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1. INTRODUCTION

An attractive idea when investigating large systems is to mi-mic the success of statistical mecrranícs, i e fo consíder a largesystem composed .f many copies of identiåar subsystems. A funda-menËal difficurty is that it is hard to fin<t meaningful sysremrhe-oreEic problems which can be obrained uy inter"onnecting icrenticalsubsystems. This paper therefore considLrs a cr.ass of linear sys-tems called flow systems. Alttrough the systems are not identicalmany. of their properEies remain irrvari..,t for cr i f ferenL intercon_nections. F10w systems can therefore be used as a. starting poinEfor analysing certain.large systems. Flow sysEems have been usedas models for industrial and biological p.o"""*"".

2. TANK SYSTEMS AND FLOI4T SySTEtfS

A collection of tanks connec'ed by pipes is called a tank sys-tem..SuchsystemSareco[trnoninindustiy.iheyhave"t,o_uffi
tensively used as models for biological and eáologicar sysrens.

tracer analysis. A traceable
h the system i¡r the same ü/ay asoint of the system. The tracer
the system is Elren measured. Oneperties of a tank sysÈem that
nt.

Assume that the frows and volumes are in equirir¡rium, Èhe t.ra-cer propagation can be described as a Iinear time invariaåt-äv""*i_cal sysLem. TLre dynamical systems describing tracer propagation
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have, however, some special properties which moE ivates chac they
se response of a
act that the tracer
e tanks sys tern is
an outleC (possib-

I 1 eventually leave
t.hen have the pro-
is unity.

be de-
input

name flow systems. The impul
negatj-ve hrh l-c h reflects the f

concentration is never negalive. Moreover, if th
open which means that all tanks are connected to
ly indirecÈ1-y chrough other tanks) all tracer wi
the system. The corresponding open flow systems
perty EhaE the integral of the impul se respolÌse

Open flow systelns will be investigared in this paper. They
have marry interesting propertíes which have 1ar:ge1y been found irr
connectiorr with impulse response analysis of tank systems. The re-
sult.s ar:e widely scattered in 1iÈerature. Important contributions
are found both in engíneering and medical literaEure. This paper is
an at,tempt to present a unified approach.

Two simple examples corresponding to a tank with pure mixing
and a tank with pure plug flow are first investigated. A formal
definition of an open flow system is then gi-ven and int,erconnec-
tions of open flow systenìs are introduced. The so called Ster¿art-
-Hamilt.on equation which can be used to det,ermilre Ehe toEal volume
of an open Èank system is then derived, The volume obtained is the
part of t,he volume which participates in the flow also cal led fhe
volunte of distribution.

3. EXATYPLES

Two simple examples of flor.¡ systems will first be given.

EXAMPLIÌ 1 (IDEAI I,IIXING)
Consider a tank with volume V and constanE inflow and ourflow q
(volume flow). Assume that there is perfect mixing in the tank and
that the fluid is not compressible. Let ci be the concentration of
a tracer in the inflow and c the tracer concentration in the tank
and at the outflow. A mass balance for the tracer gives

dc
dr = q(ci-c)

are given a special
flow system is non-

The propagation of the tracer through the system can thus
scribed as a linear time invariant dynamical system whose
output relat.ion is characterized by the impulse response

V

h(t) = (V/q)e -qT /V (r)

EXAMPLE 2 (PURE TRANSPORT OR PLUG FLOI^I)

Consider a pipe where there is a pure material t-.ransport with uni-
form velocity and no mixing. Let the volume of the tube be V and
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the flow g. Let ci denote the concentration of some subsÈance in
the inlet and c Ehe concentration of the same subsEance at tlìe out-1et. The concentrations are related by

c(È) = "i(r-v/q)
and the impulse response of the system becomes

h(t) = 6(r-v/q) e)
where ö i.s the Dirac delta function. The propagation of a tracer
through a tank with idear mixing and for a pipe wirh pure plug flow
can be described by linear time invariant dynàmi.cal ,y"t"n". -

In both cases the ínrpulse responses have the properties.

h(r) > 0 (3)

7 n(.)dr = I0'G)
and

i .nf r)dr = - v/s
0

(s)

The equation (3) means that the tracer concentrati.on is rlever ne-gative ancl the equation (4) implies thar all rracer will finalry
Ieave the system. rf Ëhe impulse response is measured by inj""tirrga tracer in the inlet and measuring the tracer concentrâtion in ttreoutleE the volume to flow ratio y lc, can thus be determined from theequation (5) both for an ídeal mixing Eank and f-or a pipe with pureplug f1ow.

4. AN AXIOMATIC APPROACI.I

The theory of flow systems will rrow be developed systematical-ly. The analysis wilr be carried out for systems with one inleÈ ancione ouElet. There are, however, no clifficulties to extend the re-sults to more general situations. rn analogy wi th the simpre exam-ples the systems'wi11 be charaeterized by itreir impulse ,å"po.rrur.
InÈroduce

DEFINITION 1

A single-input single-output time invaria't linear sysEem isa floy system if the impulse response has Ehe property (3).
called an open frqy system if the impulse t".pòrr*" arso hasproperty (4).

ca1 I ed
IE is
the

rE follows from the previous examples that the transportationof a subsËance through a tank with perfect mixirrg and through a
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pípe wíth pure mass transport withouÈ mixing can be clescribed þy
flow sysEems.

Notice that the quantity
t2
/ h(t)dr
ti.

can be inEerpreted as the probability that a particle entering the
system at time 0 will exit in the interval (t1,t2). The impulse
response of a flow syst,en can thus be interpreted as a probability
density. It is, therefore, also called the residence time discri-
bution or more correcËly the density of the residence time distrí-
Effi;. The properties (3) and (4) âre far reaching. A flow sysrem
is e g always input-out.put stable. To explore the properties fur-
Èher we analyse the transfer function H definecl by

H( s) -st h(r)dE (6)

The equation (4) implíes that

H(O)=7rt<t)dt=1
0

ForRes>0wehave

(7)

æ

=1e
0

lut.l I li "-" h(c)cttl
æ

<Í
0 "-"tl h(r)dr s

h(t)dt = 1 Res>0

The magnitude of the transfer function of a flow system is thus
less than or equal to one in the closed right half plane,

Let o. be arbitrary real numbers and xi ar:bitrary complex
numbers. rÈen

xUxUH( irrrU
io¡t - iur, t

e h(t)dt =

@

<.f
0

-iou)=6llTI
k{,

æ

= I(
0

æ

0

xnÏ*e

iont
e

lt¡. t c

I r*oe I( l'

) (XxUe )h(t)¿t =

lûJ E
Lrx,-

K

h(t)dc ¿ 0 (8)
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It fo1lor^rs from a famous theorem of Bochner
Èions (7) and (B) atso imply (4) and (3).

(1932) rhar rhe condi-

An open flow system can thus also be defined as a li.near time
invariant, system whose Eransfer fuuction satisfies (7) and (g).
This is noÈ done because the conditions (3) and (4) are much more
appeal.ing to physical intuírion.

4, INTERCONNECTION OF FLOI^I SYSTEMS

There are several ways to interconnect flow systems. They cane g be connected in series, parallel or in feedback connections in
Ehe same hray as ordinary linear systems are interconnected. More
interesEing and more useful results are, however, obtained if the
interconnect.ion is done iq a different way. since flow systems are
used t.o describe the propagation of a t,racer ín a tank sy"t"* ""will first consider different hrays to connect tanks togeiher. In_
Eerconnection of flow systerns will then be defined by ãonsideríng
the flow systems which describe the propagation of a Eracer in theinterconnected tanks.

Tanks can be connected in many different r¡/ays. The outflow of
one tank can be sent Eo another tank (series connection). A flow
can be split up in dífferent parts which are sent through tanks
and again conEínued (parallel connection). part of the ouÈflow ofa tank can be mixed with the inflow and. sent to the tank again(feedback connection) .

rt seems intuitively clear that if Èhe tracer propagation in
t\ì'o tanks is described by flow systems in the sense of Dãfinition1, Èhen the propagation of a tracer ín the interconnected tanks isalso a flow system. rt will now be shown formalry that this is in-
deed the case.

By a series connection of thro tanks we mean the
Èained by leEting the outlet of one tank be connecÈedof the other tank as illustrated in Fig 1.

Assume thåt the tracer propagation in S.| and 52
scribed by flow systems with rhe it"nrfer fuåctions
Let
St,

ci, cl and c denote the tracer concentrations at
Ehe out,let of S1 and the outlet of 52 respecEive

c, (s) = I{t (s)ci (s)

c(s) Hr(s)c,

Elimination of C 1 Erves

system ob-
to the inlet

can be de-
H. and H^.
tfre inreÉ of

ly. Then

(s)
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f- I -1
I

I

T
I

I

q,ci cq

V--à

q,c

V_-_>
1

Series connecEion of

2
I

I

L_

I

I

!S L

Fig 1. the flow systenìs S, and Sr.

c(s) = H2(s)H,(s)ci(q)

and we thus find that
necEion of two tanks
Èransfer function

the propagation of a trace-r in a series con-
can be described by a linear systero with the

H"(s) = FIr(s)Hf (s) (e)

flor¡r systemTo sho¡¡ that
we introduce

h (r)

the transfer function H^ corresponds to a
the corresponding imputÈe responses, i e
æ

/ h^(E-s)h, (s)ds.0¿L

rt is clear that if h1 and _h2 are non-negative then h, is also non-
-negatíve. Further:mclre it follows from (g) that

Hs(0)=H2(0)Hr(0)=1

Taking (9) as the definition of a series
systems it has thus been shown that the
flow sysEems is a flow system.

connectj-ng of two flow
seríes connection of two

l,le will now proceed to other ways of connectin g flow systems.
A arallel- connection of two Eanks is obtained by splirting rhe
irrflow q nto Èrdo ows crlg and a2g where 0 < o1 < I

e then Èaken as inflows to i:tre tanks 51 and 52I. Ttrese f lows ar
and o1 + cl2

whose ouEflot,rrs are then combined assuming perfect rnixing. The pa=rallel connectíon is illustrated in Fig )

To analyse tlre. propagation of a tracer thrrugh two ta.nks 51
and s, in parallel it is assumed that Ehe tracer propagation thËougì]sl anã s2 can be described by flow systems r47itlì the transfer func-
trons H1 and Hr. Let ci denote Èhe tracer concerÌtration at the ín-
1et and cl and c2 the Eracer concentrations at the outrets of the
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1

I

I

1

q,c

V
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29'cz
S

Eíg 2. Parallel connection of Ehe flol^I systems 51

and 52.

tanks. Then

c1(s) = Hl(s)ci(s)

cr(s) = Hr(s)Ci(s)

Since the output flor¡ is obtained by ideal mixing of the flows
a1g and o2q, hlith tracer concentrations cl and c2' the concentra-
t.ion at the outlet becomes

c(s) = a1C1(s) + cr2c2(s) = [o1H1(s) + azrJ2(s)J c1(s)

The propagation of a tracer through a parallel connect.ion of two
tanks can thus be described by a linear system with the transfer
function

Ho(s) = olHl(s) + arHr(s) oz ( l0)

To verify that this is a E.ransfer function of a flow system the
impulse responses are int.roduced. Hence

(t) = orhr(t) +q, ( r)

o 
zQ'"i I

I

L_ 2:

0sa' 1 ot+or=1

h h
P 2 2
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It is clear that if h1 and h2 satisfy (3) and (4), then hO will
also satisfy rhe same equations.

The feedback connecEion S f of tr,ro Eanks or t\¡Io f low systems
51 and 52 ís illustrated in Fig
the tracer concentration ci. Fur

3. Let the ínflow to 53 be q and
thermore let the proportion a of

the outflow of 51 be the inflow to 32
flow of 52 is perfectly mixed with th

If aq1 is the flow through 32, a flow balance then gives

(og1+q)=ql

Hence

qql -T:' '

Let c2 denoEe the concentration at Ehe outlet oE 52 then

c2(s) = Hr(s)c(s)

q,c 
¡

q,c1

. It ís assumed that. the out,-
e system inflow.

q.c
r l

I

t
1

V -+
1

v2
oQ1'"2

S ioot't''
t_ 2s

Fig 3. Feedback connection of the flow sys-
tems 51 and 52. The ínflow q is perfectly
mixed wíth the'outflow of 52, ancl the míxture
is fed to 51. The outflow of 51 is splic into
tl{o streams, one of which goes to 52 and Èhe
other part is Ehe ouÈflow of S¡.

I

I

t_

r
I

-l

I

tS
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The input to 51 is a mix of two flows q and aq/(l-a), havíng con-
centrations ci and c2 respectively. The concentration c1 at Ehe in-
let of 31 is thus

cr(s) = (1-o)ci(s) + crC2(s)

Furthermore

C(s) = Ht(s)Cr(s) (I-u)l{r(s)cr(s) * oltt (")HZ(s)C(s)

which gives

( 1-o)H (s)Ic(s) cr(s)
1 - oHr(s)Hr(t)

The Èracer propagation through a feedback connection of two tanks
can thus be described by a linear system with Che t.ransfer func-
tion

H (s)
(1-a)Hr(s)

(11)0<cr<1
1 - oHr(s)Hr(s)

Assuming that
will now be s

have

H (0)
( 1-cr) Hl ( 0)

f.

f

H,-thov/n
and H

that 2
are transfer functions of flow systems it
Ht is also such a Èransfer functí.on. hle

1-q
1

1 cH, (0)H, (o) I - cr

Furthermore introduce H = H1H2. Since 51 and 52 are flow sysEems,
it follows from the equation (7) that

ln(")l . r for Re s > 0

The series expansion

Hr(s) = (l-o)Hr(s)tr + aH(s) * o2n2(") +...1

thus converges uniformly for o, S o0 < I and Re s ¿ 0. The corre-
sponding impulse response Ehen sat,isfies

h, = (l-a)nf *[1 + crh * o2h*h + ... ]

where 'l' denotes convolut.ion. Since 51 and 52 arè
have h1(t) ¿ 0 and h2(t) I 0, and we find h¡(r)

f 1ow sys tems , r^¡e

> 0.
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Summing up \,re get

TIIEOREM 1

Let 51 and 52 be open flow systems with the Èransfer functions H
and H2. The series Ss, parallel So and feedback S¡ corrnectiorrs o
51 and 52 whose Èransfer functionè are defined by

I
f.

H
2 1

(e)

nn=oltl 'o2"2 otol ,azsL, ol o2=L ( ro¡+

( I-o)H,
osq,<1H (tr¡

1. - crHrH,

are then atso open flow sysEems.

Remark. Notice that the series connection of two flow systems
is idffil to the series connection of Èwo linear systems. The
parallel and feedback connecEions of flow systems are, however, not
the same as Èhe paralrel and series connection of linear systems.

Using Theorem 1 the propagation of a tracer through a Eank
system can be studied in the same r{,ay as signal propagation is ana-
lysed in an ordinary linear system.

5. THE STEI^IART_HAMILTON EQUATION

The analysis of the simple tank sysÈems corresponding to a
tank with ideal mixing in Example 1 and to a tank with pure plug
flow in Example 2 shows that the following equatíon

i trr(t)dt = V/q (12)
0

holds inboth cases. Compare with the equation (5). Recalling the
probabilistic interpretation of the impulse response h as the resi-
dence time distribution the equarion (12) simply says rhar for a
tank system with one inlet and one outlet the ratio of volume to
flow equals ttre mean residence time. The equation (12) was first
used by Ehe phys o ogr sts Stewart 1897) and ltamilton (1932) who
developed methods to determine the blood volume of the heart. The
equation (12) will therefore be cal1ed the stewart-Hamilton equa-
Eion. The equation has been widely used both in biology, physíolo-
gy and engineering. rt has also been rnísinterpreted and therefore
the cause of much controversy.

The equation (12) can be derived by the following heuristic

HH
s

f
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argument,. consider an open tank system with inflow q. The fraction
h(t)dt of the particles which enter Èhe system aE time zero wil_l
exit in the irrterval (t,t+¿t). These particles lrave traversed the
volume dv = t'9. rutegrating over all particles now gives (L2).
The validity of the equation (12) can arso be shown formalry in
many câses. LIe have the following result:

THEOREM 2
Let s1 and 52 be Ëank systems with one inlet and one outlet and vo-
Itumgs V1 arrd v2. Let the tank system 53 be a series, parallel or
feedback connectión of s1 and s2. Assume that the ster¿art-Hamilton
equation holds for 51 and S2 rhen it also holds for 53.

Proof. Let H1 and H, be the transfer funcÈions which characte-
riz" EñãTrr""t pËopagarfon in s1 and s2. The differenr r,r/ays ro
interconnect Èhe systems r^¡ill be discusõed separaÈel.y.

First consider a series connecÈion. rt follows from Theorem I
that ttre tracer propagation in s3 Ehen is characterized by the
transfer function H3 = H1Il2. The mean residence time of 33 is then
given by

@

0
=-Hå(o)=-Hi(o)H2(o) Hl (o)Hi(o) (vt*Vz)/q =rh3(r)

= urlo

The third equality follows from the facr that the flows Ëhrough Sl
and 52 are the same in a series connection.

Now consider a parallel connect.ion. See l.ig 2.
Ëhrough 51 is c1Q and that through 52 is o2q, r,re get

- Hi(0) = YL/ (ore) and -Hå(0) = v2/ (ure)

The mean residence time of 53 is given by

i.n.(c)dt =-Hå(0) =-orui(0) -aru)(o) = (vr+v2)/q=
0'

= ur/o

and the result is thus established also

Since the flow

For a
= q/(1-o)

feedback connection, Fig 3,
and the f I orrr through 52 is oq

for a paralleI connectíon.

Èhe flow through S, is q1 =

I = clq/(r-o). Hence

- Hi(o)

- Hå(o)

= V1/91 = (1-a)Vr/q

= Yrl(uq) = (1-a)V2l(aq)
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The equation (10) grves

( 1-q) H , 
(oHittr+oHtH2) (1-a) (Hi*oH ;)

3 1 - ollrH, ( 1-oHrHr) ( 1-oHrH 2)2

The mean residence time is then given by

æ

I
0

I-=_HI-0 H;

2

1H
H

2

rhr(r)dr = - Hå(0) 0

Danckwerts, P V (1953):
Scí 2 (19s3) 1-13.

(v,+Vr)/l=Yr/lI I-a

and the proof is now complet.e.

Renark 1. Combining Theorem 2 with the results of Example I
ana niam-fFZ, it is thus 'found rhar rhe srewarr-Hamilton equarion
holds for sysÈems which are obtained by series, parallel or feed-
back connections of simple flow sysÈems with pure transport or
with ideal mixing.

Remark 2. The stewart-Hamilton equation has been derived only
for systems which are open flow system. Internal recirculations are
allowed provided that only a fraction of the flow is recirculated
(cl . 1 in Theorern 1). All f luid particles must, however, sooner or
later leave the system, or formally the equation (4) must hold.
This will not be the case if all the flow is recirculaÈed.
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