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ABSTRACT

This report deals with identification of multivariable linear
systems of finite order from measurements of input-output sig-
nals when the outputs are corrupted by additive random noises.
The input-output relations of such systems can be described by

a vector difference equation. A canonical form for the matrix
coefficients of this equation is proposed and its existence

and uniqueness are shown. This canonical form enables the iden-
tification of the structure of matrix coefficients by straight-
forward search, which drastically reduces the number of different
structures, whose "fit" is otherwise to be tested.

An application of the prior knowledge fitting method for iden-
tification of the structure of the matrix coefficients and es-
timation of their elements, based on the (assumed) independence
of noises and input signals, is described. No knowledge of sta-
tistical characteristics of the noises is needed, only their
mean values are assumed to be constant in time. This method is
finite (i.e. no iterations are used, no troubles with convergence
etc.).

The required place in the computer memory does not grow with
increasing length of observation of input-output data, as they
need not to be stored; all information from the whole past his-
tory needed for identification of all examined structures is pre-
served in a relatively small matrix.

With increasing length of input-output data the obtained esti-
mates converge to their true values with probability one.

A FORTRAN IV subroutine for this method, called MIMOID, was
written and tested. The results confirm its usefulness.
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1. INTRODUCTION.

In recent years a considerable effort has been made in the field
of experimental identification of linear discrete time (or sampled)
single output-single (possibly multiple) input systems. As a re-
sult many useful algorithms have been described elsewhere and some
of them have becaome very popular. Among them let us mention the
maximum likelihood method (M.L.) by Astr®m and Bohlin [1] as an
example of a statistically optimal, even if computationally expen-

sive, method or its "counterpart", the extremely feasible computa-
tionally, even if not statistically optimal, prior knowledge fit-
ting method (P.K.F.) by Peterka and Smuk [2], [3]. Both of these

methods (and many others) approximate the examined system or pro-

cess by a parametric model, whose input-output relation is described
by a linear difference equation of finite order n, the parameters

of which (i.e. the coefficients of the diff. eq.), denote them by
CI
some way penalizes the difference in the input-output behaviour of
the model and the identified system or process. By these two methods
(and all others known to the author) the order n is not identified

directly as a parameter, but the models are determined for increasing

are chosen to minimize a loss function V = V(en), which in

orders i = 1, 2, ... with corresponding loss functions and as the
"right" order n we accept the greatest i giving "significant" de-
crease of loss function. Rather exact criteria (as statistical tests,
analysis of residuals) as well as more or less subjective judging
was successfully used to determine whether the loss function is de-
creased significantly [3], [4], [5], [6].

The main disadvantage of this approach is that we have to evaluate
(n+l) models to decide that the system is of n:th order which may
sometimes be a time consuming task, depending mainly on the complexi-
ty of the used algorithm. (An example from [6]: Models up to 4th or-
der were identified from 1000 pairs of input-output data from a
paper machine. Total computing time for M.L. was 4 min., for P.K.F.
0.5 min.)

In spite of this, no better method for estimation of the order of
a process is known at present time. In the next sections it shall
be shown that a similar approach can be developed even for linear
sampled systems with multiple outputs which can be described by a
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vector difference equation (of higher order). The general proper-
ties of such an equation and its relation to the state space
description shall be discussed in section 2.

In section 3 it shall be shown that there exists certain canoni-
cal form of the vector difference equation, which enables the de-
termination of the order by similar simple algorithms as mentioned
above.

In section 4 a multivariable version of the prior knowledge fitting
method, which makes use of this canonical form, is described. This
method has proved to be extremely suitable for this purpose and may
even be used on-line.

Finally, in section 5 some practical results from identification of
both simulated and industrial data are shown.

2. DESCRIPTION OF INPUT-OUTPUT RELATION BY A VECTOR DIFFERENCE
EQUATION (V.D.E.).

In this section we shall derive the vector difference equation for
a linear sampled system ;J of n:th order with r inputs and m out-
puts.let us denote by ui(k), yi(k) the value of i:th input resp.
output at time kT, T being the sampling period. Let us further de-

fine column vectors:

u, (1) ] BAGE
ue) & 40 syt 8 L
w0 | ()

The state space description/é(qa, r, C, D) relates the output y(t)
to the input u(t) by means of an n dimensional vector x(t) called
the state of the system by the following equation:

x(t+l) = ¢ x(t) + I u(t)
(2.1)

y(t) = C x(t) + D u(t)



where

¢ is regular (n x n) matrix

ris (n x r)

C is (m x n) ma:crix of rank m with rows Cys Cgs eves C
D is (m x r)

In the following we assume that the system /J is completely observ-
able.

The vector difference equation relates the output y(t) to its past
values and to present and past values of input, i.e.:

y(t) = L{y(t-1), ..., y(t-p); u(t), u(t-1), ..., u(t-p)} (2.2)

where L{*} is a linear function.

In order to derive the V.D.E. (2.2) for a system/ziw, I's C; D)

we must exclude the state vector x(t) from (2.1). This can be done
using the idea of observability: If the system &£ is observable,
the state x(t) can be determined from the following values of out-
put and input:

y(t+i), u(t+i); i=0,1, «ecy p~13 p € N.

Fram (2.1) we get:

y(t) = C x(t) + D ult)

y(t+l) = Céx(t) + CTu(t) + D u(t+l)

g(t+2) = CoZx(t) + C4Tu(t) + Clu(t+l) + D u(t)

y(ttp-1) = CoP Ix(t) + coP2ruct) + coP 3ruct+1) + ...

y(t+p) = CoPx(t) + CoPiruCt) + CoP2ru(t+l) + ... (2.3)

Hence if the system & is observable we may from the upper part of
(2.3) (above the line) calculate x(t), substitute it into the last
equation (below the line) and so obtain the V.D.E. wanted [7], [8].



Let us carry this out in detail. First denote:
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[ u(t)

u(t+l)
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The smallest positive integer p such that Qp has rank n is called

the observability index. The (2.3) may now be written as:

Y =@ +vyU 2.5
b px(t) op (2.5)

Because QP has rank n we can always find n independent rows in it
and form a set of n linear algebraic equations for x(t). The choice
of independent rows in Qp need not be unique. Let our choice be:

_ i ] N 3
1 .
j2
c. ¢ y. (t+j,)
T4 1 : Y; Ay 7172 (2.6)
jn
c. ¢ y. (t+3)
_ iy _ i n J

and similarly let \Y; be formed from the respective rows of Y.

Thus from (2.5):

Y = Tx(t) + ¥*U

p P D

i.e

) = Thy* - vty 2.7
x(x) p PP

which, after the substitution for x(t) into the last equation in
(2.3), finally gives the wanted V.D.E.

y(t+p) = c¢PT"lY; ST 4y U 41 (2.8)

PP PP

ceP=2r cr

<
g
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This form (2.8) is not very suitable. Let us rearrange it more
clearly:

The last two terms on the right hand side may be united and writ-
ten as:

A -1 »*
Gp*lup"‘l = wpUp"'l - C¢T WPUP"']-

where G ., has dimensions (m x (p*l)r). Using notation:

F 2 cePrt
p

we get:

y(tep) = F - Y + 6 (2.9)

P p+lUp+l

For the sake of later convenience we prefer to write (2.9) using
the whole vector of outputs Y_ instead of Y'. To enable this, we
must extend the (m x n) matrix Fj to an (m x (p * m)) dimensional
matrix Ep by introducing appropriate dummy zero columns.

If for example m = 2, p = 3 and

Rl A I A O A DA

v
]
—
i
'—J
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[E—

(fi stands for the original columns of F).

The total number of possibly non-zero columns in Ep remains equal
to n, i.e. to the order of the system. So we obtain:

y(tsp) = E * Y +6 (2.10)

p+1'p+l

Further we split the matrix Ep into p square matrices Ays oo Ap

of dimensions (m X m) in the following manner:



E = [ A | -A b i Ay | <A ] (2.11)

and similarly the matrix Gp +1 into (p+l) rectangular matrices By
Bl’ vy Bp of dimensions (m x r), i.e.:

G4y [ B, i B, 1 E » i B i By ] (2.12)
Introducing this into (2.10) we obtain:
y(t+p) = - Apy(t) - Ap_ly(‘c+l) - eee - ly(1:+p-l) +

+ Bpu(t) + Bp_lu(tﬂ) + ... + Bju(t+p) (2.13)

and after shifting the time t+p => t and rearranging the equation
we finally get:

p p
y(t) + I Aiy(t-i) = I Biu(t-i) (2.14)
i=1 i=0

Notice that the total number of (possibly) non zero columns in all
matrices Al’ ...y A_together is still equal to n, i.e. to the or-
der of the system ,cf . Their positions are uniquely given by the
particular choice of rows from Qp to form the matrix T (2.6).

As it was already mentioned, this choice need not be unique (except
for single output case [7]) and hence for the same system /d((b, r,
C, D) other equivalent V.D.E. with different structures of A matri-
ces can be found. The number of possible structures depends on the
properties of the particular pair of matrices ¢,C. This implies that
the knowledge of the order n is not sufficient to specify the form
of V.D.E. (as it is in the single output case [7]). The information
about the structure of A matrices must be given as well.

Formerly, this seemed to be a very crucial problem in connection
with experimental identification of an unknown system where this
information is of course not available and all possible alterna-
tive structures of A matrices have to be tested [8], [9].
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3. IDENTIFIABLE CANONICAL FORM OF V.D.E.

In this section we show that there exists a canonical form for
matrix coefficients in V.D.E. (2.14) which (even if not being
unique) reduces the number of possible variants of A.

To do this we show that the following choice of transformation
matrix T is always possible.

Let iobs be the observability index of a linear sampled system
,d,(¢, r, C, D) and denote q = iobs - 1.
Then among the vectors:

q Q-1
c ¢ c ¢ . cy0 )

-1
Cyo c2¢q 8 Cyé c,
(3.1)

q Q-1
cg c ¢ . c o Cq

q q-1
c ¢ Cpf . o S

according to the definition of the observability index there must
be n independent vectors.

Let us examine them in the order indicated by the arrow, i.e.
starting with cl¢ , the ones found independent are chosen to
create the matrix T. Hence c ¢q becomes the first row of T, c2¢.
the second, etc. We continue in this way until a certain c ¢q X
is found to be linearly dependent on the rows cl¢q, c2¢q, Wy
c S_l¢q"k previously chosen for matrix T. Assume this linear de-

pendence in the form:

m k-1 s-1
cs¢q°k = I I ;. l¢q J 41 .. ix l¢q'k (3.2
i=1l j=0 2 i=0
with not all o 1,3 equal to zero.
9

The row cs¢q_k does not appear in T.
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We proceed and examine the vectors c_, ¢q—k, x iy 1B ¢q—k’
g-(k+1) g-(k+1) by |

cl¢ s sees cs_1¢ . Each of them may either be

found independent of the rows chosen previously and appears

in T or be found dependent, i.e. be a linear combination of

rows previously chosen for T.

Having completed this we proceed to cs¢q-(k+l). The question
is whether or not this may be independent of previously cho-
sen rows and hence become a new row in T.

It follows from (3.2)

oaie .? D o s 0p6d I .; Ly oped e

i=l j=0 j=1 L0

) igl :51“1,5-1°1¢qu lgl aj gy S3¢T
' ?Ei %,k °i¢q_(k+l)

] 1?1 :Ei %1,3-1 °1¢q;j * jéi % k-1 °i¢q-k ¥
' jéi %,k O

) igl :gi %,3-1 ci¢q * Séi %i,k-1 cl¢q—k *
' igl :gz 1,3 Ci¢q -8 jgz *i,k c1¢q-k *
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m s-1
+ c.oT X + 3

.. q-(k+1)
jesel Lkl 2 i=1

c.¢

Q. .
i,k 1

m k_l q—j S-l
I I B. . C:¢ + I B C.¢
izl j=0 3 % j=1 LK

ka +

s-1

+ T a. C.¢
421 ik "1

m
+ I
i=s+l

q-k q-(k+1)

o j-1 Ci¢ (3.3)

where B. . = 2 0.
i

ot a3 o
3 7 %4,3-1 7 %4,37 %4,-1

q-(k*1) is a linear combina-

This means that even the vector cgt
tion of the same rows as csq:q—k was (and the other rows already
investigated). Therefore it cannot appear in T.

¢q—(k+l)

cannot ap-
g- (i)
9

Hence if cs¢q—k has not appeared in T then c
pear there either (and naturally none of cgé iz l, as it

may be shown by induction).

We can see that the n independent rows can always be found grouped
on the left hand side of the array (3.1) and thus for a system
/d(cb, r, C, D) there always exists a V.D.E. where the structure of
the A matrices is such that if a certain, say j:th, column in the
A; matrix is equal to zero, then also the j:th columns in all

A

. matrices A are equal to zero.

+17 Bie2> 0e
A V.D.E. with A matrices of this form will be called the identi-

fiable canonical form of V.D.E. The particular structure of V.D.E.
in this canonical form can be uniquely characterized by m numbers.

Pys Pps <5 Py (3.4)

meaning that the non-zero column corresponding to the j:th output

yj is contained only in the first pj matrices Al’ A2, P Apj'

The order of the system is then:

m
n= I D.
j=1 )
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and the maximal P; is equal to the observability index:

i

obs - MaX {p.}

3 ]

4. IDENTIFICATION OF MULTIVARIABLE SYSTEMS.

4.1. Introduction.

Being aware of the existence of the identifiable canonical form
of V.D.E. we only need to consider models in this form and pro-
ceed quite similarly as in the single output case.

We start the identification of an unknown system with a model
with structure characterized by Py 2Py = ... =p =1 (with or-
der n = m), i.e. we suppose that the output y(t) depends, apart
from input, on the y(t-1) only, and determine all unknown ele-
ments in the matrices Al’ By» Bl’ (call them ODys Pps +ees pm)
and the loss function Vl(epl, Dps +ves pm).

Then we set p; = 2, i.e. we include yl(t-2) in the model, deter-
mine the new © and V2 and test to see if the decrease of the loss

function AV2 =V, - V2 was significant.

1
If not, the yl(t—2) brought no new information about the state of
the system, and neither yl(t—2) nor its more delayed values yl(t—3),
yl(t-k), ... need to be considered further. Hence Py is set back to
Py = 1 definitively.

If AV, was significant, yl(t-2) is included in the model and the
same shall be repeated for y2(t—2), y3(t-2), fods ym(t—2), yz(t-3),
... until in all elements of output such delayed values yi(t—pi)
are found so that yi(t-pi—l) brings no significant reduction of the
loss function. Such a model is accepted as final, its order being:

.-

and observability index

Tops = Max {pj}

1
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To find it we had to evaluate and test only (n+l) models.
This algorithm is represented in Fig. 4.1.

Even though we reduced the number of different models to be exa-
mined to a quantity equal to the number of models for single out-
put systems, the identification may still be rather time consuming
when using the M.L. because of the greater number of unknown para-
meters and hence the necessity of the "hill climbing" in many di-
mensions [8], [9], [10]. (For example a system with 2 inputs,

2 outputs of 4th order could have 24 unknown elements in only

the A,B matrices !!) The other disadvantage of M.L. is that the
whole algorithm needs to be repeated for each model.

All this initiated the search for a more feasible method. The most
suitable has proved to be the prior knowledge fitting [2], [3]. Be-
cause of the shortage of space only the principle ideas necessary
for the extension of the P.K.F. to a multivariable case are given
below. For the theoretical background we refer to the original pa-

pers [2], [3].

4.2. Application of P.K.F. to Multivariable Systems.

Consider a linear multivariable sampled system with r inputs and
m outputs whose virtual outputs w are disturbed by random noises
e so that only the outputs affected by noise, y, are accessible
for measurements.

Suppose that:

- the input signal {u(t); t =1, 2, ..., L} is "persistently exci-

ting" (see later),
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- the virtual output w(t) can be related to the input u(t) by a
V.DCE.

P P

w(t) + © A, w(t-i) = I B, u(t-i) (4.1)
A 1 ses &
i=1 i=0

- the noise {e(t); t =1, 2, ..., L} is some m dimensional ergodic
random process with zero mean value (assumed for the sake of

simplicity; it may be disregarded [3]) and finite covariance
matrix,

- the actual output is given by:
y(t) = w(t) + e(t) (4.2)
- finite length records of input-output signals are available
{u(t), y(t)3 t =1, 2, ..., L}
or measurements of input and output may be done on-line.

All these assumptions are rether realistic for open loop systems.

Using (4.1) and (4.2) we get:

P P
y(t) + I A; y(t-i) = I Bi u(t-i) + 8(t) (4.3)
izl i=0
where
P
§(t) = e(t) + Ai e(t-1) (4.4)
i=1

is also an m dimensional ergodic process with zero mean value,
and is independent of input signal u.

Thus if we express the conditional mean of §(t) for given past
values of input u(t), u(t-1), ..., u(t-N) using a linear regres-
sion model
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N
E{6(t) |ult), ult-1), ..., u(t-N)} = ¢ Ci u(t-i) (4.5)
i=0

then the (m x r) matrices of regression coefficients Ci must be
zero for all i.

This fact is considered as the only "prior knowledge" available
about the examined system.

In order to obtain estimates Ai’ Bi of matrices Ai’ Bi in V.D.E.
(4.3) according the principle of P.K.F. we must:

1. find unbiased estimates of regression matrices ?:i for given

input-output data as a function of Al’ cens Ap, BD’ cees Bp,

2. choose the estimates Ai’ B; so that the estimates of regres-
sion coefficients are "as small as possible". More precisely

so that:
N a2

Vz & " Ci“ , Cllcll is suitable norm) (4.6)
i=0

is minimal. So the V (4.6) is our loss function.
Let us carry this out in detail:

An unbiased estimate of Ci matrices can be obtained by the least
squares method. Set

E{6(t) |u(t), ..., ult-N)} = §(t) + e(t)

(where e(t) 2 [el(t), vy em(t)] is a vector of residuals) and
substitute this and 6(t) from (4.3) into (4.5)

N
i

§(t) + e(t)

p p
y(t) + ¢ Ay y(t-i) - ¢ B, u(t-i) + e(t) (4.7)
i=1 i=0
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Then the least squares estimates C; are those minimizing the sum

of squared residuals:

L T L m
Q= I e(t)e(t) = L

t=1 t=1l s=1
Denoting by ci,s’ ai,s’ i,s

m L

s=1 t=1

r e2(t) = & (: e§<t)}

the s:th rows of matrices Ci’

respectively, then it follows for es(t) from (4.7):

N
e (t) = L
8 jz0

1%
+ I

j=0

b. < u(t-1i)

i=1 ?

p
c; o u(t-i) - ys(t) - I a; g y(t-i) +

(4.8)

A., B,

1 1

(4.9)

We see that e S(t) depends only on those elements of matrices Ci’

A

(4.8) can be done row by row in any arrangement.

Introducing:
A —
ng = _es(l) ! es(2) i .
A ‘(‘2 | ]
Ys = |0,s ! S18 | “°
A i 1
O = "1,s | 32,5 |
B 1 1
uf(1) |l |
uhe2) ! oute |
TR
: 5
RO IR
~ , ,
yT(O) | yT(—l) i .
|
|
(4 [y iy E
! -
| |
yT(L-1)§ yi(L-2) | y*

(L-p-1] ul(L)

T
eS(L)]
T
°,s]
—apss i bo ’S
uT(L-N{
I |
(1) (o)
I
1 |
le2)  1ufen)
| |
e * |
1 |
' L7
l

T

u (L-1) {u (L-p))

Bi’ contained in their s:th rows. Hence the minimization of

(4.10)



18.

then Q (4.8) can be written as:

m
- T =7 .
Q= E nsnswhemns-z 7$+X(‘)S-Ys (4.11)
s=1
i.e. the least squares solution
ve = @2t 2lixo_ - Y) (4.11a)

(Note: The input signal must ensure that the matrix ZTZ is regular.
Such an input signal is called "persistently exciting".)

Notice that in (4.11) only the column vector YS depends on s. The
other matrices Z, X are common for all s.

Having thusly expressed the C matrices as_ functions of A, B matrices,
we must in step 2 choose the estlmates A B so that the loss func-
tion V (4.6) is minimal. Using Euclidean norm we can write:

N - N m . - m .
ve 1 |lc 2 ¢ =z E ¢ Cig ™ ° yz Yg (4.12)
i=0 i=0 s=1 s=1

Also here V can be minimized separately for each s = 1, 2, ..., m.

According to the assumed structure the matrices Ai may contain cer-
tain dummy columns so that in all rows O the respective elements
are equal to zero. Let us arrange the non-zero elements in o (4.10)
which are to be estimated into a new vector R and arrange a matrix
by letting out the respective columns in Z so that (4.1la) becomes:

(£3]

° Toy=l ol lT

T * (Z2°2) ~ 7°= 6 (Z Z) YS (4.13)

The least squares solution is then:

b, = - TR ACAYA Bl G N Aat=S Sl T A R A A A Yo (418)
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Notice that even here only the column vector YS depends on s,
while the rest of the whole expression (4.14) is common for all

S.

The impractical expressions (4.1la), (4.14) are not suitable for
numerical computation - we use them just to express Ys and 8

in compact form. Actually both least squares solutions are ob-
tained directly from (4.11) and (4.13) by their orthogonal trans-
formation [12] to suitable form. Eq. (4.11) is transformed to the
form:

n. =Zy_ +Xeo_-%Y (4.15)

where Z is an upper triangular matrix. All matrices in (4.15) are
rather small, the greatest dimension is only (N+1) + r. The eq.
(4.13) is treated similarly.

A very ingenious algorithm for this orthogonal transformation by
means of elementary plane rotations is described in paper [3] and
enables us to perform it even on-line.

a a

So far, we can estimate ;‘1’ 6 o5 Ap, BO’ viore fip and the corres-
ponding minimal value of the loss function V for their assumed
structures. Thus when identifying a system with an unknown structure
the scheme (4.1) for determination of the order may be applied. No-
tice, that the laborious first stage in the estimation, i.e. the
computation of the matrices Z, X, ¥ is common for all examined
structures, and only the second stage needs to be repeated for each
structure. The second stage is easily done because of the low dimen-

sions of matrices occuring there.

The only difficulty is that the significance of the decrease of the
loss function can be judged only subjectively (unless sufficient
assumptions about the probability distribution of the noise e are
made). '

Concerning the properties of the estimates, the proof of their strong
consistence in the original paper [2] (with obvious trivial modifica-

tions) is valid here as well.



INITIALIZE :
COUNT: = 0

32
pj:=1,dj:=1forj=1,..,m

EVALUATE MODEL OF
THIS STRUCTURE AND
ITS LOSS FUNCTION
Vi:=min V(G py,P2,--.Pm)

6y

Fig. 4.1

Vi:=min V©py,p2,...,Pm )

SIGNIFICANT

Vi:=Vi-1
Pj:= pj-1
dj:= 0

COUNT:=COUNT+ 1

NO

fobs:=max {pi}
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4.3. Description of the Subroutine MIMOID.

A FORTRAN IV subroutine called MIMOID (Multiple Input Multiple
Output Identification) for identification of multivariable systems
by P.K.F., based on ideas presented in previous sections, was writ-
ten to get some insight into its properties from the practical point
of view. The immediate aim was only the off-line use, but its modi-
fication for real-time applications is straight forward - only a
few statements need to be changed. The algorithm described in sec-
tion 4.2 was modified so that the mean value of the noise e(t) need
not be zero nor assumed to be known in advance [3].

The least squares solutions of (4.11) and (4.13) are computed using
the original Peterka and Smuk's subroutine REDUCE [3](see Appendix B).

As it was mentioned previously, it is not possible to include an
"objective" judging of the significance of the decrease of the loss
function V into this subroutine. Hence in this version of MIMOID the
structures of A matrices, which shall be estimated, must be speci-
fied by the numbers Pys +++s Pp (3.4) in the calling statement in
the main program.

For each wanted structure, besides the estimates of A and B matrices,
the respective minimal value of the loss function V (4.12) is calcu-
lated and printed out.

So the identification of a system with unknown structure can be done
half-automatically, according to the flow chart (Fig. 4.1), in a
man-machine loop.

The heading of the MIMOID and its dimensions part is as follows:
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SUBROUTINE MIMOID (UleTL oL ellfoYeTMoeMaMYoNNgLENGTHeNV e [PeNRelPebPS)

MULTIPLE INPUT = MILTIPLE OUTPUT LTINEAR SYSTEM TIDENTTFICATTON
USING PETFRKAS PRIOR KNOWLFDGF FITTING METHODS. THE DESCRIPTION
OF THFE SYSTEM TS ASSUMED IN THE FORM OF A VECTOR NDIFFERENCE
EQUATION WHICH MATRIX COEFFICIENTS ARE ESTIMATED FOR ALL THE LR
ASSUMED STRUCTURES

REFEFRFNCEsVALISe ON=LINFE IDENTIFICATION OF MULTIVARTARLE LINEAR
SYSTFMS OF UNKNOWN STRUCTURE FROM INPUT/0UTPUT DATASs

IFAC SYMPOSIUM ON TDENTIFICATION PRAGLE 1970

AUTHOR ¢« JAROSLAV VALIS 21/10=1969

() = ARRAY OF DIMENSION (ILeNN)Y CONTAINING ALL PHYSTCAL TNPUT

SIGNALS
It. = DIMENSION PARAMETER
L = NUMBER OF HSED LOGICAL INPUT STGNALS (MAX  3)

L) = VECTOR OF DIMENSTON ( 3). (LUCT)Y)Y=TH ROw OF ARRAY I SHALL RFE
UUSED AS 1-TH LOGTCAL TNPHT SIGNAL
Y = ARRAY OF DIMENSION (IMeNN) CONTAINTNG ALL PHYSTICAL OUTPUT

STIGNALS
IM = DIMENSION PARAMETER
M = NUMBER OF USED LOGICAL OUTPUT SIGNALS (MAX 3)

MY = VECTOR OF DIMENSION ( 3), (MY(T)VY=TH ROW OF ARRAY Y SHALL BE
USED AS TI=TH LOGICAL OUTPUT STGNAL

MEAN VALUE OF T/0 SIGNALS NEED NOT TO 8BE ZERO

NN = DIMENSTON PARAMFTER OF INPUT/OUTRPUT ARRAYS (JeRESP Y

LENGTH = LFNGTH OF 1,0 DATA RECORD

NV = NUMBER OF INVESTIGATED VARTIANTS OF STRUCTURES

IP = ARRAY OF NDIMENSION (NVeIM) SPECIFYING EXAMINED STRUCTURES
THE ARS VALUE OF TP(Ied) DFTERMINES THrE MAXIMAL TIME DELAY
OF J=TH OUTPUT IN I=TH STRUCTURE, IF IP(1e1) LT, 0 THEN IN
THE I-TH STRUCTURE THE MATRIX B(0)=0sOTHERWTISE R(N) <NEs 0

NR = NUMBFR OF REGRESSTION COEFFICTFENTSe WHEN NR.ILEL.0 PROPER
VALUF SHAILL HBE DFTERMINED AUTOMATTCALLY BY PROGRAM
AND ITS VALUE WILL BE CHANGED DURING EXECUTTON

LP = PRINT OUTS EVERY [P SAMPLFS

EPS = ACC!RACY CONST. = SEFE REF

THE SUBROQUTINE PRINTS 0OUT

1. NUMBER 0OF STRUCTURF

2. ASSUMFD STATE SPACF DIMENSTION (ORDFR OF THE SYSTEM)
IF ASSUMFD ORDFER IS.6T. ACTUAL ORDER THE MEFSSAGE #THTS STRUCTU=
RE IS REDUNDANT#* WILL BE PRINTED wHEN NOISE FREE 1,0 DATA wkRE
USED

3. STRUCTURE OF THF TRANSFORMATTION MATRIX (ROWS OF THE OBSERVARIL=
LITY MATRIX CHOSEN TO OBTAIN THIS STRUCTHRE FROM STATE SPACE
DESCRIPTION S(AeReCol)) )

4, FSTIMATFS OF A=-MATRICES

5, FSTIMATFS OF B=-MATRICES

he. SUMS OF SQUARES OF REGRESSTONS COEFFICIENTS FOR THE RESP. OUT=-
PUTS AND THFIR TOTAL SUM
THIS MAY RE USED TO JUDGE THE ORDER OF THE SYSTEM

SURROUTINE REQUIRED
REDUCE
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For the correct use of MIMOID a more detailed explanation of its
formal parameters must be added.

Fig. 4.2.

The records of all physical input and output signals of length
LENGTH measured on '"terminals" of the examined physical system
(Fig. 4.2) must be stored in arrays U resp. Y in the following

manner:

Ul (1)
Ul (LENGTH)
1 2 3 LENGTH NN
1 ul(l) u1(2) ul(3) ul(LENG'IH) Ke | X
2 u2(l) u2(2) u2(3) ..... uZ(LENGTH) KXo | X
3 u3(l) u3(2) u3(3) ..... u3(LENGTH) X | X
U=
4 uu'(l) uq(2) uu(3) uu(LENGTH) KXo | X
X X X X X X X
IL X X X X X X X
1 2 3 LENGTH NN
1 yl(l) yl(2) y1(3) SasEw yl(LENG'I'I-i) Ko | X
2 y2(l) y2(2) y2(3) ..... y2(LING'I'H) Xo | X
Y= 3 y3(1) y3(2) y3(3) y3(LENGI‘H) Xe | X
X X X X X X X
M X X X X X X X
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The subroutine enables us to determine models of dynamic responses

between any L-tuple of physical inputs and any M-tuple of physical

outputs. The inputs and outputs of such a model shall be referred
to as "logical inputs" resp. "logical outputs". The logical inputs

are numbered Ups Ups ooy Ups the logical outputs are Yis Yoo covo

Yy Both L and M are limited to 3.

The assignment of a certain, say I-th, physical input to a certain,
say J-th logical input is simply done by setting the J-th element
of the array LU equal to I, i.e. LU(J) = I before the call of MIMOID.

The assignment of output is done similarly by the array MY.

One of the main advantages of the subroutine MIMOID is that more
structures can be identified simultaneously during a single call

of it. The number of wanted investigated structures is NV, the single
structures then being numbered by is =1, 2, ..y NV. The numbers

Pys +++»> Py characterizing a certain, say i-th structure,must be
stored in the i-th row of the array IP.

When we set the p, for a certain i-th structure, with a minus sign
into IP (i,1), then the matrix B, in this structure is assumed to
be zero and is not estimated.

The number of regression coefficients NR (= N in (4.5)) must be
chosen so that the system of linear equation (4.13) is uniquely
solvable in the least squares sense, i.e. the matrix in the { }
brackets in (4.14) is regular.

If NR is assigned a negative value then it shall be automatically
changed to a proper value during excention. The results of the es-
timation are computed (i.e. the second stage in the estimation is
executed) and printed out every LP samples of input-output data.
This may be useful for the check of the speed of the convergence

or in on-line applications.

If the absolute value of a diagonal element of the transformed
matrices in the least squares solutions (4.11) or (4.13) (for
example Z in (4.15)) is less than EPS, the respective matrix is
considered to be singular.
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The following results are printed out:

Number of the structure

Assumed state space dimension

Structure of the transformation matrix T in (2.6)
Estimates of A matrices

Estimates of B matrices

The loss function V (4.6)

o o F w N

5. PRACTICAL RESULTS.

The subroutine MIMOID was used for identification of different
test systems up to 6th order known from literature [8], [9],
[13], from simulated input-output data. In all cases good results
were obtained.

The following example may be considered as typical:

The continuous system [13]:

1

[ -1 0 0]
x=| 0 -3 0] x+ u
|0 0 -1 1
(5.1)
1 1 0]
y = X
.1 0 1 |

driven by two 63 resp. 127 bits PRBS sequences with amplitudes
t], and sampled with T = 0.5s was simulated and both outputs were
disturbed by pseudorandom N(0,0.1) sequences. 500 i/o data pairs
were used. According to the flow chart (4.1) the following struc-
tures were examined:

i Py | Pl Ve 1073 av, 1073
11 1 2 18.55 -

2 | 2 1 3 1.22 17.33

3| 2 2 4 1.13 0.09

41 3 1 b 0.63 0.59
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Only the 2nd structure of 3rd order brought significant decrease
of the loss function and hence this model should be accepted. The
estimates are:

- " -0.832 0.002 | R [ 0.132 0
A. = 4 =
1| o0.03 -0.597 | K | -0.020 0
- ~ 0.398 0.515 | - [ -0.093 -0.310
Bl = 5 B2 =
| 0.396 0.394 | | -0.020 0.022

while the true values calculated directly from (5.1) are:

[-0.829  0.000 C0.135 0
A. = 4 =
1| o0.000 -0.606 | & | 0.000 0

[ 0.393  0.518 -0.088  -0.314
Bl = s B2 &

| 0.333  0.393 | 0.000  0.000

Total computing time 1.34 min on CDC 3600.

Results from another trial with this system (5.1) can be found in
the Appendix A.

The later trials with industrial data showed that even if it was
easy to estimate models for different structures, it was sometimes
very difficult to judge whether the loss function decreased signi-
ficantly. A typical example is the identification of dynamics of a
distillation column from recorded input-output data, where the in-
put was the reflux ratio perturbed by PRBS, the 1lst output was the
top product caomposition, the 2nd output the temperature on the top
plate. This system was already investigated by different methods
[14], [15]. According to [15] the dynamics of both systems can be
described by models of 2nd order. Using P.K.F. we examined the fol-

lowing structures:
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il p| | n v, . 107 o, - 107
1) 1 1] 2 3.82 -

2 2 | 1] 3 2.70 1.12

3 2 |2 |u 1.89 0.81

| 3 |1 | u 1.50 1.20

Total computing time 1.04 min on CDC 3600.

Here the significance of the decrease of the loss function cannot
be judged directly from AVi, and other facts (for example the roots,
residuals) must be considered as well.

So we may choose the structure 1 of 2nd order (Table 5.1) or the
structure 2 of 3rd order (Table 5.2). Both these models fit very
close to the original measured data as it is shown on Figure 5.1
and Figure 5.2.
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DATA FROM RAND 225 = FILES 13e164

TIME= 21

i
2
-
2

STRUCTURE 1

STATFE SPACFE DIMENSTON P2

STRUCTHRE OF TRANSFORMATION MATRIX

C (1) #Aswn

C(P)#n#tn

MATRTX A( 1)

~0.08782817 —22,981652]4
0.00a741K] ~1.08914270

MATRTX RB( 1)
0ell9QnG720
-0.02940708

SUMS 0F SQUARES OF REGRESSION COEFF,
SAR((1) 3.9211AA3-002
SQR(P) = 1o161621-005

il

TOTAL Sl 3.823785-003

Table 5.1 - Second order model of the distillation

column.
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STRUCTURE 2?2

STATE SPACE DIMENSION 3

STRUCTHRE OF TRANMSFORMATION MATRIX

MATRTX A( 1)
~0.54T768032 ~12.,214504023

D.N031542Q ~1.00637449

MATRTX A{ 2)

(. "B2850400 Vo NVOCT000
0.0027K219 00000000

MATRTX K( 1)
0.11186334
-0.0293795]

MATRTX K( 2)
~0,36581735
0.00045197

SUMS 0OF SQUARES OF REGRESSTINON COFFF,

SQR(1)Y = 2et926A3-=5073
SOR(?) = HeBATOAT=00A
TOTAL SUM 2.701060-003

Table 5.2 - Third order model of the distillation column.
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APPENDIX A

This appendix contains an example of the use of MIMOID for the
identification of a 3rd order test system with two inputs and
two outputs like in (5.1).

Noise free input output data are stored on magnetic tape
(band 10, file 33).

During the first three calls of MIMOID the specified structured
are identified. Then both output signals are disturbed by a

pseudorandom gaussian noise with zero mean and stand. deviation
0.1 (RANSS) and the same calls of MIMOID as above are repeated.

The respective results are listed in the order they were printed
by the computer.
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PROGRAM  MVPKF

THIS 1S AN EXAMPLE HOW TO USE THE SURBROUTINFE MIMOTID
DIMENSTION UU(2¢500)eY(2e500) e IP(4e2) el J(3)oeMY(3)

PRINT 99

FORMAT (//7% SIMULATED TIODENTIFICATION OF A 3RD ORDER TFST SYSTE M)
PRINT 100

FORMAT (/3% NOISF FREF DATA3%)

IRFP=1

READ INPUT/0UTPUT DATA FROM RBAND 10 FILE 33

DO 1 I=1432

CALL SKIPFTILE(IO)

READ TAPE 10e(tJ(1eI)ali(2eI)eY(1aT)eY(2aIl)sl=1e500)

ASSTIGNE PHYSICAL [NPUTS
LU =1
LU(2)=2

NOW THE RESPONSE OF THE OUTPUT Y(lee) ON BOTH TNPHTS IS IDFNTIFIED
MY (1)=1
EPS=1 .F-R

NR SHALL BFE DETERMINED AUTOMATTCALLY
NR==-1

FOLLOWING STRUCTURES ARE EXAMINED

IP(1e1)=1

IP(2el)==1

IP(3e1)==2

IP(461)==73

CALL MIMOID(UePe2el11aYe2el1aMYs5N0500eb4elPaNRaSGNFPS)

NOW THE RESPONSE OF THE OUTPUT Y(2es) ON BOTH INPUTS TS TOFNTIFIED
MY (1) =2

NR==1

CALL MIMOID(UgPe2sl lleYer2elaMYe5(G0e5000belPeNRaS00aFPS)

NOW THE RESPONSES 0OF RBOTH OUTPUTS ARE TDENTTFIED
MY (1) =1

MY (2)=2

NR==1

THE FOLLOWING STRUCTURES ARE FXAMINED
TP(lel)==]

IP(142)=1

IP(2e1)==2

IP(242)=1

IP(3¢1)==?7

IP(342)=2

[P(441)==3

IP(442)=1

CALL MIMOID(Ue2e29l lleYs292eMYe500e500e4eIPeaNRe5(0aFPS)
IF(IREP) 54544

I7T=3

DO 3 I=1e2
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DO 3 K=1+¢500

CALL RANSS(ITexX)

YT oK)=Y([eK)+0e]l*XX

IREP ==1

PRINT 101

FORMAT (///% WITH ADDITIVE NOISF (.13%)
GO 70O 2

CALL EXIT

END
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SIMULATED IDENTIFICATION OF A 3RD ORDER TEST SYSTEM

NOISFE FREE DATA

TIME= 500

STRUCTURE 1
STATE SPACE DIMENSION 1

STRUCTURE OF TRANSFORMATION MATRIX
C(l)y#*Aas#*n

MATRTIX A( 1)
=0.40107225

MATRTIX B( 0)

MATRIX B( 1)
04739342870 0651791949

SUMS OF SQUARES OF REGRFSSION CNEFF,
SQR(1) = 1.925549-007

TOTAL SUM 1.925549=-(07



A 5.

STRUCTURE 2

STATE SPACE DIMENSION 1

STRUCTURE OF TRANSFORMATION MATRIX

C (1)%A**0

MATRTIX A(C 1)
=0.40107227

MATRTX B( 1)
0.39342879 051791949

SUMS OF SQUARES OF REGRFESSION COEFF,

SQR(1) = 1.9725549=-002

TOTAL SuUM 1.925549=002
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STRUCTHURE 3

STATE SPACE DIMENSION 2

STRUCTURE OF TRANSFORMATION MATRIX

C(1)Y#Ak#Q

C(1)#Ak3]

MATRTX AC 1)
-0.82966087

MATRTX A( 2)
0.13533528

MATRTX B( 1)
039346934 051791323

MATRTX B( 2)
-0.08779488 -0.31413025

SUMS 0OF SQUARES OF REGRESSION COEFF.,
SAR (1) = le142618=-021

TOTAL SUM 1.142618=021

STRUCTURE 4

STATE SPACE DIMENSTON 3

STRUCTURE OF TRANSFORMATION MATRIX

C(1)%#A##Q

C(1)%A##]
C(1)#A#%D

THIS STRUCTURE TS REDUNDANT
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STRUCTURE 1

STATE SPACE DIMENSION 1

STRUCTURE OF TRANSFORMATION MATRIX

C(1)#A=#0

MATRIX A( 1)
~0.60653066

MATRIX RB( 0)
0.00000000 0.00000000

MATRTX B( 1)
0639346934 039346934

SUMS OF SQUARES OF REGRESSION COEFF,
SQR (1) = 1.140840-021

TOTAL SUM 1.140840=-0721
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STRUCTURE 2

STATE SPACE DIMENSION ]

STRUCTURE OF TRANSFORMATION MATRIX

C (1) #Ax

MATRTX A( 1)

MATRTX B( 1)
039346934 0639346934

SUMS OF SQUARES OF REGRFSSTION COEFF,
SAR (1) = 16149607~-021

TOTAL SUM 1.149607-021

STRUCTURE 3

STATE SPACE DIMENSION 2

STRUCTURE OF TRANSFORMATION MATRIX

C(1)#Asg

C (1) 3A]

THIS STRUCTURE IS REDUNDANT
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STRUCTURE &4

STATE SPACE DIMENSION 3

STRUCTURE OF TRANSFORMATION MATRIX

C (1Y) #A#kQ

C(1)seAn]
C(])#A#%D

THIS STRUCTURE IS REDUNDANT
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TIME= 500

STRUCTURE 1

STATF SPACE DIMENSION 2

STRUCTURE OF TRANSFORMATION MATRIX

C(l)#A#Q
C(2)#A##(0

MATRIX A( 1)
-002547216‘\ -0015057777
=0.00000000 -0.p0653066

MATRTX B( 1)
0439345501 051792513
0.39346934 039346934

SUMS OF SQUARES OF REGRESSION COEFF,
SQR (1) 1.792346=-002
SQR(?2) B8.223483=027

TOTAL SuM 1.792346=-0C2
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STRUCTURE 2

STATE SPACE DIMENSION 3

STRUCTHRE OF TRANSFORMATION MATRIX

C(1)#*Ax%Q
C(])#A##]
C(P)y#*Aakt]

MATRIX A( 1)
-0.82966082 0.00000000
-0.00000000 =0.60653066

MATRTX AC( 2)
0.13533528 0.00000007
D.0000000" 0.000C0000

MATRIX B( 1)
0.39346934 0.51791323
039346934 039346934

MATRTX B( 2)
-0.,00000000 -0.000000090

SUMS OF SQUARES OF REGRESSINON COEFF,.
SQR (1) 1.016572-021
SQR(2) 6.662314~022

TOTAL SUM 1.682804=021
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STRUCTURE 3

STATE SPACF DIMENSION 4

STRUCTURE OF TRANSFORMATION MATRIX
C(l)*&iﬂto

C(2)#Ax*(

C (1) #A#*]
C(2)#A#®]

THIS STRUCTURE TS REDUNDANT

STRUCTURE 4

STATE SPACE DIMENSION 4

STRUCTURE OF TRANSFORMATION MATRTX

C (1) Ak
C(1)#A##]
C(1)#A#%D
C(2)#Ak%ED

THTIS STRUCTURE TS REDUNDANT
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WITH ADDITIVE NOISE 0.l

TIME= 500

STRUCTURE 1

STATE SPACE DIMENSION 1

STRUCTURE OF TRANSFORMATION MATRIX

C(l)y#A#*Q

MATRIX A( 1)

MATRIX KB( 0)
0.00090549 =-0.00040993

MATRTX B( 1)
0.39425667 051768451

SUMS OF SQUARES OF REGRESSION COEFF,
SQR((1) = 1.839026=-002

TOTAL SUM 1.839026=002
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STRUCTURE 2

STATE SPACE DIMENSION 1

STRUCTURE OF TRANSFORMATION MATRIX

C(1)sAx#Q

MATRIX A( 1)
=0.40075587

MATRTX B( 1)
0439425667 0.5176R450

SUMS OF SQUARES OF REGRESS]ON COEFF,
SQR(1) = 1.839125=-002

TOTAL SUM 1.839125=-902



A 15.

STRUCTURE 3

STATE SPACE DIMFENSION 2

STRUCTURE OF TRANSFORMATION MATRIX
C(ly#pasxn
C 1y #*Ak]

MATRIX A( 1)

MATRTIX A( 2)
0.15303719

MATRTX B( 1)
0.39390641 051815336

MATRIX B( ?2)
-0.10500181 =0.32667125

SUMS OF SQUARES OF REGRFSSION COEFF,
SQR (1) = 3.095060=-004

TOTAL SUM 3.0950A0=004
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STRUCTHURE 4

STATE SPACE DIMENSTION 3

STRUCTURE OF TRANSFORMATION MATRIX
C (1) #Ax(

C(1l)ystAas]
C (1) #AD

MATRTIX A(C 1)
-0.55366083

MATRTX A( 2)
-0.0610381¢C

MATRIX A( 3)
0.01913163

MATRIX B( 1)
0.3946923¢ 0.5185A049

MATRIX R( 2)
0.01666739 -0.16683951

MATRIX B( 3)
-0.,00970799 -0.07662329

SUMS OF SQUARES OF REGRESSINON COEFF,
SQR(1) = 1.843930=-004

TOTAL SUM 1.843930=004
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TIME= &0¢

STRUCTURE 1

STATE SPACE ODIMENSION 1

STRUCTHRE OF TRANSFORMATION MATRIX

C(1)#Ax#(

MATRIX A( 1)
-0.61106906

MATRTIX B( 0)
0.00207787 0.00166756

MATRIX B( 1)
0,38718823 039355661

SUMS OF SQUARES OF REGRESSTON COEFF,
SQR((1) = 3.7240118-004

TOTAL SUM 3.240118=-004
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STRUCTURE 2

STATE SPACE DIMENSTON |

STRUCTURE OF TRANSFORMATION MATRIX

C (1) *Asg

MATRTX A( 1)

MATRTX B( 1)
0.38718824 039355661

SUMS OF SQUARES OF REGRFSSTON COEFF,
SQR (1) = 3.311099-004

TOTAL SUM 3.311099=-004
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STRUCTURE 3

STATF SPACE DIMENSION 72

STRUCTURE OF TRANSFORMATION MATRIX
C ( 1 ) *L\%*Q
C(1)#as=]

MATRTX A( 1)
=0.27112734

MATRIX A( 2)
-0.20686383

MATRTX B( 1)
0438799558 .39420158

MATRIX B( 2)
0.1301583] 013686085

SUMS OF SQUARES OF REGRESSION COFFF,
SQR(1) = 2.770300-006

TOTAL SuUM 2.770300=004
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STRUCTURE 4

STATE SPACE DIMENSTION 3

STRUCTURE OF TRANSFORMATION MATRIX
C(]1)#as#)

C 1) #As#]
C( 1) #AkEP

MATRTX A( 1)
0.03563174

MATRTX A(C 2)
=0.02227477

MATRIX A( 3)
=0.227481873

MATRIX B( 1)
0439126073 039670985

MATRIX B( 2)
0.24987000 0.25828546

MATRTX B( 3)
0413842297 Ne15307247

SUMS OF SQUARES OF REGRESSION COFFF,
SQR (1Y = le734672=-006

TOTAL SUM 1.734672=-004
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TIME= 500

STRUCTURE 1

STATE SPACE DIMENSION 2

STRUCTURE OF TRANSFORMATION MATRIX

C(1)#A*#0
C(2)#A**(

MATRTX A( 1)
-0,275984993 -0, 13676893
-0.00878597 -Nen0250553

MATRIX S8( 1)
0.39379035 0.51720739
0.38721821 039358961

SUMS OF SQUARES OF REGRESSINON COEFF,
SQR (1) 1.737165-002
SQR(2) 3.266159-004

TOTAL SUM 1.769826=002



STRUCTURE 2

A 22.

STATE SPACE DIMENSION 3

STRUCTURE OF TRANSFORMATION MATRIX

C(1y#A##(
C(])#A##]
C(P)#A#3]

MATRIX A( 1)
001396729

MATRTX A( 2)
0178971172
-0.01699193

MATRTX B( 1)
0639362723
0.38731336

MATRTX R( 2)
-0.121630872
0012296073

SUMS OF SQUARES OF REGRESSION COEFF,
2.511449-004
3.061426=-004

SQR(1) =
SQR(?) =

TOTAL SUM

=-0.05502109
-0.59003946

0.00000000
0.00000000

0e517911R7
0,39363610C

=0.3421R151
0.01839621

5.572877=004
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STRUCTURE 3

STATE SPACE DIMENSION 4

STRUCTURE OF TRANSFORMATION MATRIX

C(1)#A%#0
C(2) #A%#Q
C(1)#n#]
C(2)3As#]

MATRTX A( 1)
=0.85209869 -0.11597014

MATRIX A( 2)
0.,17936203 0.03776766
-0.01931807 -0 22474324

MATRTX B( 1)
0639348238 0.51779779
0388175390 039431500

MATRTX B( 2)
=0.14590587 -0e36711471
0e156749073 016676570

SUMS OF SQUARES OF REGRESSION COEFF,
SQR (1) 2¢4697945=004
SQR(2) 2.583243=-004

i

TOTAL SUM 5.081187-004



STRUCTURE 4

A 24,

STATE SPACE DIMENSION 4

STRUCTURE OF TRANSFORMATION MATRIX

C1)#As#0
C(1)#A##*]
C ( 1 ) *A-:’:*z
C(2)#A##D

MATRTX A(C 1)
-0.50899114
-0.36R66787

MATRTX a( 2)
=0.,09581023
0.27863583

MATRTX A( 3)
0.03501126
=0.02322775

MATRIX B( 1)
0.39475906
038604297

MATRIX B( ?2)
002224830
-0.16087551

MATRTX B( 3)
-0.02022329
000943659

-0.03074503
-eha 7163744

000000000
0.00000000

0.000060000
000000000

0.51861381
0639280776

-0.15591131
‘00202‘&&77?‘\

=N 09678035
0.00522862

SUMS OF SQUARES OF REGRESSION COEFF,

SQR(]1)Y =
SQR(?2) =

TOTAL SUM

1.784939-004
1.545938=-004

3.,330877=-004
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APPENDIX B

This appendix is the reprint of section 3 from the reference [3]:

V. Peterka and K. Smuk:

ON-LINE ESTIMATION OF DYNAMIC MODEL PARAMETERS FROM INPUT
OUTPUT DATA

IV. IFAC Congress, Warsaw, 1969.

—

Algorithm for the successive regression analysis with growing da.ta. and
limited MEmOrye ‘ '

Let us consider the classical case of a least square linear regres=

sion, and the system of equations

N
J=Z1‘ 1:/ yl_/ = xt' + et- (i 31,2,.¢.L) (6)

where L>N, X and y;; 8re values obtained by observation, and e is
en unknown random error.The latter can be interpreted as the deviation from

the conditional expectation, i.e.

ei = E[x/yd ,322 ,tooy':N] - xi (7)

Now the task is to find the estimates % of regression coefficients rJ-

3
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minimising the sum of the squares of errors
| , 2 . i
Q =) e | | (8)
i=l x S
Relations (6) and (8) can be written in mtrix form as follows -

V[L;N] P Nxi] X [Lx 1] = €1 ,1] o (9)

- o!
¢ e[f xL] e.[L x1] (}0)

The subscript in the brackets indicates the dimensions of the respective
matrix, whereas superscript T denotes transposition.

The classical solution of the given problem 1s (see e.ge 13 )
A ryrvy oy,
provided that o
det [VTY}& 0 (12)

 The numerical expression of formula (11) by ordinary matrix calcu=-
lus (1i.e. multiplication and inversicn of mtrices) is cumbersome when the
_number L of observations is large (e.g. hundreds or thousands); it requie
res a large capacity of memory and i{s numerically less stable ”*. Further on
we shall derive an algorithm permitting the solution of the problem with
substantially reduced demands on the memory of the computer used.This algo-
rithm is based on orthogonal transformations of the system of linear equae=
tions 5116  ana 1s numerically very stable. < "

. Let us arrange the system of equations (9) into the form

z[Lx(NH)] F[(NH)xl] =€[Lxl] T (13)
where ]
~ r
z- [v -+« r=[1] . . (ab)
and multiply from the left by square matrix T
By denoting
Tovt] Z0atve ) ZLx(n+1)] @s)
(16)

T[LXL]. le[l_xﬂ =5[Lx 1]

L

T L
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after this trensformation we have (instead of (13))

Zlietnsn)] Flnens 1] = €[] (17)

The sum of squares of the right sides of the transformed system of equati-
cns (17) will then be

g-8Te - T'Te (18)

It is obvious that the sum of squares his not been changed by this transe
formation, f.e. Q = Q, provided that matrix / 1s orthogonal

T"T=1 (19)

Let us further consider & special type of this orthogonal transfor-
mticn vhere mtrix / 1is & so called elementary mtrix of rotation ” . By
representing only the non-zero elements this mmtrix can be written as
follows: |

Filixl) =

|
|
I
|
|
S
|
} (20)

|
|
|
I i p

It will be easy to discover that matrix (20) will be orthogonal, end the
sum of squares Q will not change, provided that condition is fulfilled
that

c? o+ st (1)

It 1s obvious tiat the transformation of the system of equations (13) by

multiplication by matrix (20) applies only to the i-th end j-th equations,
in other words, only the 4-th and Jj-th rows will changse in matrices
Z &nd € .

Far k#1 k#§

o= Zao(0" 2, N 1), B = e

¥
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for k =1 - ) '
22212 = CZ 'f \SEE/ . C?i - C:C%-'* J;éa' (253)
for k =3

i\ VA 674 CC==86 +CEe;

Gy T T TCy, G TG e (23)
Coefficients ¢ and s are bound by the condition of orthogonality (21),
however, one of them can be selected. Let the selection make so0 that it
holds that ‘

~J

Z % Y
i.e. according to (23) we obtain

_SZ + CZ =0 (24)
JH
From (24) and (21) it follows that -
Ziw T G 2o * Zju

In this way we can a.nnul any element in matrix Z without changing the sum
of squares Q for any arbitrarily selected vector !/ .By the successive applie
cation of this transformation in & suitable sequence the original system of

equations (13) can be arranged into the form _ _ _
fr P 2K rr' 1| e¥
1 ‘12 0 CIN } 1 N+1 R# 81*
¥ # *
z7 ... ' r
20" “oN }Z,z,Nn 2 | | %
. I = . *
z g
y . (26)
e
N+1
0
0
S ' g _0 ]
while it still holds that
' L N+ '
Q = Z;ef =0 et? (@)
= (=1

for eny arbitrarily selected x) (3 =1,2,¢0eN)0

6
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After this transformation the determination of estimtes r (J =1,
2,...N) minimising (27) becomes a simple matter. From equation (26) 1t is
obvious that by selection of r (J = 1,2,...N) it 1s 1mpoasible to influ-
‘ence the last non-zero element of the right side °N+1 = zN+IN+1’ hovever,
it is possible to annul all the ot.her elements eJ (J = 1,2,0..1‘!).'13143 esti-
mates of regression coefficients (J =1,2,...H) can thus be found by the
solution of the system of linear equations

/\ B .
Z)G[N‘xN] PNy 1]+Z[le] = _o[Nyl] - (28)
vwhere : ~ _

»
21 N+ 1

% N+t | (29,30)

Z?NXN]

ZN N+1 |
At the same time we obtain the minimum of the sum of squares
Umin = Z 5, 1N+ 1 | | (32)

¢ .
Since matrix Z (29) i1s a triangular one, the solution of the system of
equations (29) is very simple : s

;/'\* _Z,I:I,N»'-?

N — Z*NN

ﬁ-l= ( + P, 7% ) e
ZN1N1 N/N+1 N N-IN

A f
rN*k ZNka(ZNkNi-fT[FNZ.ZNkN)
Let us considexr now the si‘buation where the data from L observa-

"tions have been reduced into a triangular matrix with elements z’fj (1 =1,
2,eeeli4l; §J = 1, 141,...N41), and new data are obtained ~forming & futher
L+l row in the matrix on the left side of equation (26). All elements in
this new row can be annuled by the gradual application of the described
transformation, and this simultaneously means the correction of the upper
triangular matrix. This step 1s more accurately described by the following
procedure in ALGOL-60:

B e = T
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procedure REDUCE (matrix) new data:(row) order:(N);
: Et_xg_n, row; 'ain;zmtrix, Trow; mteger N;
begin real c, s, de; integer 1, k;
for 1:= 1 step 1 until N+l do
if row[1] # O then
p_gg_ig de:= sqrt(row[i] 42 + mtrix[1,1] §2);
ci= matrix[i,i]/de, s3= row[i]/de;
! for ki= 1 step 1 until N+l dc-
| begin de:= ¢ x rowlk] - s x matrix{1,k];
matrix[i,k]:= 8 x row[k] + ¢ x matrix[1,k];
row[k]:= de

end

end
end REDUCE;

The successive application of this procedure permits the processing
of growing data without the necessity to memorize them.All necessary infor-
mation on observed past history accumilates in the triangular matrix.

Let us now consider how this unified algorithm could also be used
for processing the first N+l rows of data in matrix Z (14). It 1is obvious
that the sum of squares (10) will not change, if the matrix in (13) 1s ex-
tended by a zero matrix of dimensions (N+1)x(N+l)

0 e 0|
7 (v 1]
[N+ ()] [(LN+)x1]

This zero matrix (more exactly, its upper triangular portion) can thus be
considered as the initial state of matrix Z7, when 1t does not contain
yet any information on the process. This approach permits the use of the
unified algorithm for all the processed data (i=1,2,...L).

Triangular matrix (29) is non-singular, 1if reduction was applied
to N 1linearly indipendent data rows at least. Beginning from this instant
equations (32) can be used for computing in any arbitrary step estimates
£ (J =1,2,...8) vhich are optimal in the sense of least squares for the

whole past history.



