LUND UNIVERSITY

Compiling Java for Real-Time Systems

Nilsson, Anders

2004

Link to publication

Citation for published version (APA):
Nilsson, A. (2004). Compiling Java for Real-Time Systems. [Licentiate Thesis, Department of Computer
Science]. Department of Computer Science, Lund University.

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/477e6822-b272-4ea2-a204-3dc6c615c4dd

Compiling Java for Real-Time Systems

Anders Nilsson

Department of Computer Science, Lund University
Box SE-221 00 Lund
Sweden
anders.nilsson@cs.lth.se

Abstract. The tools used for constructing compilers have not changed
much during the last decade. Typically, a parser generator (for example
lex/yacc, or bison) is used for constructing a parser, and the remaining
parts (semantic analysis, optimizations, and code generation) need to be
done by hand.

Advances in compiler construction research have resulted in new object-
oriented tools based on reference attributed grammars and aspect ori-
ented programming, which could be very beneficial for developing com-
pilers for modern object-oriented languages.

We have used the JastAdd compiler construction tool for developing
a Java compiler for real-time systems. In this process, we could also
evaluate the possible benefits from using the JastAdd tool in a complete
real-world programming language compiler.

The usage of reference attributed grammars and aspect-oriented pro-
gramming renders a rather compact, yet apprehensible and elegant com-
piler specification where code analysis, refactorings, and optimizations
can be conveniently described as aspects performing computations and
transformations on the AST.

1 Introduction

Constructing a compiler for a modern Object-Oriented (OO) language, such as
Java, using standard compiler construction tools is normally a large, tedious,
and error prone task. Work on compiler construction within our research group
has resulted in new ideas and new compiler construction tools [1], which with the
aim of this work represent state of the art. The representation of the language
within that tool is based on Attribute Grammars (AGs). AG-based research
tools have been available for a long time, but there are no known compiler
implementations for a complete object-oriented language, so this topic also by
itself forms a research issue.

The tools used for constructing compilers have not changed much during the
last decade. Typically, the concrete grammar for the to-be-compiled language is
specified according to the parser generator of preference (for example lex/yacc,
or bison). The generated parser parses the source code and builds an Abstract
Syntax Tree (AST). Hand-crafted code is then typically used for performing
static-semantic analysis on the AST, generate some kind of intermediate code,

perform various optimizations on the intermediate code, and finally generate
assembly- or machine code—possibly with a final optimization pass. Due to the
large amount of hand-crafted code needed for the analysis-, code generation-,
and optimization phases, the task of constructing a compiler, from scratch, for
a modern OO language can be overwhelming.

1.1 Aspect-Oriented Programming

In 1997, Kiczales et al. published a paper [3] describing Aspect-Oriented Pro-
gramming (AOP) as an answer to many programming problems, which do not
fit well in the existing programming paradigms. The authors have found that
certain design decisions are difficult to capture—in a clean way—in code because
they cross-cut the the basic functionality of the system. As a simple example, one
can imagine an image manipulation application in which the developer wants to
add conditional debugging print-outs just before every call to a certain library
matrix function. Finding all calls is tedious and error-prone, not to mention the
task of, at a possible later time, removing all debug print-outs again. These
print-outs can be seen as an aspect on the application, which is cross-cutting the
basic functionality of the image manipulation application.

By introducing the concept of programming in aspects, which are woven into
the basic application code at compile-time, two good things are achieved; the
basic application code is kept free from disturbing add-ons (conditional debug-
ging messages in the example above), and, the aspects themselves can be kept
in containers of their own with good overview by the developers of the system.

The tool aspectj [4] was released in 2001 to enable Aspect-Oriented Pro-
gramming (AOP) in Java. There is also a web site for the annual aspect oriented
software development conference! where links to useful information and tools
regarding AOP are collected.

1.2 Reference Attributed Grammars

Ever since Donald Knuth published the first paper [5] on Attribute Grammar
(AG) in 1968, the concept has been widely used in research for specifying static
semantic characteristics of formal (context-free) languages. The AG concept has
though never caught on for use in production code compilers.

By utilizing Reference Attribute Grammars (RAGs) [6], it is also possible to
specify in a declarative way the static semantic characteristics of object-oriented
languages with many non-local grammar production dependencies.

The compiler construction toolkit, JastAdd, which we are using for developing
a Java compiler is based on the Reference Attribute Grammar (RAG) concept.

Using the JastAdd [1] compiler construction toolkit, developed at our depart-
ment, we are developing a compiler for real-time Java. The back-end generates
C code according to the ideas described in Chapter [7], which is compiled and
linked against the Garbage Collector Interface (GCI) and runtime, as described

! http://aosd.net

in Chapter [8], to produce a time predictable executable suitable also for hard
real-time-systems.

JastAdd. The JastAdd system [1,9] is based on current research on Reference
Attribute Grammars (RAGs) and Aspect-Oriented Programming (AOP). The
goal of the JastAdd system is to provide compiler developers with a better tool
for AST manipulations than those available today.

Using the RAG technique makes it possible to declare semantic equations
that state how to compute attributes from an AST. These equations present a
convenient way of implementing name- and type analysis, and can also be used
for rewriting subtrees of the AST on demand while computing attributes.

AOQOP is a good help for separation of concerns in the compiler implemen-
tation. Different aspects can be kept in separate source code modules which
enhances readability, and also makes it possible to add or remove specific aspect
modules during implementation or debugging. It is also possible to integrate
ordinary Java code modules, if desired, using the JastAdd system.

Input to JastAdd is divided in two parts; an abstract grammar definition of
the language, and a set of aspects which will be woven into the AST node classes.
The abstract grammar defines both the context-free grammar of a language, and
the inheritance hierarchy of the node classes comprising an AST. The other part
of a JastAdd system is a set of aspects, usually a mix of ordinary Java code with
semantic equations, which are woven in as Java code into the node classes.

The JastAdd tool does not include support for building a concrete parser
which generates the AST. Any parser generator capable of constructing a parser
which can build Java ASTs may be used as a front-end. JavaCC [10] is used in
our Java compiler implementation, but CUP [11] has also been used in other
JastAdd experiments.

2 Architecture and Overview

The architecture of our compiler differs from most available compilers, in that
there is no explicit symbol table, nor will it generate internal intermediate code.
Instead, all operations are implemented as methods on the AST nodes using
the JastAdd system. A concrete grammar description is used to create a parser,
while an abstract grammar describes the AST node class hierarchy. A collection
of aspects, including name- and type analysis, optimizations and code generation,
are woven into the node classes. The parser, node classes, and auxiliary hand-
written Java code makes up the compiler, see Fig. 1.

Abstract Grammar. The purpose of the abstract grammar definition is twofold;
at the same time as it specifies the node relations of an AST, it also specifies the

class hierarchy for the node classes. As an example, consider the small excerpt

from our Java grammar in List. 1.1. The corresponding node class inheritance

hierarchy is shown in Fig. 2.

Name Analysis
Aspects

Aspects Aspects

Type Analysis Optimization

/

Aspects

Abstract grammar
<grammar>.ast

Code Generation

javacc

Concrete grammar
<grammar>.jjt

Java Compiler

A
Auxiliary l Node Classes I
Java classes

Fig. 1. Overview of the Java compiler architecture.

As can be seen in the listing and figure, the abstract class Expr is inherited by
all other expression classes, which enables elegant implementations of methods
common to all expressions, as exemplified later in this section. The abstract
classes Binary and Unary are analogously inherited by all respective concrete

classes.

Expr
| Primary | | Literal |
1
& 1 : I :
Binary Unary lq %
Name | |
| m— - -
{ IntLiteral FloatLiteral
+ NT:_String +FLOAT: String

SubExpr | | AddExpr | MinusExpr
I /| I /| E
L 1 L 1

IdUse

+I D String

Fig. 2. Node class relations in simple JastAdd example.

Using the grammar shown in List. 1.1, we can build an AST representation

of the code snippet

Listing 1.1. A small example of the JastAdd abstract grammar definition.

abstract Expr;

abstract Binary:Expr ::= Left:Expr Right:Expr;
abstract Unary:Expr ::= Expr;
AssignExpr : Expr ::= Dest:Expr Source:Expr;

AddExpr:Binary;
SubExpr:Binary;

MinusExpr :Unary;

Primary:Expr ::= Name;
Name ::= IdUsex*;
IdUse ::= <ID>;

abstract Literal:Expr;
IntLiteral :Literal ::= <INT>;
FloatLiteral :Literal ::= <FLOAT> ;

a.b = c.d + e - 2;

as shown in Fig. 3. Taking advantage of the inheritance hierarchy of the AST
node classes, we can now define aspects operating on this AST representation of
a program.

JastAdd Aspects. Aspects in the JastAdd system are used for implementing
the operations to be performed on the generated AST. They can be implemented
either as normal Java code, methods and attributes woven into the AST node
classes, or as RAG semantic equations which are translated into Java code by
JastAdd, and then woven into the AST classes.

Considering the Java assignment expression above, the two types of aspects
can be illustrated with two of the operations a compiler would typically perform
on code; type checking, and code generation. Implementing type checking for
this subset of Java expressions is conveniently done using semantic equations,
and is shown in List. 1.2 below.

The class TypeCheck declaration does not, in this example, have any other
semantic meaning other than being a syntactic placeholder for declarations (simi-
lar to the aspect declaration in AspectJ). A synthetic attribute, syn TypeDecl type,
is declared in the Expr and Name classes with default values, and overridden in
some subclasses of Expr. Semantic equations are written as assignments, and
will be transformed to Java methods by the JastAdd system as can be noted in,
for example, the declaration of Unary.type where the type attribute in its Expr
child is evaluated by calling the generated type() method.

AssignExpr

Fig. 3. AST representation of the Java expression a.b=c.d+e-2, according to the gram-
mar in List. 1.1.

Analogously to the synthetic attribute shown in this example, there are also

inherited attributes which are used to propagate information downwards in the
AST.

Code generation from an AST representation is not equally suited to describe
in the form of semantic equations, as is for example type checking. Printing
is operational in nature, and it is thus more convenient to implement a code
generator using imperative code, even though it would be possible to generate
code by evaluating one large string attribute. As an example of using imperative
code in JastAdd, consider the pretty-printer example in List. 1.3 below. As can

Listing 1.2. Type checking implemented using semantic equations in JastAdd.

class TypeCheck {
syn TypeDecl Expr.type = null;
syn TypeDecl Name.type lookupTypeDecl ();
Binary.type = LeastCommonType (getLeft ().type (),
getRight () .type ());
Unary.type = getExpr().type();
Primary.type = getName ().type();
IntLiteral.type = lookupType ("int");
FloatLiteral .type = lookupType ("float");

Listing 1.3. Pretty-printer implemented using Java aspects in JastAdd.

class PrettyPrint {
abstract void Expr.prettyPrint (PrintStream out);

syn String Binary.operator = "";
String AddExpr.operator = "+";
String SubExpr.operator = "-";

void Binary.prettyPrint (PrintStream.out) {
getLeft () .prettyPrint (out);
out .print (operator ());
getRight () .prettyPrint (out);

}

void MinusExpr.prettyPrint (PrintStream.out) {
out.print ("-");
getExpr () .prettyPrint (out);

}

void Name.prettyPrint (PrintStream.out) {
for (int i=0; i<getNumIdUse (); i++) {

getIdUse () .prettyPrint (out);
if (i<getNumIdUse ()) out.print(".");

}

}

void IdUse.prettyPrint (PrintStream out) {
out.print (GetID ());

}

void Literal.prettyPrint (PrintStream out) {
out .print (GetLITERAL ());

}

be noted in the example, one can mix use of semantic equations with imperative
code.

3 Simplification Transformations

Generating code from an AST representation can be rather cumbersome , de-
pending on the AST topography? and the complexity of the parsed language.
Especially, expressions in Java may be rather complex, as for example in the
code fragment with corresponding AST in Fig.4.

Building a code generator capable of handling arbitrary expressions tends to
be a very complex and error-prone task. Instead, by defining the simplest possible

2 The parser usually does not have all the information needed for building a semanti-
cally “good” AST, but instead builds an AST syntactically close to the source code,
see Fig. 4.

a.b(0).c0).d = e().£.g0;

Fig. 4. Java code fragment and corresponding AST.

Java language subset while not restricting the semantics, the code generator
becomes much simpler and less error-prone, see [12] for a definition of such a
Java language subset.

The mapping from the full Java language specification [13] to the simpler
subset can be conveniently described as a set of transformation on the AST, as
will be shown in the following sections.

Names. Most of the simplifying transformations needed to perform on the AST
are consequences of real-time memory management, see [8, 14] for details. Mem-
ory operations on references are performed via side-effect macros, only allowing
one level of indirection at each step. It is therefore necessary to transform all
Java expressions with more than one level of indirection into lists of statements
each containing at most one level of indirection. For example, the Java statement

contains one indirection, whereas
a.b = c.d;

has two indirections, and must therefore be transformed into something like

tmp_1 = c.d;

a.b = tmp_1;
or, described as a transformation on the AST in Fig. 5, to meet the indirection
level requirements.

The situation becomes a little more complicated with method calls, since

arguments passed in the call may contain arbitrarily complex expressions. By
studying the method call

Fig. 5. Simplifying names by means of an AST transformation.

a(b(c()),d0);
we may soon see that the evaluation order of the method calls must be
cO, blcO), dO, ab(cO),d)

A suitable simplifying transformation for the above expression, to meet the in-
direction requirements, could then be expressed as AST transformations or as
code as in Fig. 6.

The aspect code needed for performing the simplification transformations
shown in Fig.s 5 and 6 is shown below in List. A.

Unary Expressions. Unary expressions which as a side effect changes the
value of the operand, may need to be simplified in order to meet indirection
requirements. For example, the simple statements

at+;

b.at+;
should be read as

a = atl;

b.a = b.at1;
which poses no problem in the first statement, with zero indirections, but the
latter statement now has two indirections and must be simplified to something
like

tmp_0 = b.a;

b.a = tmp_0+1;

However, things get more complicated as such unary expressions may be used
inside other expressions. For example, the seemingly simple statement

tmp_0 = c();
tmp_1 = b(tmp_0);
tmp_2 = dQ);

a(tmp_1,tmp_2);

Fig. 6. Simplifying a complex method call.

alk.i++] = b[++k.i];

has a non-trivial evaluation order. A simplification of the above statement which
meet indirection requirements can be written as:

tmp_0 = k.i;

++tmp_0;

k.i = tmp_0;

tmp_1 = b[tmp_0];

tmp_2 = k.i;
k.i = tmp_2 + 1;

altmp_2] = tmp_1;

Note that the evaluation of a PreIncrement expression differs from the evaluation
of a PostIncrement expression to maintain semantic correctness.

Control-Flow Statements. The expression—or expressions—which is an im-
portant part of all control-flow statements require special care in the simplifi-

cation process, so as not to alter the semantics of the program. Only the for-
statement will be described here, as it is—semantically—the most complicated
control-flow statement in Java.

A Java for-statement, as defined by the abstract grammar for Java, is rep-
resented by the AST subtree in Fig. 7. As defined in the Java language specifi-

C Condition) CForUpdate)

Fig. 7. Subtree representing a for-statement.

Forlnit

cation [13], the ForInit and ForUpdate nodes may hold arbitrary lists of State-
mentExpressions or, in the case of Forlnit, a variableDeclaration. An example of
a complex for-statement could be

for(a=b(c(1),d),e=f[g()];alh++]1<i;a=b(c(h++)),d)
// code

The solution to simplifying complex for-statements is to, in fact, create
while-statements by moving the ForInit ahead of the statement and move the
ForUpdate last inside the Stmt node (which has been transformed to a Block).
A simplified for-statement subtree is shown in Fig. 8. The resulting code after
simplifying the example for-statement above would then be

ForStmt

(<empty>) (Condition) (<empty>)
{ Stmt) { ForUpdate)

Fig. 8. Subtree representing a simplified for-statement.

Forlnit

tmp_0 = c(1);
a = b(tmp_0,d);
tmp_1 = g();
e = fltmp_1];

tmp_2 = al[h++];
for (; tmp_2<i ;) {
// code

tmp_3 = c(ht++);
a = b(tmp_3,d);

tmp_2 = a[h++];
}
Similar techniques are used to simplify the other Java control-flow state-
ments.

4 Optimization Transformations

Also in cases when compiling to some kind of pseudo-high-level intermediate
language (such as C), there is need for some optimizations at the higher abstrac-
tion level which can not be taken care of by the intermediate language compiler.
Examples of such optimizations are typical OO optimizations, such as implicit
finalization of method calls, class in-lining, but also, depending on the object
model, (high level) dead code elimination. Of these optimizations, only dead
code elimination is currently implemented in our compiler.

4.1 Dead Code Elimination

Constructing an AST based on static dependencies between classes in an ap-
plication clearly results in a set of type declarations including a subset of the
Java2 Standard Edition (J2SE) standard classes. However, the J2SE is so de-
signed that, for any application, this subset will include >200 type declarations.
A static analysis of all possible execution paths of the application reveals that
there exist a set of type declarations, possibly referenced during execution, which
includes much fewer classes than static dependencies would suggest. It has also
been shown by Tip et al. [15] that there is much to gain regarding the applica-
tion size if also referenced type declarations are stripped of unused code, such
as attributes, methods, and constructors.

Dead-code elimination requires static compilation of the program to be opti-
mized, as dynamically loaded code may try to reference methods or fields which
were previously unreachable. It should also be performed using whole-program
analysis, since otherwise only private methods and fields may be analyzed.

Implementation. We have implemented dead code elimination in our Java
compiler using JastAdd aspects to calculate the transitive closure of an appli-
cation, starting from the application main method and all run methods found

in thread objects. Encountered methods and constructors are marked as live,
as are type declarations with referenced constructors, methods, or fields. During
the code generation pass only code for live types, constructors, and methods will
be generated.

Evaluation. The dead code optimization algorithm has been tested on a couple
of applications, with good results, as seen in Table 1 below. The two applications
are described in Sect. 6.

Application Without opt. (kB) With opt. (kB)
HelloWorld 316 218
Robot Controller 1059 759
Table 1. Code size results from utilizing dead code optimization on some applications.

5 Code Generation

When the AST has been transformed, as described in Sect. 3, to reflect the
simplest possible Java coding style, the task of generating intermediate code—in
this case C code—becomes relatively simple.

First, a C header file is generated for each used class in the AST, containing
the type declarations of the object model. Handwritten C code, such as native
method implementations, can then include appropriate class headers. Then, one
C file containing the actual implementations of all constructors and methods, as
well as class initialization code.

Header Files. The organization of the header files is sketched below as:

<class> ClassStruct A C struct representing the class. Has pointers to the
class’s super class struct, and a pointer to this class’ virtual methods table.
Only one instance of this struct exist in run-time.

<class> StaticStruct A struct containing static fields of this class, and all
ancestors. Only one instance exist in run-time.

<class> ObjectStruct A struct representing an instantiated object of this
class. Contains a pointer to the class struct and all non-static fields of this
class (including ancestors).

<class> MethodStruct The virtual methods table associated with objects
instantiated from this class. Contains function pointers for all methods of
objects of this class. One instance of this struct exist in run-time.

C code file. The organization of the generated C code files is sketched below
as:

— Include necessary header files

— Declare the static object model structs for each class/interface; class, class
static, object layout, object static layout, vtable, interface table (if applica-
ble).

— Declare function prototypes for all constructors and methods. This is needed
since declare/use order of these is free in Java.

— All function (methods and constructors) implementations.

— The Java classes init function. Pushes layouts on the GC root stack, fill in
virtual method tables, and initialize static attributes.

The process of compiling a Java program to an executable machine code
image is sketched in Fig. 9.

<Mai n cl ass>.java |
Qt her user-written
{y / cl asses

Java compiler
\ St andar d
class library

Header files

/ Menory nanagemantbl

Native nmethods \ Run-time system |
i npl enent ati ons
Executable

Fig. 9. Flowchart of compilation process.

6 Evaluation

The use of a modern RAG-based compiler construction toolkit, JastAdd, lead to
a rather compact—yet modular and easy to read—compiler specification. Our

Java compiler, as of today, comprises only about 10000 lines of source code
including abstract grammar, concrete grammar, and all aspects needed for se-
mantic analysis, simplifications, optimizations, and code generation needed for
generating real-time capable C code. The sizes of the modules of our compiler
are listed in Table 2.

Lines of code

Front-End

Abstract Grammar 181
Concrete Grammar 1044
Semantic Analysis

Name- and Type Analysis 1458
Transformations and Optimizations

Simplifications 901
Dead Code Optimization 154
Code Generation

Code generation 5745

Table 2. Source code sizes for the different stages of our compiler.

The current version of the compiler front-end (parser and static semantic
analysis) is fully compatible with the current Java standard, version 1.4. Code
generation still lacks support for some features of the Java language, most no-
tably inner- and anonymous classes, but the implementation of these features is
quite straight-forward and will not add more than, at most, some hundred lines
of aspect code to the compiler.

Preliminary Benchmarks. Our Java compiler is still very much in devel-
opment and very little effort has been spent on compiler speed, but to get an
idea on how much slower it is compared to available Java compilers, some very
preliminary benchmarks have been performed.

The test platform was an ordinary PII 300MHz workstation with 128 MB of
RAM. The operating system was Debian GNU/linux, kernel version 2.4.19, and
the Java environment is the Sun J2SE version 1.4.1. As reference Java compilers
we used javac version 1.4.1 and gcj version 3.3.3.

Two applications were used to benchmark our compiler against the references.
HelloWorld is a very small one-class application, basically just instantiating itself
and printing the words “Hello World” on the terminal. The RobotController is
a much larger application consisting of about 25 classes, implementing one part
of a network-enabled controller for an ABB industrial robot. For some reason,
possibly due to the use of native methods, it was not possible to compile the
robot controller application using gcj.

As can be seen in Table 3, our Java compiler is substantially slower than the
other tested compilers. One main reason is the two-pass nature of our compiler
(see Fig. 9), the time needed for gee to compile the generated C file exceeds 90 s

Our compiler gcj javac

HelloWorld

Memory usage (MB) 14 <5 21
Time (s) 26 0.65 3
RobotController

Memory usage (MB) 34 - 30
Time (s) 160 - 9

Table 3. Java compiler measurements

itself. Another reason for the large difference in compilation times is simply that
compiler performance has been, and still is, of low priority in the compiler de-
velopment process. Nevertheless, separate compilation of Java classes, and using
more modern computers, would surely decrease compilation times significantly.

Observations. The modularization of a computer achievable using JastAdd
benefits compiler development in a number of ways. Some examples include:

Instrumentation The compiler can be instrumented with code for debugging,
for example an aspect to dump information in AST nodes.

Measurements Code can be added for measuring, for example the effect of
various optimizations.

Experiments A compiler developer can try experimental code, which is easy to
remove later. For example, a new optimization can be written as a JastAdd
aspect and tested. If it turns out to be useful, the aspect stays, otherwise it
goes.

7 Future Work

The Java to C compiler and associated run-time system framework is, as of
current status, capable of handling most of the Java language, generating se-
mantically correct C code. Apart from the fact that neither the compiler, nor
the runtime system and class library, are 100% complete, with regard to the Java
specification and the Java Development Kit (JDK), there are many interesting
problems to look into.

Optimizations. Generating code that will function properly in all possible
executions will result in conservative code, with sometimes unnecessary overhead
degrading application performance®. We are therefore looking at several ways of
enhancing general performance, without sacrificing real-time performance.

There are a number of OO optimization techniques which could be used to
increase general performance of an application. To this class of optimizations
belong such well-known techniques, see for example [16,17,15], as method call
de-virtualization and class in-lining.

3 e.g., The wanted sampling rate of a high priority regulator thread can not be ac-
complished due to Garbage Collect(ion|or) (GC) overhead

Code Analysis. Persson [20], has published work on using the JastAdd tool to
implement worst-case memory usage and Worst-Case Execution Time (WCET)
analysis on Java applications. His work should be continued and implemented
in our Java compiler, not only as an aid to the programmer, but the analysis
results should be possible to use in some optimizations.

Hybrid Execution Environment In some situations a hybrid execution model,
mixing code executed in a Java Virtual Machine (JVM) with natively com-
piled code, can be preferred to choosing one of the execution models. Since the
IVM [21] uses the same object model as our Java compiler, it should be possible
to integrate these execution environments.

8 Conclusions

For the construction of a Java compiler, academic state-of-the-art tools based
on RAGs and AOP techniques were used. The compiler was constructed in a
modular fashion, with a number of aspects for the JastAdd tool, comprising the
normal phases of a compiler; static semantic analysis, optimizations, and code
generation.

Having implemented a compiler for a complete modern OO programming
language, using the JastAdd tool, we have drawn the following conclusions:

— The OO fashion of the generated AST and the use of semantic equations
renders a very compact, yet apprehensible, compiler implementation.

— Code analysis, refactorings, and optimizations, can be conveniently described
as aspects performing computations and transformations on an OO AST.

— Although substantially slower to compile Java applications than other Java
compilers (javac and gcj), it is still fast enough to build embedded software
using standard workstations.

To our knowledge, this is the first compiler for a complete OO programming
language built using RAG tools.

9 Acknowledgements

This work has been carried out within the LUCAS* applied software research
center with financing from the Swedish Agency for Innovation Systems (VIN-
NOVA) and the Swedish Foundation for Strategic Research (SSF).

References

1. Hedin, G., Magnusson, E.: The JastAdd system - an aspect-oriented compiler
construction system. SCP - Science of Computer Programming 1 (2002) 37-58
Elsevier.

4 http://www.lucas.1lth.se

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Nichols, B., Buttlar, D., Proulx Farrell, J.: Pthreads Programming. 1st edn.
O’Reilly (1996) ISBN: 1-56592-115-1.

Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. In Aksit, M., Matsuoka, S., eds.: Pro-
ceedings European Conference on Object-Oriented Programming. Volume 1241.
Springer-Verlag, Berlin, Heidelberg, and New York (1997) 220-242

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. Lecture Notes in Computer Science 2072 (2001) 327-355
http://eclipse.org/aspect]/.

Knuth, D.E.: Semantics of context-free languages. Mathematical Systems Theory
2 (1968) 127-145 Published by Springer-Verlag New York Inc.

Hedin, G.: Reference attributed grammars. Presented at WAGA99 (1999)
Nilsson, A., Ekman, T., Nilsson, K.: Real java for real time — gain and pain. In:
Proceedings of CASES-2002, ACM, ACM Press (2002) 304-311 To be presented.
Ive, A., Blomdell, A., Ekman, T., Henriksson, R., Nilsson, A., Nilsson, K.,
Gestegard-Robertz, S.: Garbage collector interface. In: Proceedings of NWPER
2002. (2002)

Ekman, T., Hedin, G.: Rewritable Reference Attributed Grammars, Olso (2004)
Presented at the 18'" European Conference on Object-Oriented Computing
(ECOOP) 2004.

: (Java-cc parser generator) Metamata Inc. http://www.metamata.com.

Hudson, S.E., Flannery, F., Anaian, C.S., Wang, D., Appel, AW.: Cup parser
generator for java. hitp://www.cs.princeton.edu/ appel/modern/java/CUP/ (1999)
Menjibar, F.: Portable Java compilation for Real-Time Systems. Master’s thesis,
Dep. of Computer Science Lund University (2003)

Gosling, J., Joy, B., Steele, G.: The Java Language Specification. 1st edn. The
Java Series. Addison-Wesley (1996)

Nilsson, A.: PhD -> Licentiate Compiling Java for Real-Time Systems. PhD
thesis, Dep. of Computer Science, Lund Institute of Technology, Lund University
(2004)

Tip, F., Sweeney, P.F., Laffra, C.: Extracting library-based java applications. Com-
munications of the ACM 46 (2003) 35-40

Arnold, M., Hind, M., Ryder, B.G.: An empirical study of selective optimization.
In: Proceedings of the International Workshop on Languages and Compilers for
Parallel Computing. (LCPC ’00). (2000)

Fitzgerald, R., Knoblock, T.B., Ruf, E., Steensgaard, B., Tarditi, D.: Marmot: An
optimizing compiler for java. Technical report, Microsoft Research, 1 Microsoft
Way Redmond, WA 98052 (1999)

Henriksson, D., Cervin, A., Akesson, J., Arzén, K.E.: On Dynamic Real-Time
Scheduling of Model Predictive Controllers. In: Proceedings of the 41st IEEE
Conference on Decision and Control, Las Vegas, Nevada (2002)

Nilsson, K., Blomdell, A., Laurin, O.: Open Embedded Control. Real-Time Sys-
tems 14 (1998) 325-343

Persson, P.: Predicting time and memory demands of object-oriented programs.
Licentiate thesis, Department of Computer Science, Lund Institute of Technology
(2000)

Ive, A.: Towards an embedded real-time java virtual machine. Licentiate thesis,
Department of Computer Science, Lund Institute of Technology (2003)

A Simplification Transforms

JastAdd aspects needed for transforming name usage in Java from arbitrarily
complex to the simplest form.

class Simplify {
void Stmt.simplify () {
if (stmt.needsRewrite ()) {
setStmt (stmt .rewrite () ,stmtIndex);

}
}
syn boolean Stmt.needsRewrite = false;
syn boolean Expr.needsRewrite = needsRewrite (0);
ExprStmt .needsRewrite = getExpr().needsRewrite ();

boolean AssignExpr.needsRewrite {

return getSource.needsRewrite (0) ||

getDest .needsRewrite (0);

}
boolean Access.needsRewrite (int level) {

return nbr0fDeref () > level;
}
syn int Expr.nbr0OfDeref = 0;
VarAccess .nbr0fDeref = 1+getEnv().nbr0fDeref ();

void AssignExpr.rewrite(List 1) {
int sLevel=0,dLevel=1;

VariableDeclaration varDecl = createTempVar (type ());
1.add (varDecl);
Expr source = getSource().rewrite(l,sLevel);

Expr dest = getDest().rewrite(l,dLevel);
1.add (new ExprStmt(new AssignSimpleExpr (
accessVar (varDecl) ,dest)));
1.add(new ExprStmt (getSpecialAssignExpr (
accessVar (varDecl) ,source)));
1l.add (new ExprStmt(new AssignSimpleExpr (
dest ,accessVar (varDecl))));

}

Expr Access.rewrite(List 1, int level) {
if (nbr0fDeref () > level) {

Expr e = getEnv().rewrite(1,0);

if (level == 0) {
VariableDeclaration varDecl = createTempVar (type());
setEnv (e);
1.add(varDecl);
1.add(new ExprStmt (

new AssignSimpleExpr (accessVar (varDecl),this)));

return accessVar (varDecl);

} else { setEnv(e); 1}

return this;

