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Preface

This thesis addresses two topics in process control. The topics are dead-
time compensation and closed-loop performance monitoring. The first is
concerned with the control of processes with long dead-time. The second
is about monitoring of feedback controllers to know how well they are
performing. The thesis is divided into two parts accordingly. The first
part is composed of two published articles with an introduction while the
second part is composed of 4 chapters.

As an engineering discipline, process control has many exiting chal-
lenges to offer researchers within the academic community. One of the
most difficult challenge researchers face is to transmit results of their
research to the practitioners within the field. It has been the hope of the
author when writing this thesis that the results might be of relevance to
practitioners.

The thesis is the result of a few years of Ph.D. studies. During the years
some of the material has been published at other occasions. The research
on dead-time compensation was published in the following articles:

Ingimundarson, A. and T. Hägglund (2000a): “Closed-loop identification
of first-order plus dead-time model with method of moments.” In
ADCHEM 2000, IFAC International Symposium on Advanced Control
of Chemical Processes. Pisa, Italy.

Ingimundarson, A. and T. Hägglund (2000b): “Robust automatic tuning of
an industrial PI controller for dead-time systems.” In IFAC Workshop
on Digital Control – Past, present, and future of PID Control. Terrassa,
Spain.

The two articles included in this thesis are:

Ingimundarson, A. and T. Hägglund (2001): “Robust tuning procedures for
dead-time compensating controllers.” Control Engineering Practice, 9,
pp. 1195–1208.
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Preface

Ingimundarson, A. and T. Hägglund (2002): “Performance comparison
between PID and dead-time compensating controllers.” Journal of
Process Control, 12, pp. 887–895.

The second part of the thesis has been partially published in :

Ingimundarson, A. (2002): “Performance monitoring of PI controllers
using a synthetic gradient of a quadratic cost function.” In IFAC World
Congress. Barcelona, Spain.

Work that has not been included in this thesis but was performed during
the Ph.D. studies was published in

Solyom, S. and A. Ingimundarson (2002): “A synthesis method for robust
PID controllers for a class of uncertain systems.” Asian Journal of
Control, 4:4.

Also the following article has been submitted.

Ingimundarson, A. and S. Solyom (2002): “ On a synthesis method for
robust PID controllers for a class of uncertainties”, Submitted for
publication in European Control Conference ECC2003.
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Part I

Topics in Dead-Time
Compensation





Introduction to Dead-Time
Compensation

1. Background and Motivation

Dead time is a frequently quoted reason for increased loop variability
within the process industry, see [Bialkowski, 1998]. A control structure
specially designed to deal with long dead times is called a dead-time com-
pensator (DTC). One of the earliest papers dealing specifically with dead
time was [Smith, 1957]. The dead-time compensator presented there, has
been referred to as the Smith predictor in the literature and that name has
actually become a synonym for a dead-time compensator. Smith showed
how the design problem of a plant with dead time could be reduced to a
design problem of the plant without the dead time. This idea has been
used many times since the original publication.

Reasons for the dead time can be many. The most frequent in the
process industry is dead time due to transportation time of material be-
tween actuator and sensor. There are other reasons for dead time. It might
be caused by computation and communication delays or it might appear
when a higher order model is approximated with a low order model. Dead
time sets a fundamental limit on how well a controller can fulfill design
specifications since it limits how fast a controller can react to disturbances.

The work presented in [Smith, 1957] gained considerably in value with
the advent of computer control. The reason being that to implement a
dead-time element in the control structure was difficult using only ana-
log components. This problem was simplified with computer control. Now
DTCs are offered as standard modules in commercial control systems.
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Introduction to Dead-Time Compensation

2. Research on Dead-Time Compensation

The literature on dead-time compensators covers topics from the more
mathematical infinite dimensional system theory to practical issues such
as the commissioning and tuning of common dead-time compensators.

Most DTCs are model based controllers. The control structure contains
a model of the plant. For a discussion on the role of the model in dead-time
compensation, see [Watanabe and Ito, 1981]. A simple explanation of the
role of the model is that it is used to predict the effect of the control signal
on the output. By applying feedback from the model output the dead time
is taken into account when the control signal is decided.

A large portion of the work in DTCs in the literature is for fixed models,
that is, the dynamics in addition to the dead time are of specific order and
form. The most common models are

Kp

Ts+ 1
e−sL Kv

s
e−sL

or first-order plus dead time (FOPDT) transfer functions. The reason for
this is that these are the models most commonly used within process
control. One of the main application areas for DTCs is within the process
industry.

The most common controller in the process industry is the PID con-
troller. One of the key difference between a DTC and PID is the inherent
model in the DTC. The model adds to the complexity of the DTC structure.
As an example, if the model in the DTC is a stable first-order plus dead
time transfer function and the controller is a PI, the number of parame-
ters for the DTC is five. This corresponds to a drastic increase from the
PID which has three. Even though an initial tuning is obtained from an
experiment, if the performance deteriorates and maintenance is needed,
the PID has the advantage that it can be manually tuned. In [Normey-Rico
and Camacho, 2002] it was pointed out that often when new structures
are introduced and compared to existing structures the complexity of each
structure is not taken into account which can lead to unfair comparisons.

The additional complexity of DTCs has been noticed by authors and
often an effort is made to keep structures simple. This is done by keeping
the number of adjustable parameters few and with a clear interpretation.
In [Hägglund, 1996] a DTC was presented which reduced the number of
parameters from five to three by fixing together some parameters of the
model and those of the controller. It is still quite common that complexity
is ignored.

The robustness of DTCs has been investigated in a number of arti-
cles. In [Palmor, 1980] it was shown that conventional approaches to de-
sign Smith predictors could lead to closed-loop systems with an arbitrary
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3. Outline and Summary of Contribution

small dead time margin. In [Laughlin et al., 1987] the robust performance
of Smith predictors was investigated. Conditions for robust performance
were presented for the stable FOPDT case assuming that each of the
three model parameters would lie in an interval. A very similar prob-
lem was addressed in [Lee et al., 1996]. The robustness of the structure
presented in [Hägglund, 1996] was further investigated in [Normey-Rico
et al., 1997] and a new structure proposed. For a more theoretical ap-
proach to the robustness problem see [Meinsma and Zwart, 2000] where
a mixed sensitivity H∞ problem is solved for a linear system with delay.

The Smith predictor does not yield zero steady state error to a load
disturbance when the plant has an integrator. A dead-time compensa-
tion structure which had this very desirable property even for integrating
plants was presented in [Watanabe and Ito, 1981]. A number of publica-
tions have followed and treated this problem. The solutions vary in com-
plexity and disturbance rejection capability. Some references are [Åström
et al., 1994; Matausek and Micic, 1996; Matausek and Micic, 1999; Normey-
Rico and Camacho, 1999].

3. Outline and Summary of Contribution

Paper 1

The first paper deals with tuning of simple dead-time compensators. Two
DTCs are considered, one for self regulating processes and one for inte-
grating processes. The DTC structure for self regulating processes was
first presented in [Normey-Rico et al., 1997] but the parameters of the
structure are selected differently in the current work. The DTC for inte-
grating processes is the one presented in [Matausek and Micic, 1996].

A new method to identify the first-order plus dead time models shown
before, is presented. The identification procedure consists of two step re-
sponses, one in closed loop and one in open. The design procedure for the
two DTCs result in a first order set-point response, corresponding to the
model

1
Trs+ 1

e−L

It is shown how a suitable lower bound on the closed-loop time constant,
Tr, can be found by considering the area between the plant output and
the model output when a step is applied to both. In the integrating case
it is actually two steps, one up and one down, to limit the change in the
plant output. It is also shown how dead time margin depends on Tr.

13



Introduction to Dead-Time Compensation

Paper 2

A common sight in the literature is an introduction of a new structure
which is shown to outperform other structures in a few simulation exam-
ples. Robustness is frequently not taken into account in the comparison
even though it is well known that a robustness/performance tradeoff is
always present in controller design.

The second paper is concerned with the use of DTCs or more specifi-
cally, when they should be used. Recognizing that the control strategy that
the DTC probably would replace would be a PI or PID, the performance
of the DTC is compared to that of PI(D) under a robustness constraint.
Typical DTCs for both stable and integrating processes are compared to
the best PI and PID which fulfill the robustness constraint.
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Paper 1

Robust tuning procedures of
dead-time compensating controllers

Ari Ingimundarson and Tore Hägglund

Abstract

This paper describes tuning procedures for dead-time compensat-
ing controllers (DTC). Both stable and integrating processes are con-
sidered. Simple experiments are performed to obtain process models
as well as bounds on the allowable bandwidth for stability. The DTCs
used have few parameters with clear physical interpretation so that
manual tuning is possible. Furthermore, it is shown how the DTCs
can be made robust towards dead-time variations.

Keywords Automatic tuning, Dead-time compensation, Robustness,
PID control

Reproduced with permission from: Ingimundarson, A. and T. Hägglund
(2001): “Robust tuning procedures of dead-time compensating

controllers”, Control Engineering Practice 9, p.1195-1208.
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Paper 1. Robust tuning procedures of dead-time compensating controllers

1. Introduction

Most control problems in the process industry are solved using PID con-
trollers. There are several reasons for this. One is that the PID controller
can be tuned manually by “trial-and-error” procedures, since it only has
three adjustable parameters. The possibility to make manual adjustments
of the controller parameters is important even when automatic tuning
procedures are available.

When there are long dead times in the process, the control performance
obtained with a PID controller is, however, limited. For these processes,
dead-time compensating controllers (DTCs)may improve the performance
considerably. These controllers require a process model to provide model-
predictive control. This usually means a significant increase in controller
parameters.

The use of DTCs also brings into existence new robustness problems
connected to the dead-time. The classical ways to characterize robustness,
phase margin and amplitude margin are not sufficient. In this paper, the
delay margin which is the greatest variation in dead time that can occur
in the process before the closed-loop system becomes unstable, will be
used as well.

The aim of this paper is to show how it is possible with simple ex-
periments to find parameters for the DTCs that give good performance
while remaining robust. The experiments are composed of an identifica-
tion of simple process models and then an experiment to determine an
upper limit on closed-loop bandwidth. The latter is performed in open
loop while the former is partially performed in closed loop. As a measure
of closed-loop bandwidth, the reciprocal of the time constant of the set
point response is used. This can then be related to other measures such
as the loop-gain crossover frequency. The DTCs used in this paper have
certain PID qualities, i.e. few parameters that can be tuned manually and
have good interpretation in terms of classical control theory concepts. It
will also be shown how the DTCs can be given a guaranteed delay margin.

For the identification of the simple process models in the DTCs an
identification method first presented in [Ingimundarson and Hägglund,
2000a] is used. In this paper only the main equations and results are
presented.

The paper is arranged in the following manner. In Section 2 the identi-
fication method is introduced. In Section 3, dead-time compensating con-
trollers are discussed. In Section 4 the tuning procedure for stable pro-
cesses is presented. This is followed by the procedures for integrating
processes in Section 5. Finally conclusions are drawn in Section 6.

16



2. Identification

2. Identification

The two processes that are identified are the first-order plus dead time
(FOPDT)

Pn(s) = Kn

Tns+ 1
e−Lns (1)

and the two-parameter model

Pn(s) = Kn

s
e−Lns (2)

These models are frequently used in the process industry and are consid-
ered to capture dynamics of real plants sufficiently well for many appli-
cations.

The identification method presented in this paper can be divided into
two phases. First, the average residence time, Tar = Ln+Tn and the gain
Kn are estimated with a change in operating levels. This change can be
accomplished by a change in set point while operating in closed loop. The
approach is based on the method of moments, see [Åström and Hägglund,
1995] for a general input signal applied to a linear system initially at rest.
Second, the apparent time constant Tn is determined with an open-loop
experiment where the input signal is a step or a ramp. In the case of the
two-parameter model given by Eq. (2) only the first part of the experiment
is necessary.

The method of moments

The method of moments can be explained with the following equations.
For a general transfer function G(s) an arbitrary input signal U(s) results
in an output signal given by

Y(s) = G(s)U(s) (3)

By derivating Y(s) with regard to s one gets

Y ′(s) = G′(s)U(s) + G(s)U ′(s) (4)

The transfer function G(s) and its derivative can be evaluated at an ar-
bitrary point α by calculating

Y(m)(α ) = (−1)m ∫∞0 tm e−α t y(t)dt

U (m)(α ) = (−1)m ∫∞0 tm e−α tu(t)dt

and solving Eqs. (3) and (4). Notice that if α = 0 it is necessary for the
signals considered to go to zero as time goes to infinity. Otherwise, the
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Paper 1. Robust tuning procedures of dead-time compensating controllers

integrals will not converge. Typically an input signal of the sort ū(t) =
u(∞)−u(t) is selected. u(∞) is the value of the input signal after steady
state has been reached again. The corresponding output signal is then
ȳ(t) = y(∞)− y(t). Then it is only necessary to integrate for a finite time
interval. This interval is denoted [tb, t f ] in the following.

In the case of the FOPDT model, (Eq. (1)) it is easy to get the following
expression

P′n(s)
Pn(s) = −Ln − Tn

1+ Tns

By evaluating the transfer function at α = 0, Tar can be written as

Tar = −P′n(0)
Pn(0) (5)

To evaluate P′n(0) it would be necessary to calculate the first moment of
ȳ(t) and ū(t) for signals for which the integrals converge. These integrals
have bad noise properties because of the factor t. Values at the end of the
experiment have much higher weight than the ones in the beginning of
the experiment. Therefore it is beneficial to consider the artificial signals

yd(t) = d
dt ȳ(t)

ud(t) = d
dt ū(t)

The novelty of the method is the use of these signals. Denoting the mth
moment of yd and ud with ym and um respectively, it is possible to evaluate
P′n(0) as

P′n(0) =
y1 − Pn(0)u1

u0
(6)

Evaluating the moment integrals y0 and y1 gives

y0 =
∫ ∞

0
yd(t)dt = [ ȳ(t)]∞0

= − ȳ(0) (7)
y1 = −

∫ ∞

0
tyd(t)dt

= − [t ȳ(t)]∞0 +
∫ ∞

0
ȳ(t)dt

=
∫ ∞

0
ȳ(t)dt (8)
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2. Identification

By evaluating Eq. (5) with moment equations Eqs. (7) and (8) the follow-
ing expression is derived

Tar = −P′n(0)
Pn(0) =

−y1 + Pn(0)u1

u0Pn(0)

=
∫ t f

tb

ȳ(t)
ȳ(0)dt−

∫ t f

tb

ū(t)
ū(0)dt

(9)

This can be rewritten as

Tar =
∫ t f

tb

u(t) − u(tb)
u(t f ) − u(tb)dt−

∫ t f

tb

y(t) − y(tb)
y(t f ) − y(tb)dt (10)

The limits of the integrals have been changed to tb and t f . Eq. (10) has a
nice graphical explanation. The functions under the integrals have begin-
ning value equal to zero and final values equal to one. Tar is simply the
area between the two signals when they go from 0 to 1. This is shown in
Fig. 1.

The method presented requires a change in the process levels. If this
is accomplished by changing the set point in closed loop a stable controller
is assumed to be present. The form of this change is not important but
a step or a ramp would be easiest to implement in practice. Since the
identification is based on integrals of the input and output signals it is
preferable that the experiment is as short as possible in the presence of
measurement noise.

If an integrator is present in the process the method presented can
be used in the same way by considering the integral of the process input
signal

ui(t) =
∫ t

tb

u(t)dt

and replacing ui(t) with the input signal in the previous paragraphs. Dead
time, Ln, in Eq. (2) is then given by Tar

Process gain Kn is trivially estimated as the ratio between input and
output signal change, Kn = ȳ(0)/ū(0).

Open-loop experiment to identify Tn

If a step or a ramp is applied to the FOPDT model, analytical expressions
for the output signal are easily obtained. By integrating these expressions
from 0 to Tar it is possible to get expressions with only Tn as the unknown.
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Paper 1. Robust tuning procedures of dead-time compensating controllers

0

1

y(t)−y(tb)
y(t f )−y(tb)

u(t)−u(tb)
u(t f )−u(tb)

t ftb

Tar

Figure 1. Graphical explanation for Eq. (10)

In Eqs. (11) and (12) Tn is given for a step or ramp input signal.

Step : Tn = Ae1

hKn
(11)

Ramp : Tn =
√

A
hKn(1/2− e−1) (12)

Parameter A is the integral of y(t) from 0 to Tar. The parameter h is the
amplitude for a step signal or the rate for a ramp signal. The length of
the open-loop experiment is always Tar.

Notice that Eq. (12) can be used for a FOPDT model with integrator
as well. Sending a step of height h to an integrating process is the same
as sending a ramp with rate h to the process without an integrator. In
both cases Eq. (12) can be used to find Tn. The problem with the open-loop
ramp experiment is that if the dead time Ln is sufficiently larger than
time constant Tn, one has to select a large h for a good signal to noise
ratio in integral A. But after time Tar, y(t) will continue to rise since the
process contains an integrator. Assuming that after time Tar precautions
are taken to reverse the direction of y(t) the maximum value of y(t), will
still be around hKnTar. This gives then an upper limit on rate h.

20



2. Identification

yb

y1 ← A

yf

tftb t f + Tar

ub

uf

u1

Figure 2. Identification experiment for G(s) = 1
s+1 e−5s

Identification procedure

The basic steps in the identification procedure can now be presented. In
Fig. 2, the input and output signals are shown for a specific FOPDT pro-
cess. For simplicity the change in set point for the closed-loop experiment
is a step. The open-loop experiment is also a step.

1. Control the process to a steady state initial level yb. Record the
signal levels ub and yb.

2. Apply a step in the reference signal ysp(t) at time tb

3. Integrate y(t) and u(t) until process reaches steady state again. This
occurs at time t f . Again record the signal levels uf and yf .

4. Determine process gain Kn by observing the signal levels and Tar

from Eq. (10).
5. Apply a step in open loop and integrate the area A using the estimate

of Tar obtained from previous step.

6. Estimate time constant Tn from Eq. (11) and dead time by Ln =
Tar − Tn.
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Σ
−

+

Σ
+

ΣΣ

Σ

−

+
+

+

+

C(s) P(s)

Gn(s)

ysp yu

l

e−Lns

Figure 3. Block diagram of a Smith predictor.

The method requires a decision criterion on when steady state has
been achieved. This occurs at times tb and t f . If integral action is present
in the controller the steady-state error should be zero. This reduces the
task to determining when y(t) is the same as the set point ysp(t).

In the presence of noise the steady state values ub, uf , yb and yf can
be determined by averaging the signals over a period of time.

In the presence of measurement noise the numerical evaluation of the
integrals might have large variance. Less variance would be assured by
proper noise filtering. The noise filter would then of course be considered
as part of the controlled process.

3. Dead-time compensation

The most common dead-time compensating controller is the Smith predic-
tor (SP) [Smith, 1957]. The structure of this controller is shown in Fig. 3.
The controller output u is fed through a model of the process and through
the same model without dead time. In this way, the controller acts, in the
ideal situation of perfect modeling, on a simulated process which behaves
as if there was no dead time in the process.

The real process is assumed to be linear time invariant and is denoted
as P(s). The model is denoted Pn(s) = Gn(s)e−Lns. Gn(s) is delay free.

A SP which uses the simple FOPDT model given by Eq. (1) combined
with a PI controller

C(s) = K
(

1+ 1
sTi

)
(13)

requires five parameters to be determined, namely K , Ti, Kn, Tn, and Ln.
These parameters may be obtained from a systematic process identifi-
cation experiment. However, it is practically impossible to tune this con-
troller manually by trial and error procedures. Therefore, replacing a PID
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controller with a standard SP gives a drastic increase in operational com-
plexity. This increase is present in both the commissioning and mainte-
nance of dead-time compensating controllers.

A common way to deal with this complexity is to automize the tun-
ing procedure. Automatic tuning of DTCs has received some attention in
the literature, some references are [Palmor and Blau, 1994], [Lee et al.,
1995] and [Vrancić et al., 1999]. But even when automatic tuning proce-
dures are available simpler structures are advantageous since it provides
a possibility for the user to make the last final adjustments manually or
manually retune the controller later.

A few papers have been written that emphasize the importance of less
complex DTCs. In the stable case, [Hägglund, 1996] is one example and
in the case of integrating processes ,[Matausek and Micic, 1999] have
addressed the problem.

The bandwidth of DTCs is usually related to the model parameters
which are assumed to be available when the DTCs are initially tuned.
In [Palmor and Blau, 1994], the closed-loop time constant was set pro-
portional to the apparent dead-time of the process. In [Hägglund, 1996]
it was related to the open-loop apparent time constant. In [Normey-Rico
et al., 1997] the closed-loop bandwidth was related to both of these.

In the case of integrating processes, it has been more common that
the initial bandwidth is supposed to be manually tuned. Guidelines are
given from where a starting point can be obtained. In [Normey-Rico and
Camacho, 1999] the closed-loop time constant was related to an assumed
dead-time error between the model and process. In [Matausek and Micic,
1999] it was suggested that the closed-loop time constant should be set
equal to the apparent time constant of the dynamics additional to the
integrator.

In this paper, a new approach is taken to determine the closed-loop
time constant in the initial tuning. Given the model parameters it is pos-
sible to calculate the uncertainty norm boundary of the DTCs. The uncer-
tainty norm boundary tells how much the real process can deviate from
the model at each frequency without the closed-loop system becoming un-
stable. Then it is shown how it is possible with simple experiments to
obtain frequency dependent inequalities bounding the model uncertainty.
A lower bound on the closed-loop time constant is then found by mak-
ing sure the model uncertainty found is always less than the uncertainty
norm boundary of the DTC’s. The goal is that this initial tuning is, when
the model is close to the process, less conservative but robustly stable.

It was mentioned in the introduction that classical measures of ro-
bustness such as gain and phase margin are not sufficient when dealing
with dead-time systems. This is discussed in [Palmor, 1980]. In addition
to these classical ones it is proposed that a third one is used, namely the
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Paper 1. Robust tuning procedures of dead-time compensating controllers

delay margin. The delay margin of a closed-loop system can be defined
in the following way (modifying slightly the definition in [Landau et al.,
1995]). If the Nyquist curve intersects the unit circle at frequencies ω i

with the corresponding phase margins Φi then the delay margin can be
defined as

DM = min
i

Φi

ω i

Most of the tuning rules for DTCs presented in the literature provide
a certain delay margin. The initial tuning, which results from the pro-
cedures in this paper, can have an arbitrary small delay margin if the
model describes the process well. Therefore, it is shown how the DTCs
can be retuned with a guaranteed delay margin. This can have a practi-
cal value when it is known how much the dead time might vary around
the operating point. Finally, it is also shown what delay margin can be
expected from the initial tuning in the nominal case, i.e., when the model
and process are equal.

4. Stable Case

In [Hägglund, 1996], a dead-time compensating controller with only three
adjustable parameters was presented. The controller can be viewed as a
PI controller with model-based prediction. The abbreviation PPI stands
for “Predictive PI”. The controller can be tuned manually in the same way
as a PID controller.

The structure of the PPI controller is the same as for the Smith predic-
tor, with the FOPDT model (1) combined with the PI controller (13). The
only difference is the parameterization. The five adjustable parameters
are reduced to three by introducing constraints between the controller
parameters and the model. These constraints are

Tn = Ti

Kn = κ /K
(14)

κ is a constant to be determined later. The identification method presented
before only provides a good approximation of the real process at low fre-
quencies. Robustness problems for PPI can occur because of model error
at high frequencies. In [Normey-Rico et al., 1997] a filter was proposed
to provide robustness towards high frequency model errors. The resulting
controller was abbreviated FPPI. The proposed controller structure can be
seen in Fig. 4. The filter F(s) is typically a one parameter low-pass filter
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Figure 4. The FPPI

and it is shown later that it is sufficient for the purpose of this paper to
assume it is of first order

F(s) = 1
Tf s+ 1

In the nominal case, that is when the model describes the process per-
fectly, P = Pn, the controller parameterization given by Eq. (14) results
in a closed-loop set point response

Y(s)
Ysp(s) =

1
Trs+ 1

e−Lns (15)

where Tr = Tn/κ . This is a familiar result regarding Smith-predictors.
The time constant of the closed loop system can be reduced by increasing
κ . Notice that κ = 1 places the closed-loop pole in the same place as the
open-loop one. A proper selection of Tr will be the main subject of the
next subsection. It is shown how a lower limit on Tr can be obtained by
performing a simple open-loop step experiment.

Selection of Tr

The closed loop characteristic equation for the FPPI is

1+ C
1+ CGn

F(P − Pn) = 0 (16)

Denoting the difference between model and process as δ P = P − Pn the
maximum value of hδ Ph allowable while maintaining closed loop stability,
or the uncertainty norm boundary can be obtained from Eq. (16) by solving
for δ P

h∆PhFPPI = Kn

∣∣∣∣ (iω Tr + 1)(iω Tf + 1)
(iω Tn + 1)

∣∣∣∣ (17)
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Notice that if an inequality of type

hδ Ph ≤ Aω (18)

is available the system can be made stable by chosing appropriately Tr

and Tf . This follows from the fact that the degree of the denominator
polynomial is one higher than the numerator polynomial. The condition
for stability would then be

hδ Ph ≤ Aω < h∆PhFPPI ∀ω (19)

An uncertainty bound of type (18) can be obtained with a simple open-
loop step experiment. The step response of the real system is denoted by
y(t). After an identification experiment the FOPDT model response is
available and given by

yn(t) =
{

0 for t < Ln

Kn(1− e−(t−Ln)/Tn) for t > Ln
(20)

Denoting the difference between the two responses f (t) = y(t) − yn(t),
the following expression is the definition of the Laplace transform

P(s) − Pn(s)
s

=
∫ ∞

0
e−st f (t)dt (21)

Putting s = iω the following equation is obtained∣∣∣∣P(iω ) − Pn(iω )
iω

∣∣∣∣ =
∣∣∣∣∫ ∞

0
e−iω t f (t)dt

∣∣∣∣
≤

∫ ∞

0
h f (t)hdt

= A (22)

Note that the error is weighted with one over ω . At stationarity there-
fore there can be no error. Therefore Pn(s) and P(s) have to have the same
steady state gain Kn.

If a time constant T̄f = A/Kn is defined the relevant areas can be
graphically displayed on a normalized step response. This is shown in
Fig. 5.

Inequality (19) can now be restated the following way∥∥∥∥ T̄f ω (iTnω + 1)
(iTrω + 1)(iTf ω + 1)

∥∥∥∥
∞
< 1 (23)
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Figure 5. Step responses y(t) and yn(t) normalized to 1.

Notice that T̄f and Tn are assumed to be known while Tr and Tf are de-
sign parameters. The latter two should be chosen to minimize some per-
formance criteria while fulfilling the above inequality. For a fast set point
response, Tr could be chosen small while Tf would be used to fulfill the
above inequality. Commonly in process control, regulatory performance is
considered more important. The performance criteria recommended here
is to minimize the integrated error when load disturbance l is a unit step.
Using the final value theorem the following expression is obtained.∫ ∞

0
e(t)dt = (Tr + Tf + Ln)Kn (24)

The design problem can be set up as a minimization problem where Eq.
(24) is the cost function and Eq. (23) is the constraint. This problem
can be further simplified. Notice that Tr and Tf enter the cost function
and the constraint the same way. Using this fact it is possible to obtain

27



Paper 1. Robust tuning procedures of dead-time compensating controllers

necessary conditions that show that at the optimum, Tr is equal to Tf . Still
the analytic solution to this problem quickly becomes rather involved. A
necessary condition for the constraint in Eq. (23) to be fulfilled is that the
transfer function has a direct term less than 1. This gives the following
condition

Tr >
√

TnT̄f (25)
A further simplification of the problem can be obtained by normalizing
the frequency in inequality (23) with Tr. If the following quantities are
defined

ω̄ = Trω γ = T̄f /Tr

inequality (23) can be written as∥∥∥∥γ ω̄ (iκω̄ + 1)
(iω̄ + 1)2

∥∥∥∥
∞
< 1 (26)

κ was defined following Eq. (15). Using a bisection algorithm, an upper
limit on κ for which inequality (26) holds, was calculated as a function of
γ . This is shown in Fig. 6. Any pair of κ and γ that lies within the shades
area fulfills inequality (26). Using the above figure the following design
rules are proposed

γ κ ≤ 1 γ ≤ 1 (27)
In terms of the time constants this becomes

Tr ≥
√

T̄f Tn (28)
Tr ≥ T̄f (29)

Remark. The use of an equality in Eq. (28) requires justification. In-
equality (22) allows infinite error when ω → ∞. Most normal processes
are on the other hand of low-pass character. This means the inequal-
ity could be replaced with a strict inequality at high frequencies. When
κγ = 1 the supremum of the norm in Eq. (26) is achieved when ω →∞.
So using additional information about inequality (22), Eq. (28) can be
justified.

Sensitivity to dead-time errors

Robustness of DTCs has been analyzed by many authors. Some references
are [Morari and Zafiriou, 1989], [Palmor, 1980] and [Lee et al., 1996].
Usually, most attention is devoted to analyzing the sensitivity towards
errors in the dead time. The reason for this is that it is often towards
these errors dead-time compensators are most sensitive.
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Figure 6. κ and γ within the shaded area fulfill inequality (26). The edge of the
shaded area corresponds to the equality. Also shown are design lines κ = 1/γ and
γ = 1

With this in mind it is important to give easy ways to reduce the dead-
time sensitivity and be able to set a desired delay margin without limiting
the bandwidth, i.e. sacrificing performance, to much. If the dead time is
expected to vary an amount ∆L, the increase in integral A in Eq. (22)
is at most Kn∆L. So an arbitrary delay margin can be set by adding the
expected dead-time variation to T̄f and recalculating Tr with Eq. (28).

Using the result of [Palmor, 1980] one can see that with the tuning
presented in this section, the resulting DTC has phase margin 60o and
gain margin equal to 2 in the nominal case. The way to see this is to note
that the loop gain is

L(iω ) = e−iLnω

(iTrω + 1)2 − e−iLnω (30)

which can be written as

L(iω ) = N(iω )
1− N(iω )
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where N(iω ) is a frequency response with amplitude less than 1 for all
ω . Loop gain L(s) is always written as a function of a complex variable
to distingish it from dead time L.

Further insight can be obtained into the relation between the delay
margin and closed-loop time constant Tr by normalizing the variables of
the loop gain with Ln. This is the same approach as was taken in [Palmor
and Blau, 1994]. If the process is equal to the model except for an error
in the dead-time, L = Ln + δ L, the loop gain becomes

L(s) = e−Ls

(Trs+ 1)2 − e−Lns (31)

If the variables are normalized with Ln the following dimensionless vari-
ables are obtained.

δ L = δ L/Ln ω̄ = ω Ln T̄r = Tr/Ln (32)
The normalized loop gain is then

L̄(iω̄ ) = e−iω̄ (1+δ L)

(iT̄rω̄ + 1)2 − eiω̄ (33)

The relationship between the two loop gains is L̄(iω Ln) = L(iω ). By
using the Nyquist criterion it is possible to calculate a lower limit on T̄r

for which the closed loop is stable, as a function of δ L. This is shown in Fig.
7. The figure shows that if T̄r ≥ 0.22, δ L can vary from -1 to 1 without the
closed-loop system becoming unstable. It also shows that very aggressive
tuning, T̄r = 0.01, would give a relative delay margin from -0.2 to 0.15.

It is of interest to see what time constant is obtained by specifying a
desired delay margin, ∆L and calculating T̄r from Eq. (28). This desired
time constant is referred to as Tr,d. Dividing by L

T̄r,d =
√

∆L
L

Tn

L

In Fig. 7 T̄r,d is plotted as a function of ∆L/L for different values of Tn/L.
Also shown is T̄r,d calculated with Eq. (29). The recommended T̄r,d is well
above the stability limit so a certain degree of robust performance should
be assured. Notice that when Tn is close to Ln the tuning can be quit
conservative. Increasing dead time results in lower delay margins.

The lower limit on T̄r in Fig. 7 is calculated for the nominal case.
Experience from simulations indicate that this lower limit is not a bad
approximation for other processes, specially if T̄f /Tn is little. Notice that
the method of setting a desired delay margin by adding ∆L to T̄f is valid
for any stable process.
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Figure 7. Thick line is the lower bound on T̄r for a given error δ L. The dashed lines
are the design recommendation, T̄r,d for Tn/Ln equal to 0.5, 0.2 and 0.1 counting
from above. Finally the thin solid line is the design rule given by Eq. (29).

Practical issues

Some comments are in order relating to the practical use of the FPPI and
specially the selection of Tr.

• If the model is close to the real process, T̄f will be small resulting in
a small Tr. Other limiting factors such as actuator saturation will
then come into the picture.

• The performance of the FPPI is always limited by the dead time of
the process. Therefore, tuning aggressively by selecting a small Tr

might only give marginal improvements. In the nominal case this
is apparent from Eq. (24). This fact can be used to motivate tuning
rules. One can decide how large portion of the integrated error comes
from Ln, which one can do nothing about. From this and equation
relating Ln, Tr can easily be obtained.

• Looking at Fig 7 while keeping Eq. (24) in mind, the tradeoff be-
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Table 1. FOPDT model parameters as well as A and κ

i Tn Ln T̄f Tr κ

1 10.4 6.8 0.27 1.7 6.2

2 2.0 6.2 0.27 0.7 2.7

3 3.0 9.1 1.06 1.8 1.7

4 1.7 8.4 1.18 1.4 1.2

5 0.8 5.4 0.17 0.4 2.4

6 7.6 2.6 1.32 3.2 2.4

7 1.3 5.7 0.17 0.5 2.7

tween performance and robustness is apparent. Robustness in terms
of delay margin costs in terms of increased Tr.

Simulation examples

Simulation results for the PPI and the FPPI have been presented in [Häg-
glund, 1996; Normey-Rico et al., 1997; Ingimundarson and Hägglund,
2000b]. To give an idea of how conservative the design method presented
is, a FPPI controller was designed for a collection of processes. They are
shown here without the dead time.

P1(s) = 1
(10s+1)(2s+1) P2(s) = 1

(s+1)3
P3(s) = −s+1

(s+1)5 P4(s) = −2s+1
(s+1)3

P5(s) = 9
(s+1)(s2+2s+9) P6 = 0.5

(s+1) + 0.05
s+0.1

P7(s) = 64
(s+1)(s+2)(s+4)(s+8)

The dead time was always equal to 5 making the total process equal to

P(s) = Pi(s)e−5s

for i ranging from 1 to 7.
The results can be seen in Table 1. Notice that Tr is in all cases smaller

than Tn which means that the closed-loop system has a faster step set-
point response than the open-loop one. Notice that the two processes with
smallest Tn/Tr ratio are non minimum phase and not monotonically de-
creasing. Since the response goes in the wrong direction in the beginning
the area A becomes quite large in those cases. This reduces the bandwidth
through T̄f .
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Summary of tuning procedure

The tuning procedure starts with an identification of a FOPDT model
resulting in parameters Kn, Tn and Ln. The open-loop step response in
the final stage of the identification is used to calculate area A in Eq.
(22). With this information all parameters of the controller can be found.
First, T̄f is found as T̄f = A/Kn. Given a wanted delay margin ∆L, κ is
calculated as

κ =
√

Tn

T̄f + ∆L
(34)

The value of controller parameter Tf should be equal to

Tf = Tn/κ = Ti/κ (35)

Using Eq. (14) the FPPI has then 3 parameters to tune, namely K ,Ti

and Ln. The controller parameters Ti and K respond as in a normal PI
controller.

Application to a tank lab process

The above mentioned methods were applied to a tank laboratory process
at the Department of Automatic Control in Lund. It consists of a tank
with free outflow and a level sensor as well as a pump. The process has a
long dead-time because the pump pumps the water into an open channel
with a small slope. Obvious nonlinearities in the process are the rela-
tion of outflow to the height in the tank as well as nonsymmetry because
the pump cannot remove water from the tank. A PI controller was tuned
and a closed-loop experiment performed followed by a an open-loop step
experiment. The result of the open-loop experiment as well as the corre-
sponding FOPDT response are shown in Fig. 8. The sampling time was 1
second. The identified FOPDT model was

Pn(s) = 5.6
40.2s+ 1

e−93.9s

From the area between the responses T̄f was found to be equal to 4.4.
This gave Tr = 13.3. In Fig. 9 a set-point step response can be seen. The
gain in the proportional part of the PI controller was set to 0 from the
set point to achieve a smoother response. The controller was started with
a reference value of 4 cm. Then an additional step was applied at time
1000 taking the level to 8cm. The over shoot is caused by unexplained
nonlinearities. Reducing κ considerably did not eliminate it. Otherwise,
a smooth control is observed.
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Figure 8. Open loop step response of the real tank (solid line), and the model
(dashed line).
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Figure 9. Closed loop step response of the real tank with a FPPI controller.
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Figure 10. The improved dead-time compensating controller for integrating pro-
cesses.

5. Unstable case, integrating processes

The extension of the Smith predictor to the unstable plant case was first
presented in [Watanabe and Ito, 1981]. The compensator used here is
the Modified Smith Predictor (MSP) presented in [Matausek and Micic,
1996]. There, care was taken to make sure all parameters could be related
to identified parameters of the process model or to classical control theory
concepts.

The block diagram of the dead-time compensator can be seen in Fig.
10. The model of the plant is the simple two-parameter model

Pn(s) = Gn(s)e−Lns = Kn

s
e−Lns (36)

The transfer function F(s) is a constant K0 which is related to the two-
parameter model parameters as

K0 = 1
2Ln Kn

(37)

Introducing

Tr = 1
Kn Kr

(38)

the transfer function from set point value ysp(t) is in the nominal case
given by

Y(s)
Ysp(s) =

1
Trs+ 1

e−Lns (39)
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Tr has therefore the nice interpretation of being the time constant from
set point to the output signal.

From the above equations it is clear that given a process model Pn(s)
the only parameter left to determine is Tr. That is the subject of the next
section.

Determining Tr

In [Normey-Rico and Camacho, 1999] a DTC for integrating processes was
proposed whose closed-loop time constant was related to asymptotes of the
uncertainty norm-bound of the DTC. The same approach is taken here.

The error between the plant and the model is

δ P(s) = P(s) − Pn(s) (40)

The uncertainty norm-bound for the MSP or the maximum value of hδ Ph
allowed while keeping closed loop stability is

h∆PhMSP = hKn( jω Tr + 1)(2Ln jω + e− jLnω )h
h − (2Ln + Tr)ω 2 + jω )h (41)

This equation is obtained from the characteristic equation in a similar
way as Eq. (17).

As pointed out in [Normey-Rico and Camacho, 1999] this bound de-
pends almost entirely on Tr. The bound is shown in Fig. 11. For low
frequencies the bound behaves as

h∆P(iω )h � Kn

ω

For high frequencies the bound has an asymptote given by

lim
ω→∞ =

2Kn LnTr

2Ln + Tr
(42)

To evaluate the minimum of the uncertainty norm-bound it is fruit-
ful to consider it a product of two factors, one of which is monotonically
decreasing. The one that has local minima is

f (ω ) =
∣∣∣∣2 j Lnω + e− jLnω

ω

∣∣∣∣
The minimum value of this function can be approximated with Ln. This
gives a lower bound of h∆P(iω )h

β = Kn LnTr

2Ln + Tr
≤ min

ω
h∆P(iω )h (43)
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Figure 11. Uncertainty norm boundary for Tr = Kn = 1 for varying Ln equal to
1 (−), 3 (−−), 5 (− ⋅−) and 10 (⋅ ⋅ ⋅).

Taking this into account when solving for Tr gives

Tr = 2Lnβ
Kn Ln − β

(44)

From closer inspection of Fig. 11 it can be concluded that for Ln larger
than 1, the bound given by Eq. (43) is conservative, and that the real
minimum is much closer to the value given by Eq. (42).

To evaluate the value of hδ P(iω )h for each frequency, the assumption is
made that the real process is given by a first order plus dead time transfer
function with an integrator

P(s) = Kp

s(Ts+ 1) e−Ls
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The absolute value of δ P(iω ) is then

hδ P(iω )h =
∣∣∣∣Kpe−iLω − Kn(iTω + 1)e−iLnω

(iTω + 1)iω
∣∣∣∣

As pointed out in [Normey-Rico and Camacho, 1999] this function can be
characterized by three main frequency intervals. For small ω this function
behaves as

hδ P(iω )h �
∣∣∣∣Kp − Kn

ω

∣∣∣∣
For large ω this function has a slope of 20dB/dec. For sufficiently high
and low frequencies hδ Ph will be smaller than h∆Ph. It is the error at
intermediate frequencies that is of most interest. This will be referred to
as δ P0 in the following.

In [Normey-Rico and Camacho, 1999] the value at intermediate fre-
quencies was approximately calculated by assuming that the velocity
gains of the model and process were equal, Kp = Kn. Then δ P0 could
be estimated as

δ P0 = lim
s→0

δ P(s) = Kn(L + T − Ln) (45)

In [Normey-Rico and Camacho, 1999] δ P0 is viewed as a tuning parameter
from which the closed-loop time constant is calculated. The methodology
is therefore to assume an error between L+T and Ln and from there get
the initial tuning.

Here the approach is to perform a simple open-loop experiment from
where a upper bound is found on δ P0. The area between the actual re-
sponse and the response of the model is calculated when the input is an
impulse of height hp and duration τ p. Denoting as before f (t) = y(t)−yn(t)
the following equation is the definition of the Laplace transform.

δ P(s)hp(1− e−τ ps)
s

=
∫ ∞

0
e−st f (t)dt (46)

From this equation, by replacing the argument s with iω the following
inequalities are obtained.∣∣∣∣δ P(iω )hp(1− e−τ piω )

iω

∣∣∣∣ =
∣∣∣∣∫ ∞

0
e−iω t f (t)dt

∣∣∣∣
≤

∫ ∞

0
h f (t)hdt
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Figure 12. The area A for the integrating case.

Notice that an upper bound on δ P0 can be obtained as

δ P0 ≤
∫∞

0 h f (t)hdt
hpτ p

= A (47)

The area A has a nice graphical interpretation if the impulse response of
the model and real process is normalized to 1 and plotted on the same
graph. A is then the area between the curves. This is shown in Fig. 12.

Notice that this bound on δ P0 is always larger and therefore more con-
servative than the value obtained by Eq. (45). Since δ P(iω ) is weighted
with (1− e−iτ pω )/ω in the inequality, δ P(iω ) can be arbitrary large when
τ pω = 2π . The above method therefore does not guarantee stability but
should work well for well-behaving processes. The gain is that it elimi-
nates the need to tune the last parameter. Substituting β with A in Eq.
(44) gives then the time constant Tr.
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Sensitivity to dead-time errors

Given an error ∆L in the dead-time of the real process, the increase in
integral A would be maximum ∆LKn. Suspected variations in the dead
time can therefore be taken into account by increasing β in Eq. (44) by
∆LKn.

If it is assumed that the process has the same structure as the model
but a different dead time, L = Ln + δ L the loop gain of the MSP is

L(s) = 1
2

e−Ls((2Ln + Tr)s+ 1)
sLn(Trs+ 1− e−Lns) (48)

Using the same approach as in the previous section the following dimen-
sionless variables are defined

δ L = ∆L/Ln ω̄ = ω Ln T̄r = Tr/Ln (49)

This gives the following dimensionless loop gain

L̄(iω̄ ) = 1
2

e−i(1+δ L)ω̄ (i(2+ T̄r)ω̄ + 1)
iω̄ (iT̄rω̄ + 1− eiω̄ ) (50)

Fig. 13 shows the lower bound on T̄r to maintain stability as a function
of δ L. The bound is not symmetric around 0. Rather it is shown that an
increase in dead time is more likely to cause instability than a decrease.
If T̄r is larger than 0.4 it will be stable for any decrease in δ L down to
−1. For an initial tuning which would give T̄r equal to 0.01, the controller
would be stable for δ L ∈ [−0.22, 0.14].

The design rule given by Eq. (44) can be rewritten relating T̄r to an
assumed error ∆L by using β = ∆LKn. This results in

T̄r,d = 2δ L

1− δ L
(51)

This function is also shown in Fig. 13. The suggested T̄r,d is well above
the stability limit.

Simulation examples

To get an idea about what closed-loop time constant one can expect to
obtain with the presented methodology, a two-parameter model was found
for a collection of processes. The dynamics additional to the integrator and
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Figure 13. Thick line is the lower bound on T̄r for a given error δ L. The dashed
line is the design recommendation, T̄r,d according to Eq. (44).

dead time are shown below as P1(s) − P8(s)

P1 = 1
s+1 P2 = 1

(0.1s+1)(s+1)
P3 = 1

(s+1)3 P4 = −s+1
(s+1)5

P5 = −2s+1
(s+1)3 P6 = 1

(s+1)(s2+2s+9)
P7 = 0.5

(s+1) + 0.05
(s+0.1)

P8 = 64
(s+1)(s+2)(s+4)(s+8)

The dead time, L, was equal to 5 in all simulations. The total process was
therefore

P(s) = Pi(s)1s e−5s

The resulting Tr is shown in Table 2. In [Matausek and Micic, 1996] it
was suggested that a suitable value of Tr, given that this value would be
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Table 2. Identification and tuning results for integrating processes.

i Tn Tr A Ln

1 1 0.8 0.4 6.0

2 1.0 0.8 0.4 6.1

3 2.0 2.1 0.9 8.0

4 3.0 2.8 1.2 11.0

5 1.7 3.2 1.4 10.0

6 0.8 0.7 0.3 6.2

7 7.6 21.5 5.3 10.6

8 1.3 1.1 0.5 6.9

available, could be the apparent time constant of the dynamics additional
to the integrator or Pi(s)e−5s. This is shown as well in the table as Tn.
Notice that Ln is the dead time of the two-parameter model. Comparing
Tr and Tn one can see that usually they are quite close. Often Tr is a little
bit smaller than Tn. Exceptions to this are processes 5 and 7. Process 5 is
non-minimum phase while process 7 has a slow zero giving a large area
A compared to Tn. In the case of process 7, A is also very large compared
to Ln. This results in a large Tr according to Eq. (44).

Closed-loop set point and load disturbance responses are shown in
Figs. 14 to 16 for a selection of processes when Tr is found from Eq. (44).
The amplitude of the load disturbance was −0.03. Also shown (dashed
line) are simulations when Tr is set equal to Tn.

Practical issues

Some remarks on the practical use of the methodology presented are in
order. Most of the remarks made in Section 4 apply here as well. Notice
that when A is close to Kn Ln, Tr becomes very large calculated with Eq.
(44).

Extensions

In [Matausek and Micic, 1999] an extension to the MSP was proposed. To
improve load disturbance rejection the transfer function F(s) should have
the form

F(s) = K0
sTd + 1

sTd/10+ 1
(52)

where Td = 0.4Ln and K0 = 0.6/(Ln Kn). The form of the transfer func-
tion is similar to a PD controller. It’s purpose is also to predict the load
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Figure 14. Simulation example. Process 3.

disturbances l better which in turn leads to better disturbance rejection.
Simulation experience indicates it is possible to use this extension with
the tuning procedure presented. Sometimes the increase in conservative-
ness associated with the procedure is welcomed. In Fig. 17 the Nyquist
diagram is shown for process 5 when Tr is found by the procedure pre-
sented and as recommended in [Matausek and Micic, 1996]. It can be seen
that the latter results in an unstable closed-loop system.

Summary of tuning procedure

As in the stable case, the tuning procedure starts with an identification
experiment which results in parameters Kn and Ln. K0 can then be found
from Eq. (37). Then, area A in Eq. (47) is found by performing an open-
loop inpulse response on the process. If a delay margin ∆L is desired, it
is added to A and then Tr is found from Eq. (44). Then Kr can be found
from Eq. (38).
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Figure 15. Simulation example. Process 5.

Application to a lab process

The method presented was used on the tank laboratory process presented
in Section 4 after some modification of the process. To make an integrating
process a tank without an outflow hole was added under the first one.
The controlled variable was therefore the height in the second tank. To
avoid nonlinearities at low flow levels, a second pump was installed which
pumped with a constant flow rate out of the lower tank. In this way the
first pump was set to work around a constant flow rate corresponding to
3 V.

The identification experiment was performed manually because it was
difficult to tune a suitable PI controller. An impulse of height 1 Volt and
duration 60 seconds was added to the equilibrium value of 3 Volts. The
response of the tank and the identified two-parameter model are shown
in Fig. 18. The identified two-parameter model was

Pn(s) = 0.07
s

e−132.5s

The area A between the responses was 1.6. This resulted in a closed-loop
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Figure 16. Simulation example. Process 6.

time constant Tr = 54.8 seconds. In Fig. 19 a closed-loop step response
experiment using the MSP is shown. The controller was started at time
1000 while a step was applied at time 2000 taking the level in the tank
from 4 cm to 8 cm. The controller performs as expected. The step response
looks similar to what was seen in simulation.

6. Conclusions

In this paper tuning procedures for dead-time compensators have been
presented. Dead-time compensators for both stable and integrating pro-
cesses are considered. The closed-loop time constant is found by comparing
the model output to the process output when a simple open-loop experi-
ment is performed.

In the case of integrating processes the procedure eliminates the need
to manually tuning one parameter.

The DTCs are simple and can be manually fine-tuned or re-tuned. It
is also shown how the DTCs can be given a guaranteed delay margin.
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Figure 17. Nyquist curve for process 5, L = 10. Extended MSP with Tr found
from Eq. (44), (−). Extended MSP with Tr set equal to apparent time constant,
Tr = 1.7, (−−).

Finally, the methodology has been applied to a laboratory process with
success.
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Figure 18. Identification experiment for integrating case. The upper graph shows
the impulse response of real tank (−) and that of the two-parameter model (−−).
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Figure 19. Step response of the real tank.
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Paper 2

Performance comparison between
PID and dead-time compensating

controllers

Ari Ingimundarson and Tore Hägglund

Abstract

This paper is intended to answer the question: “When can a simple
dead-time compensator be expected to perform better than a PID?”.
The performance criterion used is the integrated absolute error (IAE).
It is compared for PI and PID controllers and a simple dead-time
compensator (DTC) when a step load disturbance is applied at the
plant input. Both stable and integrating processes are considered.
For a fair comparison the controllers should provide equal robustness
in some sense. Here, as a measure of robustness, the H∞ norm of
the sum of the absolute values of the sensitivity function and the
complementary sensitivity function is used. Performance of the DTCs
is given also as a function of dead-time margin (DM).

Keywords Performance Comparison, PID Control, Dead-time Com-
pensators

Reprinted from: Ingimundarson, A. and T. Hägglund (2002):
“Performance comparison between PID and dead-time compensating

controllers”, Journal of Process Control 12, p.887-895, with permission
from Elsevier Science.
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1. Introduction

In [Smith, 1957] a control structure was presented which became one of
the main solutions to deal with processes with long dead time. Recently, a
renewed interest in dead-time compensators has been noted in the control
literature. Extensions to integrating and unstable processes have been
presented, (see for example [Matausek and Micic, 1996] and [Majhi and
Atherton, 2000]).

Despite this, little has been written about when DTCs should be used.
Commonly in textbooks on process control a few pages are devoted to
explain the control structures of common DTCs but recommendations and
guidelines about when to use DTCs are very rare.

The most common control structure in the process industry is the PI.
The derivative gain is often turned off. This applies specially when long
dead times are present. Therefore, given that the current control structure
is a PI two options should be compared. One is to add the derivative part
to the PI making it a PID. The other is to implement a DTC.

One reference where a similar comparison was done is [Rivera et al.,
1986]. There, within the IMC framework, a PID controller was designed
for a first-order plus dead time (FOPDT) transfer function and compared
to best achievable performance of a DTC, that is when it has infinite
gain. The performance criterion used was the Integrated Squared Error
(ISE). DTCs with very high gains can have arbitrary small robustness
toward dead-time errors, see [Palmor, 1980], even though their robustness
measured with traditional measures like amplitude margin, phase margin
or maximum sensitivity, can be good. Therefore, in the current paper,
performance of DTCs is given as a function of dead-time error sensitivity,
measured with the dead-time margin (DM) or the smallest error in the
dead time which causes instability. An other reference where the subject is
treated is [Meyer et al., 1976]. There the robustness of the two structures
is not treated specially and the range of process dynamics for which the
comparison is made is small.

The layout of this paper is the following. The comparison criteria is
treated in Section 2. The DTCs and their tuning is presented in Section
3. In Section 4 the results are presented. This is followed by a discussion
in Section 5. Finally conclusions are drawn in Section 6.

2. Comparison criteria

The purpose of this paper is to give insight into the problem of choosing
between a DTC and a PI(D) within a typical process control environment.
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While providing results general enough to be useful in that environment,
certain assumptions are necessary to limit the size of the paper.

One question that arises is what information should be assumed to be
available to select between control structures. Detailed knowledge can not
be assumed to be available since this is usually not the case within the
process industry. In connection with the usage of DTCs, plants are often
referred to as being dead-time dominated. What is meant by this is that
the ratio between dead-time and other dynamics is large and accordingly
a decision to implement a DTC is taken. In this article it is assumed that
process information is available in terms of an first-order plus dead time
(FOPDT) model, denoted with

P(s) = Kp

Ts+ 1
e−Ls (1)

This is the simplest way to represent the division of process dynamics into
pure dead-time, and other dynamics. In the case of integrating processes
it is assumed that the FOPDT is in serial with an integrator

P(s) = Kp

s(Ts+ 1) e−Ls (2)

In the process industry, processes are commonly modeled with these trans-
fer functions so most control engineers are familiar with their parame-
ters. The comparison is made for these processes only. By making sure
controllers fulfill a robustness constraint, the results should be valid for
plants sufficiently close to these models.

Another question that arises is the complexity of the controller struc-
tures. The most commonly used structure in the process industry is the PI
which has 2 parameters. A more complex structure with more parameters
might show better performance but still it might never be implemented
since this requires more expertize and advanced maintenance than the
PI. In this paper, an effort has been made to keep the DTCs as simple
as possible. The DTC structures considered all contain a model of the
process. Most parameters are related to this model. When the plant is
equal to the model, the set-point response is given by a FOPDT transfer
function with unit gain.

1
Trs+ 1

e−Ls (3)

Tr is selected with dead-time sensitivity in mind. This applies to the stable
and integrating plant case. The models and the tuning of the DTCs will
be introduced in Section 3.

Within the process industry regulatory performance is usually more
important that set-point response. Therefore, the performance criterion
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Figure 1. Block diagram of disturbance signals.

used was the IAE when a step load disturbance is applied at the plant
input. This comparison was performed for the FOPDT model for a griding
of the interval

T ∈ [0.01, 10] (4)
while L and Kp were kept equal to 1. This range includes “almost” pure
dead-time processes to “almost” dead-time free processes.

It should be pointed out that while the comparison made in this paper
is for load disturbances only, the main strength of DTCs has on the other
hand been its set point response. Further more it should be pointed out
that it has been a subject of many papers to improve the load disturbance
response of DTCs. As was said before, the DTCs presented here are simple
and there is much room for improvement.

The block diagram of the loop is shown in Fig. 1. C(s) is the controller
while P(s) is the process to be controlled. l is the load disturbance affect-
ing the system while n is the measurement noise. For a FOPDT model
on interval (4), the PI(D) with the lowest IAE and with equal or better
robustness was compared to the IAE of the DTC with the tuning obtained
from the FOPDT model. The robustness condition will be introduced in
the next section.

Since the PI(D) controller parameters are only subject to a robustness
constraint, the comparison presented is not dependent of a specific tuning
rule of the PI(D).

Robustness constraints

Caution has to be shown when comparing performance of control struc-
tures because of the ever present tradeoff between robustness and per-
formance. The comparison should be made under the assumption that
robustness of the control structures is similar. A small deviation in the
process should not result in a great difference in performance between
the structures.

The robustness measure used here is the H∞ norm of the sum of
the absolute values of the sensitivity function and the complementary
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2. Comparison criteria

sensitivity function

γ = sup
ω
(hS(iω )h + hT(iω )h) (5)

where

S = 1
1+ CP

T = CP
1+ CP

(6)

This robustness measure or similar measures have appeared in various
places in the control literature. In [Panagopoulos and Åström, 2000] it
was shown how the Nyquist curve of a closed-loop system with a given γ
is guaranteed to stay out of the region given by the contours of

1+ hLh
h1+ Lh = γ (7)

, L(s) is the loop gain, L(s) = C(s)P(s). Furthermore it was shown how
this parameter, with a suitable selection of weights for l and n is equiva-
lent to the generalized robustness margin, see [Zhou, 1998].

In [Morari and Zafiriou, 1989] and [Doyle et al., 1992] the following
condition for robust performance appears:

W1hS(iω )h +W2hT(iω )h < 1 ∀ ω (8)

For a typical process control problem the weights W1 and W2 should have a
special shape. Weight W1 should be large at low frequencies to assure good
load-disturbance rejection. Weight W2 usually increases with frequency
to guarantee robustness toward model perturbations at high frequencies.
The larger W1 can be, the better disturbance rejection. Larger W2 means
better robustness toward multiplicative uncertainties is assured.

The control structures presented in this article have certain inherited
qualities. All of them have infinite gain at low frequencies resulting in
asymptotic rejection of a step load disturbance. In the nominal case it can
be shown with simple analysis that hS(iω )h → 0 as ω when ω → 0. At high
frequencies the controllers have constant gain which means hT(iω )h → 0
as 1/ω when ω →∞. Given two controllers with these qualities and equal
γ there is a pair of weights, W1 and W2, such that condition (8) is fulfilled
for both controllers. These weights can be constructed by choosing them
to be 1/γ for the frequency for which the supremum is achieved in Eq.
(5). For other frequencies, W1 would be put equal to the smaller value of
h1/S(iω )h for the two controllers. W2 would be chosen similarly to be the
smaller value of h1/T(iω )h. The implication of this is that there is a set
of plants, around the nominal one, for which both controllers satisfy the
robust performance condition given by Eq. (8).
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Figure 2. Block diagram of the simple DTC.

Dead-time sensitivity

A useful concept when dealing with DTCs is the dead-time margin (DM )
or the smallest change in the dead time which will cause instability. The
robustness measure presented in the previous chapter does not capture
dead-time sensitivity of DTCs. The reason is that it is caused by large
loop gain in the right-half plane of the Nyquist diagram, see [Åström and
Hägglund, 2001; Palmor and Blau, 1994], while the robustness measure
is related to regions on the left side of the Nyquist diagram. Dead-time
sensitivity can be taken into account by proper tuning of the DTCs. The
general principle in this article was to select a tuning so that the ampli-
tude of the loop gain was strictly smaller than 1 for frequencies larger than
the crossover frequency, ω c (smallest frequency where hC(iω )P(iω )h = 1).

3. Controllers

Stable case

The block diagram for the DTC can be seen in Fig. 2. P(s) is the real
process to be controlled. P0(s) is the model of the process with dead time,
G0(s) is the model without. This way the controller for the DTC as indi-
cated by Fig. 1 can be written as

C(s) = Cc(s)
1+ Cc(s)G0(s)(1− e−Ls) (9)

The model P0(s) was the FOPDT model given by Eq. (1) and Cc(s) was a
PI controller set to

Cc(s) = 1
Trs

G−1
0 (s) =

Ts+ 1
Tr Kps

(10)
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3. Controllers

where Tr is a design parameter. This parametrization is related to H2

optimal control. The actual criteria it minimizes is the integrated squared
error (ISE) but because of its simplicity it is used even here. For references
about this parametrization, see [Laughlin et al., 1987].

In the nominal case, when there is no model error, P0(s) = P(s), then
Tr is the time constant from set point ysp to output y.

Y(s)
Ysp(s) =

1
Trs+ 1

e−Ls (11)

Furthermore, the loop gain L(s) = C(s)P(s) is then given by

L(s) = e−Ls

Trs+ 1− e−Ls (12)

The robustness properties of this structure were analyzed in [Palmor and
Blau, 1994]. There it was shown that L(iω ) never has a real part smaller
than −1/2. This means the phase margin and amplitude margin are min-
imum 60o and 2 respectively. It was also shown how the dead-time margin
depends on Tr/L. Some values are given in Table 1. For Tr/L ≥ 0.34 the
dead-time margin is larger than 100%. This was the value used for the
comparison. Again, for this value the amplitude of the loop gain is always
less than 1 for frequencies larger than the crossover frequency.

In the nominal case the transfer function from l to y is given by

y(s) = P0(s)
(

1− e−Ls

Trs+ 1

)
l(s) (13)

This is easily seen to have an over damped response if l is a step. This
means that the IAE is equal to the integrated error (IE) and an analytical
expression can be obtained by a Taylor series expansion of the exponent
in Eq. (13) and applying the final-value theorem. This gives

I AE = lim
t→∞

∫ ∞

0
e(t)dt = lim

s→0
s

S(s)
s2 = Kp(Tr + L) (14)

Table 1. Dead time margin in percentage with the corresponding minimum Tr/L

DM % 5 15 25 35 >100

Tr/L 0.03 0.10 0.16 0.24 0.34
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Figure 3. The improved dead-time compensating controller for integrating pro-
cesses.

For example a DTC with DM equal to 35% will have IAE from a step load
disturbance equal to 1.24KpL. With a very high gain DTC, obtained by
Tr � 0, one could get close to I AE = KpL. That is the lower limit with
the presented tuning.

Notice also that even if the IAE is independent of T , the response is
not. With a large T , settling time will also be very large.

The Modified Smith Predictor, integrating case

DTCs for integrating plants have been presented by a number of authors,
see for example [Matausek and Micic, 1999; Normey-Rico and Camacho,
1999]. The one chosen for the comparison in this article is the one pre-
sented in [Matausek and Micic, 1999], see Fig. 3.

Y(s)
Ysp(s) =

1
Trs+ 1

e−τ s (15)

The reason for this is that this structure is very simple and replacement
from a PI should be straight forward. This structure is an improvement of
a structure presented in [Matausek and Micic, 1996] which will be consid-
ered for comparison as well. Tuning of this structure has been presented
in [Ingimundarson and Hägglund, 2001]. These controllers in [Matausek
and Micic, 1996] will be referred to as the MSP (modified Smith predictor)
and the one in [Matausek and Micic, 1999] as the IMSP (improved MSP).

As with most DTCs, these controllers contain a model of the plant to
be controlled. This is the two-parameter model

P0(s) = G0(s)e−τ s = Kp

s
e−τ s (16)
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As was explained before, the comparison is made for the collection of
FOPDT models in serial with an integrator as given by Eqs. (2) and (4).
A two-parameter model approximation of the model given by Eq. (2) was
obtained by putting τ = T + L

The equation for the controller according to Fig. 1 is

C = Cc + F + FCcG0

1+ Cc(G0 − P0) (17)

The transfer function F(s) is given by

F(s) =


1

2τ Kp
: MSP

0.72
τ Kp

0.4τ s+ 1
0.04τ s+ 1 : IMSP

(18)

Finally Cc is a constant given by

Kr = 1
KnTr

(19)

where Tr is the time constant of the transfer function from set point in
the nominal case when P = P0,

Then the loop gain can be expressed as a function of only dead time τ
and the time constant from reference value to the output, Tr

L(s) = e−τ s(s+ F(s)Trs+ F(s)Kp)
s(Trs+ 1− e−τ s) (20)

It can be seen that the loop gain depends only on the ratio Tr/τ and
therefore the DM as well. In accordance with the tuning of the DTC for
stable processes, this ratio was chosen so that the amplitude of L(iω ) for
frequencies larger than the cross-over frequency would be strictly smaller
than 1. This gave Tr/τ = 0.534.

The tuning recommended in [Matausek and Micic, 1996] was to set
Tr equal to T in the model (2). This parameter setting is included in the
simulation study that follows. Notice though that when T is small this
tuning can give arbitrary small DM .

The PID parametrization

The PID was parametrized on parallel form

C(s) = K
(

1+ 1
Tis

+ Tds
Td/Ns+ 1

)
(21)
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Figure 4. IAE results for the different control structures in the stable case.
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with N = 10. N is sometimes considered a tuning parameter in the study
of PID controllers. To limit the complexity of the PID controller it was
fixed to a typical value as recommended in textbooks on process control.
For PI, Td was set to 0.

4. Results

Stable case

The main result of the paper for the stable case is shown in Fig 4. IAE
is displayed for PI, PID and the DTC for different values of T/L. The
performance of the DTC is only dependent on the Tr/L ratio determined
by the dead-time margin and it is therefore constant over the entire range
of the T/L ratio.
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4. Results

To simplify discussions the range of T/L is split into three regions.

Top region. T/L ∈ [5, 10]. Here the performance of the PI is better
than the DTC. This is not unexpected since when L = 0 the poles of the
closed loop system can be placed arbitrarily with a PI controller. The PID
performs best of the controller structures.

Middle region. T/L ∈ [0.1, 5]. In this region the performance of the
DTC is better than the PI. The largest difference is when T/L � 1. There
the reduction in IAE following a switch to a DTC is at least 25%.

For T/L < 1 the PID performance is similar to the DTC. To obtain a
DTC with better performance than a PID, it would have to be tuned more
aggressively with lower DM .

Bottom region. T/L = [0.01, 0.1]. The PI has higher IAE over the
region but the performance is quite similar. Notice that the performance
curve for the PI is leveling out and approaching a constant value as the
FOPDT process approaches a pure dead-time process. Only a DTC with
smaller DM would have superior performance in this interval.

The performance of the PID approaches the performance of the PI
when the ratio is decreasing. Investigation of the derivative gain showed
it approaches zero for smaller T/L.

Integrating Case

The results in the integrating case are shown in Fig. 5. As the IAE varies
considerably over the T/L range the IAE of all control structures was
normalized with the IAE of the IMSP with Tr/L = 0.534.

The performance of the DTCs is better than the PI for all values of
T/L. Largest difference is for T/L � 3. There the IAE of the PI is 3.3
times larger than the IAE for the DTC. For small T , when the process
approaches a pure dead-time process with an integrator, the ratio of the
IAE between PI and DTC approaches a constant value. The PI has around
2.5 times higher IAE than the DTC in this case.

If the IMSP and MSP are tuned as recommended with Tr = T , the
performance depends strongly on T/L but is always superior to the PI.

The PID performs much better than the other structures for large T/L.
This it not surprising since if L = 0 in Eq. (2) the poles of the closed-loop
system can be placed arbitrarily with a PID. For small T/L the PID has
a performance very similar to the IMSP.

Sensitivity analysis

The PI(D) controllers were compared to the DTCs under the assumption
that they fulfilled the robustness constraint in Eq. (5) for equal or less
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Figure 5. Results for the integrating case. What is shown is the IAE normalized
with the IAE of IMSP with Tr/L = 0.534 (−), PI (−−), PID (−⋅),IMSP with Tr = T
(⋅ ⋅ ⋅ upper),MSP with Tr = T (⋅ ⋅ ⋅ lower).

γ . Yet it is interesting to see how IAE changes when the true process is
not the same as the nominal model. As there are only three parameters,
a sensitivity star was determined for each parameter, for the stable and
integrating case. This was done for T/L ratio equal to 1. The sensitivity
stars show how IAE changes, relative to the IAE for the correct model, as
a function of parameter variation.

Stable case In Fig 6. the Nyquist diagram is shown. Also shown, on
the left half plane is the γ contour (encircling -1). It can be seen that all
controllers touch the contour meaning they all have equal γ . Notice that
the PID seems to touch the contour in more than one place.

In Figs. 7 to 9 the sensitivity stars for the different parameters are
shown. Notice that the scale for IAE change is different on each figure.
Generally speaking one can say that none of the structures seemed signif-
icantly more sensitive to parametric changes than the others. For varying
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Figure 6. Nyquist diagram for the stable case, T/L = 1. DTC (−), PI (−−), PID
(⋅− ⋅)

Kp the surprising thing is the increase in IAE for the PI on the right side.
Comparing the load disturbance responses, one can see that the damp-
ing in the PI response decreases more as a function of ∆Kp, than for the
PID and DTC. For varying T the behavior is rather good for all structures
when the change is larger than −0.5. For smaller values, the performance
of the DTC and the PID increases very quickly before the loop becomes
unstable (∆T < −0.65). The PI on the other hand remains stable with a
small increase in IAE on that portion of the interval. The PID is most sen-
sitive toward change in dead time, L. The IAE increases for all structures
for positive change in dead time.

Integrating case The dead-time compensator for the sensitivity study
was the IMSP with Tr/L = 0.543. The Nyquist diagram for the integrating
case is shown in Fig. 10. Again all controllers lie tight up to the robustness
constraint. The sensitivity stars are shown in Figs. 11 to 13. Again one
can say that no structure is significantly more sensitive than the others.
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Figure 7. Sensitivity star for K , stable case. DTC (−), PI (−−), PID (⋅− ⋅).

For a change in Kp it is obvious that the change in IAE for the DTC has
a dependence that is very close to linear in ∆Kp and the dependence is
opposite to the other structures.

5. Discussion

There are many aspects that have not been considered in this comparison.
The PID and DTC control structures each have advantages that should be
taken into account. The PID is a well known structure frequently found
in distributed control systems as standard modules. One advantage of the
DTC is that the dead time enters the control law directly, opening the pos-
sibility for gain scheduling if the dead time is measurable. Furthermore,
DTCs can be designed with certain dead-time margin if variations in the
dead time are known, see [Ingimundarson and Hägglund, 2001].

An other aspect ignored here is the control signal amplitude or energy.
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Figure 8. Sensitivity star for T , stable case. DTC (−), PI (−−), PID (⋅− ⋅).

This could be checked by looking at the transfer function from measure-
ment noise, n, to the control signal, C(s)S(s). The performance of the PID
for large T/L was often followed by large values of this transfer function.

It was said in the introduction that recommendations for when to use
DTCs are scares in the literature. An exception is [Marlin, 1995]. There,
a DTC is recommended for stable processes if the feedback fraction dead
time, L/(T + L) is larger than 0.7. This translates to a T/L ratio smaller
than 0.4. As indicated in Fig. 4 the benefits of replacing a PI start for
larger values of T/L.

PID considerations

The DTC is a model based control strategy. Implementing it necessitates
an identification of a process model. Having said that a PID performs sim-
ilar to a DTC it should be noted that to obtain this performance with a
PID some kind of identification of the process would be necessary. Achiev-
ing similar performance with a manual tuning would be difficult. And this
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Figure 9. Sensitivity star for L, stable case. DTC (−), PI (−−), PID (⋅− ⋅).

is not only due to the increase from two to three parameters. To support
this claim, some contour lines in the PID parametric space is shown in
Fig. 14 for the integrating case when T/L = 1. For several values of Td

the contour lines in K and Ti are shown for the same γ as the IMSP
has when tuned with fixed Tr/τ ratio. It can be seen that the surface has
sharp edges on it. Sharp edges of the parametric surfaces of PID’s has
been reported elsewhere, see [Åström and Hägglund, 2001]. To reach this
optimal point by manual tuning might be difficult.

6. Conclusions

The paper has focused on comparing the performance of the PID control
structure with simple DTCs. The purpose has been to gain insight about
when each control structure should be used. IAE performance was deter-
mined as a function of the ratio between time constant and dead time,
T/L, for a collection of FOPDT models.
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PID (⋅− ⋅)

In the stable case, the main result is that for T/L in the interval
[0.1, 5] a substantial decrease in IAE can be obtained by switching from a
PI to a DTC. The performance of a PID is better than a DTC for T/L on
[1, 10], otherwise it is similar to the DTC. A superior performance of the
DTC on the interval [0.1, 1] could be obtained by accepting a smaller DM .

In the integrating case, the performance difference is much greater
between PI and the DTC. A switch to a DTC might reduce IAE to about
one third of the IAE for PI. The PID performs best over a large portion of
the area but it has been shown it might be difficult to obtain this optimal
performance with manual tuning.
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Figure 11. Sensitivity star for K , integrating case. IMSP (−), PI (−−), PID (⋅− ⋅).
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Figure 12. Sensitivity star for T , integrating case. DTC (−), PI (−−), PID (⋅− ⋅).
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Figure 13. Sensitivity star for L, integrating case. IMSP (−), PI (−−), PID (⋅− ⋅).
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Part II

Performance Monitoring
of λ-Tuned Controllers





1

Introduction to Performance
Monitoring

Much work has been done in the field of closed-loop performance monitor-
ing and diagnostics (CLPM&D) in the last decade. This branch of auto-
matic control research has matured enough so that a few survey articles
have appeared, see for example [Qin, 1998; Harris et al., 1999].

The purpose of the CLPM&D methods is to assist plant staff to in-
terpret plant data. The goal is to run the plant as effectively as possible.
The monitoring algorithm should sound an alarm when controllers are
not performing as expected. The diagnosis should give decision support to
help with the overall maintenance of the closed loops in a plant.

The terms monitoring and assessment are used somewhat interchange-
ably in the literature, usually referring to very similar algorithms. In this
thesis, what is meant with closed-loop performance monitoring is the ac-
tion of watching for changes in a statistic reflecting performance over time.
Assessment in this thesis refers to the action of assessing or evaluating a
statistic that reflects performance at a certain point in time. The purpose
of diagnosis is usually to determine the reason of poor performance. This
might focus on one loop or a group of loops.

1.1 Control Performance in the Process Industry

Automated process control is an enabling technology to deal with the
natural variations of process variables from their desired values in a plant.
The performance of a control system relates to its ability to deal with this
variability.

The basic indication that something is wrong with a process is that
the variability becomes too large. The deviation might be measured as
variance or standard deviation of the control error or estimated by visual
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inspection of process data. Operation targets are usually given in terms of
deviation from set point, either as the absolute maximum or average over
time. There are many measures of variability, the one most often used in
this thesis is variance.

Numerous investigations have shown that performance of feedback
controllers is not good in the process industry, see [Bialkowski, 1993; En-
der, 1993]. Typical numbers quoted are that 80% of loops have perfor-
mance problems, 30% of loops actually increase variability in the short
term over manual control.

This might be surprising in the light of the fact that about 95% of
feedback controllers in the process industry are PI controllers. It is fair
to say that with the amount of research effort put into control theory the
last decades, the problem of designing and commissioning PI controllers is
solved. There are many ways to design good PI controllers but the problem
is that the performance of a controller that once worked well is prone to
degrade over time. Therefore, what is lacking is the maintenance of the
controller after commissioning. Some of the reasons quoted for the lack of
maintenance are

• Staff have limited time. The maintenance of controllers gets little
time, sometimes most of it is done on a “fire-fighting” basis. One
reason for the lack of time is that the operators have to many loops
to maintain.

• Lack of education and understanding of process control. Sometimes
the poor performance becomes the norm and people accept it as
normal.

The overall result is that companies are frequently not getting the best
possible return on their investments into automated process control. In
light of these facts the need for tools to assist staff to discover and fix pro-
cess control problems is apparent. This need has generated a fair amount
of research.

1.2 Why is Performance Poor?

There is a wide variety of reasons why loop performance might be poor.
The equipment that the loop depends on can become faulty. Valves have
excessive friction or stiction or they are not correctly dimensioned. In-
put saturation breaks the feedback path temporarily. Varying transporta-
tion times causes changes in dead time. The control structure or algo-
rithm might be inappropriate. The controller might be badly tuned or dis-
turbance characteristics for which the controller once was suitable have
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changed. The sampling time might be poorly selected. Finally, if a loop
has performance problems, this might show up in neighboring loops.

This wide spectrum of root causes for performance deterioration has
given rise to a wide variety of methods to monitor and diagnose perfor-
mance. There are a number of methods to monitor and diagnose oscil-
lations, see [Horch, 2000; Hägglund, 1995]. Detection of sluggish control
loops has been treated in [Hägglund, 1999]. There are methods special-
ized to diagnose valve problems such as stiction and backlash, see [Horch,
2000].

Efficient diagnosis between root causes is a difficult problem. To imple-
ment a number of methods and run them on-line in a distributed control
system (DCS)might be considered troublesome. An approach to this prob-
lem is to have a performance monitoring algorithm running on-line which
detects problem loops but does not distinguish between root causes. Then
the root-cause diagnosis can be performed off-line. The performance mon-
itoring algorithm presented in Chapter 3 is well suited as the algorithm
running on-line.

The performance of feedback loops is subjected to limitations. These
arise from plant dynamics such as dead time or right-half plane zeros.
Saturation and dynamics of actuators pose limitations as do noise char-
acteristics. This is important information when monitoring performance.
Performance is hardly bad if it is close to what is optimally achievable
considering the limitations. Even though it is close to optimal it might
still not be acceptable. Many methods monitor performance by compar-
ing the actual performance to the best achievable subjected to the known
limitations. One of the main advantages of this approach is that only in-
formation about the limitations is required. One of the disadvantage is
that there are many types of limitations and it is difficult to know them
at all operating levels. Furthermore, performance far away from optimal
performance might be perfectly acceptable in some situations.

1.3 Desired Properties of CLPM&D Methods

In [Vaught and Tippet, 2001] a list of desirable properties a CLPM&D
method should have, was presented. Some of these properties are listed
below and new ones have been added.

• Non-invasive. The method should not disturb normal operation of
the loop. A few researchers have suggested methods where this con-
dition is not fulfilled. For instance, in [Kendar and Cinar, 1997] a
pseudo random binary sequence is added to the reference to find
the sensitivity function and complementary sensitivity function. In

75



Chapter 1. Introduction to Performance Monitoring

[Gustafsson and Graebes, 1998] a method which uses an external
probing signal to distinguish between performance changes due to
system changes and disturbances was presented. In [Huang and
Shah, 1998] a dither excitation is used to identify a disturbance
model which was then used to calculate achievable performance for
a specific IMC design.

• Low error rate. False alarms occur when the algorithm signals bad
performance eventhough the performance is actually good. Missed
detections are those situations when the algorithm should give alarm
but it doesn’t. Too many false alarms or missed detections result in
a reduced or no use of the method. The problem is to characterize
exactly, in terms of the loop condition, when either will happen.

• Automated operation. The method should run with little or no man-
ual intervention.

• No history. The method should result in an absolute measure of
performance. It should not need to run for a time to be effective.
Frequently the indices of today have to run for some time after com-
missioning to create a “normal” operation level. Deviations from this
level is then what is monitored. This means some time is required to
start using the indices. If the loop is changed in some way it might
be necessary to repeat the startup procedure.

• No process information. One should need little knowledge of the
process or the controller. The reason being that to obtain this infor-
mation and keep it uppdated would be expensive.

• Implementation in the DCS. It is preferable that a method is imple-
mented directly in the DCS since information about parameters and
the operating condition (auto/manual) usually resides there, see a
discussion in [Hägglund, 2002].

Tradeoffs

The desirable properties are not all attainable or realistic. An actual im-
plementation of a CLPM&D method would mean a tradeoff between these
conditions. New methods should also be viewed with this in mind as well.
Probably not all prefer the same set of characteristics in a method.

Performance monitoring is a form of data compression where raw plant
data is compressed to present information for plant staff for maintenance
purposes. As always when data is compressed, information is lost. Usually
with an increase in information content an increase in complexity follows.
To interpret more detailed information requires more knowledge.
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1.4 The Following Chapters

In Chapter 2 a review of previous work is presented. Most emphasis will
be on the work on which the performance monitoring algorithm presented
in Chapter 3, is built. The main characteristics of the monitoring algo-
rithm presented in Chapter 3, separating it from other methods, is that
specifications about performance from the tuning phase are used to set
all parameters of the monitoring algorithm. This should reduce the com-
missioning time since no historical information is required to implement
the index. The drawback is that the tuning information is needed for the
commissioning. In Chapter 4 a method will be presented which estimates
a gradient of the variance with regard to a controller parameter. The pur-
pose of this statistic is to assist with parameter adjustment of controllers.
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2

Previous Work

2.1 Introduction

A short review of the literature will be given. Most emphasis will be put on
work related to λ-monitoring, the method presented in the next chapter,
but other research directions are noted in the passing. Some notation will
be introduced as well. To begin with a short note on industrial practice
that has not received much academic attention will be presented.

Industrial Practice

Despite poor performance of controllers in the process industry mainte-
nance of controllers has always taken place. Operation targets are spec-
ified in terms of measures of variability such as variance or standard
deviation. The most basic trigger for maintenance is unacceptable vari-
ability in the loop. To monitor some measure of variability is obviously of
fundamental importance for efficient operation. It is unlikely that main-
tenance efforts will be devoted to a loop that fulfills its operation targets
even though the controller is performing badly according to some statistic.
In this thesis variance is the main measure of variability.

A commonly used statistic for the overall performance of a controller is
the uptime or service factor. This is the portion of time spent in auto, that
is, the portion of the time the controller is on. [Kozub, 2002] argues that
uptime will continue to be “the work horse” of performance monitoring
since low uptime is a sure signal that a loop needs maintenance.

To rely on variance alone as a measure of performance gives false
alarms regarding controller performance. The controller might be doing
its job perfectly but still the variance might be unacceptable. With regard
to uptime as a performance monitor it is noted in [Desbourough and Miller,
2001] that high uptime does not mean good performance.
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2.2 Academic Work

A rough classification of approaches to performance monitoring and di-
agnosis presented in the literature is the following. Firstly, a number of
single number performance statistics, referred to as indices or potentials,
have been suggested. The other approach can be explained as graphical in-
spection of various functions, usually related to the controller error. Both
approaches aim at compressing the complex plant data and presenting
the result to the operators. The first one is easier to automate, making it
a more valuable “first indicator” of bad performance.

The method presented in this thesis is strictly SISO. Research into
performance monitoring of multi-variable controllers has lagged behind
the SISO case but lately there has been much activity in this field. Ex-
tensions from the SISO case where minimum variance performance is
compared to the actual performance has been advocated in [Harris et al.,
1996; Huang et al., 1997]. An industrial perspective of the research is
offered in [Kozub, 2002].

An other problem receiving more attention is to diagnose which loop
is responsible when bad performance is exhibited by a group of loops.
Typically these disturbances are oscillatory. Some references dealing with
these problems are [Thornhill et al., 2002; Thornhill et al., 2001].

Most control problems in the process industry are solved using SISO
controllers. To deal with interactions, loops are commonly configured with
different dynamics. The impact of well working “fast” loops on the “slower”
loops should be small as their variability can be assumed to be of frequen-
cies above the bandwidth of the “slower” loops. As the method presented
relates to how well a controller fulfills the assumptions from the tuning
stage, it should be useful to validate whether the assumptions about the
configurations of dynamics hold.

Multi-variable controllers are considerably less frequent in the process
industry but their use is increasing considerably. Perhaps the advent of
monitoring and diagnosis technology of these controllers will make their
implementation feasible.

Performance Index Monitoring

Performance index monitoring refers to monitoring algorithms where a
single number reflecting performance is calculated repeatedly over time
and compared to an alarm limit. The alarm limit can be decided from
statistical characteristics of the index or by some other criteria. One of
the main advantage of this approach is that it is easy to automate.

An early reference based on this approach is [Devries and Wu, 1978].
The index presented by Harris (see [Harris, 1989]) received much atten-
tion and many improvements followed. The idea was to compare the vari-
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ance of the controller error to the minimum variance when the limitation
to performance due to dead time are taken into account. The minimum
variance was found by identifying a time-series model of the error and
solving a Diophantine equation. The ratio of the minimum variance and
the actual variance has been called the Harris index in the literature.

Time-series modeling continued to be a cornerstone of much of the
work following after [Harris, 1989]. In [Desborough and Harris, 1992] an
alternative form of the Harris index was presented as well as approximate
probability distributions which are useful for designing alarm limits. The
index presented in this thesis is based on this alternative form of the
Harris index. Hence, a special attention will be devoted to the indices
calculated from time series.

Graphical Inspection

Some of the earliest mentioning of the idea of performance monitoring is
in [Åström, 1967]. There it is pointed out that an assessment of how close
the performance of a controller is to the optimal one could be estimated
by calculating and inspecting the covariance function. Under minimum
variance control, the control error should be a moving average of order d
where d is the pole-zero excess of the plant in discrete time. Calculating
the covariance function of such a time series for arguments larger than d
should result in zero.

In [Kozub, 1997; Kozub, 2002], a function deemed easier to interpret
than the covariance function was the impulse response from an identified
time-series model of the control error. The value of the impulse response
for graphical inspection is also pointed out in [Huang, 1999].

In [Stanfelj et al., 1993] the cross correlation function between mea-
surable disturbances and controller error was suggested as a tool to de-
termine influence of disturbances. Finally, different spectra have been
mentioned. An extension to the multi-variable case has been presented in
[Seppala et al., 2002].

In [Kozub, 2002] it is noted that graphical interpretation of the impulse
response requires a critical threshold of training for plant staff. Graphical
inspections take time and therefore they are not a solution to the problem
of plant wide performance monitoring because of the limited time of plant
staff. They are an important part of the secondary tool set to be used
after a more basic algorithm triggers the auditing of the loop. Use of
expert systems to package the information and provide decision support
has been presented in [Harris et al., 1996]. See [Paulonis and Cox, 2003]
for an idea of large scale implementation of graphical methods.
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Figure 2.1 Basic block diagram of closed-loop system.

2.3 Indices Calculated from Time-Series Models

A set of assumptions about the process and the disturbances are usually
made when the indices are derived. The central one is that the control
error, e(k) = r(k) − y(k), is a stochastic process resulting when a linear
model is driven by white noise, see Fig. 2.1. The plant output is described
by

y(k) = P(q−1)u(k) +w(k) (2.1)
where q−1 is the backward shift operator. P(q−1) is linear time invariant
and can be written as

P(q−1) = Bu(q−1)
Au(q−1)q−d

where the pole-zero excess is d. Notice that sometimes d is called dead
time while other times it is d− 1. Following [Harris, 1989] the dead time
is defined as d, the pole-zero excess. The controller is assumed to be one
degree of freedom

u(k) = C(q−1)(r(k) − y(k))
The disturbance w(k) is thought to be generated by white noise a(k) fil-

tered through the disturbance model D(q−1). The transfer function D(q−1)
therefore determines the character of the disturbance affecting the sys-
tem. A common assumption is that it is of ARIMA type or

D(q−1) = Bw(q−1)∇l

Aw(q−1) ∇ = 1
1− q−1 (2.2)
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The dependence of the controller error on disturbance w(k) and the set
point r(k) is given by the following equations

e(k) = r(k) − y(k)
= 1

1+ C(q−1)P(q−1)(r(k) −w(k)) (2.3)

Notice that the way set point and the disturbance affect e(k) differs only
by a sign.

Under regulatory control, r(k) is constant. For simplicity it can be
assumed that e(k) has mean zero. Otherwise, it is the deviation from a
mean value which is modeled. For a treatment when the mean is not
zero see [Desborough and Harris, 1992]. If r(k) is a stochastic process,
by means of spectral factorization e(k) can be described by an ARMA
type linear model driven by a single white noise source. In this section
regulatory control is assumed unless otherwise specified.

It is assumed that the data available for monitoring is

{r(k), y(k)} for k = 1 . . . N

or only at the latest time instant, k, for recursive implementation, see
Fig. 2.1. This allows us to calculate the error, e(k) = r(k) − y(k).

Assuming that the plant and the disturbance model are not known,
given e(k), a time-series model can be identified giving valuable informa-
tion about the characteristics of the closed-loop system and the distur-
bances affecting it. The identified time-series model is denoted

e(k) = B(q−1)
A(q−1) a(k) (2.4)

Deterministic Disturbances

Notice that deterministic disturbances can be modeled in the same frame-
work by assuming a(k) is zero except at isolated points in time. Dis-
turbance scenarios more common in process control can then be taken
into account with assumptions on the disturbance model D(q−1). When
D(q−1) = P(q−1)∇ then the disturbance will be referred to as a load dis-
turbance. If D(q−1) = ∇ then it will be referred to as step disturbance.
Since the disturbance w affects the error in the same way as r, a step
disturbance can be attributed to a change in set point or a step change in
w(k).

82



2.3 Indices Calculated from Time-Series Models

The Impulse Response

A useful and informative representation of the time series is the impulse
response. It can be obtained by a series expansion in q−1, of the time-series
model in Eq. (2.4). The equation can then be written as

e(k) =
∞∑

j=0

f j q− ja(k) (2.5)

The first coefficient of the impulse response, f0, is often normalized to
be equal to 1. The variance of e(k) can be expressed with the impulse
response as

σ 2
e = var(e(k)) =

∞∑
j=0

f 2
j σ 2

a (2.6)

Considering Eqs. (2.5) and (2.6) together the subscript of the impulse
response coefficients gives an idea from what time the contributions to the
variance come from. The impulse response coefficients f j can be plotted
as a function of j. For finite variance it is clear that f j go to zero with j.
A plot gives therefore an idea on how fast disturbances are rejected. In
[Tyler and Morari, 1996] the relation of impulse response coefficients to
common performance specifications is shown.

The pole excess d places a limit on how fast a controller can reject
disturbances. The effect of a disturbance acting at time k will be reacted
on earliest at time k+ d. The controller that manages to cancel the noise
perfectly as soon as it can is called a minimum variance (MV) controller,
see [Åström, 1970]. To calculate the MV controller, full information about
the disturbances and the plant is required. Under MV control the error
e(k) is a moving average given by the first d terms of the impulse response
which the controller can not affect. The variance of e(k) under MV control,
denoted σ 2

M V is therefore

σ 2
M V = (1+ f 2

1 + ⋅ ⋅ ⋅+ f 2
d−1)σ 2

a

The Harris Index

It was noted in the introduction that variance alone is a poor indication
on how well the controller is doing. The problem is that the variance as
an absolute statistic is not very informative. It has to be compared with
something.

Harris noted that to assess control performance the variance of e(k)
could be compared with the MV performance, σ 2

M V . This would be more
informative on how well the loop was actually doing. If variance of e(k)
is close to σ 2

M V , better performance can only be obtained by changing the
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f j

t∑d−1
j=0 f 2

j
∑∞

j=d f 2
j

0 d−1 d

Figure 2.2 An impulse response to show the impulse response coefficients used
to calculate the Harris index.

process since σ 2
M V is invariant to feedback. An index of performance could

therefore be calculated as the ratio between σ 2
M V and σ 2

e .
Harris also showed that a time-series model identified from e(k) could

serve to find σ 2
M V . As the first d terms of the impulse response are in-

variant to feedback they should be equal in the actual system and the
identified time series model. A number of single number monitoring algo-
rithms followed the work of Harris.

It was noted in the introduction that a graphical inspection of the im-
pulse response is considered to be one of the most informative performance
inspections that can be done on data. Most of the indices calculated from
time-series models can be thought to be attempts to automate graphical
inspections. The Harris index, for example, can be written as

I =
∑d−1

j=0 f 2
j∑∞

j=0 f 2
j

(2.7)

It compares the sum of the d first impulse response coefficients squared
to the total sum, see Fig. 2.2.

The Normalized Performance Index

In [Desborough and Harris, 1992] the normalized performance index was
introduced. It extended ideas presented in [Harris, 1989] by giving an al-
ternative way of estimating an index related to the Harris index. Assume
that a predictor is created to predict b steps into the future for the time
series in Eq. (2.4). The best predictor in the mean square sense will be
a linear predictor, see [Åström and Wittenmark, 1997]. The predictor can
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be obtained by solving a Diophantine equation or equivalently by long
division of B(q−1) by A(q−1).

B(q−1) = A(q−1)F(q−1) + q−bG(q−1) (2.8)

q−bG(q) is the remainder of the division while F(q) is the quotient. The
polynomial F(q) is also equal to the first b terms of the impulse response
in Eq.(2.5). The predictor is then given by

ê(khk− b) = G(q−1)
B(q−1) e(k− b) (2.9)

The variance of the prediction error, ε b(k) = e(k) − ê(khk− b), is

var(ε b(k)) = (1+ f 2
1 + ⋅ ⋅ ⋅+ f 2

b−1)σ 2
a (2.10)

where σ 2
a is the variance of the noise a(k).

Notice that when a(k) is a deterministic disturbance, the predictor is
found by solving Eq. (2.8) in the same way as when the disturbance is
stochastic, see [Åström and Wittenmark, 1997]. The expression to calcu-
late the normalized performance index is the following

η(b) = 1− var(e(k) − ê(khk− b))
var(e(k)) = 1− var(ε b(k))

var(e(k)) (2.11)

If b is the dead time of the system, η(b) is closely related to the Harris
index. When η is calculated for a number larger than dead time, it is
referred to as an extended horizon performance index. Assuming η is
calculated for b larger than d, then an interpretation is that η(b) gives
the portion of the variance that can be accounted for with a b step ahead
predictor. This allows the normalized performance index to be written as

η(b) = 1−
∑b−1

j=0 f 2
j σ 2

n∑∞
j=0 f 2

j σ 2
n
=
∑∞

j=b f 2
j∑∞

j=0 f 2
j

(2.12)

The last equation shows the importance of the impulse response for
η(b). For a general b the index tells how large portion of the variance
of the control signal comes from noise older than b samples. Fig. 2.2 can
again be used for a visual interpretation of the contributions to η(b). A
rise in η(b) means that impulse response coefficients older than b have
increased compared to the first b ones.

Under the assumption of closed-loop stability, it was noted in [Des-
borough and Harris, 1992] that the transfer function in Eq. (2.9) can be
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written as a convergent series in the backward shift operator. This allows
ê(khk− b) to be written as

ê(khk− b) =
∞∑

i=1

α i e(k− b− i+ 1) (2.13)

An estimate of the prediction error can then be attained by truncating the
infinite series. Keeping only m terms, this results in the following linear
regression model for an estimate of the prediction error ε b(k)

e(k) − ê(khk− b) � e(k) −
m∑

i=1

α i e(k− b− i+ 1) = ε̂ b(k) (2.14)

The parameter vector ᾱ T = [α 1 α 2 ⋅ ⋅ ⋅ α m] can be estimated with the
least squares method by forming the linear regression model

e(k) = ε̂ b(k) + φ(k)Tᾱ (2.15)

where φ(k) is given by

φ T (k) = [e(k− b) e(k− b− 1) ⋅ ⋅ ⋅ e(k− b−m + 1)]

An estimate of η(b) can be found from the LS solution as

η̂(b) = 1− s2
ε̂ b

s2
y

(2.16)

where s2
ε̂ b

is an estimation of the variance of ε̂ b from the LS solution and
s2

y is an estimate of σ 2
y.

One of the biggest advantages of this approach is that solving a Dio-
phantine equation to find the impulse response coefficients is not neces-
sary. Furthermore, as it is based on least squares, a recursive algorithm to
find η̂(b) is readily available. Later it is shown how a stochastic gradient
algorithm which does not need matrix computations can be used as well
with success.

Disturbance Rejection and η(b)
A common measure of performance in process control is the settling time.
Defined from a step disturbance or load disturbance, it refers to the time
after which the plant output stays within an interval of width 2δ centered
around the final value of the plant output. δ is typical 2− 5% of the total
change in the plant output. See for example [Seborg et al., 1989].
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In [Harris et al., 1999] the relation between η(b) and settling time was
presented. Settling time is the time bs when for all b > bs

η(b) −η(b+ 1) ≤ δ 2∑∞
j=0 f 2

j
(2.17)

As a number reflecting disturbance rejection characteristics of the closed
loop system, settling time is well known. The relation to η(b) is therefore
valuable. On the other hand, to check the condition given by Eq. (2.17)
is a rather involved task. A good replacement to represent disturbance
rejection in a loop ,is η(b) itself. η(b) has nice interpretations related to
how long time it takes to reject a disturbance and reflects predictability
in the time series. If η(b) is close to 0 for a specific b it means that the
effect of a disturbance dies out in at least b samples. η(b) can also be more
directly related to settling time. For example, defining η-settling time, bs,
as the time when η(bs) < 0.01 then the following inequalitys hold

∞∑
j=bs

f 2
j < 0.01

∞∑
j=0

f 2
j ; f 2

bs
< 0.01

∞∑
j=0

f 2
j

If it is assumed f j are nonnegative decreasing then

fbs < 0.1

√√√√ ∞∑
j=0

f 2
j < 0.1

∞∑
j=0

f j

Since
∑∞

j=0 f j is the total change if a step disturbance occurs, the inequal-
ity gives that bs is the settling time defined from an interval 10% around
the final value. This is a very conservative estimate of the settling time
as it ignores all larger impulse response terms with time argument larger
than bs.

2.4 User Defined Benchmarks

In [Kozub and Garcia, 1993] it was noted that often the minimum variance
control is neither desirable nor practically achievable. What is considered
to be a well functioning loop in the process industry will frequently have
variance well above the minimum variance. The Harris index is therefore
often too pessimistic and gives false alarms. As a consequence, it is not
always useful as an absolute measure of performance but becomes a rela-
tive measure which is watched over time for trends. This use of the Harris
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index was also noted in [Jofriet and Bialkowski, 1996]. The bottom line is
the Harris index has to be compared to historical values. When installed
it needs to run an initial period when a "normal" value is registered to
which later values are compared.

One reason why the Harris index is pessimistic is that it compares
to optimal performance considering all linear controllers. One approach
to make it less pessimistic is to limit the set of controllers to the type of
controllers commonly used. Typical choices would be PI, PID or common
dead-time compensators. Authors addressing this problem are [Ko and
Edgar, 1998] and [Isaksson, 1996].

On the other hand, these controllers are seldom tuned for optimal
stochastic control. Rather they are tuned for good performance when dis-
turbances are deterministic. So even if the set of allowable controllers
is limited, a pessimistic estimate can be obtained. For a nice discussion
about this issue see [Isaksson, 1996].

One approach to the problem of obtaining a more absolute measure
of performance is to forget about all the limitations and corresponding
optimal performance and try to define in advance what performance is
acceptable. Alongside with the definition of acceptable performance there
should be a condition of acceptable performance which can be checked.

A few authors have addressed this problem. The indices that have been
presented have been referred to as user defined benchmarks in contrast to
benchmarks defined from process limitations. When starting the monitor-
ing procedure the user specifies with some parameter what is acceptable
performance to which actual performance is compared. The drawback of
these methods is that they need more information from the user.

Following the observations in [Kozub and Garcia, 1993] the following
approach to the problem was presented. An acceptable dynamic response
could be specified for Eq. (2.3). As an example, [Kozub and Garcia, 1993]
specified a first order filter,

e(k) = 1
1− µq−1 a(k)

where µ is the decay rate for disturbances entering the system, typically
selected from the dominant pole or time constant. Other types of filters
could be considered as well. Assuming a noise variance σ 2

a the variance
of e(k) will be

σ̄ 2
e =

1
1− µ2 σ 2

a (2.18)

σ̄ 2
e denotes variance of e(k) with the specified response. As no delay is

assumed σ 2
M V = σ 2

a. These equations could be used to design an alarm
limit for the Harris index. If the Harris index, given by Eq. (2.7) was found
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statistically to be lower than 1−µ2 then performance could be considered
poor. Notice that if there is dead time in the loop this approach can lead
to many missed detections of poor performance.

In [Huang and Shah, 1998] a similar idea of a more practical bench-
mark was the topic. There the IMC framework was used to express user-
specified closed loop dynamics. By assuming a disturbance model a priori
or by estimating it with dither excitation, the response of e(k) could be
written as

e(k) = ( f0 + f1q−1 + ⋅ ⋅ ⋅+ fd−1q−d+1 + q−dGR(q−1))a(k) (2.19)
where GR(q−1) depends on the specified dynamics and the noise model.
By calculating the variance of e(k) from Eq. (2.19) and comparing with
the actual variance an index could be formed as

η = σ̄ 2
M V + σ̄ 2

R

σ 2
e

(2.20)

where σ̄ 2
R is the variance from the term GR(q−1) in Eq. (2.19).

This index should be equal or greater than 1 if performance is satisfac-
tory. For on-line monitoring, the repeated identification of the disturbance
model using dither excitation would be considered troublesome. Using an
a priori decided disturbance model the only thing that would need to be
decided in each monitoring instance is σ 2

a. This could be estimated as the
variance of a predictor predicting one step ahead. But a test depending
only on σ 2

a ignores all temporal characteristics in the impulse response.
In [Tyler and Morari, 1996] it is shown how common design specifi-

cations can be expressed as linear inequalities of the impulse response
coefficients and how an statistical test can be designed to test if the in-
equalities are fulfilled.

In [Horch and Isaksson, 1999] an index was presented which can be
considered as an extension of the index presented in [Kozub and Garcia,
1993] taking into account the dead time of the plant. Under MV control,
all poles of the closed-loop system are placed in the origin. A more real-
istic benchmark could be obtained by placing one pole in q = µ and the
rest in the origin. The impulse response is therefore assumed to decay
exponentially with µ after dead time d. The index can be expressed in
terms of the impulse response coefficients as

I =
∑d−1

j=0 f 2
j + f 2

d−1

∑∞
j=1 µ2 j∑∞

j=0 f 2
j

=
∑d−1

j=0 f 2
j + f 2

d−1µ2/(1− µ2)∑∞
j=0 f 2

j
(2.21)

The index presented in Eq. (2.21) is the reciprocal of the index presented
in [Horch and Isaksson, 1999] to keep consistency with the indices pre-
sented earlier. If the index is greater or equal to 1 then the performance
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is good. This is equivalent to the condition

∞∑
j=d

f 2
j < f 2

d−1µ2/(1− µ2) (2.22)

A graphical interpretation of inequality (2.22) in Fig. 2.2 is that the sum
of the squared impulse response coefficients larger than d (the dark ones)
should be less than an exponentially decaying response starting from fd−1.
Notice that to evaluate this index it is necessary to find one specific im-
pulse response coefficient, namely fd−1.

In [Kozub, 1997] it is mentioned that a possible use of η(b) is to check if
a settling time specification is satisfied. η(b) should be zero for the desired
settling time and a deviation from zero indicates that the specification
is not fulfilled. The author notes that the statistic can give misleading
results when bad initial transients are present in the impulse response.
This approach will be noted on later.

Finally, in [Thornhill et al., 1999] it was shown how parameters for
the extended horizon performance index could be used for plant wide per-
formance monitoring by selecting prediction horizon and sampling rate
according to type of loop. In [Paulonis and Cox, 2003] the work in [Thorn-
hill et al., 1999] is considered a significant advance to lower the barrier
towards large scale implementation of a performance index.

Comments on “User Defined Benchmark” Methods

The original argument for user defined benchmark methods was that MV
control often was not desirable nor achievable. As a result, false alarms
might be sounded. The Harris index might indicate poor performance even
though the loop performance was such that maintenance action was not
necessary. In [Horch, 2000] it was shown that the Harris Index might
miss alarms when limit cycles are present.

The mismatch between minimum variance performance and more nor-
mal process control performance requirements was highlighted in [Eriks-
son and Isaksson, 1994]. For example it was shown that to incorporate
integral action in controllers often is guaranteed to result in a worse Har-
ris index for a controller. Still integral action is considered important in
process control. Therefore a good stochastic controller which would do
well measured by the Harris index will perform poorly when determinis-
tic disturbances affect the loop. The problem does not become easier when
entering the realm of deterministic disturbances. It was pointed out that
it is a well known fact that a controller tuned for load disturbances is not
guaranteed to perform well for set-point changes.

The dilemma is that disturbances that affect a loop vary considerably
over time. Most of the time perhaps a stochastic description is most ap-
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propriate but when a load disturbance does occur it is vital to compensate
for it quickly since it might draw the plant output far away from its set
point.

A possible solution though is to try to take changing disturbances into
account. Performance assessment for abruptly changing disturbances was
the topic in [Huang, 1999]. The algorithm includes the detection of the
change. Options on benchmarks are discussed, some relying on selecting
the “most representative” disturbance dynamics.
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3

λ-Monitoring

3.1 Introduction

The starting point of the work presented in this thesis was the idea to
integrate a tuning method for controllers with a performance monitoring
method. The initial tuning method chosen was λ-tuning of PI controllers,
a method more and more widely used within for instance the pulp and
paper industry. The monitoring algorithm that will be presented can be
applied to more general controllers. The only assumption on the controller
structure is that it results in first-order plus dead time dynamics from set
point to plant output. The time constant of the response is denoted λ , and
thus the name of the monitoring method. For this case some easy design
rules for the monitoring algorithm will be presented.

The potential benefits with this approach are:

• Information from the tuning stage is used directly to commission the
monitoring method. This should reduce the commissioning effort.
Little or no historical information should be needed.

• If a tuning method is used consistently in a plant one can assume
that most operators and plant staff working on control are famil-
iar with the tuning method. To be able to present an integrated
approach to monitoring and tuning of controllers is beneficial for
acceptance and understanding of the monitoring method.

The monitoring algorithm is based on monitoring a single number
statistic, the extended horizon performance index presented in Section
2.3 but with prediction horizon and alarm level chosen with regard to the
tuning of the loop.

Unlike the Harris index the method is not supposed to give information
about how close the current performance is to optimal performance. The
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index calculated rather reflects how well the loop is doing compared to
design specifications. The most related methods are the ones presented in
Section 2.4.

The method is primarily thought to be a “first indicator” of bad per-
formance after which other methods could be applied to diagnose the root
cause. The performance index does not give any diagnosis, it is rather sup-
posed to detect all problem situations but not distinguish between them.
The synthetic gradient monitoring that is presented in the next chapter
does include some diagnosis elements.

In addition to simulations, the method has been tested on data from
19 λ-tuned PI loops from a Swedish pulp and paper mill. Since most con-
trollers in the process industry are of PI-type, this industrial validation
should be of relevance. Furthermore, it was found that many loops had
performance problems, increasing the value of the validation. With fur-
ther analysis and consultation with plant staff a probable root cause was
established for most loops. Most of the root causes were rather typical
such as limit cycles because of valve stiction and aggressive tuning. It is
important to have a good idea how the method will react to typical prob-
lem loops and when it will sound an alarm. The application of the method
on the problem loops will be presented in a later section.

The assumption that a single tuning method is used consistently does
not hold in a large portion of the process industry. Reports that many
controllers stand on their default values when audited are common. On
the other hand it should be of interest what are the possibilities for mon-
itoring when the tuning practice is improved.

3.2 Assumptions on Tuning

The main condition on the design procedure is that it results in a model
of the closed-loop system, from set point to plant output. An example of a
design methodology that fulfills this is the Internal Model Control (IMC)
methodology, see [Morari and Zafiriou, 1989].

The industrial data that was investigated was from loops where the
controller was PI tuned with the λ-tuning method, see for example [Åström
and Hägglund, 1995]. The λ-tuning method can be thought of as a special
case of IMC tuning. The aim with the method is for a set-point response
of first-order plus dead time (FOPDT).

Td(s) = 1
λs+ 1

e−Ls (3.1)

The subscript d on Td stands for design. The main design specification is
the time constant, λ , of the set-point response. Even though a monitoring
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algorithm devoted to PI controllers only would be justified in light of the
popularity of the PI structure, in what follows it will be assumed that
the aim of the controller design is to have set-point dynamics described
by a FOPDT transfer function like the one given by Eq. (3.1). The con-
troller is assumed to be of one degree of freedom so that associated with
the closed-loop transfer function Td there is a sensitivity function Sd so
that Td + Sd = 1. A loop where this is the case after the controller design
will be referred to as a λ-tuned loop. A number of common control struc-
tures within process control result in λ-tuned loops. Some of these will
be reviewed below. All of these can be viewed as IMC controller designs.
Furthermore, IMC designs for models found in the process industry com-
monly result in PID controllers where the set-point response is FOPDT,
see [Morari and Zafiriou, 1989].

λ-Tuning of PI Controllers In a document published by the SSG, the
Swedish Pulp and Paper Industries’ Engineering Co., see [Sko, 1997], the
following tuning method is recommended for feedback loop optimization.
The controller is a PI

C(s) = K
(

1+ 1
Tis

)
(3.2)

Given a (FOPDT) model of the plant

P(s) = Kp

Ts+ 1
e−Ls (3.3)

the controller parameters are chosen as

K = 1
Kp

⋅
T

L + λ
(3.4)

Ti = T (3.5)

The resulting closed loop transfer function is given by Eq. (3.1).
This design is an IMC design obtained from approximating the dead

time with a first order Taylor approximation, exp(−Ls) � 1 − Ls. The
disturbance is assumed to be a step disturbance. Parameter λ is typically
chosen to be between λ ∈ [T , 3T ]. If λ = T the tuning is considered
aggressive while λ = 3T is referred to as robust.

λ tuning of a PI controller for an integrating plant with dead time

P(s) = Kv

s
e−Ls
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results in the parameters

K = Ti

Kv(λ + L)2 (3.6)
Ti = 2λ + L (3.7)

The closed loop transfer function is then given by

Td(s) = (2λ + L)s+ 1
(λs+ 1)2 e−Ls

This is not a λ-tuned loop but it will still be mentioned specially in when
the monitoring algorithm is introduced. The disturbance assumed in the
IMC design is a ramp at the plant input, see [Rivera et al., 1986].
Simple Dead-Time Compensators In [Morari and Zafiriou, 1989] it
was shown how the Smith predictor could be interpreted as an IMC con-
troller. If the model used in the Smith predictor control structure is a
FOPDT model and the controller is a PI with parameters selected as rec-
ommended within the IMC methodology, the closed-loop transfer function
from set point to output becomes equivalent to Eq. (3.1).
The Dahlin Controller In [Dahlin, 1968] a controller structure was
presented which is frequently used for machine direction control loops in
the pulp and paper industry. Assuming that the plant is given by Eq. (2.1)
is stable, that it has no zeros outside the unit circle and furthermore it
has no badly damped zeros, the Dahlin-controller is

C(q−1) = [1− exp(−h/λ)]
1− exp(−h/λ)q−1 − [1− exp(−h/λ)]q−d ⋅

Au(q−1)
Bu(q−1) (3.8)

where h is the sampling time and λ is the time constant given in con-
tinuous time. This form is equivalent to an IMC design. The set-point
response is of first order with dead time equal to that of the plant

Td(q−1) = 1− exp(−h/λ)
1− exp(−h/λ)q−1 q−d (3.9)

In [Laughlin et al., 1987] is was shown how the desired response can be
related to the low pass filter F in IMC designs. In [Qin, 1998] it was shown
that when the disturbance is an integrating moving average, IMA(1,1),

D(q−1) = 1− c1q−1

1− q−1

the Dahlin controller is equivalent to a minimum variance controller with
closed loop time constant c1 = exp(−h/λ).
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Filter Parameter λ
The parameter λ has a direct and intuitive interpretation as the closed-
loop time constant making it suitable for adjustment by plant personnel.
An other interpretation within the IMC design methodology is that it is
the time constant of the low-pass filter used to provide robustness towards
high-frequency model uncertainties.

Continuous versus Discrete Time

With the exception of the Dahlin controller the control structures so far
have been presented in continuous time. In the next section when the
algorithm will be presented, it is assumed that a discrete model is avail-
able of the closed loop. Whether this comes from a sampled version of
a continuous time design or from a discrete design is of importance but
usually an approximation will be sufficient. The reason for staying faith-
ful to continuous time is that it has a nicer interpretation with regard
to dynamic behavior with its time constants and dead times measured in
seconds. What is used in the monitoring algorithm is a discrete transfer
function of the closed loop.

Disadvantages of λ-Tuning

All of the control structures presented that result in a λ-tuned loop are
known to have a good set-point response. It is also a well known fact that
their response from load disturbances suffers because of the cancellation
of the dominant plant pole T . If λ has been chosen much smaller than T
to speed up the set-point response of the system then the load disturbance
response will be disappointing since the open loop pole appears in the load
disturbance dynamics. However, when λ is chosen in the interval [T , 3T ]
where T is the dominant plant time constant, this effect matters less.

3.3 The Monitoring Algorithm: λ-Monitoring

It is assumed that the loop under consideration is λ-tuned. In discrete
time the resulting FOPDT set-point response is denoted Td(q−1), see for
example Eq. (3.9). It is obtained directly if the design is done in the
discrete domain, otherwise it is obtained after sampling the continuous
time equivalent.

Here it is assumed that L and λ in Eq. (3.1) are an integer multi-
ple of the sampling time. If this is not the case an exact sampling of a
continuous time FOPDT model can be found in [Åström and Wittenmark,
1997]. Usually rounding to the closest integer will be sufficient. The rela-
tion between the continuous dead time, L, and discrete dead time, d, is
L = (d− 1)h.
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The Proposed Algorithm

In the spirit of [Thornhill et al., 1999] and [Kozub, 1997] it is proposed
that the extended horizon performance index, η(b), should be monitored,
see Section 2.3. The prediction horizon, b, is selected as an engineering
criterion, not from type of loop as in [Thornhill et al., 1999] but from the
tuning of the loop. The monitoring algorithm monitors that the loop has
certain disturbance rejection capabilities reflected by η(b). The selection of
b and the alarm limit depends in addition to the tuning on the disturbance
model. As the index is supposed to reflect how a loop is fulfilling the
design specifications, the disturbance model is set equal to the one in the
controller design. For λ-tuning this is a step disturbance

D(q−1) = 1
1− q−1

The controller error is according to design specifications equal to

e(k) = [1− Td(q−1)]D(q−1)a(k) (3.10)

where a(k) can be thought of as a deterministic or stochastic disturbance.
The impulse response of e(k) is then

e(k) = (1+ q−1 + ⋅ ⋅ ⋅+ q−d +α q−d−1 +α 2q−d−2 + ⋅ ⋅ ⋅ )a(k) (3.11)

where α = exp(−h/λ).

Prediction Horizon and Control Limit In Fig. 3.1 η(b) is shown for
λ-tuned loops when the disturbance model is an integrator. In that case
an exact equation of η(b) when b > d can be found by considering the
impulse response in Eq. (3.11). The equation for η(b) is

η(b) = α 2(b−d)

1+ d(1 −α 2) (3.12)

In selecting the prediction horizon and the corresponding alarm limit
the following guidelines were observed. As the monitoring should reflect
how well the controller is doing fulfilling the design specifications, the
main characteristics of the curves in Fig. (3.1) should be captured. But as
η(b) is monitored for only one value of b one could say that only one point
is checked on the curves in the figure. Aiming for a similar disturbance
rejection as measured by η(b), the curve should have fallen to levels close
to 0.1 when the prediction horizon is equal to (λ + L)/h samples. The
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Figure 3.1 η(b) for λ-tuned loops with disturbance model as an integrator. The
cases shown are λ = 5 for L = 1, 2 (dashed) and λ = 9 for L = 1, 2, 3, 4 (solid). The
smaller the dead time the lower is η(b). Dots are η(b) when b = (λ + L)/h.

prediction horizon is therefore placed in the “knee” of the curve when it
has fallen significantly and is about to level out.

The alarm limit should be selected in accordance with the prediction
horizon so that when the alarm is sounded the real η(b) should have
deviated from the desired value. To make false alarms sufficiently rare the
statistical properties of the estimate η̂(b) should be taken into account.
The frequency of false alarms can then be estimated. The approximate
first two moments of η̂(b) were given in [Desborough and Harris, 1992].
The variance of η̂(b) depends on b and size of the data series that is used.

The basic tradeoff to consider when selecting the prediction horizon
and the alarm limit is the number of false alarms versus the number of
missed detections of poor performance. But the idea of poor performance
varies across the process industry and therefore the prediction horizon
should be considered an engineering criterion to be set by plant engineers.
The recommended prediction horizon, (λ+L)/h should in most cases serve
as a good starting value.
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3.3 The Monitoring Algorithm: λ-Monitoring

A large portion of this chapter is devoted to demonstrating for what
situations the index presented here indicates poor performance in an in-
dustrial environment. The industrial data mentioned in the introduction
will be used for this purpose. This is the main justification for the suit-
ability of the recommended prediction horizon and alarm limit.

In [Thornhill et al., 1999] the recommended length of the data series
was given as 1500 samples. For this data series size it was found that
the standard deviation of η̂(b) was between 0.04 − 0.8 for the industrial
data used. Actually a value down to 1000 produced a satisfactory result.
More variation was on the standard deviation between loops than when
the data series length was changed from, for example, 1000 to 1500.

Selecting the control limit approximately two standard deviations above
the target value the control limit is suggested to be 0.2. The control limit
is shown in Fig. 3.1 as a solid horizontal line. For λ-tuning of PI con-
trollers for integrating processes, a suitable prediction horizon found in a
similar way was b = 2λ + L.

In [Thornhill et al., 1999], a strategy for plant wide implementation
of a similar performance index was presented which could be adopted for
the index presented here.

Sampling Time and Model Order for Estimation of η(b) It is
beneficial to select the sampling time of monitoring as long as possible to
relive load on DCS computers. It is proposed that the sampling time is
chosen in relation to λ so that there are 5− 9 sampling intervals within
each λ . It is not uncommon that a single sampling time is chosen for
a whole plant even though the loops in the plant have time constants
with orders of magnitude difference. If the recommended sampling time
requires down sampling the output data from the DCS, the data should be
filtered before the index is calculated. Following recommendations in [Sko,
1997] for filtering when λ-tuning PI controllers, prior to down sampling
the data should be filtered with a first order filter with time constant 1.3h
where h is the new sampling time.

In [Thornhill et al., 1999] the recommended length of the truncated
autoregressive model to estimate η(b) was m = 30. This was found to
be a sound recommendation but frequently good performance could be
achieved with lower model order.

Short Summary of Monitoring Method

For a λ-tuned loop it is recommended that η(b) is monitored where the
prediction horizon is set as b = (λ + L)/h. The data series length should
be between 1000−1500 samples. The sampling time, h, should be selected
so that λ equals (5−9) ⋅h. The model order should be 30 but often a lower

99



Chapter 3. λ-Monitoring

model order will be sufficient. The index that results will in the following
be referred to as the λ-index and denoted as Iλ .

3.4 Recursive Implementation of λ-Monitoring

In [Desborough and Harris, 1992] it was noted that the linear regression
approach used to find an estimate of η(b) could be implemented in a
recursive manner for online implementation. But even the recursive least
square (RLS) algorithm can be considered burdensome, specially when
model order m is large as it involves calculations with matrixes of size m�
m. A simpler recursive algorithm is the LMS or stochastic approximation,
see for example [Ljung, 1999]. The difference lies in the update direction,
RLS uses a Gauss-Newton update direction while the LMS uses a steepest
descent update direction. The simplicity is paid for by slower convergence
rate.

The forgetting factor for a recursive algorithm can be chosen as

l = 1− 1/N (3.13)

The length of the data series affects the reaction time of the recursive
version of the index to changes in disturbance spectra. When λ equals 5
sampling periods, the above recommended data series length was some-
times to long. Then a data series length between 1000 − 1200 was more
appropriate.

The complete recursive algorithm to estimate Iλ is now given. Two
vectors of length m are needed, one data vector containing e(k) for times
k− b to k− b−m + 1 and the parameter vector α T = [α 1 α 2 ⋅ ⋅ ⋅ α m].

φ T(k) = [ e(k− b) e(k− b− 1) ⋅ ⋅ ⋅ e(k− b−m + 1) ]
R(k) = lR(k− 1) + φ(k)Tφ(k)
ε (k) = e(k) − φ T(k)α (t− 1)
α (k) = α (k− 1) + φ(k)ε (k)/R(k)
E(k) = lE(k− 1) + ε 2

S(k) = lS(k− 1) + e(k)2
Iλ(k) = 1− E(k)/S(k)

where l is again the forgetting factor. S(k) is equal to the sum

S(k) =
∞∑

i=0

li e2(k− i)
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With a normalization of 1/(1− l) it is an estimate of the variance. In the
same way E(k) is an estimate of the prediction error variance, var(ε b(k)),
with the normalization. The starting values, S(0) and E(0), should be
chosen with this in mind. The starting value of R(k) can be set equal to
R(0) = m ⋅ var(e(k)).

3.5 Validation on Industrial Data

A monitoring algorithms acceptance in an industrial environment depends
on a variety of factors. As was mentioned before, a very important one is
the rate of false alarms and missed detections. It is therefore important to
characterize for what loop conditions alarm will be sounded. For industrial
relevance the method should be tested on industrial data.

For validation of the monitoring method, it was applied to data from
19 loops in a pulp and paper mill. The loops were all controlled with
PI-controllers tuned with the λ-tuning method. The time constants are
shown in Table 3.1. Most of the data was from self-regulating pressure
and flow loops and level control loops. The loops had been tuned up to one
year before the data was collected. The data series were from 6 hours to
28 hours. In some series the disturbance characteristics changed notably
over time.

The value quoted for T in the level control cases was the integral time
from the PI controller. Because of the size of λ for the level control loops
Iλ could only be estimated for very few batches making the evaluation
not very informative.

The application of the monitoring method to the industrial data indi-
cated that several of the loops had performance problems. With inspection
of the data and consultation with plant staff a probable root cause was
established for most of the problem loops. The root causes were rather
typical and could be classified into categories frequently cited in the lit-
erature. These classifications are shown in Table 3.1.

To demonstrate some properties of the monitoring method examples
will be shown from the industrial data for some of the root cause cate-
gories. The signals and indices presented in this chapter and the next one
are shown in Appendix A for a selection of loops. All data was originally
sampled with 1 second sampling time. For the calculation of the index
the data series were down sampled as presented earlier according to the
value of λ in the loop.

The plant staff generally agreed that the method indicated poor per-
formance when it should have.
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Table 3.1 Data on industrial loops. T and L are values of the open loop time
constant and dead time.

Loop T L λ Performance

831FC001 4 1.5 5.4 Good/Sluggish

831FC002 5.4 1.2 5.4 Limit cycle, stiction

831FC028 6 1.4 6 Bad, reason unknown

831FC030 4.7 1.6 5.4 Limit cycle, stiction

831FC039 3.5 1.3 10.6 Saturates

890FF050 5 1.5 10 Limit cycle, stiction

890FF051 5 1.5 10 Load disturbances/Aggressive tuning

831FF160 1.3 1.8 5.4 Good

831FF176 1.5 1.6 4.9 Bad step response

831FF177 1.2 1.5 4.5 Good

890QC040 5.1 2.3 15.3 In manual

831LC361 614 2 304 Good

LC57306 1135 10 562 Good

831LC031 455 25 215 Good

832PC108 5 2 5 Good

832PC109 6 3 6 Aggressive tuning

834PC062 10 1 30 Quantization

834PC068 10 2 45 Quantization

836TC021 41.0 123 246 Saturates

Oscillations

Oscillations in loops is a frequent phenomena within the process indus-
try. Studies have shown that up to 30% of all loops within a typical pulp
and paper plant may be oscillating. The reason for the oscillations can
be many. Typical ones are problems associated with valves such as valve
stiction and backlash. Inappropriate tuning or change in loop gain follow-
ing a change in operating region can cause the loop to become unstable.
The amplitude of the resulting oscillation increases until nonlinear ef-
fects such as saturation limit it. But the output continuous to oscillate
persistently.

A number of loops were found to oscillate. Some examples will now
be presented for two different root causes, valve stiction and aggressive

102



3.5 Validation on Industrial Data

0
0.2

0.5

1

0 200 400 600 800 1000 1200 1400 1600

0

1045 1050 1055
0.2

0.22

0.24

0.26

Minutes

I λ
e(k
)

r(
k)

,y
(k
)

Figure 3.2 Loop 890FF050. Loop with valve stiction. Top graph: Iλ . Middle graph:
e(k). Bottom graph: set point r(k) (solid) and output y(k) (dashed).

tuning.

Valve Stiction The most common reason for oscillations was valve
stiction. Three flow loops were found to have this problem. In Fig. 3.2
the λ-index is shown for one of the loops (loop 890FF050). The index
lies above 0.2 for most of the series length. The lowest graph shows the
reference value and the output signals for an interval when Iλ was close
to 0.5. An easily recognizable square-shaped signal form can be noticed.
The control signal had the familiar sawtooth shape as well.

Loops 831FC002 and 831FC030 also seemed to have stiction in the
valve. The indices for these loops are shown in Appendix A.

Remark: Dynamic Properties of Recursive Estimator The data
from the current loops serves well to demonstrate some dynamic proper-
ties of the recursive algorithm presented. The original data was sampled
with a sampling time of 1 second. Since λ was equal to 10 seconds, the data
series was down sampled with a sampling time of 2 seconds. With a data
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series length of 1500 data points, each data series covered 50 minutes.
The recursive algorithm can be thought to have a similar time constant
since the forgetting factor is chosen with Eq. (3.13). But that does not
always coincide with the observed behavior.

Notice a sharp fall in the recursively estimated index at time 580. As
the batch estimated index falls as well for this time, the observed fall
in the recursively estimated index is correct. But it takes very long time
for the recursively estimated index to catch up with the batch estimated
index. At time 900 the recursively estimated index is finally closing in on
the batch estimated one.

The reasons for this difference between the batch estimated and the re-
cursively estimated index are mainly two. The stochastic gradient method
has a certain convergence speed which is considerably slower than than
the convergence speed for the recursive least square method, for example.
Secondly, the recursive estimator contains an estimation of the variance
of the control error e(k) denoted S(k) and of the prediction error ε b(k)
denoted E(k).

Notice that there is extra variability in the control error around the
time when the recursive estimate falls. Closer inspection of the error re-
veals a change in the dynamic characteristics. This causes an increase
in prediction error variance as the prediction of the error inherent in the
estimation of the index does not work well for the new dynamic charac-
teristics. So at this time both control error variance and prediction error
variance increase sharply. This causes a drop in the estimated index as the
ratio E(k)/S(k) becomes very close to 1. When the variability decreases
again the recursively estimated variances decay exponentially. But as the
λ-index depends on the ratio of the two variances it takes longer time for
the index to recover.

Aggressive Tuning Aggressive tuning was thought to be the root cause
of performance deterioration when the output signal oscillated at a fre-
quency close to the ultimate frequency of the loop or in the frequency
range where the sensitivity function was greater than 1. Also a visual
inspection of the wave form was used to rule out other types of oscilla-
tory disturbances such as valve stiction. To determine if the oscillation
was originated internally or externally was difficult since no experiments
could be performed on the loop for verification. An indication that the os-
cillation originated internally was that the control signal would be 180o

out of phase with the output signal. The loops in Table 3.1 that are de-
noted aggressively tuned fulfilled this condition.

The amplitude of the sensitivity function is larger than 1 for frequen-
cies close to the ultimate frequency. This amplitude can usually be lowered
by reducing the loop gain. To call the loops aggressively tuned is not wrong
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Figure 3.3 Loop 832PC109. Aggressively tuned loop. Top graph: Iλ recursively
estimated (solid line) and batch wise estimated (∗). Middle graph: e(k). Bottom
graph: e(k) and the predicted error, ê(khk− b).

even if the oscillation originates externally since the signal oscillates at a
frequency that the sensitivity function amplifies.

In Fig. 3.3 λ-monitoring is applied to the data from a pressure control
loop (Loop 832PC109). In the upper graph, Iλ , is shown calculated batch
wise and with the recursive algorithm in Section 3.4. The error is oscil-
lating considerably. The period of the oscillation is about 10 sec which is
around 0.6 rad/sec. The ultimate frequency of the loop with the λ-tuning
is 0.7 rad/sec.

In the lowest graph of the figure the error e(k) and the b-step ahead
predicted error, ê(khk− b) is shown for some minutes. b is equal to (λ +
L)/h. It can be seen that the predictor manages to predict parts of the
oscillations thus reducing the prediction error. This in turn will cause the
Iλ to increase.

It is of interest to try to characterize how oscillatory the output sig-
nal will have to become before the λ-index indicates poor performance. In
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Figure 3.4 Normal and oscillatory impulse response and η(b). The dot shows the
alarm limit, 0.2, for the prediction horizon b = 9

Fig. 3.4 two impulse responses are shown. Both are from a loop where a
FOPDT process is controlled with a PI controller. What is shown is the im-
pulse response of the error when the disturbance model is an integrator.
The damped response corresponds to when the PI controller is λ-tuned
normally with λ = 7 and L = 2 assuming unit sampling. For the oscil-
latory response, the loop gain had been increased by a factor of 4. Also
shown in the figure is η(b) for both cases. For the oscillatory response,
η(b) equals 0.2 for the prediction horizon b = 7 + 2. As expected, when
the impulse response coefficients start to become larger for values larger
then λ , η(b) rises the most for values of b close to λ .

It can be thought as an disadvantage of the monitoring method that
the response can become this oscillatory before an alarm is sounded. The
gradient method presented in the next chapter will complement this weak-
ness of the λ-monitoring method. It should be pointed out that the vari-
ance of the oscillatory response in Fig. 3.4, calculated by summing the
squared impulse response coefficients, is actually lower than the nominal
case so performance measured in variance has not started to suffer yet.
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A few loops seemed to display the characteristics of aggressive tun-
ing, originating inside the loop, for short intervals only. In Appendix A
loops 890FF050 and 890FF051 showed this behavior for very short time
intervals.

Remark In [Kozub, 1997] a monitoring approach was suggested where
the index to monitor was η(b) but with b equal to the desired settling
time. It is said that the statistic is valuable when only settling time is of
importance but that this approach suffers from the fact that large initial
transients in the impulse response go unnoticed. In [Kozub, 1997] the
definition of the settling time is not given but for a λ-tuned loop the
settling time is usually considered to be equal to 4λ . In the current case
this would mean b = 28. The problem with this approach is then seen
in Fig. 3.4. When performance deteriorates η(b) changes first for small
b’s. Before a noticeable change occurs for larger b the performance has
deteriorated severely.

Sluggish Tuning and Slow Disturbances

If a loop works at many operating regions it is frequent that the tuning
ends up being the most conservative one or the most robust one over all
operating regions. The reason for this is that as performance problems
occur at any operating region it is common to detune the controller, typi-
cally by lowering the gain, K , in the PI controller. Because of lack of time
of operators the old parameter values are not put back in the controller
when the loop operates at the more normal operating region again.

The consequence of this is that many controllers are detuned. When
load disturbances or set-point changes occur the error signal tends to
stay away from zero for a long time. In [Hägglund, 1999] a method to
detect sluggish control loops is presented. Both controller output and plant
output are used to determine if the loop is sluggish. The index describes
the relation between times of positive and negative correlation between
the control and plant output increments.

If the error signal stays away from zero for a long period of time, the
λ-index will give an alarm indicating bad performance, as it will quickly
be able to predict the error. A sluggish control loop will therefore be dis-
covered by the λ monitoring method. On the other hand, if a slow load
disturbance affects the loop, for example a step or a ramp on the plant in-
put, the error signal will also stay away from zero for long periods of time.
This will cause the λ-index to indicate poor performance even though the
loop might be working well. So it might be claimed that the λ-monitoring
method will give false alarms when slow disturbances affect the loop. It
might also be claimed that these alarms will not be false alarms since
they indicate that the disturbance model used in the design, i.e. a step
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disturbance, is incorrect. The problem is that load disturbances might be
quite frequent and the operators might not be interested in these alarms.

A remedy would be to redesign the prediction horizon for a different
disturbance model. It is for these situations that the prediction horizon
and alarm level of the λ-index should be considered an engineering cri-
terion. On the other hand there is no clear upper limit that should be
put on the prediction horizon. If the prediction horizon is designed for
load disturbance it will give alarm when a temporary ramp is applied to
the plant input in stead of a step. Furthermore, longer prediction horizon
means less sensitivity to other faults like aggressive tuning.

The final suggestion is that the prediction horizon should be treated
as an engineering criterion and adjusted if slow disturbances affect the
loop. If the slow disturbances are less frequent, an other option would
be to expect occasional alarms. When the alarms occur they could trigger
inspection or application of the method presented in [Hägglund, 1999] to
determine if tuning is sluggish.

Once again the gradient method will complete the weakness of the
λ-monitoring method since it will give information about the frequency
content of the disturbances.

In Fig. 3.5 data from loop 831FC001 is shown. The batch wise es-
timated λ-index is constantly far above 0.2, actually close to 0.7 for the
whole period. The recursively estimated λ-index is always below the batch
wise estimated one but does rise quickly above 0.2 so that an alarm is
sounded. In the bottom graph of Fig. 3.5 the error is shown for a shorter
interval so that the dynamics can be inspected more carefully. It is seen
that the error sometimes stays minutes away from 0, not consistent with
the λ-tuning which is 10 sec. The reason for the sluggishness was a com-
bination of bad tuning, the controller gain had been decreased but also
that the reference value was changing in a ramp like manner.

In Fig. 3.6 the impulse response and η(b) are shown for two systems.
Both of them are λ-tuned loops with a integrator as the disturbance model.
The faster response has λ = 7 and L = 2. The slower response has
λ = 13. It can be seen that η(b) for the slower response intersects 0.2
for prediction horizon b = 9. The conclusion is that if this loop would
have been monitored assuming λ = 7 and L = 2, and later detuned, the
monitoring would indicate poor performance when the loop would have a
time constant of λ = 13. So in this case λ can be almost doubled before
the λ-index sounds an alarm.

Remark: Stochastic and Deterministic Disturbances Notice that
with the current formulation no difference is made between stochastic
and deterministic disturbances. In both cases the problem can be inter-
preted as finding the best b-step ahead predictor and the corresponding
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Figure 3.5 Loop 831FC001. Sluggish loop. Top graph: Iλ recursively estimated
(solid line) and batch wise estimated (∗). Middle graph: e(k). Bottom graph: e(k)
and the predicted error, ê(khk− b).

prediction error variance which is compared to the variance of the error
signal e(k). It is considered a strength that all types of disturbances are
treated in the same way.

In Fig. 3.7 a step change in the set point is shown for the loop 831FF176.
This loop was tuned with λ = 4.9 and L = 1.6. As can be seen in the figure
the step response does not fulfill the specifications from the tuning phase.
According to the tuning the settling time should be no more than 30 sec.
The settling time of the step response in the figure is around 50 sec. The
recursively estimated performance index rises above 0.2 as it should. An
other example of a set-point response which does not fulfill design speci-
fications is shown in Fig. A.3 in Appendix A. An example of a loop shown
in the Appendix that did fulfill design specifications in terms of set-point
response was loop 831FF177.
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Figure 3.6 Top graph, normal λ-tuned impulse response (x) and sluggish impulse
response (o). Lower graph, η(b) for normal and sluggish impulse response.

3.6 Conclusions

A nonintrusive performance monitoring method for λ-tuned loops has
been described. λ-tuned loops are those loops with an one-degree-of free-
dom controller whose set-point response is of first-order plus dead time.
λ is the time constant of the set-point response.

The method is thought to be a first indicator of bad performance after
which existing diagnosis algorithms could be applied. For online imple-
mentation in distributed control systems, a simple recursive algorithm to
estimate the index has been presented. All parameters of the monitoring
method are set by using the tuning. The need for historical information
should be none or little.

The method applies equally to stochastic or deterministic disturbances.
Bad performance is related to low variance of prediction error when the
control error is predicted over a time horizon related to the tuning. Low
prediction error variance means high predictability which in turn means
that the controller has not done a good job rejecting the disturbances
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Figure 3.7 Loop 831FF176. Set-point response. Top graph: λ-index recursively
estimated. Bottom graph: set point r(k) (solid) and output y(k) (dashed). A step
down occurs in the set point at time 30 sec.

within a suitable time horizon.
The method has been tested on 19 λ-tuned PI loops from a Swedish

pulp and paper mill. The method indicated poor performance in many
of the loops. In most of the problem loops a typical root cause could be
established explaining the poor performance. The method has therefore
been tested on typical problem loops from the process industry.

111



4

Gradient Monitoring

4.1 Introduction

One of the more frequent acts of maintenance of PID controllers is to ad-
just the controller gain. This is often done without a systematic approach,
often following the preferences (or whims) of a particular operator. The
reason for the parameter adjustment is usually abnormal variability that
the operator thinks can be fixed by an adjustment. Abnormal disturbances
can for example occur when the loop is working in a new operating region.

What is shown in this chapter is how to estimate in a simple way a
gradient of a quadratic cost function with respect to a controller parame-
ter. The purpose is to make this already existing maintenance approach,
more systematic. By using the gradient, decisions to adjust controller pa-
rameters can be made with more information. The plant staff should be
familiar with the controller parameter for which the gradient is calcu-
lated. It should also be strongly correlated with plant variability.

It will be shown that in many cases the equations for the gradient
become particularly simple allowing recursive implementation in most
DCSs. The focus will be on λ-tuned loops but as long as the controller is
available and a model exists of the closed-loop system, an estimate of the
gradient will be possible.

For λ-tuned loops the parameter for which the gradient is calculated
is λ . The reason for this is to keep consistency with the previous chapter
and because λ has a nice interpretation as the closed-loop time constant.
For loops controlled with a PID an other choice of controller parameter
might be the gain K .

The gradient will be interpreted in a simple way from the sensitivity
function. Furthermore, in the λ-tuning case a normalization of the gra-
dient will be presented so that it becomes independent on variance and
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parameter value.
The synthetic gradient will be introduced through the IFT (Itera-

tive Feedback Control) framework. It should be noted that similar gra-
dient calculations are frequent within the adaptive control community,
see [Åström and Wittenmark, 1995] and as within the IFT framework the
gradients are used to update the controller parameters to lower the cost
function.

It is possible to use the gradient presented here to initiate adjustment
of the controller parameters to lower the cost function. But no automatic
adjustment is considered. An operator is always thought to be “in the
loop” of parameter adjustment. The gradient gives information about the
spectral content of the disturbances affecting the loop. This information
is compressed into one number related to a controller parameter. As this
information can be collected and monitored over time it might provide a
valuable overview over the state of the loop and the disturbances affecting
it. For example if the gradient is watched over many operating regions it
might indicate opportunities for gain scheduling.

4.2 Iterative Feedback Tuning

Iterative feedback tuning has recently emerged as a technology to tune
fixed order controllers like the PID by performing experiments on the
closed-loop system. The tuning is performed by calculating the controller
parameter gradient of a quadratic cost function and modifying the param-
eters in the descent direction of this cost function. A reference covering
most aspects of IFT is [Hjalmarsson et al., 1998].

The method deals with SISO linear systems on the form

y(k) = P(q−1)u(k) +w(k) (4.1)

w(k) is the process disturbance. The controller is assumed to be of one
degree of freedom.

u(k) = C(ρ)(r(k) − y(k)) (4.2)
The dependence of transfer functions on the back shift operator q−1 will be
omitted in what follows. Instead the dependence on controller parameters
ρ will be written. The closed-loop system is then given by

y(k) = C(ρ)P
1+ C(ρ)P r(k) + 1

1+ C(ρ)Pw(k)
= T(ρ)r(k) + S(ρ)w(k) (4.3)
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T(ρ) is the complementary sensitivity function while S(ρ) is the sensi-
tivity function. It is easy to check that T + S = 1. The time argument of
the signals will now be omitted as well but again they will be written as
a function of controller parameters ρ.

Let yd be the desired response to the reference signal r. Given that
the design method resulted in a closed loop transfer function Td then
yd = Tdr. In the case of λ-tuning Td is the first order response with λ as
the time constant. Putting ỹ = y− yd the cost function that is monitored
is of quadratic type,

J(ρ) = 1
N

E

[
N∑

t=1

ỹ(ρ)2
]

(4.4)

For large N, J is an estimate of the variance of ỹ. Notice that ỹ is not
equal to the error e(k) in the previous chapter. In the IFT framework a
term containing the square of the input signal can be included. To simplify
the derivation this term is excluded here. The expectation is with respect
to the weakly stationary disturbance w.

The question that arises is how VJ/Vρ is obtained. It was shown in
[Hjalmarsson et al., 1994] that an estimate of this gradient could be com-
puted from signals obtained from closed-loop experiments. Assume that
N measurements of r and y(ρ) have been logged. Measurements from
this series are denoted with a subscript 1. Elementary calculus gives

VJ
Vρ

= 2
N

E

[
N∑

t=1

ỹ(ρ)V ỹ(ρ)
Vρ

]
(4.5)

It is assumed that
V ỹ(ρ)
Vρ

= V y(ρ)
Vρ

From Eq. (4.3) one can see that (dropping the argument of ρ)

V y
Vρ

=
(

P
1+ PC

VC
Vρ

− P2C
(1+ PC)2

VC
Vρ

)
r

− P
(1+ CP)2

VC
Vρ

w

= 1
C
VC
Vρ

T r − 1
C
VC
Vρ

(
T2 r + TS w

)
Assuming the data is from data series 1, notice now that

T2 r1 + TS w1 = T y1
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Using this in Eq. (4.6) results in the following equation for V y(ρ)/Vρ

V y
Vρ

= 1
C
VC
Vρ

T (r1 − y1) (4.6)

The above equation implies that it is possible to calculate V y/Vρ by fil-
tering r1 − y1 through the complimentary sensitivity function. One way
to obtain this term is to apply r1− y1 as a reference value to the real pro-
cess and sampling the output yielding measurement series 2. This gives
an estimate with an error S w2 since noise would be added. This is the
approach within the IFT methodology. An other approach is to estimate
T with system identification techniques, and filtering r1 − y1 with this
identified transfer function. This is the approach taken in [Bruyne and
Carrette, 1997]. A third approach, and the one used in this paper, is to
use T = Td obtained from a design method. The gradient calculated by
using the last two approaches is referred to as synthetic.

In the synthetic gradient case, an estimate of VJ
Vρ is formed by using

one measurement series and evaluating Eq. (4.5). A perfect realization of
ỹ is y1 − Tdr1. Eq. (4.5) can now be written as

VJ
Vρ

= 2
N

N∑
k=1

(y(k) − Tdr(k)) 1
C
VC
Vρ

Td (r(k) − y(k)) (4.7)

The subscript 1 is omitted since all signals come from the same data
series.

4.3 Monitoring the Gradient

It is suggested that Eq. (4.7) is used to calculate the gradient with respect
to the desired control parameter. A recursive algorithm will be presented
in a later section. The number of data points to form the estimate is be-
tween 1000-1500 as in the previous chapter on the λ-index. Td is obtained
from the design specification. In the case of a λ-tuned loop the controller
parameter of choice is λ with the corresponding set point response. The
filter 1

C
VC
Vρ will now be presented for a few controllers.

In what follows it will be assumed that λ and L are multiples of the
sampling time h. If this is not the case, the closest integer usually is a
good enough approximation.

115



Chapter 4. Gradient Monitoring

The Gradient for Common Controllers

The equation for the synthetic gradient is now further evaluated for com-
mon controllers. The main transfer function to evaluate is the filter

1
C
VC
Vρ
(q−1) (4.8)

λ-Tuned PI Controllers The λ-tuning rule for PI-controllers was in-
troduced in Section 3.2. In discrete time form, with the integral approxi-
mated with a forward approximation, the λ-tuned PI controller becomes

C(q−1) = T
Kp(L + λ)

(
1+ hq−1

T(1− q−1)
)

This assumes that the parameters of a FOPDT model of the plant are
available, see Eq. (3.3). Then the filter in Eq. (4.8) becomes

1
C
VC
Vλ
(q−1) = −1

L + λ
(4.9)

In the case of integrating processes, λ enters the controller in a more
complex way. The controller is

C(q−1) = 2λ + L
Kp(L + λ)2

(
1+ hq−1

(2λ + L)(1− q−1

)

which yields

1
C
VC
Vλ
(q−1) = −2

L + λ
λ − (λ − h)q−1

2λ + L + (2λ + L − h)q−1 (4.10)

This is a first-order filter and very simple to implement.

The Dahlin Controller With the expression of the Dahlin controller
given by Eq. (3.8) the filter becomes

1
C
VC
Vλ
(q−1) = − 1− q−1

1− aq−1 − (1− a)q−d

ha
(1− a)λ2 (4.11)

where a = exp(−h/λ).
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General PID A general form for a discrete PID controller on serial
form, (see [Åström and Hägglund, 1995]) can be written as

u(k) = K (1+ I(k) + D(k)) (4.12)

where I(k) and D(k) are the derivative and integrating terms. The pa-
rameter for which the gradient could be calculated is the gain K . The
equation for the gradient becomes particularly simple in this case as

1
C
VC
VK

(q−1) = 1
K

(4.13)

Both equations (4.9) and (4.13) are constants which simplifies the evalu-
ation of Eq. (4.7).

In Eq. (4.11) the filter has derivative action. The filter in Eq.(4.10) is
close to have derivative action as well when λ is much larger than h. But
notice that the signal to which 1

C
VC
Vρ is applied in Eq. (4.7) is first filtered

with Td which always has low-pass character.

4.4 Interpretation

Insight into what information the gradient gives can be obtained from
Parseval’s relation which relates the cost function in Eq. (4.4) with a
frequency domain expression

J(ρ) � 1
2π

∫ π

−π
hS(ρ)h2Φww (4.14)

where S is the sensitivity function. Here it is assumed that the reference
value is constant and the error is explained solely by the disturbance
w(k). Φww is the spectra of the disturbance. The controller parameters af-
fect the sensitivity function by lifting up or dragging down the amplitude
on specific frequency intervals. If the power spectrum of the disturbances
is concentrated in a frequency region where an increase in a parame-
ter increases the amplitude of the sensitivity function, the gradient with
regard to this parameter will be positive. If the sensitivity function am-
plitude is reduced with a positive change in the parameter the gradient
will be negative.

The sensitivity function is shown in Fig. 4.1 for a λ-tuned loop. As seen
in the figure, a decrease in λ pulls down the low frequency gain while the
gain above approximately 1/λ will be larger than 1. Above 1/λ , a decrease
in λ pushes the amplitude up. If the disturbances would be concentrated
in this frequency region the gradient would be negative.
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Figure 4.1 Sensitivity function for a λ-tuned loop with L = 2 and varying λ .

Normalized Gradient

The number returned from the gradient estimation in Eq. (4.7) depends
on the process and also on the variance of the loop. It is of interest to
obtain a more absolute number which does not depend on the process
characteristics as such but rather, when calculated for a new process,
similar numerical values should mean the same thing. One way to do
this is to normalize the gradient obtained with Eq. (4.7). Denoting the
normalized gradient as β , a straight forward way of doing this in the case
of λ-tuned controllers is

β = VJ
Vλ

λ
J

(4.15)

As a dimensionless number it is informative to know what numerical
values this number attains and what they mean. To investigate this an
assumption has to be made about the disturbances affecting the system.
Assume now that the disturbance is concentrated at one dominating fre-
quency. Approximately the disturbance can then be represented with one
sinusoidal of frequency ω 0. As a sampled system is considered it is as-
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4.4 Interpretation

sumed that ω 0 is smaller than the Nyquist frequency. The spectra of the
disturbance in this case is a sum of delta functions

Φww = π (δ (ω −ω 0) + δ (ω +ω 0))

see for example [Ljung, 1987]. Evaluating the integral in Eq. (4.14) with
the delta functions as the disturbance spectra gives J = hS(ρ, eiω 0h)h2. If
the loop is λ-tuned this results in a J dependent on ω 0, λ, L

J(λ, L,ω 0) = hSd(λ, L, e−iω 0h)h2 =
∣∣∣∣1− 1− exp(−h/λ)

eiω 0h − exp(−h/λ) e−iLω 0

∣∣∣∣2
where it has been used that Sd = 1 − Td where Td is the set-point re-
sponse of the λ-tuned loop. Notice that h can be assumed to be 1 since
all parameters with units in time are scaled with h. This expression can
be analytically derivated with regard to λ and the normalized index cal-
culated as a function of the three parameters. The expressions become
rather involved but in Fig. 4.2, β is plotted for a range of λ/L ratios.

The normalized gradient takes values between −0.3 and 1.7 for the
cases presented in the figure. For λ between 5 and 9 and with varying L
the curves look very similar. For low frequencies, around 0.01 rad/sec the
curves level out above β = 1. The smallest value of β is obtained below
zero. For low frequencies the system with the highest λ/L ratio attains
the highest value of the gradient. For high frequencies the system with
the lowest λ/L ratio attains the lowest value of the gradient.

It is of value to compare the sensitivity functions in Fig. 4.1 with the
normalized gradient in Fig. 4.2. Both contain the case when λ = 7 and
L = 2. The gradient crosses 0 for the frequency where the amplitude of
the sensitivity function is invariant to small changes in λ . In Fig. 4.1 this
is where the sensitivity functions seem to intersect.

If the gradient is zero it also implies optimality of variance for the
parameter for which the gradient is calculated. Stepping away from the
scenario where the disturbance contains one frequency only, for λ-tuned
loops this is the point where any reduction in variance due to lowering of
the amplitude curve in one frequency region is compensated by a rise in
the amplitude in an other frequency region. But it should be kept in mind
that the gradient is calculated for the sensitivity function obtained from
the λ-tuning. Even though it is useful to think in terms of the sensitivity
function to interpret the gradient it is based on the nominal situation
where the controller and plant are known exactly and all disturbances
enter according to Eq. (4.1). The actual situation might be different. For
example a negative gradient is interpreted as a high concentration of en-
ergy in the disturbance spectra above the crossover frequency. The real
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Figure 4.2 Normalized gradient β for λ = 7 and L = 1, 2, 3. For low frequencies
the lowest curve has the largest L.

reason is not unlikely aggressive tuning of the loop. Aggressive tuning
with a slight model-plant mismatch will result in a real sensitivity func-
tion that has a very large amplitude peak above but close to the crossover
frequency. This high peak will amplify frequencies in the disturbance spec-
tra which will become dominant in the output.

The normalized gradient should be thought of as a coarse spectral anal-
ysis where the disturbance spectra is compared to the sensitivity function
from the controller design stage and the result squeezed into one num-
ber related to the most important tuning parameter. Considering again
the two figures, Figs. 4.1 and 4.2 a positive gradient close to or above 1
means that most of the disturbances are of low frequency character. For
such a loop there might be opportunities to increase the gain of the con-
troller and make it more aggressive without amplifying too much high
frequency noise. A negative gradient means variability should decrease
if the controller is made less aggressive. To give a point of reference for
what would be a “normal” gradient, for a λ-tuned loop with a disturbance
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model which is an integrator the gradient lies around 0.5− 0.7.

4.5 Recursive Implementation of the Normalized Gradient

A recursive implementation will now be presented for the case of λ-tuned
PI controllers. The difference between this case and other cases lies in
the filter 1

C
VC
Vρ and perhaps the specified set-point response Td. To create

the recursive version of the gradient, it is the sum in Eq. (4.7) which is
expressed on recursive form with a forgetting of older values. It is assumed
that the available signals are {y(k), r(k)}.

Some of the signals need to be filtered with the set-point response
obtained from the λ tuning. A discrete form of this transfer function is

Td(q) = 1− exp(−h/λ)
1− exp(−h/λ)q−1 q−d

see Section 3.2 where the λ-tuning is introduced. A filtered signal, e(k) is
denoted ef (k). The recursive form is

ỹ(k) = (y(k) − r f (k))
γ (k) = −2

λ + L
ỹ(k)(r f (k) − yf (k))

G(k) = lG(k− 1) + γ (k)
S(k) = lS(k− 1) + ε 2(k)
β (k) = G(k)/S(k)λ

G(k) denotes the gradient sum in Eq. (4.7). S(k) is the variance sum.
Notice it is not the same as the one that was calculated in the recursive
equations for the λ-monitoring algorithm. l is the forgetting factor. If the
set point is not changing, ε (k) is the controller error, e(k). If the set point
is changing, ε (k) is the error between y(k) and r(k) taking the response
of the closed-loop system into account.

4.6 Use of the Gradient

In this section some of the possible uses of the gradient will be demon-
strated. To begin with, a motivating example based on simulations will be
presented. Then two applications of the gradient on industrial data will be
considered. One will deal with detecting aggressive tuning of loops. The
other addresses detection of sluggish loops. The gradient is shown for the
loops presented in Appendix A. Other possible uses of the gradient will
be discussed in the section on future work.
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A Motivating Simulation Example

The example is supposed to give insight into the behavior of the gradient
when the loop gain depends on the operating region. Consider the system

P(q−1) = Kp
1− exp(−1/7)

1− exp(−1/7)q−1 q−3

controlled with a PI controller which is λ-tuned for Kp = 1 with λ = 7.
The disturbance model is a slow load disturbance,

D(q−1) = 1
1− exp(−1/9)q−1∇

see Fig. 2.1 for a block diagram. The input to the disturbance model was
normally distributed white noise. This system has an amplitude margin
of 5.9. Assume now that the gain Kp depends on the output so that when
y = 0, Kp = 1 and when y = 1, Kp = 5.8. A simulation of this system is
shown in Fig. 4.3. From 0 to 400 minutes the set point stays at 0. Then a
slow ramp is added to the set point so that it reaches 1 at 1000 minutes.
The set point stays at 1 for the rest of the time. So the system goes from a
condition where a slow disturbance is affecting it to a condition where it is
marginally unstable but with the same slow disturbance. The marginally
unstable system will have a large peak in the sensitivity function for a
frequency where the nominal one is larger than 1. Because of the peak in
the sensitivity function the frequency content of e(k) will change. After
1000 minutes the system is quite oscillatory. This will be picked up by the
gradient.

In Fig. 4.4 the normalized gradient, the λ-index from the previous
chapter, and a recursively estimated variance are shown. The normalized
gradient was calculated batch wise with Eq. (4.7) and with the recursive
algorithm. The λ-index is also shown for both cases. The λ-index indicates
bad performance in the beginning and in the end of the time interval. In
the beginning it is the slow disturbances which causes Iλ to rise. In the
end it is the oscillatory behavior due to the increase in loop gain.

The gradient takes the largest and smallest value in the beginning
and in the end of the time period. As expected for the slow disturbances
the gradient is large and positive. This would indicate that opportunities
to improve the tuning might be at hand. The interval with the lowest
variance is roughly between 500 and 900 minutes. The λ-index lies be-
tween 0.2 and zero on this interval, indicating that the controller is re-
jecting disturbances within the correct time horizon. On this interval the
gradient lies between 0.7 and zero. Above 1000 minutes the variance in-
creases drastically because the system is marginally stable. The gradient
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Figure 4.3 Simulation example. Bottom graph: control error e(k). Top graph: plant
output y(k).

is negative on this interval indicating that variance could be reduced by
increasing λ .

This example shows that valuable information can be obtained by mon-
itoring the gradient. With regard to the previous mentioned praxis of pa-
rameter adjustment, the gradient would indicate the following parameter
adjustment opportunities. In the beginning of the time interval, the way
to reduce variability would be to decrease λ . Since the gradient is large
and positive, the loop is mostly affected by low frequency disturbances. A
decrease in λ would most probably reduce the effect of these disturbances
without increasing the amplitude of the high frequency disturbances too
much. In the end of the time interval the disturbances affecting the loop
have most of their energy concentrated in the region where the sensitiv-
ity function amplifies the disturbances. λ should be increased to make the
tuning less aggressive.

As mentioned before, it is common that the tuning of a loop ends up
being the most conservative over all operating regions. In the current
example, if the loop is expected to work at y = 1 the tuning of the loop
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Figure 4.4 Simulation example. Top graph: normalized gradient β calculated
batch wise (+) and recursively (−). Middle graph: λ-index calculated batch wise
(*) and recursively (−). Bottom graph: the variance estimated recursively.

is too aggressive since the gradient is negative at this operating region.
On the other hand it is obvious that increasing λ to make the loop less
aggressive would result in increased variability at operating region y = 0
as the disturbance affecting the loop there is very slow. With this in mind
perhaps a more suitable solution would be gain scheduling. This is one
area where monitoring the gradient might be of assistance, to discover
opportunities for gain scheduling.

The gradient will be between 0.7 − 0.5 in the nominal case when a
λ-tuned loop is affected white noise filtered through an integrator. Con-
sidering this fact and keeping the current example in mind a suitable
interval for the normalized gradient is between 0 and 0.7.

Detecting Aggressively Tuned Loops

In Fig. 4.5 the gradient is shown, calculated batch wise and recursively
for the pressure loop 823PC109, previously discussed in Section 3.5. Also
shown in the figure is the λ-index and the controller error.
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Figure 4.5 Loop 823PC109. Top graph: β estimated batch wise and recursively.
Middle graph: λ-index. Bottom graph: e(k).

The gradient is close to zero or negative over the whole interval. A
loop with negative gradient presents a very clear opportunity to reduce
variability in the plant by adjusting the relevant parameter. In this case
the λ could have been increased. The fact that the λ-index is well above 0.2
for most of the interval also indicates that the loop has problems. Neither
the λ-index nor the gradient indicates that the oscillation observed is due
to aggressive tuning of the loop. But in either case an adjustment of the
controller parameters is justified since even if the disturbances originate
outside the loop, their spectral composition is such that the current loop is
increasing the variability instead of decreasing it. The appropriate action
is still to increase λ .

Detecting Sluggish Loops

In Fig. 4.6 the normalized gradient is shown for the flow loop 831FC001,
previously discussed in Section 3.5.

It takes some time for the recursively estimated gradient to settle at
the same level as the gradient estimated batch wise. But it settles at a
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Figure 4.6 Loop 831FC001. Top graph: β estimated batch wise and recursively.
Middle graph: λ-index. Bottom graph: e(k).

similar level around 1.7. This is a very large value of the gradient and
indicates that most disturbances are of low frequency character. In the
case of this loop, there might have been opportunities to increase the
aggressiveness of the tuning by reducing λ .

Notice that the loops shown in Figs. 4.5 and 4.6 have similar λ values
or 6 and 5.4 respectively. Their data is also shown over the same time
interval.

Monitoring Over Operating Ranges

In Fig. 4.7 the statistics are shown for loop 831FC002 where two grade
changes took place during logging of the data. The set point changes at
time 50, 550 and 1550 minutes. The variance changes considerably fol-
lowing each of these set point changes.

The λ-index is above 0.2 for most of the interval indicating that the
loop is not rejecting the disturbances as efficiently as required by the λ-
tuning. It starts at very high values close to and above 0.5. A quick view
of the control signal and plant output indicated strongly valve stiction

126



4.6 Use of the Gradient

0

0.5

1

0
0.2

0.5

1

0
0.2
0.4
0.6
0.8

1
x 10

−3

0

0.2

0.4

0.6

0 200 400 600 800 1000 1200 1400 1600
0

0.1
0.2
0.3
0.4
0.5

Minutes

η(
b)

u
(k
)

β
r(

k)
,y
(k
)

va
r(

e(k
))
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127



Chapter 4. Gradient Monitoring

as the root cause of the problem. This is shown in greater detail in Fig.
A.6. The assumption of linearity previously discussed does therefore not
hold for this loop. This fact might explain other unexpected observations
within the data series.

The set point is changed at time 50 from 0.25 to 0.5 approximately.
Following the change there is a notable drop in variance. The gradient
settles around 1 indicating slow disturbances at the new set-point level.
The slow disturbances seem to be caused by the stiction but the frequency
of the limit cycle is considerably reduced from the time interval 0 − 50.
This indicates lower integral gain. As the integral gain was not changed
specially in the PI controller over the time the lower integral gain can
only be explained by a lower process gain for the new operating region.
Then from time 50 to 550 minutes the gradient is decreasing as variance
is increasing. The stiction pattern is still apparent but more difficult to
distinguish as the set point is changed as well. The decreasing gradient
implies that the spectral composition of the control error is moving up to
higher frequencies. This in turn indicates increasing loop gain over the
interval. Notice that in a flow loop with a valve actuator the gain can
easily change when pressure difference over the valve changes. Then at
time 550 the set point is changed back to 0.3, close to the previous level
of 0.25. This is followed by a very big increase in variance and significant
drop in the gradient down to 0.5. Again one can suspect that the reason
for increased variance is an increase in loop gain.

Some conclusions from these observations will now be summarized.
The change in loop gain at the different operating regions is picked up by
the gradient as there is a change in the spectral composition of the error.
However, the linearity assumption which is important for any spectral
analysis, does not hold for this loop. As can be expected there are in-
consistencies in the information obtained from the gradient. The largest
value of the gradient is in the beginning of the interval 50 to 550 minutes.
There it is above 1 indicating a sluggish loop. But this is the point where
the loop has lowest variability. The gradient has a value of 0.5 at the op-
erating level with the largest variance, between 550 and 1550 minutes.
The numerical value of 0.5 for the gradient should be acceptable. But the
fact that the λ-index is above 0.2 for the whole interval should indicate
that something is wrong with the loop. A conclusion is that if there are
“strong” nonlinearities in the loop the information from the gradient will
not be reliable.
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4.7 Discussions and Future Work

Missing in the treatment are results from experiments in an industrial
environment where gradient data has been used in a more proactive way
to reduce variability and optimize performance. If it is of interest to keep
certain loops tightly tuned, λ could be trimmed until the gradient would
be on the interval 0− 0.7. As long as variability would drop, the closer to
zero the better.

For loops known to have different disturbance characteristics for dif-
ferent operating regions the gradient might give information valuable for
implementation of gain scheduling.

For most of the industrial data, when the λ-index indicated good per-
formance, i.e. Iλ was below 0.2, the normalized gradient was found to lie
on the interval [0, 0.7]. An example of this can be seen in Appendix A
for two of the loops. Consider the loops 831FF176 and 831FF177 which
have long intervals of good performance. Both loops have intervals where
the control signal saturates but outside of these intervals Iλ is below 0.2.
When Iλ is below 0.2 the gradients are positive and close to zero. Loop
890FF051 shows similar behavior if the batch wise estimated statistics
are considered. The gradient is actually above 0.7 but always below 1.

4.8 Conclusions

A statistic has been presented which gives useful information regarding
the assumed sensitivity function and the disturbances affecting the loop.
The statistic is an estimate of the partial derivative of the variance, with
regard to a control parameter.

It has been shown that the evaluation of this gradient is very simple
for many common controllers. A recursive version has been presented that
should be implementable in most distributed control systems. In the case
of λ-tuning the gradient has been shown to have a nice interpretation
by considering the sensitivity function of the λ-tuned loop. A normaliza-
tion of the gradient has been presented as well and it has been shown
that its numerical values should lie between 0 and 0.7. The gradient was
calculated for the industrial data presented in Chapter 3. For most of
the industrial data, the condition of good performance according to the
λ-index was almost always followed by a value of the gradient on the
desirable interval.

The fact that the statistic is related to a simple tuning rule should
facilitate its acceptance in an industrial environment.
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A

Industrial data

Data from some of the loops in Table 3.1 is shown on the following pages
along with the λ-index, Iλ , and the normalized gradient, β . Most loops
shown here were found to have some kind of performance problem. Some
good loops where the λ-index was below 0.2 most of the time are included
as well.
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Figure A.3 Flow loop with good performance except when set point is changed.
The input saturates at time 250. The rise in the indices at time 97 and 800 is due to
steps in the set point where the response of y(k) is not adequate. The lowest graph
shows one set point response. The loop was tuned for λ = 4.9 sec and L = 1.6 sec.
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Appendix A. Industrial data
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Figure A.4 Flow loop with good performance. The rise of the indices on the inter-
val 560 to 750 minutes was due to saturation in the control signal. Notice that the
output lies close to 0 for this interval.
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Figure A.5 Level control loop. Due to large λ (215 seconds) only two batch esti-
mates were calculated. Load disturbance at time 45 minutes causes a rise in Iλ .
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Appendix A. Industrial data
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Figure A.6 Flow loop with stiction. The lowest graph shows the set point and
output on an interval where the stiction square wave pattern was apparent.
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Figure A.7 Flow loop with poor performance. Notice the sporadic disturbances
affecting the loop. Reason for poor performance unknown.
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Appendix A. Industrial data
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Figure A.8 Flow loop with stiction. The lowest graph to the left shows the set point
and output on an interval where the stiction square wave pattern was apparent.
Notice that the gradient dives at time 576. The graph to the right shows an interval
where the output y(k) displayed oscillatory behavior with the characteristics of
instability.
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Figure A.9 Loop with good performance over most of the interval. In the beginning
the loop displayed oscillatory behavior with the characteristics of instability. This
is shown in the lowest graph. At time 600 the input saturated which caused the
recursively estimated indices to become very large. The rise in Iλ around time 300
is due to load disturbances.
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