standard curve (b) is

derived by connecting the Ct-values of the known samples plotted against the initial copy number. The un-

known sample is quantified by reading the copy number corresponding to the Ct-value (red arrow).  
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of templates are all identical in traditional 

PCR and qPCR, but the latter is comple-

mented with a passive probe allowing the 

progress of the reaction to be monitored in 

“real-time”. Thus, the benefit of PCR (the 

detection of rare DNA sequences in a com-

plex mixture) is preserved while the time-

consuming post-processing of samples by gel 

electrophoresis is avoided. The quantifica-

tion is based on the linear relationship be-

tween the fluorescence of bound probe and 

the template concentration. At the start of 

the qPCR, the fluorescence is below the de-

tection limit, but as the number of templates 

increase exponentially, so does the fluores-

cence. Depending on the amount of starting 

material, the number of PCR cycles it will 

take to reach an arbitrarily set threshold 

(termed cycle of threshold, Ct) will vary 

(Figure 6)[112, 122, 123]. Quantification 

using qPCR is intrinsically relative to other 

samples, it does not provide an absolute copy 

number in a single experiment. Absolute 

values are estimated by comparing the Ct-

value of an unknown sample with that of a 

sample with known amount of starting ma-

terial, in practice by the use of a standard 

curve[122, 124]. 

The commonest form of quantification 

of gene expression levels with qRT-PCR 

makes use of internal reference genes, some-

times called house-keeping genes. By relat-

ing the expression level to a gene assumed to 

be constant in the samples being analyzed, 

the expression of the gene of interest can be 

determined in terms of the ratio between the 

two genes. This strategy makes the choice of 

internal reference gene a crucial one, poten-

tially affecting the conclusion drawn from 

the experiment. Incorrect normalization has 

turned out to be one of the most frequent 

mistakes in qPCR analysis[116, 118, 125, 

126] and motivated the use of more than one 

gene for reference[127] or normalization to 

ribosomal RNA[128] or total RNA 

amount[118]. 

Quantification as described above is 

based on a number of assumptions, most 

notably that of constant PCR efficiency. In 

theory, the PCR doubles the number of 

template copies in each round of amplifica-

tion. In reality this is usually slightly less 

than a doubling in each cycle, varying be-

tween genes and reaction conditions. An 

efficiency close to 100% is desired but it is 

even more important that the efficiency is 

constant in every experiment with the same 

primers, or else the quantification will be 

inaccurate. In fact, it is the same assumption 

also for the reverse transcription reaction 

efficiency, emphasizing the importance of 

identical reaction conditions throughout a 

study. 
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The probes for template detection are 

categorized into two groups: 1) fluorescently 

labelled oligonucleotide probes binding spe-

cifically to a predetermined sequence; and 2) 

fluorescent dyes recognizing any amplified 

DNA product. The most frequently used 

sequence recognizing probe is the hydrolysis 

probe, known as TaqMan®[129], based on a 

design with two excitable molecules; a donor 

dye and a quencher connected by an oli-

gonucleotide. When in close proximity, the 

emission from the donor dye is absorbed by 

the quencher by energy transfer. During the 

amplification reaction, the Taq polymerase 

cleaves the probe, thereby separating the 

dyes allowing detection of the donor dye 

emission wavelength. Ideally, this results in a 

1:1 relationship between the number of tem-

plates and free donor dye. Variations on this 

theme include the hair-pin shaped Molecu-

lar Beacon[130] and the single-dye LightUp 

probe[131]. A recent review[123] discusses 

this aspect in depth. 

The other group of reporters used in 

qPCR are dyes that recognize any double- 

stranded DNA, and increase or shift their 

fluorescence upon binding. Asymmetric cya-

nine dyes, such as the popular SYBR Green 

I[132] and BEBO[133], bind to the minor 

groove of the DNA helix, resulting in in-

creased fluorescence intensity. The drawback 

is that they recognize any DNA, not just the 

template targeted by the oligonucleotide 

primers, but also unwanted products such as 

primer dimers resulting from incomplete 

base-pairing between primers. Elimination 

of primer dimers are important regardless 

the choice of detection chemistry as they in 

high concentrations interfere with the in-

tended amplification reaction[134]. How-

ever, unless the fluorescence is read at tem-

peratures above the melting point of the 

primer dimer[135, 136], the primer dimers 

will generate an amplification curve only 

when using reporter dyes.  

Conveniently, the reporter dyes allow 

in-tube analysis of the amplified product 

after the PCR has completed, providing 

 

Figure 7. Melting curves of two different PCR-
products, using SYBR Green I as reporter dye during 

a gradual increase in temperature. As the temperature 

reaches the melting point of the product (Tm), the 

helical structure collapses, resulting in a sharp drop in 

fluorescence as the dye is separated from the DNA. 

Shown here is the negative derivative of the fluores-

cence decay. Consequently, the curve peaks at the Tm

of the PCR-product (indicated by arrows). 



Quantification of gene expression in single cells 

30 

similar information as agarose gel electro-

phoresis. By collecting fluorescence at tem-

peratures near the melting point of the am-

plified products, a melting curve (also re-

ferred to as dissociation curve) is generated 

(Figure 7). When the helix collapses at the 

melting temperature of the product, a sharp 

drop in fluorescence is observed, allowing 

distinction of products based on melting 

point[137]. This distinction can be very ac-

curate and used to separate products with 

only small differences in size or se-

quence[138], and primer dimers are gener-

ally easily discriminated from the desired 

product. 

When the starting material is limited, 

such as in single-cell PCR, the number of 

genes that can be accurately measured is 

small, especially for low-abundance genes. 

Parallel amplification reactions in a single 

tube, referred to as multiplex PCR amplifi-

cation, followed by standard qPCR, leads to 

a vast improvement in this respect. The mul-

tiplex reaction requires special considera-

tions[139] and generally uses much lower 

primer concentrations than the 2nd reaction, 

used for detection and quantification. In 

Paper IV, we use a variant coined ‘pre-

amplification’, allowing up to 100 assays to 

be run in parallel with starting material from 

a single cell. 

 

In this summary the focus is on the method-

ology of the single-cell qRT-PCR measure-

ments. Experimental details pertaining to 

the other methods used (immunocytochem-

istry, cell culture, hormone release measure-

ments, etc.) are given in the individual pa-

pers (I-IV). 

Results 

Paper I 

Single-cell collection and lysis 

Paper I contains a detailed description of a 

protocol for quantification of mRNA in sin-

gle cells with qRT-PCR. It represents an 

effort to define the optimum conditions, 

reagents and concentrations in each of the 

steps to quantify mRNA from individual 

mammalian cells. These protocols were ap-

plied to dissociated pancreatic islet cells, but 

they are by no means limited to this tissue. 

The cell collection method is, however, not 

applicable to work on intact tissues. Borosili-

cate glass pipettes, traditionally used for 

patch-clamp measurements, were fabricated 

with tip diameters matching cell size. Deter-

gents and proteinase K treatment for cell 

lysis were evaluated by adding a single islet 

and measure the amount of mRNA liber-

ated. It was concluded that proteinase K had 

little effect and guanidine thiocyanate 

(GTC) provided efficient disruption of the 

islet and cell membranes. Next, we tested the 
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compatibility of the detergents with the 
downstream reverse transcription reaction. 
As expected, high concentrations (>100 
mM) of GTC severely inhibited the reaction 
while low concentrations (~40 mM) surpris-
ingly resulted in a 3- to 6-fold increased re-
action yield compared to control conditions. 
This finding may be of interest for all appli-
cations of reverse transcription, not just sin-
gle-cell qRT-PCR. 

Optimizing the reverse transcription 
An effort was made to ensure optimal condi-
tions for reverse transcription. We evaluated 
priming with random hexamers, oligo(dT), 
gene-specific primers, and combinations of 
them. In addition, three temperature proto-
cols were tested: isothermal, gradient and 
cycled incubation temperature. Although the 
variation between identical experiments was 
small, yields varied up to 5-fold between 
different priming strategies. However, it was 
difficult to draw any general conclusions 
from these results as there was no trend 
common for all tested genes. This is in 
agreement with previous results[114], show-
ing that RT-priming is highly gene-specific 
and individual optimization is required for 
maximum yield. In most experiments with 
gene-specific primers, unspecific products 
were generated. This illustrates the impor-
tance of not using gene-specific primers 

without first carefully testing the specificity 
of the reaction. We conclude that a combi-
nation of random hexamers and oligo(dT), 
both at 2 μM, will work well for all but the 
most difficult templates and it was used 
throughout the rest of the study. 

Technical reproducibility 
For a quantitative method to be useful it has 
to demonstrate high reproducibility in the 
range for its intended use. Figure 8 shows 
standard deviations, originating from RT 
and qPCR respectively, at varying template 
concentrations. At starting amounts above 
~100 copies, the spread is low, allowing ac-
curate quantification. Below 100 copies, the 

Figure 8. Reproducibility of RT and qPCR. The 
standard deviations of triplicate PCR- and RT-
reactions (squares and circles) are low for starting 
amount above ~100 copies. At lower concentrations 
the spread increases drastically, in part due to Pois-
son effects but also due to the intrinsic inaccuracy of 
the exponential amplification in PCR. The repro-
ducibility is not improved when using purified 
PCR-product as starting template (solid line) in-
stead of cDNA (squares). 
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SD increases sharply and repeated measure-

ments of a sample containing 20 copies 

would span around 10-40 copies. This is too 

inaccurate for most purposes. We emphasize 

that this is an effect inherent to the PCR 

method itself and it is not due to the treat-

ment or an artefact from the reverse tran-

scription, since dilution of purified PCR 

product generated data with similar spread 

(Figure 8). Furthermore, standard deviations 

of replicate measurements on single cells also 

ended up in the same region. We conclude 

that at mRNA copy numbers less than ~100 

(assuming a measurement of ~20% of the 

total single cell cDNA[116]), this method 

should be used primarily for detection and 

not for quantification purposes. 

Single-cell measurements on glucose 

stimulated - and -cells 

We applied the method to single - and -

cells with 96% success rate and measured 

gene expression of insulin I (Ins1), insulin II 

(Ins2), glucagon (Gcg), ribosomal protein 

S29 (Rps29) and chromogranin B (Chgb) in 

each cell. Expression levels were highly het-

erogeneous and skewed towards higher 

numbers. They all fit the lognormal distribu-

tion (discussed in Paper II), thus making the 

geometric mean the most appropriate meas-

ure of average values. Correlation coeffi-

cients between all genes confirmed that the 

transcription of Ins1 and Ins2 correlate, 

which is expected as their promoter regions 

are identical. The cells were exposed to in-

creasing concentrations of glucose resulting 

in elevated expression of the insulin genes. 

High glucose exerted its effect by affecting a 

small fraction of cells with insulin expression 

>10-fold above average. For example, of the 

cells containing the highest Ins1 (top 20%) 

transcript levels, 90% had been incubated in 

high glucose (10 and 20 mM). Still, a major-

ity of the cells were apparently not affected 

by glucose. The expression of Chgb was close 

to the limit of accurate quantification, yet we 

observed stimulation by glucose at the sin-

gle-cell level as well as on population level. 

In summary, we demonstrate a method that 

makes possible the isolation of mRNA from 

single mammalian cells and that generates 

reliable quantitative data for expression levels 

down to ~20 transcripts per reaction. 

Paper II 

Lognormal distribution of transcript 
levels 

Paper II describes the distribution of tran-

scripts in pancreatic -cells and correlates 

expression levels of five genes within single 

cells. The main finding is that mRNA levels 

for a particular gene are lognormally distrib-

uted within a population. We measured both 

pancreatic -cells and MIN6 mouse insuli-

noma cells and they all had highly skewed 
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histograms of expression levels, resembling a 

lognormal distribution. The distributions 

were positively identified as lognormal with 

statistical tests for lognormality. Thus, the 

geometric mean is the appropriate method to 

calculate the typical expression level of a cell 

(see Discussion below). In addition, we re-

port that the expression of Ins1 and Ins2 are 

correlated in single cells, in agreement with 

the finding in Paper I. As expected, we ob-

served a strong induction of both insulin 

genes in high glucose (20 mM) compared to 

low concentration (5 mM). Surprisingly, -

actin was also up-regulated by glucose. -

actin is a commonly used reference gene 

used for normalization of gene expression 

data, but this result questions its suitability 

as reference in -cells. 

Paper III 

Transcription factors in human em-
bryonic stem cells 

In Paper III, we measured the expression of 

key transcription factors in single human 

embryonic stem cells (hESCs). These cells 

have the ability to differentiate into any hu-

man cell type and form the basis for future 

replacement therapies to treat diseases such 

as diabetes and Alzheimer’s disease. How-

ever, the signals directing the differentiation 

are not known in full. This study is an at-

tempt to shed light on the initial stages of 

differentiation. Six genes were measured: the 

transcription factors POU5F1, NANOG and 

SOX2, known to regulate pluripotency and 

self-renewal in hESCs and that are not ex-

pressed in differentiated cells; and the in-

hibitor of DNA binding-genes (named ID1, 

ID2 and ID3) that are important in mice but 

of unknown importance in human cells. 

Similarly to what was seen in pancreatic 

islet cells and insulinoma cells, we observed 

large variations between individual cells both 

at mRNA and protein level. We found that 

the expression of POU5F1, NANOG and 

SOX2 was uncorrelated in single cells, in-

dicative of separate regulatory pathways. 

Instead, the expression of POU5F1 corre-

lated with that of ID1 and ID3. The tran-

script distribution in the population was not 

lognormal for all genes; an effect of the un-

usually low expression levels of some cells in 

the population, possibly because some cells 

had embarked on the road of differentiation. 

The method used thus offers means to dis-

tinguish differentiating cells from undiffer-

entiated at a very early stage. 

Paper IV 

Na+-channels in pancreatic - and -
cells 

In Paper IV, patch-clamp recordings were 

combined with single-cell qRT-PCR, focus-

ing on the possible differential expression of 
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Figure 9. Phylogenetic tree of Na+-channel -
subunits. Gene names are shown in parenthesis and

TTX-resistant channels in red. 

voltage-gated Na+-channels in - and -

cells. First, we isolated RNA from intact 

islets and measured all isoforms of the volt-

age-gated Na+-channels (Figure 9), both the 

nine isoforms of the pore-forming -subunit 

and the three auxiliary -subunit isoforms. 

In many excitable endocrine cells, Na+-

channels underlie the membrane depolariza-

tion that is required for activation of voltage-

gated Ca2+-channels that in turn trigger 

Ca2+-dependent hormone release[140, 141]. 

We have previously shown that the Na+-

channels in the different islet cell types have 

widely varying inactivation properties[142, 

143], a fact commonly used to determine 

cell-type during patch-clamp recording. The 

purpose of this study was to shed light on 

this discrepancy of the Na+-channels in the 

islets of Langerhans and to test whether it 

reflects cell-specific expression of distinct 

Na+-channel subunits. 

We confirmed our previous findings of 

early inactivation of Na+-channels in -cells 

by patch-clamp recordings in concert with 

hormone expression measurements using 

both immunocytochemistry and single cell 

PCR. Half-maximal inactivation (V0.5) was 

approximately -100 mV for -cells and -60 

mV for -cells. Whole islets and mouse in-

sulinoma cells (MIN6) were screened for 

Na+-channel isoform expression. The -

subunit Scn9a, and to some degree also Scn3a 

and Scn8a, were present in islets and MIN6 

cells, as well as the -subunits Scn1b and 

Scn3b. In agreement with these data and 

confirming that both - and -cells express 

tetrodotoxin (TTX)-sensitive Na+-channels, 

TTX completely blocked the Na+-currents in 

both - and -cells. However, insulin secre-

tion was unaffected by TTX while it reduced 

the glucagon release by ~60% at low glucose 

concentrations. The failure of TTX to affect 

insulin secretion from mouse islets is in ac-

cordance with earlier reports[144] and is 

probably a consequence of the Na+-channels 

being fully inactivated at physiological mem-

brane potentials. 

Cell material from individual cells only 

provides enough material for a limited num-
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ber of genes, depending on transcript abun-

dance. To allow measurement of all twelve 

channel isoforms in a single cell – plus the 

hormones insulin, glucagon and soma-

tostatin – we utilized a pre-amplification 

strategy, as described in the Methods sec-

tion. The expression pattern was not obvious 

and most (~70%) analyzed cell lacked detect-

able levels of Na+-channel transcripts. How-

ever, data indicate that of the -subunits, 

Scn9a dominates in -cells and is present in 

some -cells as well, while Scn3a is almost 

-cell-specific. Roughly 80% of the -cells 

with detectable levels of -subunits ex-

pressed Scn1b and only ~20% Scn3b. In the 

-cells, this relationship was reversed with 

Scn3b being the dominant -subunit. 

Discussion 

Variable mRNA levels 

Our measurements confirm the high cell-to-

cell variability observed with other methods. 

What are the underlying mechanisms behind 

the noisy expression pattern observed in in-

dividual - and -cells and what are the im-

plications? Possible explanations include (but 

are not restricted to): 1) transcriptional 

bursting, i.e. infrequent and fluctuating 

promoter activity resulting in pulses of 

mRNA production; 2) variable transcription 

production unrelated to promoter activity, 

with Poisson distributed mRNA levels; 3) 

constant mRNA production but variable 

degradation; or 4) sub-populations of cells 

with varying transcriptional capacity. These 

possibilities are considered in turn below.  

1) Transcriptional bursting 

Quantitative RT-PCR provides snap-shots 

of the mRNA expression profile in single 

cells and do not reveal the rate at which 

transcript levels change over time. Thus, we 

can not directly elucidate whether transcrip-

tional bursting takes place in islet cells or 

not. The underlying mechanism behind 

transcriptional bursting is believed to be the 

binary nature of the gene promoter state: it is 

either on or off. Consider a promoter of a 

particular gene that is randomly turned on 

for short periods in time, while being off 

most of the time, based on stochastic inter-

actions between DNA and promoter com-

plexes or chromatin remodelling. The result-

ing bursts of mRNA production will be 

short and unsynchronized among cells in a 

population. Only a few cells will have an 

abundance of mRNA at any single point in 

time, whilst most cells will only have tran-

scripts from past bursts that are being de-

graded. Since the mRNA degradation is 

likely to be concentration-dependent, the 

resulting distribution of transcripts per cell 
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will be highly skewed and resemble the log-

normal distributions that we observe in our 

data (Paper I-III).  

In -cells, the reported half-life of in-

sulin mRNA is ~29 hrs in low glucose and 

~77 hrs in high glucose conditions[34]. This 

means that burst frequency would have to be 

lower than the reported frequencies (minutes 

to hours, see below) to explain the widely 

different expression levels. If the bursts are 

frequent and transcript degradation ineffi-

cient, then cell-to-cell variation would be 

smaller than what is observed. 

Do our data on insulin gene induction 

by glucose fit the transcriptional bursting 

model? As mentioned in the introduction, 

the evidence is conflicting whether the burst 

frequency or the burst size (or both) in-

creases when stimulated. If burst size alone 

was affected, the highest expression levels of 

stimulated cells would exceed that of the 

highest levels of non-stimulated cells. Con-

versely, if burst frequency was increased, the 

highest expression levels would be the simi-

lar for low and high glucose, albeit the num-

ber of cells with high expression levels would 

have increased. Our data, in particular Paper 

II, tend to support the latter hypothesis. We 

found that high glucose increased the num-

ber of cells with the high mRNA-levels 

whereas the actual amounts in these high-

level cells were similar regardless of the glu-

cose concentration.  

Bimodal distributions of mRNA levels 

[67, 84] could also be explained by transcrip-

tional bursting. Constant burst size and 

longer periods of promoter activation will 

give distributions approaching a bimodal 

distribution. This applies especially if the 

promoter is ‘leaky’. This leakiness would 

mean that the gene is transcribed to a low 

degree even when the promoter is in its inac-

tive state. However, we do not see any evi-

dence of bimodality of insulin transcript lev-

els in -cells.  

2) The Poisson model 

How many genes are expressed in a single 

cell at a single point in time, and to what 

degree? This fundamental question has only 

been addressed occasionally and it has been 

suggested that most transcripts are present at 

a very low level, on average only 1-2 mRNA 

molecules or less per cell[63, 145-150]. In an 

 Figure 10. Transcript abundance in pancreatic tu-
mour cells. Most transcripts are present at low copy

numbers, and only a small fraction have >500 copies

per cell. Data derived from Zhang et al[150]. 
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analysis of colon cancer cells, only 61 genes 

were expressed at more than 500 mRNA 

copies per cell[151] and in another study 

75% of the genes were present at less than 

one copy per cell[145] (see also Figure 10). 

Assuming random fluctuations in the pro-

duction and degradation of transcripts, the 

distribution will fit the Poisson distribution. 

This hypothesis[152] was recently shown to 

be valid in Saccharomyces cerevisiae[59, 63], 

for all but the most abundant genes. It was 

also found that this variation is the major 

source of noise in gene expression, and Bar-

Even et al present a number describing the 

constant rate of translation (1200 proteins 

per mRNA[59]). At first glance, these re-

sults are not in concordance with our data, at 

least not in Papers I-III. However, the ex-

pression levels in our studies are much 

higher, and the conclusions on mRNA levels 

are indirect observations based on protein 

measurements. The Poisson model may be 

appropriate for low-abundance genes, but for 

medium expression and above it fails to ex-

plain the great variation observed. In our 

studies, the hormones fall into a special class. 

Insulin is by far the most abundantly ex-

pressed gene in the  -cell[153] with tens of 

thousands of copies per cell[33, 154] (Paper 

I-II), and the distribution is clearly not Pois-

son. 

3) Variable mRNA degradation 

Consider that the promoter of a particular 

gene is in its active state at all times and that 

mRNA is being produced at a more or less 

constant rate. Highly variable mRNA degra-

dation could then generate snap-shots simi-

lar to the ones we observe in our data. Deg-

radation could vary as a result from fluctuat-

ing levels of ribonucleases or other com-

pounds affecting mRNA stability[155]. This 

aspect has not been considered much to date, 

and studies on single cells have not been 

presented.  

Degradation of insulin mRNA in  -

cells has been shown to be regulated by glu-

cose[33]. There can therefore be little doubt 

that variations in degradation contributes to 

the heterogeneity. For rare transcripts, vari-

able mRNA degradation probably contrib-

utes as much to the total noise as variable 

mRNA production. Nevertheless, it is 

unlikely that degradation is the sole source of 

noise for abundantly expressed genes. 

4) Differentiated sub-populations 

Another possible explanation to the hetero-

geneity we see in our data is that some cells 

are predisposed to produce more mRNA 

than others. Such a variation would be char-

acterized as a form of extrinsic noise, al-

though they may reflect permanent differ-

ences in cell behaviour originating from the 
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development of the tissue. Possibly, a cell 

could shift states, determined by factors such 

as age and localization in the tissue, or it may 

occur by random. It has been reported that 

-cells maintain insulin production for ex-

tended periods of time[156-158]. In fact, -

cells could be divided into glucose-

responsive and glucose-unresponsive groups, 

based on the effect of glucose treatment on 

insulin secretion. However, the total hor-

mone content did not vary, only the ability 

to release insulin[54]. In a heterogeneous 

population of -cells, each triggering more 

or less binary at different glucose concentra-

tions, an increase in glucose would corre-

spond to a recruitment of insulin-producing 

cells[50, 53]. Measurements of transcrip-

tional bursting in living amoeba cells indicate 

that reinitiation of expression was more 

likely than de novo initiation, implying the 

presence of a ‘transcriptional memory’[83]. 

In summary, there is convincing evidence 

that there are prolonged differences in pro-

tein level and cellular activity between cells. 

These variations should not be classified as 

noise, but as characteristics different sub-

populations. However, it is difficult to ascer-

tain that these variations are permanent and 

rule out slow fluctuations, as cells would 

need to be monitored for a very long time. 

The frequency of oscillations that have been 

reported derive from studies on dividing cells 

and range from minutes[83, 94] to several 

hours[92, 159]. 

Our data cannot distinguish temporary 

from permanent variation in mRNA levels. 

We did not see any effect on the spread of 

transcript levels of the incubation time after 

islet cell preparation, indicating that if het-

erogeneity stems from sub-populations it is 

not strongly affected by cell dispersion. In 

addition, the variation of mRNA levels in 

insulinoma cells and human embryonic stem 

cells (Paper II-III) is not easily explained by 

divergent sub-populations, as they have no 

physiological milieu that may cause these 

differences.  

Implications of variable mRNA 
levels 

It is at the functional protein level that gene 

expression has its effect and mRNA, albeit 

being a messenger molecule, is by itself of no 

practical use to the cell. Although the corre-

lation between mRNA levels and corre-

sponding protein levels has been debated 

many times[160, 161], the assumption that 

high mRNA levels correspond to high pro-

tein levels is generally correct at the popula-

tion level. It is a different story in single 

cells. It is unlikely that the fluctuating 

mRNA amounts in cells directly relate to the 

number of active proteins. The main reasons 

are twofold: 1) mRNA generally has a much 



Martin Bengtsson 

39 

 

shorter half-life than its corresponding pro-

tein[48, 155, 162] and; 2) each mRNA gen-

erates more than one protein molecule[59, 

63, 163]. Numerous attempts have been 

made to create theoretical models for this 

process[61, 78, 86, 164], and although some 

have proven useful in specific cases, they are 

not yet generally applicable. 

Alternative methods 

Our results show the applicability of quanti-

tative RT-PCR to accurately measure 

mRNA down to ~20 copies per reaction. At 

lower levels the spread in the measurements 

increases drastically, to a point where the 

data become garbled. The technical repro-

ducibility is very good at levels >100 copies 

with only minor variations. Large dynamic 

range is a distinguishing mark for qPCR; 

virtually no other method can unbiased 

quantify 100 copies in one sample and 109 

copies in the next. However, for accurate 

quantification of low-abundance mRNA, 

other methods are more appropriate. Warren 

et al present parallel picolitre-PCRs of single 

cells with end-point measurements, spotting 

a simple yes-or-no answer from the wells 

that contained a single template[165]. They 

thus avoid the need of efficient PCR ampli-

fication and show that the method is reliable 

for quantification of 1-500 copies. Baner et 

al used the rolling-circle amplification of 

padlock probes, an isothermal replication 

reaction using polymerase that generates 

long repetitive sequences of the probe that 

can be detected in situ or in solution[166]. 

While these alternative methods substitute 

the signal amplification with another tech-

nique, they still rely on reverse transcription 

to cDNA by reverse transcriptase. 

The expression of Na+-channels in the 

- and -cells (Paper IV) is very low, maybe 

less than one copy per cell on average mean-

ing that not all cells contain transcripts even 

though they clearly possess functional chan-

nels (data not shown). At this level, quantifi-

cation is not reliable and it is difficult to dis-

tinguish the technical failures from the cells 

that lacked transcripts. However, due to the 

high specificity of the method (here we have 

three sequence-recognizing elements), we 

are confident that the cells that did give rise 

to a signal did in fact contain the indicated 

Na+-channel isoform. 

Lognormal distributions of mRNA 
levels 

Random distributions are often assumed to 

be normally distributed without being thor-

oughly investigated. The normal, or Gaus-

sian, distribution arises when stochastic er-

rors accumulate by addition while lognormal 

distributions on the hand set in when errors 

are multiplied[167-169]. Lognormal distri-
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Figure 11. Lognormal distribution of transcript levels in a population of cells. Histograms of Ins1 expression 

level shown in linear and logarithmic (insert) scale. Green lines indicate the geometric mean, while red lines 

represent the arithmetic mean value. The arithmetic mean is heavily influenced by the few cells with very high

expression level. 

butions are frequent in nature[169, 170] and 

are characterized by its long tail towards 

higher values giving a few samples a dispro-

portionately large influence on a meas-

urement on the whole population. Thus, the 

arithmetic mean, [(  Xn)/N], is an inappro-

priate estimate of the typical cell in a popula-

tion exhibiting a lognormal distribution. 

Instead, the geometric mean, [(  Xn)1/N], 

should be used[169] (Figure 11). Bulk meas-

urements on whole populations of cells cor-

respond to the arithmetic mean and single-

cell measurements are required to calculate 

the geometric mean. The difference between 

arithmetic and geometric means can be 

large, as demonstrated by the effect of glu-

cose on -cells (Paper II). The fold-increase 

of Ins1 going from 5 to 20 mM glucose was 

4.6 when using arithmetic mean values (cor-

responding to bulk measurements) while it 

was 17 when comparing geometric means. 

The latter value is a better estimate of the 

true induction, as the former is influenced by 

the few but highly expressing cells in low 

glucose[171]. 

Other reports of lognormal distribution 

of mRNA levels[65, 165, 170, 172-174] 

have followed and it appears to be frequently 

occurring in various cell types. It is worth 

pointing out that the spread originating from 

the exponential amplification is also lognor-

mally distributed, just like the biological 

variations we observe. However, the biologi-

cal spread is several magnitudes larger than 
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Figure 12. Correlation of transcript abundance in
45 single -cells. Expression of five genes ( -actin,

insulin I, insulin II, Sur1, and Kir6.2) are shown

with different shades of grey. The scale is normalized

so that the highest expression of each gene is black and

the lowest is white. The Pearson correlation coeffi-

cients for these genes are shown in Table 2 in Paper

II. 

 

the PCR-induced variations. In addition, 

similar distributions are seen on data col-

lected with non-PCR-based methods and 

the single-cell correlations we observe sup-

port the validity of our results.  

Correlated gene expression 

The correlation factors (here we used Pear-

son (Paper I-II) or Spearman (Paper III), 

the latter being independent of distribution) 

indicate that some genes are synchronously 

expressed (Figure 12). The correlation fac-

tors can tell us something about the contri-

bution of noise from intrinsic and extrinsic 

sources. High correlation factors between all 

genes would indicate that global extrinsic 

noise is dominating as these factors would 

affect all genes simultaneously. In contrast, 

our data generally exhibit poor correlation 

between genes, indicating low extrinsic 

noise. However, we probably see an example 

of promoter- or pathway-specific extrinsic 

noise as the Ins1 and Ins2 genes correlate 

(Paper I-II). The relatively low variation 

between Ins1 and Ins2 is intrinsic noise, 

while the remaining variation between the 

other genes cannot be categorized into 

pathway-specific extrinsic noise or intrinsic 

noise from our measurement. Our data does 

not support finding that genes located on 

different chromosomes do not correlate[65, 

80], since in mouse the Ins1 gene is located 

on chromosome 19 and Ins2 on chromosome 

7. Instead, factors exerting their influence 

prior to transcription initiation of the Ins1 

and Ins2 are likely to be the main contribu-

tors of noise in insulin gene expression. Such 

factors may include the levels of transcrip-

tion factors and/or unknown signals derived 

from glucose metabolism. 
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Perspectives 

Recent technological progress has enabled 

insight into fundamental biological proc-

esses, but it is clear that much more research 

is needed to fully elucidate the gene regula-

tory systems in cells. This has become one of 

the focus areas of a rapidly growing field of 

research; systems biology, that aims to ex-

plain biology with complex models spanning 

all areas of physiology and molecular biology. 

While there are many suggested models of 

gene expression, more data—preferably with 

temporal resolution—is needed to fully con-

firm or dismiss the suggested mechanisms 

behind for example transcriptional bursting 

or lognormal distributions. 

There are sporadic whole-

transcriptome studies on single cells using 

microarrays[175, 176]. The data presented 

in this thesis warrant care when interpreting 

such data. Does a snap-shot of the global 

gene expression really provide any biologi-

cally meaningful information? Since there is 

no typical “average” cell[177], conclusions 

must be drawn from an average of a large 

sample set. Besides, the global amplification 

methods available have yet to prove they are 

sufficiently reliable for quantitative single 

cell analysis. However, if these obstacles are 

overcome, the method can provide spectacu-

lar data on how genes are regulated. 

Single-cell data from all steps in the 

central dogma—mRNA, protein and func-

tion—could provide hints of how cells cali-

brate delicate cellular mechanisms, in par-

ticular if these entities could be monitored in 

a bigger context, like a cell population, tissue 

or organism. New methods, and combina-

tions of such (e.g. patch-clamp recordings 

combined with multiplex imaging tech-

niques), might assist in the quest to under-

stand how the tiny, intricate and delicate 

machines in our body—the cells—really 

work. 
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Conclusions 
We have developed a method for quantifying 

mRNA in single cells and successfully ap-

plied it on pancreatic islet cells, insulinoma 

cells and human embryonic stem cells. All 

steps were carefully optimized to reach high-

est possible reaction yield and accuracy. Our 

results give insight into basic characteristics 

of gene transcription and how cells in a 

population jointly respond to stimuli. We 

conclude that deterministic simula-

tions/explanations do not give the whole 

picture; heterogeneity and stochasticity 

should be accounted for in studies of cellular 

mechanisms. 

 

The following conclusions were reached: 

1.  Gene expression measurements can 

be correlated with patch-clamp re-

cordings in individual - and -

cells, providing solid support for 

(for example) cell type specific ex-

pression of hormone mRNA; 

2.  Na+-currents in - and -cells 

showed discrepant inactivation 

properties, which in part may be 

explained by differential expression 

of distinct Na+-channel isoforms; 

3.  mRNA transcription levels of a 

wide array of abundant-to-

intermediately expressed genes are 

lognormally distributed in islet cells 

and the MIN6 insulinoma cell line. 

The population is thus highly het-

erogeneous and a small proportion 

of the cells contain the bulk of the 

total amount of transcripts; 

4.  Regulation of hormone mRNA lev-

els by glucose does not appear to be 

bimodal. Glucose increases the frac-

tion of cells with very high tran-

script levels while the majority of 

cells are seemingly unaffected; and 

5.  Transcript levels are highly hetero-

geneous also in human embryonic 

stem cells. Early signs of differen-

tiation were observed as a drastic 

drop in expression of the transcrip-

tion factors POU5F1, NANOG and 

SOX2, although their expression is 

not co regulated in undifferentiated 

cells.  
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Populärvetenskaplig 
sammanfattning 
Allt levande som går att se med blotta ögat 

består av flera celler, en samling mer eller 

mindre oberoende enheter. En av biologins 

största frågor är hur dessa celler kan 

samspela och koordinera sig själva för att 

bilda komplexa organismer eller organ. Ett 

sådant organ är bukspottskörteln (pankreas) 

som innehåller hormonfrisättande klasar av 

celler som kallas de Langerhanska cellöarna. 

Deras funktion är främst att upprätthålla 

blodsockernivån inom hälsosamma gränser. 

Är blodsockret för lågt finns det risk för 

koma och hjärnskador; är det för högt skadas 

bl.a. kärl, nerver och njurar. Nivån styrs av 

-cellerna i de Langerhanska cellöarna 

genom intrikat utsöndring av hormoner, i 

synnerhet insulin. Insulin verkar i kroppen 

för att öka upptaget av socker ur blodet, 

vilket leder till sänkt blodsockerhalt. 

Misslyckas -cellerna med att kontrollera 

blodsockret får man diabetes, en sjukdom 

som nästan en halv miljon svenskar lider av. 

De övergripande målen med vår forskning är 

att förstå hur -cellen och andra celler i de 

Langerhanska cellöarna fungerar, samt varför 

diabetes uppstår och hur sjukdomen kan 

förebyggas eller botas. 

Vi har utvecklat en metod för att kunna 

studera detta i större detalj än tidigare: En 

cell åt gången. Denna upplösning ger oss 

möjligheter att även se på -cellens roll i 

gruppen, om alla celler bidrar lika mycket till 

insulinproduktionen eller om det skiljer sig 

åt. I denna avhandling presenteras resultat 

som visar att -celler reagerar mycket olika 

på samma blodsockerhalt. Aktiviteten i 

insulingenen kan skilja sig tusenfalt mellan 

två celler i samma population. Faktum är att 

oavsett vilken gen och vilken cell vi 

studerade, så såg vi väldigt stora skillnader. 

Endast en bråkdel av cellerna stod för 

majoriteten av produktionen vid en given 

tidpunkt. En trolig förklaring är att 

genuttryck är en slumpartad process och att 

cellerna omväxlande slås på och av. 

Genom att kombinera två metoder för 

att studera enskilda celler kan vi få ytterligare 

information om sambandet mellan 

genuttryck och cellens funktion. Vi mätte 

flödet av natrium in i cellen, genom en 

jonkanal. Natriumkanalens genuttryck kunde 

därefter mätas och korreleras till dess 

aktivitet. Detta gav oss viktig information 

om hur bl.a. -cellen fungerar som enhet, 

och inte bara som grupp. Återigen visar sig 

skillnaderna vara markanta mellan hur 

populationen beter sig och hur cellerna 

reagerar en och en. Detta belyser vikten av 

att studera enskilda celler och denna 

avhandling presenterar en metod som gör 

det möjligt. 
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