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Abstract

This thesis is concerned with the propagation of transient electromagnetic waves in
nonlinear media. It consists of a General Introduction and five scientific papers.

The General Introduction gives a broad overview of nonlinear electromagnetic
phenomena. The emphasis is on the representation of the constitutive functional
modeling the material’s response to electromagnetic excitation, and the methods
employed to analyze the combination of the constitutive functional and the Maxwell
equations. Some applications of nonlinear electromagnetics are also discussed.

Paper I treats the inverse scattering problem for an isotropic, homogeneous,
nonlinear slab, subjected to a normally incident field. It is shown that when both
reflected and transmitted fields are measured, we can reconstruct both the nonlinear
permittivity and permeability. When one of these functions is known, reflection data
is sufficient to obtain the other.

Paper II gives a formulation of transient electromagnetic fields, that can be used
to analyze wave propagation in homogeneous media. The source free Maxwell equa-
tions are treated as an eigenvalue problem, from which we deduce the propagating
waves and their wave speeds. The analysis is applied to the case of obliquely incident
waves on a semi-infinite, bianisotropic, nonlinear medium.

Paper III analyzes the propagation of electromagnetic waves in a waveguide filled
with an isotropic, nonlinear material. The equations governing each waveguide mode
are derived, and it is shown that the different modes couple to each other. This
coupling is quantified, and a growth estimates is given for the induced modes.

Paper IV deals with discontinuous electromagnetic waves, shock waves. It is
shown that in order for these waves to be stable, they must satisfy a number of
conditions, similar to Lax’s classical shock conditions. These conditions permit us
to classify electromagnetic shock waves as slow, fast or intermediate shock waves.

Finally, Paper V investigates the uniqueness and continuous dependence on data
for solutions of the quasi-linear Maxwell equations, when we also require them to
satisfy an entropy condition. This condition is related to the second law of thermo-
dynamics, that the energy that is not described by our model must be dissipated.
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Sammanfattning (in Swedish)

Denna avhandling behandlar hur elektromagnetiska v̊agor utbreder sig i olika ma-
terial. Vanligtvis antar man i elektromagnetiska problem att materialen är linjära,
det vill säga om man vet att man f̊ar en viss utsignal fr̊an materialet vid en given
insignal, s̊a förväntar man sig att f̊a tv̊a g̊anger s̊a stor utsignal om man fördubblar
insignalen. I avhandlingen försöker vi klara oss utan denna egenskap, och utveck-
lar metoder som inte behöver linjäritet för att behandla v̊agutbredning. Detta kan
behövas för att beskriva fenomen där man använder mycket stora energier, och vi
ger ett antal olika exempel p̊a s̊adana situationer i den allmänna inledningen, som
föreg̊ar de fem vetenskapliga artiklar som utgör huvuddelen av avhandlingen.

Olika problem som behandlas i detta verk är hur man kan tolka mätningar
utförda p̊a olinjära material, och hur v̊agutbredningen i materialen kan beskri-
vas. Vi undersöker dels material som har samma egenskaper i alla riktningar, s̊a
kallade isotropa material, som material som har särskilda egenskaper i n̊agon rikt-
ning, s̊a kallade anisotropa material. Det visar sig att man vanligtvis har tv̊a olika
v̊agutbredningshastigheter i ett olinjärt material. Dessa hastigheter kallas karak-
teristiska hastigheter, som dessutom visar sig bero p̊a hur starka v̊agor vi försöker
skicka genom materialet.

Ett typiskt fenomen som inträffar med v̊agutbredning i olinjära material är s̊a
kallade chockv̊agor. Detta är v̊agor som kan börja som lugna och mjuka v̊agor, men
efter en viss ändlig tids utbredning börjar de kantra och blir skarpare och skarpare.
Ett typiskt exempel p̊a detta är vattenv̊agor som kommer in mot en grund strand; d̊a
avst̊andet mellan vattenytan och botten minskar, kommer toppen av v̊agen att färdas
snabbare än resten, varp̊a v̊agen till slut bryts och vi f̊ar de typiska bränningar som
kan iakttas vid en strand. Det visar sig att det finns tre sorters elektromagnetiska
chockv̊agor, som skiljer sig åt beroende p̊a hur snabbt de utbreder sig i förh̊allande
till de tv̊a karakteristiska hastigheterna som vi nämnde i förra stycket: de snabba,
l̊angsamma eller mellanliggande chockv̊agorna.
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Michael Andersson, Peter Waller, Sören Poulsen, and Thomas Craven-Bartle.

Towards the end of my fourth year, I received a travel grant from the Royal
Physiographical Society in Lund (Kungliga fysiografiska sällskapet i Lund), which
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1 Introduction 3

Linear Nonlinear

Figure 1: To the discussion on nonlinearity in the supermarket.

1 Introduction

How can we explain the term nonlinear? As the name suggests, it is a non-property,
a nonlinear material is characterized by not having a property called “linear”. This
is a rather odd way of classifying things; instead of saying what they are, we try
to say what they are not. However, the concept of linearity is deeply rooted in our
everyday experiences. When we go to the supermarket and weigh the fruit we want
to buy, we expect two oranges to weigh twice as much as one orange, and we also
pay twice as much for two oranges as for one. This is the essence of linearity; when
we get one output for a certain input, we expect to get twice as much when we
double the input.

Strangely enough, the concept of linearity is upset in the same supermarket,
when we come to the candy department. This is the residence of the signs saying
“Buy three, pay for two!” Thus, we pay say 5 crowns for one chocolate bar, but when
we buy three, we only pay 10 crowns, not 15! This is an example of non-linearity.

Another situation where we see that a linear model cannot apply, is the speed
of cars on a highway. When there are few cars on the road, each driver is relatively
free to choose his/her own speed. Though, when the number of cars increases, there
is less space to maneuver in. This results in an overall reduction of speed, which
ultimately may turn into a total standstill, as all commuters probably are aware of.
This is an example of saturation, which is a typically nonlinear phenomenon.

The latter example of nonlinearity, i.e., cars influencing each others speed on the
highway, actually has many similarities with electromagnetic waves propagating in
nonlinear materials. The nonlinearity of the cars is that the speed depends on how
many cars there are. In the nonlinear materials we study in this thesis, the speed of
the electromagnetic wave depends on the electromagnetic energy in the media, i.e.,
the strengths of the electromagnetic fields. This causes waves with large amplitudes
to travel slower than waves with small amplitudes, just as cars on an empty highway
can travel much faster than the cars on a jammed one.

Mathematically, the statement that a function f(x) is linear is equivalent to
requiring the relation

f(αx1 + βx2) = αf(x1) + βf(x2) (1.1)

to hold for all scalars α and β, and all x1 and x2. This property is very useful when
analyzing a given problem. If we can write the input x as a sum of easily analyzed



4 General Introduction

Description Symbol SI unit
Electric field strength E V/m
Magnetic field strength H A/m

Electric flux density D As/m2

Magnetic flux density B Vs/m2

Electric current density J A/m2

Polarization density P As/m2

Magnetization density M A/m

Poynting vector S W/m2

Table 1: The electromagnetic fields and sources. The fields are related by the
definitions D = ε0E+P , B = µ0(H+M) and S = E×H . We could also include
the scalar charge density ρ in this table, but it is not used in this thesis.

inputs x1 and x2, i.e., x = αx1 + βx2, we obtain the desired output f(x) as the
sum of the outputs for each of the easy signals, αf(x1) + βf(x2). Of course, this
reasoning is effective only if it really is easy to solve the problem for the inputs x1
and x2. The theory for solving linear equations is extensively developed, and there
often exist standard methods for solving the problem.

When the linearity property is no longer available, many of the methods used to
solve linear problems break down. It often turns out that we have to take a few steps
back, and refrain from using the most advanced algorithms that were successful in
the linear case. This has the interesting consequence that we often have to return
to the original, physical problem, and ask ourselves which aspects that we are really
looking for. By taking a more abstract view on the problem, we also obtain a better
understanding of the linear problem.

1.1 Notation

The notation used in this General Introduction is mostly standard. In the enclosed
papers, we sometimes use a different notation, which is explained in each paper.

Vector quantities, such as the electric field strength E, are written in bold italics,
and its absolute value is |E| =

√

E2
1 + E2

2 + E2
3 , where E1, E2 and E3 are the

cartesian components of the three-dimensional vector E. We denote a point in space
by x = (x1, x2, x3), and the unit vector pointing in the direction of the coordinate xi
is denoted by x̂i, where i = 1, 2, 3. The electromagnetic fields are given in Table 1,
and some common constants are given in Table 2.

In this General Introduction, the emphasis is on the constitutive functional, i.e.,
the relation between the field strengths E and H , and the flux densities D and B.
This relation describes the material’s response to electromagnetic excitation, and
may depend on the history of the fields. We mostly study the relation between the
polarization and the electric field strength, which we write P = PE. The symbol P
denotes an operator, which for every field E defined for all space and time, gives a
polarization P for all space and time. Thus, when using this symbol, we implicitly
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Description Symbol Value in SI units
Speed of light in vacuum c0 299 792 458m/s
Permittivity of vacuum ε0 8.854 · 10−12 As/Vm
Permeability of vacuum µ0 12.57 · 10−7Vs/Am
Wave impedance in vacuum η0 376.7Ω

Table 2: The electromagnetic constants. The value for c0 is exact, the exact value
for µ0 is 4π ·10−7Vs/Am, and ε0 is derived from the exact relation c20 = 1/ε0µ0. The
wave impedance in vacuum is defined as η0 =

√

µ0/ε0.

allow the polarization to depend on the electric field strength in a non-local way. In
Section 3 we give some explicit examples of representations of this functional.

On occasions, we use the tensor notation χijEj, where one or more indices are
repeated, in this case j. It is then assumed that χijEj =

∑3
j=1 χijEj, i.e., we sum

over all repeated indices.
Differentiation with respect to a given variable, say t, is written ∂t, indicating

∂tf(x, t) = ∂f(x, t)/∂t = limh→0(f(x, t + h) − f(x, t))/h when the limit is defined.
The spatial derivatives are often denoted by the nabla operator, ∇ =

∑3
i=1 x̂i∂xi

,
which has the character of a vector.

We conclude this section by explicitly writing out the Maxwell equations,
{

∇×E + ∂tB = 0

∇×H − ∂tD = J ,
(1.2)

which are the equations modeling the dynamics of the electromagnetic fields. Maxwell
wrote his equations in a more complicated manner [47, 48], and the vector formu-
lation above was introduced by Heaviside [27]. Extensive reference is made to this
system of equations in the following.

2 Nonlinear materials and phenomena

Nonlinear materials and phenomena are present in many places in our everyday
world. In this section we present three examples of a more technical nature, i.e.,
ferromagnetic materials, electromechanical effects, and semiconducting materials.

2.1 Ferromagnetics

One of the first documented observations of a magnetic phenomenon is in Plato’s
dialogue Ion, where Socrates mentions Euripides’ discovery of the magnet, a stone
which attracts iron by an invisible force [52]. Today, we have learnt to classify
magnetic materials as diamagnetic, paramagnetic, ferromagnetic, antiferromagnetic,
or ferrimagnetic material [14, 39]. The most familiar among these are probably the
ferromagnetic materials, which are named after their most known member; the
latin word for iron is ferrum. Ferromagnetic effects are very strong, and a striking
demonstration of this is that already the ancient greeks were able to observe them.
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Application of 

magnetic field

Figure 2: The alignment of domains when applying an external magnetic field.
The configuration to the left shows the disordered domains in the absence of a mag-
netic field. When we apply an external magnetic field, the domains align themselves
along the field (or rather: domains which are already aligned to the field grow on
the expense of other domains). This alignment remains even after removing the
external magnetic field.

Most people have had some experience with ferromagnets; since the materials
can be permanently magnetized by placing them in a constant magnetic field and
then removing the field, they are often used as permanent magnets, for instance
in loudspeakers, motors and magnetic resonance imaging (MRI) [34]. That there
is a remanent magnetization when the magnetic field is removed, is explained by
the domain theory, proposed by Weiss in 1907 [68]. The idea is that there exist
relatively large regions in the material, called domains, where the magnetic dipole
moments of the individual atoms are aligned. This results in a strong local magnetic
field, which maintains the alignment of the different domains even after the external
magnetic field is removed, see Figure 2.

The remanent magnetization is an example of hysteresis, i.e., that the magneti-
zation depends on the history of the excitation of the material. The mathematical
description of hysteresis is a complex matter. For a more detailed presentation of
hysteresis we refer to the literature [9, 31, 34, 64, 67].

2.2 Electromechanical effects

Electromagnetic fields are defined through observations on how charged particles
interact with other particles, and this interaction is represented by various kinds of
forces. There are many other forces than electromagnetic ones, which sometimes
must be taken into account in order to present an accurate model. In this section,
we present two effects that can be modeled by the combination of electromagnetic
theory and continuum mechanics: magnetohydrodynamics and piezoelectricity. A
thorough review of the equations obtained when combining the Maxwell equations
with the equations of continuum mechanics is found in [15, 16], and [45] also has
related material.

Magnetohydrodynamics is the study of a conductive fluid in a magnetic field.
Since the charged particles in the fluid experience a force from the magnetic field,
this often drastically influences the behavior of the fluid. In order to describe this
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Voltmeter

Figure 3: A piezoelectric crystal. When the crystal is compressed, a voltage
is induced. The converse is also true: when applying a voltage to the crystal, a
deformation is induced.

behavior, we have to combine the Maxwell equations describing the magnetic field
with the Navier-Stokes equations describing the fluid movement. This leads to
a complicated nonlinear system of equations, with applications ranging from en-
trapment of very hot plasmas in fusion experiments, over the pumping of liquid
metals, to the dynamics of galaxies. We refer the interested reader to the review
articles [3, 22] and references therein, and some textbooks treating magnetohydro-
dynamics are [2, 16, 33, 45].

Piezoelectricity, from the greek word piezein for press, is the effect where a
mechanical pressure on a crystal induces a voltage across the crystal. The effect is
reciprocal in the sense that we can also induce mechanical stresses and strains in
the crystal by applying a voltage to it, see Figure 3. Thus, a piezoelectric crystal
can be used to convert electric to mechanic energy, and vice versa. Piezoelectricity
is usually treated with linear theories, but for large strains and voltages, nonlinear
corrections are necessary. Among the applications of piezoelectric materials we
mention transducers (generators of ultrasonic vibrations) and the crystal pickup in
a phonograph. Textbook treatments of piezoelectricity are found in [14, 15, 45].

2.3 Semiconductors

One of the major reasons for the explosive progress in electronics is the under-
standing of semiconducting materials that has evolved over the last century. A
characteristic property of a semiconducting material is that its intrinsic, relatively
poor conductivity, can be dramatically changed by introducing impurities in the
material, a process known as doping [39, p. 206]. By combining semiconducting
crystals with different kinds of doping, we can build important circuit elements such
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as the diode and the transistor. A characteristic property of these elements is that
their behavior is altered by a bias. For instance, the diode usually lets through
current of a given sign, say positive, but blocks negative currents. This means that
by adding a large bias current I to a small signal current i < |I| through the diode,
the diode only lets the signal through if I > 0, since I + i < 0 if I < 0. This is
obviously not a linear behavior.

3 Mathematical models of nonlinear materials

The reaction of materials when subjected to electromagnetic excitation can be mod-
eled by a constitutive functional. The reaction is described by the polarization P
and the magnetization M , and the constitutive functional is the mapping from the
excitation to these fields. There is some freedom of choice as to which combination
of electric and magnetic fields should be considered as excitation. It is generally
agreed that the electric field strength E is the primary electric field instead of D,
but in the literature both B and H are used as the primary magnetic field. The
former is preferable when dealing with relativistic applications [32, 40], whereas the
latter admits a formalism more suited for the computational aspects we are treating
in this thesis. Thus, we choose to study the mapping

(E,H)→ (P ,M ), (3.1)

and treat the magnetic field strength H as the primary magnetic field. The fields
D and B are then found from the definitions D = ε0E +P and B = µ0(H +M ).

The constitutive functional can be represented in a number of ways. One com-
mon approach is to find a large class of functionals, which can be used to represent
almost anything, and then impose a number of axioms concerning the model be-
havior. These axioms are often based on phenomenological observations of physical
phenomena, and lead to restrictions on the parameters defining the mathematical
model. Some of the most common are

Causality: The material should not generate a response until it is excited.

Continuity: A small change in the excitation should only result in a small change
in the response.

Time invariance: There is no origin of time. The material does not age, and
experiments are repeatable.

Locality: The response does not depend appreciably on excitation that is distant
in space and/or time.

Passivity: The material may only dissipate electromagnetic energy, not generate
it, i.e., the second law of thermodynamics must be satisfied.

Several other axioms are often used, see for instance [15, 24, 37]. Among these we
mention pointwise spatial dependence, linearity and objectivity.
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In practice, other requirements also come into play. If we are aiming at using
the constitutive functional to make a simulation, we must be able to calculate it
efficiently, and if we want to solve an inverse problem, we need a model with as few
parameters as possible. A model with few parameters is also helpful to obtain a
physical intuition for the problem.

For the models presented in the following subsections, most of the above prop-
erties are obvious. However, the passivity requires a somewhat deeper analysis, a
brief outline of which is presented here. We must consider the full dynamics of the
problem, i.e., the constitutive relation in conjunction with the Maxwell equations.
From the Maxwell equations we obtain the Poynting theorem, see for instance [32, p.
259], [40, p. 13] or [58, p. 132],

∇ · (E ×H) +E · ∂tD +H · ∂tB +E · J = 0. (3.2)

This equation is the balance law for electromagnetic energy. The requirement that
a constitutive model is (pointwise) passive, is satisfied if the relation

∫ t

−∞
(E · ∂t′D +H · ∂t′B) dt′ ≥ 0, (3.3)

holds for every t and every point in space [20, 24, 37]. This relation is difficult to
analyze for a general representation of the constitutive relation, and we refer to [42]
for a discussion of passivity in nonlinear media.

When discussing the various representations of the constitutive functional below,
we usually consider the mapping of the electric field strength E to the electric
polarization density P , i.e., P = PE, where P denotes the constitutive functional.
The representations are easily adapted to other, more complicated, situations.

3.1 General representation of a linear functional

From the Schwartz kernel theorem [29, p. 128], we know that a general, linear,
continuous operator P has the representation

[PE]i(x, t) =

∫∫

χij(x, t;x
′, t′)Ej(x

′, t′) d3x′ dt′, (3.4)

where the integration is performed over R3 ×R, and summation over j is assumed.
It is common to deal only with causal relations, invariant under translations in time
and pointwise defined. Under these assumptions, the general constitutive relation
above reduces to a convolution in time,

[PE]i(x, t) =

∫ t

−∞
χij(x, t− t′)Ej(x, t

′) dt′. (3.5)

The advantage with this representation is that it is general, i.e., it can represent
any linear, time-invariant constitutive functional P . The disadvantage is that it
is often numerically inefficient: in order to calculate the response at a given point
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in time and space, we need to compute an integral over all preceding times. It is
also difficult to give an exact criterion on χij that guarantees passivity, unless we
transform the problem to the frequency domain [24, 41].

Of course, the nonlinear constitutive relations in the following subsections can
also be applied to linear materials, which demonstrates that there are alternatives
to the convolution representation of the functional.

3.2 General representation of a weakly nonlinear functional

When a functional is weakly nonlinear, it may be expanded in a Volterra series,
which is a generalization of the usual series expansion applied to functions [66]. It
is written

PE = P (1) + P (2) + P (3) + · · · , (3.6)

where the explicit representation of the i:th component of the n:th term in this series
in a homogeneous material is

P
(n)
i (x, t) =

∫

· · ·
∫

χ
(n)
i,p1...pn

(t− t1, . . . , t− tn)Ep1(x, t1) · · ·Epn
(x, tn) dt1 · · · dtn,

(3.7)
and summation over the indices p1, . . . , pn is assumed. This is a reasonable repre-
sentation of a weakly nonlinear constitutive functional, and is for example used in
the analysis of nonlinear microwave circuits [46], and nonlinear optics [16, p. 631].
See also the discussion on the nonlinear transfer functional in Section 4.5.

It is interesting to study the frequency domain representation of the Volterra
series, and to this end we introduce the four-dimensional Fourier transform F4 of a
scalar function f as















f̂(k, ω) = [F4f ](k, ω) =

∫∫

f(x, t)e−i(k·x−ωt) d3x dt

f(x, t) = [F−1
4 f̂ ](x, t) =

1

(2π)4

∫∫

f̂(k, ω)ei(k·x−ωt) d3k dω
(3.8)

where the transformed function is indicated by a hat. Applying this transform to
the n:th order term above, we obtain (after some calculations as in [57])

P
(n)
i (k, ω) =

1

(2π)4n−4

∫

· · ·
∫ ∫

· · ·
∫

χ̂
(n)
i,p1...pn

(ω1, . . . , ωn)Êp1(k1, ω1) · · · Êpn
(kn, ωn)δ(k −

n
∑

i=1

ki)δ(ω −
n
∑

i=1

ωi)

d3k1 · · · d3kn dω1 · · · dωn, (3.9)

where δ denotes the Dirac distribution. From this relation, we identify the important
phase matching criterion in the generation of harmonics, i.e., in order to generate a
field with frequency ω and wave vector k from n fields with frequencies ωi and wave
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vectors ki, where i = 1, . . . , n, we must require

ω =
n
∑

i=1

ωi, and k =
n
∑

i=1

ki. (3.10)

From (3.9) it is seen that there is generally little to gain by Fourier transforming the
equations, as we can for linear equations. The Fourier transform of the convolutions
reduces to a product only for the linear term, i.e., [F4P

(1)](k, ω) = χ̂(1)(ω)Ê(k, ω),
whereas the higher order terms remain rather complicated after transformation. A
further complication is that if each pair of frequency and wave vector should be
associated to a propagating wave, they must satisfy the dispersion relation relevant
for the linearized medium, i.e., frequency is a function of wave vector (or vice versa),
ωi = Ω(ki). However, when dealing with a fixed frequency it is still useful to do the
analysis in the frequency domain, especially if the generation of harmonics is limited.
This is the common approach in nonlinear optics [5, 7, 55], where the frequency is
fixed by the frequency of a strong laser beam and its harmonics, and the wave vectors
are given by the directions of the beams.

Since the n:th order susceptibility χ(n)(t1, . . . , tn) has n continuous arguments,
the Volterra series representation requires huge amounts of data. Sometimes this can
be reduced by expressing the functions χ(i), i ≥ 2, in the function χ(1) associated
with the linear response. For weak nonlinearities, it is often found that χ(2) is
proportional to the cube of χ(1), written as

χ(2)(t1, t2) = a

∫

χ(1)(t′)χ(1)(t1 − t′)χ(1)(t2 − t′) dt′, (3.11)

where a is a proportionality constant. This is called Miller’s rule, and is usually
stated in the frequency domain as

χ̂(2)(ω1, ω2) = aχ̂(1)(ω1 + ω2)χ̂
(1)(ω1)χ̂

(1)(ω2), (3.12)

see for instance [7, p. 27], [16, p. 655] and [53, p. 786]. It was discovered empirically
by observing that the quotient between the above quantities is almost constant for
materials not having a microscopic center of symmetry [49]. This relation may be of
interest when solving an inverse scattering problem, where it would be practically
impossible to resolve all of χ(n) since it depends on n continuous variables. Using
Miller’s rule, an inverse scattering algorithm as in [51] can be designed to search for
the region where a 6= 0, i.e., the region of a scatterer where the nonlinear interaction
takes place.

3.3 Variables of state

A less memory-intense representation of the constitutive functional than the Volterra
series in the previous subsection can be achieved by introducing variables of state,
which in their turn are given by a functional operating on the excitation. One
common model is the Lorentz model, where PE = P and P satisfies the ordinary
differential equation

∂2tP + ν∂tP + ω2
0(P − β|P |2P ) = ω2

pε0E, (3.13)
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where ν is the collision frequency, ω0 is the resonance frequency and ωp is the plasma
frequency of the material. This model is used as a simple model for the displacement
of the electron cloud surrounding the atom, when subjected to an external electric
field E, see [7, p. 29] and [16, p. 652]. The term multiplied by ω2

0 is proportional to
the restoring force acting on the electron, and the cubic term represents a nonlinear
correction to this restoring force for large displacements (large P ). The parameter β
is related to a typical polarization at which the nonlinear effects become noticeable.

Another common model is the Debye model, which describes how molecules
with permanent dipole moments align themselves to an external electric field on an
average. It is written

∂tP +
1

τ
P = F (E,P ), (3.14)

where the parameter τ is the relaxation time, and F is a function of E and P ,
representing the aligning force. For small |P |, this function is proportional to E.

A third important example is the Landau-Lifshitz model for the magnetization
in ferromagnetic material, see [44, pp. 284–313], [43] and [16, p. 465], where the
constitutive functional giving the magnetization isMH =M , and M satisfies the
differential equation

∂tM = γµ0M ×Heff −
λ

M2
M × (M ×Heff), (3.15)

which describes the conservation of angular momentum. The parameter γ is the
gyromagnetic ratio, which is negative, and λ is a small parameter introducing a
phenomenological damping. The effective magnetic field strength H eff is given by
the gradient of the Landau-Lifshitz free energy with respect to M , and we re-
fer to [44, pp. 284–313] and [16, p. 465] for further details. The field H eff can
often be considered as equal to the external field strength H , but when consider-
ing anisotropy, domain walls and other ferromagnetic phenomena, additional terms
must be included. A recent review of problems and possibilities for this and related
models is given in [67].

The advantage of using a variables of state representation of nonlinear, dispersive
constitutive functionals, is that we often obtain a direct coupling to the physical
phenomena we are modeling. This representation is also numerically efficient for
transient wave propagation, when combined with a finite difference algorithm for
the Maxwell equations.

3.4 Instantaneous response

In the representations presented above, we have taken memory effects into account,
i.e., the polarization depends on earlier time values of the electric field. When we
neglect all memory effects, the constitutive functional reduces to a function [15, p.
631],

[PE](x, t) = P (E(x, t)), (3.16)

which expresses that the polarization at a given point in time and space depends
only on the electric field at the same point in space and time. An explicit example
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is the classical Kerr model [53, p. 751],

P (E) = χ1E + χ3|E|2E, (3.17)

and the saturated Kerr model [42, 63]

P (E) = χ1E + (χS − χ1)
|E|2

E2
S + |E|2

E. (3.18)

The parameter ES is a typical field strength at which the material response begins to
saturate, i.e., for |E| ¿ ES we have P ≈ χ1E+χ3|E|2E, where χ3 = (χS−χ1)E

−2
S ,

but for |E| À ES we have P ≈ χSE. This shows that this model is linear for large
field strengths.

The instantaneous response is a reasonable model when the variation of the
applied field strength E is much slower than the materials resonance frequencies.
Throughout the papers in this thesis, we use a model with a nonlinear, instantaneous
response.

4 Analysis methods

So far, we have only given representations of the constitutive functional, without
considering its combination with the equations governing the dynamics of the elec-
tromagnetic fields, the Maxwell equations. In this section we present some methods
used in studying transient nonlinear electromagnetics, preferably wave propagation.

4.1 Linearization

Since there exist powerful methods of analysis for linear problems, it is desirable to
use them whenever possible. This is indeed possible even when studying nonlinear
models, for instance in a classical small signal analysis, where the nonlinearity man-
ifests in the establishment of an operating point, which is only slightly perturbed
by the signal. Probably the most familiar example is in circuit theory, treating
amplifiers built on transistors and other nonlinear elements. For the transistor, we
may assume a relatively large bias current, which sets the operating mode of the
transistor. We then add a small signal current, which can be treated with linear
methods since its amplitude is not large enough to disturb the operating point, see
Figure 4.

The linearization approach is feasible if we can divide the excitation in two parts,
where the dominating one can be treated in some known manner (for instance when
it is static). It is then possible to create a linear model for the small signal, where
the parameters depend on the dominating excitation.

4.2 Numerical methods

Even if an analytical solution may be desirable in order to obtain physical intuition
regarding a given problem, it is necessary to use some sort of numerical method to
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β

IC + iC

rπ

iB iC

IB + iB
iB

Figure 4: A small signal scheme modeling a transistor. The total base current is
IB + iB, where the bias current IB is much larger than the signal current iB. The
total collector current IC + iC is similarly decomposed. The amplification factor β
and the resistance rπ in the scheme for the signal currents iB and iC depend on IB.

calculate the solution. In this section, we briefly describe two important techniques,
the finite difference method, and the finite element method. The key word here is
“finite”, which reflects the fact that it is often easier to use a local description of
the phenomena, consistent with our wish that the constitutive relation should only
depend on its neighborhood.

The numerical methods described here are essentially linear, and the nonlinearity
can be handled by linearizing the equations locally, although we give no details of
this.

4.2.1 Finite differences

The finite difference methods is based upon the idea of approximating the deriva-
tives in a given differential equation by finite differences, i.e., ∂tE ≈ (E(t +∆t) −
E(t))/∆t, with ∆t small and fixed. This is a natural and successful approach,
and is one of the dominating numerical methods for calculating transient fields. In
computational electromagnetics, it is known as the FDTD method, where FDTD
spells out as Finite Differences in the Time Domain. For constitutive relations with
no couplings between electric and magnetic fields, the Yee staggered grid algorithm,
first presented in [70], is the dominant one, due to its slightly lower memory demand
than standard discretizations and the relatively easy implementation of boundary
conditions.

The finite difference method often uses an equidistant grid, which permits easy
implementation of the code. However, sometimes it is desirable to use an automatic
mesh generator, that can adapt the grid to a complicated geometry. Whether defined
on an equidistant or an irregular grid, it is often the termination of the grid that
is the most problematic one, since we cannot define all spatial derivatives on the
boundary. Therefore, the dominating part of the actual code in a finite difference
algorithm is often concerned with how to terminate the grid in order not to generate
any nonphysical solutions. Some general references on finite difference methods
are [21, 23, 59, 61].
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4.2.2 Finite elements

The method of finite elements is originally based on a variational approach to the
problem, i.e., it is based on minimizing a given functional [12]. One means of
formulating the method is by projection: the sought function is expanded in a set of
basis functions, and the equations which it satisfies are then projected on a set of test
functions. This results in a system of algebraic equations, which can be solved for
the coefficients of the basis functions, i.e., the function itself. When using basis and
test functions with compact support, we obtain the finite element method. There
are several books treating the finite element method in electromagnetics [35, 56, 65].

4.3 Asymptotic methods

Sometimes we are only interested in the dominating contribution to a given problem.
If we can identify very small and/or very large parameters, it is often possible to
do an asymptotic analysis, where we essentially make a power series expansion in
the large/small parameters. Denoting the small parameter by δ, this means we are
looking for a solution of the form E = E0+ δE1+ δ2E2+ · · · . Sometimes it is easy
to find the first few terms in this series, which then should approximate the solution
well if δ is small.

4.3.1 Born approximation for weak nonlinearities

The Born approximation is a general method to treat problems with small perturba-
tions. The idea is to treat the perturbations as sources to the unperturbed problem,
which in the nonlinear case is a kind of linearization. The method is best under-
stood by an example. The propagation of electromagnetic waves in a non-magnetic
material, where B = µ0H , is modeled by the equation

∇2E − c−2
0 ∂2tE = µ0∂

2
tPE, (4.1)

where ∇2 denotes the Laplace operator
∑3

i=1 ∂
2
xi
. If we separate the functional P in

a linear and a nonlinear part, i.e., P = PL + PNL, this can be written

∇2E − c−2
0 ∂2t

(

1 + ε−1
0 PL

)

E = µ0∂
2
tPNLE. (4.2)

We denote the left hand side with LE and the right hand side with SE, where L
is a linear differential operator. Assume there exist suitable methods to solve the
equation LE = F , where F is a given function of space and time, and that the
nonlinear operator S = µ0∂

2
tPNL can be considered small. It is then reasonable to

consider the sequence {En}∞n=0, where E0 solves the equation LE0 = 0 with the
relevant initial/boundary values corresponding to the excitation (incident field), and
the remaining elements in the sequence are found from the iterative scheme

LEn = SEn−1, n ≥ 1, (4.3)

where zero initial/boundary values are assumed, see Figure 5. This is the Born
iterative procedure [53, p. 742], which is likely to give a good approximation for
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L−1 EnSEn−1

Figure 5: The Born iteration. The starting solution E0 is found from solving the
linear equation LE0 = 0 with the relevant initial/boundary values.

small nonlinearities or, equivalently, small field strengths. The convergence of this
procedure is not treated in this thesis. Its usefulness depends very much on the
algorithm used to solve the linear equation LEn = SEn−1, and in practice the
iteration stops after one or two iterations.

4.3.2 Multiple scale analysis

A prominent feature of nonlinear differential equations is that there often occur in-
teresting phenomena at different scales. Small nonlinear effects may be neglected
at small propagation lengths or simulation times, but when we try to propagate a
wave a long distance, the nonlinear effects accumulate and ultimately affects the
appearence of the wave. A means of analyzing this difference is the method of mul-
tiple scales [4, 38]. In this method, we introduce an explicit microscopic scale and an
explicit macroscopic scale, and consider the fields to depend separately on these vari-
ables. It is customary to identify a small parameter, which is the quotient between
the microscopic scale and the macroscopic scale, and make a series expansion of the
fields in this parameter. An example of a situation where a multiple scale analysis
gives good results is found in Figure 6; the wavelength of the signal represents the
microscopic scale, and the slowly increasing phase shift represents the macroscopic
scale.

4.3.3 Vanishing viscosity regularization

Some nonlinear equations allow discontinuous solutions, which is problematic in
numerical implementations. One way to deal with this problem, is the vanishing
viscosity regularization. Ever since the exact solution of the viscous Burger’s equa-
tion was discovered independently by Hopf [28] and Cole [11], this has been used
as a means of obtaining microscopically smooth solutions, which appears as discon-
tinuous solutions on a macroscopic scale. It is a singular perturbation technique,
which basically consists in adding a small multiple of a derivative of higher order
than the equation considered [38]. We typically write

{

∇×E + ∂tB = η0δ∇2H

−∇×H + ∂tD + J = η−1
0 δ∇2E

(4.4)

where the scalar parameter δ is small, has units of length and represents the micro-
scopic scale. The idea is that the right hand side comes into play only when there
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Figure 6: An example of cumulative effects of small nonlinearities. A sinusoidal
signal is propagated through a waveguide filled with a weakly nonlinear material,
see Figure 7 for the geometry of the problem. The plots show the nonlinear solution
u and the linearized solution u0 as functions of x, which is the coordinate along the
waveguide. For small x the solutions correspond well, but for large x they differ
by a phase shift. The dominant effect of the small nonlinearity in this case is a
small phase shift, which becomes important after long propagation lengths. It can
be shown that the phase shift grows approximately linearly with x.

are large spatial gradients of the fields, and when this happens, we should have a
parabolic equation (such as the heat equation, ut = uxx), which in the nonlinear case
almost always has smooth solutions [62, pp. 327–332]. Thus, it seems likely that the
vanishing viscosity helps smoothing out shocks, which is also the case in practice.
It is very difficult to verify the method mathematically for systems of equations,
but there is strong empirical evidence for its validity since it is the basis of some
successful finite difference schemes, such as the Lax-Friedrichs scheme in one spatial
dimension [21, p. 181].

4.4 Canonical problems

Much experience and physical intuition is obtained by simple examples. If we want
to study the effects of nonlinearities, it is often advantageous to study homoge-
neous materials, and isolate the contributions which originate directly from the
nonlinearity. In this subsection, we present three canonical equations, which have
proved to give valuable insights to the wave propagation. The equations should
be supplemented with initial/boundary values to make sense, but they are left out
for simplicity in this presentation. In this subsection, we have adopted a notation
which assumes that all variables are dimensionless, in order to make the mathemat-
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ical structure clear. Whitham’s book [69] is a wonderful source for further studies
of similar examples.

4.4.1 Quasi-linear conservation laws

Equations describing physical phenomena are often in the form of conservation or
balance laws. A typical conservation law is the balance of momentum, where the
time derivative of the momentum is balanced by the divergence of the stress tensor.
The mathematical construction relevant to this kind of models is a quasi-linear
system of balance laws in n spatial variables, which we write

∂tu+
n
∑

i=1

∂xi
f i(x, t,u) = g(x, t,u). (4.5)

When g = 0 it is customary to use the term conservation law instead of balance
law. Quasi-linear means that the equation is linear in its highest order derivatives;
in this case, we deal only with first-order derivatives, which means the functions
f and g may only depend on u, not the derivatives of u. Note that the Maxwell
equations can be put in this form,

∂t

(

D

B

)

+
3
∑

i=1

∂xi

(−x̂i ×H
x̂i ×E

)

=

(−J
0

)

, (4.6)

although the situation is complicated by the form of the constitutive relations. One
interesting point on quasi-linear conservation laws is that they exhibit shock solu-
tions, which is further explored in papers IV and V of this thesis. A review of the
present mathematical understanding of systems of conservation laws is given in [54].

4.4.2 Nonlinear Klein-Gordon equation

When the wave propagation is confined geometrically to a cylindrical structure such
as in a waveguide, the typical equation governing the propagation is the Klein-
Gordon equation. The geometry is shown in Figure 7, and the wave propagation
through the waveguide is described by the scalar equation

−∂2xu+ ∂2t u+ u+ u3 = 0. (4.7)

This is one of the simplest wave equations which exhibits both nonlinearity and
dispersion. A discussion of the classical mathematical questions of existence and
uniqueness is given in [30, pp. 145–185], and a multiple scale analysis is performed
in [38, pp. 522–531]. See also Figure 6 for a numerical demonstration of the nonlin-
earity in this equation for small u.

The propagation of electromagnetic waves in a waveguide is treated in Paper III,
where a slightly different version of the nonlinear Klein-Gordon equation is derived.
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Figure 7: The geometry of a waveguide. The idea is to confine the propagation
of electromagnetic waves to the inside of a tube with metallic walls.

4.4.3 Nonlinear Schrödinger equation

The nonlinear Schrödinger equation is the archetype model for nonlinear waves with
a carrier frequency, and is typically used to describe the propagation of solitons. It
arises in a number of physical situations, and is typically written [60]

i∂τψ +∇2ψ + g|ψ|2ψ = 0, (4.8)

where ψ is the slowly varying envelope, and τ is the time relative to the wave front.
The parameter g may be positive or negative, corresponding to an attracting or
a repulsive nonlinearity, respectively. The nonlinear Schrödinger equation can be
viewed as a dispersion relation, which must be satisfied in order to prevent the
solutions on the carrier frequency from blowing up. It is suitable for materials with
weak nonlinearities, and nonresonant carrier frequencies. A recent review of the
nonlinear Schrödinger equation is given in [60], and the first experimental evidence
of solitons was given in [50].

4.5 The nonlinear transfer functional

We define the transfer functional H as the operator which gives the output signal
Eout when operating on the input signal E in, i.e., Eout = HEin. In this section
we assume the fields E in and Eout depend only on time, i.e., we have fixed the
measurement locations. If the nonlinearity is weak, this functional can be expanded
in a Volterra series as in Section 3.2, which makes it possible to generalize the
concept of a transfer function from the linear analysis [46]. However, it is necessary
to define a separate transfer function for each order of interaction, such that we
can expand the output signal as Eout = E

(1)
out + E

(2)
out + E

(3)
out + · · · , where the i:th
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Figure 8: The Volterra series expansion of the nonlinear transfer functional as a
“black box”. The output signal Eout is related to the input signal E in through the
nonlinear transfer functional H as Eout = HEin = E

(1)
out +E

(2)
out + · · · . The transfer

functional may for instance represent the propagation of a wave through a medium
or the reflection operator from a scattering experiment.

component of the n:th term is

E
(n)
out,i(t) =

∫

· · ·
∫

H
(n)
i,p1...pn

(t−t1, . . . , t−tn)Ein,p1(t1) · · ·Ein,pn
(tn) dt1 · · · dtn, (4.9)

and summation is assumed over the indices p1, . . . , pn. This can be seen as a de-
composition of the transfer functional H, see Figure 8. The functions H (n) contain
information of the experiment we are conducting, and may typically be used to
obtain material parameters. Since the relation between Eout and Ein is linear in
the functions H (n), the determination of these functions from knowledge of E in and
Eout is a linear deconvolution problem. It is possible to identify the Fourier trans-
formed functions Ĥ(n)(ω1, · · · , ωn) from harmonic inputs E in [46], and it turns out
that usually all higher order functions can be expressed in the linear function Ĥ(1),
consistent with Miller’s rule presented in Section 3.2. The deconvolution is usually
very computationally intensive.

5 Applications

There are many applications in which nonlinear electromagnetic effects are impor-
tant. Among these we mention basic semiconductor devices such as diodes and
transistors [46], magnetic recording, the Kerr and Pockels cells used in nonlinear
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a b c d e f

Figure 9: The phase conjugate mirror. An incident wave (a) encounters an obsta-
cle (c), whereupon the wavefront is distorted (d). Two strong, counterpropagating
beams, create a standing wave pattern in the nonlinear material (f), which is expe-
rienced as a grating by the incident weak beam. The resulting reflected wave (e)
has exactly the same wave front as the incident wave, but is propagating in the
oppposite direction. After passing through the distorting medium, the wave front is
restored.

optics [7, 53], and electromechanical devices such as transducers and piezoelectric
crystals. Another interesting application is a system for tracking down skiers buried
in avalanches; by using a passive nonlinear reflector fastened on the skier, the fre-
quency of a scanning signal is doubled, which allows for easy detection of the skier
(if the rescue crew is quick, the skier may even be alive!). In this section, we give
a brief presentation of three other applications: the phase conjugate mirror, shock
generation, and solitons.

5.1 Phase conjugate mirror

An area of recent interest in acoustics is time-reversal mirrors, see [17–19] and [36,
pp. 133–171]. In nonlinear optics, the corresponding effect is known as phase
conjugate mirrors. The effect was first achieved experimentally in 1977 [6], and
is treated in most textbooks on nonlinear optics, see for instance [7, pp. 241–257]
and [53, pp. 758–761]. The idea is to use two strong, counterpropagating laser
beams, which create a standing wave pattern. In a nonlinear material, where the
refractive index depends on the electric field intensity, this induces a grating with a
period of roughly half a wavelength. This grating causes an incident, weak beam to
be reflected as usual, only that it is traveling “backwards in time”, see Figure 9.

This effect can be used to cancel dispersion effects in optical fibers, by introducing
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Nonlinear medium

Figure 10: The profile of a pulse changes as it propagates through a nonlinear
medium. This can be used to create strong pulses with short rise-time.

a phase conjugator half-way in the fiber; the phase conjugated (or equivalently: the
time reversed) wave will then be perfectly restored at the other end if the optical fiber
has the same properties on both sides of the conjugator. However, the situation is
complicated by losses in the fiber, which often makes it more important to regenerate
the signal altogether at given points along the fiber.

5.2 Pulse sharpening and shock generation

It is difficult to generate fast rise-time pulses with high voltage. For instance, it
is possible to use spark gaps to generate strong pulses with fast rise-time, but the
repetition rate is often relatively limited and the electrodes tend to erode quickly [8].
One way around this problem, is to use a pulse with a relatively slow rise-time, and
send it through a nonlinear medium. Since different amplitudes travel with different
speeds, the pulse steepens as it propagates through the medium, until it reaches
a rise-time roughly given by the lowest resonance frequency of the material, see
Figure 10.

The steepening of a pulse as it propagates through a nonlinear medium is math-
ematically described as the formation of a shock wave, i.e., a discontinuous wave.
Recently, a few papers on experiments concerning electromagnetic shock waves have
been published [8, 10, 13], and in Paper IV we discuss the nature of an electromag-
netic shock wave in detail.

5.3 Solitons

The electromagnetic shock, an application of which was described in the previ-
ous subsection, is a manifestation of the steepening effect of a nonlinear medium.
Another effect which is important for the propagation of electromagnetic waves is
dispersion, i.e., the property that different frequencies travel with different speeds.
This often results in a broadening of the pulse, and it is clear that there must exist
an interesting interplay between the nonlinear steepening effects and the dispersive
broadening. For instance, when the two effects exactly balance each other, the shape
of the pulse should be unchanged as it propagates. When this occurs, the pulse is
called a soliton.

The fact that solitons travel without changing their shape, makes them attractive
to use in communications. Indeed, much of the research on solitons is focused on
the possibilities of using them in communications with optical fibers [1, 25, 26, 50].
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Abstract

This paper addresses the inverse problem of reconstructing a medium’s
instantaneous, nonlinear response to electromagnetic excitation. Using reflec-
tion and transmission data for an almost arbitrary incident field on a homo-
geneous slab, we are able to obtain the nonlinear constitutive relations for
both electric and magnetic fields, with virtually no assumptions made on the
specific form of the relations. It is shown that for a nonmagnetic material,
reflection data suffices to obtain the electrical nonlinear response. We also
show that the algorithms are well posed. Numerical examples illustrate the
analysis presented in this paper.

1 Introduction

There has been an increased interest in nonlinear electromagnetic materials recently,
much due to the progresses in nonlinear optics. This is especially so for the nonlinear
effects in optical fibers, i.e., the experimental verification of soliton solutions [13, 14,
21], and the use of different field-dependent scattering mechanisms for amplification
of a propagating signal [1]. Some chaotic effects have also been studied [10].

The research in this field is largely conducted in the frequency domain, where
the nonlinearities manifest in the generation of multiple frequencies. In this paper,
we study nonlinear effects in the time domain, where the nonlinearities rather cause
the steepening of a propagating pulse. This steepening may ultimately turn into
a shock solution, where the pulse becomes discontinuous after a finite propagation
time, although we will endeavour to avoid shock solutions in this paper.

We study a material which has an instantaneous, nonlinear response, i.e., we
do not consider memory effects of any kind. We further assume the material to
be passive, isotropic and homogeneous, and solve the problem of reconstructing
the constitutive relations. Then we are able to reconstruct the nonlinear relation
between E and D as well as between H and B with reflection and transmission
data from a finite slab for an (almost) arbitrary input signal. Since no further
assumptions have to be made regarding the specific form of the constitutive relations,
the reconstruction is model independent.

Previous work in the field include the propagation of pulses in nonlinear slabs,
where the paper by Kazakia and Venkataraman deserves special attention [18]. They
have obtained an analytical solution for the propagation of a step function through
a slab with some special constitutive functions. Reference [24] presents a method
to solve the reflection and refraction problem at oblique incidence on a nonlinear
half space. The wave propagation in more complicated nonlinear materials has
appeared, i.e., mixed nonlinearities [19], bi-anisotropic and bi-isotropic media [5],
and nonlinearities in chiral media [2, 23].

Though much work has been done on the direct problem of wave propagation in
nonlinear media, our solution of the inverse problem of reconstructing the material
seems to be novel. It extends and improves the results in [20], where the inverse
problem is solved for a nonmagnetic material, based on measurements inside the
material.
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In Section 2 we formulate the stratified Maxwell equations, introduce the consti-
tutive relations for the studied materials and try to interprete the dynamics in terms
known from the linear case. The main theory is contained in Section 3, where we
formulate the necessary boundary conditions and state the solution to our inverse
problems. Some numerical results are contained in Section 4.

2 Prerequisites

2.1 The Maxwell equations in one spatial dimension

In a source-free environment the Maxwell equations are

∇×E(r, t) + ∂tB(r, t) = 0

∇×H(r, t)− ∂tD(r, t) = 0.

Since we wish to study a homogeneous medium, it is sufficient to observe variations
for only one direction. We thus assume that the fields depend on only one spatial
variable, say z, in a Cartesian coordinate system (x, y, z). Then the curl operator
can be written ∇ × =ẑ × I∂z = J∂z, where J denotes a rotation π/2 around the
z-axis, and the Maxwell equations become

J · ∂zE(z, t) + ∂tB(z, t) = 0

J · ∂zH(z, t)− ∂tD(z, t) = 0.

We now assume the fields to be linearly polarized and the material to be isotropic,
i.e., the D and B fields are parallel to the E and H fields, respectively, which vary
only in amplitude. This means we can write the Maxwell equations in a scalar form,

∂zE(z, t) + ∂tB(z, t) = 0

∂zH(z, t) + ∂tD(z, t) = 0,

where E and D denote an arbitrary transversal component, say x, of J ·E and J ·D,
respectively. H and B denote the corresponding component of H and B, respec-
tively. The geometry of the scattering situation studied in this paper is depicted in
Figure 1.

2.2 Constitutive relations, passive materials

We consider the field strengths E and H to be the primary fields, and the flux
densities D and B as effects of these. If we assume that the material responds
instantaneous to excitation, we are studying the following situation:

D(z, t) = ε0Fe(E(z, t))

B(z, t) =
1

c0
Fm(η0H(z, t)),
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Figure 1: The scattering geometry studied in this paper.

where the constants c0 = 1/
√
ε0µ0 (speed of light in vacuum), ε0 (permittivity of vac-

uum), and η0 =
√

µ0/ε0 (wave impedance of vacuum) are explicit for convenience.
As usual, µ0 denotes the permeability of vacuum. The functions Fe(E) and Fm(η0H)
are continuously differentiable scalar functions of one variable, and generalize the
linear optical responses, F lin

e (E) = εrE and F lin
m (η0H) = µrη0H. This kind of non-

linear constitutive response with similar dynamics is investigated in [20], [3, Chap.
2], and [11, Chap. 6]. In nonlinear optics similar relations are often used, although
frequently in the context of the frequency domain [1, 4].

Some thermodynamic restrictions can be put on the constitutive relations [6], but
these deal mainly with the symmetry of cross terms, i.e., ∂D

∂H
and ∂B

∂E
, which we do not

take into account here. Reference [20] discusses the restrictions on the functions Fe

and Fm in order to model passive media; though they call it dissipative.1 The result
is that for a passive, nonmagnetic material, F ′

e(x) ≥ a > 0 is a sufficient condition.
In this paper we generalize this to materials which also have F ′

m(x) ≥ b > 0, and
call these positive passive.

When demanding isotropy, we have the implication that a change of sign in the
electric and magnetic fields leads to a change of sign in the electric and magnetic
fluxes, i.e., (E,H) → (−E,−H) ⇒ (D,B) → (−D,−B). This is also true for
crystals with an inversion symmetry, see [4, Chap. 1] for further discussions of
material properties. This property implies that the constitutive functions should be
odd functions of their argument, which will be important in the following.

Eliminating theD andB fields using the constitutive relations, the scalar Maxwell
equations become

∂zE +
1

c0
F ′
m∂tη0H = 0

∂zη0H +
1

c0
F ′
e∂tE = 0,

(2.1)

where we have dropped the arguments of the functions F ′
m, F

′
e for simplicity.

1With a passive material we mean that the electromagnetic energy produced in a region is
nonpositive for all times, i.e., the material is not active.
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2.3 The dynamics as a symmetric system, physical inter-
pretation

Though it is possible to directly introduce the well known Riemann invariants
1
2
(
∫ E

0

√

F ′
e(x) dx ±

∫ η0H

0

√

F ′
m(x) dx) as in [3, Sec. 2.4] or [11, Sec. 6.13], we wish

to follow a different approach, where we try to interprete our variables and make
comparisons to the linear case. We start by formulating the dynamics as

(

F ′
e∂tE

F ′
m∂tη0H

)

+ c0

(

0 1
1 0

)

∂z

(

E
η0H

)

= 0,

which after division by the square root of the derivative of Fe and Fm leads to

( √

F ′
e∂tE

√

F ′
m∂tη0H

)

+ c0





0 1√
F ′eF

′
m

1√
F ′eF

′
m

0





( √

F ′
e∂zE

√

F ′
m∂zη0H

)

= 0.

We now introduce the functions,

ge(E) =

∫ E

0

√

F ′
e(x) dx

gm(η0H) =

∫ η0H

0

√

F ′
m(x) dx.

These functions can be thought of as the generalizations of the linear expressions√
εrE and

√
µrη0H. The product of the derivative of the functions, g′eg

′
m, which

appears in the wave speed below, can be viewed as the generalization of
√
εrµr, the

relative refractive index. Furthermore, for an isotropic, positive passive material,
the g-functions are odd and monotone, since the integrands are always even and
positive. With these new functions we can write the dynamics as

∂t

(

ge(E)
gm(η0H)

)

+
c0

g′e(E)g′m(η0H)

(

0 1
1 0

)

∂z

(

ge(E)
gm(η0H)

)

= 0,

which in the new variables u1 = ge(E) and u2 = gm(η0H) is the symmetric system

∂t

(

u1
u2

)

+ c(u1, u2)

(

0 1
1 0

)

∂z

(

u1
u2

)

= 0, (2.2)

where the wave speed c is

c(u1, u2) =
c0

g′e(g
−1
e (u1))g′m(g

−1
m (u2))

= c0

(

d

du1
g−1
e (u1)

)(

d

du2
g−1
m (u2)

)

. (2.3)

This result generalizes the nonmagnetic case given in [20].

3 Methods to solve the inverse problem

In this section we demonstrate the methods used to solve the propagation problem
and to resolve the boundary conditions. We also state our inverse problems of
reconstructing the materials constitutive relations.
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3.1 Wave splitting

The symmetric system (2.2) can be written as a system of one-dimensional wave
equations with the wave splitting [8, 9, 20],

(

u1
u2

)

=

(

1 1
1 −1

)(

u+

u−

)

⇔
(

u+

u−

)

=
1

2

(

1 1
1 −1

)(

u1
u2

)

.

This change of variables is exactly the introduction of the Riemann invariants of
the one-dimensional Maxwell equations, which was mentioned in Section 2.3. The
dynamics (2.2) now becomes

∂t

(

u+

u−

)

+ c(u+ + u−, u+ − u−)
(

1 0
0 −1

)

∂z

(

u+

u−

)

= 0, (3.1)

with c defined by (2.3). This is a system of one-dimensional wave equations, which
couple only through the wave speed c.

Analytical solutions for the wave propagation have been found in [18, 22] for
some special constitutive relations. These solutions could be used to benchmark an
algorithm for the wave propagation, though this is not performed in this work.

3.2 Propagation along characteristics

We can solve the propagation problem of the system (3.1) via the method of charac-
teristics. A characteristic curve for this kind of differential equation is one on which
the dependent variables are constant. We study the development of the variables
u±(z, t) on the paths (z, t) = (ζ±(τ), τ), where ζ±(τ) = ζ0 ±

∫ τ

0
c(u′) dτ ′. The no-

tation c(u′) is short hand for c(u(ζ±(τ ′), τ ′)), and u = (u+, u−). The variation of
u±(z, t) along these curves are

d

dτ
u±(ζ±(τ), τ) =

∂u±

∂t
+
dζ±(τ)

dτ

∂u±

∂z
=
∂u±

∂t
± c(u)∂u

±

∂z
= 0,

since u± satisfy the differential equations ut ± cuz = 0. Thus, we conclude that u+

is constant along the characteristic path ζ(τ) = ζ0+
∫ τ

0
c(u′) dτ ′, and u− is constant

along the characteristic path ζ(τ) = ζ0 −
∫ τ

0
c(u′) dτ ′.

This means we can find the values of the fields at a point (z, t) if we can trace the
characteristics to some boundary where they are known. If only one of the waves is
present, it is particularly simple; then the characteristics are straight lines, with a
slope given by the boundary values [20].

We see that since the slope of the characteristics is governed by the boundary
values, they may cross each other if we do not choose these boundary values carefully.
When two characteristics cross each other, we have two possible solutions to the wave
equation, and a shock occurs.

Theorem 3.1 in [20] concerns the extent of the shock-free region for one-way
wave propagation in a semi-infinite media with given boundary conditions. This
can be used to estimate how fast the incident field may vary in order not to create
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a shock in the slab. The suitable boundary conditions are u+(z, 0) = u−(z, 0) = 0,
u+(0, t) = h(t) and u−(0, t) = 0, for which the theorem states that there can be no

shock in the region 0 ≤ z ≤ d if sup
{

− d
dt

1
c(u+(0,t),u−(0,t))

}

= sup
{

− d
dt

1
c(h(t),0)

}

≤ 1
d
.

Since c0
c(u+,0)

= g′e(g
−1
e (u+))g′m(g

−1
m (u+)), the condition will be

sup
t

{

−(g
′′
e

g′e
g′m + g′e

g′′m
g′m

)h′
}

≤ c0
d
. (3.2)

We see, that we can always avoid shocks by using a signal with sufficiently small
variation, i.e., the derivative of h(t) should be small compared to 1/( g

′′
e

g′e
g′m + g′e

g′′m
g′m

).

Also, if this quantity and h′ have the same sign, there is no risk of a shock. With
positive second derivatives of ge,m, this means that shocks can only occur when
h′ < 0, i.e., on the decreasing part of a signal.

3.3 Boundary conditions

Since we want to study propagation in a nonlinear slab, we must solve the problem of
satisfying the boundary conditions. In this paper, we are studying a slab imbedded
in vacuum. The generalization to more general linear materials follows from the
method used.

The solution is based on the wave splitting, which allows us to determine in
which direction the energy of the fields are travelling. In the surrounding vacuum,
the splitting corresponds to the appropriate identification of incident, reflected and
transmitted field. The boundary conditions we have to satisfy are the usual, i.e.,
continuity of the tangential electric and magnetic field strengths. Since we are
assuming normal incidence, this means continuity of the total fields E and H. Inside
the slab, the electric and magnetic fields can be expressed as

Eslab = g−1
e (u+ + u−)

η0Hslab = g−1
m (u+ − u−).

In vacuum, the magnetic field strength is related to the electric field strength via
η0H

± = ±E±, where the ± indicate right(left) propagating fields, i.e., waves trav-
elling towards higher(lower) z-values.

It is possible to define differential reflection and transmission coefficients relating
infinitesimal changes in the incident field to infinitesimal changes in the reflected and
transmitted field, respectively, i.e., dEr = r·dEi and dEt = t·dEi. These differential
coefficients look exactly like the linear expressions, where the square roots of the
permittivity and permeability

√
ε and

√
µ are replaced by

√

F ′
e(E) and

√

F ′
m(η0H),

respectively. This method is used in [18] to solve the boundary problem, but in
this paper we will prefer to simply state the boundary conditions in explicit form
and solve these numerically for the desired fields when implementing the forward
problem.
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3.3.1 The left boundary

In vacuum, z < 0, we have an incident field from the left E i, and a reflected field
into vacuum, Er. In the slab two fields are present: a right propagating field u+, and
a left propagating field u−. The continuity of electric and magnetic fields implies
that

{

Ei + Er = g−1
e (u+ + u−)

Ei − Er = g−1
m (u+ − u−)

⇔
{

ge(E
i + Er) = u+ + u−

gm(E
i − Er) = u+ − u−.

(3.3)

This gives two, generally nonlinear, equations from which the desired fields u+ and
Er can be determined:

{

2Ei = g−1
e (u+ + u−) + g−1

m (u+ − u−)
2u− = ge(E

i + Er)− gm(Ei − Er).

The incident field is given, but also the left propagating field u− can be thought of
as known. This is because this field can be traced back in time via a characteristic
curve into the slab, and is therefore, from a computational point of view, known.
Since the g-functions are monotone for a positive passive material, their inverses
are too. This means that the right hand sides of the equations above, treated as
functions of u+ and Er, are invertible, and we can find all desired fields numerically.

3.3.2 The right boundary

At the right boundary, z = d, we have just a transmitted field in the vacuum, but
we still have both right and left propagating fields in the slab. Continuity of the
fields now gives

{

Et = g−1
e (u+ + u−)

Et = g−1
m (u+ − u−) ⇔

{

ge(E
t) = u+ + u−

gm(E
t) = u+ − u−. (3.4)

From this we get the following equations to determine u− and Et:

{

2u+ = ge(E
t) + gm(E

t)

2u− = ge(E
t)− gm(Et).

We can consider the field u+ as known, since it can be traced back in time into the
slab. The same conclusions as above about the solvability of these equations apply
here.

3.4 Inverse problems

The objective of this paper is to find methods from which the material properties
can be obtained from measurements outside the slab, i.e., the incident, reflected,
and transmitted fields.
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3.4.1 Reflection

If we can ignore the left-propagating field at the left boundary, i.e., u− = 0, the
boundary conditions (3.3) become

Ei + Er = g−1
e (u+)

Ei − Er = g−1
m (u+).

A situation where this approximation applies is a half space (see [20]) or a sufficiently
thick slab, where the reflection from the right boundary, z = d, does not appear
until after some time. This delay is at least one completed roundtrip for a wave
propagating with maximal speed, 2d/(supu c(u)). For the models considered in this
paper, the speed is maximal for infinitesimally small fields, i.e., when the right
propagating field at the left boundary, u+(0, t), is equal to zero until t = 0, there
will be no left propagating field at the left boundary, u−(0, t), separated from zero
until t > 2d/c(0).

In the case of the approximation u− = 0, the relation between the measurable
quantities Ei + Er and Ei − Er becomes

ge(E
i + Er) = gm(E

i − Er),

and the composite function g−1
e (gm(·)) (or its inverse g−1

m (ge(·))) can be determined.
The fields E = ±g−1

e (gm(η0H)) are the electric fields which combined with η0H
gives a right(left) propagating wave in the slab. Differentiating this relation, we get

dE = ± g′m(η0H)
g′e(E)

η0dH, which lets us define a differential wave impedance relative to

vacuum as g′m(η0H)
g′e(E)

.
In nonlinear optics, the materials can often be considered as nonmagnetic. This

implies gm(x) = x, and we can easily determine the electric response function ge,
from which we get Fe or the wave speed c. We see that the range of the input signal
Ei puts bounds on the domain of the reconstructed function ge. Thus, we can not
gain information on how the material responds to fields greater than those we probe
with, unless we extrapolate our results.

3.4.2 Transmission

If we neglect the fields that are reflected at the right boundary, z = d, we are consid-
ering a problem where the wave speed depends on only one variable, and the u+-fields
propagate independently of the u−-fields. This means that the characteristic curves
for the right-going fields are straight lines, which can be used to our advantage.
Since the left propagating wave induced by an internal reflection is in general rather
small compared with the direct wave, this is an acceptable approximation.

We assume that for z = 0+, the right propagating field u+(0, t) considered as
a function of time has a pulse shape, i.e., it is continuous with finite support, and
has only one extremum, e.g., a maximum. This implies that there are two times
for which u+ assumes the same value, i.e., u+(0, t1) = u+(0, t1 + τ) for some time
separation τ . Since the wave speed depends only on u+ when we neglect the left
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Figure 2: Method for extracting the travel time for different field amplitudes.
Since equal amplitudes travel with equal speed, they arrive with the same time
separation and the travel time is t′1 − t1.

propagating field u−, these two points of equal amplitude will travel with the same
speed, and thus appear with the same time separation on the right side of the
slab, i.e., u+(d, t′1) = u+(d, t′1 + τ) for some time t′1. This can be used to find the
propagation time corresponding to the amplitude in question, t′1 − t1, and thereby
the wave speed c(u+) = d/(t′1 − t1).

One complication is that we can only measure the fields outside the slab, but
using the boundary conditions (3.3) and (3.4),

{

2u+ = ge(E
i + Er) + gm(E

i − Er)

2u+ = ge(E
t) + gm(E

t),

we find that there is a one-to-one correspondence between the incident field strength
and the u+-level, and between the transmitted field strength and the u+-level. This
means that if Ei(t1) = Ei(t1+τ), then there is a time t′1 for which E

t(t′1) = Et(t′1+τ),
and we can find our transmission time t′1 − t1.

In other words, we take a segment of a certain length τ of the time axis, and
fit this into the curves Ei(t) and Et(t). The time difference between the fits is the
travel time for this particular amplitude, see Figure 2. This does not work with
shock solutions, but the only consequence is that we cannot get any information on
the travel time for the amplitudes over which the shock occurs.

We have the following relationships determined by reflection data and transmis-
sion time:

Ei + Er = g−1
e (gm(E

i − Er))

c(Ei + Er, Ei − Er) =
c0

g′e(E
i + Er)g′m(E

i − Er)
.

If we denote the measurable quantities E i + Er and Ei − Er by e and h, we have
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the experimentally determined functions

e(h) = g−1
e (gm(h))

c(e, h) =
c0

g′e(e)g
′
m(h)

.
(3.5)

The derivative of e with respect to h is de
dh

= g′m(h)
g′e(e)

, corresponding to the differential

wave impedance. We can thus find g′e(e)
2 = F ′

e(e) and g
′
m(h)

2 = F ′
m(h) by combining

these relations:

F ′
e(e) =

c0
dh
de

c(e, h(e))
⇒ Fe(e) =

∫ h(e)

0

c0dh
′

c(e(h′), h′)

F ′
m(h) =

c0
de
dh

c(e(h), h)
⇒ Fm(h) =

∫ e(h)

0

c0de
′

c(e′, h(e′))
.

(3.6)

From these expressions we conclude that there is a one-to-one correspondence be-
tween Fe,m and c(e, h) once the relation between e and h is given. Since this is
given by ge(e) − gm(h) = 0, and ge,m are monotone functions, this is a one-to-one
relation. With shockfree propagation of a pulseshaped signal, the transmitted signal
should also be pulseshaped, see e.g., the example in Figure 2. Then the wavespeed
c(e, h(e)) = c(e(h), h) must be unique, and we conclude that the reconstructed func-
tions are unique, always exist, and depend continuously on the data. Thus the
algorithm is well posed.

3.5 Implementation of the forward problem

In order to obtain the reflected and transmitted fields from the slab, an algorithm
using finite differences has been implemented in Matlab. The algorithm is based
on interpolating the wave speed and fields between two neighboring points in the
grid with a linear function, and tracing the characteristics back one time step. The
tracing is made by searching for the point in the grid for which the interpolated
wave speed points to the new grid point. The method is described in [12, Chap. 8].

This method does not handle discontinuous solutions very well, but rather smears
the discontinuity over 10-20 grid points. Since we never use shock solutions in our
reconstruction algorithm, this is not a problem. When tested, the travel time for
shocks seems to be correct, though.

For numerical reasons, it is advantageous to scale the problem. We have access
to two different scalings; one scales the spacetime and one scales the fields. The
scaling is most obvious when looking at the original Maxwell equations,

∂z

(

E
η0H

)

+
1

c0

(

0 F ′
m(η0H)

F ′
e(E) 0

)

∂t

(

E
η0H

)

= 0.

When multiplying this equation by a factor a, and introducing the new fields Ẽ = aE
and H̃ = aη0H, we get

∂z

(

Ẽ

H̃

)

+
1

c0

(

0 F ′
m(H̃/a)

F ′
e(Ẽ/a) 0

)

∂t

(

Ẽ

H̃

)

= 0.
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There is no problem incorporating the factor 1
a
in the constitutive relations, e.g.,

when F ′
e(E) = ε1 + ε3E

2, we have F ′
e(Ẽ/a) = ε1 +

ε3
a2 Ẽ

2 = ε1 + ε̃3Ẽ
2 = F̃e

′
(Ẽ). We

see that the fields can be quite arbitrarily scaled, as long as we scale the constitutive
relations as well. In our simulations, we have chosen to use a factor a such that the
nonlinear terms in the constitutive relations are of the same order as the linear ones,
when using a numerical field strength of a few units.

We also see that we still have the possibility to scale the spacetime, since this
only effects the differential operators. Note that this is true only for homogeneous
media; for inhomogenous media we would have to scale the constitutive relations
once again. In our simulations, we have chosen to scale the spacetime so that the
vacuum wave speed c0 is 1, and the slab has width 1. The slab is discretized with
100 grid points in space, and the step size in time is chosen the same as that in
space. This guarantees that when tracing the characteristics back in time, we stay
within the nearest grid points in space.

Since we can scale the field strength and spacetime individually, and must avoid
shock solutions but still have substantial nonlinear effects, our results will apply to
situations with either strong fields and short propagation distances, or weak fields
and long propagation distances. Of course, the concepts strong–weak and short–
long, must be related to the exact physical media being modeled.

4 Numerical results

4.1 Reflection

When implementing this reconstruction, it is difficult not committing the inverse
crime, i.e., using the same algorithm for both simulating data and reconstructing
the constitutive functions, leading to a perfect match [7, p. 121].

It is therefore meaningless to present any results for reconstruction with pure
reflection data, unless some measured data is available, which is not the case at the
present time. The reconstruction is anyway used in the transmission reconstruction,
where we get good results.

4.2 Transmission

Simulations have been run, giving reflection and transmission data for a given input
signal and the constitutive relations

Fe(E) = 1.5E + 2
E3

1 + E2

Fm(H) = H + 2
H3

1 +H2
,

where we have used the scaling in Section 3.5 to define dimensionless variables and
functions. These constitutive relations describe a Kerr material with saturation,
i.e., it behaves as a material with a nonlinear behavior for weak fields, and as a
linear material for strong fields.
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. Observe that it is slightly positive for large field
strengths, about 0.022.

We have previously stated that the condition (3.2) must be satisfied to avoid

shock solutions. Figure 3 depicts the function which, when multiplied with ∂Ei

∂t
,

should be less than c0/d = 1. Since the function is mostly negative, we see that

the greatest danger is when ∂Ei

∂t
< 0, i.e., on the trailing edge of the pulse. This

can be avoided by using an incident field wich decays sufficiently slow. When the
derivative is positive, there is an upper limit on ∂Ei

∂t
set by the reciprocal of the

greatest positive value of the function in Figure 3, i.e., 1/0.022 = 46. Thus, we can
use an incident field which rises very rapidly, but not instantly. We want it to rise
fast enough so that its peak value is obtained before the reflected field at the back
has returned; this gives us an exact map of the relation ge(E) = gm(H), since then
ge(E)− gm(H) = 2u− = 0. The incident field used is depicted in Figure 4.

It should be stressed that it is not necessary to make the measurement of reflected
and transmitted fields simultaneously. This is because the reflected field is only used
to establish the relation between the electric and the magnetic fields necessary to
create only a forward propagating field u+, i.e., E = g−1

e (gm(H)).
Figures 4 and 5 show the calculated fields and the reconstructed constitutive

functions. The fields are calculated using the full forward problem, i.e., the left
propagating field u− in the slab is present. The mean relative error in the recon-
struction was 2.3% for Fe and 2.5% for Fm.

The algorithm is based on neglecting the field reflected from the back edge.
To investigate the validity of this approximation the following test has been made.
The left propagating field was neglected in the solution of the forward problem,
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Figure 4: Incident, reflected and transmitted fields.

i.e., we used straight characteristics. Then we used the full forward problem, and
compared the travel times obtained in the two cases. The mean relative difference
between them was 0.19%, which shows that the approximation is good, at least for
the materials studied in this paper.

In Figure 6 we have depicted the travel time as a function of the incident field
strength for the two methods, as well as the difference between them. It is clearly
seen that the greatest difference in travel time is for small field strengths. Remember
that the expression for the slowness is c0

c(u+,u−)
= g′e(u

+ + u−)g′m(u
+ − u−), which

means that the error in travel time when neglecting u− should be small when u+ is
relatively large.

5 Discussion and conclusions

It has been shown that it is possible to reconstruct the constitutive functions of
a nonlinear slab, with the help of reflection and transmission data, not necessarily
measured simultaneously. The algorithm is based on the fact that equal amplitudes
travel with almost equal and constant speeds. When one of the constitutive functions
is known, for instance for a nonmagnetic material, the other function is obtained
with reflection data only. The algorithm seems to be robust and simple, and may be
useful for measuring instantaneous nonlinear effects, with virtually no assumptions
made on the specific form of the constitutive function, i.e., the inverse algorithm is
model independent.

Since the algorithm is based on shock free propagation, it is necessary to con-
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Figure 5: Reconstructed functions, from the fields in Figure 4. The circles are the
reconstructed values, and the solid lines are the true functions.

struct a suitable input signal. When measuring reflected and transmitted field simul-
taneously, the input signal should rise fast enough so that its maximum is reached
before the first reflection from the back boundary turns up, and then decrease slow
enough not to create a shock in the transmitted field. This may be a difficult field
to create.

The neglection of u− in the propagation corresponds to the first term in a series
expansion of the slowness at u− = 0, i.e., c0

c(u+,u−)
= c0

c(u+,0)
+O(u−). The term O(u−)

is proportional not only to u− but also to the derivative of the slowness, which
is proportional to the second derivative of the constitutive relations. A material
is defined as weakly nonlinear if this second derivative is small compared to the
reciprocal of the field strength. We then expect our method to work well for such
materials, since the neglected term is a product of two small quantities. The series
approach can in principle be used to establish a definite bound on the error in travel
time, deduced directly from the constitutive relations. Though, this is a formidable
problem, which is under current research. A rigorous analysis of such an expansion
of the slowness may also be used to further develop the reconstruction algorithm
presented in this paper, and will probably clarify which properties of the constitutive
relations are important for the wave propagation.

An interesting fact is that it is conceivable to have a material with nonlinear
behavior in both electric and magnetic fields. If the media changes from being
dominantly electric to being dominantly magnetic, or vice versa, we may get a very
small reflection for a very strong incident wave. This might have some implications
on the theory of nonreflecting materials, or provide a new kind of electric shutter.
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Abstract

We analyze the propagation of electromagnetic waves in nonlinear, bian-
isotropic, nondispersive, homogeneous media using simple waves and six-
vector formalism. The Maxwell equations are formulated as an eigenvalue
problem, whose solutions are equivalent to the characteristic propagation di-
rections. We solve the oblique incidence of plane waves in vacuum on a half
space of nonlinear material, and present a method to calculate the reflected
and transmitted fields for all angles of incidence and all polarizations of the in-
cident field. Numerical examples for reflection and transmission illustrate the
field dependence of the Brewster angle, and the birefringence of an anisotropic
material.

1 Introduction

Wave propagation in nonlinear media is a wide and quickly expanding area. In
particular, the nonlinear optics field has been very prosperous [1, 3]. One of the
most exciting areas is that of solitons, i.e., pulses which have a very specific shape,
in which the nonlinear steepening effects are precisely balanced by the dispersive
broadening, thereby producing a pulse that is temporally and spatially unchanged
during propagation. This delicate balance can only be understood by studying both
contributing effects. In this paper, we are devoted to the nonlinear effects which
occur in materials with no memory, i.e., no dispersion.

Whereas the linear dispersion has been thoroughly investigated, e.g., [4, 14, 20],
the nonlinear properties may not have received enough attention. Some early works
are summarized in [2], and especially the papers on wave propagation in nonlinear
dielectrics [5, 6, 17, 21, 32] are relevant. A prominent feature of nonlinear wave prop-
agation, where the nonlinearity acts as an amplitude-dependent wave speed, is the
formation of shock waves. These are discontinuous waves, which must be interpreted
in a generalized way as weak solutions, see e.g., [31, pp. 369–373], and the theory of
these has been thoroughly studied [15, 18, 28, 37]. It is often argued that the shock
waves are eliminated by the linear dispersion, see e.g., [1, pp. 117–120], but since
we are ignoring dispersion in this study, we expect our model to be accurate only
when we are not in the vicinity of any shock formations.

An often encountered problem when studying nonlinear materials is that of find-
ing suitable constitutive relations. In the treatise of Eringen and Maugin [9, 10], the
constitutive relations for virtually every reasonable situation are presented. Some
important thermodynamic restrictions are presented in [8]. The derivation of con-
stitutive relations from a quantum mechanical point of view is presented in [3], and
some theory about nonlinear dielectrics is found in [7].

This paper aims to improve the understanding of a nonlinear optical response,
i.e., an instantaneous nonlinear response. Earlier works, as reported above, have of-
ten made some important restrictions, such as assuming the material to be isotropic
or uniaxial. Here we present a theory describing wave propagation in bianisotropic
materials. We show that a generalized form of plane waves, called simple waves, can
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be used to analyze the wave propagation, and we reformulate the Maxwell equa-
tions as an eigenvalue problems. A brief presentation on simple waves in partial
differential equations is given in [19, p. 52], and a more extensive treatment is given
in [16, Chap. 3]. There are also some related results in [13, p. 47].

The paper is organized as follows: in Sections 2 and 3 we present the simple
wave Ansatz and the six-vector formalism, which are the basic tools used in this
paper. This is applied to the Maxwell equations in Section 4, which transforms the
dynamics into an eigenvalue problem. Special notice is taken to isotropic media.
In Section 5 we introduce the theory on how to classify materials. We then apply
our formalism in Section 6 to the problem of a plane wave obliquely impinging on a
nonlinear half space and solve the problem of finding the reflected and transmitted
fields. Some results on suitable conditions on the Brewster angles are also presented,
as well as numerical results for reflection and transmission.

2 Simple wave Ansatz

Plane waves constitute a powerful tool in the analysis of wave phenomena in linear
materials. The concept of plane waves transforms the problem of three spatial
dimensions into a problem along the propagation direction. Simple waves are the
generalization of this concept. They have previously been used in the description of
nonlinear electromagnetic waves [5, 6], and are explained in basic books on partial
differential equations [19, p. 52]. They also determine the characteristics of the
wave equation.

The simple wave Ansatz is suitable for materials which respond instantaneously
to excitation, and states that the fields depend only upon a scalar parameter, which
we denote φ. This parameter is a function of space and time. For an isotropic, linear
media the simple wave Ansatz reduces to the usual phase function, φ(r, t) = k·r−ωt.

It is obvious that if a quantity u depends on space and time as u(r, t) = u(φ(r, t)),
the spatial gradient ∇φ represents a propagation direction. We identify the quan-
tity − ∇φ/φt

|∇φ/φt| as the propagation direction and |φt|/|∇φ| as the propagation speed,
where φt denotes the time derivative of φ. The minus sign comes from implicit
differentiation of the equation φ(r, t) = constant, which is the equation of the wave
front.

3 Six-vector formalism

When describing bianisotropic phenomena, it is often advantageous to use the six-
vector formalism, see e.g., [25]. In this approach, no real distinction between the
electric and magnetic fields is made, but they are treated as components of a single
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field. We define our fields as


















e =

(√
ε0E√
µ0H

)

d =

(

1√
ε0
D

1√
µ0
B

) (3.1)

where ε0 and µ0 denote the permittivity and permeability of vacuum, respectively.
The components of the six-vector fields now all have the same dimension, i.e.,
√

energy/volume.
To distinguish between three-vectors and six-vectors, we denote the former by

bold-faced italic letters, and the latter by sans-serif letters, i.e., the notation in [25].
Three-dimensional dyadics are denoted by uppercase bold-faced roman letters, and
six-dimensional dyadics by uppercase sans-serif letters. The exception is the material
six-dyadic, which is denoted by ε. The unit three vector is denoted by a hat, e.g.,
the unit three vector in the z direction is denoted ẑ.

The scalar product between two six-vectors a and b is defined as a·b =
∑6

i=1 aibi.
Operations with three-vectors on six-vectors are understood in the obvious manner,
i.e., the scalar and cross products are

v · e =

(

v · √ε0E
v · √µ0H

)

, and v × e =

(

v ×√ε0E
v ×√µ0H

)

. (3.2)

We often use the three-dimensional dyadic [I− ẑẑ], which projects out the x and y
components, on six-dimensional dyadics. This is defined as

[I− ẑẑ] ·
(

A11 A12

A21 A22

)

=

(

[I− ẑẑ] ·A11 [I− ẑẑ] ·A12

[I− ẑẑ] ·A21 [I− ẑẑ] ·A22

)

. (3.3)

Using the six-dyadic J =

(

0 −I
I 0

)

, which is formed from the three-dimensional

identity dyadic I, we write the source free Maxwell equations as

[∇× J] · e + 1

c0
∂td = 0, (3.4)

where c0 denotes the wave speed in vacuum, 1/
√
ε0µ0. The spatial differential oper-

ator ∇ is treated as a three-vector, and is merged with the six-dyadic J to form the
operator

∇× J =

(

0 −∇× I
∇× I 0

)

=

















0 0 0 0 ∂z −∂y
0 0 0 −∂z 0 ∂x
0 0 0 ∂y −∂x 0
0 −∂z ∂y 0 0 0
∂z 0 −∂x 0 0 0
−∂y ∂x 0 0 0 0

















, (3.5)

as in [12]. The explicit matrix representation in cartesian coordinates is seen to be
symmetric.
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4 The Maxwell equations as an eigenvalue prob-

lem

The constitutive relation for a material with no memory, i.e., where the fluxes d

depend only upon the present values of the field strengths e, can be written

d(r, t) = d(e(r, t)). (4.1)

We now apply the simple wave Ansatz together with the constitutive relation,
{

e(r, t) = e(φ(r, t))

d(r, t) = d(e(φ(r, t))).
(4.2)

This means that the curl operator turns into a cross product, ∇× e = ∇φ× e′, and
the time derivative becomes ∂td = [∇ed] · e′∂tφ, where the prime denotes differenti-
ation with respect to φ. The operator ∇e denotes the field gradient operator, i.e.,
[∇ed]nm = ∂

∂em
dn(e). Since we write the linear constitutive relations as d = ε · e,

where ε is a six-dyadic, we denote [∇ed] by ε(e), and often suppress the argument
to obtain a less cumbersome notation.

The dyadic ε is postulated to be positive definite and symmetric, and is thus
invertible. In the linear case, it is possible to show that ε has to be a symmetric,
positive definite dyadic in order to model passive media [12]. The assumptions made
on the dyadic ε is a natural generalization of the result in the linear case.

With the simple wave Ansatz, the Maxwell equations contain the generic field
e′ = d

dφ
e. However, for reasons that become more obvious below we prefer to use

the time derivative, ė = ∂te = e′∂tφ. This choice also becomes advantageous when
implementing the equations later on. Since φ(r, t) = constant is the equation for
the wave front, we identify the wave slowness 1/c and the propagation direction k̂
of the simple wave by the following expressions,















1

c
=
|∇φ|
|∂tφ|

k̂ = − ∇φ/∂tφ|∇φ/∂tφ|
= −∇φ

∂tφ
c.

(4.3)

Using these expressions, we write the Maxwell equations as

−1

c
[k̂ × J] · ė + 1

c0
ε · ė = 0. (4.4)

This is an eigenvalue problem, which becomes more obvious in the form

c

c0
ė = ε−1 · [k̂ × J] · ė. (4.5)

Comparison with the matrix representation of ∇× J in (3.5) shows that [k̂× J] is a
symmetric dyadic.1

1A dyadic A is symmetric if it is equal to its transpose AT defined by AT · v = v ·A, i.e., A

is symmetric if A · v = v · A. This is identical to the demand that its matrix representation is
symmetric.
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The solution to (4.5) gives conditions on the wave speed and propagation direc-
tion in terms of the fields. In the linear case, only the directions of the field will be
important, but for nonlinear materials there is also a dependence on the amplitude.
For an isotropic material, where

ε(e) =

(

ε(E)I 0
0 µ(H)I

)

, (4.6)

the conditions derived from (4.5) are

c =
c0

√

ε(E)µ(H)
and

{

k̂ · ė = 0

Ė · Ḣ = 0
⇒ ė =

( 1√
ε
v

1√
µ
k̂ × v

)

, (4.7)

where the three-vector v is orthogonal to k̂. Observe that it is the direction of the
derivatives of the fields that are important, not the fields themselves.

For a given propagation direction k̂ the dyadic ε−1 ·[k̂×J] has six eigenvectors ėj,
j = 1, . . . , 6. Since the dyadic is not symmetric, these solutions are not guaranteed
to be mutually orthogonal. We symmetrize the dyadic by

c

c0
(
√
ε · ėj) =

[√
ε
−1 · [k̂ × J] ·

√
ε
−1
]

· (
√
ε · ėj), (4.8)

where we have used the square root of the positive definite and symmetric dyadic ε,
which is also positive definite and symmetric. It is concluded that the eigenvectors√
ε · ėj are real and orthogonal, which implies that the eigenvectors ėj are real and

linearly independent. The dyadic
√
ε
−1 ·[k̂×J]·√ε−1

is a congruence transformation
(see e.g., [11, p. 251]) of [k̂ × J], which has the (double) eigenvalues −1, 0 and 1.
Since the signs of the eigenvalues are preserved under congruence transforms, we
conclude that for a given propagation direction k̂ there are two modes propagating
in the +k̂-direction (positive eigenvalues) and two modes propagating in the −k̂-
direction (negative eigenvalues), while two modes do not propagate with respect to

k̂ at all (zero eigenvalue). The last two can be written explicitly as ė5,6 =
(±k̂

k̂

)

.

5 Classification of materials

Materials are often classified as, e.g., isotropic, bi-isotropic or uniaxial depending
on the invariance under symmetry transformations. In our formulation, the natural
way to classify the materials is by the corresponding invariance of the dyadic ε(e).
This is motivated by the following way of writing the constitutive relations (4.1):

d(e) =

∫ e

0

ε(e′) · de′, (5.1)

where the integral should be understood in terms of integration along a parameter-
ized curve in R6. The prime is not to be confused with time differentiation, it is
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only denoting the integration variable. When applying a rotation of coordinates S
on the field strength e, we get

d(S · e) =
∫ S·e

0

ε(e′) · de′ =

∫ e

0

ε(S · e′′) · S · de′′, (5.2)

where we have made the change of variables e′ = S · e′′. Materials are classified
depending on which group of transformations S that satisfies d(S · e) = S · d(e), i.e.,
which group of transformations that satisfies S−1 · ε(S · e′′) · S = ε(e′′).

Materials that satisfy this relation for all rotations S are called bi-isotropic. This
implies that

ε(e) =

(

ε(E,H)I ξ(E,H)I
ζ(E,H)I µ(E,H)I

)

, (5.3)

describes a bi-isotropic material, where ε, ξ, ζ and µ are scalar functions of the field
strengths. Common restrictions on constitutive relations, [8, 12], state that ξ = ζ,
and if they are equal to zero, the material is said to be isotropic. When ξ = ζ is
non-zero, we have a nonreciprocal material, see, e.g., [22, p. 403], [20] and [29, Chap.
8]. The possible existence of linear, nonreciprocal, bi-isotropic materials has been
thoroughly questioned and debated [24, 30, 33, 35], but since they do not cause any
problem in our formalism, we choose not to exclude them from the analysis. The
argument for existence of nonlinear, nonreciprocal, bi-isotropic materials has to be
reexamined.

6 Oblique incidence

To demonstrate the possible application of the simple wave approach, we analyze
the problem of a plane electromagnetic wave obliquely impinging from vacuum on
a nonlinear half space. The problem has been studied to some extent by Broer and
Sarluy in [5, 6], though they specialize their treatment to a uniaxial material with
nonlinearity in electric field only, where the optical axis is in a special direction.
An approach similar to ours has been undertaken by Veldhuis and Blok in [36],
where they study the oblique incidence of plane waves on an isotropic, nonlinear
material. Here, we solve the problem with arbitrary nonlinearities in both electric
and magnetic field, as well as arbitrary bianisotropy.

6.1 Geometry and boundary conditions

The geometry of the problem is depicted in Figure 1. The incident field, ei(r, t), is
a plane wave, and we make the Ansatz















ei(r, t) = e(k̂
i · r − c0t)

er(r, t) = e(k̂
r · r − c0t)

et(r, t) =
∑

etj(φj(r, t)),

(6.1)
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Vacuum Nonlinear media

Incident 

plane wave

Reflected 

plane wave
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Figure 1: The geometry of the problem of oblique incidence.

where c0 denotes the wave speed in vacuum. We thus assume that the transmitted
field, et(r, t), may consist of several simple waves, as we can expect from the linear,
anisotropic case. The number of those is restricted to two in Section 6.5. The usual
boundary conditions apply, i.e., the tangential components of the field strengths
should be continuous and the normal component of the fluxes should be continuous
(no sources at the interface). We write this as

{

ei‖ + er‖ = et‖

ẑ · (di + dr) = ẑ · dt.
(6.2)

The latter condition is not used in the present analysis.

6.2 Reflection law and Snell’s law

Since the boundary conditions (6.2) must hold for all times on the surface z = 0,
we can differentiate them with respect to both time and y. The simple wave Ansatz
and (4.3) implies that ∂yφ = −1

c
ky∂tφ, where ky = ŷ · k̂. Using this result and

et(r, t) =
∑

etj(φj(r, t)) we write the time and y derivative of the tangential fields
as











ėi‖ + ėr‖ =
∑

(ėtj)‖

1

c0
kiy ė

i
‖ +

1

c0
kry ė

r
‖ =

∑ 1

cj(et)
ktyj(ė

t
j)‖.

(6.3)

These conditions are satisfied if the following holds:

kiy = kry =
c0

cj(et)
ktyj, (6.4)
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for all values of j, which is also known as phase-matching [22, p. 104]. It is conjec-
tured that this is the only solution to (6.3).2

The quotient between the wave speeds corresponds to the refractive index, and
since kiy and k

t
yj are the sines of the angles of incidence and transmission, respectively,

(6.4) is the well-known Snell’s law. This is a purely kinematic law, so it is not
surprising that it is valid also in the nonlinear case. Note that since there are
several possible values for the wave speed cj, there are several possible angles of
transmission.

Since the propagation directions are normalized and there is no propagation in
the x-direction, we now also have the usual reflection law for the reflected field, i.e.,

k̂
r
= kiyŷ − kizẑ. (6.5)

The transmitted field is more complicated, since it involves the wave speed, which
may depend on the field strength.

6.3 Decomposition of the propagation direction

It seems natural to consider a decomposition of the propagation direction k̂ in (4.5)

in a y and a z part. Using Snell’s law and |k̂t

j| = 1, we find

c0
cj
k̂
t

j =
c0
cj
ktyjŷ +

c0
cj
ktzjẑ = kiyŷ +

c0
cj

√

1− (
cj
c0
kiy)

2 ẑ. (6.6)

Using the eigenvalue problem (4.5) for each simple wave in the nonlinear material,
we get

ε · ėtj =
c0
cj
[k̂

t

j × J] · ėtj

[ε− kiyŷ × J] · ėtj =
c0
cj
ktzj[ẑ × J] · ėtj

cj
c0

1

ktzj
ėtj = [ε− kiyŷ × J]−1 · [ẑ × J] · ėtj.

(6.7)

Since the dyadic [ε− kiyŷ× J]−1 · [ẑ× J] is independent of j, all simple waves in the
nonlinear material are found from the same eigenvalue problem,

λjaj = [ε− kiyŷ × J]−1 · [ẑ × J] · aj, (6.8)

where λj denotes the number cj/(c0k
t
zj) and aj is shorthand for ėtj. The correspond-

ing problem for the vacuum fields is easily found,

± 1

kiz
ėi,r = [I− kiyŷ × J]−1 · [ẑ × J] · ėi,r, (6.9)

where the ± comes from krz = −kiz. The dyadic [I − kiyŷ × J]−1 is positive definite,
since |kiy| < 1. If all eigenvalues to ε are greater than one, i.e., the material is denser
than vacuum, the dyadic [ε− kiyŷ × J]−1 is also positive definite.

2It is shown later in the text that the vectors (ėt
j)‖ are linearly independent, which supports

this conjecture.
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6.4 Properties of the eigenvectors

The eigenvalue problem (6.8) is put in a symmetric form in the same manner as in
Section 4. We observe that [ε− kiyŷ × J] is positive definite and symmetric. In this

section we temporarily denote this dyadic C. By multiplying (6.8) with
√

C, which
is also positive definite and symmetric, we obtain

λj
√

C · aj =
√

C
−1 · [ẑ × J] ·

√
C
−1 ·
√

C · aj
λjuj =

[√
C
−1 · [ẑ × J] ·

√
C
−1
]

· uj.
(6.10)

The λj:s are now eigenvalues to a symmetric dyadic, which implies that they are

real. The symmetric dyadic
√

C
−1 · [ẑ × J] ·

√
C
−1

is a congruence transformation of
[ẑ×J], which has the (double) eigenvalues −1, 0 and 1. Since the signs are preserved
under congruence transformations, the eigenvalues can be characterized by











λ1,2 > 0

λ3,4 < 0

λ5,6 = 0.

(6.11)

Since the uj:s are eigenvectors to a symmetric dyadic, they are real and mutually

orthogonal. This implies that aj =
√

C
−1 · uj are linearly independent vectors.

The eigenvectors corresponding to λ5,6 can be constructed from a5,6 =
(±ẑ

ẑ

)

, which
implies that a1,2,3,4 are the only eigenvectors needed to form the tangential fields.

The sign of the eigenvalue indicates in which direction each mode represented
by an eigenvector is propagating, i.e., a1,2 represent waves propagating in the +z-
direction and a3,4 represent waves propagating in the −z-direction, while a5,6 repre-
sent waves which do not propagate with respect to z at all.

6.5 Transmission

Temporarily introduce the dyadic

A = kiz[I− ẑẑ] · [I− kiyŷ × J]−1 · [ẑ × J]. (6.12)

From (6.9) we see that ėi,r‖ = ±A · ėi,r‖ . By multiplying the boundary condition

ėi‖ + ėr‖ = ėt‖ with A we now have

ėi‖ − ėr‖ = A · ėt‖. (6.13)

In the previous section, we found that only the eigenvectors a1,2,3,4 involve the tan-
gential fields. Specifically, a1,2 correspond to waves travelling in the +z-direction.
To this end, the transmitted tangential field is expanded as

ėt‖ =
2
∑

j=1

αj[I− ẑẑ] · aj, (6.14)
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provided there are no sources in the region z > 0, i.e., no waves travelling in the
−z-direction. We have now restricted the number of simple waves in the nonlinear
material to two. From (6.8) follows

A · [I− ẑẑ] · aj = kiz[I− ẑẑ] · [I− kiyŷ × J]−1 · [ẑ × J] · [I− ẑẑ] · aj
= λjk

i
z[I− ẑẑ] · [I− kiyŷ × J]−1 · [ε− kiyŷ × J] · aj,

(6.15)

where we have used [ẑ × J] · [I− ẑẑ] = [ẑ × J]. The dyadic

B = [I− kiyŷ × J]−1 · [ε− kiyŷ × J]

= I + [I− kiyŷ × J]−1 · [ε− I]
(6.16)

is positive definite with eigenvalues greater than one. The boundary conditions are



























ėi‖ + ėr‖ =
2
∑

j=1

αj[I− ẑẑ] · aj

ėi‖ − ėr‖ =
2
∑

j=1

αjλjk
i
z[I− ẑẑ] · B · aj.

(6.17)

By adding these equations, we eliminate the reflected field, and obtain

2ėi‖ =
2
∑

j=1

αj[I− ẑẑ] · [I + λjk
i
zB] · aj. (6.18)

The only unknown quantities in this equation are the coefficients αj. If we multiply
the equation by a1,2 from the left, we obtain a 2×2 system, which is used to extract
the coefficients α1,2:

{

2a1 · ėi‖ = α1a1 · [I− ẑẑ] · [I + λ1k
i
zB] · a1 + α2a1 · [I− ẑẑ] · [I + λ2k

i
zB] · a2

2a2 · ėi‖ = α1a2 · [I− ẑẑ] · [I + λ1k
i
zB] · a1 + α2a2 · [I− ẑẑ] · [I + λ2k

i
zB] · a2.

(6.19)
This system is always solvable provided the following determinant is non-zero:

∆ =(a1 · [I− ẑẑ] · [I + λ1k
i
zB] · a1)(a2 · [I− ẑẑ] · [I + λ2k

i
zB] · a2)

− (a2 · [I− ẑẑ] · [I + λ1k
i
zB] · a1)(a1 · [I− ẑẑ] · [I + λ2k

i
zB] · a2)

=(a1 · v1)(a2 · v2)− (a2 · v1)(a1 · v2)
=a1 · (v1v2 − v2v1) · a2,

(6.20)

where we have introduced the vectors v1,2 = [I− ẑẑ] · [I + λ1,2k
i
zB] · a1,2 = R1,2 · a1,2.

The dyadics R1,2 are positive semi-definite, where the semi-definiteness comes from
the projection [I− ẑẑ]. It is conjectured that these properties imply ∆ > 0.
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Using the explicit inverse of a 2× 2-matrix, we can write the solution to (6.19)
as







































α1 =
2

∆

{

(a2 · [I− ẑẑ] · [I + λ2k
i
zB] · a2)(a1 · ėi‖)

−(a1 · [I− ẑẑ] · [I + λ2k
i
zB] · a2)(a2 · ėi‖)

}

α2 =
2

∆

{

(a1 · [I− ẑẑ] · [I + λ1k
i
zB] · a1)(a2 · ėi‖)

−(a2 · [I− ẑẑ] · [I + λ1k
i
zB] · a1)(a1 · ėi‖)

}

.

(6.21)

This can be written as α1,2 =
2
∆

b1,2 · ėi‖ by introducing the vectors

{

b1 = (a2 · [I− ẑẑ] · [I + λ2k
i
zB] · a2)a1 − (a1 · [I− ẑẑ] · [I + λ2k

i
zB] · a2)a2

b2 = (a1 · [I− ẑẑ] · [I + λ1k
i
zB] · a1)a2 − (a2 · [I− ẑẑ] · [I + λ1k

i
zB] · a1)a1.

(6.22)

The map between a1,2 and b1,2 has the same determinant as the map between the
coefficients α1,2 and the incident field, i.e., ∆, which was assumed greater than zero
above. This implies that the vectors b1,2 are linearly independent.

We now formulate the relation ėt‖ =
∑2

j=1 αj[I − ẑẑ] · aj as a dyadic relation
between incident and transmitted fields,

ėt‖ =
2

∆
[I− ẑẑ] · [a1b1 + a2b2] · ėi‖

=T‖ · ėi‖,
(6.23)

where we have introduced the notation T‖ for the transmission dyadic acting on the
tangential fields. Since the transmitted field consists of only the modes a1,2, the
transmission dyadic extends to the total transmitted field:

ėt =
2

∆
[a1b1 + a2b2] · ėi‖ = T · ėi‖. (6.24)

Since the vectors b1,2 are linearly independent, they represent the two different
polarizations of the incident field which generate the two possible modes a1,2 in the
nonlinear material.

6.6 Reflection and Brewster angles

It is well known that at certain angles and polarizations of the incident field there is
no reflected field at all — the Brewster angles [22, 26, 27]. From (6.17) we see that
the reflected field can be written

2ėr‖ =
2
∑

j=1

αj[I− ẑẑ] · [I− λjkizB] · aj. (6.25)
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Using α1,2 = 2
∆

b1,2 · ėi‖ we find the following relationship between the reflected and
incident field:

2ėr‖ =
2

∆

[

{

[I− ẑẑ] · [I− λ1kizB] · a1
}

b1

+
{

[I− ẑẑ] · [I− λ2kizB] · a2
}

b2

]

· ėi‖

=
2

∆
[I− ẑẑ] · [b′1b1 + b′2b2] · ėi‖

=2R‖ · ėi‖.

(6.26)

This is the reflection dyadic R‖ for the tangential fields, which is represented as a
factorization in the simple dyads b′1b1 and b′2b2, where b′1,2 = [I− λ1,2kizB] · a1,2.

Since the vectors b1,2 are linearly independent, we see that the Brewster angles
are characterized by

{

ėi‖ = β[I− ẑẑ] · bj
0 = [I− ẑẑ] · [I− λjkizB] · aj

j = 1, 2, (6.27)

where β is a scalar. This means that if the incident field is polarized along bj and
aj is in the null space of [I − ẑẑ] · [I − λjk

i
zB], there is no reflected field. These

conditions determine the possible Brewster angles. We have

0 = [I− ẑẑ] · [I− λjkizB] · aj

= [I− ẑẑ] · [I− cj
c0

kiz
ktzj

(I + [I− kiyŷ × J]−1 · [ε− I])] · aj

= [I− ẑẑ] · [I− cj
c0

kiz
ktzj

(I +
1

(kiz)
2
[I + kiyŷ × J− (kiy)

2ŷŷ] · [ε− I])] · aj,

(6.28)

where we have introduced the explicit inverse [I − kiyŷ × J]−1 = 1
(ki

z)
2 [I + kiyŷ × J −

(kiy)
2ŷŷ], which can be verified by straightforward calculations. The y-component

of this equation is

0 = ŷ · aj −
cj
c0

kiz
ktzj

(ŷ +
1

(kiz)
2
[ŷ − (kiy)

2ŷ] · [ε− I]) · aj

= ŷ · aj −
cj
c0

kiz
ktzj

(ŷ + ŷ · [ε− I]) · aj

= ŷ · aj −
cj
c0

kiz
ktzj
ŷ · ε · aj.

(6.29)

6.6.1 Isotropic materials

In Section 4 it was shown that a propagating field in an isotropic material is described

by aj =
( vj/

√
ε

k̂×vj/
√
µ

)

, where the three-vector vj is orthogonal to k̂, and the only possible

wave speed is
cj
c0

= 1√
εµ
. In the remainder of this section, we suppress the index j,
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and separate the two modes in the end. The Brewster angles can now be found
from the y-component defined above. By explicitly considering both electric and
magnetic fields we have

ŷ ·
( 1√

ε
v

1√
µ
k̂
t × v

)

=
1√
εµ

kiz
ktz
ŷ ·
(
√
εv

√
µk̂

t × v

)

( 1√
ε
ŷ · v

1√
µ
ktzẑ · (v × ŷ)

)

=
kiz
ktz

( 1√
µ
ŷ · v

1√
ε
ktzẑ · (v × ŷ)

)

.

(6.30)

It is now concluded that one of the following sets of conditions have to be satisfied
in order to satisfy the Brewster angle criterion.

{

ŷ · v = 0
√
εktz =

√
µkiz

or

{

ẑ · (v × ŷ) = 0
√
µktz =

√
εkiz.

(6.31)

Observe that ẑ · (v× ŷ) = 0 is equivalent to x̂ ·v = 0, i.e., the first set of conditions
corresponds to TE-polarization and the second to TM-polarization. Remember
that kiz = cos θi and ktz = cos θt, where θi,t denote the angles of incidence and
transmission, respectively, and we have recovered the well known results for linear
isotropic materials. Since we in general have θt < θi, only one of the above possible
Brewster angles is feasible.

An interesting question is whether it always suffices to study the y-component of
our original Brewster-angle-condition in (6.27). This is a problem that goes beyond
the scope of this paper.

6.7 Algorithm for the direct problem

In this section we summarize the algorithm for solving the direct problem of prop-
agating the incident field through a boundary between vacuum and a nonlinear,
nondispersive, homogeneous, bianisotropic halfspace.

We have to calculate the eigenvectors a1,2, the eigenvalues λ1,2 and the dyadic B

to obtain the reflection and transmission dyadics. These quantities are determined
from the relations

{

λjaj = [ε− kiyŷ × J]−1 · [ẑ × J] · aj
B = [I− kiyŷ × J]−1 · [ε− kiyŷ × J],

(6.32)

i.e., we have to solve an eigenvalue problem (first row), extract the eigenvectors
corresponding to positive eigenvalues, and calculate the dyadic B. These calcula-
tions are evaluated at the transmitted field values at a specific time. The dyadics
are supposed to act on time derivatives of the fields. We discretize the problem
with central differences in time, and use the previously calculated values for the
transmitted fields in the solution of the eigenvalue problem.

Once we have calculated the tangential fields, it is an easy task to obtain the
normal components of the fields. For the transmitted fields these are already given
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by the transmission dyadic, see (6.24), and for the reflected field they are given by

the relation k̂
r · ėr = 0, which implies ėrz = −

kr
y

kr
z
ėry.

The algorithm can be summarized as follows, where the indices denote at which
time level the different quantities are to be evaluated.

(eigenvalue problem)j ⇒ (λ1,2)j, (a1,2)j

(B)j = B((et)j)

(T)j = T((λ1,2)j, (a1,2)j, (B)j)

(R‖)j = R‖((λ1,2)j, (a1,2)j, (B)j)

(ėi‖)j =
(ei‖)j+1 − (ei‖)j−1

2∆t
(et)j+1 = (et)j−1 + 2∆t(T)j · (ėi‖)j
(er‖)j+1 = (er‖)j−1 + 2∆t(R‖)j · (ėi‖)j

(erz)j+1 = −
kry
krz

(ery)j+1

(6.33)

6.8 Numerical examples

When implementing the equations in a computer program, it is advantageous to
scale the problem. The Maxwell equations are

[∇× J] · e + 1

c0
ε(e) · ∂te = 0, (6.34)

and we introduce the dimensionless variables


















t̃ = t/t0

r̃ = r/(c0t0)

ẽ = e/e0

ε̃(ẽ) = ε(e0ẽ)

(6.35)

where t0 and e0 are scalar constants, corresponding to a characteristic time and
energy density, respectively. Using these variables, the Maxwell equations turn into

[∇̃ × J] · ẽ + ε̃ · ∂t̃ẽ = 0, (6.36)

where the scaling constants t0 and e0 enable us to use dimensionless space-time and
field strengths of reasonable numerical sizes. This scaling is also presented in [23, 34].

6.8.1 Reflection

The algorithm in Section 6.7 has been implemented for a nonlinear, anisotropic
material, and the result is depicted in Figure 2. The constitutive relation is charac-
terized by the six-dyadic ε, which is represented in the xyz-coordinate system as
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Figure 2: Oblique incidence on an anisotropic Kerr material, described by (6.37).
The diagrams show the square of the incident field versus time, |ẽr|2/|ẽi|2 and
|ẽt|2/|ẽi|2 versus time, respectively, and the two possible transmission angles ver-
sus time. Observe that since the square of the incident field is proportional to time,
the horizontal scales can be used both as time and energy density of the incident
field.

ε̃(ẽ) =

















2 + Ẽ2 0 0 0 0 0
0 3 + Ẽ2 0 0 0 0

0 0 4 + Ẽ2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















, (6.37)

where we have decomposed the six-vector according to ẽ =
(

Ẽ

H̃

)

, and used the

notation |Ẽ| = Ẽ for the absolute value of the three-vector Ẽ. Thus, the material
is non-magnetic, anisotropic with principal axes in the xyz-directions, and has a
nonlinear permittivity depending on the square of the electric field strength. The
angle of incidence, 63◦, is chosen so that the Brewster angle is apparent. The
incident field has the magnetic field perpendicular to the plane of incidence, i.e., in
the x-direction,

ẽi(r̃, t̃) = f(t̃− k̂i · r̃)
(−k̂i × x̂

x̂

)

, f(t̃) =

{√
t̃ t̃ ≥ 0

0 t̃ < 0.
(6.38)
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The time dependence of the amplitude of the incident field has been chosen so that
its square, which in vacuum is the field energy density, depends linearly on time.
This implies that the horizontal scales in Figure 2 can be used both as time and
energy density. We see that the energy reflection coefficient |ẽr|2/|ẽi|2 and |ẽt|2/|ẽi|2
(which is not the energy transmission coefficient) depends strongly on the incident
energy.

It is clearly seen that the Brewster angle occurs when the incident energy is
approximately 15. Had the principle axis of the material not been in the xyz-
directions, we would have needed another polarization of the incident field to obtain
a reflected field that is zero.

The possible transmission angles start off as clearly separated, as can be expected
for an anisotropic material, but become more and more equal as the incident energy
increases. This can be interpreted from the material dyadic (6.37): when the electric
field strength grows, the diagonal elements become essentially Ẽ2. Thus the material
becomes more and more isotropic, i.e., it has only one possible angle of transmission.
Observe that due to our choice of polarization of the incident field, only one of the
modes is excited in this example.

6.8.2 Transmission

Up til now we have only dealt with the reflected field in vacuum and the transmitted
field just inside the nonlinear material. We now wish to propagate this field some
distance into the nonlinear material, and briefly return to the physical variables for
clarity. We observe that the transmitted field satisfies a translational invariance in
t and y,

et(r, t) = et(z, t− y sin θi

c0
), (6.39)

which implies that the derivatives in t and y are proportional,

∂y = −
sin θi

c0
∂t, (6.40)

consistent with the simple wave approach. Assuming no propagation in the x-
direction, the Maxwell equations

[ŷ × J] · ∂yet + [ẑ × J] · ∂zet +
1

c0
ε · ∂tet = 0 (6.41)

are now turned into a system of one-dimensional equations,

1

c0
∂te

t = −[ε(et)− sin θiŷ × J]−1 · [ẑ × J] · ∂zet. (6.42)

This is used to propagate the transmitted field by a finite difference algorithm. We
use a leap-frog scheme, approximating the derivatives with central differences. In our
scaled variables this gives the following scheme, where (ẽt)mn = ẽt(ỹ = 0, n∆z̃, m∆t̃),
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Figure 3: The x and y components of the transmitted electric field, each corre-
sponding to exactly one of the two propagating modes. Due to the anisotropy, the
modes have different polarization and propagation direction.

(ẽt)m+1
n − (ẽt)m−1

n

2∆t̃
= −[ε̃((ẽt)mn )− sin θiŷ × J]−1 · [ẑ × J] · (ẽ

t)mn+1 − (ẽt)mn−1

2∆z̃
(6.43)

We use this algorithm for the same material as in Section 6.8.1, but with a Gaussian
shaped incident field,

ẽi(r̃, t̃) = f(t̃− k̂i · r̃)
(

v̂

k̂
i × v̂

)

, f(t̃) = exp(−(t̃− 4)2). (6.44)

The electric field is polarized in the direction v̂ = (x̂ + k̂
i × x̂)/

√
2, to ensure that

both modes are excited in the anisotropic material. From Figure 3 we see that the
anisotropy of the material causes the two modes to travel in different directions, and
the nonlinearity causes a change of shape in each of the modes. The latter implies
that the region of existence of the simple waves is in general bounded, since the
waves ultimately turn into shocks. This is also stated in [36].

7 Conclusions

In this paper, we have introduced the concept of simple waves, as a means to analyze
wave propagation problems in nonlinear materials with instantaneous response. We
have applied the method to the problem of oblique incidence of a plane electromag-
netic wave on a nonlinear material, and found that the direct problem can be solved
for all materials and all possible polarizations of the incident wave.
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The drawback of the simple wave solutions, is that they do not apply to mate-
rials with dispersion, i.e., materials with memory. Our mathematical model with
instantaneous nonlinearity, predicts that all reasonable waves eventually turn into
shocks. It is often argued that the presence of linear dispersion eliminates these
shocks, see e.g., [1, pp. 117–120]. Therefore, we can expect our model to be accu-
rate only when there is no shock-like behavior and the dispersion effects are small,
i.e., for sufficiently smooth and slowly varying pulses. It is possible to calculate
what propagation distances are necessary for the shock to develop, which means we
can estimate the region of validity for our model.
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Abstract

We investigate the propagation of electromagnetic waves in a waveguide
filled with a nonlinear material. The electromagnetic field is expanded in the
usual eigenmodes of the waveguide, and the coupling between the modes is
quantified. We derive the wave equations governing each mode, with spe-
cial emphasis on the situation with a dominant TE-mode. The result is a
strictly hyperbolic system of nonlinear partial differential equations for the
dominating mode, whereas the minor modes satisfy hyperbolic systems of lin-
ear, nonstationary, partial differential equations. A growth estimate is given
for the minor modes.

1 Introduction

Electromagnetic waves can be guided in space by a hollow waveguide, where the
walls are perfect electric conductors. This can be used to guide waves traveling from
one point to another, and provide a controlled environment in which measurements
can be made. In order to be able to interpret these measurements, we need to
investigate what influence the waveguide structure and material or filling have on
the wave propagation.

The waves can be decomposed in modes, which can be defined as the eigenfunc-
tions of a transversal differential operator. These modes are orthogonal, and the
wave equation for each mode decouples completely from the other modes for a lin-
ear, homogeneous filling. When the waveguide is filled with a nonlinear material, the
equations no longer decouple, but it is still motivated to use the standard waveguide
modes due to the possibility of using the resulting equations with a mode-matching
algorithm in direct and inverse scattering problems [3, 16, 18].

In this paper we study the propagation of transient waves in nonlinear waveg-
uides, i.e., waves generated by an arbitrary signal. The theory of linear waveguides is
well established since the major efforts during the second world war. The analysis is
often made in the frequency domain, but since the nonlinear filling not only couples
the modes but also induces a coupling between the different frequency components,
we choose to treat the problem entirely in the time domain. The propagation of
transient waves has been treated for linear materials in e.g., [2, 6, 12], and some
general references are [5, 15] and [10, Ch. 8].

There has been a number of papers on nonlinear waveguides. Some recent con-
tributions consider the problem of self focusing, where the field energy inside the
waveguide moves closer to the center as the wave propagates. A few early studies
are found in [4, 11] and a more recent is [17]. The paper [19] discusses a problem
similar to ours, where a modal expansion of the fields is attempted in a dielectric
slab waveguide for a fixed frequency. The resulting equations are mainly used to
determine where the energy will be localized.

This paper is organized as follows. In Section 2 we introduce the Maxwell
equations and the instantaneous constitutive relations. The waveguide geometry
is presented in Section 3, and the relevant expansion functions are derived. This is
mostly established theory, but presented in a slightly different manner. Specifically,
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the starting point is not the Helmholtz’ equation, but a system of vector-valued
equations. The eigenvalue zero now plays a different rôle. We use the expansion
functions to obtain wave equations for each mode in Section 4, and the explicit
results for a parallel plate waveguide are calculated in Section 5. Since even this
simple example proves very challenging, we make the reasonable assumption that
almost all the energy is contained in one mode in Section 6, which enables us to de-
rive a system of quasilinear, homogeneous, hyperbolic differential equations for the
dominant mode, and a system of inhomogeneous hyperbolic equations with source
terms for the minor modes. Some energy relations are derived for both the dominant
and the minor modes, allowing an estimate of the growth of the minor modes. The
final conclusions and discussions are given in Section 7.

2 Preliminaries

In this paper we use a slight modification of the Heaviside-Lorentz units [10, p.
781], where the electromagnetic fields are scaled so that they all have the physical
dimension

√

energy/volume,

{

E =
√
ε0ESI

H =
√
µ0HSI,

{

D = 1/
√
ε0DSI

B = 1/
√
µ0BSI,

(2.1)

where E and H are the electric and magnetic field strength, respectively, and D
and B are the electric and magnetic flux density, respectively. ε0 is the permittivity
of vacuum, and µ0 is the permeability of vacuum. The speed of light in vacuum is
1/
√
ε0µ0 = c0. We use instantaneous, isotropic constitutive relations, see [8, p. 231]

and [20],
{

D(r, t) = Fe(E(r, t)2)E(r, t)

B(r, t) = Fm(H(r, t)2)H(r, t),
(2.2)

where Fe and Fm are dimensionless functions of E(r, t)2 = |E(r, t)|2 and H(r, t)2 =
|H(r, t)|2, respectively. We use the squared absolute values as arguments instead
of the absolute values themselves, since this is beneficial in the final equations.
The above constitutive relations imply that the time derivative of the fluxes can be
written

{

∂tD = [Fe(E
2)I+ 2F ′

e(E
2)EE] · ∂tE = ε(E) · ∂tE

∂tB = [Fm(H
2)I+ 2F ′

m(H
2)HH ] · ∂tH = µ(H) · ∂tH .

(2.3)

We see that nonlinear, isotropic materials are described by non-diagonal dyadics
ε and µ. However, we refrain from this formulation of the time derivative in this
paper. We now write the source free Maxwell equations as















−∇×H +
1

c0
∂tD = 0

∇×E +
1

c0
∂tB = 0

=⇒















−∇×H +
1

c0
∂t
(

Fe(E
2)E

)

= 0

∇×E +
1

c0
∂t
(

Fm(H
2)H

)

= 0.
(2.4)
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Figure 1: The geometry of a waveguide. The cross section of the cylinder is
denoted by Ω, and the outward unit normal at the surface is denoted by n̂.

The purpose of the following section is to find suitable expansion functions for the
fields E and H , which simplifies the analysis of these equations.

3 Derivation of the expansion functions

The geometry of the waveguide is depicted in Figure 1. We wish to use the Maxwell
equations to study propagation along the waveguide, i.e., in the z-direction. To this
end, we decompose the spatial differential operators and write the Maxwell equations
as















−ẑ × ∂zH +
1

c0
∂t
(

Fe(E
2)E

)

= ∇T ×H

ẑ × ∂zE +
1

c0
∂t
(

Fm(H
2)H

)

= −∇T ×E
(3.1)

where ∇T = x̂∂x + ŷ∂y and x̂, ŷ, and ẑ denote the unit vector in the x, y, and z
direction, respectively. The goal is now to get rid of the transversal dependence of
the fields, and we start by simplifying the right hand side of this system of equations.
We do this by searching for eigenfunctions of the transverse curl operators, which is
a diagonalization of the transverse differential operator.

3.1 Eigenfunctions of the transverse curl operators

We see that the right hand side of (3.1) can be formulated as a differential operator
applied to the pair of fields E andH . It is natural to look for eigenfunctions to this
operator, and we formulate the eigenproblem

(

0 −i∇T × I
i∇T × I 0

)(

En

Hn

)

= λn

(

En

Hn

)

, (3.2)
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where we have included the imaginary unit i so that the operator is self-adjoint in
the scalar product

((

Em

Hm

)

,

(

En

Hn

))

=

∫∫

Ω

(Em ·E∗
n +Hm ·H∗

n) dx dy. (3.3)

The self-adjointness can be shown by straight-forward calculations using integration
by parts and the boundary condition n̂×E = 0, which is the usual boundary con-
dition for a perfect electric conductor. Once we have established that the transverse
curl operator in (3.2) is self-adjoint, we also know that all eigenvalues λn are real.

3.1.1 Boundary conditions

The boundary condition n̂ × E = 0 is the only one needed for the analysis of the
three-dimensional Maxwell equations, but we must check that our eigenproblem (3.2)
does not imply inconsistent boundary conditions for the magnetic field strength. In
this section we investigate which boundary conditions are imposed by the Maxwell
equations, and compare them with those imposed by the eigenproblem.

We first note that since we have ∇ · B = 0, we also have n̂ · B = 0 at the
boundary. With B = Fm(H

2)H , this implies n̂ ·H = 0 at the boundary. Ampère’s
law ∇×H − ∂tD = 0 must be satisfied on the boundary of the waveguide, which
implies

n̂× (∇×H)− n̂× ∂tD = n̂× (∇×H) = 0 (3.4)

on the boundary, since n̂×D = n̂× Fe(E
2)E = 0. A closer look at this equation

reveals that the z component of n̂× (∇×H) = 0 is

n̂ · ∂zH − (n̂ · ∇T)Hz = 0 ⇒ (n̂ · ∇T)Hz = 0, (3.5)

where the implication follows from the fact that n̂ is independent of z and therefore
n̂ · ∂zH = 0. The two conditions n̂ ·H = 0 and (n̂ · ∇T)Hz = 0 are precisely the
boundary conditions implied by our eigenvalue problem.

Note carefully that we still have no conditions on n̂ ·E and (ẑ × n̂) ·H . These
components relate to the charge and current density on the walls of the waveguide,
and can be used to study waveguides with a finite conductivity as in many textbooks,
e.g., [10, p. 366], [14, p. 317] and [5, p. 340]. This is not a problem we deal with in
this paper.

3.1.2 Canonical problems

We show that the eigenproblem (3.2) implies the two-dimensional Helmholtz equa-
tion when λn 6= 0 and all necessary derivatives exist. By applying the operator three
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times, we have

λ3n

(

En

Hn

)

=

(

0 −i∇T × I
i∇T × I 0

)3(
En

Hn

)

=

(

0 −i∇T × I
i∇T × I 0

)(

∇T ×∇T × I 0
0 ∇T ×∇T × I

)(

En

Hn

)

=

(

0 −i∇T × I
i∇T × I 0

)(

∇T∇T −∇2
TI 0

0 ∇T∇T −∇2
TI

)(

En

Hn

)

= −∇2
T

(

0 −i∇T × I
i∇T × I 0

)(

En

Hn

)

= −∇2
Tλn

(

En

Hn

)

,

(3.6)

where we have used that the curl of any gradient is zero and that the Laplace
operator ∇2

T commutes with the curl operator. Thus, when λn 6= 0 the eigenproblem
(3.2) implies the usual Helmholtz equation for the cross section,



























∇2
T

(

En

Hn

)

+ λ2n

(

En

Hn

)

= 0 in Ω

n̂×E = 0 on ∂Ω

n̂ ·H = 0 on ∂Ω

(n̂ · ∇T)Hz = 0 on ∂Ω.

(3.7)

Since all components can be found from the z-components using the original eigen-
problem (3.2), we now formulate the scalar canonical problems

TE







∇2
Tφ

TE
n + (λTEn )2φTEn = 0 in Ω

∂φTEn
∂n

= 0 on ∂Ω

TM

{

∇2
Tφ

TM
n + (λTMn )2φTMn = 0 in Ω

φTMn = 0 on ∂Ω,

(3.8)

where the acronyms TE and TM stand for a solution with Transverse Electric field
or Transverse Magnetic field, respectively. That is, φTE

n is associated with the z-
component of the magnetic field strength Hn, and φTMn is associated with the z-
component of the electric field strength En.

What about the eigenfunctions when λn = 0? Since they satisfy ∇T × En =
∇T ×Hn = 0, they can be written as gradients of a scalar function [1, p. 66]. But
the canonical problems above supply us with a complete set of scalar functions on Ω,
and after considering the appropriate boundary conditions we deduce En = ∇Tφ

TM
n

and Hn = ∇Tφ
TE
n for these eigenfunctions.1

1The case λ = 0 is also associated with the TEM modes, but for a simply connected geometry as
the hollow waveguide, these do not appear. The TEM modes are also gradients of a scalar function
φ, but for these modes this function satisfies ∇2

Tφ = 0 in Ω, which only has constant solutions in
a simply connected geometry with homogeneous boundary conditions.
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We normalize the canonical solutions φTEn and φTMn by requiring















∫∫

Ω

(λTEn φTEn )2 dx dy = 1
∫∫

Ω

(λTMn φTMn )2 dx dy = 1

⇔















∫∫

Ω

|∇Tφ
TE
n |2 dx dy = 1

∫∫

Ω

|∇Tφ
TM
n |2 dx dy = 1.

(3.9)

This implies that the scalar eigenfunctions are dimensionless. We summarize our
results by expressing the vector eigenfunctions of the original transverse curl operator
in the canonical, scalar functions φTEn and φTMn ,

(

En

Hn

)

=























(

−ẑ ×∇Tφ
TE
n

iλTEn φTEn ẑ

)

,

(

0
∇Tφ

TE
n

)

,

(

iλTMn φTMn ẑ

ẑ ×∇Tφ
TM
n

)

,

(

∇Tφ
TM
n

0

)

,

(3.10)

where the rightmost eigenfunctions correspond to the solutions with λ = 0. We
see that the complex conjugate of the above eigenfunctions are also eigenfunctions,
corresponding to the change λ → −λ. When we use the letter λ in the remainder
of this paper, we mean λ > 0.

3.2 Real-valued expansion functions

The vector eigenfunctions in (3.10) constitute a complete system for expansion of
electromagnetic fields in a waveguide [5, p. 329]. Though, since they are complex
vectors, we need to use complex expansion coefficients in order to get real-valued
fields. By explicitly writing out the real and imaginary values of the scalar expansion
coefficients, we have the expansion

(

E

H

)

=
∑

n

1

2
(uTEn − iwTE

n )

(−ẑ ×∇Tφ
TE
n

iλTEn φTEn ẑ

)

+
1

2
vTEn

(

0

∇TφTEn

)

+
1

2
(uTMn − iwTM

n )

(

iλTMn φTMn ẑ

ẑ ×∇TφTMn

)

+
1

2
vTMn

(∇Tφ
TM
n

0

)

+ complex conjugate terms,

(3.11)

where the expansion coefficients uTEn , wTE
n , vTEn , uTMn , wTM

n and vTMn are real-valued
scalar functions of z and t. Note carefully that the functions ∇Tφ

TE
n and ∇Tφ

TM
n are

real-valued, and are therefore multiplied with real-valued expansion coefficients wTE
n

and wTM
n . The summation is taken over n = 1, 2, . . ., with the eigenvalues arranged

in ascending order, 0 < λ1 ≤ λ2 ≤ · · · . After adding the complex conjugate terms
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this is
(

E

H

)

=
∑

n

uTEn

(−ẑ ×∇Tφ
TE
n

0

)

+ vTEn

(

0

∇TφTEn

)

+ wTE
n

(

0

λTEn φTEn ẑ

)

+uTMn

(

0

ẑ ×∇TφTMn

)

+ vTMn

(∇Tφ
TM
n

0

)

+ wTM
n

(

λTMn φTMn ẑ

0

)

=
∑

n

uTEn UTE
n + vTEn V TE

n + wTE
n W TE

n

+uTMn UTM
n + vTMn V TM

n + wTM
n W TM

n ,

(3.12)

where we have introduced the real-valued six-vector expansion functions UTE
n (x, y),

V TE
n (x, y) etc. The fact that these expansion functions are derived from an eigen-

value problem, gives us strong orthogonality results, i.e.,










(UTE
m ,UTE

n ) = (V TE
m ,V TE

n ) = (W TE
m ,W TE

n ) = δm,n

(UTM
m ,UTM

n ) = (V TM
m ,V TM

n ) = (W TM
m ,W TM

n ) = δm,n

all other combinations = 0,

(3.13)

where δm,n denotes the Kronecker delta, δm,m = 1, δm,n = 0 for m 6= n. We
also see that our expansion functions UTE

n (x, y) etc have the physical dimension
(length)−1, and thus the expansion coefficients uTEn (z, t) etc have the physical di-
mension

√

energy/length.

4 Decomposition in modes

We continue the analysis by taking the scalar product of the expansion functions
with the Maxwell equations (3.1), in order to remove the transverse dependence. If
we denote an arbitrary expansion function by Ψm, this means we wish to study the
equation

∫∫

Ω

Ψm ·
[

(

0 −ẑ × I
ẑ × I 0

)

∂z

(

E

H

)

+
1

c0
∂t

(

Fe(E
2)E

Fm(H2)H

)

+

(

0 −∇T × I
∇T × I 0

)(

E

H

)

]

dx dy = 0. (4.1)

for each possible Ψm.

4.1 Linear terms

We examine the expansion of the various terms in the Maxwell equations, starting
with the z part of the curl operator,

(

0 −ẑ × I
ẑ × I 0

)

∂z

(

E

H

)

=
∑

n

∂zu
TE
n V TE

n + ∂zv
TE
n UTE

n

+∂zu
TM
n V TM

n + ∂zv
TM
n UTM

n ,

(4.2)
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which is proved by straight-forward calculations from the expansion (3.12). The last
term is the transverse part of the curl operator, which is

(

0 −∇T × I
∇T × I 0

)(

E

H

)

=
∑

n

λTEn uTEn W TE
n − λTEn wTE

n UTE
n

+λTMn uTMn W TM
n − λTMn wTM

n UTM
n .

(4.3)

So far, all our work is well known from the corresponding linear analysis, and the
orthogonality relations (3.13) makes it easy to evaluate the linear terms in integral
(4.1). We now turn our attention to the nonlinear term.

4.2 Nonlinear term

The only term left is the middle term in (4.1), which contains the nonlinear contri-
bution. We remind that the integral to be evaluated is

∂t

∫∫

Ω

Ψm ·
(

Fe(E
2)E

Fm(H2)H

)

dx dy. (4.4)

For the time being, we ignore the time derivative and consider the exact form of
this integral for each possible expansion function Ψm, since many cross terms drop
out immediately. For the TE modes this means































UTE
m :

∑

n

uTEn (UTE
m , Fe(E

2)UTE
n ) + vTMn (UTE

m , Fe(E
2)V TM

n )

V TE
m :

∑

n

uTMn (V TE
m , Fm(H

2)UTM
n ) + vTEn (V TE

m , Fm(H
2)V TE

n )

W TE
m :

∑

n

wTE
n (W TE

m , Fm(H
2)W TE

n ),

(4.5)

and for the TM modes































UTM
m :

∑

n

uTMn (UTM
m , Fm(H

2)UTM
n ) + vTEn (UTM

m , Fm(H
2)V TE

n )

V TM
m :

∑

n

uTEn (V TM
m , Fe(E

2)UTE
n ) + vTMn (V TM

m , Fe(E
2)V TM

n )

W TM
m :

∑

n

wTM
n (W TM

m , Fe(E
2)W TM

n ).

(4.6)

Since the scalar products contain the functions Fe(E
2) and Fm(H

2), the remaining
terms do not simplify, and the different modes couple to each other. It seems
as if our modal analysis breaks down, and of course it does if we want an exact
result. Though, we argue that the nonlinearity has its strongest effects in the wave
propagation, i.e., it might be permissible to ignore the nonlinear effect over the cross
section to some extent. We are able to do this in a manner that preserves some of
the coupling between the modes.
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An obvious approach is to expand Fe(E
2) and Fm(H

2) in a Taylor series and ex-
plicitly calculate the corresponding integrals. Since the expressions for E2(x, y, z, t)
and H2(x, y, z, t) are rather complex, we wish to delay this approach for a while.
For a hint of the expressions involved we refer to Appendix A. Instead we suggest to
substitute E2(x, y, z, t) and H2(x, y, z, t) with some suitable functions independent
of the transverse variables x and y, i.e., Ẽ2(z, t) and H̃2(z, t),

{

Fe(E
2) = Fe(Ẽ

2) + [Fe(E
2)− Fe(Ẽ

2)]

Fm(H
2) = Fm(H̃

2) + [Fm(H
2)− Fm(H̃

2)],
(4.7)

and treat the terms in square brackets as perturbations which are ignored. Since the
factors Fe(Ẽ

2) and Fm(H̃
2) are independent of x and y, they can be pulled out of

the scalar products in (4.5) and (4.6), and we can then use orthogonality. Though,
as we show in Section 4.3, we must generally choose a different Ẽ2 and H̃2 for each
expansion function Ψm, which we denote by an index m, Ẽ2

m and H̃2
m. The resulting

equations are deduced from (4.2), (4.3), (4.5) and (4.6) as






























UTE
m : ∂zv

TE
m +

1

c0
∂t

(

Fe(Ẽ
2
m)u

TE
m

)

− λTEm wTE
m = 0

V TE
m : ∂zu

TE
m +

1

c0
∂t

(

Fm(H̃
2
m)v

TE
m

)

= 0

W TE
m :

1

c0
∂t

(

Fm(H̃
2
m)w

TE
m

)

+ λTEm uTEm = 0

(4.8)

for the TE-modes, and






























UTM
m : ∂zv

TM
m +

1

c0
∂t

(

Fm(H̃
2
m)u

TM
m

)

− λTMm wTM
m = 0

V TM
m : ∂zu

TM
m +

1

c0
∂t

(

Fe(Ẽ
2
m)v

TM
m

)

= 0

W TM
m :

1

c0
∂t

(

Fe(Ẽ
2
m)w

TM
m

)

+ λTMm uTMm = 0

(4.9)

for the TM-modes. We see that the equations are strictly hyperbolic2, and the equa-
tion structure is exactly the same for both TE- and TM-modes, only the functions
Fe and Fm must be interchanged.

In the next section we discuss the approximation leading to this result, but we
must first consider an important detail. Each of the systems (4.8) and (4.9) must be
supplemented by three initial conditions (three dependent variables, three equations,
three conditions), but only two initial conditions can be chosen independent of each
other. Since we know that ∇ · B = ∇ · D = 0 inside the waveguide, we must
introduce the additional constraints

−λTEm Fm(H̃
2
m)v

TE
m (z, 0) + ∂z

(

Fm(H̃
2
m)w

TE
m (z, 0)

)

= 0 (4.10)

2A system of partial differential equations ∂tu + A(u)∂zu = 0 is strictly hyperbolic if all
eigenvalues of the matrix A(u) are real and distinct [9, p. 573]. In our case, it can be shown that
there is one positive eigenvalue, one negative eigenvalue and one zero eigenvalue.
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and
−λTMm Fe(Ẽ

2
m)v

TM
m (z, 0) + ∂z

(

Fe(Ẽ
2
m)w

TM
m (z, 0)

)

= 0 (4.11)

to maintain compatibility with the original equations. Note that λTE
m and λTMm

correspond to the x and y derivatives. The above constraints can be reformulated
as

λTEm vTEm (z, 0) = ∂zw
TE
m (z, 0) + ∂z lnFm(H̃

2
m(z, 0)) (4.12)

and
λTMm vTMm (z, 0) = ∂zw

TM
m (z, 0) + ∂z lnFe(Ẽ

2
m(z, 0)), (4.13)

which may be nontrivial to satisfy. These constraints can also be derived from the
last two lines in (4.8) and (4.9), respectively.

4.3 Estimate of the approximation

To estimate the approximation we made in the previous section, we look at the
electric field only. We use a Taylor expansion of the function Fe(Ẽ

2
m) in the vicinity

of the (so far) unknown argument Ẽ2
m. Since the explicit representation of E2 = E·E

is rather complicated if we use the expansion functions UTE
n , V TM

n and W TM
n (see

Appendix A), we formulate the expansion of the electric field in a somewhat more
abstract, but compact, manner,

E =
∑

n

fn(z, t)En(x, y) ⇒ E2 = E ·E =
∑

kl

fkflEk ·El, (4.14)

where (Em,En) = δmn, i.e., we drop the distinction between functions having or not
having a z-component. This means the index n also includes variations of TE- and
TM-modes etc. The error we wish to estimate is formulated as the scalar product

(Em, [Fe(E
2)− Fe(Ẽ

2
m)]E), (4.15)

and upon expanding Fe(E
2) in a Taylor series we see that this term is at most

O(F ′′
e (Ẽ

2)
∫∫

Ω
(E2 − Ẽ2)2E dx dy) if

F ′
e(Ẽ

2)(Em, [E
2 − Ẽ2

m]E) = 0. (4.16)

This can be accomplished by choosing

Ẽ2
m =

1

fm
(Em, E

2E) =
∑

nkl

fkflfn
fm

(Em,Ek ·ElEn), (4.17)

which of course is the exact result for a Kerr material, i.e., Fe(E
2) = 1 + E2. For

other materials this represents an approximation to the first order in a Taylor series
expansion of the constitutive function Fe(E

2), and we see that this choice of Ẽ2
m is

equivalent to the Taylor expansion suggested on page 81. However, by delaying the
introduction of the Taylor expansion until this stage, we have gained an opportunity
to make other choices of Ẽ2

m, depending on the situation at hand.
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Figure 2: The parallel plate waveguide.

It is clear that we in general must choose a different Ẽ2
m for different Em. We

can calculate the scalar products (Em,Ek ·ElEn) analytically for a few geometries,
especially the rectangular and the parallel plate waveguide. For general geometries,
we must resort to numerical calculations of the scalar products. In the following sec-
tion, we show that even when we can calculate everything analytically, the problem
is still quite a challenge.

5 Parallel plate waveguide with non-magnetic ma-

terial

We analyze one of the simplest possible waveguides, i.e., the parallel plate waveguide
filled with a non-magnetic material. The geometry is depicted in Figure 2, and the
expansion functions are
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)ŷ

0

)

, UTM
n =

(

0
√

2
d
cos(nπx

d
)ŷ

)

,

V TE
n =

(

0
√

2
d
sin(nπx

d
)x̂

)

, V TM
n =

(

√

2
d
cos(nπx

d
)x̂

0

)

,

W TE
n =

(

0
√

2
d
cos(nπx

d
)ẑ
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d
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d
)ẑ
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.

(5.1)

If the two plates are held at different potentials, we also have the TEM-mode,

UTEM =

(

√

1
d
x̂

0

)

, V TEM =

(

0
√

1
d
ŷ

)

, W TEM =

(

0

0

)

, (5.2)

but we assume the TEM-mode to be absent in this section. The full expansion of
the scalar products (Em,Ek ·ElEn) with arbitrary expansion functions is given in
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appendix A. The only non-zero scalar products we need to compute are

(UTE
m ,UTE

k ·UTE
l UTE

n ) = (UTE
m ,W TM

k ·W TM
l UTE

n )

= (W TM
m ,UTE

k ·UTE
l W TM

n ) = (W TM
m ,W TM

k ·W TM
l W TM

n )

=
4

d2

∫ d

x=0

sin
mπx

d
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kπx

d
sin

lπx

d
sin

nπx

d
dx

=
1

2d
[−δm,k+l+n + δm,−k+l+n + δm,k−l+n − δm,−k−l+n
+ δm,k+l−n − δm,−k+l−n − δm,k−l−n + δm,−k−l−n],

(5.3)

and

(UTE
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n ) = (W TM
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=
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d
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d
cos

lπx

d
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d
dx

=
1

2d
[δm,k+l+n + δm,−k+l+n + δm,k−l+n + δm,−k−l+n

− δm,k+l−n − δm,−k+l−n − δm,k−l−n − δm,−k−l−n],

(5.4)

and

(V TM
m ,UTE

k ·UTE
l V TM

n ) = (V TM
m ,W TM

k ·W TM
l V TM

n )

=
4

d2

∫ d

x=0

cos
mπx

d
sin

kπx

d
sin

lπx

d
cos

nπx

d
dx

=
1

2d
[−δm,k+l+n + δm,−k+l+n + δm,k−l+n − δm,−k−l+n
− δm,k+l−n + δm,−k+l−n + δm,k−l−n − δm,−k−l−n].

(5.5)

It is now clear that, even for the simplest cases, we have a formidable problem. For
instance, we see that each mode generally couple to infinitely many others, some-
times with a nondecreasing coupling factor. This means that in order to proceed,
we should impose some more restrictions on the problem.

6 Dominant TE mode in a non-magnetic material

In the previous section it is shown that (4.17) is quite complicated to handle ex-
plicitly. In this section, we look at a simplified case for a nonmagnetic material
(Fm(H

2) = 1), where almost all the energy is contained in the first TE-mode, which
we denote TE1. This mode is chosen since it generally corresponds to the lowest
eigenvalue λ1 [7, p. 410], and should be the easiest to generate. The assumption of
a dominant TE1 mode implies

|uTE1 |, |vTE1 |, |wTE
1 | À all other expansion coefficients. (6.1)

The expansion coefficients vTE1 and wTE
1 are associated with the magnetic field, and

do not enter our calculations below. Therefore we study only the case |uTE1 | → ∞.
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6.1 Leading terms for UTE
m

With the above assumption on the relative sizes of the expansion coefficients, we
deduce in Appendix A.3 that the leading term for the dominant mode UTE

1 is

Ẽ2
u1 = (uTE1 )2αu1, (6.2)

where the index “u1” is used to indicate the relation to the expansion function UTE
1 .

For the other TE-modes, we have

Ẽ2
um = (uTE1 )2αum +

(uTE1 )3

uTEm
βum +O(uTE1 uTEm ), (6.3)

and the constants αu1, αum and βum are defined in Appendix A.3 as
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αu1 =

∫∫

Ω

|∇Tφ
TE
1 |4 dx dy

αum =

∫∫

Ω

|∇Tφ
TE
m |2|∇Tφ

TE
1 |2 dx dy + 2

∫∫

Ω

|∇Tφ
TE
m · ∇Tφ

TE
1 |2 dx dy

βum =

∫∫

Ω

∇Tφ
TE
m · ∇Tφ

TE
1 |∇Tφ

TE
1 |2 dx dy

(6.4)

Notice that the first term in Ẽ2
um is one order less in uTE1 than the second. This term

is needed since the second will cancel in the wavespeed factor. As soon as βum 6= 0,
the second term can be very large for infinitesimal uTEm . This is the origin of the
mode coupling, and causes the excitation of new modes which were not present in
the beginning. This is made more clear in the sections to follow. Figure 3 shows
the distribution of this factor for the rectangular and circular waveguides.

In Section 4.2 we ignored the time derivative in order to calculate a scalar prod-
uct. It is now time to bring that operator back to life, and calculate the time

derivative ∂t

(

Fe(Ẽ
2
um)u

TE
m

)

. For the dominant mode this is

∂t

(

Fe(Ẽ
2
u1)u

TE
1

)

= ∂t
(

Fe((u
TE
1 )2αu1)u

TE
1

)

= [Fe(Ẽ
2
u1) + 2F ′

e(Ẽ
2
u1)(u

TE
1 )2αu1]∂tu

TE
1

(6.5)

and for the other TE-modes it is

∂t

(

Fe(Ẽ
2
um)u

TE
m

)

= ∂t

(

Fe

(

(uTE1 )3

uTEm
βum + (uTE1 )2αum

)

uTEm

)

= [Fe(Ẽ
2
um)− F ′

e(Ẽ
2
um)

(uTE1 )3

uTEm
βum]∂tu

TE
m

+ F ′
e(Ẽ

2
um)[3(u

TE
1 )2βum + 2uTE1 uTEm αum]∂tu

TE
1 .

(6.6)

Expanding Fe(Ẽ
2
um) in a Taylor series suggests that Fe(Ẽ

2
um)−F ′

e(Ẽ
2
um)

(uTE
1 )3

uTE
m

βum ≈
Fe((u

TE
1 )2αum), i.e., the factor multiplying ∂tu

TE
m should be approximated without
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Figure 3: The distribution of the amplitude of the coupling factor |βum| for a
waveguide with rectangular (left) and circular (right) cross section. The index m is
in both cases composed of two indices (mx and my for the rectangular waveguide,
and m and n for the circular). The tall bars correspond to αu1.

any dependence on uTEm . This implies

∂t

(

Fe(Ẽ
2
um)u

TE
m

)

= Fe((u
TE
1 )2αum)∂tu

TE
m

+ F ′
e(Ẽ

2
um)[3(u

TE
1 )2βum + 2uTE1 uTEm αum]∂tu

TE
1 , (6.7)

i.e., the wave speed for TE-mode m depends only on the dominant mode. As is
shown in the next section, this is valid for the TM-modes as well.

6.2 Leading terms for V TM
m and W TM

m

In Appendix A.3 it is shown that the leading term for V TM
m has the exact same

structure as for Ẽ2
vm,

Ẽ2
vm = (uTE1 )2αvm +

(uTE1 )3

vTMm
βvm, (6.8)

where the constants αvm and βvm are integrals similar to αum and βum. Calculations
analogous to the previous subsection give

∂t

(

Fe(Ẽ
2
vm)v

TM
m

)

= Fe((u
TE
1 )2αvm)∂tv
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+ F ′
e(Ẽ

2
vm)[3(u

TE
1 )2βvm + 2uTE1 vTMm αvm]∂tu

TE
1 . (6.9)

Appendix A.3 also shows that the leading term for W TM
m is

Ẽ2
wm = (uTE1 )2αwm, (6.10)
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where the constants αwm are integrals similar to αum. Finally, we have the time
derivative

∂t

(

Fe(Ẽ
2
wm)w

TM
m

)

= Fe(Ẽ
2
wm)∂tv

TM
m + 2F ′

e(Ẽ
2
wm)u

TE
1 wTM

m αwm∂tu
TE
1 . (6.11)

Here, the factor multiplying ∂tw
TM
m is explicitly independent of wTM

m .

6.3 Resulting equations for a dominant TE mode

The equations for the dominant mode is

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and
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2
um)[3(u

TE
1 )2βum + 2uTE1 uTEm αum]

1

c0
∂tu

TE
1

∂zu
TE
m +

1

c0
∂tv

TE
m = 0

1

c0
∂tw

TE
m + λTEm uTEm = 0

(6.13)

for the rest of the TE-modes. For the TM-modes, we have
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(6.14)

Some conclusions from these equations are

• The model is suitable when the dominant mode is not affected by the minor
modes. It is modeled by a system of quasi-linear partial differential equations
without source terms, which can be reduced to the scalar problem −∂2zu +
∂2t (F (u

2)u) + λ2u = 0.

• The minor modes travel through an inhomogeneous medium with source terms.
Both the inhomogeneity and the source terms are induced by the dominant
mode.
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6.4 Energy for the dominant mode

By multiplying the first, second and third equation in (6.12) by uTE1 , vTE1 and wTE
1 ,

respectively, and adding the equations, we obtain

∂z(u
TE
1 vTE1 ) + uTE1

1

c0
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Fe((u
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)

+
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c0
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2
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2

)

= 0. (6.15)

After some algebra, we find that this can be written as

∂z(u
TE
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1
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G((uTE1 )2αu1)

αu1

+
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2
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)
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if we introduce the energy density function

G((uTE1 )2αu1) = αu1

∫ uTE
1

0

[Fe(u
2αu1) + 2F ′

e(u
2αu1)u

2αu1]u du

=
1

2

∫ (uTE
1 )2αu1

0

[Fe(x) + 2F ′
e(x)x] dx.

(6.17)

This is exactly the energy density for propagation in an unbounded medium; the
influence of the waveguide is reduced to a scaling constant αu1. The energy density
function can be calculated explicitly for some common cases. For the Kerr medium,
where Fe(E

2) = 1 + E2, we have

G(u2) =
1

2
u2 +

3

4
u4. (6.18)

It is easy to show that for a medium where Fe can be expanded in a polynomial series,
the energy density can be expressed in a related series. Another medium which has
been used is the saturated Kerr medium [13, 21, 22], where Fe(E

2) = 1+E2/(1+E2).
The energy density for this medium is

G(u2) =
1

2

(

2u4

1 + u2
+ ln(1 + u2)

)

. (6.19)

Integrating (6.16) over z and 0 ≤ t ≤ T , we have
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(6.20)

since the parts associated with the z derivative correspond to the field values at
infinity, and can be assumed to disappear for finite times T . This means that the
energy of the dominant mode is conserved in this approximation.
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6.5 Estimate of the mode-spreading

We have shown that one of the most distinct features of nonlinearity in propagation
of guided waves is that the modes are no longer independent, but rather couple in an
intricate manner. In the case of a dominant mode, this coupling appears as creating
inhomogeneities and source terms for the minor modes. In this section we estimate
how fast these minor modes grow when the dominant mode is known.

We refrain from using the explicit representation of the source terms in equations
(6.12), (6.13) and (6.14), and return to the generic case
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where Ẽ2
um = αum(u

TE
1 )2 + βum

(uTE
1 )3
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. The differential energy equation is now
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For the dominant mode, we found a total energy, i.e., a total time derivative. This
is no longer possible, but a step in the desired direction is
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Integrating this equation over z, implies
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(6.24)

where the last line follows only if we do not have any shocks, i.e., the time derivative
is bounded. If we assume the supremum is given by the dominating mode only, we
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can apply Grönwall’s inequality (see e.g., [9, p. 624]), to find
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This seems to imply that if we put no energy in this mode from the start, it will stay
silent! Though, as we clearly see in the first line of (6.13), there is a source term
which depends solely on uTE1 and initiates the minor modes. The estimate (6.25) is
simply not valid in the limit uTEm → 0, since
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(6.26)

Thus, we can expect a relatively rapid growth when uTEm is very small and βum 6= 0.
In the case of the parallel plate waveguide, it is easily seen that the coupling factor
is βum = Cδm,3.

7 Conclusions and discussion

The coupling between the modes produces equations for a general mode analysis
which are hard to analyze. By adding the assumption of a dominant mode, we
obtain a tractable problem. The dominant mode is described by a nonlinear system
of homogeneous partial differential equations, and the minor modes are described
by a linear system of inhomogeneous partial differential equations. The equations
describing the propagation of the dominant mode are inert with respect to the minor
modes, and should be object for further studies.

There is always a mode spreading present. The mechanisms behind this must be
examined further. Some open questions are: 1) is there an equilibrium in the mode
distribution, 2) when is the mode spreading strong enough to influence the dominant
mode, and 3) how fast do the minor modes grow? It should be stressed that the
relative ease of implementing a finite difference algorithm for the three-dimensional
analysis of a rectangular waveguide makes the numerical study of the “true” mode
spreading possible.

Since we have used the common waveguide modes for the analysis, the equations
derived in this paper may be of interest in a mode matching algorithm, especially
for the inverse scattering problem. A remaining problem is the propagation through
the boundary between a nonlinear material and, e.g., vacuum.
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Appendix A Explicit representations of Ẽ2
m

In Section 4.3 we derived the expression

Ẽ2
m =

∑

kln

fkflfn
fm

(Em,Ek ·ElEn) (A.1)

if the electric field is expanded in orthonormal basis functions En. Though, in order
to derive the propagation equations for the modes, we use the expansion

(

E

H

)

=
∑

n

uTEn UTE
n + vTEn V TE

n + wTE
n W TE

n

+uTMn UTM
n + vTMn V TM

n + wTM
n W TM

n ,

(A.2)

where UTE
n , V TM

n and W TM
n are associated with the electric field and UTM

n , V TE
n

and W TE
n are associated with the magnetic field. For the sake of completeness in

our presentation, we give the formulas for Ẽ2
m related to each of these expansion

functions in this appendix. We also replace the index m with the indices um, vm
and wm, depending on if the basis function Em is UTE

m , V TE
m or W TE

m .
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A.1 Electric field

Expansion function UTE
m :
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∑
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(A.3)
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Expansion function V TM
m :

Ẽ2
vm =

∑

kln

uTEk uTEl uTEn
vTMm

(V TM
m ,UTE

k ·UTE
l UTE

n )

+
∑

kln

vTMk uTEl uTEn
vTMm

(V TM
m ,V TM

k ·UTE
l UTE

n )

+
∑

kln

uTEk vTMl uTEn
vTMm

(V TM
m ,UTE

k · V TM
l UTE

n )

+
∑

kln

vTMk vTMl uTEn
vTMm

(V TM
m ,V TM

k · V TM
l UTE

n )

+
∑

kln

wTM
k wTM

l uTEn
vTMm

(V TM
m ,W TM

k ·W TM
l UTE

n )

+
∑

kln

uTEk uTEl vTMn
vTMm

(V TM
m ,UTE

k ·UTE
l V TM

n )

+
∑

kln

vTMk uTEl vTMn
vTMm

(V TM
m ,V TM

k ·UTE
l V TM

n )

+
∑

kln

uTEk vTMl vTMn
vTMm

(V TM
m ,UTE

k · V TM
l V TM

n )

+
∑

kln

vTMk vTMl vTMn
vTMm

(V TM
m ,V TM

k · V TM
l V TM

n )

+
∑

kln

wTM
k wTM

l vTMn
vTMm

(V TM
m ,W TM

k ·W TM
l V TM

n ).

(A.4)

Expansion function W TM
m :

Ẽ2
wm =

∑

kln

uTEk uTEl wTM
n

wTM
m

(W TM
m ,UTE

k ·UTE
l W TM

n )

+
∑

kln

vTMk uTEl wTM
n

wTM
m

(W TM
m ,V TM

k ·UTE
l W TM

n )

+
∑

kln

uTEk vTMl wTM
n

wTM
m

(W TM
m ,UTE

k · V TM
l W TM

n )

+
∑

kln

vTMk vTMl wTM
n

wTM
m

(W TM
m ,V TM

k · V TM
l W TM

n )

+
∑

kln

wTM
k wTM

l wTM
n

wTM
m

(W TM
m ,W TM

k ·W TM
l W TM

n ).

(A.5)
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A.2 Magnetic field

Simply exchange TE for TM and vice versa in the formulas in the previous section
to obtain H̃2.

A.3 Derivation of leading terms for a dominant TE-mode

In Section 6 it was required to deduce the leading terms in the previous expressions
when uTE1 is much greater than the other expansion coefficients.

A.3.1 Expansion function UTE
m

The terms in (A.3) proportional to at least (uTE1 )2 are

Ẽ2
um =

uTE1 uTE1 uTE1
uTEm

(UTE
m ,UTE

1 ·UTE
1 UTE

1 )

+
∑

k 6=1

uTEk uTE1 uTE1
uTEm

(UTE
m ,UTE

k ·UTE
1 UTE

1 )

+
∑

l 6=1

uTE1 uTEl uTE1
uTEm

(UTE
m ,UTE

1 ·UTE
l UTE

1 )

+
∑

n6=1

uTE1 uTE1 uTEn
uTEm

(UTE
m ,UTE

1 ·UTE
1 UTE

n )

+
∑

k 6=1

vTMk uTE1 uTE1
uTEm

(UTE
m ,V TM

k ·UTE
1 UTE

1 )

+
∑

l 6=1

uTE1 vTMl uTE1
uTEm

(UTE
m ,UTE

1 · V TM
l UTE

1 )

+
∑

n6=1

uTE1 uTE1 vTMn
uTEm

(UTE
m ,UTE

1 ·UTE
1 V TM

n ).

(A.6)

In Appendix B we show that in general these scalar products are small if the free
index in the sums is much separated from m. Therefore, we expect the sums in the
above expression for Ẽ2

m can be estimated by the terms given by k = l = n = m.
For m = 1 this means

Ẽ2
u1 = (uTE1 )2(UTE

1 ,UTE
1 ·UTE

1 UTE
1 )

= (uTE1 )2αu1,
(A.7)

where

αu1 =

∫∫

Ω

|∇Tφ
TE
1 |4 dx dy. (A.8)
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For m 6= 1 we have

Ẽ2
um =

(uTE1 )3

uTEm
(UTE

m ,UTE
1 ·UTE

1 UTE
1 )

+ (uTE1 )2
[

(UTE
m ,UTE

1 ·UTE
1 UTE

m ) + 2(UTE
m ,UTE

m ·UTE
1 UTE

1 )
]

=
(uTE1 )3

uTEm
βum + (uTE1 )2αum,

(A.9)

where

αum =

∫∫

Ω

|∇Tφ
TE
m |2|∇Tφ

TE
1 |2 dx dy + 2

∫∫

Ω

|∇Tφ
TE
m · ∇Tφ

TE
1 |2 dx dy (A.10)

and

βum =

∫∫

Ω

∇Tφ
TE
m · ∇Tφ

TE
1 |∇Tφ

TE
1 |2 dx dy. (A.11)

We see that αu1 and αum are positive, whereas βum is not that easily analyzed.

A.3.2 Expansion functions V TM
m and W TM

m

A similar analysis as in the previous section implies that the leading terms for V TM
m

are

Ẽ2
vm =

(uTE1 )3

vTMm
(V TM

m ,UTE
1 ·UTE

1 UTE
1 )

+ (uTE1 )2
[

(V TM
m ,UTE

1 ·UTE
1 V TM

m ) + 2(V TM
m ,UTE

1 · V TM
m UTE

1

]

=
(uTE1 )3

vTMm
βvm + (uTE1 )2αvm

(A.12)

where

αvm =

∫∫

Ω

|∇Tφ
TM
m |2|∇Tφ

TE
1 |2 dx dy + 2

∫∫

Ω

|∇Tφ
TM
m ×∇Tφ

TE
1 |2 dx dy (A.13)

and

βvm =

∫∫

Ω

ẑ · (∇Tφ
TM
m ×∇Tφ

TE
1 )|∇Tφ

TE
1 |2 dx dy. (A.14)

The leading term for W TM
m is

Ẽ2
wm =(uTE1 )2(W TM

m ,UTE
1 ·UTE

1 W TM
m )

= (uTE1 )2αwm,
(A.15)

where

αwm =

∫∫

Ω

|λTMm φTMm |2|∇Tφ
TE
1 |2 dx dy. (A.16)
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Appendix B Decay of a scalar product

In this paper, we have often come across scalar products of the form (UTE
m ,UTE

k ·
UTE

l UTE
n ), where UTE

m is a real-valued expansion function satisfying Helmholtz’
equation in the plane. To analyze the case with a dominant TE1-mode, we must
make some estimate of this scalar product when two of the indices k, l, and n
are equal to one. The canonical problem for this consists in calculating the scalar
products

∫∫

Ω

φ21φmφn dx dy (B.1)

where the scalar functions φk satisfy the Helmholtz’ equation

∇2
Tφk + λ2kφk = 0, (B.2)

with Dirichlet or Neumann boundary conditions. The λk:s are assumed to be non-
degenerate, positive and arranged in ascending order, i.e., 0 < λ1 < λ2 < . . . We
choose the functions to be normalized as

∫∫

Ω

|φk|2 dx dy =

∫∫

Ω

∣

∣

∣

∣

∇Tφk
λk

∣

∣

∣

∣

2

dx dy = 1, (B.3)

which is not the normalization used previously in the paper for the eigenfunctions
φTEk , but simplifies the notation in this appendix. If m 6= n we use the Helmholtz’
equation to conclude
∣

∣

∣

∣

∫∫

Ω

φ21φmφn dx dy

∣

∣

∣

∣

=
1

|λ2m − λ2n|

∣

∣

∣

∣

∫∫

Ω

φ21[−φn∇2
Tφm + φm∇2

Tφn] dx dy

∣

∣

∣

∣

=
1

|λ2m − λ2n|

∣

∣

∣

∣

∫∫

Ω

∇Tφ
2
1 · [φn∇Tφm − φm∇Tφn] dx dy

∣

∣

∣

∣

≤ supΩ |∇Tφ
2
1|

|λ2m − λ2n|

∫∫

Ω

|φn∇Tφm − φm∇Tφn| dx dy.

(B.4)

Using Cauchy’s inequality the last line can be estimated by

supΩ |∇Tφ
2
1|

|λ2m − λ2n|

[

λm

∫∫

Ω

∣

∣

∣

∣

φn
∇Tφm
λm

∣

∣

∣

∣

dx dy + λn

∫∫

Ω

∣

∣

∣

∣

φm
∇Tφn
λn

∣

∣

∣

∣

dx dy

]

≤ supΩ |∇Tφ
2
1|

|λ2m − λ2n|

[

λm
2

∫∫

Ω

(

|φn|2 +
∣

∣

∣

∣

∇Tφm
λm

∣

∣

∣

∣

2
)

dx dy

+
λn
2

∫∫

Ω

(

|φm|2 +
∣

∣

∣

∣

∇Tφn
λn

∣

∣

∣

∣

2
)

dx dy

]

=
supΩ |∇Tφ

2
1|

|λ2m − λ2n|
(λm + λn)

=
supΩ |∇Tφ

2
1|

|λm − λn|
.

(B.5)

In two dimensions the eigenvalue λn grow approximately as the square root of
the index n [7, p. 442], which implies the scalar product decays approximately
as 1/|√m−√n| for large indices.
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Abstract

Shock waves are discontinous solutions to quasi-linear partial differential
equations, and can be studied through a singular perturbation known as the
vanishing viscosity technique. The vanishing viscosity method is a means
of smoothing the shock, and we study the case of electromagnetic waves in
bianisotropic materials. We derive the conditions arising from this smoothing
procedure for a traveling wave, and the waves are classified as fast, slow or
intermediate shock waves.

1 Introduction

Electromagnetic waves propagating in an instantaneously reacting material can be
modeled with a system of quasi-linear, partial differential equations. It is well known
that such a model can exhibit shock solutions, i.e., solutions which become discon-
tinuous in finite time even if the initial/boundary data are smooth. This poses
severe problems for numerical methods, such as finite difference schemes, which are
often based on the assumption of continuous and differentiable solutions.

In order to overcome this problem, we can model the material on a finer scale,
which requires a denser grid and thus increases the memory demands and the com-
putation time. Another approach, is to develop more powerful numerical methods,
which can handle discontinuous solutions. The development of these numerical
schemes benefits from an understanding of the propagation of shock waves; for in-
stance, Godunov’s scheme is based on the solution of Riemann’s problem [14, 15],
where the shock wave is generated by discontinuous initial data. A variation of
Godunov’s scheme is Glimm’s scheme, which is used to show global existence of
solutions to certain systems of equations [13, 20].

The aim of this paper is to increase the understanding of electromagnetic shock
waves, modeled with the Maxwell equations. Mainly using techniques from [31],
we analyze the wave propagation in bianisotropic materials, i.e., materials with
different properties for different polarizations of the waves, and a possible coupling
between the electric and the magnetic field [23, p. 7]. This adds insight not only
to the numerical treatment of electromagnetic waves in complicated materials, but
also provides some physical intuition.

The Maxwell equations can be considered as a hyperbolic system of conservation
laws. A good introduction to the numerical approximation of such systems is given
in [14], which introduces the analytical theory as well as some common schemes in
one and two spatial dimensions. There is presently not a good mathematical un-
derstanding of systems of conservation laws in several dimensions, but some general
references are [7, 14, 20, 30, 34].

Perhaps the most familiar kind of “electromagnetic” shock wave is in the field of
magnetohydrodynamics, from which we give only a few references [1, 6, 10, 12, 17],
[25, pp. 245–253]. Electromagnetic shock waves in isotropic media have previously
been treated theoretically, see [25, pp. 388–391], [2] and references therein. Re-
cently, a few papers on experiments concerning electromagnetic shock waves have
been published [3, 4, 8]. In continuum mechanics, G. A. Maugin has recognized the
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similarity between shock waves and phase transition fronts as singular sets in irre-
versible motion, with a dissipation related to the power expanded by a driving force
on the singularity set, see [27, 28].

In this paper, we study when the shock waves can be defined as the limit of
continuous traveling wave solutions to an approximate problem, where the discon-
tinuity is smoothed over a small region. This is the shock structure problem, which
was introduced by Gel’fand [11], and is given an extensive treatment in [33]. A thor-
ough treatment of this problem in magnetohydrodynamics is found in [10], and a
recent paper deals with the structure of electromagnetic shock waves in anisotropic
ferromagnetic media [19].

This paper is organized as follows. In Section 2 we introduce the Maxwell equa-
tions and the constitutive relations used to model the electromagnetic waves, as well
as the general form of the entropy condition. In Section 3 we present the vanishing
viscosity method of smoothing the solutions of quasi-linear, hyperbolic equations.
The consequences of the vanishing viscosity method for traveling waves are studied
in Sections 4 and 5, where we show that there exists three kinds of electromagnetic
shock waves: the fast, the slow, and the intermediate shock wave. In Section 6 we
also mention another form of dicontinuous solutions, contact discontinuities, which
cannot be analyzed with the vanishing viscosity method for traveling waves. How-
ever, they exist only under the condition of linear degeneracy, and we present this
condition and its opposite, genuine nonlinearity, in Section 6. The different kinds
of shock waves are illustrated with phase portraits of a certain system of ordinary
differential equations in Section 7, and some concluding remarks are made in Sec-
tion 8.

2 The Maxwell equations, constitutive relations

and the entropy condition

In this paper we use a slight modification of the Heaviside-Lorentz units for our fields
[21, p. 781], i.e., all electromagnetic fields are scaled to units of

√

energy/volume,
{

E =
√
ε0ESI

H =
√
µ0HSI

{

D = 1/
√
ε0DSI

B = 1/
√
µ0BSI,

(2.1)

where E andH is the electric and magnetic field strength, respectively, and D and
B is the electric and magnetic flux density, respectively. The index SI is used to
indicate the field in SI units. We use the scaled time t = c0tSI, where c0 = 1/

√
ε0µ0

is the speed of light in vacuum, and the constants ε0 and µ0 are the permittivity
and permeability of free space, respectively. The six-vector notation from [18, 31],
i.e.,

e =

(

E

H

)

, d =

(

D

B

)

, ∇× J =

(

0 −∇× I
∇× I 0

)

, (2.2)

enables us to write the source free Maxwell equations in the compact form

∇× Je+ ∂td = 0. (2.3)
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In this paper we treat the six-vectors as column vectors, i.e., we write the scalar
product as eTd =

∑6
i=1 eidi. This is merely for notational convenience and does not

capture the full mathematical structure, which is not needed here. On occasions, we
also consider the scalar product between two three-vectors, in which case we use the
standard notation E ·D =

∑3
i=1EiDi. For more ambitious attempts to construct

a six-vector notation, we refer to [18, 26].
The Maxwell equations must be supplemented by a constitutive relation, whose

purpose is to model the interaction of the electromagnetic field with the material.
When the material reacts very fast to stimulance, we can model it with an instan-
taneous constitutive model, where the values of the electric flux density D and the
magnetic flux density B are completely determined by the values of the electric field
strength E and magnetic field strengthH at the same point in spacetime. We write
this as

d(r, t) = d(e(r, t)), (2.4)

where d(e) is the gradient of a scalar function φ(e) with respect to e, i.e., in
terms of thermodynamics, the field gradient of the thermodynamic potential (or
the free energy density or the free enthalpy density) [5, 25]. We use the notation
d(e) = φ′(e) to denote this derivative, i.e., di(e) = ∂φ/∂ei, i = 1, . . . , 6. The
model is passive if we require that the symmetric 6×6 matrix d ′(e) = φ′′(e), where
[d ′(e)]ij = ∂2φ/∂ei∂ej, is a positive definite matrix, which is the case if the scalar
function φ(e) is a convex function.

The initial value problem for the Maxwell equations with an instantaneously
reacting constitutive model is

∇× Je+ d ′(e)∂te = 0, e(x, 0) = e0(x), (2.5)

and since d ′(e) is positive definite and symmetric, this is by definition a quasi-
linear, symmetric, hyperbolic system of partial differential equations [34, p. 360].
This system has been extensively studied in [31], where it is shown that the equations
in general support two waves, the ordinary and the extraordinary wave, each with
its own refractive index.

Due to the quasi-linearity, the system (2.5) may exhibit shock solutions, i.e.,
even if we give smooth initial data, the solution becomes discontinuous in finite
time. This means that the derivatives cannot be classically defined everywhere, but
we can make a weak formulation of the problem by requiring the equality

∫ ∞

0

∫

R3

[eT∇× Jϕ+ d(e)T∂tϕ] dV dt+

∫

R3

d(e0)
Tϕ(x, 0) dV = 0 (2.6)

to hold for all six-vector test functions ϕ defined on R3 × [0,∞), i.e., vector-valued
functions which are infinitely differentiable with compact support. One problem
with this weak formulation is that we lose uniqueness, i.e., there are several weak
solutions e which satisfy the above criteria.

If the solution e to (2.5) is smooth, we can multiply the equations from the left
by eT to obtain the Poynting theorem, or energy conservation law,

∇ · S(e) + ∂tη(e) = 0, (2.7)
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where S(e) = E ×H is the Poynting vector, and η(e) = eTd(e) − φ(e) is the
electromagnetic energy. When the solution e is not smooth, this inequality is no
longer valid since the derivatives are not defined in the classical sense. However, as
is shown in [32], it is reasonable to replace it with the inequality

∇ · S(e) + ∂tη(e) ≤ 0, (2.8)

which is interpreted in a weak sense, i.e., for all scalar test functions ϕ ≥ 0 defined
on R3 × [0,∞), the inequality

∫ ∞

0

∫

R3

[S(e) · ∇ϕ+ η(e)∂tϕ] dV dt+

∫

R3

η(e0)ϕ(x, 0) dV ≥ 0 (2.9)

holds. The inequality (2.8) is called an entropy inequality, and if e satisfies both
(2.8) and (2.5), it is called an entropy solution. It is frequently conjectured that
entropy solutions are unique [14, p. 32], and we refer to [32] for a discussion of the
physical interpretation of this inequality. In the following section, we show how the
entropy inequality is a natural consequence of the vanishing viscosity method.

3 Vanishing viscosity regularization

The loss of uniqueness for the weak solution is important to resolve if we want to
make numerical approximations of the differential equations. This problem has been
extensively studied for scalar conservation laws and systems of conservation laws in
one space variable [9, 14, 20, 33, 34], where the conservation law is typically written
∂tu+

∑

i ∂xi
fi(u) = 0. The knowledge of systems of conservation laws in several space

variables is limited, but a common assumption is that reasonable (physical) solutions
should arise as limits to the regularized equation ∂tuδ+

∑

i ∂xi
fi(uδ) = δ∇2uδ, when

δ → 0. Since the second order derivative is often used as a model for a small
viscous effect, this method is called the vanishing viscosity method. The benefit of
the vanishing viscosity method is that for each δ > 0 we can usually prove that the
initial value problem is well posed, with unique, differentiable solutions. We can
define a unique limit u as δ → 0 if we can find a convergent sequence of solutions
{uδ}. However, this limit u must also be shown to satisfy the original conservation
law, which is often nontrivial. For systems of conservation laws in several dimensions,
this is still an unsolved problem [30].

We propose to use a similar method to define solutions to our quasi-linear system
of equations, where we study the equations

∇× Jeδ + ∂td(eδ) = δ∇2eδ, eδ(x, 0) = e0(x), δ > 0. (3.1)

Standard PDE theory guarantees a C∞ solution eδ to this equation for every δ > 0
for suitable e0, see [34, pp. 327–332]. An important result is that if the viscosity
solution eδ converges boundedly almost everywhere in the limit δ → 0, the limit
satisfies the entropy condition from the previous section. To see this, multiply (3.1)
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with eδ and observe










eTδ ∂td(eδ) = ∂t(e
T
δ d(eδ)− φ(eδ)) = ∂tη(eδ)

eTδ∇× Jeδ = ∇ · (Eδ ×Hδ) = ∇ · S(eδ)
eTδ∇2eδ = −|∇eδ|2 +∇2|eδ|2/2,

(3.2)

where η(eδ) is the electromagnetic energy in the medium and S(eδ) is the Poynting
vector. Note that all the derivatives are classically defined, and we have the following
scalar inequality,

∇ · S(eδ) + ∂tη(eδ) ≤ δ∇2|eδ|2/2. (3.3)

It can be shown that if eδ is uniformly bounded in the supremum norm and converges
almost everywhere to e as δ → 0, then this limit solution e is a weak solution to
(2.5) and satisfies the inequality

∇ · S(e) + ∂tη(e) ≤ 0 (3.4)

almost everywhere, see [14, p. 27] and [34, p. 438]. In the following sections, we
study the consequences of the vanishing viscosity method in the case of traveling
waves, which provides us with a more precise means of writing the entropy condition.

4 Inner solutions and shock structure

In this section we largely follow the ideas presented in many textbooks, e.g., [9, pp.
600–603], [14, pp. 79–83], [33, pp. 508–510] and [34, p. 431]. Dropping the index δ
for brevity, we investigate the singularly perturbed Maxwell equations (3.1) for the
existence of solutions in the form of traveling waves,

e = e(
z − vt
δ

) = e(ζ), (4.1)

where we have chosen z to be the coordinate in the propagation direction, and v is
the speed of the shock wave. We also require the derivative e′(ζ) to disappear as
ζ → ±∞, and a typical situation is depicted in Figure 1. In the language of singular
perturbation theory [22], the traveling wave corresponds to an inner solution of the
problem (3.1), and is a means of analyzing the microscopic behavior of the solution
at a scale of order δ. The microscopic properties of a number of discontinuities which
are distant at a macroscopic scale can be treated by considering them as isolated
traveling waves of the type (4.1). Observe that ζ → ∞ does not necessarily mean
z →∞, it is sufficient that z > vt and δ → 0.

The traveling wave solution (4.1) must satisfy the ordinary differential equation

ẑ × Je′ − v{d(e)}′ = e′′, (4.2)

where ẑ denotes the unit vector in the z-direction. Observe that this equation does
not involve the parameter δ, reflecting the fact that we are studying properties at a
certain scale. Integrating the above equation once implies

ẑ × Je− vd(e)− e′ = ẑ × Jel,r − vd(el,r)− (e′)l,r, (4.3)
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z

shock transition region

(inner solution)

er

el


(outer solution)

(outer solution)

e

δ

Figure 1: A typical traveling wave profile. The idea is that the inner solution shall
provide a smooth transition between the outer solutions, the left and right constant
states el and er. The solution typically arises in Riemann’s problem, where the
initial values are e(x, 0) = e0(x) = el for z < 0 and er for z > 0.

where el,r = limζ→∓∞ e(ζ). Taking the opposite limit e → er,l in (4.3) implies the
Rankine-Hugoniot jump condition

ẑ × J[[e]]− v[[d(e)]] = 0, (4.4)

where we use the notation [[e]] = er − el and [[d(e)]] = d(er)− d(el) to indicate the
jumps in the quantities e and d(e) over the shock. Note that the Rankine-Hugoniot
condition is a vector identity, and that the jump in d(e) cannot have a component
parallel to ẑ, unless v = 0.

We use the assumption (e′)l,r = 0 to write (4.3) as a system of autonomous,
ordinary differential equations,

e′ = ẑ × J(e− el,r)− v(d(e)− d(el,r)), (4.5)

with the asymptotic boundary conditions limζ→∓∞ e(ζ) = el,r. It is clear that these
states are critical points for the system (4.5), i.e., the right hand side is zero for
these states. In the following section we investigate when the system (4.5) has a
solution, and what conditions this infers on the speed v. The corresponding ODE
for ferromagnets described by the Landau-Lifshitz constitutive equation is studied
in detail in [19] .

5 The entropy condition for a traveling wave

A solution to (4.5) that connects its critical points el and er, where el 6= er, is called
a heteroclinic orbit [29]. Before investigating these orbits, we show that homoclinic
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orbits, i.e., solutions where el = er and e 6= el,r somewhere on the orbit, cannot
exist. Multiplying (4.5) with (e′)T we obtain

0 ≤ |e′|2 =
(

eTẑ × J(
e

2
− el,r)− vφ(e) + veTd(el,r)

)′
= ψ(e)′, (5.1)

which shows there exists a scalar function ψ(e) which is nondecreasing along the
orbit. Such a function must be constant on a homoclinic orbit, implying |e′|2 = 0,
and thus e must be constant throughout the orbit, which degenerates to a point.

The existence of a heteroclinic orbit for the system (4.5) requires that the unsta-
ble manifold of one critical point intersects the stable manifold of the other, where
the unstable and the stable manifold is associated with the positive and the nega-
tive eigenvalues of the linearized problem, respectively. If the heteroclinic orbit is to
be stable under small perturbations, then the sum of the dimensions of the stable
and unstable manifold must exceed the dimension of the phase space [33, p. 509].
In our case, the relevant manifolds are the unstable manifold for el and the stable
manifold for er. The dimensions of these manifolds can be calculated from counting
how many eigenvalues of the linearized equations that are greater/lesser than zero
at each critical point. The linearized equations are

(e− el,r)′ =
[

ẑ × J− vd ′(el,r)
]

(e− el,r). (5.2)

Temporarily denoting the 6 × 6 matrix d ′(el,r) by A, the problem of deducing the
dimension of the stable and unstable manifolds consists in counting positive and
negative eigenvalues for the matrix ẑ × J − vA. Since A is positive definite, the
signs of the eigenvalues are the same as for the problem

[ẑ × J− vA]ui = λiAui ⇒ [ẑ × J− (v + λi)A]ui = 0. (5.3)

Using the same technique as in [31], we formulate this eigenvalue problem as

ciwi =
√
A

−1
[ẑ × J]

√
A

−1
wi, (5.4)

where
√
A is the symmetric, positive definite square root of A, ci = v + λi, and

wi =
√
Aui. The matrix in the right hand side is a congruence transformation of

ẑ × J, and it is well known that such a transformation does not change the signs
of the eigenvalues [16, p. 251]. Since ẑ × J has the (double) eigenvalues ±1 and 0,
there are always two negative eigenvalues c3,4 < 0 and two zero eigenvalues c5,6 = 0.
This implies λ3,4,5,6 ≤ −v < 0. The argument concerning the dimensions of the
stable and unstable manifolds can then involve only the positive eigenvalues c1 and
c2, and the corresponding λ1 and λ2. In order for the sum of the dimension of the
unstable manifold (λ > 0) at el and the dimension of the stable manifold (λ < 0)
at er to be larger than six (the dimension of the phase space), one of the following
conditions must hold:











0 < λ1(e
l) < λ2(e

l) and λ1(e
r) < 0 < λ2(e

r), or

λ1(e
l) < 0 < λ2(e

l) and λ1(e
r) < λ2(e

r) < 0, or

0 < λ1(e
l) < λ2(e

l) and λ1(e
r) < λ2(e

r) < 0.

(5.5)
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Observe that the dimension of the unstable manifold at el is calculated from the
number of positive eigenvalues, i.e., the number of positive eigenvalues in the left
column of (5.5). The dimension of the stable manifold at er is calculated from the
number of negative eigenvalues, i.e., the number of negative eigenvalues in the right
column of (5.5) plus four, since we deduced earlier that λ3,4,5,6 are always negative.

The two positive eigenvalues c1,2 = v + λ1,2 are identified as the characteristic
wave speeds in the material, which are determined from the eigenvalue problem (5.4)
for each state el,r, as in [31]. The speeds are in general functions of both the state, el

or er, and the propagation direction, ẑ, but we choose to suppress the dependence
on the propagation direction since this is constant in this paper.

The conditions on λ1,2 above can be written in terms of the shock speed v and
the characteristic wave speeds c1,2 as











v < c1(e
l) < c2(e

l) and c1(e
r) < v < c2(e

r) (slow shock)

c1(e
l) < v < c2(e

l) and c1(e
r) < c2(e

r) < v (fast shock)

v < c1(e
l) < c2(e

l) and c1(e
r) < c2(e

r) < v (intermediate shock).

(5.6)

These expressions constitute the entropy conditions for electromagnetic, plane shock
waves. The nomenclature “fast shock” and “slow shock” is in accordance with [19]
and [10], and “intermediate shock” is from [10]. Note that the fast and the slow
shock are closely connected to the ordinary and extraordinary rays for anisotropic
materials, see for instance [23, pp. 68–71] and [25, pp. 331–357].

To conclude this section, we note that our entropy condition is analogous to the
Lax entropy condition for an n-dimensional, strictly hyperbolic system of conserva-
tion laws ut + f(u)x = 0. This condition is that there should exist an index k such
that

{

λ1(u
l) < · · · < λk−1(u

l) < v < λk(u
l) < · · · < λn(u

l)

λ1(u
r) < · · · < λk(u

r) < v < λk+1(u
r) < · · · < λn(u

r),
(5.7)

where λ1(u), . . . , λn(u) are the eigenvalues of the n × n matrix f ′(u) and v is the
shock speed (see for instance [9, p. 589], [14, p. 76], [20, p. 61], [33, p. 261]).

6 Genuine nonlinearity and contact discontinu-

ities

When ci(e
l) = ci(e

r) for i = 1 and/or i = 2, one or several of the conditions (5.6)
may not be applicable. This phenomenon occurs for a type of waves called contact
discontinuities, which are characterized by

ci(e
l) = ci(e

r) = ci(e) and ẑ × J(e− el,r)− ci(d(e)− d(el,r)) = 0, (6.1)

for all e ∈ γ, where γ is a smooth curve connecting el to er in R6. Differentiating the
latter condition along the curve γ, implies [ẑ × J− cid ′(e)]ė = 0, where ė denotes
the tangential derivative of e along this curve. This means ė is proportional to the
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eigenvector ei by definition. That the speed is constant on the curve γ can also be
written

0 = ċi = (De ci)
Tė = (De ci)

Tei, (6.2)

where De ci denotes the gradient of the speed ci with respect to the six-vector e, i.e.,
(De ci)k = ∂ci/∂ek. This means that the eigenvector ei must be orthogonal to De ci.
We say the field ei is linearly degenerate if eTi De ci = 0, and genuinely nonlinear if
eTi De ci 6= 0, see e.g., [14, p. 41]. One reason for the term linearly degenerate is
that contact discontinuities travel along non-crossing characteristics, just as in the
linear case. An interesting feature of contact discontinuities is that their structure
is not captured by the traveling wave ansatz, since the right hand side of (4.5) is
identically zero. In this paper, we restrict ourselves to investigating a few explicit
examples.

Our first example is a constitutive relation which always has one linearly de-
generate field. For an instantaneously reacting, isotropic, nonmagnetic material, we
have the constitutive relations

D(E) = F (|E|2)E, B =H . (6.3)

It is not difficult to prove that the characteristic speeds are

c1(E) =
1

√

F (|E|2) + 2F ′(|E|2)|E|2
, c2(E) =

1
√

F (|E|2)
, (6.4)

with the corresponding eigenvectors defined by ei = (Ei,H i)
T, where H i = ẑ×Ei

for i = 1, 2, and

E1(E) = E/|E|, E2(E) = ẑ ×E/|E|. (6.5)

Since the speed is independent ofH , we have eTi De ci = Ei ·DE ci for i = 1, 2. From
the explicit expressions (6.4) it is seen that DE c1 ∼ DE c2 ∼ E, where the ∼ sign
indicates proportionality. It is clear that E1 ·DE c1 6= 0 and E2 ·DE c2 = 0, i.e., the
field E1 is genuinely nonlinear and E2 is linearly degenerate. We interpret a wave
where the change in E is orthogonal to E, i.e., ∂tE ∼ E2, as a circularly polarized
wave. This is motivated by the fact that the amplitude |E| does not change, but the
vector E appears to rotate when observed as a function of time at a given point in
space. Thus, we have found that circularly polarized waves in an isotropic medium
are linearly degenerate.

Our second example is a constitutive model where there are no linearly degen-
erate fields. The model is

D(E) = (1 +C ·E)E +
|E|2
2
C, B =H , (6.6)

which is not valid for all E, since D′(E) = (1 + C · E)I + CE + EC is not
positive definite everywhere. However, it is positive definite if |C||E| < 1/3, and
thus the model suffices as an approximation for E small enough. For this model,
the three-vector C represents a “nonlinear axis” of the material, which is obviously
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anisotropic. It is straightforward to show that when both C and E are orthogonal
to ẑ, we have

c1,2 =
1

√

1 + 2C ·E ± |E||C|
, and E1,2 =

E

|E| ±
C

|C| , (6.7)

where the upper sign corresponds to c1 and E1, and H1,2 = ẑ × E1,2. The scalar
product Ei ·DE ci from which we analyze genuine nonlinearity can be shown to be

E1,2 ·DE c1,2 = −
3

2

C ·E/|E| ± |C|
(1 + 2C ·E ± |C||E|)3/2 . (6.8)

We see that one of these quantities is zero if E is parallel or antiparallel to C, but
any situation inbetween means E1 · DE c1 6= 0 and E2 · DE c2 6= 0. This shows
that this model usually has no linearly degenerate fields, and contact discontinuities
occurs only when the electric field is parallel or antiparallel to the axis C. We
conclude this example by noting the peculiarity that when the scalar product C ·E
is negative, the characteristic speeds c1,2 may be larger than one, which is the speed
of light in vacuum in our units. This may further restrict the validity of this model.

7 Numerical demonstration of shock structure for

an anisotropic material

In this section we show numerically that there exists a structure (an inner solution
dissipatively connecting two states) for a nonlinear anisotropic material. In order to
present a concise example, we regularize the Maxwell equations in the electric field
only, i.e.,

{

−∇×H + ∂tD = δ∇2E

∇×E + ∂tB = 0.
(7.1)

The benefit of this approach is to reduce the phase space of the resulting system
of ordinary differential equations to two dimensions, which enables us to plot the
phase space easily. The approach is reasonable if we consider the Faraday law to
be exact, and a similar technique is sometimes used for equations describing gas
dynamics [9, p. 602]. The anisotropic material is described by the constitutive
equation

D(E) =





(2 + |E|2)Ex

(3 + |E|2)Ey

(4 + |E|2)Ez



 , B =H , (7.2)

where in this section the fields are dimensionless, see [31] for details on the scaling.
This model has an anisotropic linear part and an isotropic nonlinear part, i.e.,
practically the same example material as in [31].
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Fig. E l
x E l

y Er
x Er

y v cl1 cl2 cr1 cr2 ∆

2 0.000 0.000 0.500 0.000 0.667 0.577 0.707 0.555 0.603 −0.011
3 0.200 0.000 1.000 0.000 0.556 0.573 0.687 0.447 0.500 −0.087
4 0.788 0.000 1.000 0.000 0.476 0.509 0.525 0.447 0.500 −0.002
5 0.617 0.472 1.000 1.000 0.400 0.478 0.574 0.342 0.475 −0.059

Table 1: Relevant values for the phase portraits. The last column is the entropy
difference ∆ = ẑ · (S(er)−S(el))−v(η(er)−η(el)), and since all the numbers in the
column are negative, we see that all the waves satisfy the original entropy condition
(2.8).

The system of ordinary differential equations corresponding to (4.5) becomes

















E ′
x

E ′
y

E ′
z

0
0
0

















=

















0 0 0 0 1 0
0 0 0 −1 0 0
0 0 0 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0

































Ex − E l,r
x

Ey − E l,r
y

Ez − E l,r
z

Hx −H l,r
x

Hy −H l,r
y

Hz −H l,r
z

















− v

















(2 + |E|2)Ex − (2 + |El,r|2)E l,r
x

(3 + |E|2)Ey − (3 + |El,r|2)E l,r
y

(4 + |E|2)Ez − (4 + |El,r|2)E l,r
z

Hx −H l,r
x

Hy −H l,r
y

Hz −H l,r
z

















. (7.3)

With E l,r
z = H l,r

z = 0 we have Ez = Hz = 0 throughout the shock, and |E|2 =
E2
x + E2

y . By eliminating the magnetic field and the z-components, we obtain the
following 2× 2 system of ordinary differential equations,

(

Ex

Ey

)′
=

1

v

(

Ex − E l,r
x

Ey − E l,r
y

)

− v
(

(2 + E2
x + E2

y)Ex − (2 + (E l,r
x )2 + (E l,r

y )2)E l,r
x

(3 + E2
x + E2

y)Ey − (3 + (E l,r
x )2 + (E l,r

y )2)E l,r
y

)

,

(7.4)
which contains all the qualitative information we need. We remark that this system
can be integrated exactly for certain values of E l,r

x and E l,r
y , but we refrain from

exploiting this possibility in this paper. Phase portraits, i.e., plots of the vector
fields on the right hand side of the equations above, are found in Figures 2, 3 and
4 for a fast shock, an intermediate shock and a slow shock, respectively. Figure 5
depicts the phase portrait for a shock with mixed polarization, and Table 1 lists the
relevant numbers used in each phase portrait. It is clearly seen from the figures that
there exists a path connecting the critical points.
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Figure 2: Phase portrait of a fast shock wave structure problem. The critical
points are (E l

x, E
l
y) = (0.000, 0.000) and (Er

x, E
r
y) = (0.500, 0.000).

8 Discussion and conclusions

By studying a parabolic regularization of the quasi-linear Maxwell equations, we
have proposed a classification of electromagnetic shock waves into three categories:
slow, fast and intermediate. This classification depends on how the shock speed
relates to the characteristic speeds in the material, which in turn depend on the
field strengths on both sides of the shock. These shock conditions can probably be
improved with the help of Conley’s index theory, as in [10, 33].

There also exists an additional kind of discontinuity, the contact discontinuity,
which only occurs for linearly degenerate fields. In particular, we have showed that
circularly polarized waves in isotropic, nonlinear media, exhibits contact discontinu-
ities. The further study of contact discontinuities is beyond the scope of this paper,
but it is seen from the analysis in Section 6 that it is important to understand which
constitutive relations that permit a linearly degenerate field.

We consider the parabolic regularization term ∇2e merely as a mathematical
technique used in order to obtain a well posed problem, and do not require it to
have a physical interpretation. Though, it is noteworthy that it may arise as a
consequence of a multiple scale analysis of a more detailed constitutive relation,
for instance when temporal and/or spatial dispersion is taken into account. The
dispersion can be modeled with a convolution, for instance d = χ1 ∗ e+ χ2 ∗ e ∗ e,
where ∗ denotes temporal and/or spatial convolution. Introducing a microscopic
and a macroscopic time or space variable and performing a formal multiple scale
expansion, it is found that the leading order term of the solution should satisfy
∇× Je + ∂td(e) = δD2 e, where D2 is a second order differential operator in time
and/or space. In the case of D2 = ∂2t , i.e., “temporal viscosity”, we note that even
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Figure 3: Phase portrait of an intermediate shock wave structure problem. The
critical points are (E l

x, E
l
y) = (0.200, 0.000) and (Er

x, E
r
y) = (1.000, 0.000).

though we obtain exactly the same analysis for a traveling wave profile as for the
term ∇2e used in this paper, this version of the Maxwell equations is noncausal,
and very difficult to treat in more than one spatial dimension. A similar system of
equations in one dimension is studied as a boundary value problem in [24], and the
influence of the noncausality is found to be small when δ is small.
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Abstract

The quasi-linear Maxwell equations describing electromagnetic wave prop-
agation in nonlinear media permit several weak solutions, which may be dis-
continuous (shock waves). It is often conjectured that the solutions are unique
if they satisfy an additional entropy condition. The entropy condition states
that the energy contained in the electromagnetic fields is irreversibly dissi-
pated to other energy forms, which are not described by the Maxwell equa-
tions. We use the method employed by Kružkov to scalar conservation laws
to analyze the implications of this additional condition in the electromagnetic
case, i.e., systems of equations in three dimensions. It is shown that if a
certain term can be ignored, the solutions are unique.

1 Introduction

There are three classical questions regarding a given mathematical problem: does
it have a solution, is the solution unique, and does the solution change only little
when we perturb the data? When all these questions are answered in the positive,
we say the problem is well posed, in the sense of Hadamard [9]. One reason for this
statement is that these properties guarantee reproducible results from simulations.
For instance, if the model permits multiple solutions, how can we be sure which one
we are calculating and that it is physically relevant?

In this paper, we treat the questions of uniqueness and continuity for solutions
of the Maxwell equations, when modeling nonlinear media. Using a technique de-
veloped by Kružkov [17] for scalar conservation laws, we study the consequences of
postulating an additional condition to the Maxwell equations, known as the entropy
condition. We show that if a certain term can be ignored, the solution is indeed
unique and depends continuously on given data.

The Maxwell equations alone are not sufficient to describe wave propagation
through a material. They must be supplemented by constitutive relations, modeling
the interaction between the electromagnetic fields and the material. These relations
are often linear, but for large field strengths it is necessary to include some nonlinear
interactions as well. When the material reacts much faster than the typical time
scale of the wave, we may assume an instantaneous model. In this case, the Maxwell
equations takes the mathematical structure of a symmetric system of hyperbolic
conservation laws. In our case, the key word in this classification is “hyperbolic” [6,
p. 401], in the sense that we can diagonalize the system of equations into a system
of weakly coupled, scalar transport equations, allowing wave solutions.

Nonlinear hyperbolic conservation laws have been extensively studied, mostly
from the perspective of continuum mechanics and thermodynamics. Much of the
early engineering work up to 1948 is reported in [3], and a recent survey of mainly
the mathematical aspects of this field is given in [5]. A nice introduction to the
numerical treatment as well as a summary of theoretical results is found in [7], and
the subject is treated in text books on partial differential equations [6, 12, 30]. One of
the key results is that these equations permit solutions which become discontinuous
in finite time, even if the initial data is infinitely differentiable. This means we
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cannot guarantee the existence of classical derivatives, and the solution must be
interpreted in a weak sense, e.g., as a distribution or a measure.

It is well known that weak solutions to nonlinear hyperbolic conservation laws
are not necessarily unique, see e.g., [6, p. 142]. One remedy to this problem is to
define the hyperbolic conservation law as the limit of a parabolic equation, which
has well-defined solutions. This is the technique of vanishing viscosity, and was first
introduced in [10]. This programme has been quite successful, but some difficulties
remain, especially for systems of equations in several space variables. However, it
has been shown that if the limit can be suitably defined, the solution satisfies an
entropy condition, which can be defined independently of the limit process. This
entropy condition is well motivated from a modeling point of view, and can often
be shown to be a means of selecting the unique, physically relevant solution. When
uniqueness proofs fail, it is often conjectured that the entropy condition provides
unique solutions [7, p. 32].

There are many kinds of entropy conditions. Probably the first was considered by
Jouguet [14], followed by Olĕinik’s condition E for a scalar equation [25], which was
later extended by Liu [22], and a similar condition for strictly hyperbolic systems was
formulated by Lax [20]. These conditions essentially require that when the equations
allow a discontinuous solution, the characteristics should cross each other, which
can be interpreted as “loss of information” or increase of entropy. There are also
conditions for systems of conservation laws which are directly linked to the physical
entropy, especially in gas dynamics. From an energy conservation point of view, this
can also be considered as the dissipation of the energy defined by the conservation
law. Dafermos has proposed an entropy condition requiring this dissipation to be
maximal [4].

This paper is organized as follows. In Section 2 we present the notation used in
the paper and the constitutive relations leading to the formulation of the Maxwell
equations as a symmetric system of hyperbolic, quasi-linear conservation laws. We
postulate the entropy condition in Section 3, and discuss the relevant interpretation
of this condition. In Section 4 we treat the questions of uniqueness and continuous
dependence on data for our solution using the technique of “doubling the variables”
introduced by Kružkov for a scalar conservation law in [17]. We conclude by giving
an explicit example in Section 5 of a situation where the Maxwell equations alone
permit two solutions, and use the entropy condition to choose the relevant one.
Some final remarks are made in Section 6.

2 The quasi-linear Maxwell equations

In this paper we use a slight modification of the Heaviside-Lorentz units for our fields
[13, p. 781], i.e., all electromagnetic fields are scaled to units of

√

energy/volume,

{

E =
√
ε0ESI

H =
√
µ0HSI,

{

D = 1/
√
ε0DSI

B = 1/
√
µ0BSI,

J =
√
µ0JSI, (2.1)
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where E and H is the electric and magnetic field strength, respectively, and D
and B is the electric and magnetic flux density, respectively, and J is the electric
current density. The index SI is used to indicate the field in SI units. We use the
scaled time t = c0tSI, where c0 = 1/

√
ε0µ0 is the speed of light in vacuum, and the

constants ε0 and µ0 are the permittivity and permeability of free space, respectively.
The six-vector notation from [8, 27], i.e.,

e =

(

E

H

)

, d =

(

D

B

)

, j =

(

J

0

)

∇× J =

(

0 −∇× I
∇× I 0

)

, (2.2)

enables us to write the Maxwell equations in the compact form

∇× Je+ ∂td = −j. (2.3)

In this paper we treat the six-vectors as column vectors, i.e., we write the scalar
product as eTd =

∑6
i=1 eidi. This is merely for notational convenience and does

not capture the full mathematical structure, which is not needed here. For more
ambitious attempts to construct a six-vector notation, we refer to [8, 21].

The Maxwell equations must be supplemented by a constitutive relation, whose
purpose is to model the interaction of the electromagnetic field with the material.
When the material reacts very fast to stimulance, we can model it with an instan-
taneous constitutive model, where the values of the electric flux density D and the
magnetic flux density B are completely determined by the values of the electric field
strength E and magnetic field strengthH at the same point in spacetime. We write
this as

d(r, t) = d(e(r, t)), (2.4)

where d(e) is the gradient of a scalar function φ(e) with respect to e, i.e., in
terms of thermodynamics, the field gradient of the thermodynamic potential (or
the free energy density or the free enthalpy density) [2, 18]. We use the notation
d(e) = φ′(e) to denote this derivative, i.e., di(e) = ∂φ/∂ei, i = 1, . . . , 6. The
model is passive if we require that the symmetric 6×6 matrix d ′(e) = φ′′(e), where
[d ′(e)]ij = ∂2φ/∂ei∂ej, is a positive definite matrix, which is the case if the scalar
function φ(e) is a convex function.

The Maxwell equations with an instantaneously reacting constitutive model is

∇× Je+ d ′(e)∂te = −j, (2.5)

and since d ′(e) is positive definite and symmetric, this is by definition a quasi-
linear, symmetric, hyperbolic system of partial differential equations [30, p. 360].
The source free version of this system has been extensively studied in [27], where
it is shown that the equations in general support two waves, the ordinary and the
extraordinary wave, each with its own refractive index.

Due to the quasi-linearity, the system (2.5) may exhibit shock solutions, i.e.,
even if we give smooth data, the solution becomes discontinuous in finite time. This
means the derivatives cannot be classically defined everywhere, but we can make a
weak formulation of the problem by requiring the equality

∫

R

∫

R3

[−eT∇× Jϕ− d(e)T∂tϕ+ jTϕ] dV dt = 0 (2.6)
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to hold for all six-vector test functions ϕ defined on R3×R, i.e., vector-valued func-
tions which are infinitely differentiable with compact support. We do not consider
static fields in this paper, i.e., if j = 0 for t < 0, then e = 0 for t < 0.

One problem with the weak formulation is that we lose uniqueness, i.e., there
are several weak solutions e which satisfy the above criteria. In the following section
we present an entropy condition which guarantees uniqueness of the weak solutions.

3 The entropy condition

When the solutions to (2.5) are smooth, we can derive an equation representing the
conservation of energy. First, we note the identities

{

eT∇× Je = ∇ · (E ×H) = ∇ · S(e)
eT∂td(e) = ∂t(e

Td(e)− φ(e)) = ∂tη(e),
(3.1)

where the last identity follows from d(e) = φ′(e). The vector S(e) is the Poynting
vector, and the scalar, convex function η(e) is the electromagnetic energy density.
Multiplying (2.5) with eT now implies the Poynting theorem (conservation of energy)

∇ · S(e) + ∂tη(e) = −eTj. (3.2)

When the solutions to (2.5) are not smooth, this equation is no longer valid since
the derivatives are not defined. We propose to replace it with the inequality

∇ · S(e) + ∂tη(e) ≤ −eTj, (3.3)

which is interpreted in a weak sense, i.e., for all nonnegative test functions ϕ, the
inequality

∫

R

∫

R3

[−S(e) · ∇ϕ− η(e)∂tϕ+ eTjϕ] dV dt ≤ 0 (3.4)

holds. The inequality (3.3) is called the entropy condition, and is here postulated in
addition to the Maxwell equations. Observe that since (3.3) is postulated and inter-
preted in the weak sense, it is valid for non-smooth solutions. The pair of functions
η(e) and S(e) are known in the mathematical literature as an entropy/entropy-flux
pair, see e.g., [6, pp. 604–611], [12, pp. 70–71], and [30, pp. 436–445]. The existence
of such a pair is nontrivial in the general case, and is a special property of the sys-
tem. Similar conditions are often present for systems of nonlinear conservation laws,
such as the equations governing gas dynamics, see e.g., [7, pp. 21–35] and [4, 19, 22].

3.1 Why the term “entropy”?

It is quite obvious that no constitutive relation can capture all of the physical pro-
cesses which occur when electromagnetic waves interact with matter. There is always
some interaction that is left out, and if we choose not to model it, we must assume
that the electromagnetic energy used in the interaction is lost in an irreversible
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process. If the process were not irreversible, we would have to include it in our
equations if the equations are supposed to be realistic. Since the electromagnetic
energy is lost, it must be a nonincreasing function of time (except for the energy fed
to the system), which is the essence of the entropy inequality (3.3). Namely, we can
choose a suitable sequence of test functions {ϕ} converging to a function constant
on R3 × [t1, t2] to find1

∫

R3

η(e) dV

∣

∣

∣

∣

t=t2

≤
∫

R3

η(e) dV

∣

∣

∣

∣

t=t1

−
∫ t2

t1

∫

R3

eTj dV dt, (3.5)

when all the integrals are defined. For active sources j, i.e., sources which radiate
electromagnetic energy, the term −

∫ t2
t1

∫

R3 e
Tj dV dt is positive when t1 < t2 and

represents the energy fed to the system.
The inequality sign in (3.5) represents the fact that there is a loss of electromag-

netic energy with increasing time. The irreversible processes that are not modeled
by the Maxwell equations can be represented with an energy density term TS, where
T is the temperature and S is the entropy density. The first law of thermodynamics
states that the total internal energy

U =

∫

R3

(η(e) + TS) dV (3.6)

is constant for an isolated system (no exchange of heat or work, i.e., for time intervals
when j = 0). If the integral of the electromagnetic energy is nonincreasing, it then
follows that the integral of TS must be nondecreasing. This means the entropy
must be nondecreasing under isothermal conditions, which is consistent with the
second law of thermodynamics. This shows that the term “entropy condition” is
justified for electromagnetic waves, if we interpret entropy as a representation of
the dissipative processes not modeled by the Maxwell equations. Thus, we think of
entropy as “missing information” about the system. For a further discussion on the
interpretation of entropy, we refer to [29].

3.2 The entropy condition for vanishing viscosity solutions

We have previously postulated the entropy condition in addition to the Maxwell
equations. The question may be raised if there exists solutions that satisfy both
these criteria. There is at present no definite answer to this question, but we can
show that if we make a parabolic regularization of the Maxwell equations,

∇× Jeδ + ∂td(eδ) = −j + δ∇2eδ, (3.7)

and the solution eδ is uniformly bounded in the supremum norm and converges
almost everywhere to e as δ → 0, this limit solution satisfies the entropy condition
(3.3), see [7, p. 27] and [30, p. 438]. This method of constructing solutions to
quasi-linear hyperbolic equations is called the vanishing viscosity method, and is a

1This procedure is performed in detail in Section 4.2.
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standard method in partial differential equation theory. It can be shown that for
each δ > 0, the initial value problem for (3.7) is well posed with solutions infinitely
differentiable in the interior domain and continuous on the boundary [30, p. 338].
For similar systems of equations in one spatial dimension and scalar equations in
several dimensions, there exists a limiting function as δ → 0. However, there are still
some questions regarding the convergence for systems of equations in several space
dimensions, that have not been resolved, and we can only conjecture the existence
of a limit e = limδ→0 eδ, see [26] and [7, p. 32].

The parabolic equation (3.7) is actually the equivalent2 (or modified) equation
corresponding to certain numerical schemes used to solve hyperbolic equations, e.g.,
the Lax-Friedrichs scheme in one spatial dimension [7, p. 181]. The viscosity pa-
rameter δ is then typically of order (∆x)2/∆t, where ∆x and ∆t is the discretization
in space and time, respectively, implying δ → 0 as the discretization is refined. In
this context, the entropy is a measure of what goes on on a finer scale than we are
observing, i.e., on a scale of order δ.

4 Kružkov’s method for entropy solutions

In this section we use a method due to Kružkov (see [17] and [6, pp. 608–611]) to
study uniqueness and continuous dependence on data for solutions which satisfy the
Maxwell equations as well as an entropy condition,

{

∇× Je+ ∂td(e) = −j
∇ · S(e) + ∂tη(e) ≤ −eTj,

(4.1)

where S(e) = E×H and η(e) = eTd(e)−φ(e). The idea is to study the difference
between the energies for two potentially different solutions, slightly perturbed in
space and time. This enables us to obtain an inequality similar to (3.5), but with a
new energy which is zero only when the two solutions are equal almost everywhere.
However, the inequality also comprises a term which eludes further analysis. This
is further commented at the end of Section 4.1.

Suppose we have two solutions, e and ẽ, satisfying

{

∇x × Je+ ∂td(e) = −j
∇x · S(e) + ∂tη(e) ≤ −eTj,

and

{

∇y × Jẽ+ ∂sd(ẽ) = −̃
∇y · S(ẽ) + ∂sη(ẽ) ≤ −ẽT̃,

(4.2)

where j and ̃ may be different. Note that we have labeled the independent variables
differently for the two solutions, i.e., e = e(x, t), j = j(x, t), ẽ = ẽ(y, s) and
̃ = ̃(y, s). This is helpful when handling the differential operators in the following.
We add3 −ẽT(∇x × Je + ∂td(e) + j) + ẽT∇x × Jẽ + ∂tφ(ẽ) = 0 to the entropy

2For a numerical scheme of order n approximating a given equation, the equivalent (or modified)
equation is defined as the equation which is approximated to order n+ 1 by the scheme.

3This distribution is well-defined, since ẽ(y, s) does not depend on x or t. This implies that
the derivatives operate only on the test function.
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condition for e, which implies

0 ≥ ∇x · S(e) + ∂tη(e) + e
Tj − ẽT(∇x × Je+ ∂td(e) + j) + ẽ

T∇x × Jẽ+ ∂tφ(ẽ)

= ∇x · S(e− ẽ) + ∂tη(e, ẽ) + (e− ẽ)Tj,
(4.3)

where
η(e, ẽ) = (e− ẽ)Td(e)− φ(e) + φ(ẽ). (4.4)

Note that the terms ẽT∇x × Jẽ and ∂tφ(ẽ) are identically zero since ẽ does not
depend on x or t, and are included in order to obtain better symmetry in the
inequality (4.3). Repeating the procedure for the set of equations with independent
variables (y, s), results in the entropy inequalities

{

∇x · S(e− ẽ) + ∂tη(e, ẽ) + (e− ẽ)Tj ≤ 0

∇y · S(ẽ− e) + ∂sη(ẽ, e) + (ẽ− e)T̃ ≤ 0.
(4.5)

These inequalities are interpreted in a weak sense, i.e., they are defined through
their effect on nonnegative test functions. Thus, the inequalities














∫∫∫∫

{

− S(e− ẽ) · ∇xϕ− η(e, ẽ)∂tϕ+ (e− ẽ)Tjϕ
}

dV (x) dV (y) dt ds ≤ 0
∫∫∫∫

{

− S(ẽ− e) · ∇yϕ− η(ẽ, e)∂sϕ+ (ẽ− e)T̃ϕ
}

dV (x) dV (y) dt ds ≤ 0,

(4.6)
must hold for all test functions ϕ(x,y, t, s) ≥ 0. The integrations are performed
over R3×R3×R×R, but we suppress the integration limits in order to simplify the
notation. We now observe the symmetry S(e− ẽ) = S(ẽ− e), and expand ∂tϕ and
∂sϕ as ∂tϕ = 1

2
∂tϕ + 1

2
∂sϕ + 1

2
∂tϕ − 1

2
∂sϕ and ∂sϕ = 1

2
∂sϕ + 1

2
∂tϕ + 1

2
∂sϕ − 1

2
∂tϕ.

After adding the inequalities we obtain

0 ≥
∫∫∫∫

{

− S(e− ẽ) · (∇xϕ+∇yϕ)−
1

2
[η(e, ẽ) + η(ẽ, e)](∂tϕ+ ∂sϕ)

− 1

2
[η(e, ẽ)− η(ẽ, e)](∂tϕ− ∂sϕ) + (e− ẽ)T(j − ̃)ϕ

}

dV (x) dV (y) dt ds, (4.7)

which is the general expression with an arbitrary test function ϕ. To proceed with
the analysis, we now choose a special test function which somewhat simplifies this
inequality.

4.1 Choosing the proper test function

Following Kružkov’s classical uniqueness proof, we employ the special test function

ϕ(x,y, t, s) = J
(3)
δ

(

x− y
2

)

Jδ

(

t− s
2

)

ψ

(

x+ y

2
,
t+ s

2

)

, (4.8)

where Jδ is a nonnegative mollifier, having unit integral and converging to the Dirac
measure as δ → 0. The mollifier in space J

(3)
δ can be written as the product J

(3)
δ (x) =
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Jδ(x1)Jδ(x2)Jδ(x3). Since the support of the mollifiers shrinks to zero when δ → 0,
this choice of test function brings the variables x and y, and t and s, respectively,
close to each other as the parameter δ → 0. This is similar to restricting the tensor
product between two distributions to the diagonal, see [11].

Introducing the new variables

x̄ =
x+ y

2
, ȳ =

x− y
2

, t̄ =
t+ s

2
, s̄ =

t− s
2

, (4.9)

the inequality (4.7) is written

∫∫∫∫ {

−S(e− ẽ) · ∇x̄ψ −
1

2
[η(e, ẽ) + η(ẽ, e)]∂t̄ψ + (e− ẽ)T(j − ̃)ψ

}

J
(3)
δ Jδ dV (x̄) dV (ȳ) dt̄ ds̄

≤
∫∫∫∫

1

2
[η(e, ẽ)− η(ẽ, e)]J (3)

δ J ′
δψ dV (x̄) dV (ȳ) dt̄ ds̄. (4.10)

The explicit expression for the energy term 1
2
[η(e, ẽ) + η(ẽ, e)] is found from the

definition of η(e, ẽ),

1

2
[η(e, ẽ) + η(ẽ, e)] =

1

2
(e− ẽ)T(d(e)− d(ẽ)), (4.11)

and in Appendix A it is shown that we can introduce a third rank tensor Kijk(e, ẽ),
defined in (A.8), to write

1

2
[η(e, ẽ)− η(ẽ, e)] = Kijk(e, ẽ)(ei − ẽi)(ej − ẽj)(ek − ẽk), (4.12)

where summation over repeated indices is assumed. As seen in Appendix A, the
tensor Kijk is related to the third derivative of the thermodynamic potential, φ′′′.
Since φ is a quadratic function for linear materials, we see that this term must be
due to the nonlinearity of our constitutive relation.

The explicit form of the entropy inequality (4.7) is thus

∫∫∫∫ {

−S(e− ẽ) · ∇x̄ψ −
1

2
(e− ẽ)T(d(e)− d(ẽ))∂t̄ψ + (e− ẽ)T(j − ̃)ψ

}

J
(3)
δ Jδ dV (x̄) dV (ȳ) dt̄ ds̄

≤
∫∫∫∫

Kijk(e, ẽ)(ei − ẽi)(ej − ẽj)(ek − ẽk)J (3)
δ J ′

δψ dV (x̄) dV (ȳ) dt̄ ds̄, (4.13)

where no approximations are made so far. It is conjectured that the term on the
right hand side of the inequality is negligible, since it is cubic in the difference e− ẽ
and should therefore be small compared to the other terms when |e − ẽ| is small.
However, the differentiated mollifier J ′

δ could change this assumption. It should be
noted that in the case of a scalar conservation law, which Kružkov studied, it is
possible to choose the functions corresponding to S and η such that this term does
not appear. To see why it is desirable to obtain control over this term, we spend the
following subsections showing that this implies that our solutions are unique and
depend continuously on data.
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4.2 Uniqueness and continuous dependence on data

If we assume the term on the right hand side of (4.13) can be replaced with zero,
we are free to take the limit δ → 0 in the mollifiers since the terms inside the curly
brackets are summable over x̄ and t̄. This implies that the integrals over ȳ and s̄
only contribute when (ȳ, s̄) is close to (0, 0), which implies x̄ ≈ x ≈ y and t̄ ≈ t ≈ s.
Hence the limit δ → 0 provides the inequality

∫∫

{

− S(e− ẽ) · ∇x̄ψ −
1

2
(e− ẽ)T(d(e)− d(ẽ))∂t̄ψ

+ (e− ẽ)T(j − ̃)ψ
}

dV (x̄) dt̄ ≤ 0, (4.14)

and from this point on we use the variables x̄ and t̄ to emphasize that they are the
mean values of the variables x and y, and t and s, respectively. Following [6, pp.
608–611] we choose the test function ψ(x̄, t̄) = α(x̄)β(t̄) according to



















α : R3 → R is smooth,

α(x̄) = 1 if |x̄| ≤ r,

α(x̄) = 0 if |x̄| ≥ r + r0,

|∇x̄α(x̄)| ≤ 2/r0,

(4.15)

and


















β : R→ R is Lipschitz continuous,

β(t̄) = 0 if t̄ ≤ t1 or t̄ ≥ t2 +∆t,

β(t̄) = 1 if t1 +∆t ≤ t̄ ≤ t2,

β is linear on [t1, t1 +∆t] and [t2, t2 +∆t],

(4.16)

where ∆t satisfies 0 < ∆t < t2 − t1. Strictly speaking, β is not a test function, but
we can use a suitable sequence of proper test functions to construct this limit. Our
inequality is now written

1

∆t

∫ t2+∆t

t2

1

2

∫

R3

(e− ẽ)T(d(e)− d(ẽ))α(x̄) dV (x̄) dt̄

+

∫ t2+∆t

t1

∫

r<|x̄|<r+r0
S(e− ẽ) · ∇x̄α(x̄)β(t̄) dV (x̄) dt̄

≤ 1

∆t

∫ t1+∆t

t1

1

2

∫

R3

(e− ẽ)T(d(e)− d(ẽ))α(x̄) dV (x̄) dt̄

−
∫ t2+∆t

t1

∫

R3

(e− ẽ)T(j − ̃)α(x̄)β(t̄) dV (x̄) dt̄ (4.17)

and the integral containing S(e− ẽ) vanishes as r →∞ since S(e− ẽ) is a quadratic
function of e − ẽ and |e|2 and |ẽ|2 are integrable, which means the integral must
disappear in this limit. We next let ∆t → 0 to deduce the fundamental energy
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estimate

1

2

∫

R3

(e− ẽ)T(d(e)− d(ẽ)) dV (x̄)

∣

∣

∣

∣

t̄=t2

≤ 1

2

∫

R3

(e− ẽ)T(d(e)− d(ẽ)) dV (x̄)

∣

∣

∣

∣

t̄=t1

−
∫ t2

t1

∫

R3

(e− ẽ)T(j − ̃) dV (x̄) dt̄ (4.18)

for every pair t1 < t2. We emphasize that this estimate was obtained by assuming
that a term cubic in the difference e− ẽ could be ignored.

Our first question concerns the uniqueness of entropy solutions, i.e., can different
solutions be generated by the same data? From (4.18) we see the answer is negative.
The currents may be assumed to start at a specific time, i.e., j = ̃ = 0 for t ≤ 0,
and causality implies e = ẽ = 0 for t̄ = 0. By choosing t2 = T and t1 = 0 and using
the same currents for the two solutions, j = ̃ everywhere, we obtain

1

2

∫

R3

(e− ẽ)T(d(e)− d(ẽ)) dV (x̄)

∣

∣

∣

∣

t̄=T

≤ 0 (4.19)

for every finite time T > 0. Assuming the model saturates for high field strengths,
i.e., d(e) can be bounded by a linear function of e, there exists positive constants
C< and C> such that

C<|e− ẽ|2 ≤ (e− ẽ)T(d(e)− d(ẽ)) ≤ C>|e− ẽ|2, (4.20)

we see that (4.19) implies e = ẽ almost everywhere. Thus we have uniqueness.
Our second question concerns the continuous dependence of the solution on given

data. We use Hölder’s inequality to estimate the source term

−
∫ T

0

∫

R3

(e− ẽ)T(j − ̃) dV (x̄) dt̄ ≤
∫ T

0

∫

R3

|(e− ẽ)T(j − ̃)| dV (x̄) dt̄

≤
∫ T

0

(∫

R3

|e− ẽ|2 dV (x̄)

)1/2(∫

R2

|j − ̃)|2 dV (x̄)

)1/2

dt̄. (4.21)

Using the notation ‖e− ẽ‖ =
(∫

R3 |e− ẽ|2 dV
)1/2

and (4.20), the estimate (4.18)
implies

C<

2
‖e− ẽ‖2t̄=T ≤

∫ T

0

‖e− ẽ‖ · ‖j − ̃‖ dt̄, (4.22)

where we used ‖e− ẽ‖2t̄=0 = 0. Since this inequality is valid for all T > 0, the
term on the left hand side can be replaced by its supremum. After dividing by
supt̄∈[0,T ] ‖e− ẽ‖, we find

sup
t̄∈[0,T ]

‖e− ẽ‖ ≤ 2

C<

∫ T

0

‖j − ̃‖ dt̄, (4.23)

for every T > 0. This shows that the norm of the difference between two solutions is
bounded by the norms of the difference between the difference between the sources.
Thus we have continuous dependence of the solution on input data for each finite
time T .
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4.3 Initial/boundary-value problem

To simplify and streamline the presentation, the analysis so far has been for all
of space and time, which means there are no initial or boundary values involved.
In this subsection, we give a brief review on how to treat a finite region Ω ⊂ R3

instead of all space. We also allow for initial values by making the following weak
formulation of the Maxwell equations instead of (2.6),
∫ ∞

0

∫

Ω

[−eT∇× Jϕ− d(e)T∂tϕ+ jTϕ] dV dt

+

∫ ∞

0

∫

∂Ω

S(ϕ, e) · n̂ dS dt−
∫

Ω

d(e0)
Tϕ dV

∣

∣

∣

∣

t=0

= 0, (4.24)

where n̂ denotes the unit normal pointing out of the region Ω, and S(ϕ, e) =
ϕE × H − ϕH × E, with ϕE and ϕH denoting the parts of the six-vector test
function ϕ corresponding to the electric and magnetic field, respectively. We denote
the initial values by e(x, 0) = e0(x). Instead of the estimate (4.18) we now obtain

∫ T

0

∫

∂Ω

S(e− ẽ) · n̂ dS(x̄) dt̄+
1

2

∫

Ω

(e− ẽ)T(d(e)− d(ẽ)) dV (x̄)

∣

∣

∣

∣

t̄=T

≤ 1

2

∫

Ω

(e0 − ẽ0)T(d(e0)− d(ẽ0)) dV (x̄)−
∫ T

0

∫

Ω

(e− ẽ)T(j − ̃) dV (x̄) dt̄,

(4.25)

once again under the assumption that we can ignore the cubic term in (4.13). The
initial values are given from the problem formulation, but it remains to divide the
integral of Poynting’s vector over the boundary, representing the net flow of energy
across the boundary, into parts representing energy flow in and out of the region.
We use the energy splitting (change of variables) [8, 15]

E± =
−n̂× (n̂×E)± n̂×H

2
, (4.26)

to decompose the energy flux into

S(e− ẽ) · n̂ = |E+ − Ẽ+|2 − |E− − Ẽ−|2. (4.27)

Assuming we can choose boundary data such that the incoming energy flux |E− −
Ẽ−|2 is given, we obtain

∫ T

0

∫

∂Ω

|E+ − Ẽ+|2 dS(x̄) dt̄+
1

2

∫

Ω

(e− ẽ)T(d(e)− d(ẽ)) dV (x̄)

∣

∣

∣

∣

t̄=T

≤
∫ T

0

∫

∂Ω

|E− − Ẽ−|2 dS(x̄) dt̄+
1

2

∫

Ω

(e0 − ẽ0)T(d(e0)− d(ẽ0)) dV (x̄)

−
∫ T

0

∫

Ω

(e− ẽ)T(j − ̃) dV (x̄) dt̄, (4.28)

with everything on the right hand side given by initial/boundary data or the sources
j−̃. It is easy to see that this estimate provides us with the same conclusions regard-
ing uniqueness and continuous dependence on data as in the previous subsection.
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5 One-dimensional example

We give an example of a situation where we have several solutions to the Maxwell
equations (2.5), but the entropy condition (3.3) helps us finding the relevant solution.
Assuming no sources and the initial values

e(x, 0) =

{

el z < 0

er z > 0,
(5.1)

where the constant six-vectors el and er denote the left and right state, respectively,
the Maxwell equations reduce to the one-dimensional equations,

ẑ × J∂ze+ ∂td(e) = 0, (5.2)

where ẑ is the unit vector in the z direction. This is a Riemann problem, i.e.,
the propagation of a step function, which is the archetype problem when studying
discontinuous solutions, or shock waves. For an isotropic, nonmagnetic material, we
can further reduce the Maxwell equations to the well investigated system [1, 16, 28]

{

∂zH + ∂tD(E) = 0

∂zE + ∂tH = 0.
(5.3)

Note that this can be converted to the p-system in gas dynamics by making D the
dependent variable instead of E.

The entropy condition reduces to

∂z(EH) + ∂tη(E,H) ≤ 0, (5.4)

where

η(E,H) = ED(E)−
∫ E

0

D(E ′) dE ′ +
H2

2
. (5.5)

We study the constitutive relation for an instantaneously reacting Kerr medium,

D(E) = E + E3 ⇒ η(E,H) =
E2

2
+

3E4

4
+
H2

2
, (5.6)

and choose the initial values, corresponding to (5.1), as

(

E l

H l

)

=

(

1√
2

)

and

(

Er

Hr

)

=

(

0

0

)

. (5.7)

It can be verified that the one-dimensional Maxwell equations (5.3) allow two solu-
tions for these initial values (see Figure 1): the shock wave solution

(

E

H

)

=

{

(1,
√
2)T z < 1√

2
t

(0, 0)T z > 1√
2
t

(5.8)
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z

t

z

t

z

E

z

E

Figure 1: Top row: the two solutions with initial values (5.7) for a given time
t. The solution to the left is the (nonphysical) shock wave (5.8), and the one to
the right is the rarefaction (5.9). Bottom row: the ‘+’-characteristics for the two
solutions. The ‘+’-characteristics are the curves in spacetime along which the waves
propagating in the positive z-direction are constant, i.e., in order to find the field at a
certain point in space and time, we follow the characteristic curve back in time to the
initial values. There are also ‘−’-characteristics, corresponding to waves propagating
in the negative z-direction, but we have chosen initial values such that these waves
can be ignored. Note that for the discontinuous solution, the characteristics originate
from the shock front, indicated by the bold line.

and the rarefaction wave solution4

(

E

H

)

=











(1,
√
2)T z < 1

2
t

(f(z/t), g(z/t))T 1
2
t < z < t

(0, 0)T z > t,

(5.9)

where f and g are differentiable functions satisfying

f(1/2) = 1, g(1/2) =
√
2, f(1) = g(1) = 0, (5.10)

thus providing a smooth transition from the left state (1,
√
2) to the right state

(0, 0). For a discontinuous solution which is equal to (E l, H l) when z < vt and equal
to (Er, Hr) when z > vt, the entropy condition becomes

(ErHr − E lH l)− v(η(Er, Hr)− η(E l, H l)) ≤ 0. (5.11)

4Actually, this is not the true solution; it should also contain an additional, small shock wave
of amplitude [[E]] ∼ 0.01 propagating to the left with speed ∼ −0.5, where [[E]] denotes the
discontinuity in E over the shock. We have chosen to exclude it to keep the example simple. The
qualitative behavior of the solution is dominated by the continuous rarefaction wave (5.9), which
is drastically different from the nonphysical shock solution (5.8).



134 Paper V: On uniqueness and continuity. . .

z

t
z

E

Figure 2: Top: the (physical) shock wave (5.13) for a given time t. Bottom: the
‘+’-characteristics corresponding to this solution. Note that the characteristics cross
each other on the shock front, indicated by the bold line.

Calculating the expression on the left hand side for the discontinuous solution (5.8),
we find it is equal to 1/4

√
2 6≤ 0. The entropy condition is violated, and the true

solution must be (5.9), which can be shown to satisfy the entropy condition. Thus,
the entropy condition has helped us in choosing the correct solution, where the
Maxwell equations alone are not sufficient.

It should be noted that if we exchange the left and the right states in the initial
value problem, i.e.,

(

E l

H l

)

=

(

0

0

)

and

(

Er

Hr

)

=

(

1√
2

)

, (5.12)

the entropy condition is satisifed for the shock solution

(

E

H

)

=

{

(0, 0)T z < 1√
2
t

(1,
√
2)T z > 1√

2
t,

(5.13)

since in this case (ErHr − E lH l)− v(η(Er, Hr)− η(E l, H l)) = −1/4
√
2 ≤ 0. Thus,

the initial values (5.12) generates a unique, physical, shock solution, where electro-
magnetic energy is dissipated. This solution is depicted in Figure 2.

6 Conclusions

In the previous sections, the constitutive relation d(e) may depend on additional
parameters without any change in the analysis. In particular, we allow for a depen-
dence on the spatial variable, i.e., d(x, e). It is also easily seen that this form of
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constitutive relation allows for a coupling between the electric and magnetic field
and any anisotropic effects, as long as the 6×6 matrix d ′(e) is positive definite for all
e. Thus, our presentation comprises inhomogeneous, bianisotropic, instantaneously
reacting nonlinear models.

It must be stressed that the results obtained in this paper are subject to the
assumption that the cubic term in (4.13) is negligible. We have not been able to
prove this conjecture, but one way might be to study the conservation of pseudo-
momentum D × B, as is done for one-dimensional shock profiles in continuum
mechanics [23, 24]. This results in three additional conservation laws (one for each
component of the pseudo-momentum), which might bring additional information to
the problem. For instance, the problematic term can be related to the balance of
forces across shock fronts, but the usefulness of this approach in three-dimensional
electromagnetics is unclear.

Since it seems reasonable that entropy solutions to the Maxwell equations are
unique and depend continuously on data, numerical methods for treating these equa-
tions should incorporate the entropy condition. One way to do this is by choosing a
numerical scheme based on vanishing viscosity, where the viscosity parameter is of
the same order as the discretization as explained at the end of Section 3.2.

In the Introduction, we listed the three questions of existence, uniqueness and
continuity. The latter two have been treated in this paper using Kružkov’s method,
but the questions remain open. There is also only empirical evidence regarding
the existence of solutions satisfying the entropy condition. If it is possible to answer
these questions by the vanishing viscosity technique, that answer will most probably
also shed additional light on the problems with uniqueness and continuity treated
in this paper.
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Appendix A Analysis of an energy term

In this appendix, we analyze the term 1
2
[η(e, ẽ) − η(ẽ, e)]. The definition of the

energy η(e, ẽ) is
η(e, ẽ) = (e− ẽ)Td(e)− φ(e) + φ(ẽ), (A.1)

which enables us to write

1

2
[η(e, ẽ)− η(ẽ, e)] = (e− ẽ)Td(e) + d(ẽ)

2
− φ(e) + φ(ẽ). (A.2)
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This is in fact a cubic function of e− ẽ. To see this, first note that we can write

φ(e)− φ(ẽ) =
∫ 1

0

d

dr
φ(re+ (1− r)ẽ) dr

= (e− ẽ)T
∫ 1

0

φ′(re+ (1− r)ẽ) dr

= (e− ẽ)T
∫ 1

0

d(re+ (1− r)ẽ) dr. (A.3)

We then have

(e− ẽ)Td(e) + d(ẽ)
2

− φ(e) + φ(ẽ) =
1

2
(e− ẽ)T

{

d(e)−
∫ 1

0

d(re+ (1− r)ẽ) dr + d(ẽ)−
∫ 1

0

d(re+ (1− r)ẽ) dr
}

, (A.4)

and we repeat the trick in (A.3) to find

d(e)−
∫ 1

0

d(re+ (1− r)ẽ)T dr =

∫ 1

0

{d(e)− d(re+ (1− r)ẽ)} dr

=

∫ 1

0

(e− (re+ (1− r)ẽ))T
∫ 1

0

d ′(qe+ (1− q)(re+ (1− r)ẽ)) dq dr

= (e− ẽ)T
∫ 1

0

(1− r)
∫ 1

0

d ′(qe+ (1− q)(re+ (1− r)ẽ)) dq dr, (A.5)

and

d(ẽ)−
∫ 1

0

d(re+ (1− r)ẽ)T dr =

∫ 1

0

{d(ẽ)− d(re+ (1− r)ẽ)} dr

=

∫ 1

0

(ẽ− (re+ (1− r)ẽ))T
∫ 1

0

d ′(qẽ+ (1− q)(re+ (1− r)ẽ)) dq dr

= (ẽ− e)T
∫ 1

0

r

∫ 1

0

d ′(qẽ+ (1− q)(re+ (1− r)ẽ)) dq dr

= (ẽ− e)T
∫ 1

0

(1− r)
∫ 1

0

d ′(qẽ+ (1− q)(rẽ+ (1− r)e)) dq dr, (A.6)
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where the last line follows from a change of variables r → 1− r. The sum of these
terms involve the expression

∫ 1

0

(1−r)
∫ 1

0

{d ′(qe+ (1− q)(re+ (1− r)ẽ))− d ′(qẽ+ (1− q)(rẽ+ (1− r)e))} dq dr

=

∫ 1

0

(1− r)
∫ 1

0

(e− ẽ)T(q + (1− q)(r − (1− r)))
∫ 1

0

d ′′(p(qe+(1− q)(re+(1− r)ẽ))+ (1− p)(qe+(1− q)(re+(1− r)ẽ))) dp dq dr

= (e− ẽ)T
∫ 1

0

∫ 1

0

∫ 1

0

(1− r)(2q + 2r − 2qr − 1)

d ′′(p(qe+ (1− q)(re+ (1− r)ẽ)) + (1− p)(qe+ (1− q)(re+ (1− r)ẽ))) dp dq dr.
(A.7)

Since d′′ = φ′′′ we can introduce the third rank tensor

Kijk(e, ẽ) =

∫ 1

0

∫ 1

0

∫ 1

0

(1− r)(2q + 2r − 2qr − 1)

∂3φ

∂ei∂ej∂ek
(p(qe+(1−q)(re+(1−r)ẽ))+(1−p)(qe+(1−q)(re+(1−r)ẽ))) dp dq dr,

(A.8)

to write

(e− ẽ)Td(e) + d(ẽ)
2

− φ(e) + φ(ẽ) = Kijk(e, ẽ)(ei − ẽi)(ej − ẽj)(ek − ẽk), (A.9)

where summation over repeated indices is assumed. With φ a quadratic function
for linear materials, we see that this term must be due to the nonlinearity of the
constitutive relation.
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uous Media. Pergamon, Oxford, second edition, 1984.

[19] P. D. Lax. Shock waves and entropy. In E. A. Zarantonello, editor, Contri-
butions to nonlinear functional analysis, pages 603–634. Academic Press, New
York, 1971.



References 139

[20] P. D. Lax. Hyperbolic systems of conservation laws and the mathematical theory
of shock waves. Conf. Board. Math. Sci. Regional Conference Series in Applied
Mathematics 11. SIAM, Philadelphia, 1973.

[21] I. V. Lindell, A. H. Sihvola, and K. Suchy. Six-vector formalism in electro-
magnetics of bi-anisotropic media. J. Electro. Waves Applic., 9(7/8), 887–903,
1995.

[22] T.-P. Liu. The entropy condition and the admissibility of shocks. J. Math.
Anal. Appl., 53, 78–88, 1976.

[23] G. A. Maugin. On shock waves and phase-transition fronts in continua. ARI,
50, 141–150, 1998.

[24] G. A. Maugin. On the universality of the thermomechanics of forces driving
singular sets. Archive of Applied Mechanics, 70, 31–45, 2000.
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