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(48)

Substituting (45)–(48) into (31) directly yields (34).
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Convex Dynamic Programming for Hybrid Systems

Sven Hedlund and Anders Rantzer

Abstract—A classical linear programming approach to optimization of
flow or transportation in a discrete graph is extended to hybrid systems.
The problem is finite dimensional if the state space is discrete and finite,
but becomes infinite dimensional for a continuous or hybrid state space.
It is shown how strict lower bounds on the optimal loss function can be
computed by gridding the continuous state space and restricting the linear
program to a finite-dimensional subspace. Upper bounds can be obtained
by evaluation of the corresponding control laws.

Index Terms—Convex optimization, dynamic programming, hybrid sys-
tems, linear program, optimal control.

I. INTRODUCTION

For several decades, linear programming has been one of the main
theoretical and computational tools for analysis and optimization of
discrete systems. This includes problems of optimal transportation and
optimal flow in a network [5], [9], [12]. The objective of this note is to
extend the computational linear programming approach to hybrid sys-
tems, i.e., systems that involve interaction between discrete and con-
tinuous dynamics.

Practical control systems typically involve switching between sev-
eral different modes, depending on the range of operation. Even if the
dynamics in each mode is simple and well understood, automatic mode
switching can give rise to unexpected phenomena. Moreover, many
phenomena can be described either by a discrete model or a continuous
one, depending on the context and purpose of the model [2]. Consider,
for example, an asynchronous discrete-event driven thermostat, which
discretizes temperature information asftoo cold, normal, too hotg.

Basic aspects of hybrid systems were treated in [8] and [18]. For sta-
bility analysis, see [6] and the references therein. The reformulation of
a nonlinear optimal control problem in terms of infinite-dimensional
linear programming has previously been used for continuous-time sys-
tems in [15] and is closely connected to ideas of [14] and [19].
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It should be noted that there is a close connection between optimal
control and reachability. A control system can be extended with an extra
state that integrates a cost along the trajectories. Hence, a certain con-
trol cost is achievable if and only if the corresponding state in the ex-
tended system is reachable. Conversely, reachability of a certain state
can be investigated by solving the optimal control problem to get there
in minimum time. Verification (reachability analysis) of discrete-event
systems and timed automata is an extensively studied topic in computer
science [1], [3], [11].

Lately, various efforts have been made to extend the classical optimal
control methods to hybrid systems. Hybrid versions of the maximum
principle have been presented in [13], [16], and [17]. Dynamic pro-
gramming for hybrid systems is discussed in [4] and [7]. In this note,
it is shown how strict lower bounds on the optimal-loss function can
be computed by gridding the continuous state space and restricting the
linear program (LP) to a finite-dimensional subspace. Upper bounds
can be obtained by evaluation of the corresponding control laws. Com-
putational examples are given with up to three dimensions in the con-
tinuous state space.

In the following, the set of all integers will be denotedZ. The set of
strictly positive real numbers will be denotedR+.

II. PROBLEM FORMULATION

Definition 1: Let Q and
� be finite sets, whileX � R
n and


u � R
m. Let � : X � Q � 
� 7! Q and for everyq 2 Q let

fq : X � 
u 7! R
n. A solution (trajectory)of the hybrid system

_x(t) = fq(x; u)

q(t) = �(x(t); q(t�); �(t))
(1)

will be defined, givenu : [t0; tM ] 7! 
u, a finite sequence of real
numberst0 < t1 < t2 < � � � < tM , and� : [t0; tM ] 7! 
� constant
in each interval[tk; tk+1).

The pair(x; q), wherex : [t0; tM ] 7! X is absolutely continuous
andq : [t0; tM ] 7! Q is constant in each interval[tk; tk+1), k =
0; 1; . . . ;M � 1, is called a trajectory of the hybrid system (1) if

_x(t) = fq(t)(x(t); u(t)); for almost allt 2 [t0; tM ]

q(t) = �(x(t); q(t); �(t)) = q(tk); t 2 (tk; tk+1)

q(tk+1) = �(x(tk+1); q(tk); �(tk)); k = 0; 1; . . . ;M � 1
(2)

holds.
Note that the second equation of (1) gives rise toautonomous

switching in points(x; q) where�(x; q; �) 6= q, 8 � 2 
�. The time
argumentt will often be omitted in the sequel.

The optimal control problem is to minimize the cost function

J(x0; q0; u(�); �(�); tM ;M) =
t

t

lq(t)(x(t); u(t))dt

+

M

k=1

s(x(tk); q(tk�1); �(x(tk); q(tk�1); �(tk))) (3)

with respect tou(�),�(�), tM , andM subject to (2) given an initial state
(x0; q0) at timet0, and a fixed set of possible final states,(x; q)(tM) 2
YM � X � Q.

The functions(x; q; r) > " > 0 is a cost for switching from discrete
stateq to r, the continuous part beingx just before the switch. Note
that s(�) > " > 0 limits the number of jumps in solutions close to
optimality.

The framework developed in this note would also allow the
number of continuous states to vary with the discrete mode according
to _xq(t) = fq(t)(xq(t); uq(t)), wherexq(t) 2 Xq � R

n(q),

uq(t) 2 
u � R
m(q). The usage of the system description (1),

however, will simplify notation.
Also, the possibility ofstate jumps[4], [7] has been omitted to keep

the notational complexity at a reasonable level.

III. H YBRID DYNAMIC PROGRAMMING

Proposition 1: Let X = [Nk=1Xk whereX1; . . . ; XN are closed
polyhedra with disjoint interior, withQ, 
u, 
�, fq, and� defined as
in Definition 1. Lets : X � Q � Q 7! (0;1] and forq 2 Q let
lq : X � 
u 7! [0;1]. Suppose thatVk 2 C1(Xk � Q;R) with
Vk(x; q) = Vj(x; q) for x 2 Xk \ Xj , q 2 Q. Let YM � Y �
X �Q andV (x; q) = Vk(x; q) for x 2 Xk, q 2 Q. If for almost all
(x; q) 2 Y nYM

0 �
@V

@x
(x; q)fq(x; u) + lq(x; u); u 2 
u (4)

0 �V (x; �(x; q; �))� V (x; q) + s(x; q; �(x; q; �));

� 2
� (5)

0 �V (xM ; qM) 8 (xM ; qM) 2 YM (6)

then

t

t

lq(t)(x(t); u(t))dt+

M

k=1

s(x(tk); q(tk�1);

�(x(tk); q(tk�1); �(tk))) � V (x(t0); q(t0))

for every solution to (1) that is contained inY with (x; q)(tM) 2 YM .

Proof: Let û(�) and�̂(�) be control signals that drive the system
from the initial state(x0; q0) 2 Y at timet0 to (xM ; qM) 2 YM at
time tM . Let xk = x(tk) andqk = q(t), tk � t < tk+1. Then

J(x0; q0; û(�); �̂(�); tM ;M)

=

M�1

k=0

t

t

lq (x; û)dt

+

M

k=1

s(xk; qk�1; �(xk; qk�1; �̂(tk)))

�

M�1

k=0

t

t

�
@V

@x
(x; qk)fq (x; û)dt

+

M

k=1

fV (xk; qk�1)� V (xk; qk)g

=

M�1

k=0

fV (xk; qk)� V (xk+1; qk)g

+

M

k=1

fV (xk; qk�1)� V (xk; qk)g

= V (x0; q0)� V (xM ; qM) = V (x0; q0):

For the purely discrete case, the value function

V
?(x; q) � min

u(�);�(�);t ;M
J(x0; q0; u(�); �(�); tM ;M)

satisfies the linear constraints (5)–(6), i.e.,supV = V ?. Continuous
dynamics adds difficulty, however, and the aforementioned bound may
in general not be tight, i.e.,supV (x; q) � V ?(x; q).
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For purely continuous systems, conditions for tightness have been
derived in [19]. The theory needed, however, is quite advanced and an
extension to the hybrid case falls outside the scope of this note.

IV. DISCRETIZATION

Utilizing a computer to solve (4)–(6) for a specific control problem,
a straight forward approach is to grid the state space and require the
inequalities to be met at a set of uniformly distributed points inY .
This approximation will, however, not guarantee a lower bound on the
optimal cost, unless the nature offq andV betweenthe grid points is
taken into consideration.

For uniform gridding ofR2, let

xjk = jhe1 + khe2; j; k 2 Z; h 2 R+ (7)

wheree1 ande2 are unit vectors along the coordinate axes, andh is the
grid size. Also, let

Xjk =fxjk + �1he1 + �2he2 : �1 � �i � 1g (8)

f jk
q i

= min
x2X ;u2


(fq(x; u))i (9)

f
jk

q
i
= max

x2X ;u2

(fq(x; u))i (10)

ljkq = min
x2X ;u2


lq(x; u) (11)

V jk
q =V (xjk; q) (12)

�iV
jk
q =

V (xjk + hei; q)� V (xjk; q)

h
(13)

��iV
jk
q =

V (xjk; q)� V (xjk � hei; q)

h
(14)

where(�)i denotes thei:th vector component of(�).
ForA � R2 � Q, define the index set

I(A) = f(j; k; q)jj; k 2 Z; q 2 Q; (xjk; q) 2 Ag: (15)

One possible finite approximation of (4)–(6) is then given by

0 � �jkq
1
+ �jkq

2
+ ljkq

(j; k; q) 2I(Y nYM) (16)

�jkq
jij
� f jk

q jij
�iV

jk
q

i 2f�2;�1; 1; 2g; (j; k; q) 2 I(Y nYM) (17)

�jkq
jij
� f

jk

q
jij

�iV
jk
q

i 2f�2;�1; 1; 2g; (j; k; q) 2 I(Y nYM) (18)

0 �V jk

�(x ;q;�) � V jk
q + s(xjk; q; �(xjk; q; �))

(j; k; q) 2I(Y nYM); � 2 
� (19)

0 �V jk
q (j; k; q) 2 I(YM) (20)

where�jkq 2 R2 for (j; k; q) 2 I(Y nYM).
The constraints (16)–(18) form a combination of backward and for-

ward difference approximations of (4) where the variable�jkq , whose
i:th component is an approximation of(@V jk

q =@xi)fq, is used to pre-
serve the lower bound property of the continuous inequality.

For x = xjk + �1he1 + �2he2, where0 � �i � 1, define the
interpolating function

V (x; q) = (1� �1)(1� �2)V
jk
q + �1(1� �2)V

(j+1)k
q

+(1� �1)�2V
j(k+1)
q + �1�2V

(j+1)(k+1)
q : (21)

Theorem 1 (Discretization inR2 ): DefineQ,
u,
�,fq,�,Y , and
YM as in Proposition 1. With definitions (7)–(15), and (21), if there

existV jk
q 2 R for (j; k; q) 2 I(Y ) and�jkq 2 R2 for (j; k; q) 2

I(Y nYM) that satisfy (16)–(20) then

t

t

lq(t)(x(t); u(t))dt+

M

k=1

s(x(tk); q(tk�1)

�(x(tk); q(tk�1); �(tk))) � V (x(t0); q(t0))

for every solution to (1) that is contained inY with (x; q)(tM) 2 YM .

Remark 1: Any function that meets the constraints, even the trivial
choiceV (x; q) = 0, is a lower bound on the true cost. Thus, to yield
useful bounds,V (x; q) needs to be maximized subject to (16)–(20).
The maximization could be carried out in either several points inY
simultaneously (by maximizing the sum of the value function in several
points(xjk; q) 2 Y ) or in one point(x0; q0) 2 Y .

For the discretized problem, different choices of maximization cri-
teria may lead to different results, and it would be interesting to con-
struct an example where this difference is significant. Experience from
examples shows, however, that the difference between the results of a
single-point and a multipoint maximization is often small, making it
possible to compute the value function in a large subset ofY solving
oneLP.

Remark 2: The restriction(x; q)(t) 2 Y in the optimal control
problem is essential. It may happen that for some initial statesx0 there
exist no admissible solutions insideX. The maximization ofV (x0; q0)
can then lead to arbitrarily large values.

Remark 3: The theorem is easily extended toRn. Define
j = (j1; j2; . . . ; jn) and exchangejk for the new multi-indexj in the
previous inequalities. The limits of all summations and enumerations
should also be adjusted. Section VI shows an example inR3.

Proof: Assume thatx 2 Xjk. Noting that �1V
jk
q =

��1V
(j+1)k
q , �2V

jk
q = ��2V

j(k+1)
q , the inequalities (16)–(18)

taken at grid pointsjk, j(k+ 1), (j + 1)k, and(j + 1)(k+ 1) give

0 �fq1(x; u)�1V
jk
q + fq2(x; u)�2V

jk
q + lq(x; u) (22)

0 �fq1(x; u)�1V
j(k+1)
q

+ fq2(x; u)�2V
jk
q + lq(x; u) (23)

0 �fq1(x; u)�1V
jk
q

+ fq2(x; u)�2V
(j+1)k
q + lq(x; u) (24)

0 �fq1(x; u)�1V
j(k+1)
q

+ fq2(x; u)�2V
(j+1)k
q + lq(x; u): (25)

The gradient ofV is given by

@Vq
@x

=
(1� �2)�1V

jk
q + �2�1V

j(k+1)
q

(1� �1)�2V
jk
q + �1�2V

(j+1)k
q

T

and, thus, adding (22)–(25) weighted with(1��1)(1��2),(1��1)�2,
�1(1 � �2), and�1�2, respectively, proves that (4) is met forx. The
inequality (5) holds sinceV is a convex combination of grid points
that all meet (19), and (6) is the same condition as (20).

Note that the minimization/maximization in (9)–(11) is in general
not convex. However, Theorem 1 can be applied with any upper and
lower bounds onfq andlq and such bounds are often easy to obtain.

Also, note a special case in which the burden of the local optimiza-
tions in Theorem 1 is lightened: iffq(x; u) = hq(x) + gq(x)u and
lq(x; u) = oq(x) + mq(x)u while 
u = [�1; 1], thenu can be en-
tirely eliminated from (16)–(18) by replacingf jk

q
, f

jk

q , andljkq with

hjkq � gjk
q

, h
jk

q � gjkq , andojkq �mjk
q , respectively. This will double

the set of equations (16)–(18), but the functionshq, gq , oq, andmq are
optimized overXjk solely.
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Fig. 1. Gear profiles for the truck.

V. COMPUTING THE CONTROL LAW

Provided that the lower boundV is a good enough approximation of
the optimal cost, the optimal feedback control law can be calculated as

u(x; q) = argmin
û2


@V

@x
(x; q)fq(x; û) + lq(x; û)

�(x; q) = argmin
�̂2
 jx2S

fV (x; �) + s(x; q; �)g
(26)

where� = �(x; q; �̂). Note that the discrete input� is chosen such
that switching occur whenever there exist a discrete mode for which
the value function has a lower value than the cost of the value function
for the current mode minus the cost for switching there.

Consider the true optimal value functionV ?. For those(x; q; r)
where the optimal trajectory requires mode switching, (4) will turn to
equality, i.e.,V ?(x; q) = V ?(x; r) + s(x; q; r). A consequence of
this is that for (26) to describe correct switching between the modes,
s(x; q; q) has to be defined ass(x; q; q) = " > 0 (rather than the nat-
ural choices(x; q; q) = 0). ForV ?, the proper control law is achieved
as" approaches 0. A small value of" suffices, however, for numerical
computations.

In practice, it is suitable to discretize u into

̂u = fu1; u2; . . . ; uag � 
u. Then, for each grid pointxjk, the
problem is to findujkq 2 
̂u and�jkq 2 
� offline that minimize
(26). Online, during control,u(x; q) and �(x; q) are obtained by
multilinear interpolation analogously to (21).

The choice of
̂u may be crucial and is often a trade off between
speed of computations and how close to optimal the result will be. For
time optimal control problems whereu enters affinely, however, the
control signal only assumes its extremal values.

VI. NUMERICAL EXAMPLE—A TRUCK WITH A

FLEXIBLE TRANSMISSION

The applicability of the theory is here illustrated by an example with
three continuous states (see [10] for additional examples). Consider the
system

_x1 = x2

_x2 =
1
m
(�cx2 + kx3)

_x3 = �x2 +
g (x )

k
u; q = 1; 2 �0:1 � u � 1:1.

(27)

The three continuous states of the system could be seen as position
(x1) and velocity(x2) of a truck, and the rotational displacement of its
transmission shaft(x3). There are two discrete modes corresponding
to different gears of the truck; the input throttleu is weighted bygq(x)
which represents the efficiency of gear numberq. The weighting func-
tions are plotted in Fig. 1.

All the constants (the mass of the carm, the frictional dampingc,
and the spring constant of the transmission shaftk) are set to one.

Fig. 2. Phase portrait ofx andx under simulation. The solid line shows
where gear number one has been used and the dashed line shows the second
gear. The initial point is marked with a square.

Fig. 3. Plot of spring tension(x ) and the continuous valued control signal
(u).

The objective is to bring (27) toYM = f(0;0)g in minimum time.
Torque losses when using the clutch call for an additional penalty for
gear changes. Thus, the terms of (3) have been chosen asl1(x; u) =
l2(x; u) = 1, s(x; 1; 2) = s(x; 2; 1) = 0:8.

Since it is difficult to visualize the three-dimensional value func-
tion, it is not shown here. A feedback control law is derived from the
value function, however, and results from simulations using this law
are shown in Fig. 2.

With the current cost function, it is obvious that whenever a gear
switch is required, it is optimal to switch at the speed of equal effi-
ciency between the gears(x2 = 0:7). This action can be noted in the
figure when switching from the first gear to the second. The switch
back to the first gear during the deceleration phase, however, occurs in
the simulation at a much higher (nonoptimal) speed. This is a reason-
able approximation error though, since the deceleration power is small
(u = �0:1). The difference in cost depending on how early the gear
switch is made, is low compared to the total cost.

Fig. 3 shows how the rotational displacement of the transmission
shaft varies withu. The spring tension builds up during the acceleration
phase (approximately0 � t � 4:3) and is then released.
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An upper bound is obtained by integrating the cost along the simu-
lated trajectory, starting inxi = (�5; 0; 0)T , qi = 1, is 8.5. The lower
bound given by the value function is 7.9.

VII. CONCLUSION

This note presented an extended version of the Hamilton–Ja-
cobi–Bellman (HJB) inequality to be used for optimal control of
hybrid systems. The extended version constitutes a successful mar-
riage between computer science and control theory, containing pure
discrete-dynamic programming as well as pure continuous-dynamic
programming as special cases.

The extended HJB inequality, which gives a lower bound on the
value function, was discretized to a finite, computer-solvable LP that
preserves the lower bound property. Based on the value function, an
approximation of the optimal control feedback law was derived.

A problem with DP is the “curse of dimensionality,” an expression
coined by Bellman, the inventor of this method. Since the cost for a
family of trajectories is computed (rather than a single trajectory as in
the Pontryagin maximum principle), the problem grows exponentially
in the number of states.

The advantage with this method, however, is its applicability and
ease of use for low-dimension systems. The discretization method pre-
sented in this note allows problems with up to three continuous states
on a 336-MHz Ultra Sparc II.

A set of MATLAB commands has been compiled by the authors to
make it easy to test the aforementioned methods and implement the
examples. The LP solver that is used is “PCx,” developed by the Op-
timization Technology Center, Illinois. The MATLAB commands and
a manual of usage are available free of charge upon request from the
authors.
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Output Violation Compensation for Systems With Output
Constraints

Matthew C. Turner and Ian Postlethwaite

Abstract—The problem of output constraints in linear systems is
considered, and a new methodology which helps the closed loop respect
these limits is described. The new methodology invokes ideas from the
antiwindup literature in order to address the problem from a practical
point of view. This leads to a design procedure very much like that found
in antiwindup design. First, a linear controller ignoring output constraints
is designed. Then, an additional compensation network which ensures
that the output limits are, as far as possible, respected is added. As the
constraints occur at the output, global results can be obtained for both
stable and unstable plants.

Index Terms—Linear systems, output constraints, saturation.

I. INTRODUCTION

The literature reveals a vast and varied treatment of linear systems
subject to input, or saturation, constraints. This problem has been
tackled from many different perspectives and its study has formed one
of the most important topics in the control community over several
decades. To avoid repeating prior work, we do not describe this work
in detail; it suffices to mention that there are now several mature
techniques available to cope with input constraints [1]. The amount
of attention devoted to this problem is perhaps not surprising when
one considers the virtual omnipresence of control constraints in real
engineering systems.

Control constraints are not the only time-domain constraint present
in control systems, however. In addition to constraints on the transient
response of various closed-loop signals (e.g., rise time, settling time),
there are sometimes “hard” or “soft” limits imposed on the magnitude
of certain plant outputs, or states. These limits reflect issues such as
safety requirements or are there to prevent excessive maintenance to
system components. For example, in certain aircraft, during the ap-
proach to land, there is a limit on the angle of attack to prevent acci-
dents caused by stall or pilot error, etc. Alternatively, if a certain value
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