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INTEGRAL EQUATION METHODS AND NUMERICAL SOLUTIONS

OF CRACK AND INCLUSION PROBLEMS IN PLANAR

ELASTOSTATICS ∗

JOHAN HELSING† AND GUNNAR PETERS‡

Abstract. We present algorithms for the crack- and inclusion problem in planar linear elasto-
statics. The algorithms are based on new integral equations. For the pure crack problem the integral
equations are of Fredholm’s second kind. Our algorithms show great stability and allow for solutions
to problems more complex than previously has been possible. Our results are orders of magnitudes
more accurate than those of previous investigators, which rely on integral equations of Fredholm’s
first kind.

Key words. Cracks, composite materials, linear elasticity, integral equations of Fredholm type,
effective elastic properties, stress intensity factors, numerical methods

AMS subject classifications. 73C02, 31A10, 45E05, 65R20

1. Introduction. Algorithms which accurately compute stress fields in loaded
linearly elastic materials with cracks and inclusions are of great interest to the solid
mechanics community. As an example experimental observations on unidirectional
fiber reinforced composites have shown that the evolution and link up of matrix micro
cracking and fiber-matrix debonding can result in complicated crack patterns which
eventually lead to macroscopic fracture [8]. If this process could be modeled in a
realistic and efficient way possibilities open up for optimization of composite material
systems.

The stress field inside a loaded composite with cracks and inclusions is quite
singular. For example, close to the tip of an open crack the stress field diverges like
1/

√
s, where s is the distance to the tip. If the crack is located at an interface the

stress field exhibits an oscillatory singularity of the type cos(a log s)/
√
s, where a is a

real number.

Most algorithms currently in use for crack and inclusion problems are based either
on the finite element method applied to the elastostatic PDE or on an integral equa-
tion reformulation which is solved using boundary elements, collocation, or a Nyström
scheme. So far, no algorithm performs to full satisfaction. Difficulties include choice
of integral equations and basis functions, ill-conditioning, discretization of singular
integral kernels, strategies for adaptivity, imposition of periodic boundary conditions,
and issues of storage and speed. Simplifying assumptions about crack and inclu-
sion interactions are often made, even for simple geometries, to make the problems
tractable. See, for example, Huang, Hu, and Chandra [7] where the authors compute
the stress fields inside a weakly inhomogeneous dilute square array of circular elastic
inclusions surrounded by straight cracks. The relative error is estimated to less than
four per cent in an example with analytic solution.

This paper presents a robust algorithm for the crack and inclusion problem in the
absence of interface cracks. We give
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2 J. HELSING AND G. PETERS

- a reformulation of the integral equations appearing in a mixed crack and
inclusion problem into a system of Fredholm equations of the second kind,
that is both stable and easy to use in an efficient way

- a mathematical analysis of these equations
- particularities of efficient evaluation of the integral operators appearing in

our algorithm
- examples showing that the use of these equations in numerical calculations

improves accuracy and speed for complicated as well as for simple geometries.

It should be pointed out that, for crack problems, a first kind formulation is
the usual choice; the evaluation of integrals involved in a second kind formulation is
considered too difficult. Our reformulation does not suffer from this disadvantage.
Also we show how the technical problems arising in calculating the integrals should
be tackled. Apart from being an important step on the way to a general purpose
algorithm for cracked composites, an algorithm for our restricted problem class is of
interest in itself: cracks closely surrounding inhomogeneities can occur in composites
in a number of ways, for example as a result of residual stress due to thermal mis-
match or crystallographic transformation. By using a second kind integral equation
formulation, rather than a first kind integral equation formulation or a superposition
of analytical solutions where interactions are neglected, we are able to improve the
accuracy in the solution for a well studied geometry by a factor of 109, using IEEE
double precision arithmetic.

The paper is organized as follows. Section 2 presents the basic integral equations.
In §3 the nature of these equations on certain Hilbert spaces is discussed. Section 4
contains technical lemmas used in later sections. The second kind integral formulation
is derived in §5, and in §6 for an alternative set of equations. Sections 7 and 8 give
physical properties in terms of the solution of our integral equations. In §9 we show
how to evaluate branches of analytic functions and singular expressions appearing in
the integrals. Section 10 contains numerical results for several geometries.

2. Basic equations. Let U denote the Airy stress function for a locally isotropic
two dimensional linearly elastic material with cracks and inclusions. Since U satisfies
the biharmonic equation (outside the cracks and the inclusion interfaces), it can be
represented as

U = ℜe {z̄φ+ χ} ,(1)

where φ and χ are possibly multivalued analytic functions outside the cracks and
the inclusion interfaces and ℜe{f} denotes the real part of the function f . In the
elasticity problem with external forces applied only at infinity, φ and χ are actually
single valued, see paragraph 40 in [10]. For a thorough discussion of the complex
variable approach to elasticity problems, see [10, 14, 13, 15]. For our purposes, and
for the time being, it is sufficient to observe a few relations that link the complex
potentials to quantities of physical interest: The displacement (u, v) in the material
satisfies

u+ iv =

(

1

2µ
+

1

κ

)

φ− 1

2µ

(

zφ′ + ψ
)

,(2)

where κ is the two dimensional bulk modulus, µ is the two dimensional shear modulus,
and ψ = χ′. The integral of the traction (tx, ty) along a curve Γ(s) with normal
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(nx, ny) can be obtained from the relation

∫ Γ(s)

Γ(s0)

(tx + ity)ds = −
∣

∣

∣

∣

s

s0

i
(

φ+ zφ′ + ψ
)

,(3)

where s denotes arclength. Complex differentiation of the expression (2) along the
tangent to Γ(s) gives

d

dz
(u+ iv) =

(

1

2µ
+

1

κ

)

Φ − 1

2µ

(

Φ − n̄

n
zΦ′ − n̄

n
Ψ

)

,(4)

and differentiation with respect to arclength in (3) gives

tx + ity = Φn+ Φn− zΦ′n̄− Ψn̄,(5)

where n = nx + iny, Φ = φ′, and Ψ = χ′′.
Consider now a material consisting of an infinite medium with elastic moduli κ1

and µ1 which surrounds a number Nc of cracks and a number Nd of inclusions. The
inclusions have elastic moduli κ2 and µ2. We denote the cracks by Γj , j = 1, . . . , Nc

and the interfaces of the inclusions Γj , j = Nc + 1, . . . , Nc + Nd. The union of all
cracks is Γc and the union of all interfaces is Γd. The union of all cracks and interfaces
is Γ. The starting point and the endpoint of crack Γj , the so-called crack tips, are
denoted γj

s and γj
e . The average strain is ǭ = (ǫxx, ǫyy, ǫxy), and the average stress

is σ̄ = (σxx, σyy, σxy). We are going to compute stress intensity factors for the crack
tips, effective elastic moduli, and the stress- and strain fields in the material subject
to three different imposed average strains, namely ǭI = (1, 0, 0), ǭII = (0, 1, 0), and
ǭIII = (0, 0, 1). Since the equations of elasticity are satisfied everywhere except for
at Γ, and assuming all crack opening displacements are nonnegative, it remains only
to solve the problem which consists of enforcing zero traction along the cracks and
continuity of traction and displacement along the interfaces.

A standard starting point for crack and inclusion problems is to work with (4)
and (5) and to represent the uppercase potentials Φ and Ψ as Cauchy-type integrals:

Φ(z) =
1

2πi

∫

Γ

Ω(τ)ρ(τ)dτ

(τ − z)
+
α

2
,(6)

and

Ψ(z) = − 1

2πi

∫

Γ

Ω(τ)ρ(τ)dτ̄

(τ − z)
− 1

2πi

∫

Γ

τ̄Ω(τ)ρ(τ)dτ

(τ − z)2
+ β,(7)

where Ω(z) is an unknown density on Γ and ρ(z) is a weight function which on crack
Γj is given by

ρ(z) = ((z − γj
s )(z − γj

e ))
−

1

2 ,(8)

and on the interfaces by

ρ(z) = 1.(9)

In (8) the weight function ρ(z) is the limit from the right (relative to the orientation
of the crack) of the branch given by a branch cut along Γj and

lim
z→∞

zρ(z) = 1.(10)
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Remark 1. The constants α and β in (6) and (7) represent the forcing terms at
infinity in our formulation. The two constants take the values κ1 and −µ1 for strain
ǭI, the values κ1 and µ1 for strain ǭII, and the values 0 and 2iµ1 for strain ǭIII. For
imposed average stresses σ̄I = (1, 0, 0), σ̄II = (0, 1, 0), and σ̄III = (0, 0, 1) the constants
take the values α = 1/2 and β = −1/2, α = 1/2 and β = 1/2, and α = 0 and β = i.
Thus, the constant α can always be assumed to be real, while β is either a real or an
imaginary number.

Once Φ is assumed to take the form (6), the expression (7) for Ψ enforces continu-
ity of traction across the cracks and the interfaces. The requirements of zero traction
along the cracks, continuity of displacement along the interfaces, and closure of each
crack lead to an integral equation for Ω(z):

(M1 −M3)Ω(z) =
n̄

n
β̄ − α, z ∈ Γc,(11)

(I + d1M1 + d2M3)Ω(z) = −d1α− d2
n̄

n
β̄, z ∈ Γd,(12)

QΩ = 0.(13)

Here M1 and M3 are integral operators given by

M1Ω(z) =
1

πi

∫

Γ

Ω(τ)ρ(τ)dτ

(τ − z)
,(14)

and

M3Ω(z) =
1

2πi

[∫

Γ

Ω(τ)ρ(τ)dτ

(τ − z)
(15)

+
n̄

n

∫

Γ

Ω(τ)ρ(τ)dτ

(τ̄ − z̄)
+

∫

Γ

Ω(τ)ρ(τ)dτ̄

(τ̄ − z̄)
+
n̄

n

∫

Γ

(τ − z)Ω(τ)ρ(τ)dτ̄

(τ̄ − z̄)2

]

,

and Q is an operator from Γ into the complex linear space CNc whose jth component
is given by

QjΩ =
1

πi

∫

Γj

Ω(τ)ρ(τ)dτ, j = 1, ..., Nc.(16)

Despite appearances, the operator M3 is Hilbert-Schmidt when defined on a certain
weighted L2 space along Γ, while the operator M1 is to be interpreted in the Cauchy
principal value sense. The weighted L2 space used will be discussed in §3. The
constants d1 and d2 of (13) are given by

d1 =

(

1

κ2
− 1

κ1

)

/

(

1

µ2
+

1

κ2
+

1

µ1
+

1

κ1

)

,

and

d2 =

(

1

µ2
− 1

µ1

)

/

(

1

µ2
+

1

κ2
+

1

µ1
+

1

κ1

)

.(17)

Remark 2. Our constants d1 and d2 are simply related to bimaterial parameters
introduced by other investigators. For example, in terms of the parameters a, b, and
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c of equation (3.12) in Sherman [18] we have d1 = b/a and d2 = −c/a. In terms of
the parameters α and β in Dundurs [2] we have d1 = β and d2 = α− β.

A less common option for crack and inclusion problems, but one that has shown
to be numerically more efficient for the pure inclusion problem [4], is to work with (2)
and (3) and to represent the lowercase potentials φ and ψ in the form

φ(z) =
1

2πi

∫

Γ

ω(τ)dτ

ρ(τ)(τ − z)
+
αz

2
,(18)

and

ψ(z) =
1

2πi

∫

Γ

ω(τ)dτ̄

ρ(τ)(τ − z)
− 1

2πi

∫

Γ

ω(τ)dτ

ρ(τ)(τ − z)
(19)

− 1

2πi

∫

Γ

τ̄ω(τ)dτ

ρ(τ)(τ − z)2
+ βz,

where ω(z) is an unknown density related to the density Ω(z) through differentiation.
We will return to this option in §6.

3. Hilbert space formulation of the problem. To make a more precise math-
ematical formulation of the integral equations (11–13) we denote ν(z) = |ρ(z)| and
define the weighted L2 space

L2(Γ, ν) = {f :

∫

Γ

|f(z)|2ν(z)|dz| <∞} ,

where |dz| is the arclength measure on the curve Γ. The system (11–13) will be solved
in the space L2(Γ, ν). Since ν(z) = 1 on Γd we have the orthogonal decomposition

L2(Γ, ν) = L2(Γc, ν) ⊕ L2(Γd) ,(20)

where L2(Γd) is the space of square integrable functions with respect to the arclength
measure on Γd. When Γ is at least C1,α, α > 0, we can use standard Hilbert-Schmidt
theory and the fact that ν is a Muckenhoupt weight, see [12], to prove that on the
Hilbert space L2(Γ, ν) the operators M3 and Q as well as the operator M∗

4 defined in
§4 are bounded. Furthermore M3 is compact, while the operator M1 is unbounded.
The structure of M1 will be further discussed in §5.

It follows from the general theory in [13] that the system (11–13) has a unique
solution and the analysis in §5 of this paper shows that this solution lies in L2(Γ, ν).

For future references we make the following definitions. Write c = (c1, . . . , cNc
)

for a vector in CNc and define the embedding e : CNc → L2(Γc, ν) by

e(c)(z) = cj , z ∈ Γj(21)

e(c)(z) = 0, otherwise.

If we denote by E1 the kernel of Q and by E2 the image of the embedding e then it
follows from Lemma 3 that

L2(Γc, ν) = E1 + E2,(22)

and the system of equations in (11–13) is equivalent to solving (11) and (12) in the
closed subspace E1. This will be discussed further in §5.

Remark 3. We note that, depending on the right-hand side in equations (11)
and (12), the actual solution in general has additional smoothness, but the L2(Γ, ν)
formulation of the problem facilitates the theoretical considerations.
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4. Some identities. We define the following auxiliary operators on L2(Γ, ν).

M∗

1 Ω(z) =
1

πi

∫

Γj

ρ(τ)Ω(τ)dτ

(τ − z)
, z ∈ Γj, j = 1, . . . , Nc ,(23)

and

M∗

4 Ω(z) =
1

πi

∫

Γj

Ω(τ)dτ

ρ(τ)(τ − z)
, z ∈ Γj, j = 1, . . . , Nc .(24)

The following lemma restates some facts, proved in paragraph 27 of [10], in a form
compatible with our formulation of the problem.

Lemma 1.

M∗

1 ◦M∗

4 = IdL2(Γc,ν) ,(25)

M∗

4 ◦M∗

1 Ω = IdL2(Γc,ν) Ω − e(c̄), Ω ∈ L2(Γc, ν) ,(26)

M∗

1 ◦ e = 0 ,(27)

where the vector c̄ ∈ CNc depends linearly on Ω.
Next we consider integrals of the type

∫

Γj

ρ(z)f(z)dz, j = 1, . . . , Nc ,(28)

where ρ(z) is as in (8) and f(z) is analytic. Remember that we use the limit from
the right of the branch of ρ(z) whose branch cut is along Γj itself. Next we will prove
that if, when we vary the path Γj , the branch cut defining ρ(z) moves along with Γj ,
then the integral in (28) depends only on the endpoints.

Lemma 2. Let U be a simply connected domain in C and let f(z) be analytic in
U . If we define the complex line integral

∫

C

ρ(z)f(z)dz(29)

as in the preceding paragraph, i.e., with the branch cut for ρ(z) along the simple curve
C ⊂ U , then this integral depends only on the endpoints of C.

Proof. Fix the endpoints γs and γe and let C be any simple curve in U connecting
γs and γe. First we consider a small perturbation δC of this curve. Simple arguments
show that there exists a branch of ρ(z) that is analytic in a simply connected neigh-
borhood V ⊂ U containing both C and C + δC and that coincides with the limits
from the right of the appropriate branches used in defining the integrals along C and
C+ δC, respectively. The independence of the path of the integral under such a small
perturbation therefore follows from the Cauchy theorem. Next we note that any sim-
ple path connecting γs and γe can be obtained from C by a continuous deformation.
The lemma follows.

Lemma 3. Let Qj denote the projection onto the jth component of the operator
Q. Then

Q ◦ e = IdCNc ,(30)

Qj( z ) =
γj
s + γj

e

2
,(31)

Q ◦M∗

4 = 0 .(32)
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Proof. To prove (30) it suffices to prove that for a single crack Γj

1

iπ

∫

Γj

ρ(z)dz = 1 .(33)

Using Lemma 2 this integral can be reduced to a standard integral in one real variable
which equals the number 1. Equation (31) reads

1

iπ

∫

Γj

z ρ(z)dz =
γj
s + γj

e

2
,(34)

which is proved in a similar manner.
To prove (32) we have to prove that for a single crack Γj

∫

Γj

ρ(z)dz

∫

Γj

Ω(τ)dτ

ρ(τ)(τ − z)
= 0 .(35)

Changing the order of integration in the left hand side of (35) gives
∫

Γj

ρ(z)dz

(τ − z)

∫

Γj

Ω(τ)dτ

ρ(τ)
(36)

which is equal to 0 because of statement (27) of Lemma 1.
Lemma 4. For j = 1, . . . , Nc we have

M∗

4 ◦ e(c̄)(z) = cj(z −
γj
s + γj

e

2
), z ∈ Γj .(37)

Proof. It suffices to prove that for a single crack Γj

1

iπ

∫

Γj

dτ

ρ(τ)(τ − z)
= z − γj

s + γj
e

2
, z ∈ Γj .(38)

With Qj as in Lemma 3 this integral can be written

1

iπ

∫

Γj

ρ(τ)(τ − γj
s )(τ − γj

e )dτ

(τ − z)
=

1

iπ

∫

Γj

ρ(τ)(τ − z)(τ − (γj
s + γj

e − z))dτ

(τ − z)
(39)

= Qj(τ − (γj
s + γj

e − z))

= Qj(τ) − (γj
s + γj

e) + z .

where we have used (27) of Lemma 1 and (30) of Lemma 3. Using (31) this proves
the lemma.

We may now give a more precise formulation of (26) that uses the operators
defined in §2 and §3.

Lemma 5.

M∗

4 ◦M∗

1 = IdL2(Γc,ν) − e ◦Q.(40)

Proof. If we apply Q to the left in (26) and use Lemma 3 we obtain

QΩ = c̄ .(41)

Applying the embedding e to the left in (41) gives e ◦Q(Ω) = e(c̄), and the lemma is
proved.
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5. Fredholm integral equations of the second kind. We argue that the
system (11–13) is not the best formulation for numerical calculations.

Actually, equation (12) is morally a Fredholm equation of the second kind. By
this we mean that the perturbation of the identity is, if not compact, small in the
operator norm and therefore equation (12) is well suited for numerical calculations as
it stands.

We consider now in some detail the system given by equations (11) and (13).
Denote M ♭

1 for the part of the operator M1 that appears in equation (11). First
we note that the operator M ♭

1 acting on Ω is unbounded. In fact M ♭
1 = M∗

1 + M0
1

where M∗
1 is defined in (23), and the remaining part M0

1 is a compact operator on
L2(Γ, ν). The unbounded operator M∗

1 describes the self-interaction for the cracks.
Since the spectrum of M ♭

1 is unbounded a direct discretization of M ♭
1 leads to nu-

merical instabilities. Secondly we need to solve the integral equations in (11–12) and
the constraint (13) simultaneously. The first of these problems is the more serious.
Numerical application of a suitable preconditioner is a possible way out, but cost and
storage requirement associated with such calculations is high: With nj discretization
points on crack Γj the cost of computing a reasonable preconditioner is proportional
to

∑

n3
j [6]. Furthermore, some accuracy will be lost. Here we will show that the

system given by (11) and (13) is equivalent to a Fredholm integral equation of the
second kind on the Hilbert space L2(Γ, ν), that is well suited for accurate numerical
calculations.

First we consider the simplified system

MΩ =

(

M∗
1 0

0 Id

) (

Ωc

Ωd

)

=

(

b1
b2

)

,(42)

QΩ = 0 .

If we define M∗
4 as in (24) then Lemmas 1 and 3 imply that the solution to (42) is

given by

Ω =

(

M∗
4 0

0 Id

) (

b1
b2

)

.(43)

Returning to the system given by (11) and (13) this can be viewed as a small pertur-
bation of (42);

(M +K)Ω = b,(44)

QΩ = 0,(45)

and the operator in (43) serves as a parametrix for (44) that also projects out the solu-
tion obeying the constraint (45). This viewpoint gives us the following simplification
of the system.

Theorem 6. Let M∗
4 be as above. Then the system given by (11) and the

constraint (13) is equivalent to the following single Fredholm integral equation of the
second kind.

(

IdL2(Γc) +M∗

4 ◦ (M0
1 −M3)

)

Ω(z) = M∗

4 (
n̄

n
β̄ − α), z ∈ Γc.(46)

Proof. That (46) is a Fredholm equation of the second kind follows from the
compactness of (M0

1 −M3) and the fact that M∗
4 is bounded on L2(Γ, ν). If we apply



INTEGRAL EQUATIONS FOR CRACKS 9

M∗
4 on the left in (11) and use Lemma 5 then we obtain

(

IdL2(Γc,ν) +M∗

4 ◦ (M0
1 −M3) − e ◦Q

)

Ω = M∗

4 (
n̄

n
β̄ − α) .(47)

From (47) and the constraint (13) we obtain (46). In the other direction we apply
M∗

1 to the left in (46) to obtain (11). Also using the fact that Q ◦M∗
4 = 0 we obtain

(13) by applying Q to the left in (46).
In conclusion we end up with the following system of integral equations.

(

IdL2(Γc,ν) +M∗

4 ◦ (M0
1 −M3)

)

Ω(z) = M∗

4 (
n̄

n
β̄ − α), z ∈ Γc ,(48)

(

IdL2(Γd) + d1M1 + d2M3

)

Ω(z) = −d1α− d2
n̄

n
β̄, z ∈ Γd.(49)

As we shall see in § 10, equations (48–49), as well as their companion system of
equations (56–57) given in §6, allow for very accurate numerical solutions of complex
situations.

As far as we know, a second kind Fredholm integral equation formulation for
the crack problem has not been used before in the context of a general numerical
algorithm. On the contrary, both Erdogan, Gupta and Cook [3] in a much cited
paper and Parton and Perlin [16] recommend numerical solution of integral equations
of the first kind. Recently, however, Chen and Hasebe [1] used a combination of a
second kind integral equation and a free-space solution on analytic form to solve a
problem involving three well separated cracks in the shape of circular arcs.

Since we use the parametrix in (43) instead of inverting the full operator M1

as described in Muskhelishvili [13] the evaluation of the singular integral operators
appearing, for exampleM∗

4 , simplifies considerably. In §9 we discuss the particularities
of these calculations.

6. An alternative formulation. We now return to the representation (18) and
(19) for the lowercase potentials φ and ψ respectively. These are just a reformulation
of (6) and (7), which gives the the unique existence stated below.

Once φ is assumed to take the form (18), the expression (19) for ψ enforces the
continuity of the integral of traction across the cracks and across the interfaces. The
requirements of zero traction along the cracks and of continuity of displacement along
the interfaces lead to the following system of integral equations for ω(z).

M4ω(z)−M2ω(z) = −αz − β̄z̄ + e(c̄), z ∈ Γc,(50)

(I + d1M4 + d2M2)ω(z) = −d1αz + d2β̄z̄, z ∈ Γd,(51)

where c̄ ∈ C is a vector of constants of integration (one for each crack). Using the
splitting given in equation (22) and the fact the image of M4, the kernel of Q, and
the subspace E1 coincide we obtain the following consistency condition for ω and c̄.

−Q ◦M2ω(z) = Q
(

−αz − β̄z̄
)

+ c̄ .(52)

The operators M4 and M2 are integral operators given by

M4ω(z) =
1

πi

∫

Γ

ω(τ)dτ

ρ(τ)(τ − z)
,(53)

and

M2ω(z) =
1

2πi

∫

Γ

ω(τ)

ρ(τ)
d

[

log
τ − z

τ̄ − z̄

]

+
1

2πi

∫

Γ

ω(τ)

ρ(τ)
d

[

τ − z

τ̄ − z̄

]

.(54)
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Equation (51), for the pure inclusion problem, is equivalent to the formulation used
by Sherman [18] and Greengard and Helsing [4]. Equation (50), for the pure crack
problem, appears to be new. That the system (50–52) has a unique solution follows
from the result of Muskhelishvili [13] cited in §3 and the fact that this system is a
reformulation of (11–13).

Again (51) will be used as it stands while (50) and (52) will be transformed into
a Fredholm equation of the second kind. This is the content of Theorem 7 below. In
analogy with the notation in §5 we write M ♭

4 = M∗
4 + M0

4 for the part of M4 that
appears in equation (50). Here M∗

4 is given in (24).
Here the situation is a bit more complicated than in §3 and §5. We define L2(ν1,Γ)

as the L2 space relative to the weight ν1 = |1/ρ(z)|. Using the fact that also 1/|ρ(z)| is
a Muckenhoupt-weight we see that M4 is bounded while M2 is compact on this space.
The operator M1 is still unbounded but we have the following. M4 : L2(ν1,Γ) →
L2(ν,Γ) and M1 : L2(ν,Γ) → L2(ν1,Γ) are bounded while M0

4 : L2(ν1,Γ) → L2(ν,Γ)
and M2 : L2(ν1,Γ) → L2(ν,Γ) are compact. These statements together with the
Lemmas in §4 allow us to prove the following theorem.

Theorem 7. Let M∗
1 be as above. Then the system (50) and (52) is equivalent

to the following Fredholm integral equation of the second kind on L2(ν1,Γ).

(

IdL2(Γc) +M∗

1 ◦ (M0
4 −M2)

)

ω(z) = −M∗

1 (αz + β̄z̄), z ∈ Γc.(55)

Proof. Applying M∗
1 to the left in (50) and observing that M∗

1 ◦ e = 0 gives
(55). That this is a Fredholm equation follows from the boundedness of M∗

1 and com-
pactness of M0

4 −M2 on the appropriate spaces as stated in the preceding paragraph.
Applying M∗

4 to the left in 55 gives us back equation(50) where c̄ has to be determined
from the consistency condition (52).

This gives us the following alternative system of integral equations.

(

IdL2(Γc,ν) +M∗

1 ◦ (M0
4 −M2)

)

ω(z) = −M∗

1 (αz + β̄z̄), z ∈ Γc, ,(56)
(

IdL2(Γd) + d1M4 + d2M2

)

ω(z) = −d1αz + d2β̄z̄, z ∈ Γd.(57)

For pure crack problems the performance of equations (48) and (56) is almost
identical. For crack and inclusion problems equations (56–57) outperform equa-
tions (48–49) as is shown by the example in §10.5.

7. Stress intensity factors. Stress intensity factors are quantities of great im-
portance. These factors, which are assumed to control crack growth, can be defined
as certain limits of the displacement at the crack tips of a cracked material subjected
to loads. Below we will present simple expressions for stress intensity factors in terms
of the densities ω(z) and Ω(z).

The opening displacement (δu, δv) on a crack Γj is the limit value of the displace-
ment from the right minus the limit value of the displacement from the left. Using
(2) it is easy to derive the following relation between the crack opening displacement
and the density ω(z)

δu+ iδv = −
(

1

κ1
+

1

µ1

)

ω(z)

ρ(z)
.(58)

For a crack that is open, ω(z)/ρ(z) approaches zero as the square root of the distance
to the crack tips. The complex valued stress intensity factor KI + iKII at the crack
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tips γj
s and γj

e can be defined as

KI + iKII = −
√

2π

g
lim

z→γ
j
s

n(z)

2
√

δs(z)

ω(z)

ρ(z)
,

and

KI + iKII = −
√

2π

g
lim

z→γj
e

n(z)

2
√

δs(z)

ω(z)

ρ(z)
,(59)

where δs(z) is arclength measured from the closest crack tip and g is a normalization
factor which varies with different authors.

The derivative of the crack opening displacement can be expressed in terms of
Ω(z) via (4) as

d

dz
(δu+ iδv) = −

(

1

κ1
+

1

µ1

)

Ω(z)ρ(z).(60)

For a crack that is open, Ω(z)ρ(z) has a one over square root singularity at the crack
tips. The complex valued stress intensity factor KI + iKII at the crack tips γj

s and γj
e

can also be defined as

KI + iKII =
i
√

2π

g
lim

z→γj
s

Ω(z)ρ(z)
√

δs(z),

and

KI + iKII = − i
√

2π

g
lim

z→γj
e

Ω(z)ρ(z)
√

δs(z).(61)

8. Effective moduli. Effective elastic moduli are particularly simple to define
and compute in the setting of a doubly periodic material with a square unit cell of
unit area. The effective moduli of a material can be defined through the following
relations between average stress and average strain





σ̄xx

σ̄yy√
2σ̄xy



 =





c∗1 c∗2 c∗3
c∗2 c∗4 c∗5
c∗3 c∗5 c∗6









ǭxx

ǭyy√
2ǭxy



 .(62)

For the density Ω(z), let

a = −
(

1 +
µ1

κ1

) ∫

Γu

zΩ(z)ρ(z)dz,(63)

and

b = −
(

1 +
κ1

µ1

) ∫

Γcu

z̄Ω(z)ρ(z)dz −
(

1 +
κ1

2µ1
+

κ2

2µ2

) ∫

Γdu

z̄Ω(z)dz(64)

−
(

κ1

2µ1
− κ2

2µ2

) ∫

Γdu

z̄M3Ω(z)dz,
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where Γcu denotes the cracks in the unit cell, Γdu denotes the interfaces in the unit
cell, and Γu = Γcu + Γdu. For the density ω(z), let

a =

(

1 +
µ1

κ1

) ∫

Γu

ω(z)

ρ(z)
dz,(65)

and

b =

(

1 +
κ1

µ1

) ∫

Γcu

ω(z)

ρ(z)
dz̄ +

(

1 +
κ1

2µ1
+

κ2

2µ2

) ∫

Γdu

ω(z)dz̄(66)

+

(

κ2

2µ2
− κ1

2µ1

) ∫

Γdu

M2ω(z)dz̄.

If one imposes the average stress ǭI, the effective moduli c∗1, c∗2, c∗3 can be computed
as follows

c∗1 = κ1 + µ1 + ℑm{a− b},
c∗2 = κ1 − µ1 −ℑm{a+ b},
c∗3 = −

√
2ℜe{a}.(67)

If one imposes the average stress ǭII, then the effective moduli c∗2, c∗4, c∗5 can be
computed by

c∗2 = κ1 − µ1 + ℑm{a− b},
c∗4 = κ1 + µ1 −ℑm{a+ b},
c∗5 = −

√
2ℜe{a}.(68)

If one imposes the average stress ǭIII, then the effective moduli c∗3, c∗5, c∗6 can be
computed by

c∗3 = ℑm{a− b}/
√

2,

c∗5 = −ℑm{a+ b}/
√

2,

c∗6 = 2µ1 −ℜe{a}.(69)

9. Branch chasing and evaluation of integral operators. The smooth in-
tegral kernels of M0

1 , M2, M3, and M0
4 are simple to evaluate with composite Gauss-

Legendre and Gauss-Jacobi quadrature. In this section we will discuss technical details
of the more complicated evaluations of the singular kernels of M∗

1 and M∗
4 , and the

evaluation of the desired branch of the weight function ρ(z),

9.1. Evaluation of ρ(z). The value of the weight function ρ(z) in (8) on a
curve Γj is defined as the limit from the right (relative to the orientation of Γj) of
the branch of ρ(z) given by a cut in the plane along Γj and by condition (10). To
calculate numerical values of ρ(z) we note that

1

ρ(z)
= ν(z) · Sqrt (z − γj

s )Sqrt (z − γj
e)(70)

where Sqrt () is the principal branch of the square root given by a cut along the
negative real axis and Sqrt (1) = 1, and ν(z) is the relative sign of our branch of ρ(z)
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as compared to the principal branches in (70). Since the principal branch is easy to
calculate and in fact is implemented in most programming languages it remains to
calculate the sign function ν(z) along the curve Γ. To this end we define the angles
θ1(t) and θ2(t) as

θ1(t) = arg(z(t) − γs), 0 < t ≤ 1, θ1(0) = arg(z′(0)),(71)

θ2(t) = arg(z(t) − γe), 0 ≤ t < 1, θ2(1) = arg(−z′(1)).(72)

The function ν(z) takes values ±1 and changes sign exactly when either θ1 or θ2 passes
through an odd multiple of π. This gives ν(z) up to a global sign, which is obtained
as follows. Let m be the total number of times θ1 passes through an odd multiple of
π along Γ. Then the initial value of ν(z) as z starts out from γs is

(−1)m, 0 < arg(γe − γs) ≤ π ,(73)

−(−1)m, −π < arg(γe − γs) ≤ 0 .(74)

We discuss in more detail the calculation of θ1. The angle θ2 is handled analo-
gously. Let ti and ti+1 be two consecutive points in the discretization of Γj, and let
∆ θ1 be the increment of θ1 as we go along the curve segment [z(ti), z(ti+1)]. Due to
the multivaluedness of θ1 this change in the angle can not be calculated from z(ti) and
z(ti+1) alone but depends on the number of turns the curve segment [z(ti), z(ti+1)]
winds around γs. To avoid this problem we are going to use a geometrical condition
on the curve segment which implies that we are not winding more than half a turn
around γs. Given z(ti), z(ti+1) and γs there exists a unique −π < α < π such that

∆ θ1 = α+ k · 2π, for some k ∈ ZZ .

Here a k 6= 0 indicates that the curve segment winds more than half a turn around
γs. Let Ti be the total curvature, see [11], of the curve segment [z(ti), z(ti+1)] and let
α be as above. Then ∆ θ1 = α if and only if

π − α > Ti.(75)

A similar problem arises at the endpoints. The geometry is different but when going
from z(0) to z(t1) the condition in (75) ensures that the curve does not wind more
then half a turn around γs. The total curvature Ti can easily be estimated by a simple
quadrature rule.

This leads to the following recursive algorithm for the calculation of ∆θ1 going
from parameter value t to s along the curve (and similarly for ∆θ2).

function Delta(t, s)
calculate θ1(s) and α
if (π − α > T (s, t)) then

return α
else

t1 := s+t
2

return Delta(s, t1) +Delta(t1, s)
endif

Simple analytical arguments for curves of finite total curvature show that this
algorithm stops.
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9.2. Evaluation of M∗
1 and M∗

4 . We now turn to the numerical evaluation
of the Cauchy type singular kernels of M∗

1 and M∗
4 . The framework is composite

Gaussian quadrature. Each crack Γj is divided into mj Gaussian segments. The first
segment, Γj

s , starts at γj
s and end at γj

2 . The second segment starts at γj
2 and ends

at γj
3 , and so on. The last segment, Γj

e, starts at γj
mj and ends at γj

e .
To facilitate numerical integration it will be convenient to introduce a piece-wise

smooth real valued weight function h(z) on Γj given by

h(z) =

√

s(γj
2) − s(γj

s )

s(z) − s(γj
s )
, z ∈ Γj

s .

h(z) =

√

s(γj
e ) − s(γj

mj )

s(γj
e ) − s(z)

, z ∈ Γj
e,

and

h(z) = 1, z ∈ Γj − Γj
s − Γj

e.(76)

The weight function h(z) is constructed so that the ratio ρ(z)/h(z) is bounded, non-
zero, and continuous.

Lemma 4 and equation (27) of Lemma 1 allow us to rewrite the integral operators
M∗

1 and M∗
4 in ways that make it simple to compute their Cauchy principal values.

On Γj and operating on a function f(z) we get for M∗
1

1

πi

∫

Γj

f(τ)ρ(τ)dτ

τ − z
=

1

πi

∫

Γj

(f(τ) − f(z))

(τ − z)

ρ(τ)

h(τ)
h(τ)dτ,(77)

and for M∗
4

1

πi

∫

Γj

f(τ)dτ

ρ(τ)(τ − z)
=

1

πi

∫

Γj

(f(τ) − f(z))

(τ − z)

h(τ)

ρ(τ)

dτ

h(τ)
+

(

z − γj
s + γj

e

2

)

f(z).(78)

The integrals on the right hand sides of (77) and (78) have smooth integrands if f(z) is
a smooth function. Given a parameterization z(s) of Γj the integrals can be evaluated
using Gauss-Jacobi quadrature on the intervals containing the crack tips, and using
Gauss-Legendre quadrature on all other intervals. If f(z) is only known at n discrete
points this evaluation will include taking the limit

lim
t→s

f(z(t)) − f(z(s))

t− s

numerically, which can be achieved by analytic differentiation of an interpolating
polynomial of degree n − 1. As a result, one may compute the principal value with
at worst (n − 2)th order accuracy and not with (2n − 1)th order accuracy which is
normally the case for Gaussian quadrature.

In (56) the operator M∗
1 operates on M0

4 −M2, which in turn operates on ω(z).
Due to different weights in the integrals, M∗

1 and M0
4 −M2 will need different sets

of source points in the quadrature on segments containing crack tips if the order of
the quadrature is to be the best possible. Let these sets be denoted ΛI and ΛII. The
target points for M0

4 −M2 are in ΛI and the target points for M∗
1 are in ΛII.
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The situation in (48) for Ω(z) is similar. We need ΛII and ΛI as source points
for M∗

4 and M0
1 −M3 to get best possible order in the quadrature. The target points

for M∗
4 and M0

1 −M3 are taken as ΛI and ΛII, respectively. A complication is that,
because of the second term on the right hand side of (78), the operator M∗

4 also needs
the values of (M0

1 −M3)Ω at ΛI as source points. In our implementation these values
are computed by interpolation.

10. Numerical results. In this section we solve (48–49) and (56–57) using com-
posite 16-point Gaussian quadrature for a few free-space and periodic configurations
of cracks and inclusions. To achieve high accuracy for difficult geometries we use a
posteriori refinement. Initially we place a certain number of Gaussian segments on
each crack and interface and solve for the density Ω(z) or ω(z). We determine whether
the density is well resolved by looking at its Legendre expansion. Those segments on
which the coefficients in the Legendre expansion are slowly decaying will be subdi-
vided, and the integral equations are solved again. The final accuracy is determined
by using convergence studies explained in [5] and [4]. The linear system of equations
in each refinement step is solved with the GMRES iterative solver [17] and the itera-
tions are terminated when the residual is less than 10−13. For simplicity we allow the
possibility of negative crack opening displacement. The computed effective moduli
then become those of a material where the cracks are not closed prior to loading, but
have a small initial opening.

10.1. A branched crack. Let us start with a seemingly difficult geometry con-
taining just one crack and no inclusion: The asymmetrically branched crack in free-
space [9]. This geometry has been treated by several previous investigators. Here we
choose a crack of length 2a with a branch of length a. The angle between the main
crack and the branch is π/4. A uniform strain is applied at infinity perpendicular to
the main crack. Lo [9] obtained normalized stress intensity factors for the branched
tip KI = 0.66 and KII = 0.72. Zang and Gudmundson [19] reported KI = 0.664
and KII = 0.722, and Helsing [6] got KI = 0.66278 and KII = 0.72093 with an algo-
rithm involving numerical preconditioning of a first kind Fredholm integral equation.
With 1344 discretization points and using either (48) or (56) we get convergence to
KI = 0.662782122673 and KII = 0.720931095103. With the angle reduced to π/12
and with 1344 discretization points we get convergence to KI = 1.1519846410388
and KI = 0.31778821583537, values which should be compared with KI = 1.15 and
KII = 0.32 of Lo [9], KI = 1.154 and KII = 0.318 of Zang and Gudmundson [19], and
KI = 1.1519846 and KII = 0.3177882 of Helsing [6].

10.2. A spiral crack. In Figure 1 we see a crack in the shape of a spiral pa-
rameterized by

z(t) = tei8.3πt, 0 ≤ t ≤ 1.(79)

In the definition of the stress intensity factors of (59) we use a normalization factor
g = 1. The crack is subjected to a uniform remote biaxial unit load. After one stage
of refinement, using a total of 880 discretization points in equation (48), we get for the
outer crack tip KI = 0.43420263702 and KII = 0.48761577661. The stress intensity
factors for the crack tip in the center have magnitudes smaller than 10−12.

10.3. A periodic configuration of aligned cracks. We take a doubly peri-
odic square array of aligned straight cracks. The crack in the unit cell has length 2a
and is directed parallel to the x-axis. Average displacements ǭII and ǭIII are applied.
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Fig. 1. A crack in the shape of a spiral.

Table 1

Stress intensity factor KI normalized with a factor σyy

√

aπ, stress intensity factor KII normal-

ized with a factor σxy

√

aπ, and effective moduli c∗4 and c∗6 for a square array of cracks of length

2a. The number of discretization points per crack in the final estimate is ’np’. The two dimensional

elastic moduli of the material are κ = 0.5 and µ = 0.5.

a c∗4 c∗6 KI KII np
0.1 0.9402238722753 0.9689332424173 1.012189656971 1.020492383609 32
0.2 0.7900434229480 0.8799346852987 1.062257994344 1.085071774160 32
0.3 0.6016657820793 0.7441611351022 1.193897589344 1.219483489482 32
0.4 0.4052636517192 0.5687774436483 1.557757225697 1.570463954286 64
0.49 0.1861381455207 0.3109493450269 4.54629613227 4.54671859270 190
0.499 0.120426466863 0.213595309831 14.2494765410 14.2494897992 290
0.4999 0.089003112607 0.162664545319 45.02031709 45.02031750 420
0.49999 0.07058505740 0.13134576810 142.353932 142.353932 540
0.499999 0.0584827919 0.1101398788 450.1586 450.1586 600
0.4999999 0.049923145 0.094829653 1423.525 1423.525 700
0.49999999 0.0435492 0.0832563 4501.58 4501.58 800

The two dimensional bulk and shear moduli are chosen as κ = 0.5 and µ = 0.5. Re-
sults for the effective moduli c∗4 and c∗6 and for the stress intensity factors KI and
KII, normalized with factors g = σyy

√
aπ and g = σxy

√
aπ, are presented in Table 1.

Equations (48) and (56) were used with virtually identical performance. GMRES
typically converged to the desired accuracy in less than ten iterations.

10.4. Five spiral shaped cracks in a square unit cell. Figure 2 shows a
square unit cell of unit side length with fives cracks in the shape of spirals. The cracks
are parameterized

z(t) = zcent + 0.23te±i5.3πt, 0 ≤ t ≤ 1,(80)

where zcent are the five spiral centers z1 = (−0.42, 0.22), z2 = (0.22, 0.45), z3 =
(0, 0.06), z4 = (0.45,−0.16) z5 = (−0.16,−0.38). Plus and minus indicate counter-
clockwise or clockwise orientation.

Thirty Gaussian segments were initially placed on each crack, corresponding to
2,400 discretization points. One stage of iterative refinement was then used in (48),
adding another 112 discretization points. The effective elastic moduli converged to
c∗1 = 0.17047722558, c∗2 = 0.06588860514, c∗3 = −0.04780552823,
c∗4 = 0.15851961817, c∗5 = 0.05120153242, and c∗6 = 0.12783097335.
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Fig. 2. Five spiral shaped cracks in a square unit cell.

Fig. 3. A unit cell of unit side length consisting of a disk of area fraction 0.4 and 17 cracks of length

0.1.

10.5. A Disk surrounded by cracks in the form of rays. We solve (48–49)
and (56–57) for the geometry in Figure 3. The unit cell, in a doubly periodic square
array, has a disk of area fraction p2 = 0.4 centered around its origin. The disk is
surrounded by 17 equispaced cracks of length 0.1. The midpoints of the cracks are
placed at a distance of 0.43 from the origin. The elastic moduli of the matrix material
is κ1 = 0.5 and µ1 = 0.5. The elastic moduli of the disk are µ2 = 135 and κ2 = 225.

For (48–49), two Gaussian segments were initially placed on each crack and 50
segments were placed on the disk. Using two stages of iterative refinement with 27
new segments each, leading up to a total of 2208 points discretization points, we arrive
at the effective elastic moduli: c∗1 = 2.086956695352, c∗2 = 0.2073748112781, c∗4 =
2.087501278993, and c∗6 = 1.547493105594. The same moduli were then computed
using (56–57). For this calculation we only needed 40 initial segments on the disk
and one stage of refinement, leading up to a total of 1616 discretization points. We
conclude that for this crack and inclusion problem the formulation (56–57) is about
30 per cent more efficient in terms of discretization points and computing time.

11. Conclusions. We have derived two systems of second kind Fredholm inte-
gral equations for elastostatics of cracked composites in the absence of interface cracks.
The first system, (48–49), is based on a density Ω, closely related to the derivative of
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the crack opening displacement. The second system, (56–57), is based on a density ω,
closely related to the crack opening displacement itself. The second system of integral
equations has a smoother right hand side than the first system.

Based on these equations two robust and adaptive high-order solvers with flexible
and user friendly interfaces were developed and implemented. Numerical calculations
gave results with unprecedented accuracy and indicated that for pure crack problems
the two systems of equations were comparable, while for crack and inclusion problems
the system (56–57) was most efficient. We are currently considering an extension of
this scheme to geometries with interface cracks.

Acknowledgments. We thank Leslie Greengard for several useful discussions.
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