
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Risk stratification in cardiac surgery: Algorithms and applications

Nilsson, Johan

2005

Link to publication

Citation for published version (APA):
Nilsson, J. (2005). Risk stratification in cardiac surgery: Algorithms and applications. [Doctoral Thesis
(compilation), Thoracic Surgery]. Department of Clinical Sciences, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/894fb9f3-6dcc-4552-81f0-ea2c9a70fd92






 
 
 

RISK STRATIFICATION IN 
CARDIAC SURGERY 

 

Algorithms and Applications 
 
 
 
 
 
 

JOHAN NILSSON, M.D. 
 
 
 
 
 
 

Department of Cardiothoracic Surgery 

Faculty of Medicine 

 

 

 

Lund University 

Sweden 2005 



 

 ii 

Doctoral Dissertation 
Department of Cardiothoracic Surgery 
Medical Faculty 
Lund University 
SE-221 85 Lund 
SWEDEN 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© Johan Nilsson, 2005 (pages 1-90) 
Lund University 
Printed by Media-Tryck, Lund, 2005 
ISBN 91-85481-03-3

 
 



 

 iii 

 

 
  
 

 

 

 
 
 

To Bodil, 
Sofie and Hanna 

 



 

 iv 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

"Not everything that counts can be counted, and not 
everything that can be counted counts."  

Albert Einstein 

 



 

 v 

 
 
 

 
 

Contents 
List of Publications ................................................................ix 

Summary................................................................................xi 

Summary in Swedish ..........................................................xiii 

Abbreviations .......................................................................xv 

Introduction............................................................................1 

1.1 Historical notes...................................................................................... 1 
1.2 Risk stratification .................................................................................. 3 
1.3 Outcome analysis ................................................................................... 5 
1.4 Databases.............................................................................................. 6 

1.4.1 Sources of data ................................................................................................6 
1.4.2 Variable definition ..........................................................................................6 
1.4.3 Quality ..............................................................................................................7 

1.5 Strategies for model development.............................................................. 8 
1.5.1 Variable transformation .................................................................................8 
1.5.2 Imputation of missing values ........................................................................8 
1.5.3 Variable selection ............................................................................................8 
1.5.4 Model techniques ............................................................................................9 
1.5.5 Validation of risk stratification models......................................................15 

1.6 Performance measurement ..................................................................... 16 
1.6.1 Variability .......................................................................................................16 
1.6.2 Calibration......................................................................................................17 
1.6.3 Discrimination...............................................................................................17 
1.6.4 Reliability........................................................................................................17 

1.7 Risk score systems ................................................................................ 18 
1.8 Limitations and ethical considerations of risk stratification .................... 22 



 

 vi 

Aims of the Thesis................................................................25 

Material and Methods .........................................................27 

3.1 Databases............................................................................................ 27 
3.2 Study design......................................................................................... 28 
3.3 Patient characteristics ........................................................................... 32 

Statistical Methods ..............................................................41 

4.1 Regression analyses and correlation tests ................................................ 41 
4.2 Calibration.......................................................................................... 42 
4.3 Discrimination..................................................................................... 42 
4.4 Training and validation of the ANN model ......................................... 42 
4.5 Risk factor identification for mortality prediction.................................... 43 
4.6 Effective odds ratio and confidence intervals ........................................... 44 
4.7 Computer cluster and software .............................................................. 46 

Results ...................................................................................47 

5.1 Study I ................................................................................................ 47 
5.2 Study II............................................................................................... 49 
5.3 Study III ............................................................................................. 52 
5.4 Study IV ............................................................................................ 56 

General Discussion...............................................................61 

6.1 Performance and accuracy of risk score systems....................................... 61 
6.2 Prediction of resource utilization............................................................ 62 
6.3 Artificial neural networks .................................................................... 63 
6.4 Risk factor identification for mortality prediction.................................... 64 
6.5 Inaccuracy of individual outcome prediction ............................................ 66 



 

 vii 

6.6 Factors influencing accuracy .................................................................. 66 
6.6.1 Variable frequency and definition ..............................................................67 
6.6.2 Incomplete data fields ..................................................................................67 
6.6.3 Geographical differences in patient risk factors.......................................68 
6.6.4 Surgical procedure ........................................................................................68 
6.6.5 Inclusion criteria............................................................................................69 
6.6.6 Change in risk factor prevalence over time...............................................69 
6.6.7 Gaming...........................................................................................................70 

6.7 Future perspectives ............................................................................... 71 

Conclusions...........................................................................73 

Acknowledgements .............................................................75 

References ............................................................................77 

Papers I-IV .............................................................................91 

 



 

 viii  



 

 ix 

 
 
 

 
 

List of Publications 
 
This thesis is based on the following papers, which are referred to in 
the text by their Roman numerals: 
 

I. Nilsson J, Algotsson L, Höglund P, Lührs C, Brandt J. 
Early mortality in coronary bypass surgery: The 
EuroSCORE versus the Society of Thoracic Surgeons risk 
algorithm. Ann Thorac Surg 2004;77:1235-9.  

II. Nilsson J, Algotsson L, Höglund P, Lührs C, Brandt J. A 
comparison of nineteen preoperative risk stratification 
models in open-heart surgery. Submitted. 

III. Nilsson J, Algotsson L, Höglund P, Lührs C, Brandt J. 
EuroSCORE predicts intensive care unit stay and costs of 
open-heart surgery. Ann Thorac Surg 2004;78:1528-34. 

IV. Nilsson J, Ohlsson M, Thulin L, Höglund P, Nashef SAM, 
Brandt J. Risk factor identification and mortality 
prediction in cardiac surgery using artificial neural 
networks. Submitted. 



 

 x 
 



 

 xi 

 
 
 

 

Summary 
 

The aims of this research was to compare different risk score algorithms 
with regard to their validity to predict 30-day and one-year mortality after 
open-heart surgery, to evaluate if the preoperative risk stratification model 
EuroSCORE predicts the different components of resource utilization in 
cardiac surgery, and to systematically evaluate the accuracy and 
performance of artificial neural networks (ANNs) to select and rank the 
most important risk factors for operative mortality in open-heart surgery. 

Preoperative evaluation of the surgical risk is an important component 
in cardiac surgery. Risk stratification can give patients and their relatives 
insight into the existent risk of complications and mortality, and aid in the 
selection of cases for surgery versus alternative, non-surgical therapies. It 
may also predict the need for hospital care resources and improve the 
quality of care. A few comparative studies of different risk algorithms 
exist, but the relative performance of the risk scoring systems currently 
used is unclear, and it still remains difficult to risk-stratify individual 
patients.  

The present work identified four cardiac surgical risk models with a 
superior performance, with the EuroSCORE algorithm performing best. 
Though the algorithms were originally designed to predict early mortality, 
the one-year mortality prediction was also reasonably accurate. The 
additive EuroSCORE algorithm was also shown to be useful to predict 
intensive care unit (ICU) cost and an ICU stay more than two days after 
open-heart surgery. In an attempt to improve the mortality prediction 
further, a machine-learning technique, ANNs, was used. This identified 
mortality risk factors in a ranked order and defined a minimal set of risk 
variables resulting in a superior mortality prediction, compared with 
previously developed algorithms.  
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Populärvetenskaplig 
sammanfattning  
(Summary in Swedish)  
 
 
Inför hjärtkirurgi är bedömning av en patients individuella nytta av 
och risk vid en hjärtoperation en viktig komponent i utredningen inför 
operationen. En riskstratifiering innebär att patientens olika 
riskfaktorer (exempelvis sockersjuka, högt blodtryck, antal tidigare 
hjärtinfarkter, hjärtfunktion) vägs samman till en sannolikhets-
bedömning av risken för en viss händelse (t.ex. att inte överleva 
ingreppet eller att behöva vistas en längre tid på intensivvårds- 
avdelningen). Risk kan beräknas på olika sätt. Den vanligaste metoden 
är att varje riskfaktor ger en riskpoäng och att dessa poäng läggs 
samman. Den sammanlagda riskpoängen ger en uppfattning om 
riskens storlek. Mer avancerade tekniker beräknar sannolikheten att en 
viss händelse skall inträffa efter operationen uttryckt i procent. Ett 
riskstratifieringssystem kan användas för att bedöma den enskilda 
patientens risk, men även för att bedöma behovet av resurser och för 
att värdera kvaliteten på ett visst sjukhus och jämföra olika 
sjukvårdsenheter. 

Trots att olika riskbedömningssystem för hjärtkirurgi har funnits 
sedan slutet på 1980-talet saknas ännu det perfekta systemet. Det är 
fortfarande svårt att bedöma den enskilda patientens individuella risk, 
och bra jämförelser mellan de olika systemens förmåga att göra en 
korrekt riskbedömning saknas. 

Målen med detta arbete var att undersöka och jämföra olika 
riskpoängsystems förmåga att förutsäga om en patient överlever en 
månad respektive ett år efter en genomgången hjärtoperation, att 
undersöka om riskpoängssystem kan användas för att förutsäga 
sjukhusets resursbehov inför en hjärtoperation, samt att använda ett 



 

 xiv 

s.k. artificiellt neuralt nätverk för att identifiera och rangordna de mest 
betydelsefulla riskfaktorerna och därigenom förbättra risk-
bedömningen för den enskilda patienten. 

I delarbete I gjordes en jämförelse mellan de två vanligaste 
riskbedömningssystemens (STS och EuroSCORE) förmåga att 
förutsäga vilka patienter som kommer att överleva de första trettio 
dagarna efter en hjärtoperation. I studien analyserades 4497 
kranskärlsoperationer. Resultaten visade att EuroSCORE hade den 
bästa förmågan att särskilja vilka som skulle överleva. 

 I delarbete II jämfördes 19 olika riskbedömningssystems förmåga 
att förutsäga vilka patienter som överlever 30 dagar respektive ett år 
efter operationen. Fyra olika algoritmer visade sig vara bättre än de 
övriga: logistisk och additiv EuroSCORE, Cleveland Clinic och 
Magovern. Trots att algoritmerna är utvecklade för att förutsäga 30 
dagars överlevnad fungerade de väl för att bedöma även ett års 
överlevnad.  

I delarbete III undersöktes EuroSCOREs förmåga att förutsäga 
resursåtgången vid hjärtkirurgi. Data från 3413 hjärtoperationer 
analyserades. Resultaten visade att EuroSCORE med god precision 
kunde förutsäga den totala kostnaden samt vårdtiden på 
intensivvårdsavdelningen.  

I delarbete IV utvecklades en algoritm bestående av 144 olika 
neurala nätverk som identifierade och rangordnade olika riskfaktorer. 
I denna studie analyserades 18362 patienter som genomgått 
hjärtkirurgi vid sammanlagt 128 europeiska hjärtkliniker. Resultaten 
visade på en förbättrad förmåga att förutsäga utgången för den 
enskilda patienten jämfört med EuroSCORE-algoritmen, samt att 
denna prediktion var oberoende av vilken typ av hjärtoperation som 
patienten genomgick. 

Sammanfattningsvis är EuroSCORE en riskbedömningsalgoritm 
som fungerar väl för att förutsäga överlevnaden efter 30 dagar och ett 
år. EuroSCORE kan även förutsäga resursåtgång vid hjärtkirurgi. 
Bedömningen av den individuella patientens risk kan förbättras 
ytterligare genom användningen av artificiella neurala nätverk. 
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Chapter 1  
 
Introduction 

 
“It may seem a strange principle to enunciate as the 
very first requirement in a Hospital that it should do 
the sick no harm. It is quite necessary, nevertheless, to 
lay down such a principle, because the actual mortality 
in hospitals … is very much higher than any 
calculation founded on the mortality of the same class 
of diseases among patients treated out of hospital 
would lead us to expect.” 

 Florence Nightingale, 1863 

1.1 Historical notes 
 

One of the earliest advocates of analysing outcome data was Florence 
Nightingale (1820-1910). She noted a difference in mortality rate 
between hospitals, with lower mortality in the smaller county hospitals 
(39%) compared with the larger hospitals in London (91%)1. Hospital 
mortality rates had been tracked in England since the 1600s, but 
Florence Nightingale made the important observation that crude 
mortality is not an accurate reflection of outcome. She suggested that 
not only patient outcomes but also the severity of the disease should 
be measured1.  

Ernest Amory Codman (1869-1940), a Boston surgeon, was a 
pioneer in the search for causes of complications. As a medical 
student, he became interested in outcome analysis after making a bet 
with his classmate, Harvey Cushing. They challenged each other who 
could obtain the best outcomes for their patients, when they 
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administered anaesthesia at the Massachusetts General Hospital2. This 
led them to create anaesthesia records. Codman linked specific 
outcomes to defined interventions, and deduced that most 
unfavourable outcomes were results of errors or omissions by 
physicians2.  

Both Codman and Nightingale viewed outcome analysis as an 
intermediate step toward the improvement of patient care. Further 
definition of outcome assessment occurred in the mid 1900s. As 
different treatment options emerged, it became important to 
determine the best alternative among multiple therapies. Controlled 
randomized trials and tests of therapeutical effectiveness were 
initiated.  

In the 1930s, Archibald Leman Cochrane (1909-1988), used the 
evidence gained from randomized controlled trials to decide the best 
treatment. This was the beginning of “evidence-based medicine”. In 
1972 his influential book “Effectiveness and Efficiency: Random 
Reflections on Health Services” was published. The principles 
Cochrane set out were straightforward: Because resources would 
always be limited, they should be used to provide forms of health care 
which had been shown in properly designed evaluations to be 
effective. In particular, he stressed the importance of using evidence 
from randomized controlled trials, because these were likely to 
provide much more reliable information than other sources of 
evidence3. The year before Cochrane died, he referred to a 
systematical review of randomized controlled trials of care during 
pregnancy and childbirth, and suggested that other specialties should 
apply the method used. In 1992 the first Cochrane centre was opened, 
and the Cochrane Collaboration was founded in the following year. 
The Cochrane website (http://www.cochrane.org) provides 
summaries of available randomized controlled trials on a wide range 
of medical subjects.  

In 1986 the US Health Care Financing Administration promoted 
public release of crude mortality statistics for open-heart surgery. 
Providers correctly argued that such data did not account for 
differences in disease severity between patients4, and this led to the 
development of a number of clinical databases and risk models. Soon 
after this release of unadjusted outcome data the STS established an 



Risk stratification in cardiac surgery: Algorithms and applications 
 

 3 

Ad Hoc Committee on risk factors for coronary bypass surgery5, and 
the development of the STS NCD was started (http://www.sts.org). The 
database was established in 1989 and the collection of patient data was 
started in 1990. Simultaneously other US centres established cardiac 
databases, such as the NNE Cardiovascular Disease Study Group 
Cardiac Database6, the NYS Department of Health7 and the VA 
Administration Database8. In 1991, the Ontario Ministry of Health 
established the PACCN, a province-wide computerized registry for 
monitoring cardiac surgery in Canada9.  

In Europe several cardiac surgical databases were established, such 
as the UK national database10 and the Swedish cardiac surgical 
database (http://www.ucr.uu.se/hjartkirurgi/index.htm). Most of 
these were based on the STS data format11. 

 

1.2 Risk stratification 
 

Once a patient is a candidate for cardiac surgery, an important part of 
the preoperative preparation is assessment of the surgical risk. Risk 
stratification, defined as the ability to predict outcome from a given 
intervention by arranging patients according to the severity of their 
illness, can provide information to patients and their relatives about 
the chance of undergoing certain procedures successfully, and the risk 
of complications.  

Preoperative risk assessment can be used in patient management 
(counselling and treatment selection)12, 13, to improve and compare 
provider performance (profile provider quality)8, 14, 15 and for research 
(e.g. to assess the impact of specific predictors on outcome)16, 17. 

Several risk stratification systems have been developed during the 
last decades, with the aim to find standardized criteria for comparing 
outcome in relation to preoperative conditions. An overview of risk 
models in cardiac surgery is shown in Table 1.1.   

The usefulness of any risk stratification system is determined by 
how well the system connects risk factors to a specific outcome18. 
Although it is almost 20 years since Victor Parsonnet19 published one 
of the first risk-score models in open-heart surgery, and despite the 
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fact that risk prediction models are constantly evolving, the accuracy 
of risk stratification remains problematic.  

Table 1.1. Examples of risk stratification systems used for patients 
undergoing cardiac surgical procedures. Modified from Cohn and Edmunds: 
Cardiac surgery in the adult (http://cardiacsurgery.ctsnetbooks.org/)18. 

    
    

Scoring 
system Data source Classification approach Outcomes 

measured 
    
    

APACHE III20 Values of 17 
physiologic 
parameters and other 
clinical information 

Integer scores from 0 to 299 
measured within 24 hours of 
ICU admission 

In-hospital 
death 

NYS7, 14, 21 Condition-specific 
clinical variables from 
discharge record 

Probability of in-hospital death 
ranging from 0 to 1 based on 
logistic regression model 

In-hospital 
death 

STS11 Condition-specific 
clinical variables from 
discharge record 

Bayesian algorithm used to 
assign patient to risk interval 
(percent mortality interval); 
more recently converted to 
logistic regression model 

In-hospital 
death and 
morbidity 

VA8, 22, 23 Condition-specific 
clinical variables 
measured 30 days 
after operation 

Logistic regression model used 
to assign patient to risk interval 
(percent mortality interval) 

In-hospital 
death and 
morbidity 

Parsonnet19 Condition-specific 
clinical variables from 
discharge record 

Additive multiple regression 
model with scores between 0 
and 158 based on 16 weighted 
risk factors 

Death within 
30 days of 
operation 

Ontario9 Condition-specific 
clinical variables 
entered at time of 
referral for cardiac 
surgery 

Range of scores from 0 to 16 
based on logistic regression 
odds ratio for 6 key risk factors 

In-hospital 
mortality, 
ICU stay, and 
postoperative 
length of stay 

NNE6, 24, 25 Condition-specific 
clinical variables and 
comorbidity index 
entered from 
discharge record 

Scoring system based on logistic 
regression coefficients used to 
calculate probability of 
operative mortality from 7 
clinical variables and 1 
comorbidity index 

In-hospital 
mortality 

Cleveland 
Clinic26 

Condition-specific 
clinical variables from 
discharge record 

Range of scores from 0 to 33 
based on univariate odds ratio 
for each of 13 risk factors 

In-hospital 
death or 
death within 
30 days of 
operation 
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One important reason for failure of risk-adjustment methods to 
completely predict outcomes is that the dataset used to derive the risk 
score comes from retrospective, observational data, which contain 
inherent selection bias18. Patients are not allocated to treatments in a 
randomized manner. Rather, treatment recommendations are based 
on the physician’s conviction that a certain therapy is appropriate for 
the individual patient. 

Identification of the best performing risk algorithms is crucial to 
accurate preoperative risk stratification, and thus also to make fair 
comparisons. An ultimate goal of risk stratification is to account for 
differences in patient risk factors so that patient outcome may be used 
as an indicator of quality of care. However, no universally accepted 
definition of quality of care exists. 

 

1.3 Outcome analysis 
 

Medical outcome data are often used to compare treatments or 
providers of care. In clinical surgery there are at least four outcomes 
of interest: mortality, serious nonfatal morbidity, resource utilization 
and patient satisfaction. Which of the patient characteristics that 
represent important risk factors depends on the outcome of interest. 
For example, mortality risk after open-heart surgery is associated with 
left ventricular ejection fraction, emergency surgery and recent 
myocardial infarction27, whereas increased resource utilization is 
associated with comorbidity such as peripheral vascular disease, renal 
dysfunction and chronic pulmonary disease28-31.  

Most risk scoring systems in cardiac surgery have been developed 
to predict mortality after surgery. Operative mortality is an easily 
defined and readily measured outcome, and has been widely used as 
an indicator of the quality of cardiac surgery32-34. However, outcomes 
such as postoperative quality of life or resource utilization may be as 
relevant, particularly when deciding how to allocate health care 
resources. 
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1.4 Databases 
 

In the development of a risk stratification model, a database with 
patient data is a prerequisite. The importance of the database quality 
cannot be overemphasized. Factors such as the sources of data, 
standardized definitions of the data variables, outcomes of interest, 
data collection methodology, data reliability checking and the time 
frame of data collection are essential features when using an existing 
database or constructing a new one35, 36. 

1.4.1 Sources of data 
No risk adjustment model is better than the data from which it is 
developed. Administrative data such as Centres for Medicare data was 
a commonly used source for observational studies. Such data are 
readily available, inexpensive and contain information of millions of 
patients37, 38. However, because these data are generated primarily for 
billing purposes (claims) rather than for clinical studies, their clinical 
accuracy is inadequate38. Critical variables such as left ventricular 
ejection fraction, emergency surgery and recent myocardial infarction 
are often missing. Such administrative data have been found to 
underestimate the effect of comorbid illness. The Duke Databank for 
Cardiovascular Disease found major discrepancies between clinical and 
administrative databases, with claims data failing to identify more than half 
of the patients with important comorbid conditions39. Today, clinical 
databases are therefore generally used for risk stratification and 
outcome analysis. An example is the STS NCD, which includes over  
2 million patients11, 40. 

1.4.2 Variable definition 
Strict standardization of definitions, both for predictor variables and 
endpoint variables, is essential in a successful risk stratification model. 
Even for an apparently obvious endpoint (such as mortality) there are 
important considerations. Mortality could be defined as in-hospital 
mortality (regardless of when it occurs), 30-day mortality (regardless 
of where it occurs) and operative mortality (including both in-hospital 
and 30-day mortality). A fixed time period is preferable from a 
statistical point of view35, but may be more difficult to use than in-
hospital mortality.  



Risk stratification in cardiac surgery: Algorithms and applications 
 

 7 

Osswald and coworkers33 have studied the implications of different 
definitions of early postoperative mortality, especially in the light of 
improvements in postoperative care. For high-risk patients, with a 
prolonged early postoperative phase, mortality resulting from surgery 
may be underestimated. A definition of operative mortality as 
occurring within 6 or 12 months may be more relevant. For other 
endpoints, such as postoperative morbidity, postoperative 
complications and hospital cost standardized definitions are even 
more difficult. 

1.4.3 Quality 
In addition to variable definition, the type of data collected is 
important. Continuous data should be used to avoid arbitrariness and 
loss of valuable information that may occur with categorization41. If 
this is impractical or a categorization may be useful to identify cases 
(e.g. patients with renal insufficiency or morbid obesity) it is important 
that the categorical state is well defined and widely accepted.  

The accuracy of the risk stratification model is dependent on the 
condition of the input data, and the quality of the data entry is 
important. The data entry software should contain internal quality 
controls for out-of-range, inconsistent and missing data. In situations 
where risk-adjusted outcomes are used to assess provider 
performance, there should be regular and independent auditing of the 
data to assure accuracy and completeness. The problem of missing 
data should be avoided as far as possible. If this situation still occurs, 
missing data values may be substituted using imputation techniques42, 43. 
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1.5 Strategies for model development 
 
Strategies for model development44-48 include:  
 
• Variable  transformation  
• Imputation of missing values 
• Variable selection 
• Model techniques  
• Validation of risk stratification models  

 

1.5.1 Variable transformation 
Variable transformation denotes a change in the scale of the 
measurement of a variable during model development. Common 
reasons for variable transformation are variance stabilization, 
linearization, normalization, simplification of data handling, and to 
enable more appropriate presentation of the results48. 

1.5.2 Imputation of missing values 
The analysis of prognostic factor studies is often impeded by missing 
covariate values. The most common strategies is still to omit 
incomplete cases and/or to delete covariates from the analysis, both 
with known undesirable effects49. In a review, Little43 concluded that 
among methods available, model-based approaches, such as maximum 
likelihood estimation, Bayesian methods50 and multiple imputation42 
are preferable. Unfortunately there are no corresponding easily applied 
software tools available for these techniques. Schemper and Smith49, 51 
have suggested a simpler probability imputation technique, which 
substitutes conditional probabilities for missing covariate values when 
the covariate is qualitative. 

1.5.3 Variable selection  
The optimal number of variables to include in a risk model is a 
controversial question. Too many variables may to lead over-fitting of 
the model46 (i.e. an extremely good fit to the risk model database but 
limited ability to predict future events), instability, increased cost and 
difficulty of data collection. Too few variables may decrease the 
performance of the model (under-fitting). Harrell and coworkers47 
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have recommended that the number of risk variables considered for 
inclusion should be less than one-tenth the number of cases with the 
defined outcome in the model data set.  

The most common data reduction technique is univariate 
screening (significance test52) of risk variables such as Student’s t-test 
or χ2 test, followed by forward or backward selection (e.g. stepwise 
backward logistic regression analysis46). These techniques are generally 
available in commercial statistical software. Other techniques are 
principal component analysis53, bootstrap bagging54, 55 and risk variable 
ranking52. 

A risk variable ranking52 is performed by calculating a baseline 
performance (e.g. mean square error or area under the ROC curve) 
using all available risk variables. The ranking list is then obtained by 
measuring the change of the performance, as compared to the 
baseline performance, when a risk variable is excluded from the 
model. The highest ranked variable corresponds to the largest 
decrease in performance when it is excluded from the model. To 
optimize the model an increasing number of the ranked variables are 
included in the model, starting with the top ranked variable. The 
algorithm is recalibrated after each variable inclusion and the 
performance is calculated. 

1.5.4 Model techniques 
Several techniques are available for risk model development. All 
require considerable statistical knowledge, which is sometimes 
forgotten in this era of powerful off-the shelf statistical software. 
Three principal techniques have been utilized for construction of 
cardiac surgery risk models: Bayesian analysis, regression analysis and 
machine-learning techniques. 

Bayesian analysis 
Bayesian analysis is a statistical procedure to estimate parameters of an 
underlying distribution based on the observed distribution. Bayes' 
theorem50 provided a mathematical method that could be used to 
calculate, given occurrences in prior trials, the likelihood of a target 
occurrence in future trials (Table 1.2). Bayes' theorem is a means of 
quantifying uncertainty. The principle of Bayesian technique has been 
used widely in decision analysis56 and can be used to generate 
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multivariable regression models. It was used to develop the original 
risk stratification analysis for the STS NCD11. The Bayesian technique 
is robust regarding missing values, which was an important problem in 
the early database experience. Marshall and coworkers56 have shown 
that the Bayesian model of risk adjustment gives results comparable to 
those generated from logistic regression analysis. Since 1995, the STS 
NCD uses the logistic regression model57.  
 
Table 1.2. Equations used in different model development 
techniques. 
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Regression analysis technique 
Regression analysis is the most commonly used statistical technique 
for cardiac surgical risk estimation58. The analysis describes how one 
variable depends on or is associated with a set of independent (or 
predictor) variables. The outcome can be a continuous variable or 
dichotomous. The significant, independent variables are termed risk 
factors. Knowledge of these risk factors allows separation of patients 
according to their degree of risk – i.e. risk stratification. For a 
continuous outcome (e.g. length of stay) a linear regression analysis is 
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used, and for dichotomous (e.g. mortality) a logistic regression analysis 
is applied48.  

Logistic regression analysis uses the past experience of a patient 
group to estimate the odds of an outcome by mathematically 
modelling or simulating that experience. The method of calculation 
for the regression coefficients takes into consideration all possible 
combinations of the independent variables. It maximizes the 
probability that, for any given individual with a particular combination 
of independent variables, the odds of the outcome will be close to the 
actual or observed outcome of all other individuals with the same 
combination of independent variables46. The general form of the 
logistic regression equation is similar to that of multivariable linear 
regression, with the exception that the logarithm of the odds of the 
outcome is used as the dependent variable (Table 1.2). The 
exponential of the regression coefficients for each predictor variables 
are the odds that the outcome will occur if the predictor variable is 
present, compared with if it is absent. For example, the odds ratio for 
the variable “prior cardiac operation” is 2.76 in the logistic 
EuroSCORE59 model. If the operative mortality in the absence of risk 
factors is 0.6%, then the operative mortality for a patient with a prior 
cardiac operation (but no other risk factors) is 1.7% (0.6 x 2.76). If the 
patient also has a “neurological dysfunction” with the odds ratio of 
2.3, the mortality risk will be 3.8% (0.6 x 2.76 x 2.3). In the 
construction of an additive risk-score model the additive scores are 
weight-derived from the logistic model, normally by rounding off the 
odds for the predictors to nearest integer. The risk is predicted by 
adding the score for each risk factor. In the above example, the 
mortality risk in the additive EuroSCORE60 model for a patient with 
“prior cardiac surgery” (3 points) and “neurological dysfunction” (2 
points) will be 5% (3 + 2). 

Traditional logistic regression modelling to rank surgeons 
according to their risk-adjusted mortality rates may result in incorrect 
provider profiles61-63. In order to grade a treatment provider, the 
expected number of deaths (calculated from deaths observed in the 

entire provider group) is compared with the observed number of risk-
adjusted deaths for the provider. This gives a ratio of the risk-adjusted 

observed mortality rate to the expected mortality rate, based on the 
group logistic model. 
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 The expected mortality rate is assumed to be independent of the 
observed mortality rate and no sampling error is attached to the 
expected values; however, these two assumptions are incorrect18, 63. 
The effect is that too many providers are identified as outliers63, 64. The 
methodology to account for this problem involves construction of 
hierarchical logistic regression models63, 65, that incorporate (nest) 
other levels of analysis within the analysis. For example, patients are 
nested in provider groups (cases treated by a given provider), but 
patients are also nested within hospital groups (cases treated at a given 
hospital). A hierarchical model63, 65 recognizes that the nested variables 
may be correlated (e.g., mortality may depend on the surgeon, the 
hospital where care is provided, and other unspecified variables such 
as referral patterns, hospital size66 and location67) and that different 
sources of variation can occur at each level (or nest). Presently, 
hierarchical regression is the “gold standard” for risk adjustment of 
dichotomous outcomes. Unfortunately it is rarely used, presumably 
because the method is complex and not included in most 
commercially available software18. 

Machine-learning techniques 
One of the most promising newer risk-adjustment methods is the 

use of artificial neural networks. An ANN68 consists of a set of 
processing units (nodes) that simulate neurons and are interconnected 
via a set of weights (analogous to synaptic connections in the nervous 
system) in a way that allows signals to travel through the network in 
parallel as well as serially. The nodes are very simple computing 
elements and are based on the observation that a neuron behaves like 
a switch: when sufficient neurotransmitter has accumulated in the cell 
body, an action potential is generated. This has been modelled 
mathematically (Table 1.2) as a weighted sum of all incoming signals 
to a node. The weighted sum of the signals is compared with a 
threshold. If the threshold is exceeded the node fires, otherwise it 
remains inactive. Computational power in a neural network does not 
derive from the complexity of each processing unit, but from the 
density and complexity of the interconnections. The feed forward 
neural networks, MLP (Figure 1.1) is a popular and widely used neural 
network model53. It uses one or more hidden layers of nodes with an 
activation function. The learning is usually achieved by minimizing an 
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error function of the input and target data (Table 1.2). The simplest 
method for this is “gradient descent”. Other methods are “conjugate 

gradient” and second order 
methods such as 
“Levenberg-Marquardt”. The 
best network architecture for a 
particular task must be 
developed by experimentation 
and observation.  

A weakness of multivariable 
regression techniques is that 
some variables are present in 
too low frequency to be used 
in a multivariable regression 
model, but still contribute 
significantly to the outcome69, 70. 
ANNs use computer iteration 
to look for patterns in 
different variables associated 
with outcome and are far less 
affected by low frequencies 
in the variables69, 70. Further, 
ANNs work in a nonlinear 
fashion (Figure 1.2), which 
may better describe the 
interaction between health 
risk factors. ANNs have 
found medical applications, 

such as cancer survival prediction71, screening of heart murmurs in 
children72, ECG interpretation73, etc. Some studies in clinical medicine 
have demonstrated superiority of the prediction by ANNs compared 
with other statistical methods74. In the field of cardiac surgery, only a 
few studies using ANNs have been published, and the results have 
been ambiguous69, 70, 75-78.  

Traditional neural network approaches have suffered difficulties 
with generalization, producing models that can over-fit the data. The 
Support Vector Machine is gaining popularity due to many attractive 

Figure 1.1. Schematic diagram of 
Multilayer Perceptrons type ANN. 

 

Figure 1.1. Schematic diagram of a 
multilayer perceptron ANN. 
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features, such as better ability to generalize and promising empirical 
performance79.  

 

 
Figure 1.2. Solution of a two-dimensional classification 
problem. (A) Complete linear separation of the two classes, 
using a bio-statistical method based on a generalized linear 
model with assumptions of linear relationship, a rare or non-
existent situation in medicine. (B) Poor linear separation of a 
non-linear classification problem, performed by the same linear 
model. (C) An almost complete non-linear separation of the 
two classes, using a bio-statistical method based on a non-linear 
model such as an ANN with four hidden nodes. (D) Complete 
non-linear separation of the two classes, using an ANN with 
eight hidden nodes. 
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1.5.5 Validation of risk stratification models 
Any statistical model must be validated to determine whether it 
performs adequately. Daley35 have summarized the following aspects 
of validity: 
  
• Face validity – Will whoever uses the risk model accept it as 

valid? 
• Content validity - Does the model include risk factors that 

should have been included, based on known risks? 
• Construct validity – How well does the model compare to other 

measures of the same outcome? 
• Attributional validity – Does the model measure the attribute of 

effectiveness of care, not patient variability? 
• Predictive validity – How well does the model predict outcome 

in patients not used to construct the model? 
 

The predictive validity of a model is a measure of how well it 
performs on a data set other than the one from which it was 
developed. This test may be internal or external. An internal test is 
used on the original data set, whereas an external is made on a 
separate dataset. Numerous techniques are available to make an 
internal validation. The original data may be randomly split into a 
development set and a validation set. Alternatively, more sophisticated 
techniques may be used: K-fold cross validation68, leave-one-out cross 
validation68 and bootstrapping54.  

K-fold Cross Validation 
The final prediction model is tested on patients not previously 
exposed to the model, by using a K-fold cross validation technique. 
Thus, the patient material is randomly divided into K groups of equal 
or roughly equal size. One of these groups is selected as the validation 
group and excluded from further analysis. The remaining groups are 
used for model development. This procedure is performed K times 
with a new group selected each time for validation.  

Leave-One-Out Cross Validation 
For a dataset with n observations, training is conducted on n different 
subsets of data, each of which has one data point left out. Each 
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excluded observation is predicted by the model obtained from the 
remaining data points, and the average predictive accuracy of the 
model is determined55, 80. 

Bootstrapping 
From the original database, bootstrap training data sets are created by 
re-sampling with replacement. A model is developed for each 
bootstrap sample and tested against those subjects not present in the 
sample. All bootstrap samples will have the same number of 
observations as the original, but in each bootstrap sample any of the 
original observation may be included once, more than once, or not at 
all. The error is the average over all bootstrap samples. Most authors 
recommend using at least 1000 bootstrap samples. Bootstrapping can 
also be used to estimate confidence intervals, and for risk factor 
identification54, 58. 
 

1.6 Performance measurement 
 
The accuracy of a model may be evaluated in several ways. The first 
property is termed “variability” and is a measure of the performance 
of the risk-adjusted model. The second property is termed 
“calibration” and is defined as the ability of the model to assign an 
appropriate risk to the patients upon whom the model is based. A 
third property relating to the accuracy of a model is termed 
“discrimination” and is defined as the ability of the model to 
distinguish between those patients having and those not having the 
outcome of interest. The fourth property, “reliability”, refers to the 
statistical term precision, i.e. the ability to repeat the observations 
using similar input variables and similar statistical techniques, with 
resultant similar outcome findings. 

1.6.1 Variability 
The strength of the relationship between the dependent and 
independent variables in a linear regression analysis is given by the 
correlation coefficient, usually designated as r. The degree of variance 
explained by the model can be calculated as r2, which is routinely used 
as a measure of the performance of linear regression risk-adjusted 
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models81. For a dichotomous output the variance can be calculated as 
pseudo r2. For example, an ICU LOS prediction model with a r2 value 
of 0.25 implies that 25% of the variability of the ICU LOS can be 
explained by the model, and that 75% of the variability is not 
explained by the model. Shwartz and Ash82 have provided an excellent 
review of evaluating the performance of risk-adjustment methods, 
using r2 as a measure of model performance. 

1.6.2 Calibration  
Calibration of a model may be assessed by comparing the observed 
and the expected mortality for equal-sized quantiles of risk groups by 
using the Hosmer-Lemeshow goodness-of-fit test46. This test presents 
a modified χ2 statistic, where a non-significant p value for the 
difference between observed and estimated outcomes is desired. 
However, models can be adjusted during their development to 
overcome poor calibration, and many studies will not refer to 
calibration measures81.  

1.6.3 Discrimination 
The potential of the ROC curve in medical diagnostic testing was 
recognized as early as 196083. The ROC curve is defined as a plot of 
test sensitivity (as the y coordinate) versus its 1-specificity or false 
positive rate (as the x coordinate)84. The area under the curve is a 
combined measure of sensitivity and specificity. It is a measure of the 
overall performance of a model, and it is interpreted as the average 
value of sensitivity for all possible values of specificity. An area of 1.0 
under the ROC curve indicates perfect discrimination, whereas an area 
of 0.50 indicates complete absence of discrimination. Any 
intermediate value is a quantitative measure of the ability of the risk 
predictor model to distinguish between a positive or negative 
outcome85. Sensitivity and specificity are independent of the number 
of cases with a specific outcome; consequently, so is the ROC 
analysis86. 

1.6.4 Reliability 
The reliability of a risk adjustment method refers to the statistical term 
precision, or the ability to repeat the observations using similar input 
variables and similar statistical techniques with resultant similar 
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outcome findings. The most common measure of reliability is Cohen’s 
kappa coefficient, which measures the level of agreement between two 
or more observations compared to agreement due to chance alone87. 
A kappa value greater than 0.75 is often regarded as representing 
excellent agreement, and 0.4-0.75 as fair to good agreement88. 
 

1.7 Risk score systems 
 
Since Victor Parsonnet presented “A method of uniform stratification 
of risk for evaluating the result of surgery in acquired adult heart 
disease” (the Parsonnet score19, 1989) numerous risk score models 
have been developed. The purpose of most of these studies has been 
to construct a simple, additive risk-score model to predict operative 
mortality. Frequently cited risk algorithms are the Parsonnet19, the 
Cleveland Clinic26 (also termed Higgins), the Ontario9 (also termed 
PACCN) and the additive EuroSCORE60 risk score model, but there 
are several more. The risk-score systems presented in Table 1.3 
include between 6 and 33 predictors or risk variables. Most models 
have been developed by the logistic regression technique. In the 
additive models, each risk variable score is derived from the 
corresponding odds in the logistic regression analysis (or rounded to 
the nearest integer). The NNE study group has also recently presented 
tables where the total risk points can be transformed to a mortality 
risk proportion25 (Tables 1.4 and 1.5).  

The large cardiac databases in the US use logistic regression 
analysis to obtain new coefficients for their algorithms yearly21, 23. The 
regression coefficients can be used to calculate risk-adjusted mortality 
data for the institutions included. The NYS, which publishes risk-
adjusted mortality from all of the participating institutions, also 
publishes the coefficients in the logistic regression algorithm, making 
it possible for centres to compare their results with others. On the 
contrary, the proprietors of the largest cardiac surgery database, the 
STS NCD, have chosen not to publish their algorithm. 

 Most of the risk score systems have been evaluated and validated 
on internal data and only a few comparative studies of different risk 
algorithms have been made10, 89-91. Thus, the relative performance of 
the risk scoring systems currently used has been unclear.  
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The most common endpoint of cardiac surgical risk scoring 
systems is the operative mortality, but some investigators have 
focused on other endpoints such as LOS at the ICU and 
postoperative morbidity (Table 1.1). A Swedish research group has 
developed a simple score to assess mortality risk in patients waiting 
for coronary artery bypass grafting, aiming to improve the 
prioritization process92.   

 
Table 1.3. Synopsis of nineteen risk score algorithms. 

      
           

 Region 
Year of 

data 
collection 

Year of 
publication 

Number of 
patients 
(centres) 

Risk 
variables 

          
      

Amphiascore93 Netherlands 1997-2001 2003 7282 (1) 8 

Cabdeal94 Finland 1990-1991 1996 386 (1) 7 

Cleveland Clinic26 US 1986-1988 1992 5051 (1) 13 
EuroSCORE (additive)60 Europe 1995 1999 13302 (128) 17 

EuroSCORE (logistic)59,95 Europe 1995 2003 13302 (128) 17 

French score96 France 1993 1995 7181 (42) 13 

Magovern97 US 1991-1992 1996 1567 (1) 18 

NYS7, 14, 21 US 1998 2001 18814 (33) 14 
NNE6, 24, 25 US 1996-1998 1999 7290 (N/A) 8 

Ontario9 Canada 1991-1993 1995 6213 (9) 6 

Parsonnet19 US 1982-1987 1989 3500 (1) 16 
Parsonnet (modified)98 France 1992-1993 1997 6649 (42) 33 

Pons99 Spain 1994 1997 1309 (7) 11 

Toronto100 Canada 1993-1996 1999 7491 (2) 9 

Toronto (modified)101 Canada 1996-1997 2000 1904 (1) 9 

Tremblay102 Canada 1989-1990 1993 2029 (1) 8 

Tuman103 US N/A 1992 3156 (1) 10 

UK national score10 UK 1995-1996 1998 1774 (2) 19 

VA8, 22, 23 US 1987-1990 1993 12712 (43) 10 
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Table 1.4. NNE preoperative estimation of mortality risk in CABG, 
mitral or aortic valve surgery (NNE Cardio Vascular Disease Study 
Group, 2004)104, 105. 

    
    

Patient or disease Mortality score 
characteristics CABG Aortic valve Mitral valve 
    

    

Age 60-69 1.5 1.5 1.5 
Age 70-75 2.5 1.5 2.5 
Age 76-79 2.5 2 2.5 
Age ≥80 6.5 2.5 2.5 
Female sex 2 1.5  
EF <40% 2   
NYHA class IV  1.5 2 
3-vessel disease 1.5   
LM 50-89% 1.5   
LM >90% 2   
WBC >12000 2.5   
MI <7 days 1.5   
Urgent surgery 2 1.5 1.5 
Emergency surgery 5 5 5.5 
Prior CVA   2 
Prior CABG 2.5 1.5  
CVA, TIA, PVD 1.5   
CHF  1.5 1.5 
Atrial fibrillation  1.5  
CAD   1.5 
Diabetes 1  1.5 
Dialysis 4   
Creatinine >1.3 mg/dL  2 1.5 
Creatinine >2.0 mg/dL 2   
COPD 2   
BSA <1.70 m2  1.5  
Concomitant CABG  1.5  
Mitral valve replacement   1.5 
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Table 1.5. NNE operative score mortality (NNE Cardio Vascular 
Disease Study Group 2004)104, 105. 

    
    

 Preoperative risk 
Total Score CABG (%) Aortic (%) Mitral (%) 
    
    

0 0.2   
1 0.2 1 <1.0 
2 0.3 1.5 1 
3 0.3 2 1.5 
4 0.5 3 2 
5 0.7 4 2.5 
6 1 6 3 
7 1.3 7 5 
8 1.8 9 6 
9 2.3 13 8 
10 3 17 11 
11 4 20 14 
12 5.3 25 18 
13 6.9 >35.0 25 
14 8.8  >35.0 
15 11.5   
16 14.1   
17 18.7   
18 >23.0   
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1.8 Limitations and ethical considerations of risk stratification 
 

The causes of adverse outcomes are generally multifactorial. Risk 
stratification in cardiac surgery has been based mainly on patient-
related risk factors. However, factors such as the skill, equipment and 
organization of health care providers and chance certainly play a role. 
Risk stratification models based only upon patient characteristics are 
therefore unlikely to reach absolute predictive accuracy.  

Most available risk score systems have been focused on operative 
mortality prediction. One drawback of present risk models is that they 
predict the outcome for individual patients poorly91. As previously 
described, the best available risk stratification models explain only a 
limited proportion of the variability in cardiac surgery. Risk-adjusted 
mortality data based on these algorithms may be misleading, and may 
not accurately reflect quality of care. Hopefully, improvements will be 
seen as new and more sophisticated techniques to model complex 
biological phenomena are developed.  

If risk-adjusted mortality data is used to compare providers of 
care, this could result in decreased access to surgery for those who 
might benefit most (high-risk case avoidance)106, 107 and may encourage 
“gaming”. Gaming may occur in several forms such as upcoding of 
preoperative comorbidities, unwarranted change of operation 
procedures, and postoperative transfer of critically ill patients to 
another unit63. High-risk case avoidance may already have occurred as 
a result of releasing risk-adjusted mortality and cost to the public108, 109.  

Publications of risk-adjusted mortality data in Europe are sparse. 
A number of institutions (mostly in the UK) have published their 
operative mortality data. St George’s hospital in London has 
presented the results of individual surgeons, compared with a 
predicted mortality calculated by the EuroSCORE algorithm on the 
Internet (http://www.st-georges.org.uk), and so has the 
Cardiothoracic Centre in Liverpool (http://www.ctc.nhs.uk). The 
Swedish Association for Thoracic Surgery has chosen to publish the 
unadjusted mortality data for the Swedish cardiac surgical centres 
(http://www.ucr.uu.se/hjartkirurgi/index.htm), but not the results of 
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individual surgeons. Other cardiac centres in Europe will presumably 
follow.  

To prevent providers from selecting only low-risk patients, health 
plans should allocate resources to health care providers based on the 
overall patient risk and the associated expected need for resources. 
The use of risk stratification in this context is new and offers great 
promise. 
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Chapter 2  
 
Aims of the Thesis 
 
 
 
The general aim of this thesis was to bring risk stratification research 
and knowledge a step further, in order to achieve a higher quality of 
treatment and improve the outcome for cardiac surgical patients. 
 
The specific aim for each paper was to 
 
I. compare two widely used risk algorithms for CABG: The 

EuroSCORE and the STS risk stratification algorithm; 
 

II. compare 19 open-source risk score algorithms with regard to their 
validity to predict 30-day and one-year mortality after open-heart 
surgery; 
 

III. evaluate if the preoperative risk stratification model EuroSCORE 
predicts the different components of resource utilization in 
cardiac surgery; 

 
IV. systematically evaluate the accuracy and performance of ANNs to 

select and rank the most important risk factors for operative 
mortality in cardiac surgery, by using high performance computer 
clusters. 
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Chapter 3  
 
Material and Methods 
 
 
 
The studies were approved by the Ethics Committee of the Medical 
Faculty, Lund University. 
 

3.1 Databases 

Database I 
Database I included all adult patients (n=8342) undergoing heart 
surgery at the Department of Cardiothoracic Surgery, Lund University 
Hospital between January 1, 1996 and December 31, 2002, and at 
Malmö University Hospital between January 1, 1996 and December 
31, 1997. 

Risk factors for all adult patients were prospectively collected 
when the patients were admitted to the department. The patient 
record form contained a total of 248 variables (pre-, intra- and 
postoperative) based on the Higgins26, Parsonnet19 and STS11 patient 
record forms. The date and cause of mortality was obtained from the 
Population and Welfare Statistics Sweden (Statistiska Centralbyrån), 
Stockholm, Sweden. 

Database II 
Database II (the EuroSCORE database) included 97 risk factors from 
all adult patients (n=19030) undergoing heart surgery in 128 centres 
from eight European countries during September to December, 1995. 
The database was originally used in the multinational EuroSCORE 
cardiac surgical project. This was a prospective study to assess risk 
factors for operative mortality, defined as death within 30 days after 
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the operation or within the same hospital admission110 and to 
construct the additive60 and logistic59, 95 EuroSCORE risk stratification 
systems. The data collection, quality checks and validation have been 
described by Roques et al110. 
 

3.2 Study design 

Study I 
Twenty-six risk variables included in the STS11 and EuroSCORE 
algorithms60 (Table 3.3) were imported from Database I into the 
commercially available STS risk stratification software (see chapter 
4.7) together with the 30-day mortality for the CABG-only population 
operated between January 1, 1996 and February 28, 2001. The risk 
stratification software calculated the risk score for every patient 
according to the STS Risk Stratification Analysis version 2.0 
algorithm, which is based on the STS NCD 1990-1993 CABG-only 
population, and the EuroSCORE additive algorithm60. The accuracy 
and performance of each algorithm were evaluated using the Hosmer-
Lemeshow test and ROC-analysis (see chapter 4). 

Study II 
One-hundred-four of the pre- and intra-operative variables from 
Database I were imported into the statistical software package (see 
chapter 4.7), together with 30-day and one-year mortality for patients 
undergoing open-heart surgery between January 1, 1996 and February 
28, 2001. Patient characteristics are summarized in Table 3.4a-d. 
Missing values were replaced using the probability imputation 
technique49 before the risk score was calculated. The probability 
imputation technique substitutes conditional probabilities for missing 
covariate values when the covariate is qualitative. The risk score for 
each of the 19 risk score algorithms was calculated for every patient 
according to the published definitions (Table 1.3). The accuracy and 
performance of each algorithm were evaluated using ROC-analysis 
(see chapter 4). 

Study II I  
The 18 EuroSCORE risk variables (Table 3.5) together with duration 
of anaesthesia (minutes), the Lund ICU workload score, and the LOS 
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at the ICU, in the ward, and the total in-hospital stay were imported 
from Database I into the statistical software package (see chapter 4.7) 
for patients undergoing open-heart surgery between October 1, 1999 
and December 31, 2002. Patients, who had a heart transplant, died 
intra-operatively, or in whom any of the pre-, intra- or postoperative 
data were missing were excluded from the study.  

The Lund ICU workload score is a modification of a nursing care 
recording system111, by which each patient in the ICU gets a score 
three times a day, depending on the resources needed for his/her 
condition (e.g. medication, volume therapy, transfusions, need of 
ventilator assistance, need of further technical support such as dialysis 
or cardiac assist device, and nursing workload). Scoring points are 
directly related to the cost of the specific resource used. The total 
number of points is computed daily for each patient and entered into 
the database.  

The total risk score for every patient was calculated according to 
the EuroSCORE additive algorithm60, and the individual cost 
according to a formula used by the hospital accounting system. 
Principles for calculations of costs of care are shown in Table 3.1. The 
hospital economy department established all starting costs and 
constants yearly.  

The accuracy and performance of the EuroSCORE algorithm was 
evaluated using the Pearson correlation test, the Hosmer-Lemeshow 
test and ROC-analysis (see chapter 4). Analyses were performed using 
both individual patient data and patients grouped into six risk 
cohorts29, 30 (Table 3.2). 
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Table 3.1. Principles for calculation of costs of care. 
   
   

Costs Equation 
   
   

 Surgery Starting CostOp + (Anesthesia duration x ConstantOp) +  
Implantable material 

 ICU Starting CostICU + (Total Lund ICU workload score x 
ConstantICU) 

 Ward Starting CostWard + (LOS ward x ConstantWard) 
    

 
 
Table 3.2. Patient cohorts based on EuroSCORE risk stratification. 
   
   

Cohort EuroSCORE risk No of operations 
     
   

I 0-2 612 
II 3-4 672 
III 5-6 700 
IV 7-8 614 
V 9-10 423 
VI >10 392 

   

 

Study IV 
A subset of 72 variables from the 97 variables included in Database II 
was selected (Table 3.6a-b), by excluding variables closely linked to 
other variables, and data collected intra-operatively (i.e. number of 
conduits and number of distal coronary anastomoses). Patients with a 
missing value in any mandatory variable (age, gender or surgical 
procedure) or outcome (operative mortality) were also excluded from 
analysis. Missing values in the other variables were substituted with 
their most likely values (the statistical mode for categorical variables, 
and the mean value for continuous variables)70. 

A subset from Database I, including risk factors for adult patients 
undergoing heart surgery between January 1, 1996 and February 28, 
2001 was used to further evaluate the developed ANN risk model by 
external blind testing.  
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A ranking of risk variables was performed to identify the most 
important risk factors52. The software used and the training and 
validation procedure for the ANN model is described in chapter 4.4-
4.7. The accuracy and performance of the different algorithms were 
evaluated using ROC-analysis and a proportion test112. 
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3.3 Patient characteristics 

Study I 
Table 3.3. Patient characteristics in 4497 CABG-only operations. 

    
    

Risk Factors 
Prevalence 

 (mean±SD, or %) EuroSCORE STS 
      
    

Age (years) 66.4±9.3 √ √ 
Female gender 23.0% √ √ 
Morbid obesity 12.1%   √ 
Chronic pulmonary disease 6.9% √ √ 
Diabetes 17.8%   √ 
Extracardiac arteriopathy 11.2% √  
Cardiomegaly 3.1%    √ 
Renal failure: Serum Creatinine >167 µmol 2.6%    √ 

Serum Creatinine >200 µmol 1.7% √  
Neurological dysfunction 7.1% √ √ 
Preoperative myocardial infarction: No MI 36.6%   √ 

>21 days 47.0%    √ 
<21 days 16.4% √  
8-21 days 10.2%   √ 
 1-7 days 4.8%   √ 
6-24 hrs 0.7%   √ 

<6 hrs 0.7%   √ 
Stable angina 79.0%   √ 
Unstable angina 15.8% √ √ 
LV dysfunction: EF (%) 51±11  √ 

EF >50% 63.1%    
EF 30-50% 30.4% √  

EF <30% 6.5% √  
Pulmonary hypertension 0.8% √  
Left main disease 22.4%    √ 
Number of vessels diseased: One vessel 5.8%   √ 

Two vessels 27.6%   √ 
Three vessels 66.6%   √ 

Aortic valve disease 6.5%   √ 
Mitral valve disease 13.7%   √ 
Operative incidence:  First operation 94.8%    √ 

Redo  5.2% √  √ 
PTCA emergency <6 hours 0.4%   √ 
PTCA emergency >6 hours 0.9%   √ 
Cardiogenic shock 0.7%   √ 
Critical state (preoperative)# 3.9% √  
Elective 66.7%   √ 
Urgent 25.1%   √ 
Emergent 7.2% √ √ 
Emergent/Salvage 1.0%  √ 
     

The check mark indicates the risk variable included in each risk algorithm.  
# For definition see Table 3.4c. 
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Study II 
Table 3.4a. Preoperative general risk factors in 6222 open-heart 
operations. 
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Age† (years) 66.3 (10.6) √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 
Female gender 1765 (28.4) √   √  √ √ √ √ √ √  √ √  √ √  
Height† 
(centimetres) 171 (8)  √    √         √    

Weight† (kilograms) 79 (14)  √ √   √    √ √    √    
Hb† (g/L) 134 (16)   √   √             
Serum Creatinine† 
(µmol/L) 95 (40) √ √ √ √ √ √ √    √ √    √   

Hypertension  
(sys >140 mmHg) 2458 (40.0)          √ √  √ √   √  

Diabetes 1106 (17.9)  √ √   √ √   √ √   √   √  
Hypercholesterol-
emia (treated) 2274 (37.0)           √        

Chronic pulmonary 
disease 477 (7.7)  √ √ √  √ √ √   √      √  

Active smoker 539 (8.8)                 √  
Cerebrovascular 
disease 448 (7.2)   √ √  √ √    √     √ √ √ 

Peripheral vascular 
disease 636 (10.3)   √ √  √ √ √   √  √ √   √ √ 

Kidney disease by 
history  248 (4.0)                √ √  

Dialysis 28 (0.5)     √  √ √  √ √      √  
Adult congenital 
heart disease 11 (0.2)           √        

ASA medication  4346 (69.9)           √        
Diuretic medication 2203 (35.4)                  √ 
Immunosuppressive 
medication  71 (1.2)           √        

                                      

The check mark indicates the risk variable included in each risk algorithm. 
*Additive and logistic. †Continuous variables are presented as mean (SD). The 
analysis is based on operations where the risk factor data was available. 
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Table 3.4b. Preoperative cardiac risk factors in 6222 open-heart 
operations. 
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Previous cardiac surgery 457 (7.3) √  √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 
Active endocarditis  55 (0.9)    √       √        
Heart failure 1156 (18.6)      √     √    √ √  √ 
Cardiomegaly 327 (5.3)      √             
Unstable angina 744 (12.0)  √  √       √    √   √ 
CCS class† 2.6 (1.0)                 √  
NYHA class† 2.4 (1.0)            √     √ √ 
Recent MI (within 24 
hours) 144 (2.3) √                  

Recent MI (within 48 
hours) 207 (3.3)     √      √        

Recent MI (within 21 
days)  793 (12.9)    √        √   √ √   

Ventricular arrhythmia 
(acute)  64 (1.0)     √  √    √        

Atrial fibrillation 508 (8.3)      √             
Pacemaker 33 (1.0)           √        
Left main stenosis 964 (17.9)           √  √ √   √  
Triple vessel disease 2690 (50.7)             √      
LV EF† 50 (12) √  √ √ √ √ √ √ √ √ √  √ √ √ √ √  
Aortic gradient >120 
mmHg 278 (4.5)          √ √        

Pulmonary 
hypertension 191 (3.1)    √      √ √     √   

                                      

The check mark indicates the risk variable included in each risk algorithm. 
*Additive and logistic. †Continuous variables are presented as mean (SD). The 
analysis is based on operations where the risk factor data was available. 
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Table 3.4c. Critical preoperative situations in 6222 open-heart 
operations. 
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Urgent surgery 1376 (22.2)      √  √ √    √ √   √ √ 
Emergency surgery  628 (10.1) √ √ √ √  √  √ √   √ √ √ √ √ √ √ 
PTCA 
failure/complication 138 (2.2)      √    √ √        

Intubated 71 (1.1)     √      √ √     √  
IABP 134 (2.2)          √ √      √ √ 
Uncontrolled systemic 
disturbance† 1135 (18.2)               √    

Cardiogenic shock 78 (1.3)      √ √    √ √       
Hemodynamically 
unstable 286 (4.6)       √            

Critical state‡ 308 (5.0)    √               

Catastrophic states§ 206 (3.3)          √         
                    

The check mark indicates the risk variable included in each risk algorithm. 
*Additive and logistic. †Any one or more of the following: systolic pulmonary 
arterial pressure >50 mmHg; uncontrolled systemic arterial hypertension; renal 
insufficiency; chronic lung disease; poor hepatic function; cerebrovascular 
insufficiency; severe arrhythmias; active endocarditis; cachexia. ‡Any one or more 
of the following: ventricular tachycardia or fibrillation or aborted sudden death; 
preoperative cardiac massage; preoperative ventilation before arrival in the 
operating room; preoperative inotropic support; intraaortic balloon 
counterpulsation; or preoperative acute renal failure (anuria or oliguria <10 ml/h). 
§Any one or more of the following: acute structural defect (acute ventricular 
septal defect or acute mitral valve regurgitation); cardiogenic shock; acute renal 
failure.  



Johan Nilsson 

 36 

Table 3.4d. Surgical data in 6222 open-heart operations. 
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Venous graft alone 572 (9.2)     √              
Single valve surgery 
only 657 (10.6)         √          

Valve surgery only 721 (11.6)                √   
Aortic valve surgery† 1106 (17.9)   √       √ √        

Mitral valve surgery‡ 449 (7.3) √  √       √ √ √       
Tricuspid valve 
surgery† 40 (0.6)     √      √ √       

Valve surgery and 
CABG 619 (9.9)     √    √ √ √ √    √   

Other than isolated 
CABG 1871 (30.1)    √               

Transplantation 
surgery 78 (1.3)     √              

Postinfarction septal 
rupture 37 (0.6)    √ √      √        

Left ventricular 
aneurysm 16 (0.3)          √ √ √       

Surgery on thoracic 
aorta 209 (3.4)    √        √       

Aortic dissection 
(acute) 79 (1.3)     √      √        
                    

The check mark indicates the risk variable included in each risk algorithm. 
*Additive and logistic. †With or without CABG surgery. ‡With or without CABG 
surgery, except for Amphiascore where the definition is mitral valve surgery with 
CABG surgery. 
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Study II I  
Table 3.5. Patient characteristics in 3413 open-heart operations. 
  
  

Variables Mean±SD, or % 
   
  

Age (years) 67.5±10.5 
Female gender 27.8% 
Chronic pulmonary disease 10.4% 
Extracardiac arteriopathy 15.8% 
Neurological dysfunction 5.9% 
Previous cardiac surgery 4.5% 
Serum creatinine >200µmol/l 2.4% 
Active endocarditis 1.3% 
Critical state (preoperative)# 7.0% 
  
Unstable angina (requiring intravenous nitrates) 13.6% 
Left ventricular dysfunction   

EF 30-50% 35.5% 
EF <30% 9.0% 

Preoperative myocardial infarction <90 days 34.4% 
Pulmonary hypertension (systolic PAP >60 mmHg) 4.3% 
  
Emergency  10.1% 
Other than isolated CABG 27.1% 
Surgery on thoracic aorta 3.5% 
Postinfarction ventricular septal rupture closure 0.3% 
  

# For definition see Table 3.4c. 
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Study IV 
Table 3.6a. Preoperative risk factors in 18362 open-heart operations. 

   
   

Rank 
No Risk Variables 

Mean (SD) or 
n (%) 

   
   

1 Age† (years) 62.6 (10.7) 
2 One previous cardiac operation 1137 (6.2) 
3 Left ventricular ejection fraction† 56 (15) 
4 Serum creatinine† (µmol/l) 104 (49) 
5 Emergency operation (<24 hours) 893 (4.9) 
6 Acute aortic dissection 159 (0.9) 
7 Thoracic aortic surgery 295 (1.6) 
8 Heart or heart-lung transplantation 129 (0.7) 
9 Aortic valve surgery for stenosis 2655 (14.5) 
10 Acute active endocarditis 192 (1.0) 
11 Urgent operation (stay in hospital before surgery) 3775 (20.6) 
12 Mitral valve surgery for stenosis 946 (5.2) 
13 Chronic congestive heart failure 1787 (9.7) 
14 Intubated (before arrival in the operating room) 194 (1.1) 
15 Carotid disease (unilateral stenosis >50%) 301 (1.6) 
16 Intravenous inotropic support  425 (2.3) 
17 Coronary bypass grafting  13286 (72.4) 
18 Patient refusal of blood products 44 (0.2) 
19 Atrial fibrillation 1676 (9.1) 
20 Height† (cm) 168 (9) 
21 Haematocrit† (%)  40 (4.8) 
22 Long-term immunosuppressive therapy 76 (0.4) 
23 Pulmonary embolectomy 14 (0.1) 
24 Intra-aortic balloon pump 184 (1.0) 
25 Previous surgery for vascular disease (carotids) 166 (0.9) 
26 Intermittent claudication 1088 (5.9) 
27 Systolic pulmonary artery pressure >60mm Hg 361 (2.0) 
28 Tricuspid valve surgery 309 (1.7) 
29 Postinfarction ventricular septal rupture closure 39 (0.2) 
30 Neurological disorder 257 (1.4) 
31 Cardiogenic shock 532 (2.9) 
32 Mitral surgery for ischaemic acute regurgitation 49 (0.3) 
33 No IMA (preoperative decision) 1480 (8.1) 
34 Recent myocardial infarction† (number of days ago) 35 (25) 

   

†Continuous variables are presented as mean (SD) 
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Table 3.6b. Preoperative risk factors in 18362 open-heart operations. 
   
   

Rank 
No Risk Variables 

Mean (SD) 
or n (%) 

   
   

35 Female gender 5194 (28.3) 
36 Past chronic renal failure (no dialysis) 539 (2.9) 
37 Two previous cardiac operations 141 (0.8) 
38 Left ventricular aneurysmectomy 125 (0.7) 
39 Past chronic renal failure (dialysis) 106 (0.6) 
40 Diastolic blood pressure† (mmHg) 76 (12) 
41 Angina at rest 2585 (14.1) 
42 Carotid disease (bilateral stenosis >50%) 509 (2.8) 
43 Ventricular tachycardia/fibrillation 208 (1.1) 
44 Angina following recent myocardial infarction 1452 (7.9) 
45 Aortic valve surgery for regurgitation 1687 (9.2) 
46 More than two previous cardiac operations 52 (0.3) 
47 Cardiac massage (preoperative) 90 (0.5) 
48 Unstable angina (requiring intravenous nitrates) 1495 (8.1) 
49 Systolic blood pressure† (mmHg) 132 (20) 
50 Diabetes (oral therapy) 1580 (8.6) 
51 Active AIDS (excluding HIV-positive alone) 4 (0.0) 
52 Atrial septal defect closure 211 (1.1) 
53 Previous surgery for vascular disease (limb arteries) 285 (1.6) 
54 Number of diseased coronary vessels† 1.7 (1.3) 
55 Operation for catheter laboratory complication 182 (1.0) 
56 Active neoplasm (malignant tumour known at surgery) 106 (0.6) 
57 Mitral valve surgery for regurgitation 1671 (9.1) 
58 Urine output <10ml/hour 137 (0.7) 
59 Aortic valvular gradient >120 mmHg 215 (1.2) 
60 Diabetes (diet-controlled) 1024 (5.6) 
61 Chronic cardiac related dyspnoea at rest 1058 (5.8) 
62 Chronic airway disease (treated) 726 (4.0) 
63 Weight† (kg) 74 (13) 
64 Diabetes (insulin therapy) 719 (3.9) 
65 Planned surgery for vascular disease (abdominal aneurysm) 100 (0.5) 
66 Permanent pacemaker in place 240 (1.3) 
67 Left ventricular aneurysm 231 (1.3) 
68 Previous surgery for vascular disease (abdominal aneurysm) 120 (0.7) 
69 Planned surgery for vascular disease (limb arteries) 148 (0.8) 
70 History of hypertension 8060 (43.9) 
71 Left main coronary stenosis† (% stenosis) 80 (12) 
72 Planned surgery for vascular disease (carotids) 85 (0.5) 

   

†Continuous variables are presented as mean (SD) 
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Chapter 4  
 
Statistical Methods 
 
 
 
Means (SD) were used to describe continuous variables and 
frequencies were calculated for categorical variables.  

Score-predicted operative mortality (death within 30 days of the 
operation) was calculated using the mean score for each risk model 
(Study II), except for the Northern New England algorithm where the 
published score-mortality table24 was used.  

One-way ANOVA was used to compare the difference between 
the predicted and the observed number of patients with an ICU stay 
>2 days for each risk cohort (Study III).  

A proportion test112 was used to compare the number of correctly 
classified patients by the ANN model versus the logistic EuroSCORE 
algorithm (Study IV). 

 

4.1 Regression analyses and correlation tests 
 

The Pearson correlation test was used to evaluate the correlation 
between the EuroSCORE and costs and LOS, respectively (Study III). 
Multivariable linear regression analysis was used to test which 
combinations of the individual risk factors in the EuroSCORE model 
that were significantly correlated to total cost. The cost and LOS were 
normalized by log-transforming the data30.  

Logistic regression analysis as described by Hosmer and 
Lemeshow113 was performed to obtain the coefficients for the risk 
variables included in the logistic model used in Study IV. 
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4.2 Calibration 
 
The EuroSCORE (Study I and III) and STS algorithms (Study I) were 
used as univariate predictors in developing logistic regression models 
to predict dichotomous outcomes such as mortality and ICU stay >2 
days. The calibration of the algorithms was assessed by comparing the 
observed and the expected outcome for equal-sized quantiles of risk 
by using the Hosmer-Lemeshow goodness-of-fit test46. A p value 
>0.05 indicates a good accuracy. 
 

4.3 Discrimination 
 
The discriminatory power of the risk stratification models was 
evaluated by calculating the areas under ROC curves with 95% 
confidence limits85. An area of 1.0 under the ROC curve indicates 
perfect discrimination, whereas an area of 0.50 indicates complete 
absence of discrimination. Any intermediate value is a quantitative 
measure of the ability of the risk predictor model to distinguish 
between a positive and negative outcome, such as operative mortality 
and ICU stay shorter or longer than two days. To compare the areas 
under the resulting ROC curves the non-parametric approach 
described by DeLong and coworkers114 was used. In Study II, the ROC 
area for each risk algorithm was systematically compared with the 
ROC area of the other 18 algorithms. The numbers of algorithms with 
a significantly larger or smaller ROC area was then computed. The 
probability significance level was adjusted for the effect of multiple 
comparisons using Sidak’s method87.  
 

4.4 Training and validation of the ANN model 
 
An ensemble approach was used, where several artificial neural 
networks were combined into a single prediction model. The 
individual members of the ensemble were standard MLP with one 
hidden layer and one output node that was used to encode the 
operative mortality115. Each MLP was trained using conjugate gradient 
descent applied to a mean square error function. To avoid over-



Risk stratification in cardiac surgery: Algorithms and applications 
 

 43 

training and improve the generalization performance a weight decay 
regularization term was utilized (Table 1.2). The output of the neural 
network ensemble was computed as the mean of the output of the 
individual members in the ensemble. The model selection (i.e. the 
procedure to find the optimal set of model parameters and to select 
important risk variables) was performed using a six-fold cross-
validation procedure (Figure 4.1).  

The model selection procedure explored a large number of 
different parameter settings, by using high performance computer 
clusters, including the size of the MLP, weight decay parameters, size 
of the ensemble and risk factors identification (see below). 

The final prediction models were tested on patients not previously 
exposed to the models, by using a 4-fold cross-testing technique. 
Thus, the patient material was randomly split into 4 groups. One of 
these groups was selected as the test set and excluded from further 
analysis. The remaining groups were used for training and validation. 
This procedure was performed 4 times with a new group selected each 
time as the test set (Figure 4.1). 

 

4.5 Risk factor identification for mortality prediction 
 
To select the most important risk variables and to minimize the 
number of variables included in the final ANN model, a ranking of 
risk variables was performed52. A baseline ROC area was created using 
all 72 variables. The ranking list was then obtained by measuring the 
change of the ROC area, as compared to the baseline, when a risk 
variable was excluded from the model. The highest ranked variable 
corresponded to the largest decrease of the ROC area when it was 
excluded from the model. Each of the models lacking one of the risk 
variables was recalibrated prior to the ROC area assessment. To 
optimize the model an increasing number of the ranked variables was 
included in the model, starting with the top ranked variable. In this 
procedure the ANNs were recalibrated after every second variable 
inclusion.  



Johan Nilsson 

 44 

Figure 4.1. Schematic illustration of 
the ANN training and analysis 
process. The cardiac database was 
randomly split into 4 groups (I). One 
of these groups was selected as the 
test set and excluded from further 
analysis. The remaining groups were 
used for the training (II). Following 
the 6-fold cross validation procedure, 
the training group was randomly 
partitioned into 6 new groups of 
equal size (III). One of these groups 
was reserved for validation and the 
rest for the actual training (IV). For 
each model the calibration was 
optimized using 200 iterations 
(Figure 4.2). The procedure was 
repeated and a new validation group 
was selected (VI). After 6 re-
selections all groups had been used 
for validation and the training group 
was repartitioned into 6 new groups 
(III) and the entire procedure were 
repeated. After 6 repartitions (VII) a 
new test group was selected and the 
full training process was repeated for the remaining patients (VIII). Thus, for each 
of the 4 test sets a complete model selection procedure was carried out (steps III-
VII) and the final test result was taken as the average over the 4 test sets or by 
concatenating the 4 test sets into a complete set of test predictions and computing 
the ROC area for this entire list. 
 

4.6 Effective odds ratio and confidence intervals 
 
The odds ratio for a specific risk variable in each patient (Study IV) 
was determined by changing the risk variable from “absent” to 
“present” and calculating the odds for the two conditions. By 
computing the geometric mean for the odds ratio from all patients, an 
effective odds ratio for the specific variable was obtained70.  

The 95% confidence intervals for both the output from the ANNs 
and the odds ratio were calculated using the bootstrap technique54, 70. 
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Figure 4.2. Monitoring the calibration of 144 ANNs. The 
average classification error per sample (using a summed square 
error function) is plotted (y-axis) during the training iterations 
(x-axis) for both the training and the validation samples. A pair 
of lines, red (training) and blue (validation), represents one 
model. The decrease in the classification errors with increasing 
epochs demonstrates the learning of the models to distinguish 
between survivors and non-survivors. There was no sign of 
over-training (over-fit): if the models begin to learn features in 
the training set, which are not present in the validation set, this 
would result in an increase in the error for the validation (blue 
lines) at that point, and the curves would diverge.  

 
From the original database, 1750 bootstrap training data sets were 
created by resampling with replacement. These bootstrap training sets 
were then used to calibrate new ANN models with the same 
architecture and parameters settings as for the final ANN risk 
prediction model. Each ANN model generated a classification 
(percentage mortality risk) for each individual patient, resulting in 
1750 different classifications for each patient. Standard techniques54, 70 
were then used to extract the confidence intervals from these sets of 
risk predictions. The confidence intervals of the odds ratio for each 
risk variable were calculated in the same way. 
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4.7 Computer cluster and software 
 
Three clusters for high performance computing were used to train and 
evaluate the ANNs. Two Linux clusters hosted by Lunarc at Lund 
University (one with 210 AMD Opteron nodes and one with 184 Intel 
P4 nodes) and one Mac OS X cluster (with 7 nodes) were employed 
(Figure 4.3). The latter was also used for the statistical analysis.  

The STS mortality risk was calculated by Summit Vista for 
Windows version 1.55 (1996), (Summit Medical Systems, Inc., Nice, 
France). The ANN calibration and analyses were performed with 
MatLab 7 (2005), Neural Network Toolbox (MathWorks, Natick, 
Massachusetts, USA). Graphs and statistical analyses were performed 
with Intercooled Stata version 9.0 (2005) statistical package, 
(StataCorp LP, College Station, Texas, USA). 

 
Figure 4.3. A schematic overview of the cluster software 
(Xgrid) in a Mac OS X cluster. One analysis (job) consists of 40 
to 800 differently configured ANNs (1). Each configured ANN 
was submitted as a task to one of the seven agents by the 
controller (2).  When all agents were occupied, the remaining 
task was put to a queue, awaiting the next available agent. The 
agent evaluated the ANN on the predefined patient group, 
which normally took 30-60 minutes (3). When finished, the task 
was returned to the controller (4). The controller collected all 
tasks and returned the final analysis (job) results to the client 
(5).   
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Chapter 5  
 
Results 
 
 

5.1 Study I 
 
The study included 4497 CABG-only operations performed on 4487 
patients. There was accurate documentation of vital status at 30 days 
in all cases. The average age was 66.4±9.3 years (range 31-90). The 
majority of patients were men (77.0%). The patient details are 
described in Table 3.3. 

The actual 30-day mortality was 1.9%. The predicted versus the 
observed mortality for each risk score is plotted in Figure 5.1 
(EuroSCORE) and Figure 5.2 (STS). The area under the ROC curve 
(Figure 5.3) was 0.84 (95% CI: 0.80 to 0.88) for EuroSCORE and 0.71 
(95% CI: 0.66 to 0.77) for STS. The discriminatory power (area under 
the ROC curve) was significantly larger for EuroSCORE compared 
with STS (p<0.0001).  

The study patients were grouped into ten different risk groups (as 
recommended by Hosmer and Lemeshow46) to test the calibration of 
the two models; however, because of ties the EuroSCORE has only 
nine distinct groups. The Hosmer-Lemeshow goodness-of-fit test 
with a p value of 0.81 for EuroSCORE and 0.83 for STS indicates a 
good accuracy of both models. 
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Figure 5.1. Graph of predicted versus observed 30-day 
mortality (left y-axis) for each EuroSCORE risk group. 
Predicted mortality (dotted line) with 95% CI (shadowed area); 
observed mortality (diamond) with 95% CI (bar). The 
histogram shows the number of patients (right y-axis) in each 
risk group. 

 
Figure 5.2. Graph of predicted versus observed 30-day 
mortality (left y-axis) for each STS risk group. Predicted 
mortality (dotted line) with 95% CI (shadowed area); observed 
mortality (diamond) with 95% CI (bar). The histogram shows 
the number of patients (right y-axis) in each risk group. 
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Figure 5.3. The ROC curve: The sensitivity of prediction of 
30-day mortality is plotted versus the 1-specificity for the 
EuroSCORE (circles) and the STS (diamonds) risk stratification 
algorithm. The area under the curve for EuroSCORE is larger 
compared with STS. χ2 = 22.90; p<0.0001. 

 

5.2 Study II 
 
The study included 6222 open-heart operations performed on 6153 
patients. In 2.0% of the total data points, missing values were replaced 
using the probability imputation technique49. There was accurate 
documentation of vital status and cause of death in all cases, and no 
patient was lost to follow-up. The average age was 66.3±10.6 years 
(range 18-95) and the majority of patients were men (71.6%). The 
patient details are described in Table 3.4a-d.  

The discriminatory power (i.e. the area under the ROC curve) for 
30-day mortality and one-year mortality was highest for the logistic 
(0.84 and 0.77) and additive (0.84 and 0.77) EuroSCORE algorithms, 
followed by the Cleveland Clinic (0.82 and 0.76) and the Magovern 
(0.82 and 0.76) scoring systems. None of the other risk algorithms had 
a significantly better discriminatory power (larger ROC area) than 
these four (Figure 5.4). In the sub-analysis with CABG-only patients 
the discriminatory power of the two EuroSCORE algorithms were 
highest, followed by the NYS and Cleveland Clinic risk algorithms 
(Table 5.1). 
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Figure 5.4. Comparison of the ROC area for different risk 
algorithms. For each risk scoring system (left y-axis), the 
number of risk algorithms with a significantly (p<0.05) larger 
(black bar) or smaller (grey bar) ROC area are shown. A: 30-day 
mortality and B: one-year mortality. Open-heart surgery 
(n=6222). 
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Table 5.1. ROC area for the five risk algorithms with best 
performance and accuracy in CABG-only surgery (n=4351). 

   
   

 30-day mortality One-year mortality 
 ROC area (95% CI) ROC area (95% CI) 
     
         

EuroSCORE (logistic) 0.86 (0.82-0.90) 0.75 (0.72-0.79) 
EuroSCORE (additive) 0.85 (0.81-0.89) 0.75 (0.71-0.78) 
New York State 0.84 (0.80-0.88) 0.75 (0.72-0.79) 
Cleveland Clinic 0.84 (0.80-0.88) 0.75 (0.71-0.78) 
Parsonnet (modified) 0.84 (0.80-0.88) 0.73 (0.69-0.77) 
         

 
The most common cause of death within 30 days was cardiovascular 
disease (n=163, 91%), followed by cerebrovascular disease (n=3, 
1.7%) and malignant neoplasm (n=3, 1.7%). Cardiovascular disease 
was also the most common cause of death within one year (n=280, 
74%) (Table 5.2). For each risk algorithm, the ROC areas for 
cardiovascular-related (n=163) and total 30-day mortality (n=180) 
were almost identical (difference 0.005 or less). The discriminatory 
power for cardiovascular-related one-year mortality (n=280) increased 
by approximately 0.03 for all 19 algorithms compared with the 
discriminatory power for total one-year mortality (n=377). However, 
it did not change their relative order of discriminatory power. 
 
Table 5.2. Causes of death. 

      
           

 
 

30-day 
mortality  

One-year 
mortality 

 n (%)  n (%) 
       
      

Cardiovascular disease 163 (90.6)  280 (74.3) 
Cerebrovascular disease 3 (1.7)  16 (4.2) 
Chronic lower respiratory disease 2 (1.1)  10 (2.7) 
Diabetes mellitus 0 0  6 (1.6) 
Malignant neoplasm 3 (1.7)  22 (5.8) 
Miscellaneous 8 (4.4)  31 (8.2) 
Renal disease 0 0  2 (0.5) 
Septicaemia 1 (0.6)  10 (2.7) 
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5.3 Study III 
The study included 3413 open-heart operations performed on 3404 
patients. There was accurate documentation of data including 30-day 
mortality in all cases. The average age was 67.5±10.5 years (range 18 
to 89 years). The majority of patients were men (72.2%). The patient 
details are described in Table 3.5. A CABG-only operation was 
performed in 2487 cases (72.9%), 710 (20.8%) cases had a valve 
procedure with or without CABG surgery, and 216 (6.3%) were 
miscellaneous procedures (post-infarction septal rupture, aortic 
aneurysm or dissection, etc). 
 

 
Figure 5.5. Graph of costs (mean ±SD, bar) for each risk 
score.  

The actual 30-day postoperative mortality was 2.5%. The mean cost 
for the surgery was 7300 ± 2120 USD (median 6613 USD, range 2563 
to 25988 USD), in the ICU 3746 ± 6032 USD (median 2182 USD, 
range 632 to 134263 USD), in the ward 3500 ± 2605 USD (median 
2999 USD, range 0 to 41626 USD) and the mean total cost was 14546 
±7658 USD (median 12546 USD, range 6995 to 157912 USD). The 
mean costs (±SD) were calculated for the EuroSCORE risk groups 0 
to 24 for the surgery, the ICU and the ward, with the results shown in 
Figure 5.5. The log-transformed cost for the individual patients was 
significantly correlated to EuroSCORE. The strongest correlation was 
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between the EuroSCORE and log-transformed ICU costs, with a 
correlation coefficient (r) of 0.46 (p<0.0001) (Table 5.3). 
 
Table 5.3. Regression analysis results (n=3413). 
       
       

Comparison Equation Coefficient  
95% CI r p r2 

       
       

Cost versus EuroSCORE     
 Surgery 6182 USD x 1.021EuroSCORE 1.019-1.024 0.31 <0.0001 0.10 
 ICU 1752 USD x 1.076EuroSCORE 1.071-1.081 0.46 <0.0001 0.21 
 Ward 2873 USD x 1.014EuroSCORE 1.010-1.019 0.11 <0.0001 0.01 
 Total 10688 USD x 1.040EuroSCORE 1.038-1.043 0.47 <0.0001 0.22 
       
LOS versus EuroSCORE     
 ICU 0.88 days x 1.071EuroSCORE 1.066-1.076 0.45 <0.0001 0.21 
 Ward 6.05 days x 1.015EuroSCORE 1.010-1.020 0.11 <0.0001 0.01 
 Total 7.14 days x 1.028EuroSCORE 1.024-1.032 0.24 <0.0001 0.06 
          
 Probability of  ICU 

stay >1 day 
e(-3.0+0.28 x EuroSCORE) 

1 + e(-3.0+0.28 x EuroSCORE) 0.25-0.30  <0.0001 0.16# 

 Probability of  ICU 
stay >2 days 

e(-4.0+0.29 x EuroSCORE) 
1 + e(-4.0+0.29 x EuroSCORE) 0.26-0.32  <0.0001 0.18# 

          
# pseudo r2 

 

When patients were grouped in cohorts of similar predicted 
EuroSCORE risk (Table 3.2) the correlation between log-transformed 
mean costs was improved. The mean total cost was significantly 
correlated to mean EuroSCORE risk for each risk cohort, with a 
correlation coefficient (r) of 0.99 (p<0.0001); r was 0.99 for the mean 
surgery cost, 0.98 for the mean ICU cost, and 0.94 for the mean ward 
cost. 

In the multivariable linear regression analysis with the 18 
EuroSCORE risk factors as regressor variables and log-transformed 
cost as the dependent variable, 15 EuroSCORE variables were found 
to be significantly (p<0.05) associated with the log-transformed cost 
(Table 5.4) with a correlation coefficient (r) of 0.63 (p<0.0001). 

The mean LOS in the ICU was 1.76±2.39 days, (median 1 day, 
range 1 to 41 days).  Log-transformed LOS at the ICU was 
significantly correlated to EuroSCORE with a correlation coefficient 
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(r) of 0.45 (p<0.0001) (Table 5.3). Of all patients, 13.7% had an ICU 
stay >2 days. Hosmer-Lemeshow test yielded a p value of 0.40 for the 
EuroSCORE predicting an ICU stay >2 days, which indicates a good 
accuracy of the model. The area under the ROC curve for an ICU stay 
>2 days was 0.78 (95% CI: 0.76 to 0.81). The probability of an ICU 
stay exceeding 2 days was >50% at a EuroSCORE of 14 or more 
(Figure 5.6). The sensitivity and specificity at this cut-off point was 
21% and 98%, respectively. 

During the entire study period (169 weeks), the mean weekly 
number of patients entering the ICU was 20±7.13 (median 22, range 
5-35). During this period, the EuroSCORE algorithm predicted the 
number of patients with an ICU stay >2 days exactly in 51 weeks 
(30%), and within ±1 patient in 127 weeks (75%). The predictive 
accuracy was independent of the EuroSCORE risk cohort (p=0.65). 

 

 
Figure 5.6. Percentage of patients with an ICU stay >2 days 
(left y-axis) for each EuroSCORE risk group (x-axis). Predicted 
ICU stay >2 days (dotted line) with 95% confidence interval 
(shadowed area); observed ICU stay >2 days (diamond) with 
95% confidence interval (bar). The histogram shows the 
number of patients (right y-axis) in each risk group. 
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Table 5.4. Regression analysis: EuroSCORE variables independently associated 
with total cost (n=3413). 
    
    

Variables 

Cost 
increase 

(%) 95% CI p 
         
     

Age* 0.28 0.20- 0.37 <0.0001 
Female gender -1.1 -3.0- 0.89 0.283 
Chronic pulmonary disease 2.9 0.0- 5.8 0.047 
Extracardiac arteriopathy 3.4 1.0- 6.0 0.006 
Neurological dysfunction 6.9 3.1- 10.9 <0.0001 
Previous cardiac surgery 12.0 7.5- 16.8 <0.0001 
Serum creatinine >200µmol/l (2.27mg/dL) 16.4 10.0- 23.2 <0.0001 
Active endocarditis 11.4 3.1- 20.4 0.007 
Critical preoperative state# 19.9 14.9- 25.1 <0.0001 
Unstable angina  2.2 -0.7- 5.3 0.132 
EF 30-50% 3.3 1.4- 5.3 0.001 
EF <30% 12.1 8.6- 15.8 <0.0001 
Preoperative MI <90 days 2.7 0.6- 4.7 0.010 
Pulmonary hypertension 15.5 10.5- 20.8 <0.0001 
Emergency 9.3 5.3- 13.5 <0.0001 
Other than isolated CABG 37.5 34.4- 40.6 <0.0001 
Surgery on thoracic aorta 24.4 18.2- 30.8 <0.0001 
Postinfarction ventricular septal rupture closure 12.0 -4.9- 31.9 0.174 
     

* % increase per year of age. # For definition see Table 3.4c 
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5.4 Study IV 
 
From the EuroSCORE database 18362 patients were included in the 
analysis. In 0.7% of the total data points missing values were imputed, 
as described. The average age was 62.6±10.7 years (range 17-89) and 
the majority of patients were men (71.7%). The patient details are 
described in Table 3.6a-b. The actual operative mortality was 4.9% 
(n=891).  

 
Approximately 42500 different ANN models were validated. The 
architecture for the final validation ANN model included one hidden 
layer with 14 nodes, one output node and 6 individual members of the 
ensemble. This ANN architecture was used in the selection of risk 
factors utilized for the mortality prediction. The largest validation 
ROC area, 0.82 (95% CI: 0.80 to 0.83) was achieved when 34 of the 
top ranked risk variables were included (Figure 5.7). To simplify the 
model, the number of nodes in the hidden layer was decreased until 
the validation ROC area started to decrease. The optimal ANN finally 
included 34 risk variables in the input layer and eight nodes in the 

Figure 5.7.  

a. The graph shows the 
difference (%) in the validation 
ROC area (y-axis) from each 
ANN model including 71 risk 
variables, compared with the 
model including all 72 risk 
variables. The x-axis shows the 
excluded risk variable number 
(No.), in order of importance 
(see Tables 3.6a-b).  

b. The solid line shows the 
validation ROC area (y-axis) 
from the ANNs with different 
numbers of included risk 
variables (x-axis).  Dashed lines 
indicate 95 % CI. 
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hidden layer. All artificial networks from the six-fold cross-validation 
procedure were saved, resulting in 36 individual networks from the six 
members in the ensemble. Thus, an ensemble size of 36 was used to 
classify the patients in the test sets. The discriminatory power (i.e. the 
area under the ROC curve) for operative mortality was significantly 
larger for the final ANNs, 0.81 (95% CI: 0.79 to 0.82) compared with 
the logistic EuroSCORE model, 0.79 (95% CI: 0.78 to 0.81), 
p=0.0001 (Figure 5.8). The final ANN ROC area was also significantly 
larger than the ROC area for a logistic model with the same 34 top 
ranked risk variables, 0.80 (95% CI: 0.78 to 0.81), p<0.0001. The 
numbers of correctly classified survivors for a sensitivity of 25%, 50% 
and 75%, were 17051, 15577 and 12438 patients for the ANNs, and 
16990, 15321 and 11718 patients for the logistic EuroSCORE. The 
difference between the ANNs and logistic EuroSCORE was 
significant for all three sensitivity cut-off values: p=0.0395, p<0.0001 
and p<0.0001, respectively. For the different surgical procedures 
(CABG-only, valve procedure with or without CABG surgery and 
miscellaneous procedures) there were no differences in discriminatory 
power for the ANNs, but there were significant differences for the 
logistic EuroSCORE (Table 5.5).  
 
Table 5.5. The ROC area from the test data set for different surgical 
procedures. 

   
   

ROC area 
Surgical 
procedure n ANNs 

Logistic 
EuroSCORE 

   

    
CABG-only 
surgery 11 628 0.80 (0.77-0.82) 0.78 (0.75-0.80) 
Valve procedure* 4 907 0.76 (0.73-0.79) 0.72 (0.69-0.75) 
Miscellaneous 1 827 0.80 (0.77-0.83) 0.78 (0.75-0.82) 

    
    

p value  0.15 0.0072 
    

* Valve procedure with or without CABG surgery.  
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Figure 5.8. The receiver operating characteristic curves (ROC) 
from the test data set: The ANNs (solid line) and the logistic 
EuroSCORE (dashed line) risk stratification algorithms. The 
area under the curve for ANNs is larger compared with the 
logistic EuroSCORE. χ2 = 15.7; p=0.0001.  

 
Bootstrap sampling was used to generate confidence intervals for the 
ANN classification (Figure 5.9). An individual patient with a 
calculated mortality risk of 0.64 belongs with at least 95% certainty to 
the group of patients not likely to survive the operation (i.e. a 
mortality risk exceeding 50%). For a patient with a calculated risk of 
0.31 the opposite holds true. 

To evaluate if the final ANN risk prediction model was applicable 
to a patient cohort which had not been used in the development of 
the ANNs or participated in the EuroSCORE project, a subset 
(n=1246) from a local database (Database I) with no missing value in 
the 34 top ranked risk variables was used as a blind test. In this cohort 
the ROC area was 0.83 (95% CI: 0.71-0.94) for the ANNs and 0.80 
(95% CI: 0.69-0.90) for the logistic EuroSCORE. 
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Figure 5.9. Graph of predicted mortality risk (x-axis) (black 
dots) and the 95% confidence limits (y-axis) (grey dots) 
calculated by the ANNs for each individual patient. 
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Chapter 6  
 
General Discussion 
 
 
 
Preoperative evaluation of a patient’s surgical risk is an important 
component in cardiac surgery. Risk stratification can provide insight 
into the risk of complications and mortality, guide the selection of 
patients for surgery versus alternative therapies12, 13, 24, and may also 
predict the need for hospital care resources28, 29, 31 and improve the 
quality of care7, 8.  
 

6.1 Performance and accuracy of risk score systems 
 
The search for an effective method of mortality prediction in open-
heart surgery started in the 1980s19. Several risk score algorithms for 
cardiac surgery have been published (Table 1.3). A few comparative 
studies of different risk algorithms exist, but the relative performance 
of the risk scoring systems currently used has been unclear.  

The potential of ROC curves in medical diagnostic testing was 
recognized as early as in 196083. Even if comparison of ROC curves  
to evaluate models in a statistically valid fashion remains controversial, 
the ROC curve is currently the best developed statistical tool for 
describing performance116.  

The first study in this thesis aimed to compare the accuracy and 
performance of the STS and the EuroSCORE risk stratification 
algorithms in a CABG-only population. The EuroSCORE model has 
previously been shown to work well across many European 
countries117 and in North America118. EuroSCORE has also been 
shown to perform well in comparison with other risk algorithms such 
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as Cleveland Clinic26, Parsonnet19 and French Score90. However, 
comparative studies of the EuroSCORE60 and STS11 scoring systems 
has hitherto been lacking. The more complicated STS database 
algorithms remain proprietary and confidential, which could explain 
why only a few studies comparing the STS database algorithm with 
other risk algorithms have been published10, 119.  

In the present study, a superior discriminatory power was achieved 
using the EuroSCORE algorithm. The obtained ROC-area of 0.71 for 
the STS is comparable to the results from earlier studies (0.64-0.81)10, 

119, which corroborate the results from Study I. On the other hand, the 
predictive accuracy of the two risk scoring systems may be influenced 
by the different time periods in which they were developed. 

In earlier studies comparing mortality prediction by different 
algorithms, no significant differences in performance have been 
found89-91. This may be explained by small patient study groups90, 91. In 
Study II, four risk scoring systems (the two EuroSCORE algorithms, 
Cleveland Clinic and Magovern risk score) had a significantly better 
performance than the other 15 algorithms. Compared with the earlier 
mentioned studies, a relatively large patient population was used in 
Study II, which may have made it easier to identify the superior 
algorithms. The systematic comparison methodology used, which was 
not utilized in the other studies, may be another explanation. An 
additional finding in Study II was also that the algorithms could be 
used to predict long-term (one-year) mortality, especially for 
cardiovascular deaths.  

 

6.2 Prediction of resource utilization 
 
Earlier studies have indicated that preoperative risk variables can be 
used to predict costs of cardiac surgery120, 121. Fifteen of the 18 
EuroSCORE variables were found to be significantly correlated to 
cost of care in Study III. An increasing Cleveland Clinic risk score has 
previously been shown to be associated with an increase in total cost 
and longer postoperative LOS122. Similar results has been shown with 
the Cabdeal risk algorithm123. Riordan et al29 found that grouping 
patients in risk cohorts resulted in a correlation between the STS risk 
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algorithm and total cost, but for individual patients the prediction was 
poor.  

The results from Study I and II make the use of the EuroSCORE 
risk algorithm to predict the need for different resources logical. 
Pintor et al30 and Sokolovic et al31 recently demonstrated a correlation 
between EuroSCORE and cost of open-heart surgery, similar to the 
results found in Study III. However, these studies were rather small 
(488 and 201 patients, respectively) and focused on total cost and not 
on the different components of heart surgery resource utilization 
(surgery, ICU and ward), as in Study III.  

Several studies have attempted to identify preoperative risk 
variables that predict LOS in the ICU following cardiac surgery. The 
Parsonnet risk algorithm seems able to preoperatively identify patients 
likely to spend more than 24 hours in the ICU124. In that study, the 
discriminatory power (ROC area) of 0.70 was less than in Study III 
(0.76 for ICU stay >1 day and 0.78 for ICU stay >2 days). Three 
additional studies93, 125, 126, comparing different risk algorithms, have 
also found a correlation between EuroSCORE and ICU stay >2 days. 
In our experience, patients staying at the ICU >2 days are likely to 
remain there for prolonged periods. Like other groups93, 125, 126, we 
therefore chose to focus the additional analyses on >2 day ICU stays, 
as being clinically more relevant.  

Strengths of Study I-III are that the algorithms could be analysed 
using a relatively large patient material where the patient data was 
collected on a regular basis in the daily clinical work, and that the data 
was preoperatively entered into the database, generally by residents 
and not by the surgeon performing the operation. 

 

6.3 Artificial neural networks 
 
Different methods to improve the accuracy of risk algorithms have 
been suggested, e.g. to include more patients with higher risk, to select 
and identify the most important risk factors, and the use of new 
algorithmic models such as machine learning techniques, of which 
ANNs are an example27, 45, 127. Tu and Guerriere128 used a neural 
network as a predictive instrument for ICU stay, finding both 
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advantages and disadvantages compared with other statistical 
techniques. Only a few studies have investigated ANNs in the 
prediction of survival after cardiac surgery69, 70, 75-78. Most of these are 
based on CABG-only patients69, 70, 76-78 and only one included all 
cardiac surgical procedures75. None of these studies found any 
considerable improvement over the traditional bio-statistical methods. 
Orr et al 75 and Tu et al 69 showed that an ANN could be used to 
estimate cardiac surgical mortality, but the performance was 
equivalent to that of logistic regression. These two studies were made 
on smaller cohorts than Study IV (1477 and 4782 patients) and used a 
limited number of risk variables (7 and 11). Lippmann et al 70 obtained 
a similar result when ANNs were used on patients from the STS 
database. Despite that 80000 patients with 32 risk variables were 
included in the study, the ANNs showed a performance equivalent to 
the other prediction models.  

The differences between the studies mentioned and Study IV are 
several. The ANN model in Study IV was developed on a large multi-
institutional database from eight European countries, and the patient 
data was quality-checked and validated by two independent operators 
before it was entered into the database110. No prior variable selection 
was used; instead all available variables were initially included, and the 
most important were obtained by a variable ranking and minimizing 
procedure. No categorization was performed, and the ANN 
architecture was achieved by exploring a large number of 
configurations (42500) by using high performance computer clusters. 
An aim in Study IV was to avoid most of the limitations discovered in 
the earlier ANN studies, such as variable categorization and risk factor 
identification by using traditional significance testing52.  

 

6.4 Risk factor identification for mortality prediction 
 
One fundamental and controversial question is the number of 
variables optimally included in a risk model. As mentioned before, too 
many variables may lead to over-fitting of the model, instability, 
increased cost and difficulties of data collection. Too few variables, on 
the other hand, may decrease the performance of the model. In Study 
II, the analysed 19 risk score models included 6 to 33 risk variables. 
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To evaluate if the performance was correlated to the number of risk 
variables in each model, a non-linear regression analysis was 
performed (Figure 6.1). Even if there is no statistical certainty in this 
analysis, it suggests that too few and too many variables may decrease 
the model performance.  

In almost all of the investigated algorithms (both in earlier 
published studies and those presented here) all variables are 
categorical. Continuous data are preferable, to avoid arbitrariness and 
loss of valuable information that may occur with categorization. 
Identifying a nonlinear 
relationship is also more likely 
using continuous rather than 
categorical variables129. In Study 
IV a total of 72 variables (11 
continuous) were used. No 
prior variable selection such as 
significance testing was 
performed; instead the ANNs 
ranked every variable in order 
of its importance for the 
mortality prediction. In a 
second step, the total number 
of variables was minimized, to 
include only variables with a 
positive contribution to the outcome prediction. The largest ROC 
area was achieved when the 34 top ranked variables were included in 
the model, and was significantly larger compared with a model 
including all 72 variables. However, the discriminatory power (ROC 
area) for a logistic regression model including the same 34 variables 
was significantly lower than the ROC area for the final ANN model. 
The results from Study IV thus indicate that both the ANN technique 
and the variable selection process are important for optimal outcome 
prediction. 

 

Figure 6.1. The ROC area (y-axis) 
corresponding to the number of 
included risk variables (x-axis) for 
different risk score algorithms (Table 
1.3). Goodness-of-fit r2 = 0.52. 
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6.5 Inaccuracy of individual outcome prediction 
 
Most algorithms overestimated the 30-day mortality in the investigated 
patient population (Study I and II). The same finding has been reported 
in other studies89, 90. Rather than reflecting weaknesses in the risk score 
algorithm, these findings are probably explained by differences in 
patient mix and temporal periods, compared with the original 
databases used for development of the algorithms90. Prediction of 
mortality rate in the CABG-only patients was almost perfect using the 
NNE and NYS algorithms, which are both newly developed and for 
use in CABG-only surgery. 

The EuroSCORE predictive performance of resource utilization 
was less at higher risk scores than at lower scores. This pattern has 
previously been reported in mortality studies32 and was also seen in 
Study I. The lower numbers of patients in high risk score groups might 
contribute to these findings. Study III also showed, as in other 
investigations29, 130, that the predictive value was limited for individual 
patients, but an excellent correlation was seen if the patients were 
grouped in risk cohorts.  To improve the prediction for the individual 
patient, a machine-learning technique with the bootstrap method was 
used in Study IV to generate individual confidence intervals (Figure 
5.9). These increase the accuracy of the mortality prediction. This kind 
of analysis is not common, but Michel et al131 recently published a 
similar analysis for the logistic EuroSCORE model. Even if the risk 
stratification for an individual patient has thus become more accurate 
compared with earlier developed algorithms, there is still room for 
improvement. 

 

6.6 Factors influencing accuracy 
 
The predictive accuracy of different risk scoring systems may be 
influenced by numerous factors, such as differences in variable 
definitions, management of incomplete data fields, geographical 
differences in patient risk factors, inclusion and surgical procedure 
selection criteria, and gaming. The prevalence of risk factors in 
patients referred for heart surgery may also change over time.  
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6.6.1 Variable frequency and definition  
When comparison of the accuracy and predictive power of large 
databases are attempted, such as in Study II, difficulties arise regarding 
variable definitions and the prevalence of risk factors. One weakness 
of multivariable regression techniques is that some variables may have 
too low frequencies to be used in a multivariable regression model, 
even if they contribute significantly to the outcome18. An advantage of 
ANNs are that they use computer iteration to identify a pattern of 
variables associated with outcome, and are far less affected by low 
frequencies in particular variables69, 70. However, ROC analysis is also 
a robust technique for such comparisons. Murphy-Filkins et al132 
showed that an increase of up to five times of a low-frequency 
variable (for example due to a difference in a variable definition) did 
not appreciably change the model fit.  

The patient form used in Study I was constructed in 1996, three 
years before the EuroSCORE was officially published. For this 
reason, the definition of one of the risk variables was not identical 
with the definition from the original EuroSCORE publication, as 
preoperative myocardial infarction was defined to be present within 
21 days before the operation (STS definition) rather than within  
90 days preoperatively (EuroSCORE definition). To evaluate if 
the change of definition may have influenced our overall results, we 
performed separate calculations for the patients included in the 
database after this date (n=1130), applying both definitions for 
preoperative myocardial infarction. The area under the ROC curve 
remained significantly larger for the EuroSCORE algorithms 
compared with STS, regardless of the definition of preoperative 
myocardial infarction used. 

6.6.2 Incomplete data fields  
All databases may have incomplete data fields, especially if a large 
number of risk factors are included such as in Studies II and IV. The 
ANN model is tolerant of missing data70, but risk score systems built 
upon logistic regression analysis are not43. This makes data imputation 
techniques necessary. The probability imputation technique, used in 
Study II, has been shown to work well in prognostic factor studies51. 
There are, however, several other techniques to handle missing 
values43. The most common method is to exclude the patients with 
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missing values from analysis. Because missing values are more likely in 
emergent high-risk patients, this could result in bias.  

In Study II several techniques were explored. The results of these 
were similar, except when the patients with incomplete data were 
excluded, which altered the relative performance of some of the low 
ranked algorithms. However, for the top ranked algorithms there were 
no differences in the relative order. The probability imputation 
technique was chosen because of its simplicity and documentation49, 51.  

6.6.3 Geographical differences in patient risk factors  
The geographical differences in the occurrence of patient risk factors 
may have influenced the design of different risk scoring systems. 
However, it does not seem to influence the present results. The best-
performing risk score systems in Study II were developed in two 
different geographical areas: Europe and the US. Nashef et al have 
also demonstrated that the EuroSCORE works well when applied to a 
Northern American patient population118. 

6.6.4 Surgical procedure  
Eight of the risk algorithms included in Study II (Cabdeal, NYS, NNE, 
Magovern, Toronto, Toronto (modified), UK National Score and VA) 
were originally designed to predict early mortality in CABG-only 
patients, which could affect the predictive accuracy. A sub-analysis of 
CABG-only patients was therefore performed. The same two risk-
scoring systems, logistic and additive EuroSCORE, were identified as 
having superior performance, followed by the NYS and the Cleveland 
Clinic risk-scoring systems. 

Earlier studies on risk analysis in cardiac surgery have mostly been 
developed and validated on CABG-only patients7, 24 or all open-heart 
surgery procedures110. Recently, the NNE Cardiovascular Disease 
Study Group presented a risk model for aortic valve surgery and one 
for mitral valve surgery104. Analyses comparing risk score performance 
in different surgical procedures have been lacking. In Study IV this 
analysis was performed. The ANN model showed similar 
performance independent of the surgical procedure, unlike the logistic 
EuroSCORE model. This may be explained by a better risk factor 
selection by the ANN, but also by the capacity of the ANN model to 
recognize complex nonlinear relationships.  
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6.6.5 Inclusion criteria 
In Study III cases dying intra-operatively were excluded, since they did 
not require any postoperative resources. This could be debated: The 
exclusion of these mainly high-risk patients probably reduces the 
actual predictive power of the analysis, but the differences will be 
minor since the number of patients who died intra-operatively was 
small in this study (1.1% during the period in question). 

6.6.6 Change in risk factor prevalence over time 
The prevalence of risk factors in patients referred for heart surgery 
may show temporal changes, which could be a limitation in Studies I, II 
and IV.  

The STS risk analysis algorithm in Study I is based on the STS 
results from the years 1990-1993 (version 2.0), whereas the 
EuroSCORE algorithm was developed approximately five years later. 
To evaluate if the risk algorithm performance changed over time in 
the local database, the risk score ROC areas for each year from 1996 
to 2000 were compared. There was no significant difference in 
performance or any apparent trend over time (Table 6.1a-b). Of 
course, the sample sizes became smaller, making it more difficult to 
identify a difference.  

 
Table 6.1a. The ROC area of the EuroSCORE algorithm over time 
(CABG-only surgery). 

     
     

Year Procedures 
(n) ROC area 95% confidence interval 

     
     

1996 957 0.88 0.81-0.95 
1997 1049 0.87 0.76-0.98 
1998 752 0.79 0.66-0.92 
1999 833 0.78 0.65-0.91 
2000 752 0.82 0.73-0.90 
     

Chi square test: χ2 = 3.26, p = 0.516  
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Table 6.1b. The ROC area of the STS algorithm over time (CABG-
only surgery). 

     
     

Year Procedures 
(n) ROC area 95% confidence interval 

     
     

1996 957 0.69 0.58-0.80 
1997 1049 0.77 0.61-0.93 
1998 752 0.70 0.49-0.91 
1999 833 0.64 0.46-0.82 
2000 752 0.72 0.62-0.82 
     

Chi square test: χ2 = 1.41, p = 0.843 
 
The same limitation is possible in Study IV, which was performed on 
data collected ten years ago. However, a similar result was obtained in 
the blind test (using the local database), where the surgical procedures 
were performed between 1996 and 2001. 
      

6.6.7 Gaming 
In the clinical use of risk algorithms, patients with higher risk will have 
higher predicted mortality. In other words, the sicker the patient 
population is, the higher the acceptable operative mortality will be. 
This could incite exaggeration of preoperative risk factor severity. 
Several definitions of risk factors are open to some degree of clinical 
interpretation. If the preoperative recording of risk factors is thus 
subject to bias, the information in the database may suffer from 
“clinical inflation”, and the risk stratification model will be less 
accurate63.  
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6.7 Future perspectives 
 

The future will certainly bring refinements of risk adjustment methods 
and increasing use of risk evaluation in many areas of health care 
delivery. There will probably be an evolution from models focused 
primarily on operative mortality to an increased awareness of other 
endpoints. Postoperative complications, readmissions, functional 
status and quality of life measurements will be more common 
endpoints in the future, and long-term results will be emphasized. 
Future risk stratification models may employ novel biochemical, 
physiological or genetic risk markers and more complex and 
computer-intensive algorithms such as machine learning, as high-
performance computer clusters become more available.  

These more complicated risk models can not compete with  
the additive algorithms when it comes to simplicity, but can be  
made available on the hospital intranet or publicly on the  
Internet, as exemplified by the logistic EuroSCORE risk model 
(http://www.euroscore.org/calc.html) and the STS Risk Calculator 
(http://www.sts.org/sections/stsnationaldatabase/riskcalculator/).  

With the use of modern information technology systems and 
computerized medical records, the risk factors for a patient referred 
for a specific treatment may be available on-line. Depending on the 
present risk factors, a waiting list score, mortality scores for different 
treatments (e.g. cardiac surgery or PTCA) and a postoperative 
morbidity score could be calculated. This information may be used as 
an important decision support tool to guide therapy selection, to 
realistically estimate the need for resources, and to plan the care for 
high-risk patients more efficiently. By monitoring outcomes and 
resource utilizations using computerized patient records, the 
performance of the decision process may be continuously evaluated. 
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Chapter 7  
 
Conclusions 
 
 
 
The major conclusions reached were: 
 

I. The additive EuroSCORE algorithm had a significantly better 
discriminatory power to predict 30-day mortality than the STS 
risk algorithm in CABG-only surgery. 

II. The EuroSCORE, Cleveland Clinic and Magovern risk algorithms 
showed superior performance and accuracy in open-heart surgery, 
and the EuroSCORE, NYS and Cleveland Clinic scoring systems 
in CABG-only surgery. Though originally designed to predict 
early mortality, the one-year mortality prediction was also 
reasonably accurate. 

III. The additive EuroSCORE algorithm can be used to predict total 
cost, ICU cost and an ICU stay of more than two days after open-
heart surgery. 

IV. By using an ANN risk stratification model, risk factors in a ranked 
order contributing to the operative mortality prediction could be 
identified. A minimal set of risk variables achieving a superior 
mortality prediction could be defined. The ANN model was 
applicable independent of the cardiac surgical procedure. 
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