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1., INTRODUCTION

The purpose of this report is to show how a self-tuning regulator
(STR) based on Teast squares parameter estimation and pole placement
design works when applied to a realistic system of moderate complexity.
In particular it will be shown what happens when the estimated model

in the STR is considerably simpler than the controlled system. The
process considered is a mathematical model of a fixed bed chemical
reactor system. The reactor is a pilot plant which has been in opera-
tion at the Department of Chemical Engineering at University of Cali-
fornia, Berkeley, for several years, Foss (1978 a). Several different
control designs have been applied to the reactor. Control design based
on state-feedback and Kaiman filtering is discussed in Silva {1978)

and Wallman (1977). Multivariable frequency domain techniques have also
been applied, Foss and Edmunds (1978).

The model used in the simulations is presented in Section 2. The model
is a linear system of 7th order. The reactor is a multivariable system.
In this report we will, however, only discuss control of two simple }oops
The formulation of the control problem is discussed in Section 3. The
structure of the STR used is also described in this section. The SISO
control Toops, where the outputs are compositions, are easy to control
because the dynamics is stable and minimum phase. The results obtained
when controlling such Toops by the STR are given in Section 4. It is
investigated systematically what happens when the model used in the STR
is simpler than the simulated model. The simple loops, where the out-
puts are temperatures, are more difficult to control because they
exhibit nonminimum phase behaviour. The performance obtained by apply-
ing the STR to such a Toop is explored in Section 5. In the simulated
examples in Sections 4 and 5 it is shown that very good behaviour can

be obtained with STR:s whose models are considerably simpler than the
simulated process. If the model used in the STR is too simple the closed
loop will, however, be unstable. Preliminary analysis which supports
this observation is given in Section 6.




2. THE REACTOR MODEL

A full description of the experimental reactor is given in Silva (1978).
A schematic diagram of the reactor is given in Fig. 2.1.

1% Oy
99% H,

First bed

Mixing chamber

Quench
hydrogen

Second bed

Oxygen Anclyser

Figuwre 2.1, Schematic diagram of the
reactor.

Oxygen and hydrogen react over a platinum catalyst on silica gel
particles. The reactor has two beds as is seen in Fig. 2.1. The beds
are separated by a mixing chamber where hydrogen is added. Only the
second bed is controlled. The control variables are the temperature
and the flow of the added hydrogen, called the "guench flow". The gas
temperature and concentration at the outlet of the first bed are
regarded as disturbances. The concentration of oxygen at the outlet
of the second bed is the major control variable but temperatures are
also measured at several positions in the second bed. A linearized
model, which described fluctuations around an operating point, was
derived by Silva (1978). A model of 14th order was obtained by
discretizing the partial differential equations describing the
reactor by the collocation method. This model was then reduced to




a 7th order model by making an eigenvalue expansion and retaining the
dominant terms. The model has the form

Ax + Bu

5.
il

€x + Du,

R
1

u; = Outlet gas temperature of first bed (TI0)
up = Oxygen concentration at outlet of first bed (CIO)
Uz = Quench flow (Q)
uy = Temperature of quench flow (TQ)
and |
¥y =T5
Yo = T6 } Intermediate temperatures in second bed
y3 = T7
Yg = Outlet temperature of second bed (TIIO)

Yg = Oxygen concentration at outlet of second bed (C110).

The numbers used in this report were obtained by taking the model of
Sitva (1978) and rounding all numbers to three significant digits. The
numbers used are given in Appendix A. All numbers are scaled. The time
unit is 87.5 s, the temperature unit is 167°C, the concentration unit
is 1 mole %, and the flow unit is 13.5 1/min.

The model obtained was tested by calculating step responses and comparing
with the responses of the more complete model. Typical step responses are
shown in Figs. 2.2 - 2.5. The step responses were generated using the
simulation language SIMNON, Elmgvist (1975)./

It is seen from Figs. 2.4 and 2.5 that the dynamics relating outlet
concentration to quench flow or quench flow temperature can be described
by a typical process control dynamics which exhibits time-delay and
monotone step response. It is also seen from Fig. 2.4 and Fig. 2.5 that
the response of outlet temperature to quench flow and quench flow
temperature has typical nonminimum phase behaviour.
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Figure 2.2. Response of the system to a unit step in inlet
temperature (TIO0).
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Figure 2.3. Response of the system to a unit step in inlet
oxygen concentration {(CIO0).
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Figure 2.4. Response of the system to a step in quench flow (Q).
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Figure 2.5. Response of the system to a unit step in the
quench flow temperature (TQ).

Also notice that there are significant direct terms in the model.

These terms were introduced in the model reduction procedure'when

rapid process dynamics was approximated by a direct signal transmission.
The terms do not have physical significance. Actuator dynamics were
introduced to avoid the direct terms. The actuators were modeled simply
as first order systems with time constants of 0.1 time unit (= 9 s).

The seventh order model has the following poles:

2.75 £ 1 0.77
2.14 £ 1 0.71
1.93 £ 1 0.30
- 1.93

1

The transfer function relating outlet temperature to quench flow
temperature has the following zeros:

44.3
1.09
- 2.80
-3.00 £1 0.40
- 3.02
- 98.9

The transfer function thus has two zeros in the right half plane.
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3, THE CONTROL PROBLEM

When controlling the reactor the major disturbances enter in the form
of variations of the properties of the feed and the catalyst. In this
particular case the fluctuations in the feed appear as disturbances in
temperature and concentration at the outlet of the first bed. It has
been shown by Foss (1978 b) that there is, surprisingly enough, little
incentive in using feedforward from these signals. To achieve a desired
concentration of the oxygen at the outlet of the second reactor it is
necessary to measure oxygen concentration at the outlet of the second
bed. It is therefore of interest to see what can be achieved by feed-
back from the outlet concentration to quench flow or temperature of the
quench flow. Since the concentration measurement is expensive, it is
also of interest to find out what can be achieved by feedback from the
outlet temperature too.

There is no obvious choice of criteria for control. Roughly speaking it
is desired to have the reactor return to its steady-state condition in
reasonable time after a disturbance, but there is no obvious optimiza-
tion criterion. Such features can, for example, be captured in a pole
placement design formulation.

It is thus assumed that the control problem can be formulated as a
deterministic pole placement problem. The purpose is thus to find a
control law such that the transfer function from the reference value Yy
to the controlled output y is given by Q/P. The desired poles are
chosen in such a way that there is a reasonable compromise between the
speed of return to the steady state and the magnitudes of the control
signals. It is furthermore assumed that the observer polynomial 1is
specified. This type of self-tuning regulators are described in detail
in Astrom, Westerberg, and Wittenmark (1978). It is not claimed that
this is the best formulation of the problem of controlling the chemical
reactor. It is, however, one possibility and a study of this type will
certainly give insight into the properties of the self-tuning regulator
based on pole placement when applied to a typical chemical praocess.
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It is assumed that the reader is familiar with the self-tuning regu-
lator based on pole-placement design which was described in Astrom,

Westerberg, and Wittenmark (1978). The parameters of a process model
described by

y(t) +apy(t-1) +...+ anAy(t-nA) =

= byu(t-k-1) +...+ anu(t~k-nB) (3.1)

are estimated recursively. A regulator of the form

rou(t) + rqu(t-1) +...+ rnRu(t-nﬁ) =

= tyya(t) +... 4 tnyy(t—nT+1) - s{t) - .- snsy(t-ns+1) (3.2)

is determined in such a way that the transfer function from the command
signal Y to the output y is Q/P. The observer polynomial is also
specified. The structure of the STR is thus given by the integers Nps
ng» and k, which specifies the model (3.1) and the degrees of the poly-
nomials P, Q, and T or equivalently the integers Nps Ngs and nr. Two
specific structures are discussed in more detail below.

Minimum-phase Systems

When controlling minimum-phase systems all process zeros can be
cancelled and it can thus be required that the desired closed loop
transfer function is 1/P. The regulator polynomials are then determined
by

R = BR],

where
AR} + 5 =PT

and
deg S < deg A
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Nonminimum-phase Systems

For nonminimum-phase systems the unstable process zeros can not be
cancelled. To obtain a simple design algorithm it is assumed that all
process zeros are retained as zeros of the desired closed loop. It is
thus assumed that the desired closed loop transfer function is given
by B/P, where B is the estimated numerator of the process transfer
function. '

Simulations

In the simulations the response of the system to step changes in the
command signal was explored. The interactive simulation language
SIMNON, developed by Elmgvist (1978), was used. A particular subsystem
REG, written by Gustavsson (1978), was used to implement the adaptive
regulators. The SIMNON systems used are listed in Appendix B.
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b, sSTR CONTROL OF A MINIMUM-PHASE LOOP

t will first be attempted to control the oxygen concentration at the
reactor outlet. The control variable is chosen as the quench flow. This
control loop is fairly easy to control because the system is minimum-
-phase and the step response is monotone. Both explicit and implicit
control algorithms have been investigated.

Implicit Self-tuning Algorithms

Since the system dynamics is minimum—phase it is possible to cancel
all process zeros. The pole-placement problem can then be specified by
requiring that the desired closed loop transfer function is given by

6y = 25— - | (4.1)

2(2% - 0.96 2+ 0.323) (4.2)
where K is such that P(1) = 1. The system thus has poles at the origin
and at

z = 0.48 + 0.30 1,

The complex poles correspond to the poles obtained when sampling a
continuous time system with relative damping z = 0.707. The specifica-
tions were determined from the desire to have a reasonable damping.
The value of the sampling period was chosen so that the control signal
had reasonable magnitude for a typical step change using the nominal
model. The process model has zeros on the negative real axis. If a
shorter sampling period was chosen the cancelled modes were well
noticable in the control signal. The observer is chosen to have all
zk+]. The adaptive STR algorithm I1
described in Astrom, Wittenmark, and Westerberg (1978) was used to

its poles at the origin i.e. T =

control the process. The initial values of the parameter estimates
were chosen as:
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s = S = = § =0
0 1 Ng

rg = i

ry =r,=...=r_ =0,
1 2 Np

The initial “covariance" was chosen as 10 times the unit matrix. The
forgetting factor was 0.98. Regulators having different complexity
were investigated by simulation. The response of the system to step
changes in the command signal was investigated.

EXAMPLE 4.1 np = I, ng = 1

A simple regulator with only two parameters was first investigated.
When np = 1 and ng = 1 the formula (3.2) reduces to

rp U(t) = ¥,(t) = 55 ¥(t).

The results of the simulation are shown in Fig. 4.1 and Fig. 4.2. The
response of the closed lecop system differs from the desired response
specified by (4.1) and (4.2},

It is seen from Fig. 4.2 that the parameter g has a comparatively small
value (sO ~ 0.05). It was therefore also attempted to try a regulator

With g = 0, i.e. hp = 1 and ng = 0. This regulator corresponds to a
pure feedforward

s u(t) = yr(t).

The behaviour of this regulator is shown in the simulation results in
Fig. 4.3 and Fig. 4.4 o

The connecting system and the macro used in this simulation together
with a typical SIMNON dialog for the simulation is listed in
Appendix C.
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Figure 4.1. Reference ¥y» process output y, and control signal u
obtained when the implicit algorithm I1 with np = 1 and ng = 1 is used
to control a 7th order reactor model. The control variable is quench
flow and the process output is oxygen concentration in the exit gas.
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Figure 4.2. Parameter estimates corresponding to Fig. 4.1.
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Figune 4.3. Reference Yp» Process output y, and control signal u
obtained when the implicit algorithm I1 with ng = 1 and ng = 0 is used
to control a 7th order reactor model. The control variable is quench
flow and the process output is oxygen concentration in the exit gas.
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Figure 4.4. Parameter estimates corresponding to Fig. 4.3.
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EXAMPLE 4.2. 2, 2

VLR= Vls-’

In this case the regulator has the structure

ro u(t) + ry u(t-1) = y.(t} - sg y(t) - sy y(t-1).

It js thus characterized by four parameters rgs s Sgs and Sy The
results of a simulation of the closed Toop system are shown in Fig. 4.5
and Fig. 4.6. Notice that the parameter estimates change substantially
over the first 100 steps although the closed loop response is almost
invariant after a few step changes. The parameter values obtained after
a longer simulation period are listed in Table 4.1.

Tablfe 4.1, Parameter estimates obtained at
different times for the regulator with np=2

and Ng =2,

t ro r] SO | s]
100 1.841 0.948 -1.080 0.556
200 1.846 1.064 -1.220 0.634
300 1.846 1.077 -1.237 0.642
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Figure 4.5, Reference Yp» Process output y, and control signal u
obtained when the implicit algorithm 11 with Np = 2, Ng = 2 is used
to control a 7th order reactor model. The control variable is quench
flow and the process output is oxygen concentration in the exit gas.
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Figune 4.6. Parameter estimates corresponding to Fig. 4.5.
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EXAMPLE 4.3, np = 3, ng = 3

In this case the complexity of the regulator is increased further. The
regulator has the form

rg u(t) + rqou(t-1) + ro u(t-2) =

= Ypl(t) = s ¥(t) -5y y(t-1) - 5, y(t-2).

The six regulator parameters are estimated directly. The results of a
simulation of the closed loop system are shown in Fig. 4.7 and Fig. 4.8.
Notice that both the output and the control signal are very close to
the signals obtained in Example 4.3.

In this example it was also possible to find several equilibria. for

the parameter estimates. The simulation results in Fig. 4.9 and Fig.
4.10 shows what happens if the parameters are initialized close to the
equilibrium solutions found in Example 4.3. Without analysis it is of
course not possible to judge if the solutions shown are true equilibria.
It is, however, unquestionable that the estimates remain close to the
given values for a substantial time. o
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Figurne 4.7. Reference ¥,» Process output y, and control signal u
obtained when the implicit algorithm I1 with Np = 3 and ng = 3 is used
to control a 7th order reactor model. The control variable is quench
flow and the process output is oxygen concentration in the exit gas.
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Figure 4.8, Parameter estimates corresponding to Fig. 4.7.
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Figure 4.9. Reference Yps Process output y, and control signal u
obtained when the implicit algorithm I1 with ng = 3 and ng =3 is used
to control a 7th order reactor model. The control variable is quench
flow and the process output is oxygen concentration in the exit gas.
The simulation is identical to the one shown in Fig. 4.7 except for

the initial values of the parameter estimates.
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Figure 4.10. Parameter estimates correéponding to Fig. 4.9.
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The examples show several interesting features. First it is clear that
very good results can be obtained with a regulator having few parameters.
From a practical point of view it appears reasonable to choose np =2
and ng = 2. This is further illustrated in Fig. 4.11 which is an enlarge-
ment of the step responses of the regulators in the different examples.
Comparing the curves labeled (2,2} and (3,3) in the figure, it is seen
that the regulators in Exampies 4.2 and 4.3 give step responses which
are similar. The step responses also agree with the specified response
at the sampling points. The regulators with fewer than four parameters
give responses that deviate from the desired response, In the particular
case when all process zeros are cancelled, the complexity of the
regulator can thus be determined simply by analysing how much the step
response obtained differs from the step response of the desired system,

Q

193]
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[13]

¢

Q 4
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Figure 4.11, Step responses of the systems in Examples 4.1, 4.2, and 4.3,
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Notice that the properties of the feedback Taws obtained in the
different examples have properties which differ substantially. This
can be seen from the graphs of the parameter estimates. The limiting
values of the parameter estimates are summarized in Table 4.2.

Table 4.2, Limiting estimates of the regulator parameters.

Example  ry r ry So 51 Sy S(1)/7(1)
4.1 a 1.822 0 0

4.1 b 1.900 -0.050 -0.050
4.2 1.846 1.077 . =1.237 0.643 -0.594

4.3 a 1.840 0.273 -0.416 -0.028 0.047 0.145 0.158
4.3 b 1.844 0.991 -0.015 -1.100 0.523 0.041 -0.536

In Table 4.2 there is also an entry labeled S(1)}/T(1). This number gives
the ratio between the low freguency gains of the feedback and feedforward
transfer functions. Notice that there are drastic differences between
these numbers both in sign and magnitude. The feedforward term dominates
in Examples 4.1 a, 4.1 b, and 4.3 a. It is only in examples 4.2 and 4.3 b
that there is an appreciable feedback. This means that. there are substan-
tial differences in the ability of the regulators to reject disturbances
although they have practically the same step responses. Also notice

that the feedback gain is positive in all cases except 4.3 a.

Explicit Self-tuning Algorithms

It will now be attempted to control the reactor using the explicit STR
algorithm EZ described in Astrom, Westerberg, and Wittenmark (1978). A
process model of the form (3.1) is thus estimated recursively and the
regulator parameters are then calculated using a pole-placement design
where all process zeros are retained. The desired closed Toop response
is given by the pulse transfer function
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where B is the estimated process numerator and the polynomial P has
its zeros at the origin and in

21,2 = 0.17 = 0.30 1.

These poles correspond to the poles obtained when a continuous time

system with relative damping ¢ = 0.707 and w = 1.5 is sampled with a
sampling period of one time unit. The observer polynomial was chosen
to have all its zeros at the origin.

The initial values of the parameter estimates were chosen as

ay(0) = a,(0) = ... = anA(O) =0
b1(0) = b,(0) = an_](D) 0
an(O) = 1.

The initial "covariance" was ten times the unit matrix and the for-
getting factor was 0.98 in all simulations. The command signal was
assumed to be a square wave. Self-tuning regulators having different
complexity were tested. Some results are summarized in the following
examples.

The connecting system and the macro used in this simulation is listed
in Appendix D together with a typical SIMNON dialog.

EXAMPLE 4.4 ng =1, ng = I

It was first attempted to estimate a mode] with only two parameters.
The results obtained are shown in Fig. 4.12, The parameter estimates
are shown in Fig. 4.13,

It is seen from Fig. 4.12 that the step response converges quickly. The
response has, however, too low damping which is due to the fact that
the order of the estimated model is too low. The parameter estimates
shown in Fig. 4.13 indicate that the solution obtained do not corre-
spond to constant parameter values because the estimates change at each
step change. a)
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Figure 4,12. Reference value Yp» process output y, and control signal u
obtained when the explicit algorithm E2 with Ny = 1 and ng = 1 is used
to control a 7th order reactor model. The control variable is quench
flow and the process output is oxygen concentration in the exit gas.
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Figure 4.13. Parameter estimates corresponding to Fig. 4.12.
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EXAMPLE 4.5 ny = Z, ng = 2

The results obtained when a process model characterized by ny = 2 and
ng = 2 are shown in Fig. 4.14 and Fig. 4.15.

Again the step response settles fairly quickly in spite of the fact
that the parameter estimates change considerably. It is seen from Fig.
4.15 that the parameter estimates have not converged after 100 steps.
The parameter estimates obtained after 100 and 200 steps are listed
below.

a;(100) = -0.458 a;(200) = -0.433
a,(100) = 0.062 a,(200) = 0.087
b, (100) = 0.662 b, (200) = 0.668
b,(100) = 0.445 b, (200) = 0.399

A comparison with Fig. 4.12 shows that the damping of the closed Toop
system is improved considerably when the number of parameters are
increased. o
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Figure 4.14. Reference value ¥, process output y, and control signal

u obtained when the explicit algorithm E2 with Ny = 2 and ng = 2 1is

used to control a 7th order reactor model. The control variable is quench
flow and the process output is oxygen concentration in the exit gas.
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Figure 4,15, Parameter estimates corresponding to Fig. 4.14.
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EXAMPLE 4.6 ng = 3, ng = 3

The results obtained when the number of estimated parameters are
increased further are shown in Fig, 4.16 and Fig. 4.17.

The step responses again settles fairly quickly although the parameters
have not converged after 100 steps. The parameter estimates obtained
at times 100 and 200 are listed below.

a,(100) = -0.128 a;(200) = -0.142
a,(100) = -0.018 a,(200) = -0.069
a5(100) = -0.011 a5(200) = -0.016
b, (100) = 0.672 b, (200) = 0.670
b,(100) = 0.632 b,(200) = 0.638
by (100) = 0.242 by (200) = 0.171

Notice that the estimates a, and ag are fairly small and that there
are noticable differences between the estimates obtained at £ = 100
and t = 200. Also notice that there are small differences in the step
responses, but that the differences in the control signals are more
noticable. o
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Figune 4.16. Reference value Yy» process output y, and control signalu
obtained when the explicit algorithm E2 with ny = 3 and ng = 3 is used
to control a 7th order reactor model. The control variable is quench
flow and the process output is oxygen concentration in the exit gas.
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Figure 4.17. Parameter estimates corresponding to Fig. 4.16,
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The step responses obtained for systems having different model com-
plexity are compared in Fig. 4.18. It is seen from this figure that the
damping i$ improved by increasing the order of the estimated model but
also that the response time increases when more b-parameters are esti-
mated. Several other model structures were also investigated although
they are not reported fully here. It was found that systems with Ny 2 1
and ng 2 3 had almost the same step responses. It was also observed
that the convergence rate was slower for systems having many parameters.
The parameter estimates could in fact vary substantially over a long
time although the step responses were virtually the same.
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Figure 4.18. Step responses at time 80 for the regulators having
different complexity.
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The estimated coefficients of the process model (3.1) obtained at
times 100 and 200 for regulators having different structures are
summarized in Table 4.3. It is seen in this table that the estimates
of the parameter b} are close in all cases. The estimates of the other
coefficients do, however, vary significantly. The estimates of 89, a3,
and b4 are also small in all cases. It thus seems reasonable to choose
a regulator with Ny = 1 and ng = 3. This is also consistent with the
investigation of the step responses of regulators having different
structures.

Tabfe 4.3. Coefficients of the process pulse transfer function estimated
at different times for regulators having different structures.

ng ng t ay a, 2y b] _ b2 b3 b4

i 1 100 -0.589 0.795

2 2 100 -0.458 0.0616" 0.662 0.445

2 2 200 -0.505 0.0870 0.668 0.399

3 3 100 -0.128 -0.0186 -0.0108 0.672 0,632 0.242

3 3 200 -0.142 -0.0690 0.0166 0.670 0.638 0.171

1 3 100 -0.230 - - 0.671 0.568 0.174

T3 200 -0.256 - - 0.670 0.562 0.133

1 4 100 -0.182 - - 0.668 0.613 0.177 0.0430
1 4 200 -0.206 - - 0.669 0.597 0.164 0.0256
2 4 100 -0.297 0.0538 - 0.668 0.536 0,130 0.0550
2 4 200 -0.294 0.0247 - 0.669 0.538 0,117 0.0162

Poles and zeros, DC-gain, and the first error coefficient ey for process
models of different complexity obtained at different times are listed in
‘Table 4.4. This table shows that the poles and zeros of the different
models may vary substantially although the step responses obtained from
the regulators designed from the models are very similar. It is also
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seen in the table that the DC-gain and the first error coefficient of
the models are remarkably constant. The choice ny = 1 and ng = 3, which
was previously found to be reasonable, gives a model with one real pole
and two complex zeros. Also notice in Table 4.4 that there may be
substantial differences between the models obtained at different times.
Compare for exampie the models for ng = 3 and ng = 3.

Tabfe 4.4. Poles, zeros, DC-gain, and error coefficients of the process
models estimated at different times for adaptive regulators having dif-
ferent structures.

ng ng t Poles Zeros Gain e;

1 1 100 0.589 1.937  -4.72
2 2 100 0.458+10,096 -0.672 1.835 -3.59
2 2 200 0.200£10.217 -0.598 1.834 -3.56
3 3 100 -0.088+i0.166,0.305 -0.470+10.373 1.836 -3.59
3 3 200 0.216+i0.101,-0.291 -0.476410.768 1.835 -3.58
T 3 100 0.230 -0.423+i10.284 1.834 -3.57
1 3 200 0.256 -0.419+10.153 1.835 -3.58
1 4 100 0.182 -0.126+10.284,-0.665 1.835 -3.58
1 4 200 0.206 1.835 -3.58
2 4 100 0.148+70.178 -0.054+10.340,~0.693 1.833 -3.56
2 4 200 0.146+70.055 -0.115+i0.170,-0.574 1.835 -3.57
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5. STR CONTROL OF A NONMINIMUM-PHASE LOOP

Composition measurements are costly. It is therefore of interest to
investigate if the outlet composition of the second bed can be con-
trolled indirectly by feedback from the outlet temperature. To obtain
a good system it is of course necessary to have some composition
measurement. If indirect control via the temperature measurement
works well it may, however, be sufficient to use taboratory measure-
ments for calibration only. The gas temperature at the reactor outlet
can be controlied either by the quench flow (Q) or by the temperature
(TQ) of the quench flow. It is slightly more difficult to use the quench
flow temperature as the control variable, This variable is therefore
chosen as the control variable to obtain the worst case.

It was mentioned in Chapter 2 that the control problem is difficult
because the linearized process dynamics relating outlet temperature to
quench flow temperature is nonminimum-phase. Compare Fig. 2.5. In the
pole-placement design formulation it is therefore specified that the
desired closed loop transfer function is given by

Gd =

| oo

(5.1)

where the numerator polynomial is the B-polynomial in the estimated
process modei. This means that the specified response will change if
the process dynamics changes. There will, however, not be any difficul-
ties to handle nonminimum phase systems. The polynomial P is chosen as

P =K-z(z2-0.342+0.12).
This means that the desired poles are at the origin and at

21’2 = 0.17 £ 0.30 1.

These poles correspond to those obtained when a second order system
with damping ¢ = 0.707 is samples with a period such that wh = 1.5.
The polynomial P is normalized in such a way that Gd(}) = 1, since the
B-polynomial is updated at each step. This means that the polynomial P
has to be renormalized at each step alsc. The observer poles are all
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chosen to be at the origin. The STR algorithm E2 presented in Astrom,
Westerberg, and Wittenmark (13978) was used in all simulations.

Self-tuning regulators having different structure were investigated

in the numerical experiments. Models of the form (3.1) having different
numbers of estimated parameters were explored. The purpose was to
investigate the influence of model complexity on the performance of

the closed Toop system;/ '

In the simulations the self-tuning regulator was connected to the
process model described in Chapter 2. A square wave command input was
applied and the performance of the system was observed. The sampling
period was chosen as 1 time unit in all simulations. The following
initial values were chosen in all simulations.

a](O) = aZ(O)
b, (0) = b, (0)
an(O) = 1.

ve. = anA(O) =0

= an_'] (0) = U

1}

The initial covariance was chosen as ten times the unit matrix and
the forgetting factor was 0.98 in all simulations. The results obtained
in some examples are given in the following.

EXAMPLE 5.1 ny = 1, ng =1

In this example a model (3.1) of first order was estimated. Such a
model has small possibilities to describe the process dynamics. The
controlled output did also diverge for many different choices of
initial conditions and the system could not be made to function prop-
erly. It was therefore attempted to increase the value of k in the
model (3.1). When this was done the results in Fig. 5.1 were obtained.
The parameter estimates are shown in Fig. 5.2. ' o




Figure 5.1. Process inputs and outputs when the explicit algorithm E2
with ny =1, ng =1, and k = 1 is used to control a 7th order model of
the reactor. The control variable is quench flow temperature and the
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process output is the temperature of the exit gas.
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EXAMPLE 5.2 ny = 1, ng = 2

In this case a model (5.3) of second order withrnA =1 and g = 2 was
estimated. Such a model is the simplest model which can describe a
sampled nonminimum-phase system. The output and the control variables
obtained are shown in Fig. 5.3. Notice that the step response converges
quickly. The step response differs, however, substantially from the
specified step response. The parameter estimates are shown in Fig. 5.4,
Notice that the parameter estimates change immediately after the
changes in the command signal. : O
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Figure 5.3. Process inputs and outputs when the explicit STR algorithm
E2 with Ny = 1 and ng = 2 is used to control a 7th order model of the
reactor. The control variable is quench flow temperature and the
process output is the temperature of the exit gas.

!__.
05 N U A
g 0+
o
E I 2 2 2 a 2
o i
@
8
E -051 '—“_Lp..--—i Lre | 1 [ R W By
g
o
o T T T T i T 1 I T
0 50 100
Time

Figure 5.4. Parameter estimates corresponding to Fig. 5.3.
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EXAMPLE 6.3 ny = 1, ng = 3

This example is identical to the previous example but the number of
b-parameters in the model {3.1) has been increased to ng = 3. The
process inputs and outputs are shown in Fig. 5.5 and the parameter
estimates in Fig. 5.6. A comparison with Fig. 5.3 shows that the over-

shoot is reduced drastically. o
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Figure 5.5. Process inputs and outputs when the explicit STR algorithm
E2 with Ny = 1 and ng = 3 is used to control a 7th order model of the
reactor. The control variable is quench flow temperature and the
process output is the temperature of the exit gas.
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Figure 5.6, Parameter estimates corresponding to Fig. 5.5.
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EXAMPLE 5.4 ng = Z, ng = 3

In this example the model complexity is increased by estimating an
additional a-parameter. The process inputs and outputs are shown in
Fig. 5.7 and the parameter estimates are shown in Fig. 5.8. o
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Figure 5.7. Process inputs and outputs when the explicit STR algorithm
E2 with ny = 2 and hp =3 is used to control a 7th order model of the
reactor. The control variable is quench flow temperature and the
process output is the temperature of the exit gas.
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Figwre 5.8, Parameter estimates corresponding to Fig. 5.7.
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EXAMPLE 5.5 ny = 3, ng = 3

In this case the model complexity is further increased by adding one
additional a-parameter. The process inputs and outputs are shown in

Fig. 5.9 and the parameter estimates are shown in Fig. 5.10. o
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Figure 5.9, Process inputs and outputs when the explicit STR algorithm
E2 with Np = Ng = 3 1s used to control a 7th order model of the reactor.
The control variable is quench flow temperature and the process output
is the temperature of the exit gas.
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Figure 5.10. Parameter estimates corresponding to Fig. 5.9.
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Comparison of Regulators Having Different Complexity

Seme empirical observations made in the simulations will now be
summarized. If the model used in the STR is tooc simple the closed Toop
system does not have the desired performance. The closed loop system
may even be unstable as was observed for np = Ng = 1 and k = 0. When
the complexity of the model is increased the performance of the closed
loop system will approach the specified performance. It was also
observed that the convergence was comparatively fast. The step response
did not change much after the first two step changes. Compare for
exampie Figures 5.1, 5.3, 5.5, 5.7, and 5.9.

Tabfe 5.1, Coefficients of the process pulse transfer functions esti-
mated at different times for regulators having different structures.

ng g t 2 a, aq b] b2 b3 b4
1 1 100 -0.541 0.400

1 2 100 =-0.546 -0.164 0.514

1 3 100 -0.330 -0.152 0.422 0.229

1 3 400 -0.335 ~0.154 0.424 0.224

2 3 100 -0.402 0.0397 -0.153  0.433 0.193

2 3 200 -0.457 0.0675 -0.154 0.445 0.162

3 3 100

3 3 200 -0.428 0.0458 0.0063 -0.154 0.440 0.177
3 3 300 -0.488 0.0903 -0.0064 -0.154 (0.450 0.147
3 3 400 -0.494 0.0949 -0.0077 -0.154 0.451 0.144

2 4 100 0.0253 -0.0831 -0.153  0.372  0.359 0.122

2 4 200 -0.184 -0.0211 -0.154 0.403 0.277 0.0646
2 4 400 -0.378 -0.0420 -0.154  0.433 0,196 0.0190
2 4 600 -0.380 -0.0431 -0.154  0.433 0.194 0.0183
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The parameter estimates obtained at different times for regulators
having different structures are summarized in Table 6.1, It is seen in
the table that the estimates of bI are very close in all cases given
in the table. The estimates of the parameter b2 are also fairly close
but the other parameter estimates vary substantially. It is also seen
in Table 5.1 that the estimates of the parameters 8y, Ag, and b4 are
all small, particularly for large t. It thus seems reasonab]e to
choose a regulator having the structure Ny = 1 and ng = 3. Notice

that this model is much simpler than the model of the process and the
actuators which has np = 8 and ng = 7. The poles and zeros, the low
frequency gain, and the error coefficients of the models having diffe-
rent structures are given in Table 5.2. Notice that the DC-gain, the

Table 5.2, Poles, zeros, DC-gain, and error coefficients of the process
models estimated at different times for adaptive reqgulators having
different structures.

hy ng t Poles Zeros Gain e,

1 1 100 0, 0.581 0.872 -2.77
2 100 0, 0.546 3.14 0.772 -2.83
1 3 100 0,0, 0.300 3.24, -0.465 0.744 -2.43
1 3 400 0,0, 9.335 3.22, -0.454 0.745 -2.43
2 3 100 o0, 0.175, 0,227 3.22, -0.392 0.743 -2.40
2 3 200 0, 0.228+i0.124 3.21, -0.328 0.742 -2.40
3 3 100 -0.516, 0.307+i0.190 3.23, -0.717 0.741 -2.38
3 3 200 -0.075, 0.257%i0.7142 3.21, -0.358 0.742 -2.39
3 3 300 0.186, 0.151xi0.107 3.21, -0.296 0.742 -2.40
3 3 400 0.223, 0.135%i0.127 3.21, -0.290 0.742 -2.40
2 4 100 0,0, -0.302, 0.277 3.22, -0.400%i0.291 0.742 -2.40
2 4 200 0, 0, 0.092%i0.112 3.21, -0.300+10.202 0.742 -2.40
2 4 400 0, 0, 0.189%10.080 3.21, -0.257, ~0.149 0.742 -2.40
2 4 600 0, 0, 0.190+i0.082 3.21, -0.262, -0.140 0.742 -2.40
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Figure 5.11. Parameter estimates for the regulator with nga =3 and
ng = 3.
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Figure 5,12, Parameter estimates for the regulator with ng =1 and

ng = 3.
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error coefficient and the process zero outside the unit disc have
almost the same values in all cases even if the other poles and zeros
may vary significantly. The fact that the zero outside the unit disc
is estimated very well points to the usefulness of self-tuning regula-
tors based on algorithms which cancel all zeros that are sufficiently

well damped.

It is also seen in Table 5.1 that the parameter estimateé wf11 converge
slowly for the regulators which have many parameters, i.e. Np = Ny = 3
and np = 2 and ng = 4. This is also illustrated in Fig. 5.11, which
shows the parameter estimates over a longer period for the system with
ng = np = 3. Notice that the parameter b5 = b} converges quickly but
the other parameters converge slowly. Compare with Fig. 5.12, which
shows the parameter estimates for the regulator with ny = 1 and ng = 3.

It was previously mentioned that Ny = 1 and g = 3 was a reasonable
choice of regulator structure. This is further illustrated in Fig. 5.13,
which shows the step responses of regulators .based on models of

different complexity.

Step response
T

0 5 10
Time

Fiqure 5.13. Step responses at time 80 for regqulators based on models
of different complexity. The numbers on the curve refer to the nume-
rator and denominator degrees of the model transfer function.
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b, ANALYSIS

A striking observation from the numerical experiments, reported in

the previous chapters, is that the performance of the self-tuning regu-
lator can be very close to the specifications even if the model used

in the regulators is substantially simpler than the controlled process.
Specifically it was found that a self-tuning regulator with ng = 1 and
ng = 3 gave a closed loop response which deviated from the specifica-
tions by at most 1 % even if the model of the reactor with actuator
dynamics has Ny = 8 and ng = 7. This is particularly surprising since
the process has several complex poles. The general observations agree
well with observations made when applying system identification methods
to a large variety of industrial processes. In such cases it has been
observed that simple models are often adequate. See Astrom (1976) and
(1977). This observation is of substantial practical significance
because it supports the use of simple models. It would thus be of
interest to have theory wnich gives insignt into properties of self-
-tuning regulators based on model structures that are simpler than the
real process. Unfortunately there are very few results of this type
available. Most theory of system identification and adaptive control

is based on the assumption that the class of fitted models is suffi-
ciently rich to include the real process. Exceptions are Astrdm and
Wittenmark (1973), Ljung (1976), and Baram and Sandell (1978). Analysis
will now be given which gives some insight into the problem. We will
start by investigating how sensitive the pole-placement design is to
modeling errors.

Consider a process whose dynamics is characterized by the rational
pulse transfer function

B
(6.1)

Q
Ob‘CD

Assume that it is desired to design a combined feedback and feedforward
using pole placement such that the closed loop system has the pulse
transfer function

no - Q
507 - (6.2)
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Let the design be based on a simplified model having the pulse
transfer function

B

G == .
A

(6.3)
The pole-placement design procedure can be described as follows. Find
the greatest common divisor B, of B and Q. Factor Q and B as
Q= 4B, | (6.4)
B = ByB, . (6.5)

Solve the equation

AR + BS = PByT, , (6.6)

where T is the desired observer polynomial. The controller is then
given by

Ru = Ty, - Sy (6.7)
where
T = TIQI' (6.8)

Notice that the regulator (6.5) can be interpreted as the combination
of a feedforward path with the transfer function

LT
SpF = 5 (6.9)

and a feedback path with the transfer function

Grg =

=

(6.10)

It must be required that the polynomials 81, P, QI’ and TT have no
zeros on the unit circle or outside the unit disc.

Stability of Pole-placement Regulators Designed Using Simplified Models

[t will now be investigated what happens when a simplified model (6.3)
is used to design the regulator and the regulator then is applied to
the system (6.1). An important requirement is that the closed loop
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system is stable. A sufficient condition is given by

THEOREM 1

Consider a regulator (6.5) obtained by applying pole-placement design
to the stable model G = B/A with the specification that the closed
loop transfer function should be Gq = Q/P. Let the regulator control
a stable system with the pulse transfer function Gy = BO/AO. The
closed loop system is then stable if

G
6-Gof < | 22T | - ‘Ji .| FE (6.11)
on the unit circle and at z = . a|
Proof
Consider the function
AR + B.S BnaS
F = __0_._._.(_)._. = R + ._9..,.... . (6..E2)
Ay A

This function is regular outside and on the unit circle because the
system G was assumed stable. The zeros of the function F are equal to
the closed Toop poles. Solving (6.6) for R and inserting in (6.12)
gives

F

PByT,/A - BS/A + ByS/Ag = PByT,/A + S(Gg - G) (6.13)

when G Gg the zeros of F are thus equal to the zeros of the polyno-
mials B], P, and T1. Since both the system and the model were assumed
to be stable the functions PB]T]/A] and 5(Gy-6G) are both regular
outside the unit disc and on the unit circle. The functions are thus
regular in the domain enclosed by the contour C in Fig. 6.1. Notice
that

spr _ 51PNy BTy

AQS  AQqB,S AS

Condition (6.6) thus implies that
IS(Gg-G)]| < [PB,T) /A |
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Figure 6.1. The contour C.

on the unit circle and on the circle with radius R provided that R

is sufficiently large. The principle of the argument variation (see
e.g. Titchmarsh (1932)) then implies that the functions F and PByT¢/A
have the same number of zeros inside the contour. Notice that the
argument variations along the lines 21 and %o cancel each other. Since
the function PB]T]/A is reqgular outside the unit disc and on the unit
circle it follows that the closed loop system has no poles outside

the unit disc. The last equality in (6.6) is obtained from

BpT _ BPIR _ O G

AQS AQRS Gy Grp

and the proof is complieted. o

Theorem 1 gives good insight into the sensitivity of the pole-placement
design to modeling errors. When a model has been obtained and a regu-
lator has been designed, the right hand side of (6.11) can be determined.
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It is then easy to establish bounds on the transfer function G which
will result in a stable closed loop system. Notice that the bound is
proportional to |Gpp/Frp|. From the point of view of szability the
requirements on model precision will thus decrease if the ratio of
feedforward to feedback is increased. For single-degree-of-freedom
systems GFF = GFB and the bounds are then further simplified. Also
notice that the bound is proportional to |G/G4|. From the point of
view of stability it is thus advantageous to have a high process gain,
The ratio |G/Gy| is normally large for low frequencies because the low
frequency gain of the process is typically larger than the desired

Tow frequency gain. Reasonable specifications are also often such that
|G/G4| is constant for high frequencies. Since Gy and G normally are
small for high frequencies, this means that the inequality (6.5) can
be satisfied even if G and GO deviates substantia11y at high frequen-
cies. Normally it is only in a fairly narrow freguency range where
(6.5) gives critical requirements on the model accuracy. This explains
qualitatively why simple models can be useful in the pole-placement
design,

Sensitivity of Closed Loop Poles to Model Errors

So far the discussion has been focussed on the stability problem.
Having established that a model is sufficiently accurate to guarantee
stability it is of course of interest to analyse the problem further
and to investigate the requirements on model precision which are
necessary to have the dominating poles close to their specified values.

In the proof of Theorem 1 it was shown that the closed loop poles are
the zeros of the function F defined by (6.6), i.e.

n

When G
Consider F as a function of z and G. A Taylor series expansion at

1]

GO the system has thus poles at the zeros of P, B], and T].

z = p; and G = Gy gives

F(z) = H{p;) + B (py){z-py) + S(py)[G(py) - Gy(py)].
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An approximative formula for the change of the pole P; due to a
modeling error is thus

2i = by + T (017" S(py)[6g(p;) - G(py)].

If it is required that a pole p; change by at most a|91] due to a
modeling error the following inequality is obtained:

|Gg(ps) - 6(py)] < alH ()] 157 ()| + Ips]  (6.8)

A requirement that certain dominant poles do not change too much will
thus Tead to a requirement that the values of the model pulse transfer
function is close to the process pulse transfer function at the poles
of interest. Such a requirement can of course also be satisfied by a
fairly simple model provided that the number of dominant poles is not
too large.

These preliminary results give some insight why simple models are so
useful. Much further work is of course necessary to get full insight
into the problem.
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APPENDIX A - REACTOR MODEL

The SIMNON program used to simulate the reactor is Tisted below.

CONTINUQOUS SYSTEM BED| |
WLINEAR MODEL OF SECOND HED OF FOSS REACTORY

INPUT TIO0 CI0 Q TQ

QUTPUT T5 76 T7 Ti110 CI11I0

STATE X1 X2 X3 X4 X5 X6 X7 )
DER DX1 Dx2 DX3 DX4 DXS5 DX6 X7

QUTPUT

"MODEL OF M{XING CHAMBERW™
TME~0.337%0+0,237#TQ+0,7638710
CMzs =0,7234Q+0.763+#C |0

S1=2-0,110#X1+1.01%X2+0,0706#X3-0,0319%X4+(, 0244*X5 0. 0289*X6+0 0171=X7
T5=51+0.048+TH~0,002814#Q

§270.1904X1-0.,240#X2+0,8668X3+0, 38£*X4 0.191#Xx5+0,202%X6-0,117#x7
T6=52~-0,0950%TH-0,00381+0

S35-0,119#X1+0.126%#X2~0,186#X3+40,632#X4+0,6824X5-0,433#X6+0,235+X7
T7=583+0,0614%#TM~-0,00345%Q

S4=-0.,004924X1+0,004884X2-0,00600#X3+0,009964X4~0,02634X5+0,342%X6
T110=254+40.,676#X7+0,00259%TM=0.,0019020

555-0.0465#X1-0.114#X2-0,191#X3-0,2624%X4-0.2634X5-0,1424¥%6
Cl10=S5~0.,0002414X7+40,2434CM+0,276#¢

DYNAMICS
R1z2=2,51#X1-0,12824X2+0,103+X3-0,3284%X4+0,158#X5~0,22L2X6+0,135%X7
DX1=R1+2.83#TH+0,0679%CM=~0,0266%0Q

R2=0.768#X1-2,13%X2-0,200#X3+0,200#X4~0,2338X5+0,31.9#X6~0,1944X7
DX2=R2+2.36#TM+0,281#CM~0.123+Q

R3=0 .845*X1+i [ 80§X2-1 ] 88*X3-0 -285*3(4"'0 .269*)(5-'0 .346*)(6*0 .208*x7
DX3=R3+0,8495TM+0,551#CM~0,2038%Q

R4=0,318%#X1+1.504%X2+2,414X3-1,84%X4«0,2752X5+0,282%X6~0,1632X7
DX4=R4-1.,46%TM+0,589%CM=0,0781%Q

R5=-0,685#X1-0,218#X2+L,696X3+2,202%X4-2,0524%5-0,237#X6+0,120%X?7
DX5=R5«1,594#TH+0,349#CM+(,219#Q

RO=~1,02#X1~1,46%X2+0,3344X3+1,90#X4+1,434X5-2,342X6-0,112%X7
DX6=R6~-0,184#TM+0,205%#CM+0,3814Q

R72=1.01#X1~1,66#X2-0,0508%X3+1,72#%4+1,44%X5+0,623#X6~2,835X%7
DX7=R7+0,254#TM+0,187%CH+0,40450

END
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APPENDIX B - THE SYSTEMS ACTUA AND REF

To simulate the closed Toop the reactor model BEDII listed in Appendix A was
used. The adaptive regulator REG is described in Gustavsson (1978). Systems
describing the actuator (ACTUA) and the reference signal generation (REF}
were also used. These systems are Tisted below.

CONTINUOUS SYSTEM ACTUA
INPUT U

QUTPUT Y

STATE X

DER DX

DUTPUT
Y=X

-DYNAMICS
- DX=(U=X)/TA

TA:D.1
END

DISCRETE SYSTEM REF

TIME T
OUTPUT Y
TSAMP T8

OUTPUT
Y={F HMOD(T,PER)I<(Q.5#PER~EPS) THEN NIVI ELSE NIV2

DYNAMICS
TS5=T+DT

PER! 40
Niv1iil
Nivei-1i
EPS:0.00001
BT:1

END
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APPENDIX € = CONCENTRATION CONTROL USING IMPLICIT ALGORITHM
The connecting system is listed below.

CONNECTING SYSTEM FOSCR
VCONNECTING SYSTEM FOR CONCENTRATION REGULATION

ClO(BEDI1]}=0
TIO(BEDI{)=0
TQ{BEDI!)=0
Q{BEDI1)=sY{ACTUA]

UL{REGI=CIiIO(BEDI{])=Y{REF]
US{REG)}=Y{REF]
ULACTUAJ=URIREG]
U2[REGI=sUR[REG)
UPLOT=AS#UIACTUAL+BS

ASid

BS:-4

END

The following macro was used.

MACRO RBEDC1

"MACRO FOR CONCENTRATION CONTROL USING STURP1

PAR REG: 4 "CHQICE 0OF REGULATOR ALGORITHM STURPZ2
PAR N1i:2 - .

PAR N2:2

PAR K110

PAR K2:0

PAR THOL1:Q ®"INITIAL VALUES OF PARAMETER ESTIMATES
PAR THO2:0

PAR THO31:0

PAR THO4:0

PAR THO5:0

PAR THO6!0

PAR PD1:10 "INITIAL COVAR{ANCES

PAR P02:10 .

PAR PO31:110

PAR P041:10

PAR P091:110

PAR P06:10

PAR WT1:0.98 "FORGETTING FACTOR

PAR REF:1 "AMPLITUDE OF COMMAND S|GNAL

PAR PER1:40Q "PERIOD OF SGUARE WAVE COMMAND

PAR DT{REF)1 "SAMPLING PERIOD IN REF

PAR NAMI3 "oCOEFFICIENTS [N DESIRED CHAR- POLY
PAR NT:2 "QCOEFFICIENTS |IN (OBSERVER POLYNOMIAL
PAR AM1:2,7548 "CLOSED LOOP CHAR POLY

PAR AM2:-2,6446

PAR AM3:0.,8898

PAR TL1{REGI:!1 "OBSERVER POLYNOMIAL
PAR T2{REG):0

PAR T3{REG
PAR DTIREG
END

— s
e
[l =]




A typical SIMNON dialog is Tisted below,

ALGOR RK

LET IVR.=6
LET ISA.=3
LET ISB.=4
LET IPL.=1

SYST REG ACTUA BEOII REF FOSCR
BEDC1

AXES H 0 100 V -5 2

PLOT Y[REF} CIIO UPLOT

STORE TH1 TH2 TH3 TH4 TH5 TH6 Y[REF] CIIO UPLOT
PAR THO3:1

SIMU 0 100

AXES V -0.7 0.7

SHOW TH1 TH2 TH3 TH4

AXES H 78 92 V -3 3

SHOW Y[REFI CII0

DISP (LP)

A copy of the Tine printer listing obtained after DISP is enclosed.
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ENPUT ¢ UL
OUTPUT! UR
TH2
TH5
TS
ID
N1
N4
K1
K4
1BO
WT |
{RES
INCR
RO
FILT
tWR
NT
T3
A M
AMS3
NBH
BM3
NG
QP 3
NP1
PP13
NP2
PpP23
IPPL
1PP4
RPP2
RPPS
THG3
THD&
PQ3
POs6
R12
R15
v
ALl
AL4

TSAMP
PAR

- we

VAR

Y m m m m im m e e W wm  oa m um - - e o em

STATE
INIT
DER
INPUT
QUTPUT
PAR

v aw
>

~

DISCRETE SYSTEM REG

2.00274
~0.541717
0.559511
0.000000
101.0600
i,00000
2.00000
0.000000
0.000000
0.000000
G,000000
0.980000
6.000000
0,000000
1,00000
1.00000
0,000000
2,00000
0.000000
3.00000
0.889800
1.00000
0.000000
1.00000
0.000000
1.00000
G6.000000
i1.00000
0.,0860000

0,000000

0.000000
1.00000
1.00000
1.00000

0.000000
1g.0000
10.0000

0.000000

G,000000
29,1655

0.000000

0.000000

ue

RES
TH3
THE

" REG

N2
N5
Ke
K5
B0
WTHM
LS
Q2
i0P
MRAS
NWR1
Ti
T4
AM1

AM4

BM1
BM4
Qr1
QP4
PP11
PP14

PP21

PP24
|PP2
IPPS

RPP3
THO1
THO4

PO1

P04
SAPO

-0.541717
3,254506E-03

1,83779

0.006000

4,00000
2,00000
0,000000
0,000000
0.,000000
1,00000
1,00000
50,0000
0.000000
0,000000
1,00000
10,0000
1.00000
0,000000
2,75480
0,000000
1,00000
0,000000
1,00000
0.000000
1,00000
0.000000
1.00000
6,000000
0,000000
0,000000
1.00000
0,000000
0.000000
10,6000
10,0000
100,000
0,000000
8,000000
31,7142
0.000000
0.000000

CONTINUDUS SYSTEM ACTUA

0,546309
0.000000
~10.8803
~0.541717
0.546309

0.1000040

u3
TH1
TH4

-1,00000
-1,08613
0,958587

1,00000
0.000000
0.000000
0,000000
'1 . GDDOB

1,0000¢0
-1,000090
0,000000

10,0600
0.0000060
0.000000

100,000
6,000000
c.000000
~2,64460
¢,000000
0.000000
0.000000
0,000000
g.,000000
6,000000
0,000000
0.000000
0.,000000
0.000000

1.00000

1,0000¢0
0,000000
0,000000

10,0000

10,0000
0,000000
G¢,000000

Q.980000
0.,000000
0.000000




STATE 14
INIT %

DER H

INPUT 3
OUTPUT?

VAR :

- e

TIME
OUTPUT!
TSAMP 1
PAR :

PAR H
VAR !

X1
X4
X7
X1
X4
X7
bx1
Dx4
Dx7
TiO
TQ
T5
TIHIOQ
™
52
S5
R3
R&

T
Y

TS
PER
NIVZ

AS

urLoT

CONTINUDUS SYSTE#M BEDI |

~0,215342
‘1101611
-1,22308
0.000000
6.000000
0.000000
1.661736E~05
2,613580E~04
2.165101E-04
0.000G00
0.,000000 -
-0,357276
'1!23287
”0-184106
~0,745554
0.947643
0.484969
~0,160803

X2
X5

X2
X5

Dx2
DX5

Cio

Té
Ciio
CM
S3
R1
R4
R7

-1,27925

0,000000
0.000000

4,657730E~-05
3.104806E-04

0.000000

-0,730146
1,00274
~-0,394984
-1,15942
0.562388
6.,777178BE~03
~9,986782E-02

DISCRETE SYSTEM REF

100,000
-1.00000
101,000

40,0000
’1.00000

EPS
DT

1,000000E~-05
1,00000

CONNECTING SYSTEM FOSCR

1.,00000
~-4,54172

Bs

-4|00000

X3

X6

X3
X6

DX3
DX6

T7

Si
54
R2
R5

57

"00613175
'1026069

0.,000000
0.,000000

4,275931E-04
3 451949E~04

0.546309
-1,17261
~0,346904

~0,404556
0.612723

~0,274948

cEm e mhc B wm A Am . m e W mm . G  ER MR A e . M- ER A - e - R
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APPENDIX D - CONCENTRATION CONTROL USING EXPLICIT ALGORITHM

The connecting system used was FOSCR given in Appendix C. The following macro
was used,

MACRO BEDC?2

"MACRO FOR CONCENTRATION GONTROL USING STURP2

PAR REG:S "CHOICE OF REGULATOR ALGOR| THM STURPZ2
Pak MN1:2 .

PaRk N2:2

PAR %110

PAR K2:0

PAR THUL1:D "INITIAL VALUES OF PARAMETER ESTIMATES
FAR THGZ2:0D

FAR THU3:0D

PAR THUG4: 0

PAR THO5:0

PAR THU&:D

FAR POL10 "INITIAL COVAR!ANGCES

PAR PUZ2:1Q .

Pat POSI1Y

FASR PO4310

PAR PUS140

PAR PJI6SLG

PAR WTii0.98 "FORGETTING FACTOR

FAR REF i1 "AMPLITUDE OF COMMAND S|GNAL

PAR PER:40 "PERIQOD OF SQUARE WAVE COMMAND

PAR DTI(REFJ31 "SAMPLING PERIOD IN REF

PAR NAM:3 "OCOEFFICIENTS IN DESIRED CHAR POLY
PAR NT:i12 _ "OCOEFFICIENTS IN OBSERVER POLYNOMI AL

PAR AM1:1t "CLOSED LOOP CHAR POLY
PAR AM2:1+0,34 -

PAR AM3:0.,12

PAR T1tREGI:1 "OBSERVER POLYNOMIAL.
PAR T2[REG):0 .

PAR T3[REG):0

PAR DT{REG):1

END




A typical SIMNON dialog is listed below.

ALGOR RK

LET IVR.=6
LET ISA.=3
LET ISB.=4
LET IPL. =1

SYST REG ACTUA BEDII REF FOSCR
BEDC?

AXES H 0 100 V -5 2

PLOT Y[REFI CIIO UPLOT

STORE TH1 TH2 TH3 TH4 TH5 TH6 YIREF] CIIO UPLOT
PAR THO4:1

SIMU O 100

AXES V -0.7 0.7

SHOW TH1 THZ2 TH3 THA4

AXES H 78 92 ¥ -3 3

SHOW Y[REF] CIIO

DISP (LP)

A copy of the lineprinter 1isting obtained after DISP is enclosed.
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INPUT
oUTPUT

TSAMP
PAR

STATE
INIT
DER
FNPUT
CUTPUT
PAR

60

!
!

{

L
t

-

-

-t me sw ws &8

Uil
UR
TH2
TH5
TS
1D
N1
N4
K1
K4
1B0O
WT1
IRES
INCR
RO
FILT
[WR
NT
T3
NAM
AM3
NBM
BM3
NQ
apP3
NP1
PPL3
NP2
PP23
IPPL
IPP4
RPP2
RPPS
THGS
THOG
PCG3
PU6
R12
R15

SAP |

DISCRETE SYSTEM REG

1,99988
-0,863476

6.162631E-02
0,000000
101,000
1,00000
2,00000
0,000000
0,000000
0,000000
§,000000
0,960000
0,000000
0.000000
1,00000
1.00000
0,000000
2,00000
0.000000
3.00000
0.,120000
1,00000
0.000000
1,00000
0.,000000
1,00000
0,000000
1,00000
0,000000
0,000000
0.000000
1,00000
1,00000
0,000000
0,000000
10,0000
16,0000
0,000000
0,000000
27.0110

1.000000E~02

CONTINUOQU
0.54485]
g.000000
"140083\$
0.544851
0,100000

u2

RES
TH3
THé

REG
N2
NS
K2

~0.863476

~7.,696977E~05
0.662576
0.,000000

5,00000
2,00000
0.000000
0,04000008
0.040000
1,00000
1,00000
50,0000
0,000000
0,000000
1,00000
10,0000
1,00000
0,000000
1,00000
0.000000
1,00000
0,000000
1,00000
4,000000
1,00000
0,000000
1,00000
0,000000
0.000000
0.000000
1,00000
0.000000
1,00000
10,0000
10,0000
100,000
0,000000
0,000000
33,1612 -
0.000000

S SYSTEM ACTUA

U3 -1,00000
THL  =0,458079
TH4 0,445077
REF 1,00000
N3 0,000000
KDEL  0,000000
K3 0.000000
ULIM  =1,00000
nT 1,00000
RLIM  =1,00000
DELTA 0,000600
ITER. 10,0000
EPS 0,000000
08S  0,000000
NWR2 100,000
T2 0,0060000
T5 0,000000
AM2  =0,340000
AMS 0,000000
BM2 0,000000
BM5 0,000000
ap2 0,000000
Qpr5 6,000000
PP12  0,000000
PP15. 0,000000
PP22  0,000000
PP25  0,000000
iPP3  0,000000
RPP1 1,00000
RPP 4 1,00000
THO2  0,000000
THOS  0,000000
PO2 10,0000
POS 10,0000
R11 0,000000
R14 0,000000
WT 0,980000

— e am. e KD Y M ey we me . e .w o wm -




STATE

INIT 3

»a

DER

INPUT 1
OUTPUT!

VAR H

- s e e

TIME
QUTPUT:
TSAMP ¢
PAR H

o e o em am L e o LR MR T aw m W . b e e e e O, o - me

PAR H
VAR {

X1
X4
X7
X1
X4
X7
Dx1
Dx4
DX7
TIO
TQ
T5
TIHIQ
™
52
S5
R3
R6

PER
NIvV2

AS
UpLoT

CONTINUQUS SYSTEM BEDI|

-0,214795
-1,01326
-1.,21935
0.000000
0.,000000
g0.,000000

8,840510E-05
-6.130803E~05
~2.692640E-05

0,000000
0,000000
-0.,356347
"1!22912
~0.,183615
-0,743530
0,944928
0.483579
-0.,160659

Xe

X5

X2
x5

bxz
DX5

clo

T6
Clio
CM
S3
R1
R4
R7

~0,339732
-1,2755¢%

6,008000
0.060000

8,119270E~
-8,294545E~-

©0,000000

-0.728162.
0,999876

«0,393927
=1,15610
0,560959

6,437119F~
~9,984410E~

DISCRETE SYSTEM REF

100,000
-1.,00000
101.000
40.0000
-=1,00000

EPS

- nT

1,000000E~

1,00000.

CONNECTING SYSTEM FOSCR

1.00000
~4,86348

BS

-4,00000

X3
X6

X3
X6

05 DX3
05 DXé6

T7

§1

54

R2
63 RS
g2

05 NIVl

61

-0,611528
’1-25638

0,000000
0,000000

3,189407E~05
~4,124269E~05

L2

0.,544851

~1,16925
-0,346002
~0,403330

0.611122
~0,274606

1.,00000

]
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APPENDIX E - TEMPERATURE CONTROL OF NONMINIMUM PHASE LOOP

The connecting system is listed below.

CONNECTING SYSTEM FOSTR
WCONNECTING SYSTEM FOR TEMPERATURE REGULATION

CIOIBEDI|1=0
TIO[BEDI1}=0
TQAIBEDIV)I=Y[ACTUA]
GI{BEDI{)=Y
ULIREGI=TI{O[BEDII)-Y[REF]
USTREG)=Y{REF}
YLACTUAI=URIREG)

U2 1REGI=UR{REG]
UPLOT=AS#U[ACTUA]+BS
AS:D.5

RS-

END

The following macro was used in the simulations.

MACRO HEDTR

"MACRO FOR TEMPERATURE CONTROL

PAR RgG:% "CHOICE OF REGULATOR ALGORITHM STURPZ2
PAR N1

PAR NZ233

PAR Trl1:0 WiNITIAL VALUES OF PARAMETER ESTIMATES
PAR Tr02:0

PAR ThHO3:0

PAR TrO4:0

PAR THO5:0

PAR THO610

PAR PO1110 "INITIAL COVARIANCES"

PAR P02110

PAR PO3:10

PAR P04:10

FAR PO5110
PAR P06:10
PAR WT1:0,98 . "PORGETTING FACTOR
PAR REF:i "AMPLITUDE OF COMMAND SIGNAL
PAR FER:40 WPER|OD OF SQUARE WAVE COMMAND
PAR DTIREF):1 "SAMPLING PERIOD IN REF
_ PAR NAM:1 "QCOEFF{CIENTS N DESIRED CHAR POLY
PAR NT:i2 "QCOEFFICIENTS IN OBSERVER POLYNOMIAL
PAR AMi:il “CLOSED LOOP CHAR POLY '

PAR AMZ2:-0,34

PAR AM3I:0.12

Par Ti(REG):1 - M"QOBRSERVERPOLYNOMIAL
PAR TZ2IREG):0
PAR TI(REGI:D
PAR DT{REG]:1
PAR ASI0.5
PAR BSt1-4

END




A typical SIMNON dialog is Tisted below.

ALGOR RK

LET TVR.=6
LET ISA.=3
LET ISB.=4
LET IPL.=1

SYST REG ACTUA BEDII REF FOSTR
BEDTR

AXES H 0 100 V -5 2

PLOT Y[REF] TIIO UPLOT

STORE TH1 TH2 TH3 TH4 TH5 TH6 Y[REFI TIIO UPLOT
PAR THO4:1

SIMU 0 100

AXES V -0.7 0.7

SHOW TH1 TH2 TH3 TH4 -MARK
AXES H 78 92 V -3 3

SHOW Y[REF] TIIO

DISP (LP)

A copy of the Tine printer listing obtained after this simulation is
enclosed.
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ENPUT
QUTPUT

TSAMP
PAR

VAR

STATE
INTT
DER
INPUT
QUTPUT
PAR

64

[)
.

e ®s

e se es =s 4w ss

U1
UR
TH?2
THE
TS
D
N1
N4
K1
K4
180
WTI
IRES
{NCR
RO
FILT
IWR
MT
T3
NAM
AM3
NBM
BM3
NG
GP3
NP1
PP13
NP2
PP23
|pPPL
IPP4
RPP2Z
RPPS
THQ3
POl
PO4
R11
R14
v
ALY
AL4

DISCRETE SYSTEM REG

1.99700
-1,78684

0,0800000
101.000
1.00000
1.00000

0.0600000

0.,0000060

0.000000

0.000000

g.9800n049

0.000000

g.000000
1,00000
1.00000

0.000000
2.00000

0.000000
3,00000

0,120000
1.00080

g.000000
1,00000

6.,00000¢0
1.00000

0.000000
1,00000

0.000000

g.000000

g.000000
1.,00000
1.00000

g.000000
i0.0000
16.00090

0.000900

0.000000
55.6474

0.000000

g.g0o0000

2
RES
TH3

REG
N2

NS

K2

KS

BO

WT™M
iLS
g2

| (P
MRAS
NWR1
Tl

T4

AM1
AM4
BM1
8M4
QP1
QP4
PPLL
PP14
PP21
PP24
IPP2
IPP5S
RPPJ3
THO1
THU4
P02
POS
R12
R15
Vi

AlL2
ALS

-1,78684

~2,178332E~03

0.421912

5,00000
3,00000
6.,000000
0.000000
g.000000
1,00000
1,00000
50,0000
o,0q0000
0,000000
1,00000
10,6000
1.,00000
0.000000
1.00000
0,800000
1.,00000
0,0300000
i1,00000
0,000000

1,00000.

0,000000
1.00000
¢g.n00000
0.000000
g.000000
1,00000
0,800000
1.00000
16,0000
10,8000
o.,0hanu00
0.0700000
192,658
0,000000
6,n00800

COMT |NUQUS SYSTEM ACTUA

1.34359
g.000000
-31,3043
-1,78684

1.34359
0.100800

U3
TH1
TH4

REF
N3
KDEL
K3
UL tM
BY
RL 1M

DELTA

{TER
EPS

- 0BS

NWR2
T2
75
AM?Z
AMS
BM2
BM5
ap2
PS5
PP12
PP15
pp22
Pp25
PR3
RPP1
RPP4
THOZ2
THG5
P03
SAPQ
R13

WT
ALS

~1,00000
-0,330560
0,229253

1.,00000
0,000000
¢,000000
0.004000

4,00000

i.00000
-1,00000
g.004000

14,0000
0.000000
0.000000

100,000
g,000000
o,000000

-0,340000
0.000000
D.0AQ000Q
0,000000
0,000000
0,000000
o,000000
0,000000
0,000000
0,000000
0,000000

1,00000

1.00000
0.000000
0,0000G0

10,0000

100,000
0.,000000

0.980000
o,000000

P




STATE 1 X1
X4
X7
INYT ¢ X1
X4
X7
DER t Dxi
x4
[¥x7
INFUT ¢+ TIO
T
cUTPUYT: T5
T110
VAR :oT
52
Sh
P
R6
TIiMe ¢+ 7T
OUTPUTL Y
TSaMP & TS
AR } PER
MEYV2
TiMe ¢ T
PapR HER
TI0S
VAR P UPLOT

CONTINUQUS SYSTEM BEDI

0.346228
0.948236
0.987347
0.,000000
6,000006
0,000000
4,619360E-06
5,138665E-U5
9,040348E-05
0.,000000
1,34359
0.,461145
0.997001
0.318432
0.777118
~0.875048
-0,270326
5.,868220E~-02

]

X2
X5

X2
X5

DXx2
DX5

Clu

Té
chio
CM
53
k1
R4
R7

- - .

0,449164
1.,09106

0,000000
0,040000

8,737080E~06
B,173287E-05

b.000000

0,746867
0.,00000¢0
1.02271
~0.,901157
0,464962
-8,079125E=-02

DISCRETE SYSTEM REF

106,000
-1,00000
181.000
40,0000
-1.00000

EPS
0T

- wm e

1.0000006-05
1,00000

COMNECTING SYSTEM FOSAD

100,000
0.000000
0.0000Q0
~-4,89342

clos
AS

a,000000
g.500000

- o E s oW owm ows

X3
X6

X3
X6

nx3
DXé6

T7

51
54
R2
RS

NVl

T2
BS

65

0.,661929
1.02767

0,000000
0,000000

2,211352E-05
9.077881E~uU5

0.,0000860

1.04226
g.445%860
0,328750

~0,751490
6,507662

1,00000

g,000000
-4,00000




